

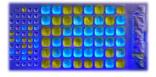
A rapid, field portable test for faecal indicator detection

Brendan Heery, Ciprian Briciu-Burghina, Dermot Brabazon and Fiona Regan

Marine and Environmental Sensing Technologies Hub (MESTECH), National Centre for Sensor Research (NCSR), School

of Chemical Sciences, Dublin City University, Dublin.

brendanheery@gmail.com


Introduction

The EU Bathing Water Directive 2006/7/EC sets limits for the microbial contamination in waters used for recreation. *E. coli* and Enterococci are used as indicators of faecal pollution. Table 1 shows the specified limits in Colony Forming Units (CFU) for marine and transitional waters.

Table 1. Bathing Water Directive E.Coli and Enterococci limits

Bacteria	Excellent	Good (Obligatory)
E.Coli	≤ 250 CFU /100 mL	≤ 500 CFU/100 mL
Enterococci	≤ 100 CFU /100 mL	≤ 200 CFU /100 mL

Commercially available culture based detection methods are slow. Colilert 18 and Petri-Film take 18 hours and 22 hours incubation respectively. This period, plus the time to take the sample and transport to the lab, means that a result is obtained next day. There is a demand for "Rapid" or same day test methods preferably *in-situ* and autonomous.

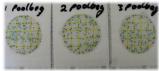


Fig 1. Colilert 18

Fig 2. PetriFilm

Detection methodology

A fluorescence based enzymatic assay is used to detect *E.coli*. A chemical substrate e.g. 4-Methylumbelliferyl-ß-D-Glucoronide (4-MUG) is introduced to the water sample and taken up by the ß-Glucoronidase (GUD) positive *E.coli*. The substrate is hydrolysed to release a fluorescent molecule 4-Methylumbelliferone (4-MU) and a sugar. The resultant fluorescence can then be measured and used to quantify the bacteria. Figure 3 illustrates the process. This direct fluorescence approach can yield results in as little as 1 hour. A number of variations on this assay have been trialled to improve specificity and reliability.

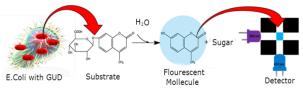


Fig 3. Enzyme substrate chemistry

Instrumentation development

A portable bench top instrument (ColiSense) was built to carry out sample analysis and trial different methods. Features include:

- Fluorescence detection (Ex: 365nm, Em: 445 nm)
- Incubation (Temperature controlled at 44°C)
- Triplicate sampling
- Portability

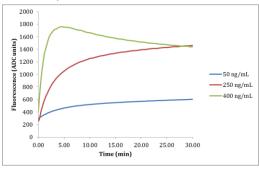


Fig 4. ColiSense response to GUD concentrations in 500 μM 6-Chloro-4-methylumbelliferyl β-D-glucuronide (6-Cmug)

Conclusions

A prototype system (ColiSense) has been developed which is capable of performing a number of fluorescence based assays for faecal indicator detection. Detection times as low as 1 hour have been achieved. Reliability remains an issue.

Acknowledgements

This work is funded by the Irish Research Council (IRC) formerly IRCSET, under the Enterprise Partnership Scheme in collaboration with Te Laboratories, Tullow, Co . Carlow.

The Beaufort Marine Research Award is carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006-2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the National Development Plan 2007–2013.

