
Layered Change Log Model: Bridging between Ontology Change Representation and Pattern Mining 1

Layered Change Log Model: Bridging between
Ontology Change Representation and Pattern
Mining

Muhammad Javed, Yalemisew M. Abgaz , Claus
Pahl
School of Computing
Dublin City University
Dublin, Ireland
E-mail: [mjaved|yabgaz|cpahl]@computing.dcu.ie

Abstract: To date, no ontology change management system exists that records the
ontology changes based on the different levels of granularity. Once changes are performed
using elementary level change operations, they are recorded in the database at the
elementary level accordingly. Such a change representation procedure is not sufficient to
represent the intuition behind any applied change and thus, cannot capture the semantic
impact of a change. In this paper, we discuss recording of the applied ontology changes
in the form of a layered change log. We support the implementation of a layered change
operator framework through layered change logs. We utilize the lower level ontology
change log in two ways, i.e. recording of applied ontology changes (operational) and
mining of higher level change patterns (analytical). The higher level change logs capture
the objective of the ontology changes at a higher level of granularity and support a
comprehensive understanding of the ontology evolution. The knowledge-based change
log facilitates the detection of similarities within different time series, mining of change
patterns and reuse of knowledge.The layered change logs are formalised using a graph-
based approach.

Keywords: Layered Change Log Model; Atomic Change Log; Pattern Change Log;
Ontology Evolution; Triple-based Ontology Change Representation.

1 Introduction

Ontology-based information models helped researchers
to take a step forward from traditional content
management systems (CMS) to conceptual knowledge
modelling to meet the requirements of the semantically
aware information systems. Ontology-based approaches
can be used to capture the implicit knowledge,
architecture and process patterns [2, 4]. Ontologies
can convey the useful semantic information for content
managers and domain experts to understand and
process. Domain ontologies have become essential for
conceptualization and knowledge sharing activities in
dynamic information system. Such information systems
are always subject to change and ontology change
management can pose challenges. The reason for such
changes can be the changes in the domain, the
specification, the conceptualization or any combination
of them [5]. A change in an ontology may originate
from a domain expert, a user of the ontology or a
change in the application area [6]. Some changes are
about the introduction of new concepts, removal of
outdated concepts and changes in the structures and the
description of concepts. Ontology changes need to be

recorded and represented in a suitable format so that
they are human and machine processable.

In this paper, we present a novel approach regarding
recording of applied ontology changes in the form of a
change log. We present a Layered Change Log Model
(LCLM) to deal with the customization and abstraction
of ontology-based model evolution. The implementation
of the change operator framework (discussed in [3]) is
supported through a layered change log model. Such
layered change logs not only reflect the changes in the
domain but also the user requirements, flaws in the initial
design and need to incorporate additional information.
The central technical contributions of this research work
are as follows:

• Explicit representation of the intent of an ontology
change at a higher level of granularity using
ontology change patterns. The model enables
dealing with the structural and the semantic
changes at two separate levels without losing their
interdependence.

• Ontology change logs can provide operational
as well as analytical support in the ontology
evolution process. We utilize ontology change
logs in two perspectives i.e., recording of applied

2 M. Javed et al.

ontology changes and mining of higher level change
patterns.

The paper is structured as follows: In section 2 we
present our layered change log model. In section 3,
we discuss the RDF framework format that is used to
construct and represent the applied changes in RDF
triple-form. In section 4, we discuss the layered change
log in terms of recording of applied changes. In section
5, we discuss the mining of ontology change patterns
from lower-level change log. A short evaluation is given
in section 6. We end with related work and a brief
discussion.

2 Layered Change Log Model

The representation of ontology changes has a major role
in supporting the management of ontology evolution and
related activities [7]. The atomic level representation of
applied ontology changes can only depict addition or
deletion of any axiom from the domain ontology. The
representation of intent behind any applied ontology
change is missing from such change representation and
mostly specified/deduced at a higher level of granularity.
It is hard for an ontology engineer to understand why
changes were performed, whether it is an atomic level
change or a part of composite change and what is the
impact of such change.

We used change logs to record the applied ontology
changes. The change logs provide detailed information
about the ontology changes including who performed the
change, when the change was performed, what was the
change request and what was the impact of such change
request on the neighbourhood entities (i.e. cascaded
impact) [1]. Our concern here is not only to determine
the ontology differences between the versions, but also
how it has changed from an operational perspective and
to support an ontology engineer in executing the changes
(through identified patterns).

In comparison to the change logs, representing the
ontology changes in terms of successive versions of
domain ontology provide less details. The successive
versions inform only about the previous and the current
state of the ontologies. Different versions of domain
ontology represent what has changed, but the details,
about how the domain ontology has evolved from
one version to the other and how one reaches to
the current version of the ontology, are missing. In
terms of identification of ontology change patterns,
ontology change logs allow to identify the patterns across
the sessions. This cannot be achieved using ontology
versions.

Based on our layered change operator framework
[3], we propose a Layered Change Log Model (LCLM),
containing two different levels of granularity, i.e. an
Atomic Change Log (ACL) and a Pattern Change Log
(PCL)- Figure 1.

- Atomic change log (ACL): Atomic change log
contains atomic level change operations. Benefit of
storing ontology changes at atomic level is their
fine-grained and complete representation. Fine-
grained representation of ontology changes help
ontology engineer to understand the impact of the
ontology changes at the atomic level. However,
in most of the cases, the ontology changes are
being applied in a group. Thus, the impact of the
grouped changes must be identified at a higher
level rather than atomic. One can extract such
higher level change operations from the atomic
change log, using pattern mining mechanisms,
that leads to a comprehensive ontology change
management approach.

- Pattern change log (PCL): Pattern change log
contains the higher level change operations, i.e.,
composite and domain-specific change patterns
[10]. Using pattern change log, one can capture
the objective of the ontology changes at a higher
level of abstraction that help in comprehensible
understanding of ontology evolution. The intent
behind any applied change is more visible at the
pattern level as compared to the atomic.

The layered change log model has been used to achieve
two purposes, i.e.,

- recording ontology changes at different levels based
on the utilized change operators representing
operational change log data (discussed in section
4) and

- mining of valuable knowledge such as intent
behind any applied change, domain-specific change
patterns etc. from analytical change log data
(discussed in section 5).

3 RDF Framework Format

We use RDF triple-based representation, i.e., subject -
predicate - object (spo), to conceptualize the domain
ontology changes in the change logs. In order to
keep a transparent record of applied ontology changes,
we record two types of core metadata, i.e. who
performed the change (User) and when the change
was performed (Timestamp). To record such metadata,
Provenance Vocabulary Core Ontology1 terms can
be used. In this regard, an ontology change can
be considered as an activity (rdf:type :Activity)
that is performed by a certain agent (:Activity
:performedBy :Agent) where an agent can be a user (i.e.,
:HumanActor) or an application (:NonHumanActor).
Further, a timestamp can be attached to such activity
using the completedAt datatype proprerty (:Acitivity
:completedAt xsd:dateTime). Similar to the provenance
vocabulary core ontology, we constructed a change
metadata model using the OWL language. As we

Layered Change Log Model: Bridging between Ontology Change Representation and Pattern Mining 3

Atomic Change Operators

consistOf

Higher-level Change Patterns
(Composite & Domain-specific)Pattern Change

Log

Atomic Change
Log

Pattern]Mining
(Analytical)

Layered]Ontology
Change]Operator]Framework][4]

Layered]Change
Log]Model

Ontology]Engineer

Change]Recording
(Operational)

Figure 1 Layered Ontology Change Framework

conceptualize the change metadata model in a form
of ontology, we use term “change metadata ontology”
to represent the change metadata model. In order to
maintain a fine granular ontology change representation,
we distinguish five different knowledge gathering aspects
(five W’s) i.e.

- WHO performed the ontology change (User)

- WHEN the change is actually applied
(Timestamp)

- HOW one can find a specific change in the log
(Session & Change Id)

- WHAT is the change (Operations & Element)

- WHERE particular change is applied in the
ontology - (Parameters)

The classes and properties available in the change
metadata ontology assist the ontology engineer to
construct the RDF triples, representing an applied
ontology change. Similar to the approaches opted for [7]
and [8], the idea here is to provide a metadata model that
is generic, independent and extendable to represent the
changes of the domain ontologies. We used an RDF triple
store to record the change logs, domain ontologies and
change metadata ontology. Thus, all ontology changes,
stored in the ontology change log, are in a form of triples.
The main classes and properties of our change metadata
model are given in Figure 2.

The central class in the change metadata model is
the concept Change. The class Change is subdivided into
AtomicChange, CompositeChange and PatternChange.
The metadata details of any applied change, such
as, sessionId, changeId, hasCreator, Timestamp,
etc., are given using object and data properties.
The core details of an applied ontology change, i.e.,
operation, element and parameters, are given using
object properties hasOperation, hasElement (which
is further subdivided into hasEntity and hasAxiom)
and hasParam, respectively. The object property
hasAxiom is further categorized into hasClassAxiom,
hasObjectPropertyAxiom, hasDataPropertyAxiom

and hasIndividualAxiom. Similarly, object property
hasParam is further categorized into hasTargetParam,
hasAuxParam1 and hasAuxParam2.

In order to express that the domain-specific change
patterns are the combination of lower level change
operations, the class PatternChange is associated to
the class AtomicChange and the class CompositeChange
using object properties hasAtomicChange and
hasCompositeChange, respectively. Each stored
domain-specific change pattern is an instance of
(rdf:type) class PatternChange. The descriptive
data of a change pattern, such as, label, change id,
purpose etc., are given using properties PatternName,
changeId, PatternPurpose, respectively. For each
composite or pattern change, its constituent atomic or
composite changes are recorded; however, a complete
decomposition is not intended. A reconstruction of lower
levels can be facilitated through a pattern/composite
change definition repository to be kept separate from
the operational data.

We differentiate between declaration/remover
axioms, property restriction axioms and other
axioms. An atomic change can performs three kinds
of actions, i.e. i) addition/deletion of an entity
(declaration/remover axioms), ii) addition/deletion of a
constraint (restriction axiom) or iii) addition/deletion
of a other (general) axiom. Therefore, we categorize
the class Ontology Elements into three subclasses,
i.e. Entity, Axiom and Restriction. The concept
Axiom is further divided into ClassAxiom,
ObjectPropertyAxiom, DataPropertyAxiom and
IndividualAxiom.

The domain ontology changes can be logged either at
the instance level (Abox) of the change metadata model
or can be logged separately in a form of change log. In
our research, we separate the instance level data from
the schema level data. Thus, the changes being applied
on the domain ontologies are stored in a form of RDF
triples in ontology change logs. (<Change><hasParam>
<Entity>), (<Change> <sessionId> <XSD:Id>) are
the examples of such RDF triple types.

4 Recording of Ontology Changes

Based on the utilized change operators, the applied
ontology changes are recorded at two different levels of
abstraction. If a user employs atomic change operators,

4 M. Javed et al.

AtomicChange

CompositeChange

PatternChange

Delete

Group
Classes

SplitvClass

Change

Element

Entity

Axiom

ClassAxiom

Class Object
Property

IndividualAxiom ObjectPropertyAxiomDataPropertyAxiom

User

xsd:Id

xsd:dataTime

xsd:Id

Thing

hasOperation

sessionId

changeId

Timestamp

......

hasParam

Classes

Properties
where, direction of arrow depicts
domain and range of the property.

ClassvHierarchy

Add

hasAtomicChange

ChangeOperation

hasElement

xsd:String

*Entity

PatternParticipants

Restriction

PatternName

PatternPurpose

Individual
Data

Property

Metadata DescriptionChange Data Description

hasCreator

Data
type

hasCompositeChange

Figure 2 Change metadata ontology

the applied changes are recorded in atomic change log
(ACL). ACL is a sequential change log where each
ontology change operation is executed one after the
other and the concurrent ontology change operations
(if any) are sequenced. If a user makes use of higher-
level change operator, the applied change is recorded
as a change pattern in pattern change log. Further, for
a complete representation of applied ontology changes,
the applied change patterns are being recorded as a
sequence of atomic change operations in atomic change
log (Figure 3). The main challenge in recording of
ontology changes is to keep the consistency between
the two levels. Further, efficient storage and retrieval of
change data is also a concern.

4.1 Recording of Atomic Changes in ACL

Atomic change log refers to the atomic level change
representation of the applied ontology changes. The five
aspects, mentioned in previous section, are combined
together to represent a single atomic level ontology
change (Figure 4).

4.1.1 Formalization

An atomic change log consists of an ordered list of
ontology changes, ACL = < ac1, ac2, ac3 · · · acn > where
n refers to the sequence of ontology changes in a change
log. Each atomic ontology change is an instance of
concept AtomicChange of change metadata ontology.
The change consists of two types of data, i.e. metadata
(MD) and the change data (CD) - Figure 4. As we can

see in change metadata ontology (given in Figure 2), the
metadata provides the common details of the change, i.e.
who performed the change, when the change was applied
and how to identify such change from the change log.
Thus, it can be given as MD = (ids, idc, u, t) where ids,
idc, u and t represent sessionId, changeId, User and
Timestamp, respectively. The change data contain the
central information about the change request and can
be given as CD = (op, e, p) where, op, e and p represent
the ChangeOperation, Element and Parameter Set

of a particular change. In Figure 2, such information
is represented using object properties hasOperation,
hasElement and hasParam.

4.1.2 Triple-based Representation of an Atomic
Change

In order to implement a uniform and efficient storage
solution, we used RDF triple-based representation, i.e.,
subject-predicate-object (spo). In this sense, RDF-triple
stores can be used for the storage of the domain
ontologies, change metadata ontology and the change
logs; where, SPARQL format queries can be used to
extract the data from the triple store repositories. Based
on the atomic level change operation example given
in Figure 4, the atomic change log entries for change
operation Add classAssertion (John, PhD Student)
stored in the triple store, are given in Table 1.

Layered Change Log Model: Bridging between Ontology Change Representation and Pattern Mining 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Recorded PCL

Recorded ACL

pc1
< 4, 5, 6 ,7>

pc2
< 11, 12, 13 >

representation of applied
change patterns in ACL

representation of applied
change patterns in PCL

complete fine-grained representation of applied ontology changes

Figure 3 Operational setup of ontology change logging

1326367473421 Javed Thu,Mar,10,15:52:49,GMT,2011,12997739,,,,Add classAssertion,(John,,PhD_Student)

Metadata

Change,DatasessionId								User																												Timestamp changeId

Operation			Element									Parameter	Set

Figure 4 Representation of an atomic ontology change

Table 1 Triple-based representation of an atomic change

Subject Predicate Object

MO:12997739 rdf:type MO:AtomicChange

MO:12997739 MO:sessionId “1326367473421”

MO:12997739 MO:hasCreator MO:Javed

MO:12997739 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997739 MO:changeId “12997739”

MO:12997739 MO:hasOperation MO:Add

MO:12997739 MO:hasIndividualAxiom MO:classAssertion

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:PhD Student

4.2 Recording of Change Patterns in PCL

Pattern change log refers to the recorded change
patterns, being applied using higher-level change
operations of the layered change operator framework.
Such specification of the applied change patterns help
ontology engineer to i) distinguish between the applied
similar changes and ii) in understanding the purpose and
consequences of the changes.

4.2.1 Formalization

A pattern change log consists of an ordered
list of ontology change patterns, PCL =<
pc1, pc2, pc3 · · · pcn > where n refers to the sequence
of ontology change patterns in a pattern change log.
These change patterns can either be generic composite
change patterns or domain-specific change patterns

(c.f. Figure 1). Similar to ACL, each ontology change
pattern pc consists of two types of data i.e. Metadata
(D) and Pattern data (P). The metadata provides
meta details about the change pattern and can be
given as D = (ids, idc, u, t, pu) where, ids, idc, u,
t and pu represent the sessionId, changeId, User,
Timestamp and PatternPurpose, respectively. The
pattern data (P) provides description about the involved
change operations. Here, P refers to the sequence of
the change operations available in a change pattern
P = (c1, c2, . . . cs) where, s is the total number of change
operations in a change pattern.

4.2.2 Triple-based Representation of Change
Patterns

Similar to the atomic change log, RDF triple store can
be used for recording of applied higher level change

6 M. Javed et al.

patterns. In this sense, every applied change pattern
is being recorded as an instance of either concept
CompositeChange or PatternChange, available in change
metadata ontology. Other common details, such as,
session id, change id, time of the applied change
pattern etc., are recorded using defined object and
data properties in change metadata ontology. Table 2
represent a section of a domain-specific change pattern
log entries, representing the instantiation of a “PhD
Student Registration”change pattern in university
administration domain. Such change pattern consist
of a number of atomic change operations. First, a
new individual “John” is being added as an instance
of concept PhD Student. Next, the details about the
student id, assigned supervisor etc. have been added
to the specified student. The application of a change
pattern is a single transaction on a domain ontology. In
such case, either the whole change pattern will be applied
on the domain ontology, or will be discarded (rollback)
completely.

5 Mining of Ontology Change Patterns

Higher-level change representation (in a form of change
patterns) is more concise, intuitive and closer to the
intentions of the ontology editors and captures the
semantics of the change [9]. These ontology change
patterns can either be explicitly defined by a user as
a higher-level change operators or implicitly given in
atomic change log that can be extracted using data
mining techniques. We discussed recoding of explicitly
user-defined change patterns in section 4.2. In this
section, we discuss the mining of implicit usage-driven
change patterns.

One of the benefits of the RDF triple format is
its fine-grained level representation and interoperability
(i.e. conversion from triple format to others standard
formats such as RDF and XML). The fine-grained
representation of ontology changes helps the ontology
engineer to construct complex queries and extract
different types of knowledge from the change log.
However, as RDF triples represent the ontology changes
at fine-grained level (one ontology change is represented
by 8 to 10 triples), visualizing and navigating through
the change log alone is time consuming. Graphs can
cover this gap. Graph techniques provide the ability to
visualize and navigate through large network structures.
They enable efficient search and analysis and can also
communicate information visually. Moreover, the benefit
of a graph-based representation is the availability of well-
established algorithms/metrics (for pattern discovery
and detection) and its well-known characteristics such
as performance (for querying the ontology changes
effectively). We used graph-based algorithms for the
change patterns discovery and matching from the atomic
change log. A data warehouse mechanism can be applied
here, where the data warehouse collects the operational
domain ontologies and the change log data from different

distributed locations and reformulates it into a graph on
a periodic basis for analytical processing. The detailed
description of the approach and the algorithms can be
found in [12] and [13] and are out of scope of this paper.

5.1 Mining of Composite Change Patterns
(Pattern Matching)

We mine the composite change patterns from an atomic
change log, making it easy for the ontology engineer,
(other) users and machines to understand and interpret
the ontology modifications. The composite changes can
be mined from the atomic change log using a pattern
matching approach. Here, the term “pattern matching”
refers to the mining of occurrences of a pre-defined
change pattern sequences from an atomic change log.
One may find the (complete or partial) overlapping
among the mined change patterns. This is due to the
possibility that a subset of a change pattern satisfy
the conditions (to be identified) of another category of
change pattern [11]. Apart from being more concise, the
ontology changes recorded at a higher-level are more
intuitive [9]. Identifying the composite changes from
the atomic change log give ontology engineer indication
about the intent of the applied changes. Once a user
has clear understanding of semantics of a change, he
can select appropriate evolution strategy for consistent
ontology change management.

We use a graph-based pattern matching approach
where the atomic change log (in the form of a graph) and
a reference composite change (representing a pre-defined
composite change pattern) are given as an input to the
algorithm. The algorithm identifies the occurrences of
the reference composite change from the atomic change
log. The detailed description of the approach and the
algorithm is given [13].

5.2 Mining of Domain-specific Change Patterns
(Pattern Discovery)

We mine the domain-specific change patterns from the
atomic change log. As two identified ontology change
subsequences can be different from each other in terms
of number or type of involved change operations but
may have the same effect on the underlying domain
ontology, the main objective here is not only to capture
the recurrent change subsequences from ACL that are
applied in a same order (i.e., structurally identical
change patterns) but also the change subsequences that
may contain different order of change operations but
have the same effect on the domain ontology (i.e.,
semantically identical change patterns). On one hand,
similar to the mining of composite change patterns,
the mining of domain-specific change patterns from the
atomic change log benefited us in terms of higher-level
ontology change representation in PCL, but on the other
hand, the identified domain-specific change patterns can
also be utilized in future as a once-off change pattern
specification that can be instantiated whenever a user

Layered Change Log Model: Bridging between Ontology Change Representation and Pattern Mining 7

Table 2 Triple-based description of (domain-specific) change pattern

Subject Predicate Object

MO:13238651 rdf:type MO:PatternChange

MO:13238651 MO:sessionId “1326367473421”

MO:13238651 MO:hasCreator MO:Javed

MO:13238651 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:13238651 MO:changeId “13238651”

MO:13238651 MO:PatternName “PhD Student Registration”

MO:13238651 MO:PatternPurpose “Purpose is to register a new PhD student in school”

MO:13238651 MO:containAtomicChange MO:12997738

MO:13238651 MO:containAtomicChange MO:12997739

MO:13238651 MO:containAtomicChange MO:12997740

MO:13238651 MO:containAtomicChange MO:12997741

MO:13238651 MO:containCompositeChange MO:12997742

MO:12997738 rdf:type MO:AtomicChange

MO:12997738 MO:sessionId “1326367473421”

MO:12997738 MO:hasCreator MO:Javed

MO:12997738 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997738 MO:changeId “12997738”

MO:12997738 MO:hasOperation MO:Add

MO:12997739 MO:hasEntity MO:Individual

MO:12997739 MO:hasTargetParam “John”

MO:12997739 rdf:type MO:AtomicChange

MO:12997739 MO:sessionId “1326367473421”

MO:12997739 MO:hasCreator MO:Javed

MO:12997739 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997739 MO:changeId “12997739”

MO:12997739 MO:hasOperation MO:Add

MO:12997739 MO:hasIndividualAxiom MO:classAssertion

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:PhD Student

MO:12997740 rdf:type MO:AtomicChange

MO:12997740 MO:sessionId “1326367473421”

MO:12997740 MO:hasCreator MO:Javed

MO:12997740 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997740 MO:changeId “12997740”

MO:12997740 MO:hasOperation MO:Add

MO:12997740 MO:hasIndividualAxiom MO:dataPropertyAssertionAxiom

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:studentId

MO:12997739 MO:hasAuxParam2 “5810638”

needs to apply the similar changes on the underlying
domain ontology.

We used a graph-based pattern discovery approach
in order to mine the recurrent domain-specific change
patterns from the atomic change log. Here, the term
“pattern discovery” refers to the mining of a change
pattern from the atomic change log without having any
prior knowledge about them. As mentioned above, we
selected a flexible notion of a change pattern where the
atomic change operations can be in ordered or unordered
form. The change patterns are identified based on their
support (i.e., number of occurrences of such change
pattern sequences in the atomic change log), pattern
length (i.e., number of atomic changes available in a

change pattern sequence) and the node-distance (i.e.,
the permissible gap between two adjacent nodes of a
change pattern subsequence). The change patterns are
divided into two categories i.e., ordered change patterns
and unordered change patterns. Such ordered/unordered
subsequences of an identified domain-specific change
pattern can be complete or partial with respect to the
candidate change pattern subsequence. The threshold
values for minimum pattern support, minimum pattern
length and the permissible node-distance are the
inputs to the domain-specific change patterns discovery
algorithms. The detailed description of the approach and
the algorithms are given in [10].

8 M. Javed et al.

6 Evaluation

The objective here is to evaluate the layered change log
model based on its functional suitability. The changes
must be represented in such a way that it is useful
and understandable by the domain experts and ontology
engineers. In this regard, the functional suitability of
the layered change log model is, first, to maintain a
comprehensive understanding of the evolution of domain
ontologies and, second, to explicitly present the intent
behind any applied change. We made use of user
feedback as a metric in order to evaluate and answer the
specified questions. Below, we discuss the experimental
setup (in terms of change log construction) and the
results.

To validate the change log model, we made use of the
existing empirical case study data [3] from the university
domain ontology. We utilized a user-based evaluation in
order to empirically evaluate the layered change logs.
The ontology engineers performed the given change
operations using atomic change operators and higher-
level change patterns. The applied changes had been
logged into atomic and pattern change logs accordingly.
We presented the two change logs to the users in order
to manually analyze how the changes have been recorded
in the layered logs. Do the logs maintain a fine-grained
representation of ontology changes? Is representation of
ontology change at a higher-level in the form of patterns
more intuitive? To answer these questions, we involved
five ontology engineers who have expertise in the area of
software engineering and large databases. We requested
the participants to give a rating to the claims we made
about the functional suitability and usability of the
layered framework. The claims are rated separately by
each ontology engineer from 1 to 5 (where rating 5
represents ”strongly agree”, 4 ”agree”, 3 ”neutral”, 2
”disagree” and 1 ”strongly disagree”). The claims and
the user-based ratings (average) are given in Table 3.

The feedback from the participants confirm that
the solution is useful and functionally suitable for the
ontology engineers and domain expert. The highest
rating was given to claim 1 (i.e. ACL presents
a complete fine-grained representation of ontology
changes). Participants agree that the representation of
the ontology changes at a higher level helped them
to understand the intent behind the applied changes -
making the solution practically valid. The lowest rating
was given to claim 4 (i.e. recording of ontology and
change logs in a single RDF repository allows user
to concurrently navigate). Participants agree that the
framework does allow concurrent navigation. However, a
graph-based illustration of associations between change
log and domain ontologies would be more intuitive for
the users.

7 Related Work

Based on the different perspectives of the researchers,
there are different solutions provided to handle ontology
evolution [1, 14, 15, 16, 17, 18, 22]. Representation of
ontology changes using higher-level change operations
was first proposed by Stojanovic [14] and Klein
[19]. Recently, some researchers have focused on
representation and detection of higher-level ontology
changes [9, 20]. Stojanovic choose the evolution logs
in order to record the applied changes. Evolution log
keeps track of applied ontology changes in the exact
order in which changes have been applied to the domain
ontology. In case of any failure, evolution log makes
ontology recovery possible. Plessers selects version log
[17] in order to represent the evolutionary aspects of
domain ontologies. According to Plessers, a version log
stores different versions of every entity (which includes
concepts, properties and individuals) ever defined in a
domain ontology. The purpose of version log is to keep
record of the different phases the entities pass through,
from their creation, modification to deletion.

Where few researchers focused on representation of
ontology changes using change logs, others highlight
the evolutionary aspects of an ontology by comparing
two different versions of it. Noy proposed a fixed
point algorithm [22] in order to capture the structural
differences between two ontology versions in the absence
of ontology change logs. Klein proposed a transformation
set [19] that provides a list of change operations that
if applied to the Vold (old version of ontology), the set
transforms it to Vnew (the new version of ontology).
Such transformation set can include elementary change
operations, complex change operations or combination
of them. Transformation sets are different from the
basic change logs due to a number of reasons. First,
atomic change log contains the record of all the applied
changes, however, the transformation sets contains only
the necessary set of change operations for achieving
the resulting change. Second, basic change logs contain
the ordered sequence of change operations. Whereas, in
transformation set, such ordering is very limited and it
is primarily, that all the additive operations will take
place before any other change operation. Third, a change
log is a distinctive representation of the exact applied
change operations, whereas, there can be several unique
transformation sets that can produce the same resulting
change.

8 Discussion

In this paper, we discussed our approach for ontology
evolution as a pattern-based compositional framework.
We presented a layered change log model that works in
line with the given layered change operator framework.
While ontology engineers typically deal with generic
changes at lower level, other users (such as domain

Layered Change Log Model: Bridging between Ontology Change Representation and Pattern Mining 9

Table 3 Questionnaire-based evaluation of the layered framework

No. Claim User’s feedback: 1 - 5 (Avg)
1 Atomic Change Log (ACL) presents a complete and

fine-grained representation of applied ontology changes
(Completeness).

4.67 (93.33%)

2 Pattern Change Log (PCL) supports in understanding the
intent behind an applied ontology change (Validity).

4.00 (80.00%)

3 The ontology changes recorded in ACL and PCL are easily
understandable (Validity).

4.33 (86.67%)

4 Recording of domain ontology and change log in a single
RDF repository allows the user to concurrently navigate
through them (Functional suitability).

3.67 (73.33%)

5 The framework is easy to understand, learn and use
(Usability).

4.33 (86.66%)

6 The customizable evolution strategies allow users to evolve
the ontology based on their own needs (Adequacy).

4.33 (86.66%)

experts, content managers) can focus on domain-
specific changes at patter level. Such a layered change
framework enables us to deal with structural and
semantic changes at two separate levels without losing
their interdependence. Plus, it enables us to define a
set of domain-specific changes which can be stored
in a pattern catalogue, using a pattern template, as
a consistent once-off specification of domain-specific
change patterns. The empirical study indicates that
the solution is valid and adequate to efficiently handle
ontology evolution. We found that a significant portion
of ontology change and evolution is represented in our
framework.

Mining of higher-level change patterns gives an
ontology engineer clues about semantics behind any
of the applied change, based on the actual change
activity data from change log. We operationalized the
identification of higher-level changes using graph-based
matching and pattern discovery approaches. We noticed
that learning about semantics behind any of the applied
change helped us in keeping the ontology consistent in a
more appropriate manner.

Acknowledgement

This research is supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for
Next Generation Localisation at Dublin City University.

References

[1] Abgaz, Y.M., Javed, M., Pahl, C.: Empirical Analysis
of Impacts of Instance-Driven Changes in Ontologies.
In Proc: On the Move to Meaningful Internet
Systems: OTM 2010 Workshops. Volume 6428
of Lecture Notes in Computer Science, Springer-
Berlin/Heidelberg, (2010) 368–377.

[2] Gacitua-Decar, V., Pahl, C.: Ontology-based
patterns for the integration of business processes and
enterprise application architectures. In G. Mentzas
et al. (Eds). Semantic Enterprise Application

Integration for Business Processes: Service-Oriented
Frameworks. IGI Publishers. (2009) 36-60.

[3] Javed, M., Abgaz, Y.M., Pahl, C.: A pattern-
based framework of change operators for ontology
evolution. In: On the Move to Meaningful Internet
Systems: OTM Workshops. Volume 5872 of LNCS.,
Springer (2009) 544-553.

[4] Javed, M., Abgaz, Y., Pahl, C.: Towards implicit
knowledge discovery from ontology change log data.
In: 5th International Conference on Knowledge
Science, Engineering and Management (KSEM).
Volume 7091 of Lecture Notes of Artificial
Intelligence., Springer-Verlag (2011) 136-147

[5] Noy, N.F., Klein, M.: Ontology evolution: Not the
same as schema evolution. In: Journal of Knowledge
and Information Systems. Volume 6(4). (2004) 328-
440

[6] Liang, Y., Alani, H., Shadbolt, N.: Ontology change
management in protégé. In: Proceedings of AKT
DTA Colloquium, Milton Keynes, UK. (2005)

[7] Palma, R., Haase, P., Corcho, O., Gomez-Perez,
A.: Change representation for owl 2 ontologies. In:
Proceedings of the sixth international workshop on
OWL: Experiences and Directions (OWLED). (2009)

[8] Pedrinaci, C., Domingue, J.: Towards an ontology
for process monitoring and mining. In: Proceedings
of the Workshop on Semantic Business Process and
Product Lifecycle Management. (2007)

[9] Papavassiliou, V., Flouris, G., Fundulaki, I.,
Kotzinos, D., Christophides, V.: On detecting high-
level changes in RDF/S KBs. In: 8th International
Semantic Web Conference. Volume 5823 of LNCS.,
Springer (2009) 473-488

[10] Javed, M., Abgaz, Y.M., Pahl, C.: Graph-based
discovery of ontology change patterns. In: Joint
Workshop on Knowledge Evolution and Ontology
Dynamics (EvoDyn): ISWC Workshops. (2011)

10 M. Javed et al.

[11] Javed, M., Abgaz, Y., Pahl, C.: Composite ontology
change operators and their customizable evolution
strategies. In: ISWC Workshops: Joint Workshop
on Knowledge Evolution and Ontology Dynamics
(EvoDyn), 12th November, 2012, Boston, USA.
(2012)

[12] Javed, M., Abgaz, Y., Pahl, C.: Ontology change
management and identification of change patterns.
In: Special Issue of the Journal On Data Semantics
on Evolution and Versioning in Sematic Data
Integration Systems. Volume 2(2-3), Springer-Verlag
(2013) 119-143

[13] Javed, M.: Operational Change Management
and Change Pattern Identification for Ontology
Evolution. PhD thesis, Dublin City University,
Ireland (2013)

[14] Stojanovic, L., Maedche, A., Motik, B., Stojanovic,
N.: User-driven ontology evolution management. In:
Proceedings of the 13th International Conference
on Knowledge Engineering and Knowledge
Management. Ontologies and the Semantic Web.
EKAW 02, Springer-Verlag (2002) 285-300

[15] Haase, P., Sure, Y.: User-driven ontology evolution
management. State-of-the-Art on Ontology
Evolution. EU IST Project SEKT Deliverable D3
1.1.b (2004)

[16] Zablith, F.: Dynamic ontology evolution.
International Semantic Web Conference (ISWC)
Doctoral Consortium, Karlsruhe, Germany (2008)

[17] Plessers, P., De Troyer, O., Casteleyn, S.:
Understanding ontology evolution: A change
detection approach. Web Semantics: Science,
Services and Agents on the World Wide Web. 5(1)
(2007) 39-49

[18] Qin, L., Atluri, V.: Evaluating the validity of
data instances against ontology evolution over the
semantic web. Information and Software Technology.
51(1) (2009) 83-97

[19] Klein, M.: Change Management for Distributed
Ontologies. PhD thesis, Vrije University Amsterdam
(2004)

[20] Groner, G., Staab, S.: Categorization and
recognition of ontology refactoring pattern. Technical
Report 09/2010, Institut WeST, Univ. Koblenz-
Landau (2010)

[21] Plessers, P., De Troyer, O.: Ontology change
detection using a version log. In: 4th International
Semantic Web Conference, Springer (2005) 578-592

[22] Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A
framework for ontology evolution in collaborative
environments. In: In: 5th International Semantic
Web Conference, Springer-LNCS (2006) 544-558

