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Abstract

Objective. We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR)
in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT
adaptation to improve effectiveness of cross-lingual IR.

Methods and Data. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR sys-
tem is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work
include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound
splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using mul-
tiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs:
Czech–English, German–English, and French–English. MT quality is evaluated on data sets created within the Khresmoi project
and IR effectiveness is tested on the CLEF eHealth 2013 data sets.

Results. The search query translation results achieved in our experiments are outstanding – our systems outperform not only our
strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language
pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech–English, from 23.03 to 40.82 for German–English,
and from 32.67 to 40.82 for French–English. This is a 55% improvement on average. In terms of the IR performance on this
particular test collection, a significant improvement over the baseline is achieved only for French–English. For Czech–English and
German–English, the increased MT quality does not lead to better IR results.

Conclusions. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the
intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained
from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the
IR performance – better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual
techniques and state-of-the-art features and provide future research directions.

Keywords: Statistical machine translation, Domain adaptation of statistical machine translation, Intelligent training data selection
for machine translation, Compound splitting, Cross-language information retrieval, Medical query translation

1. Introduction

The development of health information search and retrieval
techniques is an important research topic. Indeed, it has been
found that almost 70% of search engine users in the US have
conducted a web search for information about a specific dis-
ease or health problem [1]. Given that much medical content is
written in the English language, research to date in the medical
space has predominantly focused on monolingual English re-
trieval. However, given the large number of non-English speak-
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ing users of the Internet and the lack of content in their native
language, support for them to search and utilize these English
sources is required if the value of the information available on
the Internet is to be fully realized [2]. In a recent study, Lopes
and Ribeiro [3] assessed the effect of translating health queries
for users with different levels of English language proficiency.
Their results confirmed that users with even basic competence
of English can benefit from a system which automatically re-
trieves English content based on a non-English query, or at least
suggests English translations of the non-English queries.

Support for search of English language content by non-native
English speakers is one of the major goals of the large in-
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tegrated EU-funded Khresmoi project1. Among other goals,
including joint text and image retrieval of radiodiagnostic
records, the Khresmoi project aims to develop technology for
transparent cross-lingual search of medical sources, for both
professionals and laypeople, with the emphasis primarily on
publicly available web sources. While a sophisticated search
interface is being developed for the needs of medical profes-
sionals, the final application for the general public should be
as simple as possible to operate and similar to the well-known
interfaces of web search engines in use today with the addition
of cross-lingual functionality.

The languages supported by the Khresmoi project are En-
glish (EN), Czech (CS), French (FR), and German (DE).
Queries come from Czech, German, and French and are
machine-translated to English. This reflects the real availability
of data, which is predominantly available in English, and query
translation needs of non-native speakers of English. Our fo-
cus in this paper is on the machine translation (MT) part of the
cross-lingual search and retrieval task, while using a standard
information retrieval (IR) technique for the search and retrieval
part, in order to pinpoint contributions and problems with us-
ing MT for query translation from the three languages selected
(Czech, German, and French) into English and its influence on
the resulting quality of retrieved sets of documents.

Our MT system is based on Moses [4], a state-of-the-art sta-
tistical MT system. The IR experiments are performed using
the Lucene search engine2 on the CLEF eHealth 2013 dataset
for the languages specified above, directed towards retrieving
English documents only. Since MT is only an intermediate
component of the whole system pipeline, we proceed in two
steps. We first independently tune MT to produce the best pos-
sible translations of queries (Section 2) and then use various
techniques to modify and expand the translated queries for im-
proved IR performance (Section 3). The methods applied in
Section 2 include: in-domain training and tuning, intelligent
training data selection, optimization of phrase table configu-
ration, exploiting synonyms to construct translation variants,
and decompounding (splitting) of complex German words on
the source language side, which normally appear as unknown
words. For evaluation of translation quality itself, we use BLEU
– the de facto standard automatic evaluation metric [5], which
compares MT output against manual reference translation and
accounts both for adequacy and fluency (word order) of the ma-
chine translation. We also report inverse position-independent
word error rate [6], called PER, another automatic evaluation
metric which compares words in the MT output and the ref-
erence translation but without taking the word order into ac-
count and thus might be better suited to application of MT in IR,
where word order is often ignored. In selected experiments, the
automatic evaluation is supplemented by manual assessment of
the results performed by medical professionals.

The results of our MT for experiments for queries show that
we are able to outperform results of Google Translate, the best

1http://www.khresmoi.eu/
2http://lucene.apache.org/

freely available MT service on the web. We also find that us-
ing synonyms to enrich training data with translation variants
does not improve the MT performance; however, decompound-
ing of complex German words slightly improves the translation,
at least according to BLEU. In Section 3, we evaluate query
translation in a cross-lingual IR setting using standard methods
on the CLEF eHealth 2013 Task 3 test collection. Here, despite
achieving superior performance on the query MT task, as de-
scribed in Section 2, we do not outperform the retrieval results
obtained by using queries translated by Google Translate. In
the last section, we perform a summary analysis of the overall
results, the results of the individual techniques for improving
MT performance and their integration into an IR system, and
give suggestions for further work.

2. Machine translation for medical queries

In this section, we describe the application of phrase-based
statistical machine translation (SMT) to the translation of med-
ical queries with the goal of producing accurate and fluent trans-
lations. This task differs from typical MT applications in two
aspects: the domain and the genre of the input text. The do-
main, which reflects what the text is about, is very specific,
characterized by a large and specialized vocabulary which does
not occur in general texts. The genre, which indicates the gen-
eral style, is also very distinctive. The input text is generally
not in the traditional form of complete and coherent sentences,
but rather in a form of short sequences of more or less inde-
pendent terms. Such a situation requires application of special
techniques to adapt the SMT system, including training data se-
lection, model configuration, and parameter optimization. We
also apply some standard additional methods to improve SMT
quality in this task, including morphological normalization of
the input text, splitting of complex compounds in German in-
put, and exploitation of synonyms obtained from in-domain lex-
icons and dictionaries.

This section continues with a brief introduction to SMT and
an overview of related research, followed by a detailed descrip-
tion of the data and the translation system used in this work.
We then present details of the MT experiments carried out with
details of results and a detailed analysis of our findings.

2.1. State-of-the-art and related work

In this section, we describe basic principles of phrase-based
SMT (the most widely used paradigm in SMT) and review other
related works to provide a complete background for our exper-
iments.

2.1.1. Phrase-based statistical machine translation
In phrase-based SMT (e.g., the Moses system [4]), an input

sentence is split into phrases (sequences of consecutive words)
that are translated one-by-one and eventually reordered to pro-
duce the output translation. As there are typically many ways to
split a sentence into phrases, and many possibilities for transla-
tion and reordering, the system searches for the best translation
variant ê by maximizing the probability of the target sentence e
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given source sentence f in a log-linear combination of feature
functions hi with associated weights λi:

ê = arg max
e

n∑
i=1

λi log hi(e, f)

The computational complexity of this decoding approach is
reduced by pruning the space of translation hypotheses using
a heuristic beam-search algorithm [7] that explores the space
represented as a graph by expanding the most promising nodes
only. The feature functions include predictions of the phrase
translation model, which captures probabilistic relations of
source phrases to target phrases, thus ensuring that the indi-
vidual phrases correspond to each other, the target language
model, which estimates the fluency of the output sentence, the
reordering model to capture different phrase order in the two
languages, and word penalty to penalize translations that are
too long or too short.

The phrase translation model and reordering model are
trained using probabilistic word alignment [8] in parallel (i.e.
bilingual pairs of) sentences. The target language model is
trained on (typically) larger amounts of monolingual data. The
feature weights λi are usually optimized using minimum error
rate training (MERT) [9], a method which minimizes a given
error measure (e.g., BLEU) [5] on a development set of parallel
sentences using a coordinate ascent approach. The algorithm is
guaranteed to converge to a local optimum only, but this usually
leads to good results [10].

2.1.2. Domain adaptation
The quantity and also the quality of parallel and monolin-

gual data is absolutely essential for SMT. Unless an SMT sys-
tem is trained on data of the same nature (distribution) as the
test data, it is not guaranteed to translate optimally. The most
extensive and commonly available resources of SMT training
data include legally required parallel parliamentary proceedings
[11, 12], legislation documents [13], or news stories [14], which
typically cover a number of different topics and are understood
as general-domain data [see e.g., 15]. Training resources for
specific domains are typically much scarcer, or not available
at all. Therefore, special domain adaptation techniques are ap-
plied to adapt an SMT system trained on general-domain data
to improve translation of text within a specific domain.

Much work on domain adaptation examines the usage of
available in-domain data to directly improve in-domain perfor-
mance of SMT. Some authors attempt to combine the predic-
tions of two separate (in-domain and general-domain) transla-
tion models [16–19] or language models [20]. Wu and Wang
[21] use in-domain data to improve word alignment in the train-
ing phase. Carpuat et al. [22] explore the possibility of using
word sense disambiguation to discriminate between domains.

Other approaches concentrate on the acquisition of larger in-
domain corpora. Some of them exploit existing general-domain
corpora by selecting data that resemble the properties of in-
domain data (e.g., using cross-entropy), thus building a larger
pseudo-in-domain training corpus. This technique is used to
adapt language models [23, 24] as well as translation models

[25, 26] or their combination [27]. Similar approaches to do-
main adaptation are also applied in other tasks, e.g., automatic
speech recognition [28].

Other possibilities for acquiring in-domain data are pursued
as well. Translations of in-domain terms can be mined from
comparable corpora, i.e. texts that are not strictly parallel but
deal with the same topic [29, 30]. Bertoldi and Federico [31]
exploit large amounts of in-domain monolingual data to create
synthetic parallel training corpora. In-domain data for train-
ing can also be obtained automatically by crawling the web
[15, 32]. In this work, we investigate methods combining
the different kinds of data: general-domain, in-domain, and
pseudo-in-domain to investigate what the optimal approach is.

2.1.3. Genre adaptation
While domain adaptation deals mainly with the problem of

lexical coverage (lack of domain-specific terms and expres-
sions), genre adaptation is mostly concerned with changes in
syntax, which are very common and diverse in modern means
of communication, such as SMS messages, Internet chats, dis-
cussion forums, and social network communication (e.g., un-
usual sentence length, ungrammatical constructions, missing
punctuation, letter casing). Although most of domain adap-
tation techniques for SMT overviewed in the last section can
be applied to genre adaptation as well, genre adaptation has
not been studied extensively in SMT. However, some recent
work has focused on SMT adaptation to specific genres tar-
geted e.g., patents and patent applications [33], short text mes-
sages [34], user-generated forum content [35], public confer-
ence talks [36], and movie subtitles [37]. The methods used are
generally similar to domain adaptation techniques.

One highly relevant study which explicitly deals with genre
adaptation is by Nikoulina et al. [38]. They adapt the Moses
SMT toolkit to translate queries for cross-lingual IR applied on
the CLEF Ad Hoc TEL 2009 test collection of bibliography en-
tries. They use two techniques: SMT tuning on genre-specific
data and discriminative re-ranking of n-best lists optimizing re-
trieval effectiveness.

2.1.4. Statistical machine translation in the medical domain
Most work applying SMT for the medical domain relates to

cross-lingual IR; a review of this work is contained in Sec-
tion 3.1. In this section, we review the features of this work
relating to SMT itself.

Eck et al. [39] employ an SMT system for the translation of
dialogues between doctors and patients and show that a dic-
tionary extracted from the Unified Medical Language System
(UMLS) Metathesaurus [40] and its semantic type classifica-
tion significantly improves translation quality from Spanish to
English when applied to generalize the training data (measured
by standard automatic evaluation metrics BLEU and NIST). Wu
et al. [41] analyze MT quality on PubMed3 titles and whether it
is sufficient for patients. The conclusions are very positive es-
pecially for languages with large training resources (English,

3http://www.ncbi.nlm.nih.gov/pubmed/
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Spanish, German) – the average fluency and content scores
(based on human evaluation) are above four on a 5-point scale.
In automatic evaluation, their systems substantially outperform
Google Translate. However, the SMT systems are specifically
trained, tuned, and tested on the domain of PubMed titles, and it
is not evident how they would perform on other medical texts.
Costa-jussà et al. [42] are less optimistic regarding the qual-
ity of SMT in the medical domain. They analyze and evaluate
the quality of public web-based MT systems (such as Google
Translate) and conclude that in both automatic and manual eval-
uation (reported for 7 language pairs), the performance of these
systems is still not good enough to be used in daily routines of
medical doctors in hospitals. Jimeno Yepes et al. [43] propose
a method for obtaining in-domain parallel corpora from titles
and abstracts of publications in the MEDLINE4 database. The
acquired corpora contain from 30,000 to 130,000 sentence pairs
(depending on the language pair) and are reported to improve
translation quality when used for SMT training, compared to a
baseline trained on out-of-domain data.

2.1.5. Splitting German compound words
One of the source languages in our experiments is German.

Written German tends to freely form compounds consisting of
multiple regular words which relate to a complex concept. For
example, the word Raucherentwöhnungsprogramm consists of
three individual parts: Raucher (smoker), entwöhnung (with-
drawal), and programm (program). However, standard tokeniz-
ers treat such compound words as single tokens since their parts
are not separated by a space or hyphen. Such long expressions
pose a specific problem for MT and IR. They increase the vo-
cabulary size and are prone to be out-of-vocabulary, harming
the overall output quality. In general, increasing the amount of
training data cannot solve the problem because there is no up-
per bound of the number of possible compounds and new ones
are created as needed.

Splitting compounds into separate tokens (which are in-
vocabulary) and treating those as regular words usually reduces
the problem – if such expressions are compositional, handling
them word by word (e.g., in machine translation) can lead to
better results (compared to the situation when the compounds
are left untranslated). Chen [44] uses this approach in cross-
lingual IR. He employs a monolingual dictionary containing
uncompounded German words and splits compounds into the
minimal number of components (words) which are present in
this dictionary. If there are more possible decompositions, he
selects the alternative with the highest probability using fre-
quency analysis. Koehn and Knight [45] propose a simple
corpus-based unsupervised method which maximizes the ge-
ometric mean of individual parts of the compounds. They show
that when applied to phrase-based translation, such a simple
method gives better BLEU scores than more complex methods
using parallel corpora or part-of-speech tags. This is caused
by the ability of phrase-based MT systems to group overag-
gressively split words back into phrases and translate them cor-

4http://www.nlm.nih.gov/pubs/factsheets/medline.html

rectly. Popović et al. [46] compare this method with the linguis-
tically oriented approach of Niessen and Ney [47] and conclude
that both the methods yield similar improvements in DE–EN
translation. Alfonseca et al. [48] combine several decompound-
ing metrics originally proposed for German and show a substan-
tial improvements for the total of six European languages, with
respect to other state-of-the-art systems. They also show that
a system trained on one language can be successfully used for
splitting compounds in other languages too.

2.1.6. Exploiting synonyms in statistical machine translation
Medical terminology is very extensive; many of these terms

are rare and therefore will not be present in parallel training
data, even if very large amounts of material are available. In
SMT, such terms will remain untranslated. In such a situation,
an SMT system could benefit from additional data resources to
find synonymous terms that the system is able to translate cor-
rectly. Similar ideas have already been explored for example by
Wu and Zhou [49], Jones et al. [50], and Han et al. [51]; how-
ever, most work focuses on the acquisition of such resources
rather than on their employment in applications.

Wu and Zhou [49] explore three common resources for auto-
matic extraction of synonyms: monolingual dictionaries, paral-
lel corpora, and large monolingual corpora. The authors show
that a combination of all three of these types of resources yields
the best results, with the parallel corpus being the most valuable
of them.

A natural source of synonyms for the medical domain is the
Unified Medical Language System (UMLS) [40], which im-
plicitly defines synonym sets through its notion of concepts.
A recent study of Griffon et al. [52] explores the extraction of
synonyms from UMLS for a mildly related task of query ex-
pansion, concluding that proper employment of synonyms can
lead to an improvement in performance. As noted, e.g., by
Nakayama et al. [53], Wikipedia is another good source of in-
formation for automatic synonym extraction. Jones et al. [50]
extract synonyms from the same source using the redirect pages
for cultural heritage domain.

Han et al. [51] use synonyms extracted from dictionary-like
data, namely English WordNet and Chinese Tongyicicilin, in
SMT. However, they are trying to solve a rather different issue.
They use synonyms of common words to detect sentences that
are literal translations of each other, improving their training
data by filtering out those that are not. We, on the other hand,
need to extend our training data by using synonyms of words
that are not very common.

2.2. Data description

This section provides an overview of the sources of data used
in our SMT experiments. These sources are classified based on
their relevance to the medical domain (in-domain vs. general-
domain), nature of the data (dictionary vs. corpus), and lan-
guage content (parallel vs. monolingual). The data sources used
for training data selection are described in Sections 2.2.1–2.2.5.
Statistics of the training data after cleaning in data preprocess-
ing, as described in Section 2.2.6, are presented in Tables 1 and

4

http://www.nlm.nih.gov/pubs/factsheets/medline.html


Czech–English German–English French–English
source pairs src tgt pairs src tgt pairs src tgt
UMLS 70 218 224 86 303 317 80 301 256
DBpedia 69 141 151 306 685 718 375 895 893
EMEA 319 5,400 5,598 347 5,567 5,947 354 7,202 6,068
MuchMore – – – 2 141 148 – – –
PatTR – – – 1,594 55,070 58,458 – – –
COPPA – – – – – – 1,190 33,729 27,149
Com-Crawl 161 3,542 3,976 2,395 55,989 59,782 3,236 94,040 82,170
EuroParl 627 14,815 17,387 1,866 50,372 52,987 1,958 64,258 55,502
JRC-Acquis 593 18,030 20,737 773 24,347 26,233 781 29,762 25,979
News-Com 140 3,219 3,580 177 4,654 4,635 157 5,080 4,151
OJEU 1,859 44,573 50,176 1,715 41,933 44,851 2,031 64,589 54,776
DBpedia 148 333 360 681 1,562 1,712 745 1,979 1,942
CzEng 10,282 147,549 169,669 – – – – – –
PatTR – – – 7,979 290,184 321,412 – – –
Linguee – – – 52 70 92 – – –
Hansard – – – – – – 837 21,622 18,042
MultiUN – – – – – – 10,267 375,337 310,649
COPPA – – – – – – 7,320 205,735 166,142

Table 1: Statistics of parallel training data sources including number of parallel sentence (pairs), source language (src) and target language (tgt, i.e., English) tokens.
The first part includes in-domain dictionaries, the second part in-domain corpora, and the last part general-domain data (dictionaries and corpora). All figures are in
thousands.

2. The data set used for development (system tuning) and test-
ing (performance evaluation) are described in Section 2.2.7 and
summarized in Table 3.

2.2.1. In-domain dictionary data
Parallel data in the form of a term-to-term dictionary is very

valuable for terminology translation. Our main source of dic-
tionary data is the UMLS Metathesaurus of health and biomed-
ical vocabularies and standards [40]. The translation dictio-
naries for our experiments were constructed by selecting the
UMLS concepts having translations in the respective languages
(CS–EN, DE–EN, FR–EN). The number of dictionary entries
ranges from 70,000 to 86,000 depending on the language pair
(see Table 1).

Additional in-domain dictionaries were acquired from DBpe-
dia [54], which contains structured information extracted from
Wikipedia articles. We exploited the owl:sameAs links, which
relate localized Wikipedia articles and their English equivalents
through bijective inter-language links, to construct bilingual
dictionary entries using the titles of selected articles and cat-
egories.

Since there is no straightforward strategy to identify
Wikipedia content related to a particular domain, we employ
the following heuristics.

For Czech, English, and French, selecting articles which
transitively belong to the category Medicine covers almost the
entire Wikipedia, which is not very useful. For instance, in the
French Wikipedia, we can get from the category Medicine to
James Bond in six steps: Médecine (Medicine)→Histoire de la
médecine (History of medicine)→ Cas médical (Medical case)
→ Malade de fiction (Disease in fiction) → Drogué de fiction
(Drug addict in fiction)→ Fumeur de fiction (Smoker in fiction)

→ James Bond. For German, however, the categorization of ar-
ticles seems to be more strict and the result of this approach
more precise and beneficial. Selecting subcategories and arti-
cles subordinated to the German categories Biologie (Biology)
and Gesundheit (Health) and their equivalents in the other lan-
guages produced reasonably large dictionaries, more or less rel-
evant to the domain of our interest.

As part of preprocessing, parenthesized texts were removed
from the titles because they usually cannot be considered part of
a dictionary entry. Moreover, their use in different languages is
not consistent, as shown in the following examples of DE–EN
pairs of terms: [Krebs (Medizin), Cancer], [Magnesiummangel,
Magnesium deficiency (medicine)].

Manual investigation of the dictionaries confirmed relatively
high precision but lower recall. For this reason, the dictio-
naries were augmented by adding titles (and their equivalents
in the other languages) from categories containing at least
two already selected articles (based on the German categoriza-
tion) or at least two articles for the UMLS concepts. For in-
stance, the Czech UMLS contains concepts such as Uhthof-
fův fenomén (Uhthoff’s phenomenon) and Demence (Demen-
tia), but not Abarognóza (Abarognosis), Agnózie (Agnosia), or
Migréna (Migraine). The latter concepts were added to the list
based on their membership in the same category of Wikipedia,
namely Symptomy poruch nervové soustavy (Symptoms of ner-
vous system diseases), as the former ones mentioned above.
This process resulted in 70,000 entries for CS–EN and more
than 300,000 for DE–EN and FR–EN each. The dictionaries
produced contain a certain amount of noise not directly rele-
vant to medicine (e.g., names of persons and geographical lo-
cations), but this is generally not a problem for SMT as long
as the dictionaries contain the domain-relevant material as well

5



(the non-relevant material, which does not typically occure in
the input, is not used to construct the translation hypotheses and
thus does not effect the system). A thorough evaluation of this
approach will be the subject of further work.

2.2.2. In-domain parallel corpora
In-domain parallel corpora have the traditional form of a set

of aligned sentences. In this study we use two established in-
domain medical corpora. The EMEA corpus is an in-domain
parallel corpus of documents from the European Medicines
Agency, automatically processed and aligned on sentence level
by Tiedemann [55]. It is publicly available for all the language
pairs and comprises more than 300,000 sentence pairs for each
language pair. The MuchMore Springer Corpus is a parallel
corpus of approximately 6,000 DE–EN abstracts from medical
journals published by Springer [56].

Two additional in-domain parallel data sets are extracted
from patents and patent applications. The DE–EN set of 1.5
million sentence pairs is extracted from PatTR, a parallel corpus
extracted from the MAREC patent collection [57]. The com-
plete corpus contains more than 20 million DE–EN sentence
pairs from all patent text sections. For the in-domain subset,
we only consider text from titles, abstracts, and claims indi-
cated to be from the medical domain (categories A61, C12N,
and C12P). The FR–EN set is extracted in a similar way from
the Corpus of Parallel Patent Applications (COPPA) provided
by World Intellectual Property Organization [58], a total of 8
million sentence pairs from Patent Cooperation Treaty appli-
cations (titles and abstracts). The resulting in-domain subset
consists of 1.2 million parallel sentences.

2.2.3. General-domain parallel data
In this work, we also exploit a wide variety of bilingual

resources not explicitly associated with the medical domain.
They cover a large number of genres and topics, and we denote
them as general-domain data. All these data sets are publicly
available and include both dictionary and corpus resources.

The parallel corpora exploited for all the language pairs in-
clude: Common Crawl mined from the public web crawl hosted
on Amazon’s Elastic Cloud [59], EuroParl version 6 extracted
from the proceedings of the EU Parliament [11], JRC-Acquis
Multilingual Parallel Corpus version 3.0 extracted from Acquis
Communautaire, the total body of European Union law [13],
the News Commentary corpus of news analysis from the Project
Syndicate [14], and the OJEU corpus with texts from the Offi-
cial Journal of the European Union including legislation doc-
uments, information notices, and public procurements, made
available by the Apertium project [60]. We also make use of
the dictionary data extracted from DBpedia and not identified
as medical-domain, see Section 2.2.1.

In addition to the resources mentioned above, we employ
CzEng 1.0 for the CS–EN experiments, a compilation of
sentence-aligned parallel data from various sources: legislation,
fiction, news articles, parallel web pages, movie subtitles, and
technical documentation of software [61] (the Navajo section
was excluded due to its low translation quality). The DE–EN
general-domain data is supplemented by a subset of the PatTR

source sentences tokens
Cochrane 2,120 58,454
DrugBank 23 826
GREC 1 62
GENIA 18 557
FMA 150 884
UMLS 321 2,003
PIL 20 567
HON 44,285 1,145,384
MultiUN 14,077 422,008
WMT News 48,370 1,188,277
Gigaword 22,197 854,493

Table 2: Number of sentences and tokens in English monolingual data sources.
All figures are in thousands.

corpus, sentence pairs extracted from the sections not identified
as relevant to the medical domain, as described in Section 2.2.2,
and translation pairs obtained from Linguee,5 an online dictio-
nary service. Additional FR–EN general-domain data comes
from three sources: the Hansard Corpus extracted from pro-
ceedings of the Canadian Parliament [12], the MultiUN parallel
corpus extracted from the United Nations website [62], and the
COPPA corpus [58] – sentences from the sections not detected
as medical-domain, see Section 2.2.2.

2.2.4. In-domain monolingual corpora
Analogously to the parallel data, we also make use of mono-

lingual data resources to train language models of English as the
target language in all our experiments. The in-domain mono-
lingual corpora include (cf. Table 2): the Cochrane database of
reviews of primary research in human health care and health
policy [63], DrugBank – a bioinformatics and cheminformat-
ics resource describing drugs [64], Gene Regulation Event Cor-
pus (GREC) – a semantically annotated English corpus of ab-
stracts of biomedical texts [65], the GENIA corpus of biomedi-
cal literature compiled and annotated within the GENIA project
[66], the Foundational Model of Anatomy Ontology (FMA)
– a knowledge source for biomedical informatics concerned
with symbolic representation of the phenotypic structure of
the human body [67], English texts extracted from the UMLS
Metathesaurus [40], the Patient Information Leaflet Corpus
(PIL) – a collection of documents giving instructions to pa-
tients about their medication [69], and finally, a large set of
texts extracted from HONcode-certified sites (HON) that have
been identified by language-detection libraries [70, 71] to be
English-language [72].

2.2.5. General-domain monolingual corpora
In addition to the in-domain monolingual corpora, we also

use general-domain monolingual corpora including: the En-
glish part of the MultiUN corpus extracted from the United
Nations Website [62], News articles from 2009–2012 provided
for the Workshop on statistical Machine Translation (WMT)

5http://www.linguee.de/
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shared translation task [14], and the English Gigaword contain-
ing newswire texts [73].

2.2.6. Data preprocessing
All the training data sets were preprocessed in order to get

clean and reliable data without duplicities and noise. We dis-
carded parallel sentences with an empty source and/or target
side, removed non-UTF8 characters, and ignored duplicate sen-
tences (or sentence pairs) on a corpus level. Parallel sentences
containing more than 100 words on either side were removed
(because our system cannot process longer sentences in train-
ing data). All the data (including training, development, and
test sets) was tokenized, tagged for part-of-speech, and lemma-
tized using the Treex NLP framework [74].

In morphological tagging, all tokens were processed using a
part-of-speech tagger that provides each token with an appro-
priate part-of-speech tag, which also includes various morpho-
logical properties. We applied the Morče tagger [75] for Czech
and English and TreeTagger [76] for German and French. In
addition, the Czech tagger employed a morphological analyzer
[77] to prune impossible part-of-speech tags for a given token.
During lemmatization, all tokens are also assigned a lemma –
the base form of the word, e.g., infinitive for verbs and nomina-
tive singular form for nouns. For Czech, German, and French,
lemmatization is done jointly with tagging, i.e., the tagger se-
lects the appropriate lemma along with the word form. For En-
glish, we used a rule-based lemmatizer implemented by Popel
and Žabokrtský [78].

Table 1 shows statistics for the parallel data sources and
Table 2 presents similar statistics for the monolingual data
sources, both after the cleaning and preprocessing steps de-
scribed in this section have been performed.

2.2.7. Development and test data
For parameter optimization and evaluation of translation

quality in our experiments, we employ data sets from three
sources; details are shown in Table 3. For the general domain
(denoted as gen), we use the test sets provided for the WMT
translation task 2012 and 2013 [14] as development and test
sets, respectively. This data contains sentences extracted from
news stories in various languages (including Czech, German,
English, and French) and manually translated into all other lan-
guages.

For the medical domain (denoted as med), we exploit a trans-
lation memory produced by the European Centre for Disease
Prevention and Control (ECDC)6. This is a collection of sen-
tences mostly on health-related topics and their professional
translations into 25 languages. We randomly split the set of
sentences having translations in the four relevant languages into
development and test sets.

The primary development and test sets used in this study con-
sist of user queries from the medical domain, referred to as
query. These queries were originally in English, sampled from
two sources: 50% from the general-public query logs provided

6http://ipsc.jrc.ec.europa.eu/

by the Health On The Net (HON) Foundation [79] and 50%
from the Trip database containing queries by medical profes-
sionals [80]. We hired human translators (not necessarily na-
tive speakers but fluent in the relevant languages) to manually
translate all the queries into Czech, German, and French, and
then medical experts to verify the accuracy of the translations.
The resulting sets were randomly split into development and
test sets and made publicly available via the LINDAT/Clarin
repository.7 Some examples of English language general-public
queries are: diabetic ulcer; cancer breast; disease; access; re-
cuperation. Examples of queries by medical professionals are:
nsaids osteoarthritis; meningitis and penicillin; asthma chil-
dren; common cold; prison dermatology.

While the gen and med data sets contain complete sentences
extracted from longer texts (documents), the query sets consist
of short expressions used as real user search queries. This dif-
ference is evident from the average length, which is about 23
words per sentence on the English side for the gen sets, 17 for
the med sets, and only slightly above 2 for the query sets – this
is comparable to the observation that user queries to search en-
gines usually consist of 2–3 words [81]. Detailed statistics of
the individual data sets are provided in Table 3.

2.3. System description
Our translation system is based on Moses [4], an open-source

phrase-based SMT project providing a complete set of tools for
training, parameter optimization (tuning), and decoding (trans-
lation). In this section, we provide technical details of our setup.

Word alignment is computed on pseudo-stems, words
trimmed to 5 characters, using fast_align [82], which features
competitive results of end-to-end MT evaluation and is faster
compared to the traditional tools [e.g., 8]. The resulting align-
ments are symmetrized by the grow-diag-final-and heuristic
and phrases are extracted using the standard tools bundled with
Moses, with the length limit set to 7 words. All dictionary data
in our experiments is used the same way as regular parallel data
(with alignment and phrase pair extraction). Language models
of order 5 are estimated using SRILM (Stanford Research In-
stitute Language Modeling toolkit) [83] with modified Kneser-
Ney smoothing [84]. KenLM (Kenneth Heafield’s Language
Model toolkit) [85] is used in decoding for querying the mod-
els. We do not employ lexicalized reordering [86] and rely on
the standard distortion penalty feature instead, similarly to the
state-of-the-art system of Bojar et al. [87]. MERT [9] is used
for tuning the model parameters towards BLEU [5] on the de-
velopment sets of parallel sentences.

2.4. Machine translation experiments
This section presents our experimental study of the adapta-

tion of SMT towards the medical domain. First, we describe
baseline MT systems trained and tuned on general-domain data
and evaluate their performance. Then, we adapt the systems
to the medical domain by exploiting various training resources
and optimizing the configuration of the SMT system and its

7http://hdl.handle.net/11858/00-097C-0000-0022-D9BF-5
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domain source type pairs Czech German French English lenEN

gen WMT dev 3,003 65,657 73,722 86,977 74,383 24.77
test 3,000 57,411 64,555 79,013 66,222 22.07

med ECDC dev 751 11,654 12,605 15,523 12,346 16.44
test 1,400 23,073 24,985 30,968 24,441 17.46

query Khresmoi dev 508 1,128 1,041 1,335 1,084 2.13
test 1,000 2,121 1,951 2,490 2,067 2.07

Table 3: Statistics of development and test data sets including domain (gen – general, med – medical text, query – medical query), number of parallel sentences
(pairs), total number of tokens per language, and average number of tokens on English side (lenEN ).

parameters. Further, we employ more advanced linguistic pre-
processing of the training data, such as morphological normal-
ization and decompounding, and analyze their effect on system
performance. Finally, we attempt to exploit a terminological
thesaurus to improve translation quality in this very specific do-
main. Each technique is described in a separate subsection and
provided with detailed analysis of its contribution. The overall
results are then compared and discussed in Sections 2.5 and 2.6
and summarized in Section 2.7.

Our experiments are carried out on the CS–EN, DE–EN, and
FR–EN language pairs using Eman, an experiment manager
by Bojar and Tamchyna [88]. We evaluate our systems using
BLEU [5] and PER (position-independent word error rate) [6].
PER is similar to word error rate known as the Levenshtein dis-
tance [89] computed on words (not characters), but it does not
penalize word reordering; this might better fit IR systems which
typically ignore query word order.

BLEU scores are reported as percentage and PER is reported
as 100 × (1−PER), so that both metrics are in the range 0–100
where higher scores indicate better translations. In the tables
presenting results in this section, the best scores for each lan-
guage pair are marked with a ? symbol and those which are
statistically indistinguishable from the best ones are typed in
bold. To test statistical significance, we use paired bootstrap re-
sampling for BLEU [90] and the standard paired t-test for PER,
both with p < 0.05. Results of selected systems are also com-
pared in Section 2.5 using human expert evaluation where the
best score for each language pair is again marked with a ?.

2.4.1. Baseline translation systems
Current state-of-the-art SMT systems for commonly spoken

language pairs and general domains are trained on data com-
prising millions of parallel sentences and tens of millions of
monolingual sentences [14]. We decided to limit the amount
of data in each experiment to 10 million parallel sentence pairs
and 30 million monolingual sentences. These numbers are quite
comparable to current state-of-the-art SMT systems and define
a strong baseline – a larger training data set would probably not
bring substantial improvement of translation quality, especially
when the available in-domain data is much smaller and addi-
tional data would have to be taken from out-of-domain sources.

To simulate a typical real-world scenario where no in-domain
data is available for training an SMT system for a specific
domain, we train our baseline systems using general-domain
resources only. For each language pair, the baseline sys-
tem is trained on a mixture of 10 million parallel sentences

randomly taken from all general-domain sources, outlined in
Section 2.2.3, and 30 million monolingual sentences sampled
from all general-domain monolingual sources, outlined in Sec-
tion 2.2.5, and tuned on 3,003 sentence pairs of general-domain
(gen) development data, as described in Section 2.2.7. These
configurations of parallel and monolingual training data are re-
ferred to as P0 and M0, respectively. The performance of the
resulting systems measured on various test sets is presented in
Table 4.

The BLEU scores for the gen domain range from 24.13 to
29.62 depending on the language pair. Such scores are com-
parable to the state-of-the-art results reported recently on the
same data sets [91]. The scores measured on the med domain
are consistently higher by about 2 BLEU points (27.06–31.45).
This might seem unexpected, since we are translating domain-
specific data using a general-domain system, but the data used
for training the baseline systems is large (10 million sentence
pairs), taken at random from various sources and the chances
that it provides translation evidence for some medical terms are
high. Moreover, the med test sentences are much shorter, on
average (about 17 words for med vs. 23 words for gen, see Ta-
ble 3), and MT of shorter sentences is typically easier. Note also
the wider confidence intervals (about ± 1.25 BLEU for med vs.
± 0.65 BLEU for gen), which are mainly caused by the smaller
data size (in terms of number of sentence and words), see Ta-
ble 3. A similar effect is evident from the results obtained on
the main query test sets. Although domain-specific terminol-
ogy is very frequent in this test data, the fact that the queries
are very short (only 2 words on average, see Table 3) gives rise
to relatively high BLEU scores (29.50–37.84) and even wider
confidence intervals (about ± 4.48 BLEU, see Table 4).

Note. As a direct consequence of such wide confidence inter-
vals, the tests of statistical significance in the experiments pre-
sented later in this section show insignificant differences even
for results with relatively high differences in BLEU. Therefore,
it is difficult to confirm a positive contribution of some methods
despite the substantial increase of BLEU.

2.4.2. System tuning with in-domain data
Optimization of the SMT model parameters has been shown

to have a substantial impact on model performance [e.g., 9].
In order to obtain optimal translations, it is necessary to tune
the system on data of a similar nature to the data on which it
will be applied [92]. The effect of varying development data
domain (gen, med, query) in our experiments is illustrated in
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test Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

gen 25.76± 0.63 61.04± 0.50 24.13± 0.60 60.24± 0.55 29.62± 0.71 63.06± 0.66
med 28.48± 1.25 57.76± 1.43 27.06± 1.21 58.67± 1.31 31.45± 1.29 61.91± 1.35
query 26.59± 4.42 55.25± 3.38 23.03± 3.87 54.76± 3.52 32.67± 5.17 65.73± 3.23

Table 4: Performance of the baseline systems trained and tuned on general-domain data and tested on general (gen), medical (med), and query test sets. The scores
are provided with empirical 95% confidence intervals.

config dev test Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P0 M0 gen query 26.59 55.25 23.03 54.76 32.67 65.73
P0 M0 med query 30.84 60.76 27.44 59.78 35.60 68.87
P0 M0 query query ?35.73 ?66.21 ?29.50 ?60.40 ?37.84 ?71.78

Table 5: The baseline systems tested on medical queries and tuned on development sets of different domains.

Table 5. Tuning on in-domain data (med and query) gives im-
pressive improvements of translation quality measured by both
BLEU and PER. Using the med development sets improves the
baseline BLEU scores by 3.86 absolute on average and tuning
on the query sets boosts the scores by an additional 3.06 BLEU
absolute. Given the fact that the only changes in the SMT sys-
tems are the weights of the feature functions, this improvement
is remarkable. All subsequent experiments are thus tuned on
the query sets.

2.4.3. System training with parallel in-domain data
Training resources for the domain of medicine are not as

scarce as for other specific domains (see Section 2.2) and pro-
vide enough data to train a complete SMT system. Parallel
in-domain data include both dictionaries and corpora (see Ta-
ble 6). We train three systems using different combinations of
these resources to assess their relative contribution: one solely
based on in-domain dictionaries described in Section 2.2.1 (de-
noted as P1), one based only on in-domain corpora described
in Section 2.2.2 (denoted as P2), and one trained on a mixture
of both the in-domain dictionaries and corpora (denoted as P3).
Table 6 presents results of the three systems compared with the
systems trained on a random general-domain sample and tuned
on the query development sets (P0). The monolingual training
data is the same as in the previous experiments (M0).

We can conclude that the systems trained on both types of
in-domain resources (P3 M0) outperform the general-domain
ones. The in-domain training data better covers the test set
vocabulary and achieves higher scores with less training data,
though the improvement in BLEU is statistically significant
only for DE–EN. In terms of PER, the improvement is statis-
tically significant also for FR–EN but not for BLEU – despite
the large difference of 3.23 points absolute (this is a typical ex-
ample of the situation discussed in the note in Section 2.4.1).
The inconclusive result for CS–EN is caused by the limited
availability of in-domain parallel data for Czech and English,
especially by the absence of patent data. The other transla-
tion pairs benefit from larger in-domain training data, which
reduces the out-of-vocabulary problem especially for DE–EN,
caused by linguistic properties of German. For DE–EN and

cfg Czech–English German–English French–English
P0 168,005 192,504 299,977 327,208 315,543 263,212
P1 358 375 988 1,034 1,196 1,148
P2 5,400 5,597 60,778 64,554 40,985 33,260
P3 5,758 5,972 61,766 65,588 42,181 34,408
P4 166,075 189,664 291,719 316,407 294,636 244,985
P5 177,723 203,078 332,578 362,493 285,619 236,873
P6 177,865 203,275 335,200 365,489 289,644 240,330
P7 179,523 205,882 346,202 379,732 312,685 260,132

Table 8: Number of tokens (in thousands) in each side of all configurations
(cfg) of parallel training data.

FR–EN, the relative contribution of in-domain dictionaries vs.
in-domain corpora is higher for the latter (compare P1 M0 vs.
P2 M0), but this is caused by the larger amounts of training ma-
terial available in the corpora. For CS–EN, where in-domain
corpora data is available in lesser quantities, the BLEU scores
for P1 and P2 are equal (29.00). Given the much smaller size
of the dictionaries (see Table 8), results of P1 are notable for all
language pairs.

2.4.4. Intelligent selection of training data
In the previous experiments, the in-domain data was selected

based on explicit information about its sources (e.g., the Eu-
ropean Medicines Agency). Such information, however, might
not be completely reliable (not every piece of data from the rel-
evant providers is expected to be related to medicine). At the
same time, in-domain data can also appear in other resources
(not explicitly known to be in-domain). In this section, we con-
struct the training data for SMT from sentences found to be
really similar to the language of the medical domain.

We follow an approach originally proposed for selection of
monolingual sentences for language modeling [24] and its mod-
ification applied to selection of parallel sentences [26]. This
technique assumes two language models for sentence scoring,
one trained on (true) in-domain text and one trained on (any)
general-domain text in the same language (e.g., English). Each
sentence in a pool of all available data (regardless of domain) is
then scored by a difference of its cross-perplexity given the in-
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config dict med gen Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P0 M0 � 35.73 66.21 29.50 60.40 37.84 71.78
P1 M0 � 29.00 60.58 28.27 58.41 34.95 71.90
P2 M0 � 29.00 60.51 32.87 61.15 36.21 74.00
P3 M0 � � ?36.35 ?67.12 ?36.64 ?64.87 ?41.07 ?77.12

Table 6: Performance of the systems trained on various combinations of data from in-domain dictionaries (dict), in-domain corpora (med), and general-domain data
(gen) selected as complete (�) and random (�) samples.

config dict med gen Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P3 M0 � � 36.35 67.12 ?36.64 ?64.87 41.07 ?77.12
P4 M0 � � � 33.13 68.60 32.87 63.00 ?43.00 76.41
P5 M0 � � W 35.53 ?69.36 34.78 63.20 41.83 75.71
P6 M0 � W W ?36.65 68.23 34.67 64.03 42.74 76.47
P7 M0 W 32.27 64.80 30.18 60.08 39.26 74.63

Table 7: Performance of the systems trained on combinations of data from in-domain dictionaries (dict) and corpora (med), and general-domain data (gen) selected
as complete (�), random (�), or intelligent (W) samples.

domain language model and cross-perplexity given the general-
domain language model (in this order). Sentences with the low-
est scores (i.e., those more similar to the language of the spe-
cific domain) are selected as pseudo-in-domain data and used
for training. The two language models for sentence scoring
are trained with a restricted vocabulary extracted from the in-
domain training data as words occurring at least twice (single-
tons and other words are treated as out-of-vocabulary).

Motivated by Moore and Lewis [24], Axelrod et al. [26] ap-
ply this approach to selection of parallel data. They scored both
the source and target language sides of parallel sentence (inde-
pendently) and define the selection criterion as the average of
the source side score and the target side score.

In our experiments, we apply this technique to select both
monolingual data for language models and parallel data for
translation models. Selection of parallel data is based on the
target language (English) only – so we only need two scoring
models for all experiments (both English): the in-domain one is
trained on the HON data set and the general-domain one on the
WMT News data (the resources are described in Section 2.2.4).
Compared to the approach of Moore and Lewis [24] and Ax-
elrod et al. [26], we prune the model vocabulary more aggres-
sively – we discard not only the singletons, but also all words
with non-Latin characters, which helps clean the models from
noise introduced by the automatic process of data acquisition
by web crawling.

Parallel data selection. For parallel data selection, we experi-
ment with three configurations which differ in the proportion of
in-domain and pseudo-in-domain material in our training data,
always summing up to 10 million sentence pairs so the training
data size is comparable to other experiments. The first system
is trained on all data from the in-domain sources (dictionaries
and corpora) plus the intelligent selection of pseudo-in-domain
data from the general-domain sources (P5). The second system
is trained on the in-domain dictionaries plus pseudo-in-domain

selection from the in-domain corpora and the general-domain
sources (P6), and finally, the third system is based on intelligent
selection of data from general-domain data only (P7). The ef-
fectiveness of this technique is compared to the systems trained
on in-domain data only (P3) and with a trivial baseline which
adds random selection from the general-domain data so the total
sum of parallel training data is 10 million sentence pairs (P4).
The language model and development data are the same as in
the previous experiments.

The results for all configurations are presented in Table 7,
with statistics of the corresponding parallel data in Table 8.
The results and the observed trends differ depending on lan-
guage pair. For CS–EN and DE–EN, using an additional ran-
domly selected general-domain data (P4) does not help and
performance of the systems decreases (compared to P3). For
FR–EN, however, the BLEU score increases and the system
outperforms all other configurations. This can probably be ex-
plained as a coincidence due to the random sampling as the
result is not significantly better than P3–P6. Intelligent data
selection gives slightly better results when applied on all cor-
pus data (P6) regardless of domain (compare with P5) and will
be used in our further experiments. Using pseudo-in-domain
data exclusively from the general domain (P7) outperforms the
dictionary-based systems (P1) only and confirms the impor-
tance of true in-domain corpora (P3–P6) for training a domain-
specific SMT system.

Monolingual data selection. We perform experiments with five
different configurations of monolingual training data for lan-
guage modeling (M0–M1), always using the same parallel train-
ing data (P6), see Table 9.

So far, all the experiments presented employed the baseline
language model trained on a random sample of 30 million sen-
tences from the general-domain data (M0, see Section 2.4.1).
Substituting this data with an intelligent sample of the same size
and from the same source (M1) improves BLEU for CS–EN
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config med gen Czech–English German–English French–English size
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P6 M0 � 36.65 68.23 34.67 64.03 42.74 76.47 873,654
P6 M1 W 37.82 68.88 33.62 65.10 41.84 76.72 925,962
P6 M2 � 37.26 69.65 37.07 64.09 44.54 ?77.30 772,532
P6 M3 W 36.58 69.25 37.92 64.40 ?45.20 77.15 828,898
P6 M4 W W ?41.45 ?71.61 ?40.65 ?65.43 44.50 77.24 825,617

Table 9: Results for MT systems trained with varying monolingual data taken from in-domain (med) and general-domain (gen) corpora as random (�) or intelligent
(W) samples. Size refers to the size in thousands of tokens.

domain source M0 M1 M2 M3 M4
med Cochrane – – 4.52 4.32 4.22

DrugBank – – 0.05 0.07 0.07
FMA – – 0.32 0.42 0.42
GENIA – – 0.04 0.06 0.06
GREC – – <0.01 <0.01 <0.01
UMLS – – 0.68 1.00 1.00
PIL – – 0.04 0.04 0.04
HON – – 94.34 94.08 92.44

gen MultiUN 16.63 41.37 – – 1.50
WMT News 57.15 31.84 – – 0.12
Gigaword 26.23 26.79 – – 0.13

Table 10: Distribution of the monolingual data sources in the language model
data configurations (M0–M5).

only. For DE–EN and FR–EN, the BLEU scores drop – the
general-domain sources probably do not contain enough ma-
terial related to the medical domain. Taking language model
training data from in-domain sources (M2–M4) turns out to be
more beneficial – for CS–EN, the difference is not significant,
but for DE–EN and FR–EN, the improvement is about 3 BLEU
points for the random sample (M2) and 4 BLEU points for the
intelligent selection (M3). The most efficient configuration is
the intelligent selection from all sources (M4). This approach
brings an additional 5 BLEU points for CS–EN and 3 BLEU
points for DE–EN. In the case of FR–EN, we observe a slight
degradation, but the difference is not statistically significant.

The distribution of the monolingual data sources in the in-
dividual configurations is illustrated in Table 10. It is evident
that the general-domain MultiUN corpus is more relevant to
the medical domain than WMT News and Gigaword (com-
pare M0 and M1), and the distribution of M2 and M3 does not
differ a lot. Unsurprisingly, the best-performing configuration
(M4) contains most material from the HON data and other in-
domain sources, but the general-domain corpora are present too
and their contribution to translation quality is quite substantial
(compare M3 and M4 in Table 9, especially for CS–EN and
DE–EN). Naturally, the M4 language model is used in further
experiments.

2.4.5. Optimization of phrase table configuration
In the previous experiments with data selection, the MT sys-

tem has no information about whether a particular translation
option comes from in-domain or out-of-domain data. To make

this information explicitly available, we follow the approach of
Koehn and Schroeder [20] and train two independent transla-
tion models (phrase tables). The first experiment is based on
the P5 configuration of parallel data: one phrase table is trained
using in-domain sections of the training data (dictionaries and
medical corpora) and the second using data selected from the
general domain. In the second experiment, based on P6, the
first table is trained on the medical dictionaries only and the
second one on the intelligent selection from the in-domain and
general-domain corpora. We use M4 (the best-performing op-
tion) as the source for monolingual data in both experiments to
make our results comparable with the best systems reported so
far.

Each phrase table has its own set of parameters in the log-
linear combination. Setting their weights during model opti-
mization allows the MT system to balance its confidence in the
individual models (i.e., out-of-domain translation options can
be down-weighted). During translation, both phrase tables are
used simultaneously. By splitting the data, we impose a hard
division which may not always be advantageous: while some
data from the general domain may be very similar to the test
set, it is weighted identically as sentences which are entirely
out-of-domain. The division into two tables also makes the data
sparser: since no statistics are shared between the corpora, both
phrase probabilities and lexical smoothing can become less ac-
curate. Table 11 shows that indeed we are not able to improve
translation performance using this technique in either case.

2.4.6. Morphological normalization in the source language
Several previous studies have shown that translation from

morphologically rich languages can be improved by perform-
ing some kind of morphological normalization on the source
language side. Two of the three source languages in our experi-
ments can be considered quite complex in terms of morphologi-
cal variability: Czech with its multitude of inflection patterns in
nouns, adjectives, and verbs, and German with similar grammar
complexity emphasized by frequent usage of word compounds.

Morphological normalization reduces vocabulary size by
mapping word forms to their morphological classes. It can be
realized in various ways ranging from simple heuristics strip-
ping suffixes, advanced rule-based [93] or stochastic [94] stem-
mers, to lemmatization substituting words by their linguistic
base forms. We investigate whether morphological normaliza-
tion performed on the source language side improves transla-
tion quality in our specific domain of medical queries. We take
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config p-tables Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P5 M4 mix 38.69 69.68 40.00 65.44 43.55 77.88
P5 M4 T2 med+gen 39.71 70.40 36.89 ?66.11 43.08 76.15
P6 M4 mix ?41.45 ?71.61 ?40.65 65.43 ?44.50 ?77.24
P6 M4 T2 med+gen 37.32 69.61 37.46 66.80 42.95 76.40

Table 11: Performance of the systems exploiting separate translation tables (T2) for in-domain and out-of-domain data compared with the single phrase table
configurations.

config method Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P6 M4 none ?41.45 ?71.61 ?40.65 ?65.43 ?44.50 ?77.24
P6 M4 N1 prefix 35.66 58.65 29.46 49.51 34.32 62.05
P6 M4 N2 snowball 29.62 65.53 35.91 62.49 38.09 70.23
P6 M4 N3 lemma 36.87 67.19 40.53 65.30 35.27 73.18

Table 12: The effect of morphological normalization performed on the source side. In N1, the tokens are cut after the first 5 characters, N2 employs the Snowball
stemmer, and N3 is based on proper lemmatization.

config splits OOV % OOV BLEU 1-PER
P3 M0 0 133 6.8 36.64 64.87
P3 M0 C3 159 79 3.8 37.63 66.94
P6 M4 0 100 5.1 40.65 65.43
P6 M4 C3 159 61 2.9 ?40.82 67.75
P6 M4 C6 156 47 2.3 40.68 ?67.75

Table 13: Performance of DE–EN systems with splitting German compounds.
The splitting models C3 and C6 are trained on the same parallel data as P3 and
P6, respectively. OOV refers to the absolute and relative (%) number of out-of-
vocabulary words, and splits refers to the number of splits (in 1,951 words).

the P6 M4 configuration as a baseline and apply three stem-
ming methods on the source language side of the parallel train-
ing data: N1 trimming words to 5 characters (used also for word
alignment, Section 2.3), N2 realized by Snowball stemmer [95],
and N3 based on lemmatization by the Treex NLP framework
[74]. As shown in Table 12, the results are not affirmative.
None of the three methods leads to better translation quality in
any translation direction. Moreover, the observed degradation
of translation quality is statistically significant in almost all the
experiments, both in terms of BLEU and PER. The only excep-
tion is the DE–EN experiment with lemmatization, where the
achieved BLEU score is lower but the difference is not statisti-
cally significant. We explain these results by the very specific
nature of our domain and genre. Most queries are formulated
using medical terms in their base forms which also occur fre-
quently in the training data (e.g., in the in-domain dictionaries).
Morphological normalization then increases translation ambi-
guity (number of translation variants), making it difficult to re-
solve (select the best one) in the very limited context of a typi-
cal query, which is in our case about 2 words, on average (see
Table 3).

2.4.7. Splitting German compound words
In Section 2.1.5, we outlined the issue of German com-

pounds, which increases the vocabulary size and leads to out-

of-vocabulary problems in MT (especially in specific domains
with rich terminology, such as medicine). The technique pro-
posed to reduce the problem is based on splitting the com-
pounds into components which are then treated as regular (in-
vocabulary) words.

In this work, we employ a simple unsupervised frequency-
based method for splitting compound words introduced
by Koehn and Knight [45] and implemented in the script
compound-splitter.perl as a part of the Moses toolkit [4]. This
method is easy to use and does not require any annotated data.
For a given word, it finds a split S = p1, . . . , pn with the highest
geometric mean of word frequencies of its parts pi:

S = arg max
S

∏
pi∈S

count(pi)


1
n

,

where count(pi) indicates the number of times the potential part
of the compound pi occurs as a single token in the corpus and
n is a number of parts in the particular split S .

For most words, the averaged frequency of all possible parti-
tionings is lower than the frequency of the word itself and thus
no split is performed. Since German compounds often con-
tain filler letters between its parts, we allow -s- and -es- (which
cover the most frequent cases) as linking elements. For exam-
ple, the compound Transfusionsmedizin consists of two parts
Transfusion and Medizin and uses the filler -s- between them.
The splitter is trained on the German side of parallel training
data by simply collecting frequencies of all words in the cor-
pus. Splitting is then performed as a preprocessing step on the
source (German) side of the paralell training data and also on
the input text to be translated.

We experiment with two configurations; the C3 splitter is
trained on P3 (in-domain dictionaries and corpora) and the C6
splitter is trained on P6 (in-domain dictionaries and intelligent
selection from in-domain and general-domain corpora). Statis-
tics comparing the number of words that were split and the
number of out-of-vocabulary words in the test data are shown
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in Table 13. Comparing the translations with and without using
the compound splitter, a statistically significant improvement
of BLEU is only observed for the model trained on smaller in-
domain data (C3) applied with the P3 M0 configuration. In the
other settings, the contribution of this method is not that evi-
dent, but compound splitting still substantially reduces the out-
of-vocabulary rates and potentially also improves word align-
ment.

2.4.8. Exploiting synonyms as translation variants
As highlighted previously, one of the issues that MT of texts

from professional domains has to deal with is the presence of
domain-specific terms which are rare or absent in the training
data and can lead to out-of-vocabulary words. In our work, we
try to address the issue by introducing the notion of synonyms,
mined from structured data, as several researchers have already
shown this approach to be useful (see Section 2.1.6). While we
often lack bilingual pairs of some terms, we may still be able
to find synonymous or nearly-synonymous terms for which we
do have bilingual pairs in our data. We explore two sources of
synonymy information – the UMLS Metathesaurus and DBpe-
dia described in Section 2.2.1.

Both of the data sources can be viewed as providing a map-
ping from various synonymous terms to one canonical term.
In UMLS, the canonical term is the UMLS heading, such as
Mandible in English or Mandibule in French, and the synonyms
are the alternative headings, such as Jaw, Lower jaw bone and
Inferior Maxillary Bone for English, or Maxillaire inférieur for
French. In DBpedia, the canonical term is the article title and
the synonyms are titles redirected to it. The redirected titles are
not always true synonyms – often, they can be also hyponyms
or other closely related terms, as is the case with the English ar-
ticle titled Vitamin A, to which many names of drugs containing
vitamin A are redirected (Disatabs, Myvpack, Testavol, etc.).
However, following Jones et al. [50], we believe that for the
sake of IR, treating all such terms as synonyms is usually appro-
priate, and can even be beneficial. Conveniently, both UMLS
and DBpedia also provide translations of the canonical terms.
This allows us to easily extract additional sets of bilingual pairs.

Let S c be a canonical term in the source language (e.g.,
Mandible); {S i} be synonyms of S c in the source language (e.g.,
Jaw, Lower jaw bone, Inferior Maxillary Bone); and Tc be the
canonical translation of S c in the target language (Mandibule).
For each S i, we create a new bilingual pair [S i, Tc], which we
add to the P6 training data set ([Jaw, Mandibule], [Lower jaw
bone, Mandibule], [Inferior Maxillary Bone, Mandibule]), re-
placing a part of the general domain data to keep the data set
size constant; we also add [S c, Ti] pairs ([Mandible, Maxillaire
inférieur]), i.e., target-side synonyms. The resulting numbers
of tokens are presented in Table 14. This configuration is fur-
ther denoted as P6 M4 S1.

Table 14 summarizes the results of MT with the mined syn-
onyms added to the training data. They are generally un-
favourable – while the differences in PER are less than one
percentage point and even a slight improvement was observed
for DE–EN, BLEU score decreases in all cases by more than
1 point. Still, the decrease in MT metrics does not necessarily

mean a decrease of overall performance, since the employment
of synonyms might hurt MT quality while improving the per-
formance of subsequent IR.

Manual inspection of the translation outputs on the develop-
ment data set shows that in many cases, the target term is sub-
stituted by its synonym or near-synonym, which is most prob-
ably caused by the fact that there are far more synonyms for
English than for other languages in our data, as our source data
sets are much larger for English. In some cases, this can be
regarded as canonicalization, while in other cases, it is proba-
bly closer to term expansion. Unfortunately, we have observed
very few cases where our approach led to avoidance of the out-
of-vocabulary words – their frequency decreased from approx-
imately 5% to approximately 4.6%. Still, we believe that ex-
ploiting synonyms from UMLS and DBpedia has a potential to
improve the performance of our cross-lingual IR system.

2.5. Overview of main translation results

So far, we have focused on optimizing the translation quality
of medical queries. The main achievements are summarized in
Table 15, which compares performance to two freely available
MT systems on the web: Google Translate8 and Microsoft Bing
Translator9.

The general-domain baselines trained on 10 million paral-
lel sentence pairs and 30 million monolingual sentences and
tuned on general-domain data have been improved greatly for
all language pairs. The improvement comes incrementally from
in-domain tuning, careful selection of parallel and monolingual
training data, and word decompounding (for DE–EN).

In terms of BLEU, we have added a total of 14.86 points for
CS–EN, 17.62 points for DE–EN, and 11.83 points for FR–EN.
All these results are statistically significant (p < 0.05). The
relative improvements are remarkable at 55.89%, 76.51%, and
36.21%, respectively. The most substantial improvement is
observed for DE–EN, but this is also the language pair with
the lowest scores for the baseline system. In comparison with
Google Translate, the results are quite competitive. In terms of
BLEU, our system performs better – although not by a statisti-
cally significant difference (ranging between 0.80–2.18 points).

In terms of PER, the results are similar. The (inverse) PER
scores of the baseline systems have increased by 16.36 points
for CS–EN, 12.99 points for DE–EN, and 11.51 points for
FR–EN. The respective relative improvements are 29.61%,
23.72%, and 17.51%. Google Translate has been outperformed
by 1.11–1.62 absolute points.

In MT, automatic evaluation measures (BLEU and PER, in
our case) may not correlate well with human judgements [e.g.,
14]. In order to verify the automatic evaluation results, we car-
ried out a human evaluation of the following systems: P0 M0,
P6 M4, Google Translate, and P6 M4 C3 for DE–EN. For each
language pair and each query in the MT test set, a human ex-
pert was asked to rank outputs of the systems and the reference
translations for 100 randomly sampled queries (presented in a

8http://translate.google.com/
9http://www.bing.com/translator/
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config Czech–English German–English French–English
BLEU 1-PER BLEU 1-PER BLEU 1-PER

P6 M4 ?41.45 ?71.61 ?40.65 65.43 ?44.50 ?77.24
P6 M4 S1 40.38 70.86 37.52 ?65.52 42.53 76.61
size 1,841 1,994 2,640 3,265 2,928 2,760

Table 14: The effect of exploiting synonyms (P6 M4 S1) in the best-performing configuration (P6 M4). The last row refers to the size of the synonym data sets,
measured in thousands of tokens on each side.

config Czech–English German–English French–English
BLEU 1-PER HUM BLEU 1-PER HUM BLEU 1-PER HUM

P0 M0 gen 26.59 55.25 23.91 23.03 54.76 29.31 32.67 65.73 17.05
P0 M0 query 35.73 66.21 – 29.50 60.40 – 37.84 71.78
P6 M0 36.65 68.23 – 34.67 64.03 – 42.74 76.47 –
P6 M4 ?41.45 ?71.61 45.83 40.65 65.43 37.63 ?44.50 ?77.24 ?56.06
P6 M4 C3 – – – ?40.82 ?67.75 37.78 – – –
P6 M4 S1 40.38 70.86 – 37.52 65.52 – 42.53 76.61 –
Google 40.65 70.50 ?56.47 38.64 66.13 ?54.39 42.95 76.01 45.45
Microsoft 27.54 51.25 – 35.25 61.88 – 36.44 71.39 –
reference – – 74.16 – – 80.29 – – 84.34

Table 15: Comparison of translation quality in selected experiments. The main results are also compared with the translations by public web-based systems and a
reference translation in a human evaluation (HUM).

random order) according to descending translations quality (ties
allowed). As proposed by Bojar et al. [96], the output was trans-
formed to pairwise comparison and is presented as a percentage
of cases when the translation of a particular system is judged as
better than outputs of the other systems, ties ignored (see the
columns denoted as HUM in Table 15). Formally, let {S j} be a
set of systems to be compared and win(A, B) be the number of
times system A is ranked better than system B.

HUM(S i) =

∑
i,i, j win(S i, S j)∑

i,i, j win(S i, S j) + win(S j, S i)
· 100%

The HUM score does not accord with the automatic measures,
showing Google Translate being outperformed by P6 M4 only
for FR–EN. However, these differences should not be consid-
ered significant, since the proportion of ties in all pairwise con-
tests is more than 72% (i.e., for each pair of systems, the two
systems were judged of equal quality in more than 72% ofthe
queries).

Further, we also investigate the final reduction of out-of-
vocabulary words (both in terms of tokens and types) in the best
systems compared to the baseline. As shown in Table 16, the re-
duction ranges between 42% and 69%, depending on language
pair. The most substantial decrease is observed for DE–EN,
where the effect of exploiting in-domain training data is em-
phasized by word decompounding.

2.6. Manual analysis of translation results
In addition to the human evaluation presented in the previous

subsection, we also performed a detailed manual analysis of
the results achieved by the best-performing systems (P6 M4 for
CS–EN and FR–EN, P6 M4 C3 for DE–EN) in comparison with
the baselines (P0 M0). We hired medical experts to judge the
quality of 50% samples of the query test set translations that

were produced by the two systems (our best performing one
and the baseline) for all the language pairs, using the following
five-point scale:

4 – perfect translation, identical to the reference;
3 – perfect translation, different from the reference;
2 – acceptable translation, errors allowed in morphology,

word order, and stopwords;
1 – bad translation, no untranslated words;
0 – bad translation, some words untranslated.

This scale allows us to easily quantify the translation quality
of all the systems and also to analyze the improvement of the
best systems over the baselines. For a complete overview for
all the language pairs, see Table 17. For simplicity, we describe
the findings for CS–EN only; however, the results for DE–EN
and FR–EN are very similar.

The total of 45% of Czech test queries are translated by the
baseline system to match the reference translations. However,
an additional 23% are also judged as perfect translations, al-
though different from the reference translation. Such cases are
not (fully) matched by the automatic measures and their scores
are undervalued (but this is a traditional problem in MT when-
ever test sets with a single reference translation are used). A
further 16% of the translations cannot be perceived as fully cor-
rect, but are considered adequate for querying in IR. For ex-
ample: potravinová alergie (food allergy) translated as food
allergies (error in number), chirurgické odnětí dělohy (hys-
terectomy) translated as surgical womb removed (error in syn-
tax), rodičovský (parental) translated as parent (error in part-
of-speech), růstový faktor hepatocytů (hepatocyte growth fac-
tor) translated as growth factor hepatocytes (error in word or-
der). IR systems typically remove stopwords, ignore the word
order, and perform some kind of morphological normalization.
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config Czech–English German–English French–English
token type token type token type

P0 M0 7.97 11.29 9.53 13.10 3.78 6.71
P6 M4 / C3 4.53 6.51 2.90 4.05 1.69 2.96
reduction (%) −43.16 −42.34 −69.57 −69.08 −55.29 −55.89

Table 16: Relative OOV rates (%) of types and tokens for the baseline P0 M0 and the best system P6 M4 / C3.

Czech–English German–English French–English
C 4 3 2 1 0 Σ C 4 3 2 1 0 Σ C 4 3 2 1 0 Σ

4 38.8 3.6 1.7 0.4 0.1 44.6 4 35.9 2.3 1.1 2.9 0.1 42.3 4 47.0 1.3 1.7 1.2 0.1 51.3
3 4.4 14.5 1.6 1.6 0.5 22.6 3 4.1 11.3 1.4 1.7 0.0 18.5 3 4.2 15.5 2.0 2.2 0.0 24.0
2 4.9 3.7 5.6 1.2 0.2 15.7 2 3.7 2.3 2.8 1.1 0.0 9.9 2 3.9 2.8 4.7 0.9 0.0 12.3
1 1.1 1.4 0.0 1.1 0.0 3.6 1 3.7 2.6 0.6 2.3 0.9 9.9 1 2.1 0.9 0.7 2.3 0.2 6.3
0 3.7 2.1 0.5 0.5 4.7 11.4 0 4.5 3.4 2.6 2.3 1.6 14.3 0 1.9 0.9 0.9 0.4 1.8 6.0
Σ 52.9 25.3 9.4 4.7 5.5 51.8 21.8 8.5 10.3 2.6 59.1 21.4 10.1 7.1 2.1

Table 17: Results of manual translation-error analysis of the baseline (P0 M0) and best systems (P6 M4 / C3). The figures (in %) represent joint and marginal (Σ)
distributions of categories 0–4 (C) observed in the baseline (rows) and best system (columns) translations. The bold and italics fonts denote improvement and
degradation, respectively.

Therefore, translation errors in such phenomena do not usually
harm retrieval performance. Finally, a total of 15% of the trans-
lations are completely wrong, and 3/4 of them contain one or
more words that remained untranslated.

When we compare the results of the best system with the
baseline, we observe an improvement in 22% of the transla-
tions (sum of the figures in bold for CS–EN Table 17) and a
degradation in 11% (sum of the figures in italics). The quality
of the remaining translations does not change. The distribution
of all types of changes is depicted in Table 17 (improvements
in bold and degradations in italics): 55% of the bad translations
(category 1 and 0) are improved in such a way that they are
judged as perfect (category 4 and 3). However, in less than 3%
of cases, we also observe the opposite behaviour, which can be
explained either by the change of training data where the cor-
rect translation is not present anymore and the system is not
able to generate it, or the system is able to generate the correct
hypothesis but it is not scored as the highest, or the system fails
to find it because of pruning the search space. The best system
for CS–EN is estimated to produce perfect results (category 4
and 3) in 78% and only 11% are judged as bad (category 1 and
0). Such results seem very promising for the application in IR
investigated in the Section 3 of this paper.

2.7. Summary

In this section, we described a series of experiments focused
on increasing quality of machine translation of medical queries.
Substantial improvements were obtained by tuning and training
on in-domain data. Even better results were observed in ex-
periments using pseudo-in-domain training data (both parallel
and monolingual) acquired by intelligent selection from large
pool of data irrespective of domain. For the DE–EN translation
direction, the translation quality was further improved by split-
ting compound words on the source language side (German).
Other techniques investigated were not shown to have such a
positive effect: they either did not bring any significant im-

provement (optimization of phrase table configuration, exploit-
ing synonyms) or led to a significant degradation of translation
quality (morphological normalization on the source language
side). Translation quality was evaluated by automatic compar-
isons against reference translations and by human experts. In
automatic evaluation, our best system even outperformed the
on-line translation systems of Google and Microsoft, although
in manual evaluation, this was not fully confirmed. In the thor-
ough manual analysis of translation errors of our best systems,
we observed that about 70–80% of translations (depending on
translation direction) are perfect and only about 9–12% are not
acceptable. The remaining 10% (approximately) is expected
to be acceptable in cross-lingual IR as it only contains minor
errors.

3. Optimizing query translation for cross-lingual informa-
tion retrieval

In a standard MT scenario, the MT system is optimized to
produce an output aimed to be read by a human. However, if
used in a cross-lingual IR (CLIR) system, a consumer of the
MT output is a computer system performing IR. Such systems
usually do not require the input to be linguistically fluent or
grammatically correct. The ordering of words can be loose and
function words and the accuracy of other words deemed to be
IR-irrelevant (traditionally called stopwords) does not matter.
On the other hand, inclusion of synonymous words or words
related to the query typically can have a positive effect by en-
couraging matching with these terms in relevant documents.
Moreover, over the years, people have become accustomed to
communicating with IR systems in the language of keywords.
Thus, we can assume a human input to a CLIR system will often
be of this non-linguistic form. Although there are tasks where
the expected queries may be longer (e.g., in patent retrieval, the
query is the complete text of a patent proposal [97]), typical
queries tend to be much shorter than a standard MT input [81].
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The average sentence length in the gen and query domains (see
Table 3) shows that our data is not an exception. These assump-
tions allow us to introduce techniques that would be harmful in
a standard MT scenario, but may be beneficial to the quality of
the CLIR system if the MT output serves as a query.

This section continues with an overview of related work fol-
lowed by a description of our experimental CLIR setup, the ex-
periments conducted, their results, and an analysis of our find-
ings.

3.1. State-of-the-art in CLIR and related work
IR has been studied for several decades now. The first at-

tempts to design “auto-indexing” machines date back to the
1950’s [98], but it has now evolved into a large research field
covering a wide range of tasks and problems [99]. We first
present work related to traditional monolingual IR applied to
medical-domain data. Then, we review approaches to cross-
lingual IR with a focus on query translation and continue with
an overview of CLIR work targeting the medical domain.

3.1.1. Monolingual information retrieval in the medical do-
main

Given that much medical content is written in the English
language, research to date in the medical space has predomi-
nantly focused on monolingual English retrieval. A number of
evaluation campaigns dedicated to this task have taken place.

The first such evaluation campaign using medical data for
evaluation of IR was OHSUMED [100]. The test collec-
tion contained around 350,000 abstracts from medical journals
taken from the MEDLINE database over a period of five years
and two sets of topics: a manually created one and another one
based on the controlled vocabulary thesaurus of the Medical
Subject Headings (MeSH) [68].

The TREC Genomics Track ran between 2003 and 2007. The
test collection comprised publications from medical journals
and clinical reports related to genes and genomics. The track in-
cluded tasks ranging from ad-hoc retrieval to document catego-
rization, passage retrieval, and entity-based question-answering
[101]. More recently, the TREC Medical Records Track ran in
2011 and 2012 [102]. This track was based on a collection of
anonymized medical records and queries that resembled eligi-
bility criteria of clinical studies. The goal was to find patient
cohorts that are relevant to the given criteria for recruitment as
populations in comparative effectiveness studies.

These past campaigns for health IR technique development
have focused on physicians and other health care professionals.
However, a new evaluation campaign introduced in 2013, CLEF
eHealth [103], considers types of queries posed by laypeople
searching the web for medical information. Given the realis-
tic nature of these (English) queries, and the very real need
for translation of non-English medical queries for laypeople
searching for medical information on the web, we use this test
collection for the cross-lingual IR evaluations described in this
article. For these queries, which mostly contain no more than
two terms (items indexed by the system, typically single con-
tent words), this type of translation is very challenging. The IR
test collection is described in greater detail in Section 3.2.

3.1.2. Cross-lingual information retrieval and related tech-
niques

In contrast to standard IR, the query and the set of documents
in CLIR are not in the same language. This issue is gener-
ally dealt with by translating queries into the language of the
documents, or translating the documents into the language of
queries. An alternative approach is to translate both queries and
documents into another language or a language-independent se-
mantic representation [e.g., 104, 105]. We follow the first ap-
proach based on translation of queries rather than documents.
However, most of the techniques described can be applied to
document translation as well. A detailed overview of CLIR can
be found in Nie [106], Peters et al. [107], or Zhou et al. [108].

The categorization of CLIR systems is traditionally based on
the method for translating queries: using a dictionary, MT, or
corpora. Dictionary-based methods employ machine-readable
bilingual dictionaries to map the query language onto the lan-
guage of documents. These methods were investigated, e.g., by
Ballesteros and Croft [109], Maeda et al. [110], and Gao and
Nie [111]. With the advent of modern SMT, the difference be-
tween machine-translation-based and corpora-based CLIR has
faded away. SMT systems can be adapted to act similarly to
dictionary-based methods, e.g., by disabling phrase reordering,
or by incorporating a human-made dictionary into the transla-
tion model. Unlike the traditional dictionary-based approaches,
SMT is of a stochastic nature and exploits additional sources of
information, such as a target-language model and context of in-
dividual terms in the query, which are combined using advanced
machine learning techniques. These advantages resulted in the
current dominance of SMT-based approaches to CLIR [108, pp.
23–24], exploiting especially online services such as Google
Translate or Microsoft Bing Translator. Nonetheless, these sys-
tems lack some means of adaptation to specific domains and
are usually constrained to limit their use, e.g., by imposing a
maximum number of translations per day.

The major issues one has to face in query translation are am-
biguity and low coverage [108]. Ambiguity can arise in both
the source language and the target language. For example, the
German noun Kanne can be translated into English as can or
canister. The former translation would correspond to the aux-
iliary verb can which is typically considered as a stopword for
IR (and thus, removed from queries and documents). The is-
sue of ambiguity is usually alleviated by enriching the query
with multiple translation options. A common application is
structured query translation introduced by Pirkola [112] who
implemented a synonym operator to group the translation al-
ternatives for individual words. Darwish and Oard [113] ex-
tend his work by weighting the translation candidates by trans-
lation probabilities. Federico and Bertoldi [114] employ a
query-translation model based on a Hidden Markov Model and
a language-model-based query-document model within a sin-
gle statistical framework. Integration of the two models is en-
sured over the weighted n-best list of possible translations of
the query.

Several methods address the issue of coverage, i.e., of han-
dling out-of-vocabulary words during translation. Stemming is

16



a standard method used in MT as well as in IR to effectively
cluster words by removing their inflectional and derivational
affixes. Both rule-based [93] and statistical [94] stemmers have
been applied. Lemmatization is an alternative approach of sub-
stituting various forms by the canonical form of a given word.
So far, however, the best application in IR by Hollink et al.
[115] produce results of only moderate quality.

Another technique for handling the out-of-vocabulary words
is query expansion, which works by enriching the query with
synonymous or related expressions. It can be achieved by
a widely-used approach known as pseudo-relevance, blind-
relevance, or local feedback [116] – the query in the source
language is used to retrieve the top-ranked documents from the
collection in the same language. The high-weighted terms (as-
sumed to be related) are then extracted from these documents
and added to the original query. This technique was applied to
CLIR e.g., by Ballesteros and Croft [117]. If performed also
on the target side, it can mitigate the effects caused by picking
wrong translation alternatives [see summary in 107].

Another technique closely tied with IR but rarely performed
in standard MT is stopword removal. Prepositions, articles, pro-
nouns, conjunctions, and other non-significant words are typi-
cally not indexed in IR document collections and can be re-
moved from the queries. Magdy and Jones [97] remove stop-
words even from the MT training data (along with stemming)
and shown significant speed-up of the translation process that
follows in the CLIR setup, and requires less training data for
the MT system.

3.1.3. Cross-lingual information retrieval in the medical do-
main

Cross-lingual retrieval in the medical domain has been ad-
dressed in several previous works. The majority of them em-
ploy the UMLS Metathesaurus as the main source of health-
related information. For instance, Eichmann et al. [118] use
UMLS to translate Spanish and French queries into English
following several strategies: full and partial phrase match,
dictionary-based look-up, and simple adding of the source lan-
guage query words. Volk et al. [119] identify the UMLS terms
and their semantic relations in both queries and documents
which is reported to improve performance in both cross-lingual
(German–English) and monolingual IR. Tran et al. [120] show
that UMLS-based translation mixed with hybrid translation
(combining pattern-based module with morpho-syntactic con-
version rules) outperforms the two translation components used
separately in French–English CLIR. Déjean et al. [121] focus
on extraction of bilingual lexicons from parallel and compa-
rable corpora to enrich monolingual or bilingual medical the-
sauri (such as UMLS). They show that using such improved
lexicons in CLIR significantly improves the performance and
outperforms using the existing ones acquired in the traditional
way.

The structured queries proposed in Pirkola [112] are evalu-
ated on data from the medical domain. To better deal with the
issues of coverage and ambiguity, the authors build a Finnish–
English health dictionary containing more than 60 thousand en-
tries. They show that CLIR systems based on dictionary-based

translation could achieve the performances of a monolingual
system if the queries structured and both general and domain
terminologies are available. Rosemblat et al. [122] use medical
queries from the Clinical Trials website10 to compare two main
approaches in CLIR – query translation and document trans-
lation. Their results favour the former approach. The Mor-
phoSaurus multilingual retrieval system for medical documents
[123, 124] adopts the approach of translating both queries and
documents to a morpho-semantic representation. Its central
component is a dictionary, whose entries constitute equivalence
classes of morpho-semantically minimal units, capturing inter-
lingual as well as intra-lingual synonymy. The MorphoSaurus
system was shown to outperform standard IR and CLIR ap-
proaches for languages such as German, where decompouding
words into smaller lexical units can greatly benefit IR perfor-
mances.

3.2. Data description

The IR evaluation described in this article was carried out on
the CLEF eHealth 2013 Task 3 test collection [103]. It con-
sists of a set of around one million web pages covering medical
topics related to general public and general practitioners col-
lected by the EU FP7 Khresmoi project11 and 50 English medi-
cal queries with corresponding relevance assessments generated
from the pooled set of results submitted to the task.

The documents are predominantly health and medicine web-
sites that have been certified by the Health on the Net (HON)
Foundation as adhering to the HONcode principles12 (ap-
prox. 60–70% of the collection) as well as other commonly
used health and medicine websites such as DrugBank13, Di-
agnosia14, and Trip Answers15. The documents are provided in
the data set in their raw HTML format along with their uniform
resource locators (URLs).

The queries in the collection aim to model those used by
laypeople (i.e., patients, their relatives, or other representatives)
to find out more about their disorders in a specific situation, af-
ter they have examined their discharge summary. The discharge
summaries used for the task originate from the anonymized
clinical free-text notes of the MIMIC II database, version 2.516.
The queries are intended to be representative of real patients’ in-
formation needs and statements, and as such are relatively short
with average length of no more than two terms (words). The
generated queries consist of a topic title (text of the query), de-
scription (longer description of what the query means), and nar-
rative (expected content of the relevant documents). The query
set (topic titles) has been manually translated for the purpose of
this work by medical professionals into German, French, and
Czech (and double reviewed). The titles of the original En-
glish topics include, for example: facial cuts and scar tissue;

10http://www.clinicaltrials.gov/
11http://khresmoi.eu/
12http://www.hon.ch/HONcode/Patients-Conduct.html
13http://www.drugbank.ca/
14http://www.diagnosia.com/
15http://www.tripanswers.org/
16http://mimic.physionet.org/
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asystolic arrest; nausea and vomiting and hematemesis; sinus
tachycardia; chills and gallstones.

Relevance assessment was performed by domain experts and
IR experts on documents obtained by pooling the top ten docu-
ments from three runs submitted by each of 9 participants to the
CLEF 2013 eHealth Task 3, which resulted in a pool of 6,391
documents. A total of 1,878 documents were assessed as rele-
vant, which is 37.56 per topic on average. Given that only the
top ten documents were assessed for each selected run, the re-
sulting pools are rather shallow. Therefore, relevant documents
may have been missed in the assessment process. For details on
this process see Goeuriot et al. [125].

3.3. System description
Our experimental IR system is based on the BM25 retrieval

model [126, 127] implemented in Lucene 317. The quality of
this model for IR in the medical domain has been previously
demonstrated by Leveling et al. [128].

Given a query q, a document d in this model is scored by the
following formula:

score(d, q) =
∑
t∈q

w(1) ·
(k1 + 1)tftd

k1(1 − b + b · (Ld/Lave)) + tftd
·

·
(k3 + 1)tftq

k3 + tftq
· Ld · Lave + Ld

where t ranges over the terms in q, k1, k3, and b are model
parameters, tftd is the frequency of t in d, tftq is the frequency of
t in q, Ld is the length of d, Lave is the average document length,
and w(1) is the Robertson and Spärck Jones [129] weight of t in
q defined as:

w(1) =
(Rt + 0.5)/(Rq − Rt + 0.5)

(dft − Rt + 0.5)/(N − dft − Rq + Rt + 0.5)
,

where N is the number of documents in the collection, Rq is the
number of documents known or presumed to be relevant for q,
Rt is the number of the relevant documents containing t, and
dft is the document frequency for t. The default values for the
model parameters used are b = 0.75, k1 = 1.2, and k3 = 7 [126].

In the pseudo-relevance feedback experiments, we set the
parameters after empirical experimentation on the test queries,
varying the range of feedback terms and documents between 5
and 50. For the test queries, the parameters selected yielded the
best results (e.g., MAP). The expansion terms are thus chosen
by taking the top Rq = 10 documents from the initial retrieval
step presumed to be relevant and selecting the top T = 10 terms
in the documents ranked by the term selection value [130] de-
fined as:

TS V =
Rd

Rq
· w(1).

The documents were preprocessed by stripping out HTML
tags and the content flattened into a single index. We applied
the JSOUP18 processing libraries to extract textual content of

17http://lucene.apache.org/
18http://www.jsoup.org/

web pages. This removed HTML markup and JavaScript, leav-
ing raw textual content. Standard Lucene modules were em-
ployed to tokenize the text and to fold upper case characters to
lower case. A stopword list for English (571 words) by Salton
[131] was used to identify stopwords. Stemming of topics and
documents was performed using the English Snowball stem-
mer provided in Lucene, which is based on the Porter algorithm
[95].

3.4. Experiments
We first evaluate the translation quality of the selected MT

systems as applied to the IR test sets described in Section 3.2
and then analyze the effect of using the retrieval techniques de-
scribed in Section 3.3.

3.4.1. Machine translation quality
Most of the translation experiments described in Section 2

improved the baseline results measured on the MT (query) test
sets quite substantially (see Sections 2.5–2.7). The best sys-
tems even outperformed the state-of-the-art publicly available
on-line services (Google Translate and Microsoft Bing Trans-
lator). In this section, we analyze the translation quality of the
best-performing MT systems applied on the IR test sets consist-
ing of the titles of the 50 CLEF eHealth 2013 Task 3 test topics
in English and their translations. We also introduce some new
MT systems designed specifically for CLIR. The evaluation in
this section is intrinsic – based on comparison of translation
quality and realized by the standard automatic measures (BLEU
and PER) as well as human evaluation (for P0 M0, P6 M4, and
Google only).

The results are shown in Table 18: P0 M0 refers to the
baseline systems tuned on general-domain data, P6 M4 to the
best configuration of parallel and monolingual training data,
P6 M4 comp denotes the configuration C3 exploiting German
decompounding, P6 M4 syn the configuration S1 exploiting
synonyms, and P6 M4 per is a new configuration based on
P6 M4, tuned on the query development sets by MERT [9] op-
timizing PER instead of BLEU. As explained in Section 2.4,
PER ignores word order, which implies more focus on transla-
tion adequacy and less focus on fluency compared to BLEU.

In contrast to the tables presented in the previous section,
the bold font indicates those scores that are significantly better
than the baseline P0 M0. The tests are performed in the same
way: by the paired bootstrap resampling for BLEU [90] and by
the paired t-test for PER, both with p < 0.05. There were no
BLEU or PER results significantly worse than the baseline. The
best scores for each language pair are again indicated by the ?
symbol.

The 95% confidence intervals for BLEU observed on the IR
test sets are much larger (21–29 points) than in the case of the
MT test sets (7–12 points). This is not surprising because the IR
test sets contain just 50 queries compared to the 1,000 queries in
the MT test sets and the sample variance is much higher. There-
fore, the results presented in Table 18 (IR test sets) cannot be
considered as reliable as those presented in Table 15 (MT test
sets). Also, the MT and IR test sets cannot be considered com-
pletely comparable – although both comprise medical queries,
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config Czech–English German–English French–English
BLEU 1-PER HUM BLEU 1-PER HUM BLEU 1-PER HUM

P0 M0 47.01 66.41 26.56 39.52 62.47 17.95 39.20 71.48 12.09
P6 M4 40.91 70.26 28.57 42.95 64.19 36.36 52.96 76.69 55.56
P6 M4 comp – – – 43.42 66.41 – – – –
P6 M4 syn 47.60 71.66 – 40.19 62.58 – 54.50 77.19 –
P6 M4 per 52.28 75.06 – 50.24 68.91 – 51.01 80.05 –
Google ?56.02 ?77.30 ?75.93 54.53 75.78 ?71.43 ?61.99 ?83.02 ?66.67
Microsoft 47.46 67.06 – ?59.72 ?76.54 – 58.34 80.79 –
reference – – 72.31 – – 78.87 – – 76.92

Table 18: Performance of selected MT systems applied on the IR test data. The scores in bold font are significantly better than the baseline (P0 M0). The ? symbol
indicates the best scores for each language pair.

the IR test sets were created in a more controlled setting. In
addition to the automatic evaluation using BLEU and PER, we
also conduct a human evaluation (column HUM in Table 18) us-
ing the same method as described in Section 2.5 but performed
on the entire IR test sets.

The overall translation results on the IR test sets do not con-
firm the results from Section 2 (Table 15) achieved on the
MT test sets, where our best system significantly improved
baselines for all language pairs and even outperformed Google
Translate and Microsoft Bing Translator.

Although most of our systems are able to outperform the
baseline, the improvement of BLEU is statistically significant
for DE–EN and FR–EN only. For CS–EN, the baseline scores
are surprisingly high and significantly outperformed only in
terms of PER by the PER-tuned system (P6 M4 per). This con-
figuration performs best also for DE–EN and FR–EN measured
by PER – in terms of BLEU, it wins for CS–EN and DE–EN.
The winner for FR–EN is P6 M4 syn but not by a statistically
significant margin (compared with P6 M4 and P6 M4 per).

Despite these findings, Google Translate dominates all our
systems for all language pairs measured by all three measures.
Although for DE–EN, the absolute winner is Microsoft Bing
Translator, none of these results are significantly better than
those achieved by our best systems. Interestingly, the HUM
score for CS–EN suggests that the output of Google Translate
is better than the reference. However, this is caused by includ-
ing comparison with the other systems (P0 M0 and P6 M4), in
which Google Translate is judged as better more often than the
reference. The pairwise score reveals that in 9 queries, the ref-
erence translation was judged to be better, in 8 queries, Google
Translate outperformed the reference, and in 33 cases, both sys-
tems were judged equally, thus confirming their comparable
quality.

3.4.2. Information retrieval quality
The translations of the IR test sets produced by the MT sys-

tems presented in the previous subsection are now employed
in the IR setup described in Section 3.3. The results of these
experiments are reported in the first part of Table 19, using
the standard IR evaluation measures: precision at a cut-off of
10 documents (P@10), normalized discounted cumulative gain
[132] at 10 documents (N@10), and mean average precision

(MAP) [133]. The cross-lingual MAP scores are also com-
pared with the monolingual ones, i.e., those obtained by us-
ing the reference (English) translations of the test topics to see
how the system would perform if the queries were translated
perfectly (see columns denoted as MAPrel

EN). Our monolingual
scores are quite comparable to the best results achieved by the
CLEF eHealth 2013 task participants [125].

The performance metrics for the IR experiments are com-
puted with the standard TREC evaluation tool.19 We also in-
dicate significance of the results using the standard Wilcoxon
signed rank test (p < 0.05) [134]. For comparison with the MT
experiments presented in previous section, the IR results are
also tested against the M0 P0 baseline (of the respective lan-
guage pair); those that are significantly better are typed in bold
and those which are significantly worse are typed in italics. The
best cross-lingual results are marked with a ? symbol.

The first important observation is that using pseudo-
relevance feedback (surprisingly) does not improve retrieval
performance. This finding can be attributed to the fact that for
this evaluation collection, only all documents up to rank 10 in
the runs used to generate the pool (see Section 3.2 for greater
details) have been assessed for relevance/non-relevance due to
relevance assessor availability constraints. This means that
some relevant documents may not have been assessed. Pseudo-
relevance feedback as a form of query expansion could retrieve
additional documents at top ranks which were not included in
the initial retrieval results. These additional documents likely
have not been assessed for relevance (and thus count as not rel-
evant even if they are relevant). A similar behaviour of BM25
with pseudo-relevance feedback can be observed in the result
of the organizers’ baseline experiment for the CLEF eHealth
2013 Task 3 [135]. Hence, in our analysis, we focus on the runs
which do not use pseudo-relevance feedback, and correspond-
ingly, no results using pseudo-relevance feedback are included
in Table 19.

Unsurprisingly, translated queries do not perform as well in
retrieval as the original English queries. Interestingly, the high-
est baseline scores (P0 M0) are observed for the CS–EN trans-
lation direction. Czech is not usually easier to translate than
German and especially French; however, on this test set, we

19http://trec.nist.gov/trec_eval/
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Czech–English German–English French–English
Run ID P@10 N@10 MAP MAPrel

EN P@10 N@10 MAP MAPrel
EN P@10 N@10 MAP MAPrel

EN
reference 47.0 42.1 30.35 100.0 47.0 42.1 30.35 100.0 47.0 42.1 30.35 100.0
P0 M0 34.8 31.1 24.28 80.00 29.4 25.6 19.02 62.67 31.0 27.1 21.87 72.06
P6 M4 37.2 32.3 23.67 77.99 32.6 28.6 20.39 67.18 38.4 34.5 26.33 86.75
P6 M4 comp – – – – 32.8 29.0 21.85 71.99 – – – –
P6 M4 syn 35.0 30.5 23.11 76.14 30.6 26.7 19.79 65.21 38.0 33.2 25.17 82.93
P6 M4 per 35.4 30.7 23.16 76.31 35.0 30.8 22.62 74.53 38.4 34.1 25.94 85.47
P6 M4 stem 28.2 24.0 20.27 66.79 23.4 19.8 16.29 53.67 32.0 26.5 20.33 66.99
P6 M4 n5 31.0 27.5 22.42 73.87 24.0 21.4 16.60 54.70 29.2 26.6 20.94 69.00
P6 M4 n10 31.4 27.7 22.71 74.83 21.8 19.8 16.19 53.34 29.6 27.6 21.44 70.64
Google ?38.4 ?34.4 ?25.97 ?85.57 37.0 33.2 23.22 76.51 ?40.6 36.1 26.74 88.11
Microsoft 32.6 28.7 22.76 74.99 ?38.8 ?34.2 ?25.09 ?82.67 40.2 ?36.3 ?27.57 ?90.84

Table 19: IR results for query translations produced by various MT systems compared with the original (reference) queries in English. The scores typed in bold,
normal, and italics are significantly better, equal, and worse (respectively) than the baseline (P0 M0). MAPrel

EN refers to MAP relative to the monolingual performance
(reference). All figures are displayed as percentages.

experience the opposite (see also the translation results in Ta-
ble 18). This behaviour can be explained by the randomness of
training data selection for the baseline system, which for this
particular language pair must have contained more material rel-
evant to this data set than for the other language pairs. With the
exception of CS–EN, the best MT systems (measured by IR per-
formance) are those tuned for PER (P6 M4 per). For CS–EN,
the winner is the plain P6 M4 configuration with no additional
enhancements.

In the overall comparison with the commercial on-line trans-
lation systems, the single winner would be Google Translate –
it beats Microsoft Bing Translator on CS–EN and FR–EN and
is on par with it on DE–EN (see the third part of Table 19). It
performs best translating French to English, with only a 14%
reduction in P@10 compared to the monolingual baseline. Mi-
crosoft Bing Translator also outperforms our translation tech-
nique for German and French queries. However, for Czech
queries, better P@10 results are obtained using our translation
technique than using Microsoft Bing Translator. Here a 21%
decrease in P@10 is noted relative to the monolingual baseline.
Relative to this, queries translated from French using our tech-
nique yield an 18% decrease in P@10, and queries translated
from German yield a 31% decrease.

In addition to the MT systems employed so far, we introduce
two new configurations of MT systems aiming at improving re-
trieval quality – one for producing stemmed translations (stem-
ming) and one for exploiting multiple translation options. Their
results are presented in the second part of Table 19.

Stemming. Stemming is a standard technique used in IR. In the
traditional CLIR setup, this step is applied ex-post – on the MT
output which is in the traditional human readable form. In our
configuration (denoted as P6 M4 stem), we produce stemmed
output directly during translation. This is achieved by stem-
ming the target language side of the parallel training data as
well as the monolingual data for language models. In this ex-
periment, we employ stemming also on the source language
side to reduce the morphological complexity (which is impor-
tant especially for Czech). We use the Porter’s Snowball stem-

mer for the source side languages (Czech, German, French)
and the original Porter’s stemmer for English [93]. However,
the results are not very optimistic. Similar to the experiments
with morphological normalization described in Section 2.4.6
which focused on translation quality, we also observe degra-
dation in the retrieval performance when stems are used instead
of full word forms on both source and target side. Training MT
on stemmed words probably introduces too much ambiguity,
which hurts not only MT quality but also IR performance.

Query expansion by multiple translation options. Our MT sys-
tem can produce multiple translation variants for each query,
which can be easily incorporated in the IR setup by using the
entire n-best list as a translation of the query. We experimented
with several values of n but present results for n = 5 and n = 10
only. The scores of P6 M4 n5 and P6 M4 n10 in Table 19 show
that the resulting performance is even lower than the baseline
P0 M0 (although the difference is significant only for MAP on
DE–EN). A possible reason for the decrease is that the transla-
tion variants differ to such an extent that they cannot be consid-
ered good translations and therefore, the queries are expanded
by non-relevant terms.

4. Conclusions

In this work, we explored cross-lingual IR in the domain of
medicine and focused on machine translation as a key compo-
nent introducing the possibility to search in a multilingual en-
vironment. We translate queries in Czech, German, and French
to English and perform search on a collection of English doc-
uments from CLEF eHealth 2013 Task 3. Such a task is es-
pecially challenging when applied to a specific domain, such
as medicine, because traditional MT systems are not generally
tuned to translate short expressions (queries) in specific do-
mains.

The experiments described in this paper were conducted
within the Khresmoi project. In the first phase of the work, we
focused on improving translation quality of a baseline general-
domain system by means of domain adaptation. Most of the
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adaptation techniques (including in-domain tuning and train-
ing, selection of pseudo-in-domain data) substantially outper-
formed the baseline and even the state-of-the-art on-line MT
systems (Google Translate, Microsoft Bing Translator). For
DE–EN, the translation quality was also improved by automatic
decomposition of complex German compound words. We also
explored some more advanced methods, such as exploiting syn-
onyms extracted from domain-specific resources or morpholog-
ical normalization on the source language side. These tech-
niques, however, did not bring additional improvement of trans-
lation quality.

In the second phase of our experiments, we focused on the
impact of various MT (adaptation) techniques on retrieval qual-
ity. The retrieval experiments were conducted on a set of 50
topics from the CLEF eHealth 2013 Task 3 and their relevance
assessments. In addition to the techniques used to improve the
traditional translation quality, we conducted experiments with
SMT tuning for PER (position-independent word error rate),
stemming on the target language side, and query expansion by
using multiple translation options. The overall results do not
correlate with the findings of the MT experiments. The IR sys-
tem using our baseline translations was significantly improved
by using the adapted translations for the FR–EN translation
only. However, none of our translations did outperform the sys-
tem using Google Translate for query translation; our CS–EN
system did outperform Microsoft Bing Translator in this CLIR
setting, though.

This is the first comprehensive attempt to rigorously assess
the contribution of domain-based MT adaptation as well as IR-
targeted MT adaptation to real user queries about health and
health-related problems. Our overall results are very positive
in terms of MT quality, even though also report some negative
results to illustrate that some traditional techniques for MT do
not improve results in this specific domain and for the purpose
of short query translation. When applied to the cross-language
IR task, the positive MT results have not directly translated to
improvements over the state-of-the-art in MT; we have shown
in detail which techniques have a certain potential and which
seem to lead to a dead end. The bottom line of this work can
be expressed in two points: first, adapting MT systems using
in-domain data can lead to major performance improvements
and results that even surpass large-scale commercial systems,
and second, MT quality and IR quality do not correlate in a
straightforward way. We consider these findings promising for
our future work. The highest potential seems to be in query
expansion through analysis of multiple translation options, es-
pecially in combination with synonyms incorporated directly in
the translation models as translation variants.

5. Acknowledgments

This work was supported by the EU FP7 project Khresmoi
(contract no. 257528), the Czech Science Foundation (grant
no. P103/12/G084), the Science Foundation Ireland (grant no.
07/CE/I1142) as part of the Centre for Next Generation Locali-
sation at Dublin City University, and by the ESF project ELIAS.

The work described herein uses language resources hosted
by the LINDAT/CLARIN repository20, funded by the project
LM2010013 of the MEYS of the Czech Republic.

References

[1] S. Fox, Health Topics: 80% of internet users look for health information
online, Technical Report, Pew Research Center, 2011.

[2] R. J. W. Cline, K. M. Haynes, Consumer health information seeking on
the internet: the state of the art, Health Education Research 16 (2001)
671–692.

[3] C. T. Lopes, C. Ribeiro, Measuring the value of health query transla-
tion: an analysis by user language proficiency, Journal of the American
Society for Information Science and Technology 64 (2013) 951–963.

[4] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, et al., Moses: Open source toolkit for statistical machine
translation, in: Proceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics, Companion Volume Proceedings of
the Demo and Poster Sessions, Association for Computational Linguis-
tics, Prague, Czech Republic, 2007, pp. 177–180.

[5] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, BLEU: a method for au-
tomatic evaluation of machine translation, in: Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, As-
sociation for Computational Linguistics, Philadelphia, PA, USA, 2002,
pp. 311–318.

[6] C. Tillmann, S. Vogel, H. Ney, A. Zubiaga, H. Sawaf, Accelerated DP
based search for statistical translation, in: G. Kokkinakis, N. Fakotakis,
E. Dermatas (Eds.), Proceedings of the Fifth European Conference on
Speech Communication and Technology, International Speech Commu-
nication Association, Rhodes, Greece, 1997, pp. 2667–2670.

[7] F. Jelinek, Statistical methods for speech recognition, MIT Press, Cam-
bridge, MA, USA, 1997.

[8] F. J. Och, H. Ney, A systematic comparison of various statistical align-
ment models, Computational linguistics 29 (2003) 19–51.

[9] F. J. Och, Minimum error rate training in statistical machine transla-
tion, in: Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics,
Sapporo, Japan, 2003, pp. 160–167.

[10] N. Bertoldi, B. Haddow, J.-B. Fouet, Improved minimum error rate train-
ing in Moses, Prague Bulletin of Mathematical Linguistics 91 (2009)
7–16.

[11] P. Koehn, Europarl: a parallel corpus for statistical machine transla-
tion, in: Conference Proceedings: the tenth Machine Translation Sum-
mit, Asia-Pacific Association for Machine Translation, Phuket, Thai-
land, 2005, pp. 79–86.

[12] S. Roukos, D. Graff, D. Melamed, Hansard corpus of parallel English
and French, 1995. Linguistic Data Consortium, Philadelphia, PA, USA.

[13] R. Steinberger, B. Pouliquen, A. Widiger, C. Ignat, T. Erjavec, D. Tufis,
et al., The JRC-Acquis: A multilingual aligned parallel corpus with 20+

languages, in: N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard,
J. Mariani, J. Odijk, D. Tapias (Eds.), Proceedings of the Fifth Inter-
national Conference on Language Resources and Evaluation, European
Language Resources Association, Genoa, Italy, 2006, pp. 2141–2147.

[14] C. Callison-Burch, P. Koehn, C. Monz, M. Post, R. Soricut, L. Spe-
cia, Findings of the 2012 workshop on statistical machine translation,
in: Proceedings of the Seventh Workshop on Statistical Machine Trans-
lation, Association for Computational Linguistics, Montréal, Canada,
2012, pp. 10–51.

[15] P. Pecina, A. Toral, V. Papavassiliou, P. Prokopidis, J. van Genabith,
Domain adaptation of statistical machine translation using web-crawled
resources: A case study, in: M. Cettolo, M. Federico, L. Specia, A. Way
(Eds.), EAMT 2012: Proceedings of the 16th Annual Conference of the
European Association for Machine Translation, European Association
for Machine Translation, Trento, Italy, 2012, pp. 145–152.

[16] P. Langlais, Improving a general-purpose statistical translation en-
gine by terminological lexicons, in: COLING-02 on COMPUTERM
2002: second international workshop on computational terminology,

20http://lindat.cz/

21

http://lindat.cz/


volume 14, Association for Computational Linguistics, Taipei, Taiwan,
2002, pp. 1–7.

[17] G. Sanchis-Trilles, F. Casacuberta, Log-linear weight optimisation via
bayesian adaptation in statistical machine translation, in: Proceed-
ings of the 23rd International Conference on Computational Linguis-
tics: Posters, Association for Computational Linguistics, Beijing, China,
2010, pp. 1077–1085.

[18] A. Bisazza, N. Ruiz, M. Federico, Fill-up versus interpolation methods
for phrase-based SMT adaptation, in: Proceedings of the International
Workshop on Spoken Language Translation, International Speech Com-
munication Association, San Francisco, CA, USA, 2011, pp. 136–143.

[19] P. Nakov, Improving English–Spanish statistical machine translation:
Experiments in domain adaptation, sentence paraphrasing, tokenization,
and recasing, in: Proceedings of the Third Workshop on Statistical Ma-
chine Translation, Association for Computational Linguistics, Colum-
bus, OH, USA, 2008, pp. 147–150.

[20] P. Koehn, J. Schroeder, Experiments in domain adaptation for statistical
machine translation, in: Proceedings of the Second Workshop on Statis-
tical Machine Translation, Association for Computational Linguistics,
Prague, Czech Republic, 2007, pp. 224–227.

[21] H. Wu, H. Wang, Improving domain-specific word alignment with a
general bilingual corpus, in: R. E. Frederking, K. B. Taylor (Eds.),
Machine Translation: From Real Users to Research, volume 3265 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2004,
pp. 262–271.

[22] M. Carpuat, H. Daumé III, A. Fraser, C. Quirk, F. Braune, A. Clifton,
et al., Domain adaptation in machine translation: Final report, in: 2012
Johns Hopkins Summer Workshop Final Report, Johns Hopkins Univer-
sity, 2012, pp. 61–72.

[23] M. Eck, S. Vogel, A. Waibel, Language model adaptation for statistical
machine translation based on information retrieval, in: M. T. Lino, M. F.
Xavier, F. Ferreira, R. Costa, R. Silva (Eds.), Proceedings of the Inter-
national Conference on Language Resources and Evaluation, European
Language Resources Association, Lisbon, Portugal, 2004, pp. 327–330.

[24] R. C. Moore, W. Lewis, Intelligent selection of language model train-
ing data, in: Proceedings of the ACL 2010 Conference Short Papers,
Association for Computational Linguistics, Uppsala, Sweden, 2010, pp.
220–224.

[25] A. S. Hildebrand, M. Eck, S. Vogel, A. Waibel, Adaptation of the trans-
lation model for statistical machine translation based on information
retrieval, in: Proceedings of the 10th Annual Conference of the Eu-
ropean Association for Machine Translation, European Association for
Machine Translation, Budapest, Hungary, 2005, pp. 133–142.

[26] A. Axelrod, X. He, J. Gao, Domain adaptation via pseudo in-domain
data selection, in: Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, Association for Computa-
tional Linguistics, Edinburgh, United Kingdom, 2011, pp. 355–362.

[27] S. Mansour, J. Wuebker, H. Ney, Combining translation and language
model scoring for domain-specific data filtering, in: International Work-
shop on Spoken Language Translation, International Speech Communi-
cation Associati, San Francisco, CA, USA, 2011, pp. 222–229.

[28] W. Byrne, D. S. Doermann, M. Franz, S. Gustman, J. Hajič, D. W. Oard,
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