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ABSTRACT  

We have used pulsed-laser deposition, following a specific sequence of heating and cooling 

phases, to grow ZnO nanorods on ZnO buffer/Si (100) substrates, in a 600 mT oxygen ambient, 

without catalyst. In these conditions, the nanorods preferentially self-organize in the form of 

vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2θ-ω and pole 

figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal 

to the substrate. Field emission SEM, TEM, HR-TEM and selective area electron diffraction 

(SAED) studies revealed that the nanorods have a crystalline core and an amorphous shell. The 

low-temperature (13 K) photoluminescence featured a strong I6 (3.36 eV) line emission, 

structured green band emission and a hitherto unreported broad emission at 3.331 eV. Further 

studies on the 3.331 eV band showed the involvement of deeply-bound excitonic constituents in 

a single electron-hole recombination. The body of structural data suggests that the 3.331 eV 

emission can be linked to the range of defects associated with the unique crystalline 

ZnO/amorphous ZnO core/shell structure of the nanorods.  The relevance of the work is 

discussed in the context of the current production methods of core/shell nanorods and their 

domains of application.  
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1. Introduction 

Core/shell nanostructures constituted by a variety of materials including metals,1 

semiconductors,2-4 hydroxides,5 and organic materials6 have been attracting significant attention 

for applications in several interdisciplinary fields such as sensing, multi-enzyme bio-catalysis, 

drug delivery and photonics, for example.7 This is because the core/shell architecture enables the 

tailoring of novel properties via modification of the functionality, charge or reactivity of the 

nanostructures surface.2-4,8 In particular, the enhancement of the luminescent properties of one-

dimensional nanostructures can be achieved following this method.8 

      ZnO, a wide direct band gap (3.37 eV) semiconductor, has been used successfully in 

core/shell architectures due to its excellent material properties9-11 that include relatively facile 

nanostructure fabrication. ZnO based core/shell nanostructures including ZnO/Fe2O3, 

ZnO/In2O3,12,13 ZnO/ZnS, ZnO/ZnTe, ZnO/TiO2,14-17 ZnO/MoO3, hydrogenated ZnO,18,19 and 

ZnO/NiO20 have been produced for applications in gas sensors, photovoltaics, super capacitors 

and energy storage, respectively. In this context, ZnO/Bi2O3,21Zn/ZnO,22,23 and ZnO/ZnO(OH)2
24 

core/shell architectures have also been reported. 

     Core/shell nanostructures are typically fabricated as part of complex multi-step processes. 

In the first step, the nanostructure core is fabricated, followed by the growth of the shell region in 

a second step, with several intermediate operations and possibly a change of growth method 

being implemented between these two steps. For example, Greene et al. have fabricated ZnO 

nanorod core in a two-step aqueous process and subsequently prepared a TiO2 shell by atomic 

layer deposition.15 Huang et al. have fabricated the ZnO core and In2O3 shell by aqueous 

chemical process and a combination of sputtering and thermal oxidation methods, respectively.13 
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Additionally, other growth methods such as hydrolysis,12,16 electro-chemical,18  and pulsed laser 

deposition (PLD)8,25 have been used by other workers. Of particular interest for the present work, 

we note the PLD works of Kaydashev et al.25 and Li et al.8 who prepared ZnO/Zn0.9Mn0.1O and 

ZnO/Er2O3 core/shell nanorods using multi-step growth processes in Ar and/or O2 ambient 

pressures with the aid of Au-catalyst, respectively.  

      In this work, we develop a specific catalyst free- PLD growth sequence to obtain self-

organized ZnO/ZnO core/shell nanorods without the need for a separate growth step for the shell, 

using as the substrate a Si (100) wafer coated by a thin ZnO buffer layer. We also investigate the 

structural, morphological and optical properties of the as-grown ZnO/ZnO core/shell nanorod 

deposit and the relationship of the latter to the unique defect structure associated with the 

core/shell architecture. 

 

2. Experimental details 

ZnO/ZnO core/shell nanorods were grown using a standard PLD apparatus equipped with a 

high-power, Q-switched, frequency-quadrupled, Nd:YAG laser.26  The output laser wavelength, 

repetition rate, pulse width and energy were 266 nm, 10 Hz, 6 ns and 150 mJ, respectively. The 

average fluence delivered at the laser spot was ~ 2.0 J/cm2. ZnO (99.999% pure, PI-KEM) 

sintered ceramic disk of diameter 2.54 cm was used as the target. The target-substrate distance 

was kept constant at 5 cm. Cleaved 1 cm × 2 cm pieces of Si (100) wafers were used as 

substrates. Prior to deposition, the substrates were degreased/cleaned for 15 minutes in an 

ultrasonic bath filled with acetone/isopropyl alcohol. Silver paste was used to mount substrates 

on the substrate holder in the deposition chamber. Before deposition, the substrates were heated 
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to 900 °C for 30 minutes for the purpose of surface cleaning using a heater coil and then cooled 

down to 450 °C.  

        The fabrication of ZnO/ZnO core/shell nanorods on Si (100) wafer substrates involved 

two stages. The first stage was to prepare a thin ZnO buffer layer. The buffer layer of thickness 

around 120 nm (5000 laser shots) was deposited at a substrate temperature of 450 °C in an 

ambient O2 pressure of 100 mT. Following deposition of the buffer layer, the substrate 

temperature was increased to 700 °C at a rate of 12.5 °C /minute, then left at this temperature for 

5 minutes, and finally cooled down to 150 °C at a rate of 9.16 °C /minute. The second stage 

involved the preparation of the core/shell nanorods. The ZnO buffer/substrate temperature was 

initially raised to 800 °C at a rate of 7.22 °C/minute. The ZnO/ZnO core/shell nanorods were 

then grown at this temperature in a 600 mT O2 pressure and left in these conditions for 5 

minutes. After this period, the substrate temperature was cooled down to 150 °C at a rate of 8.66 

°C/minute. The actual deposition time of the core/shell nanorods was about 2 hrs (40,000 laser 

shots), excluding the sequence of heating and cooling phases to pre- and post-growth. The full 

length of the core/shell nanorod obtained in these conditions was around 1 μm. Five growths 

using the same conditions and sequences were performed. The same nanorod architecture was 

obtained in each case and is thus fully reproducible. From the viewpoint of the growths, we 

conclude that the overall sequence of specific heating and cooling phases used in this work has 

allowed us to achieve self-organized core/shell architecture, without the need for a separate 

growth step for the shell region. The self-organization of ZnO nanostructures is a known feature 

of this material.27 Also, to the best of our knowledge, similar growths of ZnO nanorods28,29 

carried out in similar pressure conditions, all lead to a simple nanorod structure, i.e. without a 

shell. Thus, we can conclude that the series of substrate temperatures for the given deposition 
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rate used in this PLD work should be the important parameter influencing the growth mode and 

kinetics30 that lead to the formation of the core/shell architecture.  

        The structural characteristics were investigated by 2θ-ω, and pole figure X-ray diffraction 

scans (XRD; Bruker AXS D8 Advance and Jordan Valley BEDE-D1 diffractometers), 

respectively. The surface morphologies and nanostructures were studied by scanning electron 

microscopy (SEM; Carl-Zeiss EVO series), field emission SEM (FE-SEM; Hitachi S5500), 

transmission electron microscopy (TEM; FEI Technai G2 S – Twin, operating voltage of 200 

kV). High resolution TEM (HR-TEM) and selective area electron diffraction (SAED) were 

studied using the same TEM apparatus. Low-temperature photoluminescence (PL) spectra were 

recorded (with 1 m model SPEX 1701 monochromator) using 332 nm He-Cd laser excitation. 

3. Results and discussions 

3.1 Structural properties  

	
  

 

 

 

	
  

 

 

 

 

Figure 1. 2θ-ω XRD scans for ZnO/ZnO core/shell nanorods (black line) and a ZnO single 

crystal wafer (red line) (The features marked ‘*’ are due to the adhesive mounting tape used. The 

features marked ‘#’ are due to Cu Kβ and tungsten Lα radiations from the x-ray tube, the latter 
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due to contamination). The inset shows the rocking curve scans from the two samples around the 

ZnO (002) peak position. 

      Figure 1 shows the 2θ-ω XRD scan, on a log scale, for ZnO/ZnO core/shell nanorods 

(black line) grown by PLD and similar data from a ZnO single-crystal wafer (red line). The 

ZnO/ZnO core/shell nanorods show a dominant (002) reflection at 2θ ≈ 34.40º and a weaker 

(004) reflection at 2θ ≈ 72.62º. The origin of the weaker or impurity features is also mentioned in 

the figure caption. No other ZnO-related peaks are observable. The intensity of the PLD-

deposited ZnO (002) reflection is around a million counts. The ZnO/ZnO core/shell nanorods 

grown by PLD on Si (100) substrates are clearly highly textured and oriented with their c-axes 

normal to the substrate surface. These data are similar to observations (including the 

identification of the weaker/impurity peaks) made previously by us and also by others.31-33 For 

comparison, we have measured a 2θ-ω XRD scan using c-plane terminated ZnO single crystal 

wafer of thickness 0.5 mm (Tokyo Denpa) using the same conditions (showing red line in Figure 

1). The measured 2θ value for the ZnO single crystal (002) reflection is ≈ 34.45º, identical to the 

value for our nanorods (≈ 34.40º). We have also measured the FWHM of the ZnO (002) 

reflection for the PLD-deposited ZnO, and used these 2θ and FWHM values to calculate the c-

axis lattice spacing and crystallite size (more accurately the out-of-plane coherence length), 

using Bragg’s law and the Scherrer equation corrected for instrumental broadening, respectively 

(we use the weighted average value of the wavelengths of Cu Kα1 and Cu Kα2 radiation lines for 

the x-ray wavelength in all calculations, i.e. λ = 1.5425 Å). The details of the calculation are 

discussed in a previous article, including correction for the instrumental response when using the 

Scherrer equation.34 The PLD-deposited ZnO (002) reflection FWHM, c-axis lattice spacing, and 

crystallite size values are 0.198º, 5.216 Å, and 75.31 nm, respectively. The c-axis lattice spacing 
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value is comparable with the value calculated for the ZnO single crystal wafer (5.207 Å). We 

note that the value of the lattice spacing (c) obtained from the aforementioned single crystal 

value of 2θ = 34.45º matches precisely the published ZnO c-axis lattice spacing of 5.20690 Å 

(JCPDS card number 36-1451) when rounded off to the third decimal place.  

      The inset of Figure 1 shows the rocking curve for the (002) reflection from the ZnO/ZnO 

core/shell nanorods sample (black line) and for the (002) reflection from the ZnO single crystal 

wafer (red line). The rocking curve of the ZnO/ZnO core/shell nanorods sample has a FWHM of 

0.76º which is notably smaller than the data on samples of similar type reported previously for 

ZnO nanorods.31,32,35 This, together with the 2θ-ω data, indicates excellent crystallite alignment 

and texture. We note that, as expected, the FWHM of the rocking curve for the ZnO single 

crystal wafer is much narrower, essentially limited by the instrument broadening (< 0.1º). Since 

no catalyst was used as a seed in our synthesis method, no other materials or crystalline phases 

are identified in the XRD data. In conclusion, the XRD analyses confirm that the ZnO/ZnO 

core/shell nanorod deposit grown by PLD on Si (100) substrates is well-aligned with excellent c-

axis orientation normal to the substrate surface.  

       XRD pole figure analyses were also used to undertake a more detailed investigation of the 

texture and in-plane orientation of the ZnO/ZnO core/shell nanorods. Pole figures of the (002), 

(101) and (102) planes were measured at 2θ values of 34.5°, 36.5° and 47.5°, respectively 

(Figure 2). Figure 2 (a) shows a narrow and intense (002) pole figure centered at Ψ=0 indicating 

the growth of the core/shell nanorods with their vertical axes along the substrate normal. Figures 

2 (b) and (c) show rotationally (circularly) symmetric (101) and (102) pole figures at Ψ angle 

values of ~ 62.7° and ~ 42.9°, respectively. The latter are very close to the value of the angles 

between the ZnO (101)/(002) and (102)/(002) planes, as expected from the known 
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crystallographic structure of ZnO.36,37 The intense spots at Ψ = 45° on the (102) pole figure, 

indicated in Figure 2 (c), are due to the (220) planes of the Si substrate, and seen previously.36 

The pole figure data confirm that the PLD grown ZnO/ZnO core/shell nanorods are well textured 

with excellent vertical orientation along the c-axis and also show the complete absence of any in-

plane orientation, i.e. the absence of epitaxy, on the substrate.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. XRD pole figures for the (a) (002), (b) (101) and (c) (102) ZnO planes, respectively, in 

ZnO/ZnO core/shell nanorods grown by PLD. 

3.2 Surface morphology and nanostructuring 

 

       The surface morphologies of the core/shell nanorod deposits were studied using SEM, FE-

SEM, and TEM. Figures 3(a), (b) and (d) show FE-SEM images, and Figure 3(c) shows SEM 

images, taken at various tilt angles. These images show that the core/shell nanorods have almost 
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conical terminations with rounded or blunt tips. Figure 3 also strongly supports the conclusions 

from XRD (2θ-ω and X-ray pole figures) analysis concerning preferred c-axis orientation and 

the absence of in-plane epitaxial ordering. The SEM and FE-SEM images of Figure 3 allow us to 

conclude that the core/shell nanorods are densely packed, with a uniform morphology. 

 

Figure 3. Field emission SEM (a), (b) and (d) and SEM (c) images of ZnO/ZnO core/shell 

nanorods grown by PLD at (a) 0º tilt (plane view), (b) 20º tilt, (c) 30º tilt, and (d) 85º tilt angles.  

     Significant insights into the core/shell nanorods structure were revealed using TEM and 

HR-TEM analyses, as discussed below. Regions of the samples containing hundreds of 

ZnO/ZnO core/shell nanorods were peeled off the Si (100) substrate using a surgical blade and 

mounted on the 300 mesh size TEM grid for analysis. Figure 4, (c), (d) shows TEM ((a)) and 
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HR-TEM ((b), (c) and (d)) images of the core/shell nanorods, respectively. The images in 

Figures 4 (a) and (b) show that the nanorods have a core/shell structure with a crystalline (cr) 

core and an amorphous (am) shell. We now use the “cr-ZnO/am-ZnO core/shell” terminology to 

accurately refer to the established structure of the nanorods. Further detailed investigations were 

made at different locations of a specific core/shell nanorod, indicated by the circled regions 

marked ‘b, c and d’ in Figure 4(a), corresponding to the images shown in Figure 4 (b), (c) and 

(d). The inset of Figure 4 (b) shows a HR-TEM image at the core/shell boundary region of the 

cr-ZnO/am-ZnO core/shell nanorods. These data confirm in greater detail the core/shell 

structure. An artificial line was drawn as a guide to the eye in Figure 4 (b) to show the crystalline 

core and amorphous shell regions. The cr-core/am-shell structure can be at least partially 

explained by the combination of several plausible factors such as the rate of material deposition 

prevailing in the PLD apparatus at the 800 °C substrate temperature, shadowing effects due the 

compact nanorod distribution and the final cooling rate. All of these factors may contribute to 

prevent the adatom diffusion necessary to find an equilibrium lattice site in the crystalline growth 

directions perpendicular to the c-axis. Additionally, we note that such cr-core/am-shell structures 

have also been produced serendipitously in previous works using different growth methods.17,19-

21,24  

The HR-TEM image of the core part of the core/shell nanorods (indicated by circled region c 

in Figure 4(a)) is represented in Figure 4 (c) and the observed lattice spacing from HR-TEM 

(0.27 nm) is in good agreement with that obtained from the XRD data above (0.26 nm). The 

selected area electron diffraction (SAED) pattern was collected using a 200 nm aperture and is 

shown in the inset of Figure 4 (c). The ring pattern in SAED indicates the field of view contains 

polycrystalline material. The indexed (002), (101), (102) and (110) diffraction peaks belong to 
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the pure ZnO phase and provide information complementary to the XRD pole figure data above. 

The HR-TEM data also allows us to identify specific regions at the interface between the 

crystalline core and amorphous shell, indicated by the round circles (from the circled region d of 

Figure 4 (a)) in Figures 4 (d) which display clear evidence of Moiré fringes at the boundary.  Li 

et al. identified no Moiré patterns in their HR-TEM data from PLD grown ZnO/Er2O3 core/shell 

nanorods, because their Er2O3 shell region was polycrystalline.8 Overall, the TEM and HR-TEM 

data clearly shows that cr-ZnO/am-ZnO core/shell nanorods grown by PLD on Si (100) 

substrates have a core/shell structure (with a crystalline core and an amorphous shell) with Moiré 

fringes identified at the boundary region where structural defects are expected, which may well 

be associated with the core/shell boundary interface region.  
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Figure 4. TEM, HR-TEM and SAED images of cr-ZnO/am-ZnO core/shell nanorods grown by 

PLD; (a): TEM image of a core/shell nanorod; (b): crystalline core and amorphous shell 

boundary region of a nanorod in the area indicated by circle b in (a); (c): HR-TEM image for the 

core-part of a core/shell nanorod in the area indicated by circle c in (a); (d): Identified Moiré 

fringes in the area indicated by circle d  in (a). Inset of (c) shows SAED pattern of the area 

shown in (c). 

 

3.3 Optical Properties  

           Because of intrinsic and extrinsic defects/impurities, which lead to a range of 

donor/acceptor levels within the bandgap, ZnO can emit right across the visible spectrum, as well 

as in the near UV.38,39 This is a key advantage for devices such as white light LEDs. However, 

the absence of stable and high hole mobility p-type material40 remains the major obstacle for the 

development of large scale LEDs and laser diodes, and this, in turn, is due to the nature of the 

defect population in the material itself. In this regard, it remains of crucial importance to 

understand the defect population in this material, and a powerful tool for the study of such 

defects is their photoluminescence emission.      

      Figure 5 shows a typical low-temperature (13 K) PL spectrum of the cr-ZnO/am-ZnO 

core/shell nanorods produced in this work. Figure 5 (a) reveals a strong I6 line at 3.36 eV, which 

is generally attributed due to Al impurities, as well as a surface exciton (labelled SE) at 3.366 

eV, and free exciton emission (labelled FE) at 3.377 eV (AL: longitudinal free exciton-polariton) 
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and 3.373 eV (AT: transverse free exciton-polariton). Interestingly, an additional broad emission 

at 3.331 eV was also consistently observed in the low-temperature PL spectra of these samples. 

Defect-related emissions at 3.31 eV, 3.3328 eV, 3.3363 eV, 3.333 eV and 3.3465 eV have been 

observed in various ZnO structures including bulk, single crystals, micro-/nano-crystals, 

heterostructures, quantum dots, 1D structures (nanorods and nanowires) and also in p-type 

ZnO.41-46 However, the present work identifies a new defect emission at 3.331 eV in these cr-

ZnO/am-ZnO core/shell nanorods grown on ZnO buffer layers/Si (100) substrates by PLD. In a 

number of cases the emissions listed above have been associated with structural defects in ZnO 

crystals.41,42,44 We note that, in previous articles, the emission lines observed at 3.3328 eV and  

3.3363 eV in a ZnO single crystals are labeled as Y0 and Y1, respectively,42 Furthermore the 

feature at 3.3328 eV (Y0) is also labeled in some publications as a DBX (donor bound exciton),47 

and as a DD (deep donor bound exciton), emission.43,48 The emission at 3.331 eV observed in this 

work is considerably broader (FWHM ~1.75 meV) than the emissions observed in these other 

works (FWHM~ 0.5 meV and 0.2 meV),41,42 as well as displaying a clearly asymmetric line 

shape. Deep level visible emission was also observed from the cr-ZnO/am-ZnO core/shell 

nanorods, as shown in Figure 5 (b) where the structured green band, due to Cu impurities, is 

clearly observed.49                      
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Figure 5. Low temperature (13 K) PL spectra of cr-ZnO/am-ZnO core/shell nanorods (a) near 

band-edge region showing new emission band at 3.331 eV and (b) visible region showing 

structured green band emission. 

      The 3.331 eV emission was further investigated by varying temperature and laser 

excitation power. Figure 6 (a) shows temperature dependent PL spectra from 13 K to 100 K. We 

observed that as temperature increases the surface and shallow bound exciton emissions quench 

rapidly. It is clear that the initially strong I6 line reduces in intensity much faster compared to the 

3.331 eV band. The 3.331 eV band can still be clearly seen at a temperature of 100 K and this 

behavior implies involvement of deeply bound constituents, either an electron or a hole or both. 

Generally, two electron satellite (TES) and longitudinal optical (LO) replicas of the line are 

located in a region 30 - 70 meV from the parent emissions. However, since the 3.331 eV band 

still remains visible at a temperature (100 K) where the shallow bound exciton emission has been 

quenched, it is not due to a TES of the shallow bound exciton emission. We note that TES of the 

dominant I6 line and TES and an LO replica of the 3.331 eV emission are also observed in Figure 

6 (a). These temperature dependent PL studies enable us to conclude that the 3.331 eV emission 

is stable up to 100 K and therefore it is neither a shallow bound exciton, nor a TES or phonon 

replica of a shallower bound exciton transition, and is therefore the zero phonon line associated 

with the recombination of deeply bound carriers at a defect in the material.  

         We have also varied the laser excitation power (using neutral density filters), at a fixed 

cryostat temperature of 13 K, as shown in Figure 6(b). The 3.331 eV band remains visible and its 
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shape largely unchanged with varying power of the laser. Slight laser heating effects can just be 

distinguished at the highest laser power of 6.90 mW, where a small redshift in emission is seen 

across the entire near band-edge region. It is however clearly observed in Figure 6(c) that the 

3.331 eV band scales in a similar manner to the I6 shallow bound exciton emission with varying 

laser excitation power, even at the highest laser powers. This clearly demonstrates that the 3.331 

eV emission is associated with a single electron-hole recombination, rather than a bi-exciton or 

other multi-electron-hole pair crystal excitation, and the slight effects of laser heating at the 

highest laser power do not in any way affect this conclusion. 
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Figure 6. (a) Dependence of PL emission from cr-ZnO/am-ZnO core/shell nanorods on 

temperature, (b) Dependence of PL emission from cr-ZnO/am-ZnO core/shell nanorods on laser 

excitation power at constant temperature of 13 K and (c) Linear correlation between the 

integrated intensities of the I6 (3.36 eV) and 3.331 eV emission bands for the various laser 

powers used in this work. 

           Based on the similarity in emission energy of the 3.331 eV band to that seen for other 

structural defect-related UV emissions,41,42,44 and the simultaneous presence of structural defects 

at the boundary region of our core/shell nanorods, as revealed by HR-TEM data above (Figure 4 

(d)), we propose that the origin of the 3.331 eV band is electron-hole recombination at structural 

defects associated with the core/shell boundary interface region. This assignment is based on: (i) 

the demonstrated presence of structural defects at the boundary region of the core/shell nanorods, 

as shown by HR-TEM, in samples which exhibit this 3.331 eV band emission, (ii) the deeper 

spectral position of the emission, similar to PL emissions from other structural defects in ZnO, 

which is also consistent with the temperature stability of the emission, and (iii) the expected 

presence of structural defects with slightly different environments at the core/shell boundary 

region which explains the relatively large line-width of the 3.331 eV emissions, since the slightly 

differing structural defect environments give rise to slight changes in emission energy from 

individual defects, and the ensemble effect yields the broader emission band observed in 

measurements. 

 

Conclusions 
      We have grown, for the first time, self-organized cr-ZnO/am-ZnO core/shell nanorods on Si 

(100) wafers by PLD, without using a metal catalyst seed and without the need for a separate 
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growth stage for the shell region. This was achieved by using a specific sequence of heating and 

cooling phases pre- and post-deposition. The deposits were characterized using x-ray diffraction, 

electron microscopies and photoluminescence. The characterization studies showed that the 

nanorods are highly textured with their c-axis oriented normal to, but without epitaxial in-plane 

ordering on, the substrate surface. The nanorods have conical terminations with rounded/blunt 

tips. They present unique core/shell architecture with a crystalline core and an amorphous shell 

while structural defects feature in the region of the core/shell boundary interface. The samples 

exhibit a previously unreported emission band at 3.331 eV in their low-temperature 

photoluminescence spectrum. This emission arises from a single electron-hole pair 

recombination involving deeply bound constituents likely associated with the structural defects 

at the core/shell boundary interface region. 

         The unique architecture and properties of the core/shell cr-ZnO/am-ZnO nanorods 

produced in this work should prove useful in applications where the functionality arises from the 

presence of an amorphous shell on a ZnO crystalline nanorod core. Examples of such 

applications would be in ZnO supercapacitor electrodes for energy storage, the passivation of 

ZnO photoanodes in dye-sensitized solar cells or the control of the emission properties of ZnO 

nanolasers. 
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2θ-ω XRD scans for ZnO-ZnO core-shell nanorods (black line) and a ZnO single crystal wafer (red line) (The 
features marked ‘*’ are due to the adhesive mounting tape used. The features marked ‘#’ are due to Cu Kβ 

and tungsten Lα radiations from the x-ray tube, the latter due to contamination). The inset shows the 

rocking curve scans from the two samples around the ZnO (002) peak position.  
81x57mm (300 x 300 DPI)  

 
 

Page 28 of 37

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

XRD pole figures for the (a) (002), (b) (101) and (c) (102) ZnO planes, respectively, in ZnO-ZnO core-shell 
nanorods grown by PLD.  
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Field emission SEM (a), (b) and (d) and SEM (c) images of ZnO-ZnO core-shell nanorods grown by PLD at 
(a) 0º tilt (plane view), (b) 20º tilt, (c) 30º tilt, and (d) 85º tilt angles  
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Low temperature (13 K) PL spectra of ZnO-ZnO core-shell nanorods (a) near band-edge region showing new 
emission band at 3.331 eV and (b) visible region showing structured green band emission.  
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