Poly(ionic liquid)s are defined as ionic liquids which feature polymerizable groups in either the cation, the anion, or both. The aim of this study is to synthesize a tributylhexyl phosphonium sulfopropyl acrylate (PSPA) poly(ionic liquid) (PIL) hydrogel and characterise its temperature and salt concentration induced shrinking. The gels were polymerised in circular moulds and were hydrated in deionized water (DI water). The percent shrinking upon exposure to a stimulus was calculated using the formula: \(\%s = (A_i - A_f)/A_i \times 100 \), where \(A_i \) is the initial area of the swollen hydrogel and \(A_f \) is the final area of the hydrogel after the application of the stimulus.

PIL Synthesis

White light \(\rightarrow \) PPPO \(\rightarrow \) ACN/H\(_2\)O \(\rightarrow \) PILc

Salt Concentration Induced Shrinking

The mechanism behind the salt response can be explained by the polyelectrolyte effect. The presence of a competing salt in the hydration medium causes the hydrogel to shrink, because the hydration equilibrium between the polymer chains and the hydrating water is disrupted. The crosslinked PIL hydrogel shrank by \(~16\%\) in area when its hydration medium was changed from DI water to 1 wt% NaCl solution.

The salt concentration induced shrinking is a reversible process. Changing the hydration medium back to DI water causes the hydrogel to return to its initial size.

Temperature Induced Shrinking

The temperature-induced shrinking stems from the fact that the PIL possesses a lower critical solution temperature. This property causes the linear PIL to precipitate from its aqueous solutions, while in the case of the crosslinked polymer, it causes the hydrogel to shrink.

The presence of a chaotropic salt in the hydration solution of the hydrogel inhibits the shrinking caused by the increase in temperature.

Conclusions

A crosslinked dual-responsive phosphonium PIL hydrogel was synthesised. It was found that the size of the hydrogel can be modulated by both temperature changes and salt concentration. When the hydration medium was changed from DI water to 1 wt% NaCl solution, the hydrogel shrank by \(~16\%\) in area after 16min. An even greater area shrinking of \(~53\%\) occurred when the hydrogels were swollen in DI water and the temperature was increased from 20 °C to 70 °C. Both shrinking processes are reversible and repeatable, which makes the hydrogels suitable for integration in microfluidic platforms as thermo- and salt actuated micro-valves.

Acknowledgements

The authors are grateful for financial support from the Marie Curie Initial Training Network funded by the EC FPT People Programme OrgBIO (Marie Curie ITN, GA607896) and Science Foundation Ireland (SFI) under the Insight Centre for Data Analytics initiative, Grant Number SFI/12/RC/2289.