Deep Learning for High Dimensional and Sparse Clinical Study Data

Jim O’Donoghue, Mark Roantree

Introduction

Mining datasets which contain an over-abundance of features, as well as many missing values is often a problem, and poorly handled by shallow learning architectures.

Objective

Build an accurate predictive model on a high-dimensional and sparse dataset.

In-MINDD

The In-MINDD (Innovative Mid-life INtervention for Dementia Deterrence) project aims to raise awareness and reduce risk of dementia in mid-life adults through an online profiler.

A model of risk factors found by clinical researchers, through a systematic literature review predicts this risk. To evaluate the accuracy of the model, it needed to be validated on the high-dimensional, and sparse Maastricht Ageing Study clinical dataset.

Methodology

Deep Architectures

Deep architectures are a family of learning algorithms based inspired by interactions in the brain.

They are neural networks, which are made up of three or more layers of learning functions.

Solution

A software architecture consisting of Layer, Learner and Node components which allows for the easy implementation and application of different deep learning algorithms to clinical study data, with a view to the architecture becoming data source agnostic.