A Framework for Selecting Hyper-Parameters

British International Conference on Databases

Jim O’ Donoghue

7th July 2015
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979

TABLE OF CONTENTS

Background + Motivation

Algorithms + The CDN

Experiments + Results

Future Work

Conclusions

NEED TO FIX NUMBERS
INTRODUCTION
BACKGROUND
IN-MINDD

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
INTRODUCTION

BACKGROUND IN-MINDD

Dementia Awareness + Prevention

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
IN-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
INTRODUCTION

BACKGROUND IN-MINDD

Dementia Awareness + Prevention

Online Environment

Risk Prediction Algorithm

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
INTRODUCTION

BACKGROUND IN-MINDD

Dementia Awareness + Prevention

Online Environment

Risk Prediction Algorithm - Validation
INTRODUCTION

MOTIVATION
INTRODUCTION

MOTIVATION

DATA

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
DATA

High-Dimensional

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
INTRODUCTION

MOTIVATION

DATA

High-Dimensional Variable Interactions

DEEP LEARNING

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

Visible Output Layer

Visible Input Layer

DEEP LEARNING

\[x_1, x_2, \ldots, x_{n-1}, x_n \]

\[\mathbf{x} \]

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible
Output Layer

Hidden
Layers

Visible
Input Layer

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible
Output Layer

Hidden
Layers

Visible
Input Layer

In-MINDD

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible Output Layer

Hidden Layers

Visible Input Layer

The diagram illustrates a deep learning model with the following layers:

- **Visible Output Layer**: Represents the output layer of the model.
- **Hidden Layers**: Contains multiple hidden layers, each processing intermediate features.
- **Visible Input Layer**: Represents the input layer of the model, receiving input features.

The diagram includes the following elements:

- **Inputs (x)**: The input features to the model.
- **Learned Features (h^{(1)})**: The features learned in the first hidden layer.
- **Connection Weights (W^{(1)})**: The weights connecting the input layer to the first hidden layer.
- **Class (C)**: The class output from the final layer of the model.

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible
Output Layer

Hidden
Layers

Visible
Input Layer

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible Output Layer

Hidden Layers

Visible Input Layer

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
ALGORITHM OVERVIEW

DEEP LEARNING

Visible Output Layer

Hidden Layers

Visible Input Layer

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Visible Output Layer

Hidden Layers

Visible Input Layer

ALGORITHM OVERVIEW

DEEP LEARNING

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Algorithm 1: Regression

Visible Output Layer

Visible Input Layer

\[W^{(1)} \]

Connection Weights

Input Features

\[x_1 \quad x_1 \quad x_2 \quad \ldots \quad x_{n-1} \quad x_n \]

\[C \quad \text{Class} \]

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Algorithm 2: MLP

Visible Output Layer

Hidden Layers

Visible Input Layer

C — Class

Connection Weights

Input Features

$C \leftarrow \text{Class}$

Connection Weights

Input Features

$x \leftarrow \text{Features}$

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Algorithm 3: RBM

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Algorithm 4: DBN

Visible Output Layer

Hidden Layers

Visible Input Layer

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
CONFIGURABLE DEEP NETWORK FRAMEWORK
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Subset of the Data – dimensions

What the variables are

What the predictor is

Purpose
To Choose:
To Choose:
learning rate α
EXPERIMENT

REGRESSION

To Choose:

- learning rate α
- weight decay term λ

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
To Choose:

- learning rate α
- weight decay term λ
- training iterations t
The Grid:
The Grid:

\(\alpha, \lambda: \)

\([0.001, 0.003, 0.009, ..., 0.1, 0.3, 0.9]\)
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979

EXPERIMENT

REGRESSION

The Grid:

\(\alpha, \lambda: \]

\([0.001, 0.003, 0.009, \ldots, 0.1, 0.3, 0.9]\]

\(t: \]

\([100, 1000, 10000]\]
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979.
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979.
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid. Cost

Training Iterations

100

1,000

10,000

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid. Cost

Training Iterations

100
1,000
10,000

Categorical
Continuous
Lambda

Alpha
0.9
0.3
0.09
0.003

0.009
0.003
0.001

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid Cost

TEST ERROR
0.3046

Training Iterations
100
1,000
10,000

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid. Cost

Training Iterations

0.3046

TEST ERROR

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid Cost

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
To Choose: RBM
To Choose:

layer 1 nodes $h^{(1)}_n$
To Choose:

layer 1 nodes $h^{(1)}_n$

pre-training epochs e
The Grid:

\[h^{(1)}_n : [10, 30, 337, 900, 1300, 2000] \]
The Grid:

\[h^{(1)}_n : \]
\[[10, 30, 337, 900, 1300, 2000] \]

\[e \]
\[[1, 5, 10, 15, 20] \]
Parameter Initialisation:

\(-4 \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}, + 4 \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}\)
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Valid Cost

Epochs 1 5

Valid Cost

Nodes
10
337
2000

30
900
300

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
EXPERIMENT RESULTS

RBM

Valid. Cost

<table>
<thead>
<tr>
<th>Epochs</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

MONITORING COST

-19.580

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
To Choose:

Last layer nodes $h^{(1)}_n$
To Choose:

Last layer nodes $h^{(1)}_n$

The Grid:

[10, 30, 337, 900, 1300, 2000]
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979.
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
RESULTS

MLP

<table>
<thead>
<tr>
<th>Categorical</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid. Cost

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Test Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.232</td>
</tr>
<tr>
<td>30</td>
<td>0.291</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Lambda @ 0.03

Alpha 0.001 0.01 0.9

Lambda @ 0.03

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Lambda @ 0.03

Step

- 3000
- 1000
- 100

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Lambda @ 0.03

<table>
<thead>
<tr>
<th>Alpha</th>
<th>Steps</th>
<th>Test Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>3000</td>
<td>0.272</td>
</tr>
<tr>
<td>0.01</td>
<td>1000</td>
<td>0.265</td>
</tr>
<tr>
<td>0.9</td>
<td>100</td>
<td>0.245</td>
</tr>
</tbody>
</table>

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
Lambda @ 0.03

Alpha
- 0.001
- 0.01
- 0.9

Steps
- 3000
- 1000
- 100

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979
FUTURE WORK

Activation functions

Algorithms

Inference

Framework – to Mongo and input from

Visualising learning

Implementing Early Stopping

Mini-batch Stochastic Gradient Descent
Much easier to model when you have one extensible network that can handle many type of data

Constituent models can be used to select a starting point for deep learning configurations
QUESTIONS?
Lambda @ 0.03

![Diagram showing experiment results for DBN with different Alpha values (0.001, 0.01, 0.9) and Steps (3000, 1000, 100). The test error values are 0.272, 0.265, and 0.245 respectively.]

In-MINDD is funded under the European Union Seventh Framework Programme, Grant Agreement Number 304979