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Abstract

Search, as a well-known information retrieval strategy, is widely researched

and developed for academic and commercial usage. However, in the context

of increasing amounts of multimedia data, search alone cannot satisfy user re-

quirements for exploring multimedia resources. Therefore, preprocessing of

multimedia resources is necessary to define potentially related documents to

reduce retrieval time and improve the browsing efficiency. Using hyperlinks

to connect relevant resources is widely used for multimedia collection. How-

ever, the definition of hyperlinks is usually based on textual information. For

example, hyperlinks in Wikipedia link a term to relevant webpages. By contrast,

content-based multimedia retrieval provides the possibility of analysing multi-

media materials on the actual content. The availability of these technologies for

multimedia search suggests further investigation of content-based hyperlinking

for multimedia collections.

This thesis is dedicated to a novel topic of automatically creating hyperlinks

within TV data collections for content-based browsing and navigation. Hyperlinks

are created between video segments determined to be related based on their

multimodal features.

First, we detail the methodologies to create potentially relevant segments

across the TV collection in terms of automatically detected spoken information.

We present which of these approaches are more efficient to segment video streams.

Next, we involve both low-level and high-level visual features to improve the

hyperlinking quality. We detail the implementation of data fusion schemes to

combine multimodal features.

Finally, a novel hyperlinking framework associated with query enrichment,

spoken data analysis, and multimodal fusion is proposed. The experiments



show the effectiveness of this framework at satisfying user experience which is

concluded in crowdsourcing study.
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Chapter 1

Introduction

1.1 Overview

Information retrieval deals with the representation, storage, organisation, and

access to items such as documents, web pages, online catalogues, structured

and semi-structured records, and multimedia objects in order to satisfy a user’s

information needs [BYRN99]. Depending upon the different organisation and

representation of information resources, there are two major strategies for seeking

relevant items, search and navigation.

Search, as a well-known information retrieval (IR) strategy, is widely re-

searched and developed for academic and commercial usage. Users input a

query representing their information need. Depending on the search system and

the information need, a query can be in the form of a text string or one or more

images for multimedia IR. Typically, a query does not uniquely identify a single

relevant object in the collection which is able to satisfy the search’s information

requirements. Instead, a number of objects may be identified as potentially rele-

vant and returned to the user as the “search result”. If necessary, the procedure of

search can be iterated until a user’s need is satisfied. In modern IR, search engines,
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such as Google1 and Yahoo2, are well developed for search over content found

on the World Wide Web, and achieve considerable success in both academic and

commercial areas.

Nowadays, engineers are dedicated to designing powerful search engines to

connect the resources on the World Web Wide, and researchers have proposed

numerous algorithms to provide more accurate and efficient searching services.

Even though such a large number of technologies have been developed to improve

retrieval quality, in the context of increasing amounts of multimedia data, search

alone can not satisfy user requirements for exploring multimedia resources due

to reasons such as:

• The data in multimedia collections now is often very large and is increasing

at very high rate. Taking an example of Youtube3, according to a public

statistic4, there are a total of over 4 billion videos on Youtube, and on average,

300-hour videos are uploaded to the website per minutes. Search focusing

on only user queries and top retrieved results will often not reflect the rich

contents of potential interest to the user.

• Engineers expect that searching can present plentiful resources relevant to a

query. However, users typically do not investigate more than a few retrieved

items. They often read only a small number of top ranked results then either

be navigated to interesting links or change queries to update retrieval re-

sults. The conflict between the searching mechanism and user performance

suggests that focusing on top relevant documents in the retrieval list could

satisfy users’ requirements.

1http://www.google.ie
2http://ie.yahoo.com
3http://www.youtube.com
4http://expandedramblings.com/index.php/youtube-statistics/
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• A well-designed search engine can locate relevant resources with a higher

rank. When viewing only a few items, users are likely to find what they

need. However, users vary in their ability to form efficient queries to make

a clear expression of their searching requirement.

In conclusion, the effectiveness of search for information discovery in multi-

media archives is inherently limited by the previous factors. Thus, navigation is

used as a complementary mechanism to enrich user browsing experience on the

World Web Wide. Navigation usually guides users from one resource to other

relevant through hyperlinks. It satisfies spontaneous information needs of users

when they inspect the content of resources [FHHD92] by: 1) manually or auto-

matically preprocessing a large data collection to provide a meaningful roadmap

to enrich user’s browsing experience; 2) guiding users from one resource to other

top relevant resources; 3) allowing users to visit potentially relevant resources

without any input.

In computer science, a hyperlink is a common implementation of navigation

by creating a reference from which a user could navigate other local or online

resources. A common sample of a hyperlink is linking a word or multiple words

within a webpage to other relevant documents according to its semantic infor-

mation. For example, in Wikipedia5, a webpage titled with “Web Search Engine”

defines itself as “A web search engine is a software system that is designed to

search for information on the World Wide Web”, where the words “World Wide

Web” are linked to another page titled with “World Wide Web”. A reader can be

navigated to this page and fully understand the topic of “World Wide Web”.

Navigation, utilising hyperlinks in the World Web Wide, enables a user to

access a linked target item which is expected to be relevant to or related to the

user’s interests or worthy of recommendation to the current user according to

his/her browsing context. It can reduce the negative influence of poor user
5http://www.wikipedia.org
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searching skills since content creators or curators can maintain the data and its

corresponding linked targets manually. Users can begin seeking data with a

query-based search to identify a relevant starting point to explore potentially

interesting resources. Nowadays, user navigation is no longer limited to text-

based webpages. Multimedia resources, especially videos, are widely applied for

modern information interactivity. Compared with classic text-based documents,

video archives typically contain a combination of features described by the audio

track and visual content. Creating hyperlinks within such a rich content associated

with video archives requires further investigation.

1.2 Research Motivation

Nowadays, multimedia hyperlinks are commonly implemented on video-watching

websites. Taking the example of Youtube6, we outline two different types of

multimedia hyperlinks, illustrated in Figure 1.1. Figure 1.1 (a) illustrates video

recommendation via automatically created video-to-video hyperlinks based on

usage recommendation. Both of them preview the videos sharing the same topic

“Star Wars”. Figure 1.1 (b) presents an anchor-to-video hyperlink which navi-

gates users to other potentially interesting videos on Youtube. The hyperlink

locates in the video to present Google research in information retrieval and guide

users to another video introducing more about the Google company. The manual

construction of links is an obvious difference from the previous example. These

two examples represent state-of-the-art use of hyperlinks in existing multimedia

systems. Usually, the relevance analysis between anchors for the hyperlink is

determined based on manually generated tags, video titles and the corresponding

6http://www.youtube.com
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(a)

(b)

Figure 1.1: Example of multimedia-based hyperlinks

brief introduction. However, there are a number of disadvantages brought by

these kinds of hyperlinks.

• A video-to-video hyperlink can construct a robust content-based link be-

tween short videos since a short video is typically focused on a single topic.

Given this, hyperlink creation can be regarded as a topic-to-topic matching

process. A long video could contain multiple segments whose topics vary.

Users navigated by the video-to-video hyperlink are expected to browse

the relevant topic shared by the two archives. However, various or even

5



irrelevant topics potentially existing in a target video could cause difficulty

for users to accurately find the relevant part.

• Links between manually created anchors and targets can produce an accu-

rate correlation between the linked targets and decrease potential content-

based mismatch between linked resources. However, creating hyperlinks

manually across a large multimedia collection requires exorbitant expen-

diture considering the huge size of online data collections and their rapid

growing speed.

Our research applies the anchor-to-target multimedia hyperlinking framework.

The objective is to investigate how multimodal features perform in this hyperlink-

ing framework. The primary difference of an anchor-to-target hyperlink across

video archives compared with other cases, for example a classic IR system or a

recommendation system, can be understood as “give me more information about

this anchor” instead of “give me more based on this anchor or entity” [OEA+15].

It simulates a scenario where a user browses an audiovisual archive and acci-

dentally finds something interesting. The user would like to browse other video

archives relevant to the current interesting point. An anchor-to-target hyperlink-

ing system can be applied by receiving an anchor as a query for the content-based

multimedia IR system. The system utilises information retrieval techniques to

identify relevant fragments in the video archives and finally presents these results

to users.

A primary motivation of this thesis is integrating classic multimedia IR tech-

niques to construct a multimedia hyperlinking system. We investigate the optimal

solutions for various multimodal feature analysis, examine different hyperlinking

methodologies in terms of human perspective, and propose an efficient anchor-to-

target hyperlinking framework.

6



1.3 Research Objectives

According to the proposed hyperlinking systems in the previous discussions, we

make the research hypothesis: 1) hyperlinking systems in video collections could

improve users’ browsing experience; 2) an implementation of this system should

involve multimodal features to reflect users’ cognition when watching videos.

Thus, the research objectives of this thesis are:

• First, we review a review of state-of-the-art investigations in anchor-to-

target multimedia hyperlinking. By comparing their achievements and

deficiencies, we propose the research questions in building multimedia

hyperlinking systems.

• Second, we start our research from text-based IR techniques. A comparison

between various methodologies for hyperlinking segmentation is presented

based on the textual content. The results are used as baselines for further

investigation.

• Third, we extend the previous study to utilise visual features to investigate

the usefulness of visual information in video hyperlinking. Experimental

results will show how individual visual features influence hyperlinking

performance.

• Finally, we investigate different methodologies to integrate multimodal

features using data fusion.

1.4 Thesis Structure

This remainder of this thesis is organised as follows:

Chapter 2 reviews existing research on multimedia hyperlinking, content-

based multimedia information retrieval, and other relevant topics. First, we

7



present a review of content-based information retrieval. Next, we outline state-of-

the-art approaches to integrate IR results from different retrieval systems that can

be applied to the remainder of this thesis. Finally, we review a detailed history of

the hyperlinking task from text-based to multimedia-based.

Chapter 3 introduces the hyperlinking framework adopted in this thesis, re-

search questions to be addressed, and experimental hypothesis used in Chapter 4,

5 and 6.

Chapter 4 focuses on text-based hyperlink generation. Hyperlinks are created

according to the corresponding spoken information extracted by automatic speech

recognition algorithms. Two classic text information retrieval models, TD-IDF

and Okapi BM25, are used to index and search related segments. The experiment

reveals the superiority of Okapi BM25 when its parameters are suitably adjusted

for the hyperlinking task.

Chapter 5 introduces various multimodal features, including the colour his-

togram, the Bag-of-Visual-Words model based on a low-level descriptor, semantic

concepts and manually generated metadata information. We compare hyperlink-

ing results retrieved by each modality and utilise a fusion scheme to combine

multimodal results.

Chapter 6 investigates various methodologies to generate a text-based query

for multimedia hyperlinking. We demonstrate that this strategy can significantly

improve hyperlinking performance. Moreover, we propose a final hyperlinking

framework using query content analysis, multimodal feature retrieval, and our

fusion scheme.

Chapter 7 concludes the thesis and proposes areas for future investigation.
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Chapter 2

Literature Review

2.1 Chapter Overview

This chapter reviews relevant literature on multimedia hyperlinking research.

Section 2.2 presents and compares existing research on content-based multimedia

processing including spoken data analysis, visual descriptor extraction and the

creation of semantic concepts using multiple low-level multimedia features. Sec-

tion 2.3 introduces multimodal feature fusion techniques, including an overview

of two main fusion schemes: early fusion and late fusion, in which we discuss

the effectiveness of both methods for multimedia analysis. Section 2.4 gives an

overview of hyperlinking system development. Section 2.5 concludes this chapter.

2.2 Multimedia Features for Content-based IR

Multimedia hyperlinks connect video segments across multimedia collections

based on the content of the segments. Given a video segment, a hyperlinking

system retrieves segments and shows the most relevant ones to users. In essence,

the retrieval process during multimedia hyperlinking is an automatic multimedia

retrieval. Content-based multimedia analysis can be applied to hyperlink con-
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struction. To this end, multimodal features, including video descriptions, audio

tracks, visual content, can be extracted from multimedia resources and used in

link construction. These multimodal features, represented in various formats,

can be broadly categorised into two types: low-level and high-level features. An

overview of these features is introduced in the following sections.

2.2.1 Low-level Multimodal Features

Low-level features are extracted directly from the digital representation of the

multimedia content. [XZT+06] described low-level features as those image/video

features that can be easily extracted to represent colour, texture, shape, or audio

characteristics of multimedia content, thus most of them only reflect basic textual

or visual features rather than human perception. In this thesis, we consider two

categories of low-level features: text-based and visual-based.

A text-based low-level feature converts the audio track into text words to

represent a video story. Human annotation can provide a description of an audio

track by creating time-based subtitles. We can expect very high quality of subtitles

when produced by professional workers albeit with a relatively high associated

cost. An alternative approach is to extract spoken information automatically.

Automatic Speech Recognition (ASR), a computer driven mechanism to translate

spoken language into readable words [Stu94], can often be applied at relatively

low cost.

Another type of low-level feature is constructed based on the visual infor-

mation. These visual features are detected from the keyframes extracted from a

video stream. [Goo00] provided a further consideration that most algorithms to

detect low-level visual features focus on three aspects of image characteristics:

colour, texture, and shape. In this thesis, we use the colour feature as one primary

low-level visual descriptor.
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Colour Features

Colour features are widely used in content-based multimedia retrieval. [VR04]

concluded that colour features are extensively used in image database retrieval

due to their robustness to noise, resolution, orientation and resizing. [YH07] con-

firmed that colour features provide strong cues that capture human perception in

a low dimensional space, and that they can be generated with less computational

effort than other advanced features.

A colour feature characterises images in terms of the colour space that de-

scribes a specific organisation of colour information. The following introduces two

classic colour spaces: the RGB colour model (RGB), and the Hue-Saturation-Value

colour model (HSV).

RGB utilises a three-dimensional vector to represent human perception of

natural colour. Researchers can derive other kinds of colour representations by

using either linear or non-linear transformations from the RGB model [CJSW01].

Due to the simple implementation and efficiency of visual representation, the RGB

model is often used as the fundamental colour space in content-based multimedia

retrieval [SWS+00, SQP02b, WCL07, DJLW08, SHP12].

[PKPM09] outlined a disadvantage of RGB as the fact that the distance com-

puted between two colours in RGB space may not reflect their perceptual sim-

ilarity. In [Smi78], the authors introduced the perceptual properties of “hue”,

“saturation,”, and “value” to approximate human concepts on the colour space,

as the HSV model. HSV offers an intuitive and perceptual representation of

colour information by mapping the values into a cylinder[Lin12]. Existing re-

search [ORMA01, Ma09, SQP02b, KB13, LS13] has shown the effectiveness of HSV.

[ORMA01] compared HSV and RGB, and concluded that HSV achieved the best

retrieval quality when applied to multiple image databases provided by Corel-
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GALLERY1, QBIC Developers Kit CD-ROM2, and Swedish University Network

FTP Server Images3. [SQP02b] demonstrated the outstanding performance of

HSV over 14,500 images collected from the Internet.

A colour space utilises a histogram to describe colour distribution with an

N-dimensional vector. The similarity score (or distance) between two colour

histograms can be represented in a quadratic form [HSE+95]. The primary contri-

bution of similarity metrics is the use of a low dimensional vector to measure the

colour distribution. Existing similarity metrics for colour histograms include the

cosine distance [SQP02a], Euclidean distance, Chi-square kernel [PW10], Bhat-

tacharyya distance [CRM03], Convolution Kernel, Correlation, etc. In the thesis,

we use the Correlation which is supported by OpenCV4. Its efficiency has been

demonstrated in [CEJO14, CJO12, CJO13] to measure the colour distribution.

Further details are provided in Chapter 5.

Visual Descriptors

Low-level features are not restricted to colour. Research in [FFP05] outlined that

using an intermediate representation can achieve better content-based image

retrieval, and that these intermediate representations can be a mixture of textures

or codewords. It raised a research question of how to interpret an image by

using intermediate visual features. The Bag-of-Visual-Words (BoVW) model

explains the visual content by transferring intermediate visual features to a vector

of “words” which maps each feature to an occurrence of an entry in a visual

vocabulary. An initial motivation of BoVW was to construct a vocabulary of

prototype tiny surface patches with associated local geometric and photometric

1http://www.corel.com
2http://wwwqbic.almaden.ibm.com
3ftp://ftp.sunet.se/pub/pictures
4http://opencv.org/
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properties [LM01]. [FFP05] further outlined the steps to implement BoVW as:

feature detection, feature description and vocabulary generation.

Feature detection interprets the content of an image as a set of intermediate

features. Researchers are dedicated to investigating effective approaches to match

images since [Mor81] in which a corner detector was used to match images.

[HS88] improved the mechanism of corner detection and proposed Harris corner

detector to be widely used in image matching tasks. However, [Low04] pointed

out that Harris corner detector is sensitive to scaled images. To address this

issue, the author in [Low04] proposed an approach to create scale- and rotate-

invariant visual descriptors, referred as to Scale Invariant Feature Transform

(SIFT). This overcomes the disadvantage of Harris corner detector by generating

scale-invariant interest points from an image.

Each image (or an interest area) is represented by a set of N keypoint de-

scriptors which contain a total of 128 bin values (there are 16 blocks of size 4× 4

and each block contains 8 bin orientation histogram). Therefore, SIFT utilises

a N × 128 matrix to describe interest points in each image (or an interest area).

The advantage of SIFT is its distinctiveness. This is achieved by assembling a

high-dimensional vector representing the image gradients within a local region

of the image, which enables the correct match for a keypoint to be selected from

a large database of other keypoints [Low04]. Since its introduction, SIFT has

found widespread application in computer vision and content-based information

retrieval [SZ03, SZ06, KS04, RRKB11].

Researchers investigated a number of novel image descriptor schemes since the

successful introduction of SIFT, and developed a number of descriptors. [BTVG06]

proposed the scheme “Speeded-Up Robust Feature” (SURF) which accelerates

the process of detecting potentially interest points and creating visual descriptors

with the advantage of rotate- and scale-invariance. Furthermore, according to

[BTVG06], SURF outperformed SIFT both in speed and accuracy. The authors of
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[RD06] introduced a high-speed corner detection algorithm named “Features from

Accelerated Segment Test” (FAST), which achieves faster corner detection than

other algorithms, including Harris Corner Detection or Difference of Gaussians.

[CLSF10] improved the memory consumption of SIFT and presented “Binary

Robust Independent Elementary Features” (BRIEF). This scheme uses smoothened

image patches and computes binary strings from them, instead of floating-based

descriptors that are applied in SURF and SIFT. The experimental investigation

using BRIEF in [CLSF10] showed that it outperformed SURF. [RRKB11] integrated

FAST and BRIEF to create a novel scheme “Oriented FAST and Rotated BRIEF”

(ORB), which inherited the efficient corner detection of FAST and the accuracy of

BRIEF.

Image descriptor schemes interpret each image as anN×M matrix in whichN

is the pre-defined number of interest points, andM is the dimension of descriptors.

A visual vocabulary is then defined according to the distribution of the descriptor

matrix. A state-of-the-art approach to create this vocabulary is to cluster the

descriptor matrix extracted from the image collection and define the centres

of the learned clusters as the visual vocabulary. K-means is widely applied to

implement descriptor clustering [LM01, SZ03, SZ06], although, [SZ03] suggested

some alternative approaches including K-medoids and histogram binning.

An open issue when creating a vocabulary for a multimedia collection is how

to determine the size of the visual vocabulary. After [SZ03], researchers investi-

gated vocabulary size to improve content-based multimedia retrieval. In [SZ03],

the size of K-means cluster centres was set to be 6,000 and 10,000 respectively. The

authors of [PCI+07] regarded the visual vocabulary as a primary computational

bottleneck. To address this issue, they examined different scalable approaches to

determine visual vocabularies. The vocabulary size was set to be 50K, 100K, 250K,

500K, 750K, 1M and 1.25M. The experimental investigation on the Flickr5 collec-

5http://www.flickr.com/
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tion revealed that a large visual vocabulary benefits content-based information

retrieval and that a vocabulary of 1M was optimal.

Low-level visual features have been applied into various multimedia retrieval

tasks. Take some examples: [SZ03] implemented a well-know video search

engine, Video Google, involving SIFT descriptors; [BBL+08] used RGB colour

space to summarise BBC TV collections in TRECVid 2008; [SGF+11] applied SURF

descriptors in Know-Item Search task in TRECVid 2011; [AMC+12] used SIFT

descriptor as the primary feature in multimedia event detection task, know-item

search task, and instance search task. In our hyperlinking research, matching

visual content is an important stage to determine the relevance between two

linked video clips. We involve the introduced low-level features, colour spaces

and visual descriptors, as two primary multimodal features to be investigated.

One of the motivations is the rich research experience of using low-level features

in multimedia retrieval.

The other motivation for using low-level visual features is comparing their

hyperlinking results with that of high-level visual features. Researchers already

learn that low-level features sometimes fail to satisfy user requirements [CH05],

due to the lack of coincidence between the information contained in visual data

and the interpretation given by users for the same data [ZLS+06] [SWS+00]. There-

fore, high-level features are developed to describe the semantic information in

images. We expect to involve both low-level and high-level features to investigate

their difference in hyperlinking retrieval. In next section, we review the topic of

high-level features.

2.2.2 High-level Multimodal Features

High-level representation techniques are based on the idea of recognising models

of objects presented in an image and identifying image regions representing
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human cognition of visual content [Tam08]. The authors of [LHR99] suggested

that high-level features, also named conceptual features, must be based on low-

level features. Before 2000, researchers focused on how to extract high-level

features by using geometric elements, such as point set [Fau93], shape description

[LHR99], or contour segmentation [NB80]. The following part will briefly review

some relevant works.

In digital images, a point set can be regarded as pixels [Fau93], feature vec-

tors [DHS73], objects [Oga86] or spatial relationships. There are several classic

algorithms to detect point sets for high-level feature generation, including border

tracking, Hough Transform (HT), etc. Among them, the HT, according to [DH72],

was widely to find imperfect instances of objects within a certain class of shapes

by a voting procedure. The HT is widely applied in detecting arbitrary geometric

shapes, like circles or ellipses.

Shape description uses geometric elements, including the total number of

pixels, length, perimeter, compactness, or topological description, to represent the

outer shape of objects in digital images [LHR99].

Contour segmentation is designed to outline the outer shape of objects accu-

rately in digital images. The authors of [ZVC89] proposed the idea of edge linking

and segmentation, which emphasised identifying local edge pixels, linking them

to contours and segmenting contours.

After 2000, the definition of high-level concepts bridges visual content recogni-

tion with user requirement in IR systems. Research suggested high-level concepts

should present not only the objects contained in multimedia resources but also

those which are potentially attractive to users. [Pet00] defined the need for

content-based information as responding to querying the content of multimedia

resources. The authors advanced a structure of multimedia retrieval, which firstly

inferences high-level concepts learned from multimodal features as queries, and

then searches relevant documents in multimedia collections.
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[LLYK06] presented the development of a movie skimming system to create

video abstraction. The structure used both low-level and high-level features to im-

prove video summarisation performance. [TV07] analysed how video abstraction

techniques facilitated the requirement for browsing digital video infrastructures.

[Sme07] purposed several video retrieval strategies as follows: 1) using metadata

and browsing keyframes; 2) using text for video searching; 3) keyframe matching;

and 4) semantic features for video retrieval. Among them, semantic features and

metadata can both be categorised as high-level features.

[XZT+06] integrated different types of videos, which are relevant to online

meeting, movies, broadcast news, and sports, into a general framework. The

authors pointed out a critical issue in content-based video retrieval is decreas-

ing the gap between the description of objects in human observation and in

computational representation. In computer science, this difference between two

descriptions of an object by different informative resources is “semantic gap”

[SWS+00]. The semantic gap is not the patent of high-level visual concepts, while

integrating information from different resources could cause it. In this thesis, the

semantic gap, however, refers in particular to the gap between high-level concepts

and low-level descriptors when describing an object in multimedia resources.

Over the last few years, researchers have tried various strategies to over-

come the semantic gap. Manual indexing of multimedia resources is an effective

methodology to facilitate multimedia IR [SOK09]. One example of manual index-

ing is manually creating an abstract of a video. However, this approach often lacks

the detailed representation at the shot level and needs a significant cost [SOK09].

Another approach to decrease the semantic gap is increasing the size of the con-

cept collection. [HYL07] examined the optimal concept size and confirmed that

a few thousand semantic concepts could be sufficient to support high accuracy

video retrieval in TRECVid collections. Besides, researchers have investigated var-

ious approaches to improve the quality of high-level concept annotation. [SF10]
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used Support Vector Machine (SVM) to annotate and tag interest instances in

images, and suggested that the structured SVM [JFY09] outperforms normal SVM.

[JZCL08] investigated how to apply SVM for annotating concepts across various

data collections, which was defined as cross-domain learning. They developed

cross-domain SVM (CDSVM) and showed the superiority of this algorithm using

TRECVid data collections. Recently, deep learning is a popular area of Machine

Learning research and multiple research [SSZ12, CSVZ14, Le13] applied it for

semantic concept recognition.

Researchers have sought to identify sets of high-level concept collections for

content-based multimedia IR. We briefly review two cases. The first one is Object

Bank [LSFFX10] provided by Visual Lab, Stanford University. It contains a total

of 177 high-level concepts created by pre-trained generic object detectors. Each

keyframe is described as a feature vector which is calculated using a three-level

spatial pyramid (1 × 1, 2 × 2, 4 × 4) [LSP06]. The size of the feature vector for

each image is 44,604. The strategy of Object Bank has inspired multiple research

[SC12, ASD12, LSLFF14] in high-level concept construction. The second one is

provided by the Vision Group at University of Oxford according to [CLVZ11], spe-

cially created for the MediaEval Search and Hyperlinking task [EJC+13, EAL12].

The collection contains a set of concept detector scores for 1,000 concepts. The

detectors were trained using on-the-fly concept detection approach proposed in

[CZ13], which obtains relevant images from Google as the training collection, and

learns the difference using SVM classifier. This collection will be used for the

experimental investigation in the remainder of this thesis.

2.3 Data Fusion

In [SW05]’s perspective, the video content can be expressed using varying in-

formation including visual, auditory, or textual features. However, multimodal
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Figure 2.1: An early fusion scheme

information retrieval in early years lacked theories to answer what are the best

multimodal feature to achieve the best retrieval results [WCCS04]. With the

increase of experimental investigations, researchers realised that multimodal

features are inherently noisy, and the retrieval results from separate IR systems

applying an individual feature are potentially unreliable [Wil09]. Thus, in content-

based multimedia information retrieval, various research [AHESK10, WZZL10]

tried to describe the document in multiple perspectives by using data fusion to

integrate different multimodal features. Data fusion aims to improve retrieval

quality by combining retrieval results from multiple IR systems to produce a new

and hopefully better ranking [FV07].

2.3.1 Fusion Schemes

There are two major data fusion schemes used in multimodal information re-

trieval, early fusion and late fusion, which are distinguished by the strategy of

combining feature analysis results of individual information retrieval procedures.

They are both defined concisely in [SWS05]. Early fusion integrates multimodal

features before learning concepts. The early fusion process is shown in Figure 2.1.
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Figure 2.2: A late fusion scheme

Multimodal features are extracted from the multimedia collection. These features

are integrated to generate a combined feature to represent a new description of

its content. Content-based IR utilises the newly generated features to collect the

retrieval results. Late fusion firstly applies multimodal features to retrieval the

ranked lists from different system separately, and then these scores in the ranked

lists are integrated to produce a final retrieved list. The late fusion process is

shown in Figure 2.2.

[SWS05] concluded that the challenge of early fusion is how to integrate

multimodal features into to a common representation, while the late fusion scheme

fuses the retrieval scores rather than a combined feature representation [SWS05].

However, an issue to be addressed in the late fusion scheme is the combination

strategy used. In the following section, we introduce a widely applied late fusion

scheme - linear data fusion.

2.3.2 Linear Data Fusion

A linear data fusion can be represented as:

CombSUM =
K∑
i=1

wi ·Ri, (2.1)
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where Ri denotes the ranked list from the ith IR system, K is the total number of

fused IR systems, and wi is the fusion weight for the ith retrieval result. Equation

2.1 shows the standard CombSUM model introduced in [FS94]. CombSUM cal-

culates the fused score by adding the weighted score of a document in each of

the result lists. Another data fusion scheme defined in [FS94] is CombMNZ. It ex-

tends CombSUM by introducing a variable n(d) which weights the element based

on how many result sets a document d appears in [Wil09], shown as Equation

2.2. Existing research has utilised several varieties on the CombSUM scheme to

implement linear combination. [SSH14a] proposed linear fusion as Equation 2.3,

which implemented binary feature fusion between different IR systems. A widely

applied linear fusion to integrate binary features is defined as shown Equation

2.4 according to [MLD+14, VC99, CEJO14], which can be regarded as a simple

version of Equation 2.1.

CombMNZ = CombSUM · n(d), (2.2)

Scorefuse = R1
w +R2

(1−w), (2.3)

Scorefuse = w ·R1 + (1− w) ·R2, (2.4)

The fused result Scorefuse is calculated by combining the normalised score

of a document d in the corresponding results retrieved by the IR system Ri.

Therefore, score normalisation is a key issue that determines the quality of linear

fusion. According to [MLD+14], score normalisation algorithms include MinMax

and rank-based normalisation. MinMax normalisation linearly transforms the

retrieved score according to:
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Scorelinear normal =
Sretrieval − Smin

Smax − Smin
, (2.5)

where Sretrieval is the retrieved score in a retrieval collection, and Smin is the mini-

mum score in this retrieved collection, and Smax is the maximum score. Rank-based

normalisation can be defined according to Equations 2.6 and 2.7:

Scorerank normal = N −R(d), (2.6)

Scorerank normal =
1

R(d)
, (2.7)

where N is the total number of retrieved documents, R(d) returns the rank posi-

tion of a document d in the retrieval system Ri. Rank-based normalisation usually

produces the same similarity score for the document at the same rank in different

ranked lists. In our research, we expect that the score difference between multi-

modal hyperlinking systems using different features can reflect the importance of

the corresponding features. Therefore, the experimental results in the remainder

of this thesis focus on MinMax normalisation. In Chapter 5, we introduce an

estimation of fused scores based on the theory of rank-based normalisation.

Another open issue for the linear fusion scheme, according to [AHESK10],

is the determination of the fusion weights. A widely applied approach is to

use equal weights for each merged IR system, meaning that the variable wi in

Equation 2.1 is set to 1. This approach assumes that each IR system contributes

equally to producing good results. Using equal fusion weights requires no more

investigation, and this methodology is regarded as a low-cost implementation.

However, research [MLD+14] showed that estimating weights can improve the

data fusion results in multimedia hyperlinking. Thus, in this thesis, using equal

weights is usually used as a baseline for our further investigation.
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Approaches to estimating the weights of combining different IR systems can

be categorised as supervised and unsupervised mechanisms. Supervised mecha-

nisms optimise the fusion weights based on training data and then apply these

optimised results on test or operational data. The criterion for determining the

most efficient fusion weights is usually an evaluation metric for the performance

of an IR system, for example, in [MBL+10], Mean Average Precision (MAP) was

applied to optimise fusing weights. A grid search strategy was applied to optimise

fusion weights on the training collections according to [SSH14b, MBL+10, INN03].

This enumerates a set of potential weight values for each IR system and examines

the retrieval quality using the evaluation metric. Often, the grid search strategy

is only used to determine the fusion weights between two IR systems due to its

computational complexity. In [MLD+14], an alternative approach was proposed

by using Fisher Linear Discriminant Analysis. Instead of achieving a numerical

optimisation, this algorithm uses the optimal linear combination of multiple IR

system. The coefficients of the optimal linear combination were regarded as the

corresponding fusion weights. The authors in [MLD+14] demonstrated its effec-

tiveness using the ImageCLEF collection [TK09]. The unsupervised mechanism

to estimate fusion weights can be attractive based on the fact that no training set

is required. [Wil09] presented the Maximum Deviation Method (MDM) approach

and achieved better content-based multimedia IR performance on TRECVID 2003

and 2004 test collections. We will introduce a detailed description of this approach

in Chapter 5.

2.4 The Emergence of Multimedia Hyperlinking

This section reviews the research track in multimedia hyperlinking. We focus on

the conferences/workshops in recent years in which the topic of “multimedia

hyperlinking” was investigated. The following section will outline important
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literatures during the emergence of hyperlinking investigation, and discuss how

these inspire and contribute the experimental investigation in the remainder of

this thesis.

2.4.1 Early Stages

The origin of the concept of a “hyperlink” can be tracked back to 1945: [Bus45]

assumed a microfilm-based machine which could create a trail to link any two

pages containing related information. Project Xanadu6, found in the 1960s, first

proposed the word hyperlink in their hypertext project inspired by the assumption

in [Bus45]. The target of this project was improving WWW. Currently, web pages

on the WWW utilise hyperlinks to facilitate users to browse a large number of

online documents.

A common format of hyperlink is the underscored blue text in webpages.

Users can be navigated to other webpage by a single-click on it. In Chapter 1,

we illustrated different type of hyperlinks between video clips in Youtube7. The

various type of hyperlinks motivates researchers to investigate how to create

hyperlinks to different multimedia resources. A popular data collection for hy-

perlinking investigation is Wikipedia8, supported by the non-profit Wikipedia

Foundation, provides the largest online encyclopedia with free content [wik09].

It is essential to utilise the hyperlinks to search and browse such a rich online

document set. Although manually created hyperlinks contribute Wikipedia’s

daily operation, researchers have already been aware of the potential value of

automatic hyperlinking strategies for Wikipedia.

Mihalcea and Csomai presented a link system Wikify! [MC07] based on

Wikipedia resources. The purpose of Wikify! is to link entities (textual words)

using Wikipedia as the target knowledge based, named as automatic text wikifica-
6http://www.xanadu.com/
7www.youtube.com
8http://en.wikipedia.org

24



tion. Automatic text wikification requires solutions for two main tasks: automatic

document keyword extraction to detect valuable entities and word sense disam-

biguation to determine which Wikipedia pages should be linked from an entity

[MC07]. The system combined the two tasks to provide a rich text annotation

service. The authors declared that Wikify! could improve user experience on the

Internet by automatically enriching online documents, benefiting students by pro-

viding a convenient gateway to other encyclopedic information, and contributing

new solutions to rich text annotation [MC07].

Wikification using the techniques described in [MC07] was not perfect at

hyperlink detection and disambiguation. On one hand, topic indexing needs

to parse all Wikipedia documents, which is computationally expensive. On the

other, Wikify! only considered the probability of an entity to link to another

document, without involving the context information before and after this entity.

This strategy always constructed links whenever a possible anchor exists in other

documents. An alternative approach to link creation based on Wikipedia pages

was introduced in [MW08]. This approach uses machine learning algorithms

to analyse the context information of an entity for word disambiguation. For a

word with multiple semantic definitions, the system [MW08] could make a better

prediction of its actual meaning in the current document, and create hyperlinks to

the correct resources.

[BHdR11] presented work on linking multimedia resources for unskilled users.

This linking system was constructed especially for news, multimedia and cultural

heritage archives. The linking task was defined as linking items with a rich textual

representation in a news archive to items with sparse annotations in a multimedia

archive, where items should be linked if they describe the same or a related event

[BHdR11]. [KG10] treated linking as an alignment task, which meant identifying

items in a collection that discusses the same person, entity or concept [BHdR11].
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[ACD+98] defined another area of linking rich textual documents as topic tracking,

where items were connected when they discuss the same and related events.

Researchers’ interest in hyperlinking investigation is not limited to processing

Wikipedia or other online textual documents. They are also dedicated to building

hyperlinking systems in video collections. [Dak99] concluded a set of video hyper-

linking systems in early stages, including The Aspen MovieMap [Wal80], Video

Finger [Wat89], Elastic Charles [BD90], HyperPlant [TYT+92], etc. This thesis also

proposed an automatic tool for creating hyperlinking video. The author applied

colour, motion, and texture features to detect video stories and objects in videos,

and the hyperlinks were constructed with the detected evidences. [DACBJ99]

proposed a novel video hyperlinking system using multiple features, including

colour, texture, motion, and the position of objects. Using these features, the

authors implemented a video hyperlinking interface supporting user interac-

tion. Through this interface, users could indicate a specific object in the video

and expect a retrieval of other relevant videos. [CdCC+05] presented a video

hyperlinking system to provide interactive hyperlinks across TV programs. TV

programs are linked at shot level and the system can deliver multiple contents

including video metadata, video streams, etc. [TNW08] investigated a video

hyperlinking system in which the hyperlink is determined at shot level as well.

The aim of [TNW08] was not to demonstrate the effectiveness of different video

features, but how to use random walk algorithms to improve linking between

keyframes. Thus, we focused on the proposed structure of hyperlinking system:

a hyperlink exists between two keyframes of the corresponding video shots.

In conclusion, research in hyperlinking has a long history since the origin of the

“hyperlink”. Researchers investigated various approaches to creating hyperlinks

across different data resources, including both textual pages and video collections.

In the next part, we review some hypelinking tasks which inspire the design of

hyperlinking research.
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2.4.2 NTCIR: Text-based Hyperlinking on Wikipedia

NTCIR-9 [SJ11] and NTCIR-10 [JS13] proposed the hyperlink creation task based

on a Wikipedia documents as Cross-Lingual Link Discovery (CLLD) task. The

CLLD task9 aimed to detect potentially important semantic links between doc-

uments in different languages. The reason of discussing the CLLD task is that

its evaluation methodology inspires our approach to build the ground-truth

collection for hyperlinking evaluation.

The NTCIR CLLD task proposed a set of evaluation benchmarks to compare

participants’ submissions. [TIG+11] described that the evaluation metrics of

CLLD task used Precision@N, R-Prec, and Mean Average Precision, which were

fundamental metrics for IR evaluation. Furthermore, [TIG+11] presented the

evaluation methods can be categorised as file-to-file and anchor-to-file. To build

the ground truth for the CLLD task, [TIG+11] proposed two methodologies using

Wikipedia Ground-Truth Run and Human Assessors. The former utilised existing

links in the testing Wikipedia collections, which were deliberately removed before

being published to the task participants. The submitted hyperlinks are judged

as relevant only when the two linked entities (n-gram words) exist in Wikipedia

pages. Human annotation was used for the second approach. Task organisers

hired oversea students with bi-lingual professional skills. These students re-

viewed the linked results and indicated their relevance [TIG+11]. Those results

manually judged were collected as the ground-truth collections and delivered for

task evaluation and further investigation.

The video collection used in our research contains no hyperlinks between

video clips. It means that before experimental investigation, we should build

the ground-truth collection from the video resources. The strategy in CLLD,

hiring students to manually annotate the ground-truth, inspires us: we can use

9http://ntcir.nii.ac.jp/CrossLink/
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human intelligence to determine the relevance of linked video clips. In Chapter

3, we introduce how we apply crowdsourcing platform to manually build the

ground-truth collection.

2.4.3 MediaEval Workshop: Searching and Hyperlinking Task

In 2012, the MediaEval workshop organised a Brave New Task termed Search

and Hyperlinking Task, MediaEval 2012. Later, the Search and Hyperlinking Task

became the primary task in MediaEval 2013 and 2014. The research proposed

in this thesis is fully based on the hyperlinking mechanism designed in Medi-

aEval workshop. Thus, this section reviews the corresponding publications and

introduces how these works inspire experimental investigations in this thesis.

MediaEval 2012

MediaEval 2012 proposed a Search and Hyperlinking Task as a Brave New Task.

This task was driven by the following use-case scenario: a user is searching for

a known segment in a video collection, and on occasion the user may find that

this segment is not sufficient to address their information need or they may wish

to watch other related video segments [EAL12]. The Search and Hyperlinking

Task required task participants to search for a known relevant segment and create

hyperlinks to related video segments.

A total of four groups participated in the Hyperlinking subtask in MediaEval

2012. The authors in [DNDVD+12] utilised a traditional Vector Space Model

(VSM) and TF-IDF algorithm to index and search spoken transcripts. The results

of named entity extraction were used to create the VSM and the similarity was

calculated based on cosine similarity. In [GGS12], research focused on analysing

various spoken transcripts using BM25 and VSM. Name entities for the document
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vectors were extracted using TreeTagger10. Furthermore, the metadata of the

videos was used to re-ranking the hyperlinking results. In [NAO12], the partici-

pants described the video content by high-level concepts. A total of 508 concepts

were included based on their previous TRECVid investigation [CLVZ11]. We

proposed our research in [CJO12] in which both textual and visual features were

used. We use the TF-IDF algorithm to index and search the spoken transcripts

and the bag-of-visual-words model to analyse the low-level visual features. The

visual descriptors were extracted using the SIFT algorithm. The final hyperlinking

results was determined by the combination of hyperlinking results using textual

and visual features.

The experimental investigation revealed that the spoken information extracted

by the ASR algorithms achieved better results, while only visual features, either

high-level [NAO12] or low-level [CJO12] produced a relatively low performance.

Besides, [GGS12] suggested that a combination of multimodal features, especially

the metadata information, could improve hyperlinking performance.

MediaEval 2013

Table 2.1 compares the best submission of each group in terms of MAP11.

[BPHPB13] created the linked segments based on provided transcripts and

subtitles. The strategy was based on lexical information, computed from 20-

word pseudo-sentence [BPHPB13]. Visual concepts were applied to re-rank the

hyperlinking results. TF-IDF was used to index these segments and calculate the

similarity. The fusion process used different fixed weights to textual and visual

features, and the weights of the textual features (subtitles and transcripts) were

10http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
11MediaEval organisers have been investigating the evaluating mechanism of hyperlinking

task since MediaEval 2012. In this thesis, all the results here are evaluated by the benchmarks
developed after MediaEval 2014. Thus, the MAP values in Table 2.1 were lower than those
published in papers. But the relatively ranks among participants were unchanged.
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Table 2.1: A review of the best result of all participants in MediaEval 2013 hyper-
linking task.

TEAM MAP
Idiap2013 [BPHPB13] 0.5172
DCU [CJO13] 0.2354
LinkedTV13 [SHC+13] 0.2321
TOSCA-MP2013 [LSB13] 0.1887
UTwente [SAO13] 0.0609
soton-wais2013[PHS+13] 0.0594
HITSIRISA [GSGS13] 0.0474
MMLab [NNMdW13] 0.0376
UPC [VTAN13] 0.0240

higher. Table 2.1 showed that [BPHPB13] outperformed all other participants’

runs in terms of MAP.

In [PHS+13], the author presented hyperlinking modes using textual informa-

tion, including transcripts, synopsis, and video titles. Furthermore, they used SIFT

descriptors to provide visual information. Experimental results demonstrated

that visual information using SIFT tended to harm overall performance [PHS+13].

[VTAN13] utilised a similar strategy used in Video Google. They adopted

SURF descriptors as visual features and K-means algorithm over SURF to build

visual words. Experimental results showed that hyperlinking results using only

visual features got lower MAP than those applying spoken transcripts.

[SAO13], [GSGS13], and [NNMdW13] used only transcripts to retrieve hyper-

links. In [GSGS13], transcripts were used for both anchors and videos, adopting

the BM25 weighting strategy. A query video first was linked to the 50 most

relevant videos, and each segment was detected based on lexical information.

[NNMdW13] used time-based segmentation to create linked segments. Those

segments were then enriched by extracting NEs using DBpedia Spotlight12. The

Jaccard metric was applied to NEs to calculate the similarity between two en-

riched documents. [SAO13] used the posterior probability model to analyse the
12https://github.com/dbpedia-spotlight/dbpedia-spotlight
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importance of query term, and expand the linked segments as the final results

for evaluation. The results of [SAO13] were better than the other two groups. Be-

sides, Table 2.1 demonstrated that their results were better than that in [VTAN13]

involving only visual features (SURF)

In [LSB13], the content of linked segments was represented by three different

multimodal features: ASR transcripts, metadata, and SIFT descriptors. The textual

similarity was based on matching the spoken words and NEs from ASR transcripts

or metadata. DBpedia Spotlight was used for the detection of useful words, and

WordNet was used for query expansion. SIFT descriptors were used to re-rank

the results. [LSB13] concluded that re-ranking strategy could provide small but

consistent improvements.

The authors in [SHC+13] utilised a combination of visual concepts and spoken

information. They determined the query content according to the transcripts

and subtitles aligned at the corresponding query boundary. The hyperlinking

results were re-ranked by the visual concepts. [CJO13] used transcripts, SIFT

descriptors and metadata in its hyperlinking system. A fixed window in time

was used to detect linked segments. TF-IDF algorithm was used to retrieve

transcripts. Linear late fusion was adopted to combine multimodal features with

equal weight for each feature. Both papers confirmed that integrating visual

concepts and transcripts can improve the results.

Research works in MediaEval 2013 confirmed the importance of spoken tran-

scripts. We conclude that the results using only transcripts achieve better MAP

than that using only visual features. Furthermore, if combining transcripts and

visual concepts can improve hyperlinking results. Besides, re-ranking the results

using low-level features can slight increase MAP.

[BPHPB13] inspired us that using lexical information to detect potentially

linked segment could work better than using a fixing window. In the remainder
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Table 2.2: A review of the best result of all participants in MediaEval 2014 hyper-
linking task.

TEAM MAP
CUNI [GPKL14] 4.1824
LINKEDTV2014 [PMS+14] 0.2524
DCU [CJO14] 0.0791
JRS [BS14] 0.0556
IRISAKUL [SGSM14] 0.0335
DCLab [PFS14] 0.0135

of this thesis, we propose a set of experiments to compare the effectiveness

between these two strategies.

[BPHPB13] used the combination of subtitles and ASR transcripts to represent

query content and detect linked segments. Our investigation, however, will focus

on only ASR transcripts since manually created subtitles could be unavailable in

some other video collections.

MediaEval 2014

Table 2.2 shows the best result of all participants in terms of MAP in MediaEval

2014.

[PFS14] created the linked segments by cutting each video into shots accord-

ing to the provided scene boundaries. The segment content was enriched with

synonyms and conceptual terms from subtitles and transcripts detected by Con-

ceptNet13. According to [PFS14], using manual subtitles can get better MAP.

[SGSM14] applied n-gram process to transcripts using Stanford Named Entity

Recogniser, and used Latent Dirichlet Allocation (LDA) probabilistic topic models

[BNJ03] to create a mixture of latent topics by indicating a probability distribution

over n-grams.

[CJO14] applied word2vec with Wikipedia as the training collection to predict

the potential context of named entities in transcripts. To detect linked segments,

13http://conceptnet5.media.mit.edu/
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[CJO14] used sentence segmentations provided in transcripts. Experimental re-

sults show the ineffectiveness of using Wikipedia data to detect potential context.

[BS14] utilised textual information determined by a combination of subtitles,

ASR transcripts and the metadata. VLAT [NPG13] on SIFT descriptors were used

to match visual features [BS14] to re-ranking top results. Besides, [BS14] used

the context around queries to enrich the query content. In conclusion, [BS14]

confirmed the usefulness of context segments and the small contribution of SIFT

descriptors.

[PMS+14] applied another query expansion strategy. They extracted the spo-

ken terms from transcripts within the query segment. Then they used More-

LikeThis14 and visual concepts to recreate the query content. [PMS+14] concluded

that it is difficult to improve text based approaches when no visual cues are

provided.

[GPKL14] utilised a fixed sliding window to create a baseline for hyperlinking.

A segmentation employing decision tree was used to determine the segment

boundary according to the lexicon information. Each segment was enriched

by the context information extracted from the adjacent passages. The visual

similarity was calculated by using Signature Quadratic Form Distance [BUS10].

Finally, the late fusion scheme was used in fusing visual and textual hyperlinking

results where the fused weights were experimentally determined. According to

[GPKL14], the best run demonstrated that lexical information and a combination

of multimodal features were critical to achieving better hyperlinking performance.

Besides, [GPKL14] demonstrated that when overlapping segments are preserved

in the list, it could cause an overwhelming MAP (Table 2.2 illustrates that case),

and concluded that hyperlinking results should filter overlapped linked segments

14https://cwiki.apache.org/confluence/display/solr/MoreLikeThis. MoreLikeThis constructs
a lucene query based on terms within a document
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Figure 2.3: Multimodal features used for hyperlinking retrieval in both ME13data
and ME14data collections

Research works in MediaEval 2014 revealed that combining the multimodal

features is an effective approach to improve hyperlinking quality. [PMS+14]

and [GPKL14] used visual features to improve the hyperlinking list retrieved

by transcripts. Besides, research in [PMS+14] and [GPKL14] demonstrated the

importance of recreating query content.

2.4.4 Discussion

Participants in MediaEval hyperlinking used multiple features to create video

hyperlinks, including ASR transcripts, visual features, metadata, etc. We propose

Figure 2.3 to demonstrate the statistics of multimodal feature usage in MediaEval

Search and Hyperlinking task. In MediaEval 2013, 44 out of 57 submitted runs

were constructed using ASR transcripts. Besides, 5 out of 57 used metadata fea-

tures to determine hyperlinking similarity. The runs using visual features were

only 5. In MediaEval 2014, the number of runs using visual features increased to

12. However, 47 out of 77 submitted runs still chose ASR transcripts as a retriev-

ing feature. We concluded that ASR transcripts were widely used in MediaEval

hyperlinking task. However, using only ASR transcripts can not achieve the best

results. The review of research works in MediaEval concluded that using only
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visual features, no matter low-level or high-level, got decreasing results compared

with those of using ASR transcripts. Furthermore, research works in MediaE-

val 2013 [CJO14] and 2014 [GPKL14, PMS+14] pointed out that combining ASR

transcripts with other features (high-level or low-level) could further improve

hyperlinking performance. Besides, investigations in [GPKL14, PMS+14] showed

that redefining query content can achieve better hyperlinking results. These con-

clusions inspire two primary research topics proposed in this thesis: data fusion

to integrate multimodal features (discussed in Chapter 5) and query expansion

(discussed in Chapter 6).

2.5 Chapter Conclusion

In this chapter, we reviewed multimodal features widely used in multimedia IR

systems, data fusion techniques, and the development of multimedia hyperlink-

ing. In Section 2.2, we presented a review of both low-level and high-level feature.

In the remainder of this thesis, our content-based analysis for multimedia hyper-

linking includes both multimodal features. To combine the hyperlinking results,

we plan to utilise the data fusion techniques reviewed in Section 2.3. Section 2.4

reviews research works relevant to video hyperlinking. We reviewed the devel-

opment of hyperlinking investigation in multimedia collection from early stage

to MediaEval workshop. According to the review of MediaEval hyperlinking

task, we conclude two state-of-the-art techniques in multimedia hyperlinking

retrieval: integrating multimodal features and expanding the query content in

hyperlinking.

In the next chapter, we will introduce the terminologies used in video hyper-

linking, research questions to be addressed, and experiment hypothesis.
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Chapter 3

A Multimedia Hyperlinking

Framework

3.1 Chapter Overview

Last chapter reviewed papers on multimodal feature processing and multimedia

hyperlinking construction. Existing research motivates our research hypothesis

that using multimodal features could benefit video-based hyperlinking system.

The remainder of this thesis discusses our investigation in video hyperlinking:

Chapter 4, 5 and 6 are experimental chapters and describe how to use multimodal

features to improve hyperlinking quality; Chapter 7 concludes the thesis; and

the motivation of this chapter is introducing a set of high-level concepts to be

used in experimental chapters. The content includes the structure of video hyper-

linking framework in our experiment, the research questions to address, and the

experiment hypothesis which applies to all experimental chapters.

This chapter consists of three sections. Section 3.2 introduces the architecture

of our hyperlinking system. It outlines the purpose of the individual elements

of our hyperlinking framework, including Query Anchors, Target Segments and

Hyperlinks. Section 3.3 identifies the research questions to address in the experi-
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Figure 3.1: Multimedia hyperlinking system overview

mental chapters. We outline a total of 6 research questions and illustrate which

chapter are going to address them. Section 3.4 presents the experimental hypothe-

sis. It introduces the MediaEval data collections for hyperlinking task, describes

evaluation benchmarks for multimedia hyperlinking according to [AEOJ13] and

the workflow procedure for running crowdsourcing evaluation on the Amazon

Mechanical Turk (AMT) website1, and finally presents the design of experimental

investigation.

3.2 Multimedia Hyperlinking System Overview

A multimedia hyperlinking system constructs hyperlinks within multimedia data

collections. In general, multimedia data can involve different document types,

such as formatted documents, still images, audio tracks, or video collections. Our

research only focuses on video collections involving visual and audio information

streams. Figure 3.1 shows a high-level overview of the hyperlinking system archi-

1https://www.mturk.com/
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Figure 3.2: Hyperlinks between query anchors and target segments in a video
collection

tecture that we investigate for our video archives. Similar to multimedia retrieval

systems, a hyperlinking system presents an interface through which users can

browse video segments associated with a set of ranked linked results. A hyper-

linking process identifies all hyperlinked segments from within the multimedia

collection.

The emphasis of our research is on the hyperlinking module, which is marked

with a blue background in Figure 3.1. This module is responsible for processing

raw multimedia resources to make them suitable for hyperlinking retrieval. It

takes the multimedia raw data as an input, extracts the necessary multimodal

features, and indexes them into a database. We define three essential elements

in a multimedia hyperlinking system, as Query Anchor, Target Segment and

Hyperlink. Figure 3.2 illustrates the role of these elements within the conceptual

hyperlinking framework. The following sections introduce each element in our

hyperlinking framework respectively.
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3.2.1 Query Anchor

A query anchor is a clip of a video which simulate a user request to extend his/her

browsing experience by linking to related content while watching a video. In an

operational setting, a query anchor could be identified by the user as a region

for which they wish to find relevant video segments, or it could be automatically

identified. This assumes that users will be interested in some multimedia items

presented in linked video clip. Items in the linked video could be people, objects,

landmarks or spoken information. The definition of a query anchor shares some

common points with the query input to an IR system. For the purpose of our

investigation, a query anchor has the following features:

• A query anchor is well structured. Being a video clip, it is described accord-

ing to two properties, the “jump in” point to indicate its start time in the

source video and its duration to indicate its length from the start time.

• A query anchor description is typically composed of multimodal features.

This consists of a combination of features extracted from the video from the

“jump in” point to the end of this anchor.

We define a query anchor to be a video segment as a group of multimodal

features which are representative in describing the details of the segment. A

query anchor can be regarded as the query input for a hyperlinking system to

identify relevant target video content. Since the query anchor only provides the

“jump in” point and its duration, a hyperlinking system is free to determine the

query content according to the multimodal features within it. In the remainder of

this thesis, the experimental investigation explores how the determination of the

query anchor content influences hyperlinking behaviour.
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3.2.2 Target Segment

A target segment is a video clip within the collection that is assumed to be of

interest to users navigating from a query anchor. A target segment is in some

way semantically related to the query anchor to which it is linked. All or any

multimodal features, including visual descriptors, audio content and transcripts,

may be important in the formation of a hyperlink. The target segment shares

some similar properties with retrieved documents in an IR system.

• The potential relevance of a target segment is measured by the similarity

between the target segment and a query anchor as calculated using a match-

ing function. State-of-the-art of similarity measures from IR are a potentially

useful mechanism to determine this semantic similarity.

• The content of a target segment can be indexed and searched using tradi-

tional multimodal IR strategies.

• Semantic concepts in the target segment are described by the combination

of multimodal features which can represent the users’ interpretations when

they are browsing the target segment.

However, [AEOJ13] notes out that a key difference between the video hyper-

linking setting and traditional IR applications is that: the document units (target

segments) for hyperlinking are not predefined, and that linking systems can thus

return segments of arbitrary start point and length. Thus, a hyperlinking system

needs to determine target segments from all the available video shots in a tar-

get video. We conclude our research consideration of target segments based on

[AEOJ13]’s discussion in two aspects:

• Although can be arbitrary length, a target segment should be moderate in

size. It essentially acts as a starting point from which users can explore the
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content of the video to enrich their browsing experience. Users may lose

patience when browsing an overlong video, while a short one could contain

insufficient information.

• There is no obvious boundary for a potential target segments. Moreover,

there are numerous methods to divide a target video stream into segments

for matching, including shot boundaries, lexical information or the variance

of visual features. It is impractical to create an infinite number of target

segments to cover all the potential interesting points for linking. Therefore,

an algorithm is required to efficiently identify those segments with a higher

priority of being useful for hyperlinking.

.

To construct content-related hyperlinks across a multimedia collection, a hy-

perlinking system should extract potential target segments, index their content for

searching, and retrieve potentially relevant segments according to query anchors.

Therefore, methods for identifying potentially relevant target segments will be

the first research issue to address in the remainder of this thesis.

3.2.3 Hyperlink

A hyperlink is a connection between a query anchor and a target segment, indicat-

ing a semantic relationship between them. Each query anchor can create multiple

hyperlinks to target segments which will have different strength of allocation.

Each target segment can also be linked to multiple query anchors. Figure 3.2

shows an overview of hyperlink type in a multimedia collection. It should be

noted that a hyperlink can be categorised as either within an individual video

and within collection. Figure 3.3 shows an example of within document and

within collection hyperlinks. Linking within a video is likely to direct the user to
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Figure 3.3: Within document and within collection hyperlink targets

a segment which is strongly related to the source, while links to other videos are

likely to have more diverse targets. In our experimental investigation, we take

into account both types of hyperlinks across the test collection.

3.2.4 Discussion

This section introduces the elements constructing the hyperlinking system used in

the following experimental chapters. Our investigation is dedicated to addressing

research issues of applying multimodal features to build query anchors, determine

target segments, and finally create hyperlinks. In the following section, we

introduce the details of research questions relevant to these elements in each

experimental chapter.
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3.3 Research Questions

We propose our research questions by combining the research objectives proposed

in Chapter 1 and the details of video hyperlinking system introduced in the

previous section. In the remainder of this thesis, the experimental chapters

(Chapter 4 to Chapter 6) will focus on 6 research questions (RQ):

• RQ 1: How do classic IR models and textual features benefit hyperlinking

retrieval?

• RQ 2: Can we efficiently identify target segments in terms of improving

hyperlinking retrieval quality?

• RQ 3: How do other multimodal features except textual influence hyper-

linking retrieval?

• RQ 4: Can we improve data fusion strategies to integrate multimodal fea-

tures for both ME13data and ME14data?

• RQ 5: How does recreating query anchor content improve hyperlinking

retrieval?

• RQ 6: Can integrating query anchor recreation and multimodal features

further improve hyperlinking results?

Figure 3.4 illustrates the structure of our hyperlinking framework and RQs

to be investigated in each chapter. Experimental investigations use the data

collections, ME13data and ME14data, introduced in Section 3.4.1. RQ 1 and 2 are

supposed to be investigated in Chapter 4. Experiments will focus on how to use

textual features to define target segments and retrieve hyperlinks. The conclusion

of Chapter 4 will be used as the baseline for the remainder of experimental

chapters. Investigation on RQ 3 and 4 will be proposed in Chapter 5, and our
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Figure 3.4: Introduction of research questions to address in each experimental
chapter

research will involve other multimodal features and demonstrate how to integrate

them to improve hyperlinking performance. Chapter 6 will investigate the issue

of recreating hyperlinking queries. Experiments demonstrate that using expanded

queries can further improve hyperlinking results concluded in Chapter 4 and 5.

To address these research questions, we design a set of experiments to demon-

strate the effectiveness of different multimodal features in the remainder of this

thesis. Before experimental chapters, it is necessary to introduce general principles.

This is our motivation to propose next section.

3.4 Experimental Hypothesis

We define a set of concepts, including the data collections used in the future

experiments, the evaluation benchmarks to determine hyperlinking quality, and

the workflow of experimental investigation, as the experimental hypothesis. All
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experiments and discussions in the following chapters involve these concepts to

address our research questions. Thus, we introduce these concepts in this section

so that readers can have a global view of our experimental design.

3.4.1 Multimedia Data Collection

The multimedia data collection used for the hyperlinking study described in

this thesis originates from the Search and Hyperlinking tasks at MediaEval 2013

and MediaEval 2014. We use the abbreviation ME13data and ME14data to re-

spectively denote these data collections. The motivation of selecting these two

collections are:

• The data collections in MediaEval 2013 and MediaEval 2014 are provided

by BBC company. They contain rich multimedia contents extracted from

BBC online TV plays. We can examine our research ideas in the collections

used in the real world.

• Multiple research groups have contributed the development of multimodal

features in these collections. In this thesis, we bring some existing research

achievements to board our investigation in multimodal features.

• AXES2 groups were dedicated to investigating these collections and pro-

vided funding support to create the hyperlinking ground-truth (introduced

in 3.4.4) using crowdsourcing. Using the corresponding ground-truth in

these collections, we can examine our approaches in terms of user judge-

ment.

MediaEval 2013 Data Collection (ME13data)

The ME13data contains 1,260 hours of TV video provided by the BBC. It contains

broadcast content between 01.04.2008 to 11.05.2008. The videos in the ME13data
2http://www.axes-project.eu/
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collection involve various types of TV shows including BBC News reports, TV

drama, documentary films, entertainments, etc. The average length of a video is

roughly 30 minutes and all videos are in the English language. The total number

of videos is 2,323. In this thesis, we propose to use a total of 213 valid queries

defined by the MediaEval 2013 workshop.

MediaEval 2014 Data Collection (ME14data)

ME14data is a collection of over 2,686 hours of TV video provided by the BBC.

The content collection was originally broadcast between 12.05.2008 and 31.07.2008.

ME14data consists of the same types of TV programme as ME13data. The average

length of a video in ME14data is roughly 45 minutes and all videos are in the En-

glish language. The total number of videos in ME14data is 3,520. The MediaEval

2014 workshop provided 30 query anchors associated with the corresponding

ground truth.

Multimodal Features in ME13data and ME14data

The MediaEval task organisers provided various sets of multimodal features for

both ME13data and ME14data. We introduce the features which are used in our

experimental investigations described in this thesis.

• Spoken Transcripts Two automatic speech recognition (ASR) transcripts

were created for the ME13data and ME14data by LIMSI/Vocapia Research4

and LIUM Research team5. The implementation of spoken transcripts from

LIMSI/Vocapia was based on the method described in [LG08]. The LIUM

system is based on the CMU Sphinx project [RBD+11]. The LIUM algorithm

3The MediaEval 2013 defined 98 query anchors and provided the corresponding ground-truth
for 30 of them. We select 21 out of these 30 queries by removing those located within the same
video scenes.

4http://www.vocapia.com/
5http://www-lium.univ-lemans.fr/en/content/language-and-speech-technology-lst
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builds the transcripts associated with spoken words and the corresponding

timestamp. The LIMSI algorithm provides more spoken information includ-

ing not only spoken words and their time stamps in the video stream, but

also speaker identification and the segmentation of spoken data in terms of

sentences. In the remainder of this thesis, we use the abbreviations of LIUM

and LIMSI to represent the corresponding transcripts respectively.

• Visual Features ME13data and ME14data contain a set of visual descrip-

tors of the video content, including automatically detected shot bound-

aries, one automatically extracted keyframe per shot, and the outputs of

concept detectors. For each video, shot boundaries are determined and

a single key frame per shot is extracted using a system kindly provided

by Technicolor [MLD+06]. In total, the system extracted approximately

1,200,000 shots/keyframes for ME13data, and 1,500,000 shots/keyframes

for ME14data. In Chapter 5, we give a detailed description of the high-level

concepts used in our experimental investigation.

• Video Metadata Each video in ME13data and ME14data has associated

metadata, which was manually created by BBC. The metadata includes a set

of textual attributes including “video title”, “uploading date”, “description”,

“uploading author”, etc. The “description” is the primary attribute used for

the further experimental analysis in the remainder of this thesis. In Chapter

5, a detailed description of the experimental design is introduced.

In the remainder of this thesis, we use the word “multimodal features” to

represent all these three multimedia features (spoken transcripts, visual features

and video metadata) in the ME13data and ME14data. Moreover, according to

Section 2.2, we regard the spoken transcripts as the textual low-level feature since

spoken transcripts directly represent the word presented in the video stream rather

than cognitive concepts built by knowledge and experience from human activities.
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The video metadata that provides an overall description of the corresponding

video content is regarded as the high-level feature. The visual features involve

both low-level and high-level types whose details are introduced in Chapter 5.

3.4.2 Ground Truth Construction via Crowdsourcing

Multimedia hyperlinking evaluation for research purposes is based on evaluating

the quality of each participant’s hyperlinking creation runs in terms of various

metrics. In order to evaluate these metrics, a ground truth is required to indicate

whether the target segment of a proposed hyperlink is relevant to the current

query anchor or not. In this section, we6 introduce the mechanisms used to

construct the hyperlinking ground truth utilising the online human resources.

Firstly, it is important to realise that relevance as judged in an IR system is a

personal assessment [BYRN99]. The relevance between query anchors and target

segments discussed in this thesis is determined in terms of human perspective,

which follows the hypothesis introduced in Search and Hyperlinking tasks in

MediaEval 2013 and 2014. Thus, to build the ground-truth, we need human

judgement to identify the relatedness of retrieved hyperlinks. In Chapter 2,

we described how human annotation was used in the NTCIR CLLD task to

determine the relevance of linked Wikipedia documents. A similar strategy

was applied to evaluate retrieved hyperlinks in the MediaEval hyperlinking

task. Crowdsourcing hires online workers to carry out well specified large scale

human centered tasks. In this process, a requestor publishes a task and recruits

online workers to carry it out, creating a Human Intelligence Task (HIT) which

describes the task. A crowdsourcing platform implements HITs to satisfy the

requestor’s requirement and specifies the reward which is available for those

workers completing the HITs [Jon13]. In our work, a HIT allows researchers to
6The author of this thesis has participated in constructing the ground truth of ME13data and

ME14data. The author’s primary duty was designing the crowdsourcing user interface, collecting
user feedback from the crowdsourcing website, and examining the validation of these questions.
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Figure 3.5: The screenshot of Amazon Mechanic Turk (AMT) assignment

obtain human-generated feedback about the relatedness between video segments,

i.e. whether the hyperlinks that we proposed are potentially valuable for real

users. The construction of a ground truth for hyperlinking retrieval uses the

crowdsourcing platform to identify targets related to the video anchors.

In MediaEval 2013 and 2014 Search and Hyperlinking tasks, the hyperlinking

ground truth was created using the Amazon Mechanical Turk (AMT)7 crowd-

sourcing platform. After collecting the participants’ submission, a set of video

pairs involving each query anchor and the linked segments was constructed. Each

video pair was uploaded to the AMT platform. The AMT platform presented

the assigned workers with assignments containing the linked segment associated

with the corresponding query anchor. The AMT workers were required to watch

the two video segments and answer a number of questions to indicate the level

of relevance of the target to the query and to explain their decision. Figure 3.5

shows a screenshot of the crowdsourcing task. Each AMT worker was required to

answer three questions as follows:

7https://www.mturk.com/mturk/
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Figure 3.6: Crowdsourcing flow to annotate groundtruth

• Question 1. Based on the description, would the person be satisfied watching

the second video clip after having watched the first video clip?

• Question 2. Please write 1-3 sentences in the box below that explain your

decision.

• Question 3. Please write 3-5 meaningful words spoken in each of the video

clips.

The purpose of these questions was to collect user feedback on the relevance

judgement and to enable validation of the assignment input. The first question

was used to collect the AMT workers’ judgements on the relatedness of the video

pair. The second question was used to check whether the crowdsourcing workers

watched the video content properly. The third question was used to validate

the first question by describing the reason for making this judgement. Figure

3.6 shows the workflow of the crowdsourcing procedure. Each crowdsourcing
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worker was required to complete all three questions. A crowdsourcing assignment

was regarded to be invalid if:

• The assignment for AMT workers was incomplete. Automatic checking was

used to scan all the results returned from the AMT website in the format of

CSV files and filter out those assignments with empty answers.

• The assignment worker provided incorrect meaningful words spoken in

the presented video clips. A script was developed by the hyperlinking task

organisers to index all spoken transcripts contained in the corresponding

clips. All the answers were examined automatically by this script. If an

error description was caused due to spelling errors, an unrecognised input

format or an informal expression, it was accepted as valid. In all other cases,

the assignment was rejected. The valid answers were collected for a further

manual validation to determine the reason for a user’s judgement on the

relevance of the hyperlinking.

• The reason for worker’s judgement on the relevance of the video is not per-

suasive. We expect crowdsourcing workers to make a reasonable decision

when determining the hyperlinking relevance. In this stage, manual valida-

tion was applied to check the answers of the third question. A reasonable

answer that could be accepted such as “the two segments are about music”,

“they are both BBC breakfast News”, or “the same reporter interviews differ-

ent people”. Answers providing a fuzzy description, like “I love this video”,

“The music is quite wonderful” were regarded as invalid.

We politely rejected invalid crowdsourcing works, and republished these ques-

tions on AMT until we had collected valid answers for all video pairs.

After collecting all the valid answers, we analysed the relatedness of each

video pair according to the first question. We categorised the answers into posi-

tive and negative assignments. A video pair in the ground truth is positive if the
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crowdsourcing worker regards the linked video as related to the query anchor. If

not, the video pair is negative. Each video pair was judged by two crowdsourcing

workers whose answers were both validated. In this thesis, we apply the strat-

egy used in MediaEval 2013 and MediaEval 2014 that a video pair is regarded

to be negative only if neither of the crowdsourcing workers indicates them as

relevant. In Appendix A (Tables A.1 and A.2), we show the comparison of the

two Mturk workers’ judgements on the relevance between a query anchor and

the corresponding segment in the ground truth pool. The ground truth contained

a total of 22,313 validated video pairs. In the ME13data, crowdsourcing evalu-

ated 21 queries and collected 9,973 video pairs composed of 2,982 positive and

6,991 negative ones. In the ME14data, crowdsourcing evaluated 30 queries and

collected 12,340 video pairs composed of 1,888 positive and 10,452 negative ones.

3.4.3 Evaluation Metrics

An ideal hyperlinking framework should be able to construct hyperlinks to rele-

vant target segments without linking to non-relevant ones. Furthermore, it should

at least assign higher rank to relevant segments than non-relevant ones. Thus,

similar to state-of-the-art IR evaluation, evaluating hyperlinking performance

is based on the measures of relevance in the retrieved ranked results. Two pri-

mary metrics are utilised to evaluate the recall and precision rates for the further

hyperlinking experiments in this thesis according to [AEOJ13].

Evaluation Metrics

The main metrics in this thesis evaluate hyperlinking performance in terms of the

precision rate in the top N linked result (P@N) and the Mean Average Precision

(MAP) value. Equation 3.1 defines P@N which takes all retrieved target segments

at a given cut-off rank N into account,
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P@N =
|relevant target segments@N |

N
, (3.1)

where |relevant target segments @ N| means the number of linked target seg-

ments relevant to the current topic in the top N results. Equation 3.2 defines

the MAP metric, which computes the average of the precision value over all the

relevant ranked items in the retrieval list,

MAP =

∑Q
q=1 AveragePrecision(q)

|Q|
, (3.2)

where |Q| is the number of queries, and the function AveragePrecision for a query

q is defined as follows:

AveragePrecsion =

∑N
i=1 P@i

|relevant target segments|
, (3.3)

where P@i returns the precision rate at the rank i, and |relevant target segments|

returns the total number of relevant segments in the ground truth pool. The

previous section introduced the methodology used to determine the relevant

segments for each query anchor by using the AMT platform. However, it is

impractical to evaluate all potentially linked segments due to the significant

cost involved. Therefore, the evaluation metrics need a specific mechanism to

determine the relevance of a linked segment associated with the ground truth

where there is a partial overlap between the linked segment and the relevant

content. In the remainder of this section, we introduce various mechanisms

developed within the MediaEval Search and Hyperlinking task to attend to

compare the effectiveness of the submitted results.
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Figure 3.7: Overlap evaluation, source: [AEOJ13]

Overlap Mechanism

The overlap mechanism defines that a target segment is considered as relevant if

it overlaps with a relevant segment [AEOJ13]. This identifies a linked segment as

relevant if it overlaps a video segment indicated as positive in the ground-truth.

Figure 3.7 shows an example of overlap evaluation in which the linked segments

starting with the green “jump in” point are regarded as relevant due to the overlap

with the relevant ground truth. In our experiments, we use the abbreviations

P@N and MAP to represent the evaluation metrics for the overlap mechanism.

Bin Mechanism

The overlap mechanism doesn’t take into account the context information of

positive segments in the ground-truth. Therefore, [AEOJ13] also introduced the

bin mechanism. This assigns the result segments to units of a fixed size, which

are referred to as “bins” [AEOJ13]. The video stream is divided into a set of bins

of equal duration. The duration of each bin is set to be 120 seconds in [AEOJ13]

following the maximum size of linked segment defined in the MediaEval Search

and Hyperlinking task [EJC+13]. Each bin is defined as relevant if there is at least

one relevant linked segment located within it. Finally, the ground truth consists

of relevant and irrelevant bins to evaluate the hyperlinking results. If a linked

segment overlaps with a relevant bin, it is regarded as relevant to the current

topic. Figure 3.8 shows an example of bin evaluation.
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Figure 3.8: Bin evaluation, source: [AEOJ13]

Tolerance of Irrelevance Mechanism

The bin mechanism takes context information into account to improve hyper-

linking evaluation quality. A potential risk of the overlap and bin mechanisms,

however, is that a large number of short segments may be concentrated on a

particular video shot due to the sharing of similar context information. A group

of segments concentrated within the same positive bin achieves a higher precision

and MAP value. However, this situation has little contribution to improving the

user’s browsing experience. The tolerance of irrelevance mechanism modifies the

relevance judgement in terms of the following principles. Each relevant ground

truth is associated with a tolerance area with respect to context information. A

retrieved target segment, if its start time is located within the tolerance area, is

set as relevant. Each tolerance area is only encountered once. When evaluating

a ranked hyperlinking result, the algorithm traverses it from the top result. If a

relevant bin overlaps a linked segment, the algorithm regards this segment as

relevant. Any linked segment overlapping this relevant bin at a lower rank won’t

improve the corresponding benchmarks since this bin has been “seen” by a linked

segment at a higher rank.

Figure 3.9 shows an example of the tolerance of irrelevance mechanism. It

illustrates that Result 2 is judged as positive since its start time is encountered

55



Figure 3.9: Tolerance of irrelevance evaluation, source: [AEOJ13]

by the tolerance area. While Result 4, even located in the tolerance area, is not

counted as positive since this area has been seen by Result 2.

In conclusion, overlap evaluation is a metric developed within in the Medi-

aEval 2012 Search and Hyperlinking task to MediaEval 2014. While the other

two, bin evaluation and tolerance of irrelevance evaluation, were proposed for

MediaEval 2014 Hyperlinking task to complement the overlap metric. In this

thesis, the primary metrics to examine our experimental results are the overlap

metrics (MAP and P@N). Furthermore, tolerance of irrelevance evaluation (tMAP)

performs as a complement to overlap evaluation (MAP) in our experiments.

3.4.4 Experimental Design

This section introduces the principles which are applied for all the experiments

described in experimental chapters. Figure 3.10 illustrates the workflow to retrieve

segments for creation of hyperlinks for each query anchor. We discuss four

concepts which are applied in the future experimental chapters: data indexing,

retrieval results, score normalisation, and filter overlapped results.

• Data Indexing: All multimedia raw data is indexed and searched according

to proposed IR models. We use Apache Lucene 4.9.08 software in order to

index and retrieve the target segments with spoken information. A standard

analyser component of Apache Lucene is used to convert text data into

8http://lucene.apache.org/core/

56



Figure 3.10: Experiment hypothesis: the workflow of the research hyperlinking
system

the format for search within Lucene. Each spoken word is converted into

lower case. The stop words are removed using the default list provided

from Lucene. The analyser tokenises text-based using sophisticated set of

grammar rules which recognises e-mail addresses, acronyms, and alphanu-

merics characters [Son09]. We use Porter Stemming [Por80] algorithm to

implement word stemmer.
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• Retrieval Results: The retrieval results of each experiment involves multiple

runs. Each run consists of N linked target segments which are ranked by

their scores. The value ofN is experimentally set to 1,000 following a general

principle defined in Search and Hyperlinking task of MediaEval 2014.

snor(r) =
s(r)−MinScore(R)

MaxScore(R)−MinScore(R)
(3.4)

• Score Normalisation: The normalised scores are used in the multimodal

fusion proposed in Chapter 5 and Chapter 6. For each retrieved result scored

s(r) at rank r, the normalised score is calculated using Equation 3.4, where

MinScore(R) and MaxScore(R) output the minimum and maximum scores

in the ranked list R respectively. Score normalisation has no influence on

the relative position of retrieved segments.

• Filtering Overlap: The target segment identification algorithm indicates

potential video segments to be retrieved. It follows a simple principle

that detected segments should cover the most multimodal information.

Therefore, extracted potential segments could share an overlap with others.

In Chapter 2, [GP13] concluded that containing overlapped segments in

hyperlinking results could overwhelm MAP score. Thus, our hyperlinking

process applies filtering steps to remove the overlapped segments in the

ranked list: if a set of retrieved segments share an overlap, the hyperlinking

system keeps the one with the highest rank and removes all others.

In our experimental system, data indexing happens after collecting multi-

modal features and before retrieving hyperlinking results. After achieving all

retrieved results, the hyperlinking process applies score normalisation, filters the

overlapped results, and generates the final results for evaluation and discussion.

This workflow applies the whole experimental investigation.
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3.5 Chapter Conclusion

This chapter presented a set of high-level concepts to be used in experimental

chapters. We introduced three essential elements to index and search multimedia

hyperlinks from raw multimedia resources: query anchor, hyperlink and target

segment, in Section 3.2. Then, in Section 3.3, we proposed the research questions

to address in our investigation. Section 3.4 outlined our experimental hypothe-

sis. This section involves the description of test data collections, the evaluation

benchmarks and how to build the ground-truth using AMT, and our experimental

design. The contribution of this chapter is presenting a high-level view of our

hyperlinking system. Readers can understand the workflow of our hyperlinking

investigation and the corresponding concepts used in the future experimental

chapters.

The following chapters (Chapter 4, 5, and 6) are our experimental chapters.

We investigate the performance of multimodal features in the proposed hyperlink-

ing system. However, multimodal features involved in a multimedia collection

present additional challenges. Therefore, we decide to use a simplified multi-

media hyperlinking framework to investigate how to address these issues. It

involves only text information from multimedia data collection without further

processing on visual cues for the main reason that research on text-based IR is

well-developed and thus forms a good baseline. Using a text-based data collection,

we plan to investigate different strategies to identify target segments and evaluate

hyperlinking models using multiple benchmarks.
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Chapter 4

Creating Hyperlinks using

Transcripts of Spoken Data

4.1 Chapter Overview

In Chapter 2, we introduced that ASR transcripts are widely used in video-based

retrieval or hyperlinking and concluded that combining ASR transcripts with

other multimodal features can improve hyperlinking retrieval. The motivation of

this chapter is discussing how ASR transcripts influence hyperlinking retrieval

individually. We are dedicated to solving two research questions (RQ):

• RQ 1: How do classic IR models and textual features benefit hyperlinking

retrieval?

• RQ 2: Can we efficiently identify target segments in terms of improving

hyperlinking retrieval quality?

Reviews in Chapter 2 outlined some conclusions in MediaEval 2013 and 2014

respectively, and those conclusions inspire our strategies of hyperlinking in ASR

transcripts. In the remainder of this chapter, we propose: ASR transcripts indexing

and retrieval using different weight models, target segmentation identification,
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Figure 4.1: An overview of research design

and parameter setting for term weight models. We will not only examine which

approach can achieve better hyperlinking in terms of our evaluation benchmark

introduced in Chapter 3, but also investigate whether those approaches can reach

an agreement on the parameter setting (or not) in both data collections. The

results of this investigation provide evaluating baselines for the remainder of the

thesis.

This chapter is structured as follows. Section 4.2 briefly introduces two clas-

sic text IR models which are applied for hyperlinking using the spoken data.

Experimental results compare their hyperlinking performance for various ASR

transcripts. Section 4.3 investigates different strategies to identify target segments.

The hyperlinking framework is constructed according to the optimal text IR model

and ASR transcripts introduced in Chapter 3.1. Experimental results show how
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Table 4.1: Acronyms in experimental investigation
Abbreviation Description
ASR The spoken transcripts detected by automatic speech recognition
TF-IDF TF-IDF algorithm to index and retrieve ASR
BM25 Okapi BM25 algorithm to index and retrieve ASR
TSW Use the time-based sliding window
CSW Use the content-based sliding window
W Detect the segment boundary in terms of the spoken words
S Detect the segment boundary in terms of the spoken sentence

different algorithms of identifying target segments influence hyperlinking per-

formance. Section 4.4 investigates the mechanisms of determining appropriate

parameters to index and retrieve transcripts using Okapi BM25 model. Section

4.5 concludes the chapter.

For readers’ convenience, we propose Figure 4.1 and Table 4.1. Figure 4.1

illustrates a global view of experimental design proposed in this chapter1, and

Table 4.1 shows the acronyms of multimodal features and research methodologies.

Reader can understand our experimental design proposed in this chapter, and

have a reference to check the acronyms in each experimental discussion.

4.2 Spoken Information Retrieval Model

In this section, we present an overview of two text IR algorithms which we apply

for the task of multimedia hyperlink creation based on ASR transcripts. First, we

introduce the classic vector space model, and then the BM25 probabilistic model.

1We also mark those research terms already introduced in previous chapters with the abbrevi-
ation ”Ch.”. For example, a part marked with Ch.3 means that this term has been discussed in
Chapter 3.
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4.2.1 Vector Space Model

Vector Space Model (VSM) is a classic IR model in which each document is

represented as a vector of identifiers [SWY75]. The definition of an identifier

could be a single word or an n-gram, depending on different retrieval systems. In

this thesis, we describe each identifier as a term. Each document Di in the data

collection is represented as a vector Di = [w1,i, w2,i, ...wk,i]. The dimensionality of

a vector is the size of term vocabulary. Each weight wk,i is a term defined based on

different IR models. If any term occurs in a document, the corresponding weight

is set to be non-zero. The cosine distance algorithm is widely applied to calculate

the similarity between two document vectors as:

sim(di, dj) =

∑N
k=1wi,k · wj,k√∑N

k=1wi,k ·
√∑N

k=1wj,k

, (4.1)

where N is the number of terms in a document vector, and wi,k and wj,k represent

the weight of ith/jth term in the documentDi/Dj respectively. There are multiple

term weighting strategies to determine the value of w. Among them, a simple

strategy is the Boolean Retrieval Model which sets a term weight w to be either

0 or 1, meaning a word exists in a document or not. However, using boolean

model can not show the diversity of a term existing in different documents. An

alternative solution is calculating term weights according to the apperance of a

term within a document collection. In the following section, we briefly review a

classic term weighting mechanism known as TF-IDF.

TF-IDF Term Weighting

TF-IDF term weighting, also known as term frequency-inverse document fre-

quency weighting, is a classic term weighting model. The weight w of each term t

is determined by its own term frequency tf(t, d) in a document d and its inverse
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document frequency idf(t, d,D) within the search collection. The definition of

term weight wt,d is shown as following:

wt,d = tf(t, d) · idf(t, d,D), (4.2)

idf(t, d,D) = log
|D|

|{d ∈ D|t ∈ d}|
, (4.3)

where D is the total number of documents in the document collection.

Multimedia hyperlinking in this chapter regards each single spoken word

presented in an ASR algorithm as a term in the VSM model. TF-IDF is applied to

calculate the weight of each term. Each target segment is regarded as a potentially

relevant document for retrieval. Therefore, the term frequency is determined

according to the appearance of a spoken word in a target segment. The inverse

document frequency is calculated according to the number of target segments in

which a spoken word exists and the total number of potential target segments

within the multimedia collection.

4.2.2 Probabilistic Retrieval Model

The basic principle of the probabilistic retrieval model is to estimate the probability

that a document d is relevant to a query q [RvRP81]. Generally, it is assumed that

a document is either relevant or non-relevant to the query. The relevant set is de-

fined as R and all other documents are designated as R. The probabilistic retrieval

model determines the similarity by maximising the overall probability defined

in Equation 4.4. The most well known practical instantiation of the probabilistic

retrieval model is the Okapi BM25 weighting model (BM25) [RWJ+95].

sim(d, q) =
P (R|d)

P (R|d)
(4.4)
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BM25 Model

BM25 implements document ranking using a bag-of-words retrieval function.

It calculates the document similarity based on the query term existing in each

document d and query Q. Here, the query Q is a set containing multiple keywords

[q1, q2, ...qn]. The BM25 model was introduced and improved in multiple research

studies including [ZCT+04, LZ11]. The standard formulation of the BM25 term

weighting function is:

sim(d,Q) =
N∑
i=1

IDF(qi) ·
idf(t, d,D) · (k + 1)

idf(t, d,D) + k · (1− b+ b · |d|
averdlen)

, (4.5)

where averdlen is the average length of documents in the collection. k and b are

two scalar parameters. The parameter k is a scalar parameter which calibrates the

term frequency scaling. Setting the value of k to 0 reduces the BM25 model into a

simple binary model in which no term frequency is considered, and increasing

the value of k increases the impact of the term frequency. The parameter b is the

other scalar parameter which controls the scaling of document length, whereas

b = 0 means no requirement of document length normalisation. IDF(qi) is the

inverse document frequency of query term qi, defined as [RJ88]:

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
, (4.6)

where N represents the number of documents in the dataset and n(qi) is the

number of documents containing the specific query qi. An open issue for the

BM25 algorithm is how to determine suitable values of the parameters k and b.

[MRS08] recommended the reasonable value of k for most tasks lies between 1.2

and 2 and b is set to be 0.75. [BMI12] suggests that the parameter settings, k = 1.2

and b = 0.75, are the default options for some existing industrial implementations.

Based on these recommendations, we firstly apply the default parameter setting,
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Table 4.2: Evaluated hyperlinking results using spoken information for ME13data
(The results are presented as “RUN ID/MAP/tMAP”)

LIUM LIMSI
TF-IDF LIUM-TFIDF-13/0.1257/0.0768 LIMSI-TFIDF-13/0.1420/0.0814
BM25 LIUM-BM25-13/0.1285/0.0784 LIMSI-BM25-13/0.1501/0.0875

Table 4.3: Evaluated hyperlinking results using spoken information for ME14data
(The results are presented as “RUN ID/MAP/tMAP”)

LIUM LIMSI
TF-IDF LIUM-TFIDF-14/0.0986/0.0496 LIMSI-TFIDF-14/0.1315/0.0712
BM25 LIUM-BM25-14/0.1067/0.0560 LIMSI-BM25-14/0.1331/0.0730

and investigate the target segment identification. In the last section of this chapter,

additional research is reported in which we investigate the selection of the BM25

parameters to improve hyperlinking accuracy.

4.2.3 Experimental Investigation

In the remainder of thesis, we propose a set of experiments using various

multimodal features. Our investigation aims to compare the difference between

these features and corresponding parameter estimation. Thus, the motivation of

this experiment is to select the optimal weighting model and ASR transcript to

represent the textual feature in other experimental chapters, and we can focus

on the discussion in multimodal feature analysis and avoid an overwhelming

experiment data by involving both LIMSI and LIUM.

This experiment compares the hyperlinking results of the TF-IDF model and

BM25 model using ASR transcripts in terms of MAP. The ASR transcripts for

ME13data and ME14data datasets are provided by LIMSI and LIUM, and were

introduced in Section 3.4.1. The algorithms to identify target segments follow

our previous researches presented in MediaEval 2013 and 2014 [CJO13, CJO14],
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where a time-based sliding window was used to detect potential target segments.

The window size is set to 120 seconds and the overlap is set to 40 seconds.

Table 4.2 and 4.3 show the hyperlinking performance using BM25 and TF-

IDF algorithms. Both LIMSI and LIUM transcripts are investigated. We notice

that all the runs using LIMSI transcripts in both collections (LIMSI-TFIDF-13,

LIMSI-BM25-13, LIMSI-TFIDF-14, and LIMSI-BM25-14) achieve better MAP and

tMAP values than the corresponding runs using LIUM transcripts. For example,

in ME13data, LIMSI-BM25-13 has a MAP value of 0.1501, which is superior to

LIUM-BM25-13 (0.1285). The MAP value of LIMSI-TFIDF-14 (0.1315) is also

higher than the one of LIUM-TFIDF-14 (0.0986). Moreover, a similar conclusion

can be achieved on the effectiveness of text retrieval models as BM25 works better

than TF-IDF in terms of MAP and tMAP. For example, LIMSI-BM25-13 shows a

better MAP value (0.1501) compared with its corresponding run LIMSI-TFIDF-13

(0.1420).

4.2.4 Discussion

The experiment results in Table 4.2 and 4.3 demonstrated the conclusion in [YH07]

that BM25 works better than TF-IDF in terms of MAP. Moreover, the methods

using LIMSI transcripts achieve better retrieval quality than those using LIUM

transcripts. Thus, in the remainder of this thesis, our experimental design follows

the conclusion achieved by the current experiments. It means that the hyperlink-

ing retrieval model applying ASR transcripts involves LIMSI algorithm and BM25

retrieval model.

4.3 Identifying Target Segments

Section 3.2.2 explained that the target segments form the document collection

for information retrieval in the hyperlinking framework, and that multimodal
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feature analysis provides the description of the target segments. In Chapter 2,

we introduced existing research from the MediaEval workshop and pointed out

that researchers proposed various methodologies used to detect potential target

segments from the video collections. However, this research on multimedia hy-

perlinking lacked detailed investigation of how the algorithms used to extract

the target segments themselves influence the behaviour and effectiveness of the

hyperlinking system. A hyperlinking process is usually a combination of target

identification with other multimodal processing strategies. The retrieval results

thus involve the combination of multiple components and do not show which

target segment identification algorithm provides an optimal choice for the further

investigation on multimodal analysis. In this thesis, identifying target segments is

taken as an independent research topic. We introduce two state-of-the-art method-

ologies to segment a video for hyperlinking. Firstly, we describe the mechanism

of these algorithms to segment the video stream using ASR transcripts. Next,

experimental investigations show their hyperlinking performance associated with

various parameters. Our motivation is to investigate the optimal settings for each

algorithm, and determine which algorithm is most suitable for the multimodal

processing to be used for experimental investigations in the remainder of this

thesis.

4.3.1 Segment Identification using a Sliding Window

Using a sliding window is a simple and effective approach to identifying the

target segments according to the review of MediaEval research in Chapter 2. A

sliding window extracts fixed length segments from the video stream. The content

of each extracted segment is determined by multimodal features contained within

the time boundaries of the window. A sliding window has two parameters, the

window size and overlap. The window size determines the length of a target
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segment. The benchmark to assign the window size can be time-based or content-

based. A time-based solution is relatively easy to implement compared with

the content-based solution since there is no requirement to process lexical or

other multimodal information in the former. The window size of the time-based

solution ignores variations in the video content and sets a constant size for all the

potential target segments in the collections. A content-based solution determines

the boundary of segments using feature information. In Chapter 2, we reviewed a

hyperlinking framework proposed in [GPKL14] which utilised machine learning

algorithms to detect the end of a spoken sentence and indicated the window size

according to the spoken sentence. Compared with the time-based solution, the

primary difference of content-based is that the size of extracted segments varies

since the window contents are related to lexical information when considering

only ASR transcripts.

Another parameter associated with a sliding window is the overlap. The

overlap means the common part between the two adjacent target segments and

determines the distance between the start times of two adjacent segments. If the

overlap is set to be 0, it means that the end time of one target segment is the

start time of the next segment. Increasing the overlap means that two adjacent

segments share more video content. In this case, if keeping the window size

unchanged, the algorithm increases the number of extracted segments which can

cover a variation of feature distribution in a video stream. The factors to determine

the overlap between adjacent segments can be time-based or content-based as

well.

The design of sliding window methods are based on the study of existing

research proposed in the MediaEval workshop2. We categorise a sliding window

as time-based or content-based. The details are introduced as follows.

2The review is presented in Chapter 2
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Table 4.4: Implementation of time-based sliding window (pseudo code)
define the video Vi
define the fixed sliding window t1 and the overlap t2
define the start time ts = 0
for the transcript Ti in Vi

extract all text information located within ts and ts + t1
moving the sliding window ts = ts + t1 − t2

end for
save all extracted transcripts as potential target segments

Table 4.5: Implementation of content-based sliding window (pseudo code)
define the video Vi
define the number of text unit n1 and the overlap n2

define the start index ns

define the transcript Ti in Vi
index all text units from 0 to |Ti|
for ns = 0 to |Ti|

extract all text unit indexed within ns and ns + n1

moving the sliding window ns = ns + n1 − n2

end for
save all extracted transcripts as potential target segments

• Time-based Sliding Window: This indicates a fixed window size and over-

lap in seconds. Therefore, the extracted segments share the same duration

and the time interval between two adjacent segments is unchanged. The

experimental design proposed in Section 4.2 utilises time-based sliding win-

dows whose size and overlap are determined according to our previous

investigation [CJO13, CJO14]. In this section, a grid search mechanism is

applied to investigate whether there is an optimal design of time-based slid-

ing window for ME13data and ME14data associated with ASR transcripts.

Table 4.4 illustrates the pseudo code of time-based sliding window.

• Content-based Sliding Window: This method is motivated by [GP13] in

which the authors employed a Decision Tree [GP14] to indicate the end of

linked segment which demonstrated the importance of lexical information

when segmenting ASR transcripts. Instead of employing a machine learning
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algorithm, we directly utilise the segmentation information of ASR tran-

scripts provided by LIMSI. The LIMSI algorithm splits the transcripts into

sentences whose boundary is detected by the combination of audio features

and semantic information [LG08]. Content-based sliding windows use each

sentence as the starting point of a potential target segment, and this segment

involves all spoken sentences located in a fixed duration. Table 4.5 illustrates

the pseudo code for a content-based sliding window.

4.3.2 Experimental Investigation

In this section, we report our experimental investigation of strategies to identify

target segments based on sliding windows as described in the previous section.

Based on our preliminary experiments presented in Section 4.2, the segmentation

algorithms are implemented using LIMSI transcripts. Indexing and searching

on LIMSI transcripts is implemented by using BM25 algorithm, where default

parameter settings are applied (k = 1.20 and b = 0.75), and the details of BM25 are

explained in Section 4.2. Both the ME13data and ME14data datasets are used for

this study. Hyperlinking retrieval is evaluated using the MAP and tMAP metrics

presented in Section 3.4.3. Experimental results compare the hyperlinking perfor-

mance of the time-based and content-based. Table 4.1 shows the abbreviations

representing the methodologies used in the experimental runs. The parameter of

both methods are introduced as follows:

• Time-based Sliding Window: Content analysis on a potential target seg-

ment extracts all the spoken words within the window. The size and overlap

parameters determine the window size and overlap both in seconds respec-

tively. The maximum window size is set to 150 seconds and the minimum

size is set to 60 seconds. Various overlap values are examined in the ex-
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Table 4.6: Results of the time-based sliding window solution (TSW-W) for
ME13data. (The italic result is the best value achieved in Section 4.2.3, and
the bold result is the best result in this table.)

Size
60 90 120 150

Overlap MAP tMAP MAP tMAP MAP tMAP MAP tMAP
10 0.1234 0.0887 0.1296 0.0863 0.1362 0.0821 0.1328 0.0705
20 0.1271 0.0865 0.1354 0.0865 0.1363 0.0792 0.1315 0.0626
30 0.1328 0.0892 0.1408 0.0890 0.1461 0.0899 0.1335 0.0668
40 0.1376 0.0901 0.1428 0.0901 0.1501 0.0875 0.1343 0.0730
50 0.1423 0.0914 0.1496 0.0918 0.1530 0.0871 0.1398 0.0747
60 - - 0.1496 0.0910 0.1533 0.0889 0.1444 0.0787
70 - - 0.1477 0.0926 0.1525 0.0845 0.1493 0.0745
80 - - 0.1497 0.0942 0.1531 0.0893 0.1491 0.0742
90 - - - - 0.1537 0.0909 0.1496 0.0754
100 - - - - 0.1511 0.0951 0.1489 0.0779
110 - - - - 0.1519 0.0948 0.1479 0.0846
120 - - - - - - 0.1510 0.0829
130 - - - - - - 0.1496 0.0860
140 - - - - - - 0.1501 0.0872

periments. The minimum is set to be 10 seconds, and the maximum is

determined according to the size of sliding window.

• Content-based Sliding Window: Define the start time of a sentence as T .

The size of a sliding window continues to increase by checking the start time

T ′ of the next sentence. If the time interval between T and T ′ is less than

the pre-defined window size, the sliding window increases by merging the

adjacent sentence. The process stops when merging an additional sentence

would cause the segment size to exceed the maximum allowed size. In this

experiment, we set the maximum window size to be 60, 90, 120, and 150

seconds.
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Table 4.7: Results of the time-based sliding window solution (TSW-W) for
ME14data. (The italic result is the best value achieved in Section 4.2.3, and
the bold result is the best result in this table.)

Size
60 90 120 150

Overlap MAP tMAP MAP tMAP MAP tMAP MAP tMAP
10 0.1269 0.0713 0.1252 0.0779 0.1117 0.0652 0.1128 0.0663
20 0.1355 0.0749 0.1299 0.0829 0.1234 0.0685 0.1220 0.0655
30 0.1379 0.0816 0.1341 0.0810 0.1267 0.0734 0.1244 0.0716
40 0.1391 0.0849 0.1372 0.0809 0.1337 0.0730 0.1301 0.0756
50 0.1401 0.0843 0.1384 0.0833 0.1340 0.0764 0.1346 0.0724
60 - - 0.1408 0.0841 0.1308 0.0749 0.1332 0.0769
70 - - 0.1421 0.0860 0.1349 0.0727 0.1376 0.0782
80 - - 0.1445 0.0872 0.1354 0.0712 0.1345 0.0775
90 - - - - 0.1336 0.0790 0.1393 0.0726
100 - - - - 0.1375 0.0779 0.1381 0.0792
110 - - - - 0.1415 0.0776 0.1378 0.0781
120 - - - - - - 0.1389 0.0766
130 - - - - - - 0.1347 0.0742
140 - - - - - - 0.1395 0.0711

Time-based Sliding Window

Tables 4.6 and 4.7 show experimental results using time-based sliding window

in terms of MAP and tMAP. In the remainder of this discussion section, we use

the ID in the format of “TSW-W-[Size]-[Overlap]” to represent the corresponding

run showed in Tables 4.6 and 4.7 . The runs TSW-W-120-40 in both collections

are defined in Section 4.2, and the corresponding MAP value is shown in italics

in both tables. The greatest MAP values for both collections are shown in bold.

In ME13data, the greatest MAP value is 0.1537, and the improvement is 2.4. In

ME14data, the greatest MAP value is 0.1445, and the improvement over TSW-

W-120-40 is 8.1%. The best tMAP values presented in both tables also increase.

The improvement rate is 3.9% (from 0.0875 to 0.0909) in ME13data, and 18.8%

in ME14data (from 0.0734 to 0.0872). Thus, we have an initial conclusion that
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Figure 4.2: Investigation into the size of target segments for ME13data

Figure 4.3: Investigation into the size of target segments for ME14data
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using proper parameters for the time-based sliding window can improve the

hyperlinking performance.

A research issue following the previous conclusion is whether we can deter-

mine the optimal parameters for the time-based sliding window solution. As two

parameters, the window size and overlap, are involved, we analyse the relation-

ship between them and the hyperlinking quality respectively. Firstly, we focus on

how changing the overlap affects the MAP values.

Figures 4.2 and 4.3 illustrate the relationship between the overlap and MAP.

Generally, when indicating the sliding window size, we can see that using a

larger overlap achieves greater MAP values. In most cases, using a larger overlap

can achieve an increasing MAP value compared to a smaller one. For example,

when assigning a window size of 120 seconds, using a 110 second overlap in

ME13data achieves MAP of 0.1519, which is greater than the one using 10 second

overlap, 0.1362. In ME14data, the run using a 110 second overlap with a 120

second window size has MAP of 0.1415, which is also superior to the one using a

10 second overlap, 0.1117. We admit that in some cases, using a larger overlap

decreases the hyperlinking quality. For example, the difference between TSW-

W-150-110 and TSW-W-150-100 is -0.001 (from 0.1489 to 0.1479). However, the

differences in MAP in these cases are statistically small. In conclusion, increasing

the overlap can improve hyperlinking performance. When indicating the sliding

window size, using a larger overlap can achieve better hyperlinking quality

in terms of MAP and tMAP. The best retrieval in terms of the MAP value in

ME13data is achieved with a 120 second window, while in ME14data, the greatest

MAP and tMAP values are achieved when using a 90 second window. All the

experiments demonstrate the poor effectiveness of using a small window size,

since a 60 second sliding window always has a relative lower result. Besides, the

experimental investigation illustrated in Figures 4.2 and 4.3 demonstrates the
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Table 4.8: Evaluated results of the content-based sliding window solution (CSW-S)
for ME13data and ME14data

RUN ID MAP tMAP RUN ID MAP tMAP
CSW-S-60-13 0.1418 0.0963 CSW-S-60-14 0.1408 0.0716
CSW-S-90-13 0.1609 0.1008 CSW-S-90-14 0.1505 0.0880
CSW-S-120-13 0.1504 0.0977 CSW-S-120-14 0.1486 0.0798
CSW-S-150-13 0.1485 0.0961 CSW-S-150-14 0.1459 0.0722

difficulty of indicating an optimal sliding window size for both ME13data and

ME14data.

By comparing the experimental results in Tables 4.6 and 4.7, we conclude that

there are no definitive answers given to determine the optimal sliding window

size using the time-based solution. The results in both tables agree that using a

60- or 150-second window cause decreasing hyperlinking performance, which

means the size of sliding window should be moderate. However, the experimental

investigation shows no evidence of the optimal size for the time-based solution.

Content-based Sliding Window

Table 4.8 presents experimental results using a content-based sliding window

(CSW-S). We use the ID in the format of “CSW-S-[threshold]” to represent the

corresponding run. The only parameter is the maximum size of the sliding win-

dow. The experimental results indicate that a 90-second threshold is better than

the other two values in terms of MAP and tMAP for both collections. Further-

more, we conclude that CSW-S is superior to TSW-W. In ME13data, the best MAP

of CSW-S is 0.1609, where the improvement is 7.2% over TSW-W-120-40-13. In

ME14data, the improvement is 13.9% over the corresponding TSW-W-120-40-14.

Experimental results also show the difference in the improvement between the

optimal results for CSW-S and TSW-W. In ME13data, the optimal MAP value

using CSW-S is 0.1609, which is higher than the one using TSW-W, 0.1537. In
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ME14data, the greatest MAP value using CSW-S is 0.1505, which is superior to the

one using TSW-W, 0.1445. Therefore, we conclude that when using appropriate

parameters, the CSW-S strategy is superior to the TSW-W in terms of MAP and

tMAP.

The aforementioned discussion shows that the TSW-W strategy failed to reach

an agreement on identifying the optimal sliding window size, while the results

shown in Table 4.8 indicate that the optimal window size for CSW-S is 90 seconds

for both collections. Comparing the experimental results described in Tables 4.6,

4.7, 4.8, we offer a suggestion on the range of segment duration:

• The size of a target segment should be moderate as demonstrated in Tables

4.6, 4.7, and 4.8. When assigning an overshort (60 seconds) or overlong (150

seconds) size to a target segment, the experimental results in these tables

show that the MAP value decreases compared with the best results achieved.

The best results occur when the segment size is set to be 120 seconds in Table

4.7, and 90 seconds in Tables 4.6 and 4.8.

• From Table 4.6, the following effect of increasing a sliding window size

can be observed. Firstly, the hyperlinking performance improves, and then

decreases. We notice that the difference between CSW-S-60 and CSW-S-90

is higher than that between CSW-S-90 and CSW-S-120 in both collections.

Moreover, the MAP value of CSW-S-150 is still higher than that for CSW-

S-60, although these values are lower than the greatest one achieved by

CSW-S-90. This means that the CSW-S strategy favours a larger window

size to determine the size of potential target segments.

• There is an optimal threshold to determine the segment size for the CSW-S

strategy, which is 90 seconds. It means that the CSW-S strategy is a better

method for the target segments whose size is between 60 and 90 seconds.
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Table 4.9: The number of created target segments created by various strategies
RUN ID No.Seg MAP RUN ID No.Seg MAP
TSW-W-90-10-13 98,280 0.1296 TSW-W-90-10-14 154,724 0.1252
TSW-W-90-80-13 525,966 0.1497 TSW-W-90-80-14 841,602 0.1445
CSW-S-90-13 752,712 0.1609 CSW-S-90-14 1,222,244 0.1505

Therefore, we suggest that the optimal threshold for the CSW-S strategy

should be around 90 seconds.

The previous discussion confirms the benefit of setting a larger overlap to

improve hyperlinking performance. The TSW-W strategy determines the number

of potential target segments by increasing the overlap between the adjacent

segments, while the CSW-S strategy involves no parameter to the size of overlap

between adjacent segments. In the other aspect, using each sentence as the header

of potential segments, this solution initially creates a large amount of potential

target segments. Table 4.9 shows the number of potential segments constructed

by three representative strategies whose segment duration is around 90 seconds.

Table 4.9 shows the number of created segments. In the previous experiments,

we illustrated that the best methodology in Table 4.9 is CSW-S-90 for both data

collections, and the MAP value of run TSW-W-90-10 is the lowest. For the method-

ology TSW-W-90, using a 80-second overlap creates more segments than using a

10-second one, and we regard it as the primary reason for its better hyperlinking

performance. The CSW-S strategy constructs a large number of potential segments

compared with all other strategies. It utilises the lexical information, the bound-

ary of spoken sentence, to identify the target segments. Its best performance in

both data collections further demonstrates that both factors, analysing lexical

information and creating sufficient target segments, are critical to multimedia

hyperlinking.
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4.3.3 Discussion

This section showed hyperlinking performance associated with two different

approaches to extract target segments. Experimental investigation revealed that

changing the strategy to determine target segment can influence hyperlinking

results. We conclude that: 1) using a larger overlap benefit the improvement of

hyperlinking performance by creating a large number of potentially interesting

segments; 2) using the analysis of spoken sentences provided by LIMSI improves

the hyperlinking performance; 3) the window size to determine potentially linked

segments should be moderate. In the remainder of this thesis, according to

these conclusions, we apply the content-based sliding window to extract target

segments from multimedia collections.

4.4 Determining the Optimal Parameters for BM25

Algorithm

All the previous experiments use the BM25 algorithm to index and retrieve spo-

ken information using the default parameters of k = 1.20 and b = 0.75. [BMI12]

suggests this default setting and comments that further optimising parameter

setting could improve the weighting quality of BM25. Thus, in this section, we

investigate the impact of BM25 parameter assignment on hyperlinking retrieval.

Our motivation is to select the optimal parameters k and b for spoken data re-

trieval on ME13data and ME14data and apply this conclusion to the experimental

investigation in the following chapters.

4.4.1 Experimental Investigation

The experiments use the content-based sliding window solution to retrieve spoken

information. Results for the default BM25 settings obtained in early experiments
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Figure 4.4: Hyperlinking performance using different BM25 parameters in
ME13data

are shown in Table 4.8 (RUN ID: CSW-S-90-13 and CSW-S-90-14). k is typically

found to be a float value which is greater than 0.0, and b is be defined as 0.0 ≤

b ≤ 1.0. A grid search mechanism is applied to configure the optimal values of k

and b. We choose a set of variables for k and b respectively. Hyperlink retrieval

is designed according to the CSW-S strategy proposed in the previous section.

BM25 parameters for the experiments are formed by assembling a set of possible

combinations of k and b. The remainder of this section shows how the MAP

values changes when utilising these combinations.
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Figure 4.5: Hyperlinking performance using different BM25 parameters in
ME14data

Figures 4.4 and 4.5 show hyperlinking retrieval using a content-based sliding

window with various parameters for the BM25 algorithm. Each figure uses

multiple colour levels to represent MAP values, from highest (red) to lowest

(blue). In Figure 4.4, the optimal value of k is between 1.50 and 2.00 with b = 0.5.

Setting k = 1.75 and b = 0.5 achieves the best MAP value of 0.1640. In Figure

4.5, the optimal value of k is between 1.50 and 2.25 and b = 0.5. The highest

MAP value is 0.1546 when k = 2.00 with b = 0.5. The runs have agreement on an

optimal value b = 0.5. However, there is some divergence on the optimal value of

k. Based on the two sets of results, we suggest that k should be set between 1.75

and 2.00.

In Section 4.2, we demonstrated that using the default parameter assignment,

BM25 algorithm produced results superior to the TF-IDF algorithm for our hyper-
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linking task. The current experimental results show that inappropriate parameter

settings for BM25 algorithm can cause a decrease in results, with the values ac-

tually lower than those using the TF-IDF model. For example, when applying

k = 4.00 and b = 1.00 for ME13data, the MAP value is 0.1052, which is lower than

the worst MAP value (0.1257) presented in Table 4.2.

In conclusion, determining the optimal parameter for the BM25 algorithm

is necessary for hyperlinking retrieval on spoken information. We found that,

for BBC TV collections in hyperlinking, the optimal k can be arranged between

1.75 and 2.00 and the optimal b is around 0.5. In future experiments, considering

that hyperlinking results using ASR transcripts can be seen as a baseline for

multimodal feature analysis, we define k = 2.00 and b = 0.5 to implement the

BM25 retrieval model for the ASR component.

4.5 Chapter Conclusion

In this chapter, we investigated the implementation of a hyperlinking framework

using only text features. Our research concentrated on: 1) determining effective

text-based indexing and searching methods to construct hyperlinks using spoken

data; 2) investigating different strategies to identify potential target segments;

and 3) indicating an optimal parameter setting for the BM25 retrieval model.

In Section 4.2, we compared two IR models to retrieve spoken information, TF-

IDF and BM25. A hyperlinking framework was implemented by using the time-

based sliding window with ASR transcripts (LIMSI and LIUM). Hyperlinking

results show that using the BM25 model achieves better retrieval results than

using TF-IDF model. ASR transcripts produced by the LIMSI algorithm give a

better description of spoken information. The experiments in Section 4.4 show that

the BM25 model is superior to the TF-IDF when choosing appropriate parameters.

Experimental results showed that a reasonable range of parameter settings for
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BM25 is k = [1.75, 2.00] and b = 0.5. Based on this finding, we determined to

use these parameter settings for future experiments as k = 2.00 and b = 0.5.

This conclusion is important because it allows us to concentrate on investigating

other hyperlinking strategies with respect to using the BM25 algorithm on LIMSI

transcripts in the remaining experiments.

Experiments investigated multiple strategies to extract potential target seg-

ments. Segment extraction methods were divided into two categories: using

a time-based or content-based sliding window. To determine the appropriate

parameters in different methods, a set of experiments was proposed. Evaluation

results reveal that the window size and overlap between adjacent segments are

both critical to improve hyperlinking retrieval. A large overlap has the advantage

of covering sufficient multimedia information and decreases the chance of missing

potentially relevant information. We conclude that the CSW-S strategy can create

a huge number of potential target segments, and achieves a slight improvement

in terms of MAP compared those using TSW-W.

The retrieval quality is not absolutely proportional to the increase of the

window size. The TSW-W strategy failed to reach an agreement on the optimal

sliding window size for both data collections. Experimental results in ME13data

illustrate that a 120 second window achieved the greatest MAP value, while

the conclusion changed to 90 seconds in ME14data. Therefore, we carried out a

further investigation using other strategies. Experiments involving CSW-S whose

duration limits were set to be 90 seconds achieved the best performance. We

conclude that TSW-W can provide an untrustwrothy conclusion by segmenting

the video stream without consideration of semantic information. Besides, the

experiments show that a target segment should be moderate. We recommend 90

seconds as a reasonable threshold for the remainder of this thesis.

Also, the results indicate that the content-based sliding window improves the

hyperlinking performance compared with time-based sliding window methods.
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The former indicates potential target segments with a varying window size. In

the experiment, content analysis is implemented in terms of extracting spoken

sentences. Analysis of the experimental results shows that content-based analysis

applied on spoken sentence (CSW-S) achieves the best performance for anchor-to-

segment hyperlinking.

The contributions of the chapter are: 1) it showed how a segment-based

hyperlinking framework is constructed. The experimental investigation used a

complete hyperlinking process including target segment identification, segment

indexing and searching. Different metrics to evaluate hyperlinking performance

were presented. This process is also applied to future experiments in the thesis;

2) using text features, we propose how to identify the potential target segments.

Experimental investigation shows that using lexical information can improve

the quality of identifying target segments, and we apply this conclusion to the

remaining experimental chapters.

The investigation described in this chapter only considers spoken information

and ignores other multimodal features. When watching a video, the user’s senses

are guided by not only what they hear but also what they see. Thus, it is an essen-

tial research topic of how to efficiently involve multimodal features, especially

visual features, to improve hyperlinking performance. Using multimodal features

to provide a better hyperlinking service is the focus of the next chapter.
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Chapter 5

Investigation on Multimodal

Hyperlinking

5.1 Chapter Overview

The previous chapter focused on investigations of using ASR transcripts in our

hyperlinking system. However, fully realising the value of the increasing number

of multimedia archives available online requires users to engage in exploratory

search behaviour to find content associated with multimodal features. To facil-

itate this, hyperlinks should be constructed based on the semantic information

described by the text or visual contents of the archive. We expect that richer and

more semantically meaningful hyperlinks formed using multimedia features can

improve the user browsing experience by enabling enhanced navigation and rec-

ommendation. Thus, this chapter examines the creation of multimedia hyperlinks

using spoken information in combination with other multimodal features. The

primary goal of this study is to address the following research questions:

• RQ 3: How do other multimodal features except textual influence hyper-

linking retrieval?
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Figure 5.1: An overview of research design

• RQ 4: Can we improve data fusion strategies to integrate multimodal fea-

tures for both ME13data and ME14data?

The chapter is structured as follows: Section 5.2 introduces our hyperlinking

strategy using low-level visual descriptors; Section 5.3 describes our hierarchical

hyperlinking model using high-level concepts; Sections 5.4 and 5.5 explore multi-

modal feature fusion in the creation of multimedia hyperlinks; and Section 5.6

concludes the chapter.

For readers’ convenience, we propose Figure 5.1 and Table 5.1. Figure 5.1

illustrates a global view of experimental design proposed in this chapter, and

Table 5.1 shows the acronyms of multimodal features and research methodologies.

Reader can have a global view of our experimental design proposed in this chapter

and a reference to check the acronyms in each experimental discussion.
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Table 5.1: Acronyms in experimental investigation
Abbreviation Description
ASR LIMSI Transcript, content-based sliding window, BM25 weighting

the window size is 90 seconds and the overlap is 30 seconds
CH HSV colour histogram, correlation kernel
ORB ORB descriptor, BoVW model, TF-IDF weighing
M the video metadata as the video-level feature
C the Oxford Concepts as the video-level feature

5.2 Hyperlinking using Visual Features

When watching video material, a user’s interest is not only in what they can

hear but also what they can see. This means that visual features are important to

hyperlinking systems by representing what users see in this video. For this reason,

it is essential to investigate the use of visual features in multimedia hyperlink

construction. Chapter 2 introduced the classification of visual features as low-level

and high-level. This section examines the use of two low-level visual features:

HSV colour histogram and Oriented FAST and Rotated BRIEF (ORB) descriptor

in hyperlink construction. We next present a detailed description of how to

implement visual similarity analysis based on the video keyframes.

5.2.1 Low-level Visual Features

Colour Histograms

To explore the use of colour histogram in visual hyperlink construction for the BBC

TV data collections (ME13data and ME14data), we apply colour histogram feature

extraction using the HSV space introduced in Chapter 2 to process keyframes

extracted from each shot in the video. Colour histograms have several advantages

for image processing. The extraction algorithm is easily implemented and low-

cost. When processing TV data, colour information can be used to recognise

efficiently those images (keyframes) which share similar chromatic information.
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A disadvantage of the colour histogram as a low-level feature is the lack of spatial

information associated with simple colour bins. To address the weakness, we use

a method that incorporates a spatial pyramid representation of video keyframes.

Each keyframe is divided into 1×1, 2×2, and 4×4 grids. colour histogram analysis

is applied to each grid to create a feature vector V . Each value v in this feature

vector V is in the range [0, 255].

There are multiple kernels to calculate the similarity between two colour

histograms H1 and H2. To calculate the similarity score between two colour

histograms, we use a kernel known as Correlation according to [CRM03, CEJO14],

shown in Equation 5.1 and 5.2:

score(H1, H2) =

∑K
i=1(H1(i)−H1)(H2(i)−H2)√∑K
i=1(H1(i)−H1)2(H2(i)−H2)2

, (5.1)

Hj =
1

K
·

K∑
i=1

Hj(i), (5.2)

where H1 and H2 represent two HSV histograms in vectors, and Hj(i) means the

ith descriptor in Hj . The length of the HSV vector is K which is determined by

the space channels and the level spatial pyramid. In this thesis, the level of spatial

pyramid is 3 (1×1, 2×2, and 4×4), the number of channels in the HSV space is 3,

and the length of the HSV vector in each channel is 256. Thus, in this thesis, the

value of K is 16,128 for each keyframe ((1 + 2× 2 + 4× 4)× 3× 256).

Oriented FAST and Rotated BRIEF

The bag-of-visual words model (BoVW model) is widely applied to index and

retrieve low-level visual descriptors in computer vision analysis [SZ03, SZ06,

YJHN07]. Chapter 2 reviewed various low-level visual descriptors and the

methodology to create a BoVW model from these descriptors. In the BoVW

model, each image is represented by a sparse vector consisting of visual words
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according to the occurrence of feature descriptors in the vocabulary. To create

a BoVW model, we need to define: 1) what kind of low-level feature is used to

represent the local features of keyframes; 2) how to build the vocabulary in terms

of all the visual descriptors.

In Chapter 3, we explained that both ME13data and ME14data have a large

number of video files (2,323 videos in ME13data and 3,520 in ME14data). It is

obvious that a feature recognition algorithm will need to process a large number

of potentially linked keyframes. Thus, a decision is required to balance the

computing cost and the efficiency of feature annotation. Thus, we selected the

Oriented FAST and Rotated BRIEF (ORB) descriptor introduced in Chapter 2 to

describe the low-level features in video keyframes.

A strategy to create a visual vocabulary is to apply K-means algorithms to clus-

ter K cluster points on existing visual descriptors. Each cluster centre represents

a visual word. An open issue is how to determine efficiently the number of visual

words (cluster centres) K. Chapter 2 reviewed some strategies to identify the

optimal K experimentally. In this thesis, we apply the conclusion from [PCI+07],

which suggested that K=20,000 is a reasonable value for the vocabulary size in

multimedia information retrieval.

The procedures to index and retrieve ORB descriptors using the BOVW model

are as follows.

• Use the ORB algorithm to detect visual descriptors in each keyframe. The

algorithm is implemented using OpenCV ORB API1 (Open CV Version 3.0.0).

A 1,000×32 matrix is generated to represent 1,000 ORB descriptors for each

keyframe.

• Two vocabularies are created one for each of ME13data and ME14data

respectively. In each collection, 1,000,000 ORB descriptors are randomly

1http://docs.opencv.org/trunk/doc/tutorials/features2d/akaze tracking/akaze tracking.html
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picked for K-means clustering to concentrate K centre points (visual words

in the vocabulary). K is assigned to 20,000.

• The ORB descriptors in each keyframe are matched to the corresponding

vocabulary to detect the visual words. The FastANN algorithm [ML09] is

used to accelerate the matching process.

• Removing stop words is an open issue for the BoVW model. Text-based

retrieval has showed that removing the words with high frequency occur-

rence of in the data collection is critical to improving retrieval performance.

[SZ03] applied a similar strategy to improve the quality of visual word

indexing and searching. This paper suggests that visual words with high

term frequency are less representative, and can be regarded as “visual stop

words”. In this thesis, we apply the same strategy proposed in [SZ03] to

create the visual stop word list that involves all the visual words at top 5%

of term frequency.

• Apache Lucene is used to index and search the visual terms. The TF-IDF

model is used to calculate the similarity score.

5.2.2 Experimental Investigation

This section describes our experimental investigation using low-level visual fea-

tures. The strategies include: 1) combining the hyperlink results retrieved by

spoken transcripts with low-level visual features; 2) using the low-level visual

features to rerank the top R results retrieved by the spoken transcript.

Combining Visual Features using Late Fusion

The experiment aims to create hyperlinks using the low-level visual features intro-

duced in the previous section. The HSV colour histograms and ORB descriptors
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using BoVW model are used to calculate the similarity scores. Experiments are

conducted using both BBC TV collections, ME13data and ME14data. To identify

target segments, we use the content-based sliding window solution introduced in

Chapter 4 on LIMSI transcripts for both data collections.

The BM25 algorithm is used for content indexing and searching, with the

parameter k = 2.00 and b = 0.5 following the conclusions presented in Section

4.3. Retrieved results using only spoken transcripts are defined as the baselines,

named as ASR-13 and ASR-14 respectively.

The image at the middle time of a target segment or query anchor is selected

as the corresponding keyframe. The following experiments are designed to inves-

tigate whether applying visual features can improve hyperlinking performance.

Table 5.1 shows the hyperlinking strategies associated with the corresponding

abbreviations. The CH and ORB results are retrieved according to Section 5.2.

Runs using ME13data and ME14data are suffixed with the terms “13” and “14”

respectively.

Data fusion integrates the hyperlinking results retrieved by the low-level

visual descriptors with those retrieved by ASR transcripts. The following equation

describes the CombSUM strategy to fuse multiple features according to Equation

2.1:

Scorefuse(q, sj) =
∑

wi · Scorei(q, sj), (5.3)

where wi is the fusion weight for the ith multimedia feature, which can be spoken

transcripts, colour histograms, or ORB descriptors. Each feature i achieves a

normalised ranking score Scorei(q, sj) with respect to the query q and segment

sj . The ranking score is normalised according to the MinMax method outlined

in Equation 2.5. In this section, all fusion weights are set to be the same weight
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Table 5.2: Evaluating hyperlinking retrieval using low-level visual features for
ME13data

RUN ID Linked Feature Fused Feature MAP tMAP
ASR-13 ASR N/A 0.1631 0.0969
CH-13 CH N/A 0.0507 0.0316
ORB-13 ORB N/A 0.0652 0.0355
ASR-CH-13 ASR CH 0.1377 0.0912
ASR-ORB-13 ASR ORB 0.1462 0.0914

Table 5.3: Evaluating hyperlinking retrieval using low-level visual features for
ME14data

RUN ID Linked Feature Fused Feature MAP tMAP
ASR-14 ASR N/A 0.1546 0.0880
CH-14 CH N/A 0.0314 0.0240
ORB-14 ORB N/A 0.0428 0.0250
ASR-CH-14 ASR CH 0.1318 0.0660
ASR-ORB-14 ASR ORB 0.1282 0.0648

(wi = 1) for each feature, assuming an equal priority to determine multimedia

content2.

Tables 5.2 and 5.3 show a detailed comparison between the hyperlinking re-

sults using low-level visual features for ME13data and ME14data. From these

results, it can be seen that hyperlinking results using only ASR transcripts perform

better in terms of MAP and tMAP metrics, than those using low-level visual fea-

tures (CH and ORB) in isolation or in combination with ASR transcript runs. This

shows that when considering a single multimodal feature, spoken information

has a higher effectiveness than low-level visual features when combined using a

simple data fusion scheme.

In general, spoken information, colour histograms or ORB descriptors can be

regarded as low-level features since they are directly extracted from multimedia

resources. The latter two explain potentially relevant information in terms of

computer vision rather than human recognition. [Yan06] pointed out that rather

than the features explained in computer vision, users prefer to use those features

2The optimisation of fusion weight is introduced in the later sections of this chapter.
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reflecting human cognition when searching or browsing multimedia resources.

Colour histograms concentrate on detecting the background or objects sharing

similar chromatic information, and ORB descriptors using a BoVW model detect

the variance of low-level features. The experimental results illustrate that low-

level visual descriptors can fail to describe cognitive information in a video shot.

Users could regard two segments sharing the same news reporting room as

relevant, meanwhile they both show a blue wall as the background. However,

indicating the low-level feature “blue” is different from the cognitive information

“a news reporting room with blue background”.

As noticed above, fusing visual low-level feature results with ASR transcripts

decreases the hyperlinking performance. According to [CEJO14], low-level fea-

tures, although lacking cognitive recognition, can perform as a complementary

to spoken information. This decrease performance could be caused by the use of

the equal fusion weights. An assumption that multimodal features are equally

important to contribute hyperlinking performance is apparently insufficient. Fur-

thermore, our previous research [CEJO14] pointed out that applying a re-ranking

strategy, even with an equal fusion weight, can significantly improve the hyper-

linking performance, which is the central topic of the following section.

Re-ranking Strategy

As reported in [CEJO14], a re-ranking strategy can be a simple and efficient

methodology to improve multimodal-based hyperlinking. The strategy is: 1)

create the initial retrieval list using spoken transcripts; 2) extract the corresponding

low-level visual features; and 3) use late fusion to rerank the top R results by

combining the similarity score achieved by low-level visual features and spoken

transcripts. In this section, we investigate how this re-ranking algorithm performs

in both ME13data and ME14data. The strategy uses low-level visual features to

re-rank top R hyperlinking results retrieved by using ASR transcripts, where R is
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set to be 10, 20, 30, 40, 50, 100, and 200. Fusing multimodalities is implemented

using Equation 5.3, where the fusion weight wi is set to be equal (wi = 1).

To illustrate the retrieval quality of the re-ranking algorithm, Figure 5.2 shows

re-ranked results (RK10 to RK200) associated with the baseline. The experimental

results are inconclusive whether the re-ranking algorithm can improve hyper-

linking performance. In the ME13data collection, the MAP and tMAP values

increase at each re-ranking level and achieve the best result when re-ranking

top 100 linked items. The best results achieve only 3.2% improvement over the

baseline in terms of MAP (from 0.1631 to 0.1683). While for the ME14data, we

observe that most results decrease compared with the corresponding baseline.

The only increase of MAP for re-ranking of the top is from 0.1546 to 0.1548, but

only 0.002 improvement can not demonstrate that the re-ranking strategy works

in ME14data. In conclusion, it is clear from these results that this approach to

re-ranking is an unstable strategy for improving hyperlinking quality.

Numerous factors influence a re-ranking method for hyperlink retrieval. One

of them is the quality of initial retrieval using ASR transcripts. Figure 5.3 shows

the results in terms of MAP value for ASR-13 and ASR-14. It is clear that the

retrieved MAP values for ME14data have a much larger variation than those for

ME13data. For ME14data, 11 out of 30 queries achieve a very low MAP value,

whose values are less than 0.05. The motivation for re-ranking the top R initial

retrieved results is based on assigning relevant documents a higher rank based on

other features. The effectiveness of a re-ranking algorithm, however, is obviously

premised on the quality of initial retrieval. We speculate that the poor quality of

retrieved results using spoken transcripts for ME14data is a critical factor in the

unstable re-ranking of the results.

On the other hand, we should note that using equal weights for re-ranking

fails to take into account the variance of multimodal features into account. In
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(a)

(b)

Figure 5.2: Apply re-ranking algorithm (top 200) to fuse low-level features and
ASR transcripts. (RK[R]: re-ranking top R results for (a) ME13data and (b)
ME14data.

95



Figure 5.3: Hyperlinking performance for the initial retrieval for ME13data and
ME14data

Table 5.2 and 5.3, the illustrated results show that spoken information is superior

to low-level visual features in reflecting the cognitive sense of users in describing

multimedia content. This means that spoken information should be dominant in

multimodal fusion. Mathematically, the fusion weight for ASR transcripts should

be larger than that for low-level visual features. Thus, to improve the re-ranking

strategy for multimodal hyperlinking, we need to explore a strategy to assign an

optimal weight for each multimodal field in the data fusion process.

5.2.3 Discussion

In this section, we have investigated the use of low-level visual features for

hyperlink retrieval on the BBC TV data collections. Our methodologies included:
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• Generate colour histograms to describe colour space information within the

keyframes extracted from query anchors and target segments. Anchor-target

similarity was determined using a correlation kernel.

• Extract ORB features to represent low-level visual descriptors shared by sim-

ilar objects within keyframes. The BoVW model was applied to implement

descriptor indexing and retrieval.

Experiments revealed that using only low-level features achieved relatively

low hyperlinking quality, compared with the baseline using spoken information.

The ineffectiveness of low-level features for hyperlink creation reveals that using

multimodal features representative of cognitive information is important to search

for potentially relevant links. The superiority of spoken information implies that

when watching video shots, users prefer to understand the content from what

they have heard. Thus, audio track information is critical for human annotation of

the relevance of video shots. On the other hand, low-level visual features, lacking

cognitive description, show a low effectiveness for retrieval relevant hyperlinks.

Next, we applied late fusion to integrate low-level visual features and spoken

information. The previous experimental investigation showed worse results for

both ME13data and ME14data. We believe that the primary reason for this is that

we applied equal fusion weights to integrate multimodal features, which failed

to reflect the diversity of the utility of the multimodal features for describing the

relevant content.

Finally, we introduced a re-ranking strategy using late fusion. Results in Figure

5.2 show that this strategy improves hyperlink creation for ME13data, while for

ME14data, the proposed solution did not achieve better performance. We believe

that using equal fusion weights is again one of the reasons for the ineffectiveness

of the re-ranking strategy for ME14data. A further experimental investigation

also revealed that another factor was poor quality initial retrieval.
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In conclusion, experimental investigation in this section suggests that the rest

stage of our research on multimodal feature analysis for hyperlink creation should

focus on:

• Use of multimodal features which are representative of cognitive informa-

tion for a video shot.

• Optimisation of the combining weights for late fusion.

• Improving the initial results retrieved by spoken transcripts.

In the next section, we aim to use high-level features to improve hyperlinking

performance. A further investigation is carried out on how to estimate linear

fusion weights, and how to enrich the query content to increase the quality of

initial retrieval for re-ranking.

5.3 Hierarchy Hyperlink Model

The previous section concluded that low-level visual features lacked represen-

tation of cognitive concepts. This section endeavours to improve hyperlinking

retrieval using high-level features which describe cognitive information in mul-

timedia resources. A hyperlink model, referred to as hierarchy hyperlinking, is

proposed. The experimental investigation compares performance of our new

hierarchy hyperlinking strategy with the previous investigations.

5.3.1 Segment-level and Video-level Features

Chapter 2 described the effectiveness of the summary information in multimedia

retrieval. In this section, we use the summary information of the BBC TV collection

to carry out the hyperlink retrieval. We assume that a target segment could

be relevant to the video where this segment exists. In contrast with a video
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segment, an entire video contains abundant information, including complete

transcripts, metadata, or other semantic concepts. Therefore, we classify the

multimedia features used in the hyperlinking system into two categories, referred

to as segment-level and video-level.

All low-level features introduced in previous part of our investigation are

segment-level, including the ASR transcripts, HSV colour histograms, and ORB

descriptors. The identification of target segments determines what segment-level

features are used and finally determines the hyperlinking quality. Video-level

features, in contrast, are created by summarising the whole video stream, and

are independent of the variance of target segments extracted from the video

stream. Thus, all the target segments located in a video share the same video-level

information. The following sections introduce two video-level features that can

be extracted from the BBC TV collections.

Metadata

Our BBC TV collections provide manually annotated metadata for each video. The

metadata consists of text descriptions of each video attributes, including its title,

release date, coding information, and a brief description of the content. All the

information is associated with the whole video, and therefore, can be considered

as video-level features. In this thesis, we use the “description” information in the

metadata to indicate a description of the actual video content. For our experiments,

we use Apache Lucene to index and search metadata. Text analysis in metadata is

applied according to the experimental hypothesis proposed in Section 3.4.4. The

weighting model for indexing and searching is BM25, following the conclusion in

Section 4.4.
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High-level Concepts

The algorithm to create high-level concept is provided by the Vision Group at

University of Oxford according to [CLVZ11]. A new high-level concept collection

was created for the MediaEval Search and Hyperlinking task3. It contained a

set of concept detector scores for 589 concepts in the video streams [CLVZ11].

The detectors were trained by downloading positive images from Google Images

and learning their differences among negative images in the dataset using the

libLinear toolkit [FCH+08]. We use the strategy proposed in [CEJO14, CJO13] to

create a concept vector for each video. This strategy extracts all labeled keyframes

within a video. Each concept value is determined by selecting the maximum value

among those labeled keyframes. Thus, each video is represented by a concept

vector. Cosine similarity is applied to calculate the similarity score between these

concept vectors.

5.3.2 Use Hierarchy Hyperlinking Model

In the previous experimental investigation, the matching score between video

segments (query anchors and target segments) was determined directly by the

comparison of their segment content. The process was illustrated in Figure 5.4.

To improve the hyperlinking quality, we propose an assumption: if a complete

video is relevant to a query anchor, a target segment extracted from this video

may be relevant to this query anchor. According to this assumption, a hierarchy

hyperlink model divides the hyperlinking process into two steps. The first step

is video-level searching. The video-level features are used to index and retrieve

relevant complete videos whose scores represent the possibility that one or more

related segments is contained within the video. The second step is segment-based

hyperlinking. The hyperlinking framework seeks to identify potentially relevant

3The Search and Hyperlinking task uses the BBC TV collection.
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Figure 5.4: The segment-based hyperlink model

Figure 5.5: The hierarchy hyperlinking model

target segments within each video. The similarity score again is determined by

the comparison of segment-level features extracted from the query anchor and

the available target segments. Figure 5.5 illustrates this hierarchy hyperlinking

strategy.

We propose to use a data fusion method to combine the video-level and

segment-level hypotheses. Our combination method proceeds as follows. Define

the target segment seg. The function Video(seg) indicates the video where a target

segment seg is located. Rv represents the retrieval list of video-level search and

Rs is the retrieval list of segment-based hyperlinking. A fused score Scorehierarchy

of the target segment seg is defined as:
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Scorehierarchy(seg) = Fusion Function(Rv(Video(seg)), Rs(seg)), (5.4)

where Rv(Video(seg)) returns the score of the video containing the current target

segment seg in the video-level searching results, and Rv(seg) returns the score of

seg in the segment-level linking results. Using linear fusion, Equation 5.4 can be

expressed as:

Scorehierarchy(seg) = wv ·Rv(Video(seg)) + ws ·Rs(seg), (5.5)

where wv and ws are the fusion weights for video-level and segment-level ranked

lists respectively. The ranking position of a linked segment is determined accord-

ing to Scorehierarchy.

Equation 5.5 raises a fundamental research issue for the hierarchy hyperlink

model: how to set suitable fusion weights. Multimodal features can have different

contributions to effective multimedia hyperlinking. The hierarchy hyperlinking

model needs to consider the diversity of video-level and segment-level features.

This means that optimising the linear fusion weights is essential to our research.

Our experimental investigation aims to address this issue in two steps. Firstly, in

this section, our research focuses on whether the hierarchy model can improve

hyperlinking performance with equal fusion weight. The experimental results

are compared with those presented in the previous section. Our motivation is to

investigate which features, segment-level or video-level, are more complemen-

tary to spoken transcripts when using a simple fusion strategy (equal weights).

Secondly, in Sections 5.4 and 5.5, we investigate a strategy to determine the most

suitable fusion weights to combine segment-level and video-level features.
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Table 5.4: Hyperlinking retrieval using hierarchy hyperlinking
RUN ID MAP tMAP
ASR-13 0.1631 0.0969
ASR-M-13 0.2219/+36.05% 0.1181/+21.88%
ASR-C-13 0.1925/+18.03% 0.1081/+11.56%
ASR-14 0.1546 0.0897
ASR-M-14 0.2465/+59.44% 0.1159/+29.20%
ASR-C-14 0.2186/+41.40% 0.0934/+4.13%

5.3.3 Experimental Investigation

The experimental investigation in Section 5.2 showed that the spoken transcript

is superior to other two segment-level features (colour histograms and ORB de-

scriptors). Therefore, we use only spoken transcripts to perform segment-level

hyperlinking. Table 5.1 lists the abbreviations used for the different experiments.

We use Equation 5.5 to fuse video-level and segment-level features. Our motiva-

tion is to compare the hyperlinking results using the video-level features with the

previous investigations. Thus, the fusion weights wv and ws are set to be equal

(wv = 1, ws = 1). In the later sections, we will carry out a set of strategies to

improve the estimation of fusion weights.

According to Table 5.4, the results using the hierarchy hyperlink mode (ASR-M

and ASR-C) are better than the corresponding baselines (ASR) in terms of both

evaluation metrics (MAP and tMAP). For the ME13data, the lowest improvement

of MAP over the baseline is at least 18.03%, and the best is 59.44%. For the

ME14data, the lowest improvement of MAP over the baseline is 59.44%, and the

best is 41.40%. We can also observe improved tMAP values of ASR-M and ASR-C

for both collections. Both video-level features can contribute better hyperlinking

performance, even using equal weights on the linear fusion scheme. Thus, we

conclude that the hierarchy hyperlink model using the video-level features can

improve hyperlinking performance.
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Table 5.4 shows that RUN ASR-M-13 and RUN ASR-M-14 achieve the greatest

MAP values for the ME13data and ME14data. Recall that metadata information is

manually created by the BBC, while Oxford visual concepts use spoken data and

visual descriptors to build the concept dictionary automatically. It is obvious that

human annotation can describe cognitive information of multimedia resources

more accurately for a relevance determination. According to this experimental in-

vestigation, we conclude that hyperlinking retrieval using metadata outperforms

those using visual concepts.

Figure 5.6 and 5.7 illustrate how the video-level features improve hyperlinking

performance in terms of MAP on an individual query anchor. The figure shows

the MAP values of all queries for both collections. The subfigure shows the

improvement in each case between each query and its corresponding baseline. In

Figure 5.6, 17 queries (21 queries in total) have increased the MAP values when

fusing the metadata, and the greatest improvement is 0.2421 at Query-18. A total

of 15 queries increase their tMAP values by fusing the visual concepts, and the

best improvement is 0.2044 at Query-10. In Figure 5.7, 25 queries (30 queries in

total) increase the MAP values by fusing the metadata, and the best improvement

is 0.7075 at Query-16. A total of 25 queries increases the tMAP values by fusing

the metadata with the best improvement of 0.4304 at Query-7.

It is obvious that the video-level features are more effective than the spoken

transcripts to satisfy user requirements for hyperlinking. We take two examples,

Query-13 and Query-16 in the ME14data, to describe the influence of video-level

features on hyperlinking performance. The duration of the Query-16 is 83 sec-

onds with 353 words in total. After removing the stop words, the query content

contains 74 words including “India”, “China”, “camera”, “natural”, “train”, etc.

This large number of words is still insufficient to represent the narrative of the

video segments. The metadata describes the video as “Alesha Dixon looks at
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(a)

Figure 5.6: Hierarchy hyperlinking performance on each query anchor for
ME13data
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(b)

Figure 5.7: Hierarchy hyperlinking performance on each query anchor for
ME14data
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the airbrushing of magazine photo”. According to the crowdsourcing evalua-

tion, most ground truth segments (21 out of 23) contain the keywords “Alesha

Dixon” (person name) and “magazine photo” or similar concepts. Without the

assistance of metadata, some linking results are shifted to other topics relevant to

an introduction to China. It demonstrates that the video-level features have the

advantage to provide essential keywords extracted from ASR transcripts. Thus,

the results are improved by avoiding shifting to other irrelevant topics.

The video-level features improve most hyperlinking queries, however, with

some exceptions. For Query-13, both solutions, using the metadata and visual

concepts, decrease the performance of hyperlinking results. The duration of the

query anchor is only 15 seconds, and the keywords include “aircraft”, “carriers”,

“transforming Britain’s ability to operate in hostile waters”, etc. The metadata

information is: “Start the day with the latest news, sport, business and weather

from the BBC’s Breakfast team”. The video is the BBC Breakfast News, and

the query segment talks about the reports of British military force. Using the

metadata, most linked video shots point to target segments relevant to BBC

breakfast news. These segments cover various topics that are quite different from

“British military reports”. Additionally, the visual concepts provide less assistance

in improving hyperlinking performance. Spoken information containing specified

keywords represents what users expect when watching this query video shot, and

the hyperlinking results demonstrate this point.

5.3.4 Discussion

In this section, we introduced a novel hierarchy hyperlink model using video-

level features. We investigate the use of two sources of video-level features:

manual metadata and high-level visual concepts. A linear late fusion model, and

equal fusion weights was used to combine matching scores from these sources
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(video-level features). Following the positive results of our earlier experimental

investigations, the experiments in this section used only ASR transcripts for

matching at the segment-level.

Experimental investigation demonstrated that even using equal fusion weights,

the hierarchy hyperlink model achieves better performance than our earlier ex-

periments using only spoken transcripts for both ME13data and ME14data. We

conclude that both features, the metadata and visual concepts, are effective at

representing the potentially relevant information between those videos containing

a query anchor and linked target segments. The experimental investigation also

showed that when matching related videos, the metadata is superior to the visual

concepts. We believe that the manually created nature of the information of the

metadata by media professionals is the primary reason for this.

The experimental investigations in previous sections used a linear fusion

model to combine segment-level and video-level features. As assuming that

different features extracted from multimedia sources equally benefit hyperlink

creation neglects the consideration of user preference when determining the

relevance between a query anchor and a potentially linked segment. Thus, the

remainder of this chapter will be focused on investigating the impact of varying

linear fusion weights for combination of multimodal features or for the creation of

relevant hyperlinks. Our methodologies use both supervised and unsupervised

solutions to address the following questions: 1) can optimising the combining

weights of late fusion improve hyperlinking retrieval; and 2) can the video-level

features be superior to the segment-level features even after optimising the fusion

weights?
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5.4 Fusion Weight Estimation - A Supervised Solu-

tion

This section describes our investigation into multimodal fusion for hyperlinking

performance using a supervised approach. The key issue examined here is the

estimation of combination scores of the late fusion scheme is still an open issue.

In the MediaEval hyperlinking task, significant training data for the BBC TV

collection was not available until MediaEval 2014, when the workshop organisers

released a training set based on the MediaEval 2013 experimental dataset. The

availability of this training set encouraged further investigation of multimodal

fusion analysis using supervised learning algorithms [CJO14].

Our research using a supervised approach concentrates on the use of machine

learning algorithms to estimate late fusion weights for the different modalities.

Our methodology is based on the theory presented in [MLD+14], where the

authors pointed out that estimating fusion weights is equivalent to finding a

linear axis that best separates the relevant and non-relevant documents in the

ground truth dataset. The authors used Linear Discriminant Analysis (LDA)

[YJL04] to estimate late fusion weights for multimodal features. Accoding to

[MLD+14], we select LDA for the following reasons:

• LDA requires no estimation of parameters to build linear separation be-

tween relevant and irrelevant documents [MLD+14], which reduces the

computation cost.

• [MLD+14] demonstrated the effectiveness of LDA in fusing textual and vi-

sual features in ImageCLEF collections4, and our investigation has a similar

target - fusing multimodal features in multimedia collections.

4http://www.imageclef.org/2009

109



In [CJO14], we applied LDA to determine the fusion weights between the meta-

data and ASR transcripts. The results confirmed that applying the LDA algorithm

to fuse metadata and ASR transcripts achieved better results than the baseline,

which used the spoken information (LIMSI transcripts) to link target segments.

However, our research provided no evidence to show whether using supervised

learning algorithms can effectively estimate multimodal fusion weights, com-

pared with a relatively simple solution using equal fusion weights. In this section,

we investigate whether using a supervised solution to estimate late fusion weights

can improve linear fusion.

5.4.1 Linear Discriminant Analysis

Equation 2.1 shows the linear combination of multimodal features described in

the previous sections. We assume that there are a total ofR multimodal features to

be combined. The combining score for the ranked list retrieved by the ith feature

Ri is wi. Our investigation focuses on how to determine appropriate coefficients

wi to improve linear fusion performance. A supervised solution, referred to as

Linear Discriminant Analysis (LDA), is introduced in the following section.

LDA [Fis36] is an algorithm to find the linear combination of multimodal

features for classification or dimensionality reduction. The effectiveness of LDA

to determine linear fusion weights for the TRECVid multimedia collection has

previously been demonstrated in [MLD+14]. The core idea of LDA is to maximise

the criterion of “between class variance” and “within class variance” to achieve

the best linear separation for the ground truth [YJL04]. The coefficient vector

achieving this separation is taken as the linear fusion weights for multimodalities.

We briefly introduce the procedure of LDA as follows. Define a multimedia

hyperlinking ground truth as the training collection {T}. Define {X} as the score

vector of T , where xi ∈ {X} is the normalised score in the ranked list. {Xr} is the
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relevant vector of {T} where r is 0 or 1, meaning that the video segment in the

ground truth can be irrelevant or relevant to a specific query anchor. Thus, we

have two scores vectors extracted from {X} denoted as {X0} and {X1}. xi ∈ {X0}

means that the ith element of {T} is irrelevant to a specific query (p(xi|r = 0)) and

its score is xi. xj ∈ {X1}means that the jth element of {T} is relevant to a specific

query (p(xj|r = 1)) and its score is xj . The covariances of two score vectors {X0}

and {X1} are Σ0 and Σ1, and the means are µ0 and µ1.

The concepts of “between class variance” Sb and “within class variance” Sw

was proposed in [YJL04]. These are determined by the covariances and means

of the score vectors, and the coefficient vector to combine multimodalities. LDA

assumes that the coefficient vector for multimodal features is w where |w| is the

number of multimedia features involved hyperlinking, and both score vectors

{X0} and {X1} follow the normal distribution. Sw and Sb can be determined using

Equations 5.6 and 5.7:

Sb = (w · µ0 − w · µ1)
2, (5.6)

Sw = (wT · Σ0 · w + wT · Σ1 · w). (5.7)

The coefficients of linear separation can be calculated by maximising the criterion

of between class variance and within class variance [YJL04]. Define the criterion

c = Sw

Sb
as shown in Equation 5.8, based on Equations 5.6 and 5.7.

c =
w · (µ0 − µ1)

2

wT · (Σ0 + Σ1)
. (5.8)

A maximum separation can be accomplished by adjusting the weight vector as

shown in Equation 5.9 [BG98]:
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w ∝ µ0 − µ1

Σ0 + Σ1

. (5.9)

The advantage of using the LDA algorithm to perform linear characterisation is

that there no requirement for hyperparameter estimation. The coefficients w for

the linear combination are only proportional to the ratio of between and within

class variances. As the proportional change has no impact on the ranked results,

in this thesis, we directly use the vector w output of LDA as the estimated linear

fusion weights.

5.4.2 Experimental Investigation

This section describes our experimental investigation into combining segment-

level and video-level multimedia features using a late fusion scheme. Table 5.1

lists the abbreviations used for our further experimental runs. A total of 13 strate-

gies are applied to each data collection: ASR CH, ASR ORB, ASR CH ORB rep-

resent fusing ASR transcripts with other segment-level multimedia features, and

ASR META, ASR CPT, ASR CPT META represent the hierarchy hyperlink solu-

tions. The remainder of runs (ASR CH META, ASR CH CPT, ASR ORB META,

ASR ORB CPT, ASR CH ORB META, ASR- CH ORB CPT, and ASR CH ORB

META CPT) examine the strategies which combine other segment-level features

to implement the hierarchy hyperlinking model.

The linear fusion scheme for multiple features is defined as Equation 2.1,

where Ri indicates the list of ranked items retrieved by each multimedia feature,

which can be ASR, CH, ORB, META, or CPT. The corresponding fusion weight for

ith feature is wi determined by the vector w output by LDA. The experimental

investigation includes two parts. Firstly, we calculate the data fusion results using

equal weights as the baseline. Secondly, we apply LDA to optimise the fusion

weights.
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Multimodal Fusion using Equal Weights

Figure 5.8 shows MAP for multimodal hyperlinking results using equal fusion

weights, where wi is set to 1 for each feature. In total, 14 experiments are presented

for both ME13data and ME14data, including one baseline (marked in grey) and

13 other runs as described in the previous discussion. We use the same baseline

as in the experimental analysis in Sections 5.1 and 5.2. The blue bars represent

fusing other segment-level features with spoken information. The yellow bars

represent fusing the video-level features with spoken information, and the green

bars indicate a combination of both video-level and segment-level features.

The experimental results demonstrate that directly fusing segment-level fea-

tures can cause decreasing results. In both collections, fusing CH or ORB with

ASR receives lower MAP values while fusing video-level features achieves an

increase in performance. This observation was also seen in the experimental

investigation presented in Section 5.2.2.

The hyperlinking results using video-level features (yellow and green bars)

are superior to the baseline. However, the two data collections fail to reach an

agreement on whether using segment-level features has a positive contribution to

improving retrieval quality. In Figure 5.8 (b), ASR META achieved the best MAP

value 0.2465 compared with all other runs. In Figure 5.8 (a), ASR ORB META had

the best performance, with a slight advantage, 0.2231, compared to ASR META

in second position, 0.2219. However, it is clear that for both collections, meta-

data information is the optimal feature to describe the video-level content. It is

inconclusive whether combining both video-level and segment-level features can

improve hyperlinking results.

The experimental investigation provides some basic conclusions for multi-

modal fusion on multimedia hyperlinking: 1) video-level features can increase

the hyperlinking quality in all cases; 2) simply fusing segment-level features
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(a)

(b)

Figure 5.8: Hyperlinking retrieval results fused by multimodal features using
equal fusion weights in ME13data (a) and ME14data (b).

114



with ASR transcripts decreases hyperlinking performance; 3) the contribution of

combining both video-level and segment-level features is inconclusive. These

conclusions create the baselines for further experimental investigation and moti-

vate our research to investigate: 1) whether using a supervised learning algorithm

is superior to using equal fusion weights; and 2) whether the contribution of

multimodal features can change after applying a supervised solution to estimate

the fusion weights.

Multimodal Fusion using LDA

A challenge in the application of a supervised learning algorithm is that there

is no reliable training data provided for the BBC TV collections. The MediaEval

workshop proposed the Search and Hyperlinking Task in 2012 [EAL12] as a brave

new task. After 2013 [EJC+13] and 2014 [EAO+14], the ME13data and ME14data

were provided for testing and developing. However, no official training data was

provided for ME13data, while ME13data itself served as the development set for

ME14data. Therefore, the highest priority of our research is identifying a training

data collection. In this section, we propose two solutions:

• Use the ME13data as the training set, and ME14data as the test set, which fol-

lows the official guideline provided by MediaEval workshop 2014 [EAO+14].

As a simple strategy, this method means there is no training set available

for ME13data. All experiments are thus carried out only on the ME14data

collection.

• We expect the experimental investigation to demonstrate the effectiveness

of a supervised learning algorithm by applying LDA on both ME13data and

ME14data collections. Therefore, cross-validation is used to create a training

set for both data sets separately. Each collection is divided into three folds.

Each fold contains the same number of queries, which means a total of 7
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(a)

Figure 5.9: Hyperlinking retrieval results by fused multimodal features for
ME14data. The fusion weights are estimated by using the LDA algorithm with
ME13data used as the training set.)

queries located within each fold for the ME13data (21 queries in total), and

10 queries located within each fold for the ME14data (30 queries in total).

Each collection is divided into three groups, and each group uses one fold

as the testing set and two folds as the training set.

Figure 5.9 shows results obtained using LDA to estimate linear fusion weights

for ME14data, when ME13data is used as the training set. Figure 5.10 shows

the fusion results using cross-validation strategy within the corresponding data

collection. All multimodal fusion results are marked in blue, and the baseline

is marked in grey. In Figure 5.9, RUN ASR CPT obtains lower MAP value than

its baseline (from 0.2186 to 0.2165). Figure 5.10 illustrates some other cases with

decreased results. In Figure 5.10 (a), the MAP value of ASR CH decreases in

Folders 1 and 2. In Figure 5.10 (b), the experiment results in Folder 3 show a lower
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MAP value on RUN ASR META. We conclude that using LDA fails to improve

the hyperlinking performance for some multimodal features. This means neither

of the proposed solutions can estimate proper fusion weights.

We analyse some potential reasons for the failure of using a supervised learn-

ing algorithm to estimate linear fusion weights. Firstly, LDA is probably not

suitable to optimise the multimodal fusion weights for the BBC TV collection. Sec-

ondly, the optimal linear fusion weights could vary in their associations with each

query anchor. Finally, the training data collection is inappropriate for optimising

the fusion weights. The remainder of this section is dedicated to investigating the

reason for the ineffectiveness of LDA.

In Figure 5.9, the runs ASR-META and ASR-CPT received conflicting results in

terms of the multimodal fusion analysis. On one hand, using LDA improves the

results of ASR-META. On the other hand, the MAP value of ASR-CPT is less than

the baseline. Thus, in this section, we use the segment-level feature ASR and two

video-level features META and CPT to recreate a binary linear fusion retrieval.

According to Equation 2.4, we define this fusion process as follows:

Scorefuse = w · ScoreASR + (1− w) · ScoreV (5.10)

where w is the fusion weight for ASR transcripts. It is assumed to be normalised

into the range [0, 1]. scoreV is the ranking score retrieved by either META or CPT.

Instead of using LDA, we manually assign w from 0.1 to 0.9, and evaluate the

fused results in terms of MAP.

Figure 5.11 illustrates how the MAP value changes with various fusion weights

for both ME13data and ME14data collections. The optimal fusion weights of

META for the ME13data is around w = 0.6. Assigning w from 0.2 to 0.6 causes

a slight variance in the MAP value. In general, it shows that spoken data in
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(a)

(b)

Figure 5.10: Hyperlinking retrieval results for fusion of multimodal features for
(a) ME13data and (b) ME14data using cross validation.
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Figure 5.11: Investigation of the influence of fusion weights for the hierarchy
hyperlinking model (w is the fusion weight of ASR).

the ME13data collection can provide sufficient information representing relevant

information, and the binary fusion assigns a higher fusion weight to spoken

transcripts. Meanwhile, for the ME14data, the figure indicates that assigning

a lower weight to ASR provides a better fusion performance. This is in agree-

ment with our previous assumption proposed in Section 5.3, which is that the

video-level feature, especially for the ME14data, can be complementary to the

query content extracted from spoken information. Hyperlinking results using the

concept feature further demonstrates our conclusion. Figure 5.11 shows a clear

disagreement on the optimal weights. The optimal weight for the ME13data is

0.2, and for ME14data, the value changes to 0.6.
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The analysis explains why using a supervised learning algorithm decreases the

effectiveness of hyperlinking multimodal fusion process when using ME13data

as the training set and ME14data as the testing set. This reveals that the optimal

fusion weights for multimodal features can vary in different data collections.

Thus, the best linear separation for one data collection can not be suitable for

another. This means that the ME13data collection is not suitable to be used as

training data set for the ME14data, and vice versa.

5.4.3 Discussion

In this section, we proposed a supervised solution using LDA to estimate lin-

ear fusion weights for multimodal hyperlinking. We described two different

experiments associated with two separate training collections. The results of

these experiments revealed that a supervised solution does not provide a reliable

estimation of multimodal fusion weights in the absence of appropriate training

data. A further experiment demonstrated that the optimal fusion decision in the

ME13data and ME14data could be different. The failure of cross-validation further

shows that the primary issue to be addressed for optimising fusion weights is

how to identify an appropriate training set.

The results raise the further consideration of multimodal feature distribution.

An individual query could have a particular ratio between spoken information

and visual features in describing a video story. Moreover, the hyperlinking ground

truth used in the experimental investigation is constructed through crowdsourc-

ing annotation. This means human cognition determines the multimodal feature

distribution. We acknowledge that using fixed fusion weights can not represent

the diversity of the contribution among various multimodal features in different

query anchors. In conclusion, the supervised solution has two weaknesses. The

first one is that there is no reliable training data provided for the BBC TV collec-
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tions. The second one is that the optimal fusion weights change for each query,

and using fixed weights calculated for a training collection does not represent the

optimal contribution of multimodal features for each query.

5.5 Fusion Weight Estimation - An Unsupervised So-

lution

The previous section concluded that the absence of a suitable training set is a

significant issue for estimating suitable linear fusion weights using a supervised

learning approach. An alternative method for estimation of linear fusion weights

is to use an unsupervised learning approach for an individual query anchor.

Compared to a supervised solution, the potential advantages of unsupervised

learning are:

• There is no requirement to select a training data set, which can overcome

the negative effect of using an inappropriate training set.

• Users are expected to make different judgments on the importance of mul-

timodal features when watching different video shots. Thus, assigning

the fusion weights for each individual query could improve hyperlinking

performance.

• The variety of multimedia features raises concerns about the use of a super-

vised learning algorithm. Additionally, a query anchor could be an arbitrary

video segment in which users are potentially interested, and it is difficult to

select a training data collection to represent all potentially interesting query

anchors.

Therefore, this section describes our investigation into using unsupervised

learning algorithms to estimate linear fusion weights. The algorithm used here
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was originally presented in [Wil09], and is described in overview in the following

subsection.

5.5.1 Maximum Deviation Method

We choose an algorithm, referred to as the Maximum Deviation Method (MDM)

proposed in [Wil09], to optimise the fusion of multimodal features for hyperlink-

ing retrieval . The reasons are:

• The previous section concluded that we can not indicate a reliable training

collection for either ME13data or ME14data. MDM, as an unsupervised

solution, requires no training data, which can address that issue.

• The author demonstrated its effectiveness in integrating multimodal features

for the test collections provided by TRECVid 2003 to 2007 and Image CLEF

2007. Thus, we expect its effectiveness in our multimedia collections.

MDM is based on the assumption that a rapid change in the ranked scores

of a retrieval list is an indicator of the potential importance of fusion [Wil09].

When fusing multiple retrieval lists, if we can observe a significant change in

the scores in a retrieval list, this list potentially contributes more information

for a data fusion process. On the other hand, if the change of the scores in a

retrieval list is not significant, this list has less impact on the data fusion process

compared with other retrieval lists. Thus, the “significant change” of the fused

lists determines the fusion weights. To examine the “significant change” of the

scores in a retrieval list, [Wil09] indicated the rank-based normalised scores as the

benchmark. Given a retrieval list, MDM compares its normalised scores with its

rank-based normalised scores to detect the “significant change” d as shown in

Equation 5.11:

d = Max(Scorelinear normal(seg)− Scorerank normal(seg)), seg ∈ R, (5.11)
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where d is the maximum difference between the normalised score sets of a re-

trieved results R. The function Scorelinear normal(seg) returns the MinMax nor-

malised score of a video segment seg from R according to Equation 2.5. The

function Scorerank normal(seg) returns the ranked-based normalised score according

to Equation 2.7. The fusion weight wi for the ith feature is calculated as shown in

Equation 5.12 [Wil09]:

wi =
di

Rank(di)
· |Ri| (5.12)

where Rank(di) returns the rank position where the “significant change” is de-

tected. |Ri| is the size of the ith retrieval list.

5.5.2 Experimental Investigation

This section describes our experimental investigation of the application of MDM

to estimate linear fusion weights for multimedia hyperlinking. A total of five

multimedia features (ASR, CH, ORB, META and CPT) are used to create 13 runs

in our experiment. These are the same as those introduced in Section 5.4.2 and

Table 5.1. The experiments compare MDM with two baselines: 1) using only ASR

transcripts to link target segments, which was proposed in Sections 4.1 and 4.2;

and 2) using equal fusion weights to combine multimodal features, which was

proposed in Section 4.3. Both ME13data and ME14data collections are used in the

evaluation.

Figure 5.12 shows hyperlinking results using MDM to optimise the linear

fusion weights. The runs marked in red represent the strategy using MDM, and

the runs marked in grey are the baselines where the fusion weights are equal for

each feature. A clear conclusion is that using MDM can improve over linear fusion

performance in both data collections. In Figure 5.12 (a), ASR ORB META achieves
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(b)

Figure 5.12: Hyperlinking retrieval results using the MDM algorithm to estimate
fusion weights for (a) ME13data and (b) ME14data.
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the greatest MAP value 0.2283. In Figure 5.12 (a), ASR META achieves the greatest

MAP value 0.2483. We observe that optimising fusion weights contributes more

to the fusion between segment-level features (CH, ORB and ASR), while for the

video-level features, the improvement is slight.

Figure 5.13 compares hyperlinking performance using MDM with the base-

lines using only ASR transcripts (marked in grey). We also use both segment-level

(marked in blue) and video-level features (marked as yellow). The runs combining

both are marked as green. Both figures demonstrate that video-level features are

critical to hyperlinking performance. All the runs involving video-level features

outperform the baselines in terms of MAP. In Figure 5.12 (a), ASR ORB META

has the best MAP of 0.2283, and in Figure 5.12 (b), the best MAP is achieved

by ASR META, with a MAP of 0.2482, and a small improvement compared to

ASR CH META (MAP: 0.2481). The fusion results demonstrate that the metadata

outperforms the visual concepts. All the runs using META achieve better MAP

values than those using CPT.

The segment-level features are less effective at improving the hyperlinking

performance. We can observe that ASR CH achieves better results in both data col-

lections. The other runs (ASR ORB and ASR CH ORB), however, can not improve

the hyperlinking quality in both collections. The runs in Figure 5.13 (a) show

the effectiveness of the use of multiple features. The run ASR CH ORB, which

fuses CH and ORB features with appropriate weights, can improve hyperlinking

retrieval compared with those using a single segment-level feature. In Figure 5.13

(b), we can observe an improvement from ASR ORB to ASR CH ORB, but their

results are still lower than that achieved for ASR CH.

Figure 5.14 shows the linear fusion results using equal weights (marked in

grey), LDA (marked in blue) and MDM (marked in red). We apply the same

strategy used in Figure 5.10 to apply LDA and cross-validation to optimise the
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(b)

Figure 5.13: Investigation of multimodal fusion retrieval for (a) ME13data and (b)
ME14data using the MDM algorithm to estimate fusion weights.

126



(a)

(b)

Figure 5.14: Comparison of hyperlinking retrieval results using LDA and MDM
to estimate fusion weights.
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fusion weight. This illustrates that a supervised learning algorithm cannot pro-

vide a reliable optimisation of fusion weights for this task with the available

training data, while using MDM can achieve an improvement in terms of MAP.

In some cases, however, we can observe that using LDA can achieve the best

MAP. For example, in Figure 5.14 (a) FOLDER 3, the MAP of ASR META using

LDA is 0.2211, which is better than those of two other solutions (baseline: 0.2200,

MDM: 0.2201). In Figure 5.14 (b) FOLDER 2, ASR ORB using LDA also achieves

better MAP (0.2204) compared with ASR ORB using equal weights (0.1767) and

ASR ORB using MDM (0.1824). This suggests that if we could identify a proper

training data set, a supervised solution might be more effective at improving

hyperlinking performance.

5.5.3 Discussion

In this section, we investigated using the MDM algorithm, an unsupervised

learning algorithm, to estimate linear fusion weights for multimodal hyperlinking.

The advantage of this solution is the ability to identify a particular fusing weight

for each query. Experimental investigation showed that using MDM can provide

a reliable optimisation for multimodal fusion. Thus, in the remainder of the thesis,

we continue to use MDM to estimate fusion weights for multimodal features.

5.6 Chapter Conclusion

This chapter described our investigation into using multimodal features to create

hyperlinks across the BBC TV collections. Multimedia features include:

• HSV colour histograms, a low-level visual feature, extracted from video

frames with multiple grid levels,
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• the ORB descriptors, a low-level visual feature, extracted from video frames

and used to create bag-of-visual-words,

• the metadata, a high-level textual feature to describe video content, provided

by the BBC,

• the visual concepts, a high-level visual feature to describe the semantic

information in video frames, supplied by University of Oxford,

In Section 5.3, we categorised these features as segment-level or video-level. A

segment-level feature dynamically changes in association with the identification

of target segments, while the video content determines the video-level features

so that all the segments extracted from the corresponding video share the same

video-level features.

We proposed a set of methodologies using multimodal features to create

hyperlinks, and these features are combined using late fusion. For segment-level

features, we sought to improve the hyperlinking quality by applying a re-ranking

strategy. For the video-level features, we establish a hierarchical hyperlinking

model to integrate the video-level and segment-level features.

Our experimental investigation revealed that the visual segment-level features,

including colour histogram and ORB descriptors, are insufficient to represent

cognitive information in the video stream when compared with spoken infor-

mation. However, when we used the re-ranking strategy that was effective in

our previous investigation [CEJO14] on the blip.tv data collection, this solution

caused unreliable hyperlinking for ME14data collection. We conducted a further

comparison between the quality of the initial retrieval using spoken information

for both ME13data and ME14data collections. This revealed that the poor initial

retrieval was one of the primary issues in the decrease in re-ranking performance.

Furthermore, another potential reason for decreasing results is the use of equal

fusion weights to combine different segment-level features.
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Section 5.3 described a strategy to improve hyperlinking performance referred

to as the hierarchy hyperlinking model. Our motivation for this model was that

applying video-level features can be complementary to content analysis of poten-

tially linked target segments. This model uses both segment-level and video-level

features. Mathematically, multimodal combination can be implemented using a

linear late fusion model. The linear fusion model fuses the initial retrieval using

the metadata, visual concepts, and spoken information. Our experimental inves-

tigation showed that the hierarchy hyperlink model can improve hyperlinking

performance in terms of MAP and tMAP, even when using equal fusion weights.

The research in Section 5.4 and 5.5 focused on optimising linear fusion weights

to combine hyperlinking retrieval from multimodalities. In Section 5.4, we applied

a supervised solution to determine the optimal separation of the training data

collection using Linear Discriminant Analysis (LDA). The experimental investi-

gation, showed that this supervised solution failed to improve the hyperlinking

effectiveness. A further investigation indicated the difference of the optimal fu-

sion weights between the ME13data and ME14data collection, which meant that

there was difficulty in identifying a well-designed training set for both collections.

Additionally, from the experimental results in Section 5.3, we concluded that even

in the same collection, different query anchors can have varying requirements

for the optimal multimodal fusion weights. This means that assigning a fixed

weight for a group of query anchors can cause sub-optimal hyperlinking retrieval

performance.

In Section 5.5, we applied an unsupervised learning solution using the Maxi-

mum Deviation Method (MDM) algorithm to optimise the linear fusion weights.

The experimental investigation revealed that MDM can improve the multimodal

fusion process. The runs combining the segment-level and video-level features

achieved better hyperlinking results after using MDM to optimise the fusion

weights.
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In conclusion, this chapter contributes to our investigation of multimedia

hyperlinking as follows:

• We proposed a set of investigations using multimodal information to im-

prove hyperlinking performance. The experimental investigation indicates

that the multimodal features, which are representative of cognitive infor-

mation that users prefer when watching a certain video shot, benefit the

hyperlinking performance.

• Using the linear fusion scheme, we can combine the hyperlinking results

retrieved by multimodalities. We conclude that the optimal fusion weights

for different query anchors might differ. Using the unsupervised solution

(MDM) can provide a reliable optimisation of fusion weights.

There are also several issues which remain to be addressed. The experimental

investigation raises a question of whether the segment-level visual features are

necessary for hyperlinking retrieval. Our experiments demonstrated:

• Using only segment-level visual features caused decreased hyperlinking

retrieval performance.

• The re-ranking strategy improved hyperlinking retrieval performance for

the ME13data. However, applying this method to ME14data decreased

hyperlinking retrieval.

• Fusing multiple segment-level features decreased MAP values compared

with the baseline using only spoken information, even though these MAP

values of fused results were greater than those using only equal weights.

• Fusing segment-level and video-level resulted in a slight improvement in

terms of MAP. However, the experimental investigation failed to indicate

which feature, the colour histograms or ORB descriptors, is a more effective

contributor to the hyperlinking performance.
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In general, the segment-level visual features used in this thesis exhibit unreliability

in hyperlinking retrieval. We believed using equal fusion weights is one possible

reason. However, after applying the MDM solution, the experimental results still

showed a conflicting conclusion. During the discussion on the re-ranking strategy,

we denoted that the initial retrieval can influence re-ranking performance. More-

over, the hyperlinking system should involve the retrieval model, identification of

the target segment, and query anchor analysis. Until now, we assumed the spoken

terms within the corresponding anchors to be input queries. In the next chapter,

our investigation will focus on strategies to analyse the content of query anchors,

with the aim of further improving multimedia hyperlinking performance.
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Chapter 6

Improving Hyperlinking

Performance by Query Anchor

Analysis

6.1 Chapter Overview

The experimental investigations described in the previous chapter suggested

that the effectiveness of multimodal features for video hyperlinking varies, and

that these features can be complementary to each other. In Section 2.4.3, our

review works concluded that combining multimodal features is one state-of-the-

art approach in multimedia hyperlinking, and the other one is recreating query

content. Thus, the experimental investigation in this chapter focuses on query

anchor analysis to address the following research questions (RQ):

• RQ 5: How does recreating query anchor content improve hyperlinking

retrieval?

• RQ 6: Can integrating query anchor recreation and multimodal features

further improve hyperlinking results?
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Figure 6.1: An overview of research design

The experiments in Chapter 4 and Chapter 5 used the spoken terms from the

query anchor as the initial query. In this chapter, our research focuses on query

anchor analysis to generate a richer description of the potential interesting content

for content-based multimedia navigation (hyperlinking). A number of query

expansion strategies applied to ASR transcripts are introduced and compared to

investigate their potential for improving hyperlinking effectiveness. We integrate

our query expansion methods with multimodal content analysis as described

in Chapter 5. The experimental investigation shows how using query anchor

analysis improves fusing multimodal features.

This chapter is structured as follows: Section 6.2 motivates and describes our

investigation of the query expansion strategies based on spoken information. Our

approaches are informed by existing MediaEval research and our previous inves-

tigation in TRECVid 2014; Section 6.3 presents experimental results of combining

query anchor analysis and the multimodal fusion process. Experimental results
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Table 6.1: Acronyms in experimental investigation
Abbreviation Description
QE query expansion method
Cxt use query context in query expansion
RE use pseudo ranked results and early fusion in query expansion
RL use pseudo ranked results and late fusion in query expansion
E use equal weights in late fusion
R use rank-based normalisation in late fusion
H use high-level concepts in the experiments

show that this strategy is superior to all other solutions proposed in this thesis

in terms of MAP and P@N; Section compares our research conclusion with other

research works proposed in MediaEval 2013, MediaEval 2014 and TRECVid 2015.

For readers’ convenience, we propose Figure 6.1 and Table 6.1. Figure 6.1

illustrates a global view of experimental design proposed in this chapter, and

Table 6.1 shows the acronyms of multimodal features and research methodologies.

Reader can have a global view of our experimental design proposed in this chapter

and a reference to check the acronyms in each experimental discussion.

6.2 Query Anchor Analysis

It was noted in [AKRR99] that a relevant document may fail to be retrieved if

it does not contain the terms in the query, which emphasised the importance of

query expansion for many IR tasks. Expanding query content aims to improve

retrieval quality by reformulating an initial query to enrich its semantic informa-

tion. There are several reasons to cause a discrepancy between an input query

and potentially relevant documents in the database: users often lack sufficient

experience to select appropriate terms to describe their information need; syn-

onyms, morphological forms, or spelling errors increase the discrepancy between
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Figure 6.2: An example of searching query in MediaEval 2013 search subtask

what users have entered and what the IR system has acknowledged; it is possible

that the document descriptions do not contain the terms within the query caus-

ing query-document term mismatch. These reasons have driven researchers to

investigate methods to improve the representation of query content to encourage

effective matching with relevant content.

A multimedia hyperlinking system is also confronted with the challenge of

enriching the query content to best match potentially relevant segments, while,

in some respects, this challenge is caused by the reasons mentioned above. In

Chapter 3, we noted that hyperlinking queries contain no obvious input: a hy-

perlinking system needs to generate the query associated with the corresponding

video segment. This is quite different from the query creation process in IR.

The following gives two examples that illustrate the format of input queries in

multimedia IR systems.

Figure 6.2 illustrates the input query for BBC TV data collection in the Medi-

aEval Search task. The task requires participants to construct a retrieval system to

search the TV data collection with the corresponding query. The query consists of

two parts. The first part indicates the query ID (itemId) and a short piece of text

describing what users are expecting when watching this segment. The second

part contains a brief textual information to describe the visual cues (tagged as

<visualQueues>).
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Figure 6.3: An example of the query in TRECVid 2014 Instance Search task

Figure 6.3 shows an example query in the TRECVid 2014 Instance Search

Task (INS), which simulates the situation in which the user must find relevant

video segments containing a certain instance (person, object, or place) within

a large video collection. A topic description describes the search target, and

the instance type (object or person) is provided. A further description of query

content is illustrated by a set of keyframe examples. All the information can be

used to create a multimodal interpretation for the query input to an instance

search system.

Figure 6.4 presents an example query of the segment-based hyperlinking task

in MediaEval 2014. The task applies to the same data collections (BBC TV data)

as those presented in this thesis, and the TV data searching and hyperlinking

task shares the same query boundary. The example consists of the video name

and time interval for the query anchor. There is no text description or visual

cues provided. Each participant must create query content using multimodal

information.

The previous chapters have involved various strategies to generate the hy-

perlinking queries for our experimental investigations. In Chapter 4, the query
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Figure 6.4: An example of the hyperlinking query in MediaEval 2014 hyperlinking
subtask

content was determined by all spoken terms detected by ASR algorithms. In

Chapter 5, we used multimodal features to enrich the query content. The initial

motivation for applying multimodal features was to enrich the content informa-

tion in both target segments and query anchors to promote improved retrieval

effectiveness. The experimental results demonstrated that low-level features can

improve the hyperlinking performance by re-ranking the top retrieved results in

ME13data. High-level features representing a summary of a video using textual

(metadata) or visual (visual concepts) information can increase retrieval quality

in terms of MAP for both the ME13data and ME14data test collections.

The query generation strategy used in Chapter 4 is extensible due to its simple

implementation. Instead of using the spoken information directly, we expect

that an enrichment of query content with potentially relevant spoken terms can

increase the hyperlinking quality, and further improve multimodal hyperlinking.

In Chapter 5, we showed that when applying the re-ranking strategy, a possible

reason for decreasing results is the poor quality of hyperlinking results created

by spoken information. In this section, we focus on expanding the hyperlinking

query using ASR transcripts. The motivation of this research is to investigate

efficient strategies for expanding hyperlinking queries using ASR transcripts in

both ME13data and ME14data.
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6.2.1 Query Expansion Strategy

To investigate the effectiveness of query expansion, we purpose two strategies

based on spoken transcripts. The first is a simple method involving the context

information of query anchors, which is inspired by [GP13]. [GP13] demonstrated

that this method achieved best results in ME14data. The second applies pseudo

relevance feedback to expand query content in our TRECVid 2014 Instance Search

Task (INS) experiments [CMA+14]. In this section, we transplant this approach

to the multimedia hyperlinking task, with an improvement to the data fusion

scheme. The reasons of using these two methods are:

• We expect to investigate hyperlinking query expansion using both early

fusion and late fusion mechanisms. The first method applies early fusion

mechanism. It firstly implements query expansion then collecting retrieval

results. While the second one applies late fusion mechanism by collecting

retrieval results first and then implementing query expansion. Experimental

investigation will compare the two approaches and discuss their effective-

ness in multimedia hyperlinking systems.

• The method in [GP13] was proposed only for ME14data. We expect to

investigate its effectiveness in ME13data.

Query Expansion using Context

The hyperlinking query involves no obvious user input to describe the potential

searching requirement. The task of query expansion in a hyperlinking system is

to enrich the description of a query segment to provide a more accurate represen-

tation of the cognitive information that could interest users. An ideal solution

would be to use terms with high term frequency in the relevant documents and

low frequency in the whole collection. In this experiment, we use unsupervised

solution to detect the potential relevant terms associated with the corresponding
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request since there is no reliable training set provided for either the ME13data or

ME14data collections.

Robertson and Jones presented a simple and efficient query expansion strategy

in [RJ94]. Its ability has been demonstrated in many subsequent studies [Ing96,

Zha08, TTR12, EOS12]. The strategy is to calculate a weight, referred to as the

“offer weight” according to [Rob90], for each potential expansion term related to

the query after an initial retrieval run. Query expansion algorithms rank each

term based on its offer weight and select the top ranked ones to modify query

content. In [RJ94], the authors proposed that an offer weight for the ith term ti in

the query context is defined as Equation 6.1:

OfferWeight(ti) = ri · Scorerelevance(ti), (6.1)

where ri indicates the number of relevant documents containing the term ti.

According to [RJ94], Scorerelevance(ti) is defined as shown in Equation 6.2:

Scorerelevance(ti) = log
(ri + 0.5) · (N − ni −R + ri + 0.5)

(ni − ri + 0.5) · (R− ri + 0.5)
, (6.2)

where R is the number of known relevant documents for the current query, ni is

the number of documents containing the term ti, N is the size of the document

collection and ri has the same definition as in Equation 6.1. [RJ94] used an

experimental value 0.5 in Equation 6.2 to avoid division by zero in the absence

of reference information and prevent removal of query terms no appearing so

far in any relevant documents. Assume that we have a set of documents that are

relevant to a query. We can extract all the terms within these documents and rank

the terms according to their offer weights. Mathematically, a high offer weight

means that this term has a low document frequency in the whole collection and

higher document frequency in the relevant collection. Therefore, we can select the
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top K terms to enrich the current query content. In [RJ94], the authors suggest

that a reasonable value of K should be around 10 to 20.

Some issues in parameter setting need to be addressed before applying Robert-

son’s method to enrich the hyperlinking query. The first one is how to determine

the value of ri. An IR system knows nothing about relevant documents when

accepting a new query, meaning that ri is unknown. To calculate the offer weight,

we need to find a value of ri. In a later section, the details associated with various

methods are introduced. Another issue that we need to address is how to select

the optimal value of K. The suggestion provided in [RJ94] could be unsuitable

for hyperlinking retrieval. In our experimental investigation, we examine: 1) how

changing the value of K influences the hyperlinking quality, and 2) whether we

can indicate an optimal K for both ME13data and ME14data collections.

We hypothesise that an expanded query is based on the assumption: spoken

information around the query anchor may be relevant and complementary to the

query information and will be effective in improving the quality of the proposed

hyperlinks. Thus, a temporal segment is defined before and after the query anchor,

and the new query consists of all potentially relevant spoken terms detected by

Robertson’s query expansion method. The algorithm regards these terms as

new query content to retrieve hyperlinks after removing stop words. Figure 6.5

illustrates this expansion process:

• Taking a hyperlinking query, we select all relevant terms from its context

segments.

• Use Robertson’s approach to select potentially relevant terms.

• Recreate the query by combining its content and those potentially relevant

terms.

• Use the expanded query to retrieve hyperlinking results.
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Figure 6.5: The workflow of using context information to expand query content

In Chapter 5, we demonstrated that there is no reliable training set for either

ME13data or ME14data collections. Therefore, in this experiment, we use a grid

search strategy to investigate: 1) the optimal size of temporal segments (P ) and 2)

the number of potentially relevant terms in query context (K). We calculate the

offer weight of each term according to Robertson’s method shown in Equation 6.1.

We setR and ri to be 1, meaning that there is only one potential relevant document

(the relevant term set determined by the query context) in the collection. After

ranking all the terms according to the offer weights, the top K terms are selected

to be added to the original query content, and used as query anchors to retrieve

the hyperlinking results.
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Figure 6.6: The workflow of using pseudo feedbacks and early fusion scheme

Query Expansion using Pseudo Relevance Feedback

Pseudo relevance feedback performs operates by performing an initial retrieval

run after which the top R ranked documents are assumed to be relevant [GLJ11],

and the final retrieval lists are created according to the information contained in

these top R results. In a multimedia hyperlinking system, we assume that the

top R initial results contain relevant terms that can be used to enrich the query.

We use two methodologies to expand the query by applying pseudo relevance

feedback.

Query Expansion using Early Fusion Our first method is to directly fuse

the spoken terms at top R results retrieved using the initial query. This can be

regarded as a variant of the context query expansion described previously, in

which we replace the context segment with the top R results from the initial

retrieval to extract potentially related terms. We use Equation 6.1 to calculate

the offer weight of each term at top R results The value of ri is the number of
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Figure 6.7: The workflow of using pseudo feedbacks and late fusion scheme

relevant documents containing the corresponding term within the top R results.

After calculating the offer weights, the algorithm extracts the top K terms in each

result to expand the query. The final input query includes spoken information

from both the initial query anchor and a set of K terms. Figure 6.6 illustrates the

workflow of the procedure.

Query Expansion using Late Fusion The second method is to apply a late

fusion scheme to fuse initial results, and Figure 6.7 illustrates this process. An

initial retrieval list, R0, is created from the original query anchor. Overlapping

segments are filtered from the retrieved ranked lists. Each result in the top R of

the initial list is regarded as an individual pseudo query, and is used as a query

to construct a new hyperlinking retrieval list, defined as Ri, where i means the

ranking position of the pseudo query in R0. The final score of each target segment

seg is calculated by summing its score in the initial list and each pseudo list, as

shown in Equation 2.1:
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Scoreseg =
N∑
i=0

wi ·Ri(seg, qi), (6.3)

where wi is the fusion score from each pseudo list. The function Ri(seg, qi) returns

the score of seg in each retrieval list created by the query qi where qi is the retrieval

result at rank i in the initial list R0. The range of i is from 0 to R, where i = 0

indicates the initial list, and i ∈ [1, ..., R] means the pseudo ranked list is retrieved

using the ith segment for the top R initial list as the query input.

The value of the fusion weight wi represents the proportion of terms relevant

to the initial query in each ranked result. In our previous work [CMA+14], the

fusion weight wi was defined to be equal for each feature (wi = 1). The evaluation

results reported in [CMA+14] showed that using equal weights was not optimal.

A simple assumption can be made that the higher the rank of the result, the more

relevant terms it could involve. To estimate the fusion weights associated with

a ranking, we apply the rank-based score methodology introduced in [Wu12].

This work proposed that the degree of relevance of a retrieved document can be

determined by its ranking position. We assume that the level of relevance also

indicates the number of terms that are potentially relevant to the query anchor

in each ranked segment. Therefore, the fusing weight for each latent query is

calculated according to Equation 2.7.

In conclusion, we use a total of four strategies to perform query anchor analy-

sis for hyperlinking retrieval. The first two apply early fusion to implement query

expansion by using Robertson’s method. The second two applied late fusion to

enrich the hyperlinking retrieval. All these approaches implement query expan-

sion on spoken information. In the next section, we present a set of experiments

to investigate and compare the hyperlinking quality for these expansion methods

with various parameters.
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6.2.2 Experimental Investigation

Query Expansion using Spoken Terms

This subsection focuses on investigating hyperlinking performance using the

query expansion strategy: we apply Robertson’s method to extract the poten-

tially relevant terms from the context segments and pseudo retrieval results. To

establish the optimal parameters, we set P (the size of context segment), K (the

number of top ranked expansion terms used to enrich the query) and R (the top

R results from the initial retrieval list) using the grid search strategy. For the two

methodologies, Query Expansion using Context (QE-Cxt) and Query Expansion

using Pseudo Ranked Results (QE-RE), the grid search stops when it is obvious

that the hyperlinking results can not be improved.

Hyperlinking retrieval uses LIMSI transcripts. Our investigation compares the

query expansion process with the baselines concluded in Chapter 4 (0.1633 for

ME13data and 0.1528 for ME14data), which uses the same hyperlinking mecha-

nism without applying query expansion. In this section, no visual features are

used in hyperlink creation. Hyperlink construction follows the hypothesis de-

scribed in Chapter 4, which uses BM25 to index and retrieve relevant segments

associated with the parameters b = 0.5 and k = 2.00 for both data collections.

Table 6.2 shows hyperlinking performance using the strategy QE-Cxt on the

ME13data collection, and Table 6.3 presents the results for the ME14 collection.

The experiments confirm that using Robertson’s query expansion strategy can

improve hyperlinking performance. In Section 4.4, we showed that the MAP

values for baselines using spoken information are 0.1633 for ME13data and 0.1524

for ME14data. All the MAP values in both tables outperform the corresponding

baselines. Furthermore, the experiments suggest that the values of P and K

should be moderate, when increasing P and K, the MAP value first increases,
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Table 6.2: Hyperlinking results of ME13data (baseline: 0.1633) in terms of MAP
using QE-Cxt (P stands for the size of segment, K means the number of merged
terms).

P 60 120 180 240 300 360 420 480
K
20 0.1914 0.1848 0.1861 0.1886 0.1853 0.1850 0.1849 0.1847
40 0.1970 0.1991 0.1888 0.1941 0.1860 0.1874 0.1852 0.1834
60 0.2015 0.2027 0.1926 0.1963 0.1914 0.1885 0.1845 0.1831
80 0.2012 0.2053 0.1978 0.1966 0.1961 0.1935 0.1886 0.1836
100 0.2015 0.2069 0.1942 0.2030 0.1970 0.1932 0.1927 0.1833
120 0.2023 0.2047 0.1965 0.2024 0.2002 0.1940 0.1964 0.1831
140 0.2022 0.2044 0.2011 0.2054 0.2007 0.1984 0.1977 0.1832
160 0.2025 0.2064 0.2029 0.2070 0.2033 0.1976 0.1976 0.1824
180 0.2019 0.2093 0.2042 0.2061 0.2037 0.2002 0.1987 0.1842
200 0.2019 0.2105 0.2060 0.2083 0.2048 0.1981 0.1971 0.1870
220 0.2019 0.2097 0.2036 0.2064 0.2074 0.1985 0.1973 0.1873
240 0.2019 0.2099 0.2037 0.2055 0.2066 0.1979 0.1956 0.1877
260 0.2019 0.2104 0.2035 0.2049 0.2029 0.1977 0.1944 0.1879
280 0.2019 0.2104 0.2019 0.2045 0.2016 0.1976 0.1939 0.1845
300 0.2019 0.2104 0.2012 0.2034 0.2009 0.1948 0.1931 0.1828

and then decreases. Apparently, using too many terms to enrich the query can

introduce too much noise that is irrelevant to the hyperlinking request and lead

to retrieval of non-relevant segments. We notice that when using a large P value,

the experiments show an obvious decline in each level of the top K terms. On the

other hand, choosing a large K also decreases MAP. For a smaller P (less than 180

seconds), we can observe that the MAP value decreases to a stable state when K

reaches a particular value. This means that the algorithm has used all the terms

within the current segment and increasing K can neither improve nor reduce the

hyperlinking performance. For a larger P , we can also expect the MAP value to

reach a stable state associated with a particular K. However, since there is an

obvious drop of MAP values with a larger K (more than 200 seconds), we stop

the experiments at K = 300.

The previous paragraph described a common result for using QE-Cxt with

both collections. However, it is important to recognise the difference between the
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Table 6.3: Hyperlinking results of ME14data (baseline: 0.1524) in terms of MAP
using QE-Cxt (P stands for the size of segment, K means the number of merged
terms).

P 60 120 180 240 300 360 420 480
K
20 0.2159 0.2375 0.2428 0.2470 0.2473 0.2539 0.2539 0.2410
40 0.2186 0.2386 0.2471 0.2614 0.2688 0.2621 0.2641 0.2558
60 0.2203 0.2446 0.2575 0.2662 0.2652 0.2620 0.2636 0.2531
80 0.2193 0.2455 0.2641 0.2668 0.2646 0.2639 0.2598 0.2517
100 0.2145 0.2410 0.2559 0.2692 0.2737 0.2642 0.2574 0.2452
120 0.2141 0.2406 0.2549 0.2667 0.2756 0.2630 0.2574 0.2496
140 0.2141 0.2405 0.2547 0.2620 0.2722 0.2610 0.2532 0.2472
160 0.2141 0.2405 0.2541 0.2632 0.2615 0.2607 0.2535 0.2428
180 0.2141 0.2405 0.2546 0.2612 0.2651 0.2633 0.2525 0.2434
200 0.2141 0.2405 0.2545 0.2611 0.2645 0.2620 0.2552 0.2439
220 0.2141 0.2405 0.2545 0.2628 0.2654 0.2620 0.2502 0.2436
240 0.2141 0.2405 0.2545 0.2624 0.2648 0.2624 0.2502 0.2436
260 0.2141 0.2405 0.2545 0.2617 0.2648 0.2594 0.2508 0.2416
280 0.2141 0.2405 0.2545 0.2607 0.2644 0.2589 0.2501 0.2402
300 0.2141 0.2405 0.2545 0.2607 0.2642 0.2574 0.2489 0.2386

collections in these experiments. We cannot identify a unique parameter which

achieves optimal results between the collections. For ME13data, the greatest

MAP is achieved when assigning P = 120 and K = 200, whereas for ME14data,

the optimal parameters are P = 300 and K = 120. This demonstrates that for

ME14data, the context around query anchors contains more relevant information,

and using a larger context size can benefit hyperlinking retrieval. This conclusion

is also shown by comparing the greatest and lowest MAP values in the two tables

to the baselines. For ME13data, the best improvement is 28.90% (from 0.1633 to

0.2105), and the lowest improvement is 12.11% (from 0.1633 to 0.1828), while for

ME14data, the best is 80.84% (from 0.1524 to 0.2756), and the lowest is 40.49%

(from 0.1524 to 0.2141).

From these experiments, we can conclude that:

148



Table 6.4: Hyperlinking results for ME13data (baseline: 0.1633) in terms of MAP
using QE-RE (R means the number of pseudo relevant segments, and K means
the number of merged terms from the corresponding segment)

R 5 10 15 20 25 30 35 40
K
5 0.1725 0.1625 0.1614 0.1503 0.1382 0.1347 0.1311 0.1255
10 0.1795 0.1616 0.1638 0.1550 0.1422 0.1357 0.1302 0.1243
15 0.1828 0.1636 0.1582 0.1544 0.1415 0.1361 0.1293 0.1260
20 0.1824 0.1645 0.1619 0.1525 0.1407 0.1350 0.1328 0.1221
25 0.1807 0.1680 0.1616 0.1491 0.1393 0.1364 0.1287 0.1208
30 0.1813 0.1664 0.1633 0.1490 0.1397 0.1331 0.1297 0.1238
35 0.1819 0.1660 0.1604 0.1515 0.1376 0.1332 0.1304 0.1239
40 0.1815 0.1643 0.1605 0.1478 0.1416 0.1336 0.1314 0.1270

• Query expansion using context information can significantly improve hyper-

linking performance on spoken information. The results for both collections

show a significant improvement in terms of MAP.

• Assigning moderate parameters is critical to achieving an optimal MAP

value. Large P or K values can result in lower hyperlinking quality.

• We observe that the optimal parameters within the two collections are

different, the major reason being that the context information in ME14data

contains more relevant terms than that in ME13data.

Next, we plan to compare this strategy (QE-Cxt) with the other query expansion

strategy (QE-RE).

Tables 6.4 and 6.5 present hyperlinking results using QE-RE in terms of MAP

metrics. We observe the best MAP value in Table 6.4 when R = 5 and K = 15,

and in Table 6.5 when R = 5 and K = 30. A large increment of R and K can cause

a significant decline in MAP values. The experiments demonstrate that selecting

the top 5 pseudo retrieval results (R = 5) is optimal, and that, with an appropriate

range of pseudo feedback, the QE-RE strategy can achieve better performance
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Table 6.5: Hyperlinking results for ME14data (baseline: 0.1524) in terms of MAP
using QE-RE (R means the number of pseudo relevant segments, and K means
the number of merged terms from the corresponding segment)

TOP Rank
R 5 10 15 20 25 30 35 40
K
5 0.2017 0.1990 0.2068 0.2040 0.1978 0.1972 0.1947 0.1895
10 0.2145 0.2148 0.2111 0.2063 0.2053 0.2047 0.2014 0.1975
15 0.2217 0.2166 0.2107 0.2060 0.2084 0.2077 0.2058 0.1985
20 0.2261 0.2141 0.2090 0.2059 0.2102 0.2065 0.2069 0.2005
25 0.2295 0.2154 0.2109 0.2052 0.2091 0.2054 0.2042 0.1978
30 0.2321 0.2170 0.2095 0.2060 0.2102 0.2055 0.2029 0.1918
35 0.2320 0.2163 0.2113 0.2078 0.2113 0.2069 0.1991 0.1892
40 0.2308 0.2183 0.2131 0.2105 0.2095 0.2028 0.1929 0.1938

to the baselines. When increasing the value of R, we can observe a significant

drop in MAP values for the ME13data collection. When R exceeds 20, the MAP

values in Table 6.4 are lower than the corresponding baseline (0.1633). Meanwhile,

we notice that the MAP decline in Table 6.5 is small. The lowest MAP (0.1895) is

still higher than the corresponding baseline (0.1524). We conclude that QE-RE

can improve hyperlinking performance with proper parameter assignment. An

inappropriate parameter assignment can produce a worse hyperlinking result

than the baseline, as demonstrated in Table 6.4.

The experiments do not agree on an optimal K for both collections. In [RJ94],

the author suggests a safe range of K from 10 to 20. In one aspect, we confirm this

conclusion in our experiment on the BBC TV collection, with the evidence that

when K = [10, 20], the corresponding MAP values are better than the baselines.

Moreover, in Table 6.5, the greatest MAP value occurs when K = 30, which

suggests that the reasonable range of K in our hyperlinking system can be [10, 30].

Comparing QE-Cxt and QE-RE, we conclude that:

• Context information is critical to enrich the query content. Experiments

for both data collections showed that using QE-Cxt can achieve better hy-

perlinking performance in terms of MAP than QE-RE. For ME13data, we
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concluded that the best improvement for QE-Cxt was 28.90%, but that the

rate for QE-RE is only 11.92% (from 0.1633 to 0.1828). For ME14data, the

improving rate for QE-Cxt is 80.84%, which is much higher than a 52.30%

rate for QE-RE .

• The query expansion strategy is more efficient for the ME14data collection.

All the experiments demonstrate that the improvement in ME14data are

higher than that in ME13data using either of the strategies. In Figure 5.3,

we showed that in ME14data using queries without any expansion caused

extremely low retrieval results in some cases. We believe that applying

query expansion enriches those queries and achieves better improvement in

ME14data.

• QE-Cxt is superior to QE-RE in both test collections. The first evidence is

that in both collections, the best MAP value achieved by QE-Cxt is higher

than that using QE-RE. We showed that all the MAP values achieved by

QE-Cxt are superior to the corresponding baselines in Table 6.2 and Table

6.3, while in Table 6.4, when assigning improper parameters, QE-RE receives

a lower MAP value than the corresponding baselines.

Query Expansion using Late Fusion

This section investigates strategies using a late fusion scheme to analyse the query

anchor for multimedia hyperlinking. The methodologies are:

• Query Expansion using Late Fusion Scheme with Equal Fusion Weights

(QE-RL-E) The methodology is presented in Section 5.2.1. We apply equal

fusion weights to implement the late fusion process on the ranked lists

retrieved by the initial query.
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Table 6.6: Hyperlinking results for both ME13data (baseline: 0.1633) and
ME14data (baseline: 0.1524) in terms of MAP using QE-RL

R=5 R=10 R=15
ME13data
QE-RL-E 0.1752 0.1749 0.1744
QE-RL-R 0.1806 0.1778 0.1768

ME14data
QE-RL-E 0.2125 0.2010 0.1984
QE-RL-R 0.2205 0.2130 0.2079

• Query Expansion using Late Fusion Scheme with Ranked Normalised

Scores (QE-RL-R) The methodology is presented in Section 5.2.1. We apply

the ranked normalised scores (Equation 6.3) to fuse the ranked lists retrieved

by the initial query.

The experiment examines both strategies on ME13data and ME14data col-

lections. The initial query is determined according to the process presented in

Chapter 4, as using all the spoken terms within the query boundary without any

further expansion. The hyperlinking process follows the hypothesis introduced

in Chapter 4.1.

Table 6.6 presents the hyperlinking results for QE-RL-E and QE-RL-R in both

collections in terms of MAP. We notice that both methods can outperform the

corresponding baselines. When R = 5, both methods achieve their greatest

MAP values. For ME13data, the best improvement is 10.59% (from 0.1633 to

0.1806), and for ME14data, the best improvement is 44.68% (from 0.1524 to 0.2205).

The experiments confirm that using the ranked normalised scores can improve

hyperlinking performance, with the evidence that the MAP of each QE-RL-R run

is higher than that of the corresponding QE-RL-E run. The linked segment with

a lower rank is less relevant to the initial query, and the fusing weights for the
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ranked list retrieved by these segments should be lower to decrease the influence

of irrelevant information. The conclusion is also supported by the clear decline of

MAP when increasing R.

6.2.3 Discussion

In this section, we presented a set of strategies to enrich hyperlinking queries to

improve hyperlinking performance. We divided these methodologies into two

categories: expanding the query content using spoken terms, and using pseudo

retrieval results and a data fusion scheme to enrich the final hyperlinking results.

The former used early fusion to enrich the query content, and the strategies were

represented by the abbreviations QE-Cxt and QE-RE. The latter used late fusion to

recreate the hyperlinking results, and the strategies were referred to as QE-RL-E

and QE-RL-R.

The experiments revealed that all the methodologies outperformed the base-

line concluded in Chapter 4. We concluded that further processing on the hy-

perlinking query could improve hyperlinking performance. We note that the

improvement should be with proper estimation of parameters in each method.

All the methods using pseudo retrieval results (QE-RE, QE-RL-E, and QE-RL-R)

achieve the best hyperlinking quality when using the top 5 pseudo feedbacks

(R = 5). Increasing the number of pseudo feedback items decreases performance.

For QE-Cxt, we could not identify parameters (K and P ) that would be optimal

for both our experimental datasets. The experiments suggest that the parame-

ters should be moderate since setting low or high those parameters decreases

hyperlinking results in terms of MAP.

Table 6.7 illustrated the improvement between the baselines and all the best

results for each method. We concluded that QE-Cxt is the best method to enrich

query content. In Chapter 5, we noted the poor quality of the initial query
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Table 6.7: An analysis of the improvement in MAP values among various strate-
gies for query expansion

Baseline QE-Cxt QE-RE QE-RL-E QE-RL-E
ME13data
0.1633 0.2105/28.90% 0.1828/11.94% 0.1752/07.29% 0.1806/10.59%

ME14data
0.1524 0.2756/80.84% 0.2321/52.30% 0.2125/39.44% 0.2205/44.68%

for ME14data, which caused a low MAP for some hyperlinking requests. We

believed that this is the primary reason for the better performance of query anchor

expansion in ME14data compared to ME13data.

The great MAP achieved by QE-Cxt implies that video segments around a

query anchor contain significant relevant information. However, it is important

to be aware that direct expansion of the query anchor could increase the number

of retrieved segments located within the same video, as those potential segments

within a segment could get a better match with the expanded query content. To

investigate this, we use the average number of relevant segments of the query

video, defined as PV@R in Equation 6.4:

PV@R =

∑M
j=0 Relevant(Rj, K)

M
, (6.4)

where M is the number of input queries, Rj means the retrieved list created for

the jth query, and the function Relevant returns the number of relevant segments

within the video containing the corresponding query anchor for the top K results

in Rj . Table 6.8 shows PV@R for all strategies where R is set to be 5, 10, and 20.

Table 6.8 demonstrates that QE-Cxt has the advantage of retrieving more

relevant segments within the query video. In general, QE-RL-R retrieves the

least number of segments within the query video. However, the difference is
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Table 6.8: PV@R values of all query expansion strategies for ME13data and
ME14data

PV@RF QE-Cxt QE-RE QE-RL-E QE-RL-R
ME13data
R=5 2.0476 1.3809 1.3333 1.1428
R=10 2.7619 1.8571 1.8571 1.5238
R=20 3.3809 2.1428 2.1904 2.0476

ME14data
R=5 3.1000 1.4667 1.4333 1.4333
R=10 4.5667 2.2667 2.3000 2.3333
R=20 5.7333 3.5000 3.2333 3.3000

small compared with the other two methods (QE-RE and QE-RL-E). We conclude

that when using early fusion, the context information contains more relevant

information for hyperlink construction, compared with the segments within the

pseudo feedback results. The QE-RE strategy is based on the assumption that

the top R results in the initial retrieval are related to the linking topic. However,

the lower MAP value of QE-RE indicates the negative influence of irrelevant

segments within the top R results.

The experimental results show that QE-RL always receives a lower MAP value

than those using QE-Cxt and QE-RE. However, QE-RL can use the query gener-

ated by QE-Cxt and QE-RE to create hyperlinks, which implies the possibility of

improving hyperlinking performance by combining these two strategies. This

means that the combination could inherit the advantage of both methodologies.

We have already demonstrated that QE-Cxt outperforms on other methods at

retrieving the relevant segments within the query video. In the next section, we

use multimodal feature analysis in an attempt to further improve the QE-RL

strategy.
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6.3 Combine Query Anchor Analysis with Multimodal

Features

Chapter 5 proposed a hyperlinking model using video-level features to improve

hyperlinking performance using video-level features. Using the MDM algorithm,

we concluded that fusing video-level features can significantly increase retrieval

quality. In the previous section, we applied query anchor analysis to improve

hyperlinking retrieval. Experimental investigation demonstrated that query an-

chor analysis can outperform the baselines concluded in Chapter 4. Using context

spoken information around the query anchor was shown in these experiments

to be an effective approach. In this section, we combine multimodal features

with the query anchor analysis. Our motivation is: 1) to investigate whether

video-level features always benefit hyperlinking retrieval associated with various

query expansion strategies; 2) which query expansion method performs better

when fusing video-level features; 3) whether applying low-level visual features

can improve hyperlinking retrieval with expanded queries.

6.3.1 Using the Video-level Features

In this section, the query anchors to retrieve multimedia hyperlinks are created

according to the approaches mentioned in the previous section:

• Expand query anchors using time-based context (QE-Cxt). The method to

extract spoken information follows the procedure described in Section 5.1.

Based on the previous experiments, the optimal parameters for ME13data

are P = 120 and K = 200, and for ME14data P = 300 and K = 120.

• Recreate the content of the query anchor using the top R initial retrieval

(QE-RE) results. The initial retrieval is created according to the description

in Section 6.2. We define the value of R to be 5.
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• Define the top R results in the initial retrieval results as potential query

anchors and collect R new hyperlinking results using the corresponding

query anchor. Then we haveR lists retrieved by potential query anchors, and

1 list retrieved by the initial query anchor. A late fusion scheme is applied

to fuse these R + 1 retrieval lists. We demonstrated that the optimal choice

to determine the fusion weight is by using ranked-based normalised scores.

However, considering the uncertainty of hyperlinking performance when

applied to multimodal fusion, we decide to explore both presented solutions:

equal fusion weights (QE-RL-E) and rank-based normalised weights (QE-

RL-R). The value of R is set to be 5 according to the previous experiments.

Both video-level features, including the concept feature (CPT) and metadata

(META), are used to implement hierarchy hyperlinking. The methodologies to

retrieve video-level features and implement linear fusion were proposed in Chap-

ter 5. Spoken information (LIMSI transcripts) indexing and search follow the

procedure proposed in Chapter 4. Fusing multimodal features is implemented

using linear combination as defined in Equation 5.10, with the MDM algorithm

determining the fusion weights. All the presented methodologies are applied

to both ME13data and ME14data collections. We define the baseline as multi-

modal fusion hyperlinking retrieval using the MDM algorithm. The evaluation

benchmarks involve both MAP and P@51

Figures 6.8 and 6.9 illustrate the evaluation results in terms of MAP when

applying the combined solution to ME13data and ME13data. The results demon-

strate that the combined solution outperforms the baselines. The experiments

reveal that META is the optimal video-level feature, with the evidence that all the

runs using CPT receive lower results than with those using only META.

1The evaluation benchmark provided by MediaEval organizers indicates P@5, 10, 20 without
P@1. Thus, we select P@5 as the primary metrics since a linking system should link resources to
most relevant entities.
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Figure 6.8: Hyperlinking results for combining the video-level feature (META or
CPT) with the query expansion strategies for ME13data (MAP)

Figure 6.9: Hyperlinking results for combining the video-level feature (META or
CPT) with the query expansion strategies for ME14data (MAP)

158



Table 6.9: An analysis of MAP values when combining spoken information (ASR)
with various video-level features (META or CPT)

ASR ASR META ASR CPT ASR CPT META
ME13data
QE-Cxt 0.2105/- 0.2509/19.19% 0.2152/02.23% 0.2443/16.06%
QE-RL-R 0.1806/- 0.2619/45.02% 0.2243/24.20% 0.2507/38.82%

ME14data
QE-Cxt 0.2756/- 0.3491/26.67% 0.3293/19.48% 0.3347/21.44%
QE-RL-R 0.2205/- 0.3547/60.86% 0.3160/43.31% 0.3445/56.24%

Comparing the two methods to expand query content (QE-Cxt and QE-RE),

the results in both figures confirm that QE-Cxt is a better solution, given the

evidence of its superior MAP values. Comparing the two methods to pseudo

retrieval (QE-RL-E and QE-RL-R), we conclude that QE-RL-R performs better for

combination with video-level features in terms of MAP. Considering the previous

experiments, we can confirm that QE-Cxt and QE-RL-R can improve hyperlinking

query analysis. Therefore, in the remainder of this section, our investigation

focuses on these two approaches.

In Figure 6.9, we observe that when fusing CPT, the MAP for QE-RL-R is

lower than that for QE-Cxt. However, in all other cases, QE-RL-R always receives

a higher MAP than QE-Cxt. The experiments in the previous section received

the superiority of QE-Cxt using only spoken information. This conclusion has

to be revised when considering the influence of video-level features. Table 6.9

shows the improvement in MAP using only spoken information to enrich query

content, and combining the query analysis with video-level features. The results

demonstrate that QE-RL-R achieves a better improvement in all cases.

The QE-Cxt and QE-RL-R strategies represent two methodologies to analyse a

hyperlinking query. The former uses the early fusion scheme, and the latter uses

the late fusion scheme. Technically, the hyperlinking query created by QE-Cxt can

be used by QE-RL-R, which suggests a combination of these two methods could
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Figure 6.10: A comparison of P@5 between QE-Cxt and QE-RL-R for ME13data
and ME14data

improve hyperlinking performance. The previous experiments demonstrated

the superiority of QE-RL-R in terms of MAP. We have outlined the advantage

of QE-Cxt in retrieving segments within the query video in Section 6.1, which

results in a higher precision rate at top R results. In Figure 6.10, we compare the

corresponding P@5 values of QE-Cxt and QE-RL-R when fused with video-level

features.

Figure 6.10 reveals that although QE-RL-R outperforms other strategies in

terms of MAP, the QE-Cxt achieved a better performance in terms of P@5. The

best P@5 in ME13data is 0.6286 at ASR META, and the best P@5 in ME14data is

0.7733 using both ASR META and ASR CPT META. The P@5 value of ASR CPT

(0.7600) is slightly lower than the best result (0.7733). According to the previous

experiments, we conclude that the QE-Cxt strategy is superior at retrieving hy-

perlinks with high precision rate, and that the QE-RL-R strategy is excellent at

improving the recall rate. Before, we noted that the MAP of QE-RL-R is lower

than that of QE-Cxt. Thus, the improvement of MAP values using QE-RL-R is

achieved by using video-level features, especially metadata information.
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In conclusion, the experiments confirm the importance of multimodal feature

analysis for improving hyperlinking quality. Compared with the two baselines,

one is using video-level features, and the other is using query anchor analysis,

the combined methodology can significantly increase hyperlinking performance

in terms of MAP. The experimental results support the conclusion proposed in

Chapter 5, that the metadata information is more effective than high-level concepts

when representing video-level information. In the next section, we propose a

combination of QE-Cxt and QE-RL-R to create a better overall hyperlinking

retrieval framework.

6.3.2 An Integrated Framework for Multimedia Hyperlinking

This section proposes an enhanced hyperlinking framework which combines the

query anchor analysis and hierarchy hyperlinking models. In general, the frame-

work uses the two presented methods to enrich hyperlinking queries, including

QE-Cxt and QE-RL-R. The hyperlinking framework accepts the refined query to

retrieve relevant segments as the initial retrieval. Video-level multimodal infor-

mation is then applied to improve the initial retrieval to create the final linked

results. The workflow of the enhanced framework is shown in Figure 6.11.

In the proposed framework, the hyperlinking query is enriched by merging

the context information. The merged spoken terms are determined by Robertson’s

algorithm as proposed in Section 6.1. The framework accepts the merged query

and uses the initial hyperlinking retrieval list based on spoken information (ASR

transcripts created by LIMSI algorithm). Then, the top R results in the initial

retrieval list are extracted and taken as queries. The framework then creates R

new hyperlinking results according to these queries. The late fusion scheme is

applied to merge the R + 1 lists. The fusion weights are determined by ranked

normalised scores. Finally, the hyperlinking result using spoken information is
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Figure 6.11: A multimedia hyperlinking model combining query anchor analysis
and the hierarchy hyperlinking strategy

fused with video-level features. The MDM algorithm described in Chapter 5

is used to estimate the fusion weights between segment-level and video-level

features. In the following experiment, we use the abbreviation H-QE-Cxt-RL to

represent this framework.

To investigate the proposed hyperlinking framework, we select the best strat-

egy to implement each step of the multimodal process. When expanding the

query content, we use the optimal parameters in the previous experiment for

each collection. For ME13data, we use P = 120 and K = 200, and for ME14data

we use P = 300 and K = 120. Before investigating H-QE-Cxt-RL, we need to

determine the top R results to create pseudo retrieval lists. In the previous section,

we concluded that for QE-RE and QE-RL, the optimal value of R is 5. However,

there is no evidence that this conclusion can be applied to our new hyperlinking

framework. Therefore, we first investigate the optimal R for H-QE-Cxt-RL.
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Figure 6.12: Hyperlinking results in terms of MAP using QE-Cxt-RL for ME13data
and ME14data

As shown in Figure 6.11, the linear fusion step occurs before fusing the video-

level features. We first examine the value of R without the integration of the

video-level features. This strategy is referred to as QE-Cxt-RL, which means we

only use the QE-Cxt and QE-RL schemes to implement hyperlinking retrieval

based on spoken information. We investigate values of R from 5 to 40.

Figure 6.12 shows hyperlinking performance for QE-Cxt-RL in terms of MAP.

The results reveal that the combined QE-Cxt-RL strategy can produce higher

MAP than QE-RL. However, for ME13data, the hyperlinking quality is lower than

QE-Cxt. For ME14data, we observe that QE-Cxt-RL is superior to the other two

baselines. Considering the experiments presented in the previous section, we

confirm that using only QE-RL can not produce satisfactory results.

The primary task of QE-Cxt-RL is to indicate the optimal R for H-QE-Cxt-

RL. Figure 6.12 shows that a reasonable range of R is from 15 to 20. The best

MAP occurs when fusing the top 20 results for ME13data, and for ME14data, it

occurs when the R is set to 15. We noted that the experimental investigations

shown in Tables 6.4 and 6.5 indicate that the optimal R is 5 when fusing the
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Figure 6.13: A comparison of H-QE-Cxt, H-QE-RL and H-QE-Cxt-RL in terms of
MAP, ME13data and ME14data

initial retrieval list, while the experiments proposed in Figure 6.12 suggest that

when combining QE-Cxt and QE-RL, we need to increase R to achieve better

hyperlinking performance. Previously, the initial list directly retrieved by spoken

information had a low P@N value. This means that increasing R could introduce

more irrelevant results and shift the focus of the query content. The current

approach creates the initial hyperlinking list using the QE-Cxt strategy, which

has been demonstrated to be effective at increasing P@N values. The solution

involves more relevant segments from the top results in the initial retrieval list

as the expansion queries. Thus, in Figure 6.12, we can observe that the optimal

value of R increases to 20 in ME13data and 15 in ME14data.

To investigate the effectiveness of the value of H-QE-Cxt-RL hyperlinking

model, we compare it against two baselines:

• QE-Cxt is used to create the hyperlinking query. The hyperlinking results

are re-ranked by fusing the video-level features (metadata) according to the

strategy proposed in Section 5.3, and the fusion weights are determined by
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Figure 6.14: A comparison of H-QE-Cxt, H-QE-RL and H-QE-Cxt-RL in terms of
P@5, ME13data and ME14data

using the MDM algorithm proposed in Section 5.5. The resulting MAP value

is illustrated in Figure 6.8. We use the abbreviation H-QE-Cxt to represent

this approach in the later discussion.

• QE-RL-R is used to create the hyperlinking query. The hyperlinking results

are re-ranked by fusing the video-level features (metadata) according to the

strategy proposed in Section 5.3, and the fusion weights are determined

by using the MDM algorithm proposed in Section 5.5. The corresponding

MAP value is illustrated in Figure 6.8. We use the abbreviation H-QE-RL to

represent this approach in the later discussion.

For H-QE-Cxt-RL we use the best parameters as identified in Figure 6.12. This

means that, for ME13data, we fuse the top 20 results from the initial retrieval, and

for ME14data, we fuse the top 15. Figure 6.13 shows the resulting MAP values,

while Figure 6.14 plots the corresponding P@5 values .

These experiments demonstrate that when using the hierarchy hyperlink-

ing model, the strategy H-QE-Cxt-RL strategy outperforms the H-QE-Cxt and

H-QE-RL methods in terms of both MAP and P@5. This demonstrates that a
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combined methodology of query anchor analysis and hierarchy hyperlinking

model can improve hyperlinking performance. We conjecture that the QE-Cxt

scheme favours a high precision rate for the initial hyperlinking list, which is

demonstrated by varying R in Figure 6.12, while the QE-RL strategy performs in

a complementary way to increase the number of relevant segments with relatively

lower ranks. However, to locate these relevant segments at a higher rank, the

fusion of video-level features is essential. It has been demonstrated that QE-RL

achieves better performance after being fused with the metadata information,

shown in Figure 6.8 and Figure 6.9. We can observe the same conclusion by

comparing the hyperlinking results illustrated in Figure 6.12 and Figure 6.13.

Figure 6.12 demonstrates that for ME13data, the QE-Cxt-RL strategy, without

a fusion of video-level features, was less effective than QE-Cxt. In Figure 6.13,

the results using pseudo feedbacks, H-QE-RL and H-QE-Cxt-RL, produce higher

MAP values H-QE-Cxt.

In conclusion, we have proposed our hyperlinking framework shown in Fig-

ure 6.11. Its effectiveness has been demonstrated in the previous experimental

investigation. In the next section, we address the unsolved question regarding

segment-level features raised in Chapter 5.

6.3.3 An Investigation to Segment-level Features

In Chapter 5, we classified the multimodal features in a hyperlinking system

as segment-level and video-level. Both of these can be used to complement the

information in a hyperlinking query, as illustrated in Section 5.5 and Section 6.3.1.

The previous experiments in Chapter 5 and this chapter demonstrated that video-

level features can improve hyperlinking performance. However, experiments in

Section 5.2.2 showed that segment-level features, HSV colour histogram (CH)

and ORB descriptor (ORB), decreased hyperlinking retrieval. Furthermore, we
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Table 6.10: An analysis of MAP results for fusion of transcripts with segment-level
features.

Baseline CH ORB CH+ORB
ME13data
QE-Cxt 0.2105 0.1944/-03.52% 0.1723/-17.72% 0.1815/-13.78%
QE-RL 0.1806 0.1563/-13.46% 0.1485/-17.77% 0.1525/-15.56%
QE-Cxt-RL 0.2067 0.1618/-21.72% 0.1435/-30.58% 0.1528/-26.08%
ME14data
QE-Cxt 0.2756 0.2718/-01.38% 0.2635/-04.39% 0.2646/-03.99%
QE-RL 0.2205 0.2141/-02.90% 0.1967/-10.79% 0.1975/-10.43%
QE-Cxt-RL 0.2889 0.2801/-03.05% 0.2759/-04.50% 0.2782/-03.70%

proposed the re-ranking strategy using late fusion to integrate segment-level

features. Based on the experimental results shown in Figure 5.2, we can conclude

that the re-ranking strategy failed to increase the hyperlinking results due to the

poor quality of the initial results retrieved using spoken information. From Figure

5.13, we can observe that late fusion between segment-level features and spoken

information can achieve improved MAP in some cases. We note, however, that the

hyperlinking results using video-level features are superior to those using only

segment-level features. All these experiments lead us to reconsider the value of

visual segment-level features: whether those features can make a stable contribu-

tion to improving hyperlinking quality. In this section, we integrate segment-level

feature analysis to the current approach. The methodologies include re-ranking

the top R results and retrieving hyperlinking results using late fusion:

• Use late fusion to integrate the segment-level features with other multimodal

features, which involves both spoken information and video-level features.

• Re-rank the top R results of initial retrieval lists, which are constructed by

using query anchor analysis and the hierarchy hyperlinking model.
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Table 6.11: An analysis of MAP results for fusion of transcripts with segment-level
features and video-level features

META META+CH META+ORB META+CH+ORB
ME13data
QE-Cxt 0.2509 0.2427/-03.27% 0.2338/-06.82% 0.2283/-09.01%
QE-RL 0.2554 0.2315/-09.58% 0.2468/-03.37% 0.2311/-09.51%
QE-Cxt-RL 0.2576 0.2539/-01.44% 0.2442/-05.20% 0.2403/-06.72%
ME14data
QE-Cxt 0.3491 0.3402/-02.55% 0.3365/-03.61% 0.3354/-03.92%
QE-RL 0.3547 0.3529/-00.51% 0.3352/-05.82% 0.3327/-06.20%
QE-Cxt-RL 0.3906 0.3827/-02.02% 0.3769/-03.51% 0.3788/-03.02%

The approaches to index and retrieve visual features were proposed in Section

5.2. The primary difference is the use of query expansion to reconstruct the

hyperlinking query. All these experiments use the strategies whose effectiveness

was demonstrated in Section 6.1, including QE-RL-R, QE-Cxt and QE-Cxt-RL

and the corresponding runs associated with the video-level features (META). The

hyperlinking construction follows the strategies proposed in Section 4.2.

Table 6.10 show hyperlinking results using late fusion on spoken information

and segment-level features. Table 6.11 describes the results using video-level

features. In general, all the results are worse than those of the corresponding

baselines. In Chapter 5, we concluded that the visual multimodal features can be

complementary to spoken information to represent user’s understanding of the

video data. The current experiments demonstrate the relatively poor ability of

segment-level features to represent semantically meaningful information com-

pared with the other two methods: the expanded query and video-level features.

The success of spoken information and video-level features further suggests that

users make their judgement on video relevance based overall interpretation of

the available information rather than specific scene objects or background.
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Figure 6.15: An analysis of the re-ranking strategy in terms of MAP for ME13data
using QE-Cxt, QE-RL-R and QE-Cxt-RL
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Figure 6.16: An analysis of the re-ranking strategy in terms of MAP for ME14data
using QE-Cxt, QE-RL-R and QE-Cxt-RL
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Figure 6.17: An analysis of the re-ranking strategy in terms of MAP for ME13data
using H-QE-Cxt, H-QE-RL-R and H-QE-Cxt-RL
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Figure 6.18: An analysis of the re-ranking strategy in terms of MAP for ME14data
using H-QE-Cxt, H-QE-RL-R and H-QE-Cxt-RL
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Figures 6.15 and 6.16 show the hyperlinking results in terms of MAP using

the re-ranking at top R (R is from 10 to 100) retrieved segments. Figures 6.17 and

6.18 illustrate the results using the hierarchy hyperlinking model. We conclude

that a combination of segment-level features and query expansion strategies

can improve the hyperlinking results, as shown in Figures 6.15 and 6.16. Both

figures confirm that the results of QE-RL can be improved by using CH and ORB

features. However, in Figures 6.17 and 6.18, the corresponding approaches achieve

only a slight improvement. For the approach QE-Cxt, we can observe a similar

conclusion in Figures 6.15 and 6.16, that the re-ranking strategy can achieve better

performance. However, when combined with the video-level features, the best

results show only slight improvement compared with the corresponding baseline.

When considering the QE-Cxt-RL, the approach of H-QE-Cxt-RL, the baseline in

Figures 6.17 and 6.18, still achieves the best MAP value (0.2576 for ME13data and

0.3906 for ME14data). These results are superior to the best MAP values using the

re-ranking strategy, which are 0.2059 and 0.2948 respectively in Figures 6.17 and

6.18.

6.3.4 Discussion

This section described a hyperlinking strategy based on combining visual features

with query anchor analysis. We applied the approaches presented in Chapter 5 to

fuse multimodal information. Both segment-level and video-level features were

used, including metadata (META), high-level concept (CPT), colour histogram

(CH) and ORB descriptors (ORB). The hyperlinking query was created according

to the methodologies proposed in Section 6.2. The approaches included using

context information to enrich the query content (QE-Cxt), and using pseudo

relevant feedback and a late fusion scheme to combine hyperlinking results (QE-

RL).
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In Section 6.3.1, the hierarchy hyperlinking model was applied to QE-Cxt and

QE-RL. The experiments revealed that with video-level features, QE-RL achieved

a better MAP value in most cases. Considering the experiments in Section 6.2.2,

we conclude that QE-RL can retrieve more relevant segments with relatively

lower ranks. These relevant segments were located at higher ranks when being

fused with video-level features. For QE-Cxt, we observe that the advantage of

QE-Cxt was a better precision rate. The experimental results demonstrated that

even when having relatively low MAP values, the P@5 values of QE-Cxt are still

superior to QE-RL.

We showed that the QE-Cxt and QE-RL approaches are two independent

directions to improve the hyperlinking query. This means that a combination of

these two methods could exploit both their advantages. Therefore, in Section 6.3.2,

we proposed a hyperlinking framework using both the query anchor analysis

method and hierarchy hyperlinking model. This combined model uses the context

information and pseudo retrieval to improve the initial retrieval, and then the

video-level features (META) were applied to generate the final hyperlinking

results. The experiments showed that this model achieves the best MAP and P@5

values compared with all previous results.

In Section 6.3.1, we noted that fusing META and CPT together always reduced

the hyperlinking effectiveness, while using only META achieved the best results.

In Section 6.3.3, we investigated different approaches to the use of segment-level

features (CH and ORB), including using the late fusion scheme and re-ranking

strategy. The experiments suggested that direct fusion of segment-level features

reduces the hyperlinking retrieval, while re-ranking the top R results according

to segment-level features can improve the results in some cases.

The experiments also showed that the best performance was obtained by the

model proposed in Section 6.3.2, which involved only video-level features. The

experimental investigation proposed in Section 6.3.1 and 6.3.3 supported the
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conclusion that the ability of multimodal features to describe cognitive informa-

tion varies. From Chapter 5, we believe that the reason for the ineffectiveness of

segment-level features was the poor initial retrieval. After using an expanded

query, the improved results shown in Figure 6.15 and 6.16 demonstrate that the

segment-level feature is an alternative and complementary source of multimodal

information. Its effectiveness, however, is lower than that of the video-level fea-

tures. That revealed the benchmark of relevance judgement when users watch

a pair video segments: users prefer semantically meaningful information, i.e.

high-level concepts reflected by the visual descriptors, rather than the low-level

visual descriptors which are often used in computer vision. Thus, the manually

created metadata had the best ability to represent the corresponding high-level

concepts. The automatically created concepts produced better performance than

low-level visual features, but were less effective than metadata information.

6.4 Chapter Conclusion

This chapter investigated the use of query anchor analysis to improve multimedia

hyperlinking. The approaches used spoken information to enrich the content of

the hyperlinking query. Three methodologies were introduced:

• Use the spoken terms in the segment segments around the query anchor.

(QE-Cxt)

• Use the spoken terms located at the top R results of the initial retrieval.

(QE-RE)

• Use a late fusion scheme to integrate the hyperlinking results retrieved by

the pseudo queries. The pseudo queries are determined by the top R results

of the initial retrieval. (QE-RL)
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We used a simple and efficient query expansion strategy described in [RJ94] to

select the best K terms from the expanded resources. Section 6.2 illustrated the

workflow of each approach.

Section 6.2.2 outlined the experimental results in terms of MAP. For QE-Cxt,

the segment size P was set from 60 to 480 seconds, and the number of merged

terms K was from 20 to 300. We concluded that QE-Cxt outperforms the baseline

defined in Chapter 4 when applying these parameters. For QE-RE and QE-

RL, R was from 5 to 40, and K was from 5 to 40. The results suggested that

when R = 5, the algorithms can achieve the best hyperlinking performance. We

introduced two methodologies to estimate the late fusion weights for QE-RL, one

using equal weights (QE-RL-E) and one using rank-normalised scores (QE-RL-R).

The experimental results in Table 6.6 demonstrate QE-RL-R, which applies rank-

normalised scores to fuse the expanded retrieval lists, achieves better hyperlinking

quality.

Section 6.3 combined the approaches to integrate multimodal features intro-

duced in Chapter 5 with the query anchor analysis. The experiments revealed that

QE-Cxt and QE-RL had their advantages respectively. The former increased the

precision rate, while the latter ranked an increase number of relevant segments at

lower ranks. After being fused with video-level features, QE-RL achieved a better

MAP value comparing with QE-RE.

The primary contribution of this chapter is the hyperlinking framework pro-

posed in Section 6.3.2. This integrates the query anchor analysis method with the

hierarchy hyperlinking model. Experiments with this framework demonstrated

better hyperlinking performance compared with all other methodologies.

This chapter also continues the topic of multimodal feature analysis introduced

in Chapter 5. The experiments answer the question of which feature, high-level

or low-level, is better for hyperlinking effectiveness. Both video-level features,

metadata and visual concepts provided by University of Oxford, are high-level,
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and both segment-level features, colour histogram and ORB descriptors using

the BoVW model are low-level. We conclude that the high-level features have

the advantage of representing semantically meaningful information when users

watch a video segment. The high-level features always improve the hyperlinking

performance, while the low-level features have limited ability to complement the

multimodal information.

Our experiments leave some open issues for further research. Firstly, we did

not determine the optimal parameters for QE-Cxt. Our experiments suggest that

the optimal parameters are K = 120 and P = 200 for ME13data, and K = 200

and P = 300 for ME14data. In the later experiments, our conclusion is based on

the optimal parameters in each collection respectively. However, the difference

between parameters for the two collections implies that using the ME13data

collection as the training set could provide inaccurate parameter estimation for

the ME14data collection.

The success of QE-Cxt is based on the hypothesis of accepting the hyperlinks

within the query video. Section 6.2.3 demonstrates that QE-Cxt can retrieve more

relevant segments within the query video compared with the other strategies.

This raises a concern of the validation of this kind of hyperlink. In MediaEval

2013 and 2014, the hyperlinking task accepted hyperlinks within the query video

as valid. However, a hyperlink within the collection is more useful from the

perspective of extending the user browsing experience. This leaves an open issue

of how the approach using context information performs when hyperlinks should

only link to segments in different videos.
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Chapter 7

Thesis Conclusion

Multimedia hyperlinking is a research area within the field of content-based

multimedia information retrieval. Since MediaEval 2012, it has grown as a special

topic/task and has attracted more and more researchers. In TRECVid 2015,

video hyperlinking is one of the primary tasks and attracts participants from

more than 11 research groups. The experimental investigation in this thesis was

concluded during the rapid development of video hyperlinking research. It

can be a bridge between state-of-the-art investigations focusing on multimodal

information retrieval and video hyperlinking techniques in the future.

7.1 Research Conclusion

The hyperlinking framework presented in this thesis consisted of three primary

components: target-segment identification, hyperlinking construction and hy-

perlinking query generation. In the following, we discuss the contribution of

multimodal features in each component respectively.
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Target Segment Identification

We conclude that identifying potentially linked video segments is the funda-

mental issue of video hyperlinking, as target segments are document units in

the proposed hyperlinking system. We used spoken transcripts in the previous

experimental investigation to identify relevant potential target segments. We

used both LIUM and LIMSI transcripts provided by the MediaEval Search and

Hyperlinking task. Indexing and searching spoken information used two classic

weighting models: TF-IDF and BM25.

The experimental investigation in Chapter 4 revealed that LIMSI outperformed

LIUM. Our research made a further investigation into how to use LIMSI tran-

scripts to segment video streams more efficiently. The investigation leveraged

sentence identification in LIMSI transcripts. We implemented the video seg-

mentation strategies using a fixed sliding window and dynamic sliding window

associated with the lexical information. The experimental results showed that

using the lexical information achieved better hyperlinking quality.

Our experimental investigation also focused on the optimal size of the sliding

window (the optimal size of target segments). According to the experiments,

we believe that selecting a moderate length for the sliding window is critical to

improving hyperlinking performance. A short sliding window could contain

insufficient multimodal features while an overlong one could contain redundant

features that decrease the hyperlinking performance.

Finally, we compare the performances of the TF-IDF and BM25 weighting

models. Generally, BM25 is superior to TF-IDF when applying a default param-

eter setting. In the last section of Chapter 4, a further investigation is on the

optimal parameter selection for both ME13data and ME14data. We identified an

appropriate range of BM25 parameters.
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Hyperlinking Construction

Multimodal features were used in the hyperlinking construction process proposed

in this thesis, including not only spoken transcripts, but also low-level visual

descriptors, and high-level concepts. We used color histograms and ORB descrip-

tors to represent the visual information. The high-level concepts included the

video metadata and the high-level visual concepts provided by the MediaEval

workshop.

The experimental investigation in the thesis suggested that using multimodal

features could improve hyperlinking performance. The effectiveness of these fea-

tures, however, varies. Using the high-level concepts achieved the best hyperlink-

ing results compared with all others. Moreover, the video metadata outperformed

the high-level visual concepts. Experimental investigation showed that spoken

transcripts were more effective than the low-level visual descriptors.

To integrate multimodal features, we investigated strategies to estimate the

optimal fusion weights for the linear late fusion scheme. The strategies included

1) using a supervised learning solution to optimize the fusion weights on the

training data collection, and applying the results to the test data collection; and

2) using an unsupervised solution referred as to MDM, whose effectiveness was

demonstrated in TRECVid collection according to [Wil09]. The experimental

investigation showed that it was difficult to identify an appropriate training

collection for both ME13data and ME14data. Thus, using the MDM unsupervised

learning solution achieved a better performance. We used the grid search strategy

to identify the optimal fusion weights between the metadata and the spoken

transcripts in both ME13data and ME14data. We concluded that the optimal

solution was different for each collection. A primary reason is that the spoken

transcripts were less representative when describing the video content in the
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ME14data, and thus, hyperlinking required complementary information from the

metadata.

Hyperlinking Query Generation

In Section 6.2, we concluded that the primary difference between video hyper-

linking and information retrieval was how to construct a hyperlinking query. A

hyperlinking system receives no user input as a query. Instead, the system has to

predict what users are potentially interested in when creating hyperlinks from

a query anchor. In Chapter 6, we applied various query expansion strategies to

improve hyperlinking performance.

Our methodologies, in general, can be categorised as using either early fusion

and late fusion to enrich the hyperlinking query. Early fusion used the context

information around the query anchor and the initial retrieval results when extract-

ing potentially relevant words to recreate the query anchor. Late fusion directly

fused the initial retrieval results to determine the final ranked list. Later, we

integrated multimodal features with query expansion strategies.

The experimental investigation concluded that early fusion was effective at

improving the precision rate. Late fusion can retrieve more relevant documents

from the ground truth pool with a lower rank. Based on this, we proposed our

hyperlinking framework with multimodal features. This model applied early

fusion to enrich the query anchor, used late fusion to fuse the initial retrieval to

incorporate more relevant segments, and finally applied the metadata information

to re-rank the hyperlinking list. The experimental investigation showed that the

hyperlinking model achieved the best hyperlinking performance compared with

all the other solutions proposed in this thesis.

The experimental investigation in this thesis contributes to research in this

field as follows:
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• We present a methodology to create the ground truth for hyperlinking

evaluation using crowdsourcing. Engaging crowdsourcing workers can

provide effective human annotations for a large data collection. In this thesis,

we described the required workflow including publishing crowdsourcing

assignment, accepting the assignment, and constructing the ground truth.

• We investigated how multimodal features performed in video hyperlinking.

Our research not only focused on the effectiveness of individual feature but

also the methodologies used to integrate multimodal features. The video

summarisation information (the video-level features) is critical to improving

hyperlinking performance. These features should be associated with other

segment-level features (for example, spoken transcripts) to identify the

potentially interesting points in a video accurately. The low-level visual

features do not sufficiently represent relevant information in terms of human

perspective.

• We presented a hyperlinking framework in Chapter 6 using multimodal

information, query expansion strategies, and the integration of multimodal

features. This approach outperformed all other approaches investigated in

this thesis.

7.2 Future Work

This section presents some open issues for our future work, which will focus on

future investigation of multimodal features.

• Low-level Visual Feature The low-level visual features applied in this the-

sis since they are widely investigated in multimedia retrieval. However,

research in multimedia information retrieval presented a large number

of low-level visual features which could benefit multimedia hyperlinking.
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Thus, it would be interesting to investigate other low-level visual features

to interpret the visual content in a different way.

• High-level Visual Feature High-level visual features are video-level in this

thesis. Although the experimental investigation showed its effectiveness, we

believe that segment-level high-level features could further benefit the mul-

timedia hyperlinking. Existing research in [SSH14b] described the method-

ology of extracting segment-level concepts from spoken transcripts and

showed good performance in ME13data. Thus, our further investigation

will focus on extracting visual concepts from each target segment to describe

the corresponding content.

• Data Fusion Multimodal feature analysis uses data fusion to integrate the

hyperlinking results retrieved from different modalities. This thesis has

focused on linear late fusion. Our future work will carry out further inves-

tigation into determining both linear fusion weights and non-linear data

fusion strategies.

• Parameter Selection The experimental investigation of this thesis has re-

vealed that parameter optimization is a primary issue in video hyperlinking,

especially for query anchor expansion. Although we suggested an appropri-

ate range of various parameters for ME13data and ME14data, it would be

essential to investigate how these generalise to other data collections.
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Appendix A

An Analysis of ME13data and

ME14data Ground Truth
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Table A.1: An overview of ME13data ground truth in terms of Mturk users’
perspective. (Pos.: Both users regard the ground truth as relevant. Neg.: Both
users regard the ground truth as irrelevant. Un.: Only one user regards the ground
truth as relevant, while the other regard it as irrelevant)

Query ID Pos. Neg. Un. Samples
Q1 110 237 15 362
Q2 98 171 15 284
Q3 109 214 23 346
Q4 128 205 13 346
Q5 60 234 24 318
Q6 76 241 18 335
Q7 105 230 7 342
Q8 159 147 19 325
Q9 80 218 16 314
Q10 91 236 14 341
Q11 44 266 17 327
Q12 107 245 15 367
Q13 118 211 22 351
Q14 75 237 18 330
Q15 72 253 24 349
Q16 90 222 20 332
Q17 34 290 6 330
Q18 37 309 7 353
Q19 22 292 19 333
Q20 22 300 10 332
Q21 166 209 15 390
Q22 209 95 21 325
Q23 46 279 8 333
Q24 123 196 14 333
Q25 62 224 12 298
Q26 87 196 18 301
Q27 93 193 16 302
Q28 105 200 16 321
Q29 96 251 6 353
Q30 83 211 6 300
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Table A.2: An overview of ME14data ground truth in terms of Mturk users’
perspective. (Pos.: Both users regard the ground truth as relevant. Neg.: Both
users regard the ground truth as irrelevant. Un.: Only one user regards the ground
truth as relevant, while the other regard it as irrelevant)

Query ID Pos. Neg. Un. Samples
Q1 52 396 16 464
Q2 60 405 9 474
Q3 43 386 2 431
Q4 58 354 5 417
Q5 36 385 16 437
Q6 108 308 6 422
Q7 103 310 3 416
Q8 40 223 4 267
Q9 84 360 11 455
Q10 46 336 26 408
Q11 82 273 23 378
Q12 63 357 8 428
Q13 83 294 15 392
Q14 36 375 7 418
Q15 80 298 12 390
Q16 63 374 26 463
Q17 72 264 19 355
Q18 47 358 13 418
Q19 17 411 14 442
Q20 95 354 8 457
Q21 66 382 19 467
Q22 81 339 30 450
Q23 122 262 17 401
Q24 31 355 19 405
Q25 27 359 3 389
Q26 39 328 30 397
Q27 107 265 3 375
Q28 26 371 22 419
Q29 47 389 15 451
Q30 74 170 10 254
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Appendix B

Comparsion of Proposed

Hyperlinking Solution with Other

Investigations

Figure 6.11 concluded our final hyperlinking design in this thesis with the best

MAP 0.2576 in ME13data and 0.3906 in ME14data. In this part, we compare

these results with other hyperlinking runs reviewed in Sections 2.4.3 and 2.4.3.

Furthermore, TRECVid 2015 proposed the Video Hyperlinking task (LNK) using

ME14data1. We also submitted our experimental runs using the hyperlinking

system illustrated in Figure 6.11. Thus, we also compare our results with those

from other participants. All the tables use the term “PROPOSED” to represent

our results using the hyperlinking system illustrated in Figure 6.11.

1TRECVid 2015 and MediaEval 2014 used the same collection in hyperlinking task with
different query set.
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Table B.1: A comparison between our solution and the results from all other
participants in MediaEval 2013

TEAM MAP
Idiap2013 [BPHPB13] 0.5172
PROPOSED 0.2576
DCU [CJO13] 0.2354
LinkedTV13 [SHC+13] 0.2321
TOSCA-MP2013 [LSB13] 0.1887
UTwente [SAO13] 0.0609
soton-wais2013[PHS+13] 0.0594
HITSIRISA [GSGS13] 0.0474
MMLab [NNMdW13] 0.0376
UPC [VTAN13] 0.0240

Table B.2: A comparison between our solution and the results from all other
participants in MediaEval 2013

TEAM MAP
CUNI [GPKL14] 4.1824
PROPOSED 0.3906
LINKEDTV2014 [PMS+14] 0.2524
DCU [CJO14] 0.0791
JRS [BS14] 0.0556
IRISAKUL [SGSM14] 0.0335
DCLab [PFS14] 0.0135
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Table B.3: A comparison between our submission and the results from all other
participants in TRECVid 2015 hyperlinking task. (MAiSP [RJ15] is a new evalua-
tion metric used in TRECVid 2015 hyperlinking task.)

TEAM MAP TEAM MAiSP
CMU 0.4623 PROPOSED 0.2718
PROPOSED 0.3044 CMU 0.2690
EURECOM 0.2179 EURECOM 0.2020
VIREO 0.1890 VIREO 0.1782
CUNI 0.1441 CUNI 0.1311
ORAND 0.1071 IRISA 0.0792
IRISA 0.0873 ORAND 0.0563
iip 0.0419 iip 0.0338
Metu 0.0294 Metu 0.0297
TUZ 0.0177 TUZ 0.0238

189



Bibliography

[ACD+98] James Allan, Jaime Carbonell, George Doddington, Jonathan Yam-

ron, and Yiming Yang. ”Topic Detection and Tracking Pilot Study

Final Report”. In Proceedings of the DARPA Broadcast News Transcrip-

tion and Understanding Workshop, pages 194–218, February 1998.

[AEOJ13] Robin Aly, Maria Eskevich, Roeland Ordelman, and Gareth J.F.

Jones. ”Adapting Binary Information Retrieval Evaluation Metrics

for Segment-based Retrieval Tasks”. Computing Research Repository,

December 2013.

[AHESK10] Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El Saddik,

and Mohan S. Kankanhalli. ”Multimodal Fusion for Multimedia

Analysis: a Survey”. Multimedia Systems, 16:345–379, 2010.

[AKRR99] Dave Abberley, David Kirby, Steve Renals, and Tony Robinson.

”The THISL Broadcast News Retrieval System”. In Proceedings

of ESCA on Accessing Information in Spoken Audio, pages 19–24,

Cambridge, UK, April 1999.

[AMC+12] Robin Aly, Kevin McGuinness, Shu Chen, Noel E. O’Connor, Ken

Chatfield, Omkar Parkhi, Relja Arandjelovic, Andrew Zisserman,

Basura Fernando, and Tinne Tuytelaars. ”AXES at TRECVid 2012:

KIS, INS, and MED”. In Proceedings of TREC Video Retrieval Evalua-

tion, Maryland, USA, November 2012.

190



[ASD12] Tim Althoff, Hyun Oh Song, and Trevor Darrell. ”Detection Bank:

an Object Detection based Video Representation for Multimedia

Event Recognition”. In Proceedings of the 20th ACM International

Conference on Multimedia, pages 1065–1068, 2012.

[BBL+08] Hervé Bredin, Daragh Byrne, Hyowon Lee, Noel E. O’Connor, and

Gareth J.F. Jones. ”Dublin City University at the TRECVid 2008

BBC Rushes Summarisation Task”. In Proceedings of the 2nd ACM

TRECVid Video Summarization Workshop, pages 45–49, Vancouver,

Canada, 2008.

[BD90] Hans Peter Brondmo and Glorianna Davenport. ”Creating and

viewing the Elastic Charles-a hypermedia journal”. Hypertext, State

of the Art, 1990.

[BG98] Suresh Balakrishnama and Aravind Ganapathiraju. ”Linear Dis-

criminant Analysis - a Brief Tutorial”. International Symposium on

Information Processing, 1998.

[BHdR11] Marc Bron, Bouke Huurnink, and Maarten de Rijke. ”Linking

Archives using Document Enrichment and Term Selection”. In

Proceedings of the 15th International Conference on Theory and Practice

of Digital Libraries: Research and Advanced Technology for Digital

Libraries (TPDL ’11), pages 360–371, Berlin, German, September

2011.

[BMI12] Andrzej Białecki, Robert Muir, and Grant Ingersoll. ”Apache

Lucene 4”. In SIGIR 2012 Workshop on Open Source Information

Retrieval, pages 17–24, Portland, USA, 2012.

191



[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. ”Latent

Dirichlet Allocation”. Journal of Machine Learning Research, 3:993–

1022, 2003.

[BPHPB13] Chidansh A. Bhatt, Nikolaos Pappas, Maryam Habibi, and Andrei

Popescu-Belis. ”IDIAP at Mediaeval 2013: Search and Hyper-

linking Task”. In Proceedings of the MediaEval 2013 Multimedia

Benchmark Workshop, Barcelona, Spain, October 2013.

[BS14] Werner Bailer and Harald Stiegler. ”JRS at Search and Hyperlink-

ing of Television Content Task”. In Proceedings of the MediaEval

2014 Multimedia Benchmark Workshop, Barcelona, Spain, October

2014.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. ”SURF: Speeded

up Robust Features”. In European Conference on Computer Vision,

pages 404–417. 2006.

[Bus45] Vannevar Bush. ”As We May Think”. In The Atlantic, 1945.

[BUS10] Christian Beecks, Merih Seran Uysal, and Thomas Seidl. ”Sig-

nature Quadratic Form Distance”. In Proceedings of the ACM In-

ternational Conference on Image and Video Retrieval, pages 438–445,

2010.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. ”Modern Informa-

tion Retrieval”. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

[CdCC+05] B Cardoso, Fausto de Carvalho, Luis Carvalho, Gabriel Fernàndez,
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