

From Separations to Sensors for Environmental Monitoring

Fiona Regan

31st International Symposium on Chromatography (ISC2016)

Cork August 2016

Outline

- Traditional separation methods
- Compliance monitoring -EQS

Emerging chemicals of concern

Polar and non-polar organics

- Longer-term monitoring
- Trend monitoring
- Passive sampling

- Sensor platform development
- Single and multi-analyte systems
- Integration of technologies

Environmental pollutants (toxins, pharmaceuticals)

Current monitoring approach

Compliance Surveillance Investigative

- Compliance requirement to "good chemical and ecological status of both surface and groundwater" based on chemical monitoring data.
- Collection of a spot/grab sample that is then analysed back in the laboratory.
- Disadvantages: cost, delay in obtaining results

 time needed for laboratory analyses,
 - a snapshot of the measured variable at the time of sampling.
- Levels of pollutants can vary temporally and spatially → episodic events could be missed, or conclusions could be drawn on the basis of what may only be transitory high levels.

The use of relatively inexpensive *in-situ* sensors offers the potential to reduce costs considerably, making it possible to monitor an increasingly wider set of parameters in the field, as well as providing more useful, **continuous monitoring** capabilities to give an accurate idea of changing water quality.

Micropollutants and emerging watch list chemicals

- The levels of pollutants present in water bodies are most commonly judged against set environmental quality standards (EQSs).
- These standards dictate the maximum allowable concentrations (MAC EQS) or range of concentrations (Annual Average or AA EQS) of specific pollutants allowed to ensure compliance.

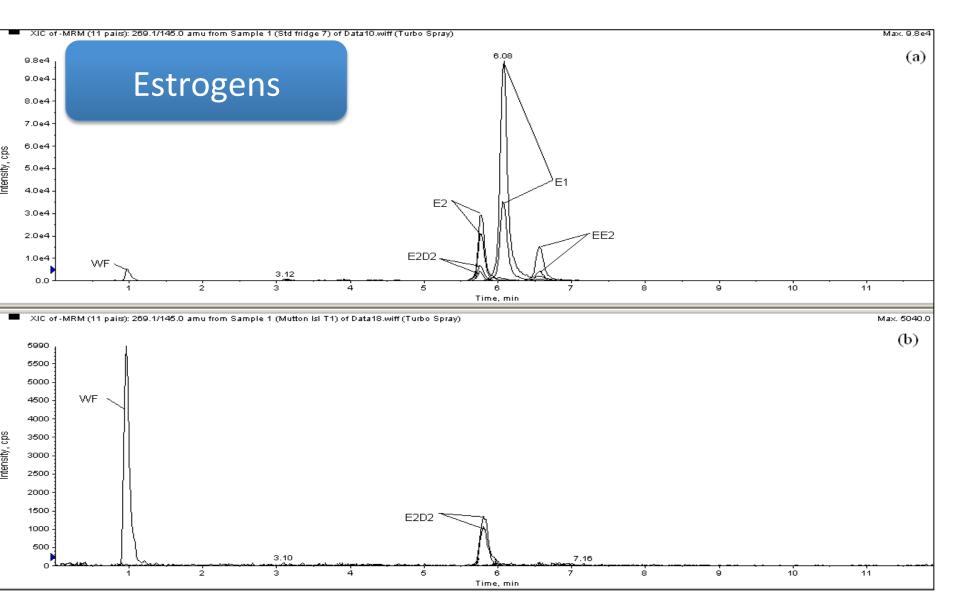
Micropollutants and emerging watch list chemicals

- This list of priority and hazardous substances, which already includes PAHs, pesticides and more, → a new daughter directive (Directive 2013/39/EU) → emerging chemicals of concern, including pesticides and biocides, industrial chemicals and endocrine disruptors.
- New watch list, in the EU → a number of new priority substances to be monitored under the WFD as well as suggested 'watch' compounds.
- New chemicals, termed emerging chemicals, include organohalogens, pharmaceutical compounds, endocrine disruptors and brominated flame-retardants.

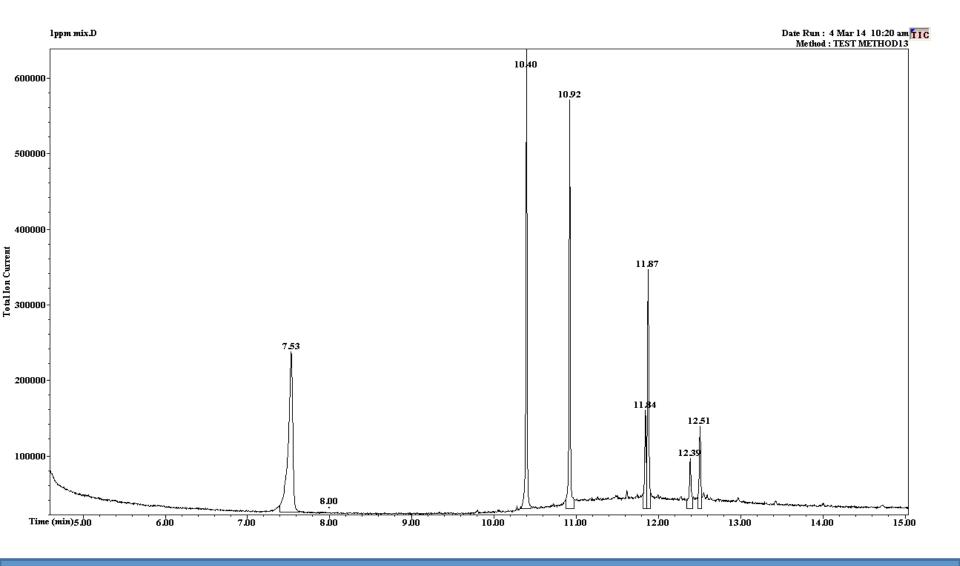
General analytical approach

- A dual column GC-ECD multiresidue method for OCPs (including HCB HBCD, Heptachlor and heptachlor epoxide), PCBs and PBDEs and pesticides in biota →
- Adapted to a triple quadrupole GC-MS method and expanded to cover additional pesticides such as dicofol and to screen for the flame retardant HBCD.
- A further LCMSMS screening method was developed for other polar pesticides that are not amenable to GCMS method

Other method developments/ adaptations

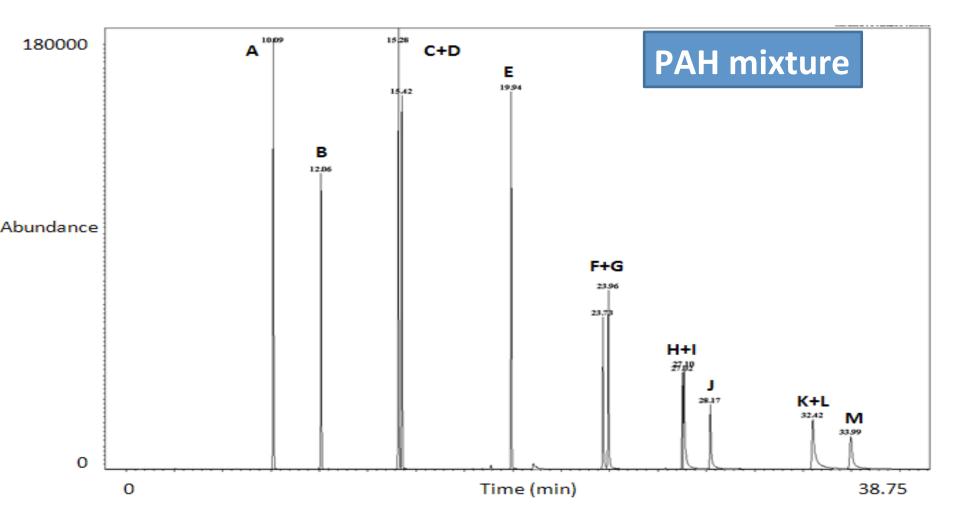

PFOS method: an LCMSMS method was studied for PFOS in line with ICES PFOS guidelines for PFC monitoring in environmental compartments (Ahrens et al 2010)

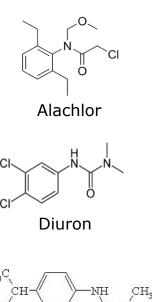
Endocrine Disrupting Substances: 17β estradiol (E2) and 17α ethynyl estradiol (EE2): LCMSMS for the analysis E2 and EE2 in water (including seawater) and biota.


Partners Marine Institute (MI) has taken part in the LGC Standards Proficiency Testing scheme (Aquacheck) for E2 and EE2 in effluent samples.

LCMS methods for Pharmaceutical Substances

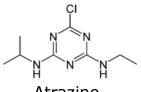
Diclofenac based on the method of (Zhang, Hibberd et al. 2008)


(a) Separation of external standard Warfarin (WF), followed by E2, E2d₂, E1 and EE2 by LC-MS/MS, (b) chromatogram of a formalin treated water sample.

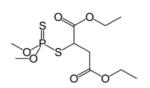

Method development for compounds by GCMS. Peaks: (1) octylphenol, (2) terbutryn, (3) cybutryne, (4) aclonifen, (5) quinoxyfen and (6) bifenox.

Properties of PAHs listed as Priority Pollutants in the WFD. Log K_{ow} is the octanol/water partition coefficient value which indicates the solubility of the chemical.

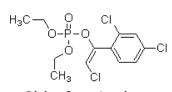
Compound	Molecular	Log	Compound	Molecular	Log
	Weight	K_{ow}		Weight	K_{ow}
	(g)			(g)	
Anthracene	178.23	4.55	Fluorene	166.22	4.18
Acenaphthylene	152.19	3.94	Pyrene	202.25	4.88
Phenanthrene	178.23	4.46	Benzo(a)anthracene	228.29	5.70
Benzo(a)pyrene	252.31	6.11	Chrysene	228.29	5.63
Benzo(b)fluoranthene	252.31	6.04	Dibenzo(a,h)anthracene	278.34	6.86
Benzo(g,h,i)perylene	276.33	6.78	Benzo(k)fluoranthene	252.31	6.21
Indeno(1,2,3-cd)	276.33	6.58			
pyrene					


Separation of PAH mixture by GCMS; (A) Acenaphthylene, (B) Fluorene, (C) Phenanthrene, (D) Anthracene, (E) Pyrene, (F) Benzo(a)anthracene, (G) Chrysene, (H) Benzo(b)fluoranthene, (I) Benzo(k)fluoranthene, (J) Benzo(a)pyrene, (K) Indeno(1,2,3-cd)pyrene, (L) Dibenzo(a,h)anthracene, (M) Benzo(ghi)perylene

Isoproturon

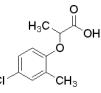

Pentachlorophenol H₃C

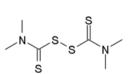
Nonylphenol


Atrazine

DEHP

Malathion


Pirimiphos methyl


Chlorfenvinphos

$$O_2N$$
 S
 CH_3
 CH_3
 O
 CH_3

Fenitrothion

Mecoprop

Thiram

Glyphosphate

Simazine

Chlorpyrifos

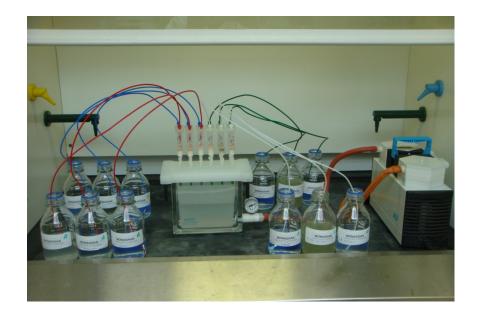
Epoxiconazole

Octylphenol

Trifluralin

Pesticides Included in Analysis

Pesticide	Internal standard	Priority pollutant
Alachlor	Alachlor-D13	✓
Atrazine	Atrazine-D5	✓
Chlorfenvinphos	Chlorfenvinphos-D10	✓
Chlorpyrifos	Chlorpyrifos-D10	✓
Di-2-ethylhexyl-phthalate	DEHP-D4	✓
Diuron	Diuron-D6	✓
Epoxiconazole	-	
Isoproturon	-	✓
Fenitrothion	Fenitrothion-D6	
Malathion	Malathion-D6	
Mecoprop	Mecoprop-D3	
Octylphenol	-	✓
Nonylphenol	Nonylphenol-D8	✓
Pentachlorphenol	Pentachlorphenol-13C6	✓
Pirimiphos-methyl	Pirimiphos-methyl-D6	
Simazine	Simazine-D10	
Thiram	Thiram-D12	
Trifluralin	Trifluralin-D14	✓
Glyphosate	Glyphosate -13C2 15N	



Sample Preparation

- Solid-Phase Extraction
- Phenomenex Strata-X
 - Extracts wide range of compounds

Protocol:

- Filter water sample if necessary
- Condition and equilibrate SPE cartridge
- Apply water samples onto SPE cartridge
- Rinse with deionised water
- Dry SPE cartridge
- Store SPE cartridge at -20°C if necessary
- Elute pesticides with ACN and IPA
- Evaporate under N₂ in Turbovap
- Add 1 mL ACN
- Filter and analyse

LC-MS/MS Conditions - Triple Quadrupole

MS: Applied Biosystems API 3000

- Source temperature: 450°C
- Nebulizer/desolvation gas: Zero air
- Curtain and collision gas: Nitrogen
- Ion spray voltage: 5500V ESI⁺ / 4500V ESI⁻

HPLC: Agilent 1100 series

- Column: Waters XBridge C18 (150 x 4.6 mm, 3.5μm) + guard column (20 x 4.6 mm, 3.5μm)
- Column temperature: 40°C
- Mobile phase A: H_2O :ACN (90:10 v/v) + 1mM ammonium acetate + 0.01% acetic acid
- Mobile phase B: ACN + 1mM ammonium acetate + 0.01% acetic acia
- Flow rate: 300 μL/min
- Injection volume: 20μL
- 35 min gradient ESI⁺, 30 min gradient ESI⁻

EQS Limits & LOQs

Pesticide	EQS (μg/L)	Target LOQ < 30% EQS	Conc in 1 mL sample extract (µg/L)*	LOQ (μg/L)				
Alachlor	0.3	0.09	45	1				
Atrazine	0.6	0.18	90	1				
Chlorfenvinphos	0.1	0.03	15	1				
Chlorpyrifos	0.03	0.009	4.5	5				
DEHP	1.3	0.39	195	1				
Diuron	0.2	0.06	30	1				
Isoproturon	0.3	0.09	45	1				
Simazine	1.0	0.3	150	1				
Epoxiconazole	-	-	-	1				
Fenitrothion	-	-	-	1				
Malathion	-	-	-	1				
Pirimiphos-methyl	-	-	-	1				
Mecoprop	-	-	-	1				
Pentachlorophenol	-	-	-	1				
Thiram	-	-	-	5				
Glyphosate	-	-	-	>1000				
*500mL water samples were concentrated down to 1 mL								

	ESI				Dwell				
Analyte	mode	RT	Q1	Q3	time	DP	FP	CE	CXP
		(min)	(Da)	(Da)	(msec)	(V)	(V)	(V)	(V)
Simazine D ₁₀	+	8.86	212.71	137.02	100	56	190	29	6
Simazine C	+	8.95	202.00	103.89	100	Sun	nmary	of the	
Simazine Q	+	8.95	202.00	131.94	100				
Isoproturon Q	+	9.76	207.08	71.92	100	rete	ention	πmes,	
Isoproturon C	+	9.76	207.08	164.97	100	diag	gnostic	ions.	and
Diuron D6	+	9.77	239.03	77.95	100				3110
Diuron Cl ³⁷	+	9.84	234.92	71.90	100	tne	MS/M	15	
Diuron Q	+	9.85	232.89	71.90	100	ope	rating	condit	ions
Atrazine D ₅	+	9.96	221.19	178.83	100				
Atrazine Q	+	10.03	216.20	173.79	100	for	the 13	pestic	iaes
Atrazine C	+	10.03	216.20	67.92	100	and	11 int	ernal	
Epoxiconazole Q	+	11.02	330.13	120.96	100				
Epoxiconazole C	+	11.02	330.13	100.97	100	star	ndards	includ	ea
Malathion D6	+	11.44	355.09	99.98	100	in t	he stud	dv.	
Malathion Q	+	11.49	348.02	126.93	100				
Malathion C	+	11.49	348.02	98.92	100				
Alachlor D ₃	+	11.87	283.03	251.11	100	O is	quant	itative	ion
Alachlor Q	+	11.97	270.16	237.89	100		•		
Alachlor C	+	11.97	270.16	161.99	100	and	C is		
Chlorfenvinphos	+					con	firmat	orv ior	
D_{10}		11.97	368.88	100.93	100			0.,	
Chlorfenvinphos	+								
Q		12.05	358.88	154.90	100	46	150	19	8
Chlorfenvinphos	+								
C		12.05	358.88	98.92	100	46	150	47	6
Pirimiphos D ₆	+	13.00	311.99	163.94	150	51	150	31	8
Fenitrothion D ₆	+	13.02	283.94	130.91	150	51	100	33	8
Pirimiphos C	+	13.04	306.03	66.98	150	56	190	61	4
Pirimiphos Q	+	13.04	306.03	164.05	150	56	190	31	10

Results of the analysis of real waste water samples from seven WWTPs (n = 3) and limits of quantitation of the LC-MS/MS method and the corresponding surface EQS limits.

the corresp	onding sur	face EQS	limits.						T		
		(ng/mL	EQS	Mean	RS	Mean	RS	Mean	RS	Mean	RS
WWTP	Analyte)	(ng/mL)	(ng/mL)	D	(ng/mL)	D	(ng/mL)	D	(ng/mL)	D
Bandon	Atrazine	2	600	9.0	5.6	406.7	2.3	62.0	6.3	41.1	1.7
	Diuron	2	200	82.6	21.8	374.7	0.7	65.2	2.9	977.0	5.3
	Simazine	2	-	29.5	7.8	84.9	6.2	36.5	15.3	38.4	8.6
	Mecoprop	2	-	-	-	446	8.1	-	-	-	-
Ballincollig	Atrazine	2	600	13.9	3.6	4.1	7.3	14.9	4.7	2.8	3.6
	Diuron	2	200	87.2	6.8	80.9	5.1	81.3	5.5	163.6	4.1
	Simazine	2	_	43.1	10.7	45.3	7.9	16.1	3.7	53.4	9.0
	Mecoprop	2	-	-	-	-	-	56.1	51.3	311.3	5.0
Clonakilty	Atrazine	2	600	7.3	4.1	30.8	3.2	9.3	7.5	4.8	6.3
	Diuron	2	200	23.7	9.7	30.6	9.2	51.0	6.9	41.9	1.4
	Simazine	2	-	5.0	20.0	-	-	-	-	3.9	-
Charleville	Atrazine	2	600	11.7	3.4	11.1	3.6	9.2	4.3	7.0	2.9

Month 2

Month 3

Month 4

Outline

- Traditional separation methods
- Compliance monitoring -EQS

Emerging chemicals of concern

Polar and non-polar organics

- Longer-term monitoring
- Trend monitoring
- Passive sampling

- Sensor platform development
- Single and multi-analyte systems
- Integration of technologies

Environmental pollutants (toxins, pharmaceuticals)

A single sample

4-6 weeks

Up-to a year autonomously

Spot sampling

Longer-term monitoring of trends

Continuous real-time monitoring of certain parameters

Passive Sampling

- Determination of pollutants in aquatic environment
- Free flow of analyte molecules from sampled medium to collecting medium – only dissolved analytes, no energy source

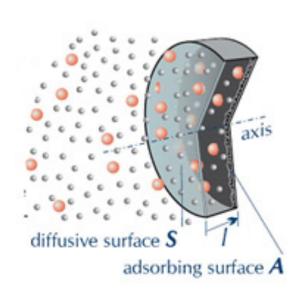


Fig. 1 – Passive sampling mechanism

Fig. 2 – Passive sampling device (interior)

Fig. 3 – Passive sampling devices

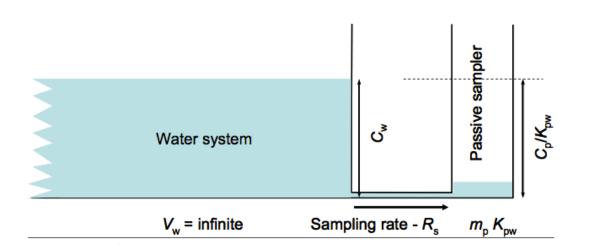
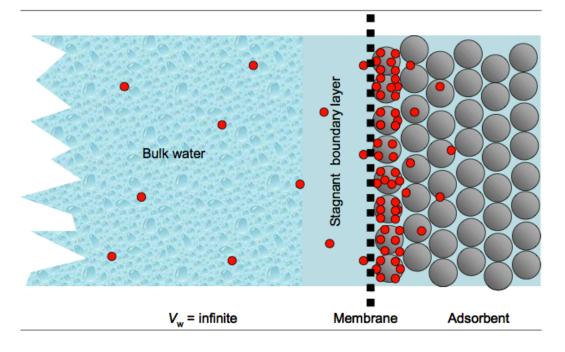
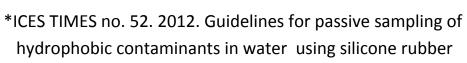



Fig. 4 – Absorption passive sampling mechanism

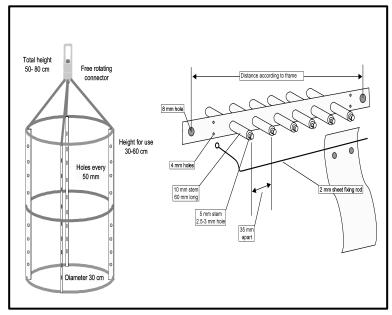
Equilibrium is reached and time-weighted average is determined. Mainly for non-polar compounds.

Fig. 5 – Adsorption passive sampling mechanism

Kinetic regime is maintained and calculations are based on time-integrated measurements Mainly for polar analytes.


Ref: Smedes et al., 2010

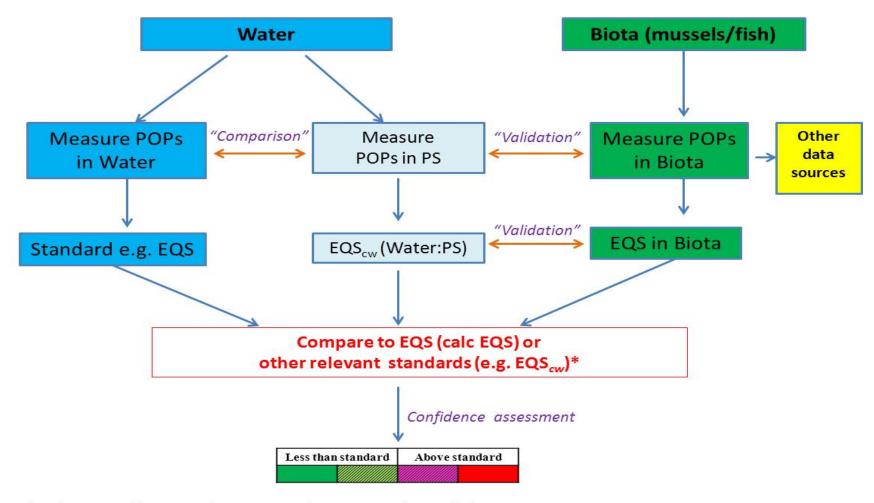
Protocol for Passive Sampler Deployment


- ICES TIMES no. 52* for PDMS
- EA lab/NLS guidelines for POCIS

Record

- GPS co-ordinates
- Date and time of deployment
- Salinity
- Water temperature

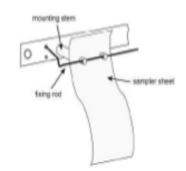
**Environmental Sampling Technologies lab: http://www.est-lab.com/pocis.php



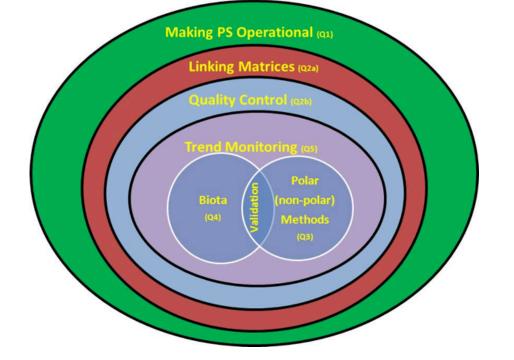
PDMS sheet attachment*

POCIS canister**

Passive sampling


st Based on the potential derivation of a passive sampling EQS equivalent EQS(PS).

Summary of project approach to further incorporating PS into operational monitoring programmes.


Overview of sites selected

County	Site	Rationale	POCIS	PDMS	Water	Mussels	Fish (IFI)
Cork	Inchigeelagh	Upstream river	✓	✓	✓		1
	Inniscarra	Downstream river	✓	✓	✓		✓
	Shandon	Riverine/transitional	✓	✓	✓		✓
	Lough Mahon	Riverine/transitional	✓	✓	✓	✓	
	Outer bay	Riverine/transitional	✓	✓	✓	✓	
Dublin	Poolbeg	High pressure coastal	✓	✓	1	✓	
	Osberstown	Riverine/transitional	✓	✓	✓	✓	
	Lucan Bridge	Downstream river	✓	✓	✓		✓
	Kilcullen Bridge	Upstream river	✓	✓	✓		✓
Galway	Kilkieran Bay	Coastal reference	✓	✓	✓	✓	
Mayo	Burrishoole	Upstream river	✓	✓	✓		1
Donegal*	Glen Lackagh 1	Cypermethrin study	SPMD	✓	✓	Benthic	
-	Glen Lackagh 2	Cypermethrin study	SPMD	✓	✓	kick sampling	

	Matrix		Glen Lackagh U/S	Midstream A	Midstream B	Midstream C	Glen Lackagh D/S
Analyte		Units			2014		
Cypermethrin 29/4/14		ng L ⁻¹	1.17	NA	NA	NA	1.08
Cypermethrin 22/5/14	Water	ng L ⁻¹	1.47	1.67	1.38	1.73	1.78
Cypermethrin	PDMS	ng L ⁻¹	++	NA	NA	NA	+++
Cypermethrin	SPMD	ng L ⁻¹	<70	NA	NA	NA	<70

Cork POCIS and water estrogens

Upstream Downstream

	Matrix		Lough Allua Inchigeelagh	Iniscarra	Shandon	Lough Mahon	Cork Outer Harbour
Analyte		Units			2013		
EE2	DOCIC	ng L ⁻¹	<0.2	1.39	<0.2	<0.2	<0.2
E2	POCIS	ng L ⁻¹	<0.5	<0.5	<0.5	2.36	1.98
EE2	\A/ata#	ng L ⁻¹ *	nd	nd	nd	nd	nd
E2	Water	ng L ⁻¹ *	nd	nd	nd	nd	nd
Analyte		Units			2014		
E1		ng L ⁻¹	< 0.51	0.24	0.37	0.48	0.37
EE2	POCIS	ng L ⁻¹	< 0.12	< 0.04	< 0.04	< 0.04	0.07
E2		ng L ⁻¹	< 0.13	< 0.04	< 0.04	0.06	0.09
E1		ng L ⁻¹ *	nd	0.41	nd	0.41	0.54
EE2	Water	ng L ⁻¹ *	nd	nd	nd	nd	nd
E2		ng L ⁻¹ *	nd	nd	nd	nd	nd

^{*}LOD water samples by LC-MS/MS: E1: 0.07 ng L⁻¹ E2: 0.07 ng L⁻¹, EE2, 0.11 ng L⁻¹. 5 L sample n = 2 Effective sampling rates POCIS (ng/sampler/day)*: E1: 0.39, E2: 0.46, EE2: 0.235

Dublin POCIS/water estrogens

Upstream Downstream

	Matrix		Kilcullen	Osberstown	Lucan	Poolbeg
Analyte		Units		20	14	
E1		ng L ⁻¹	<0.23	0.29	0.37	
E2	חסכונ	ng L ⁻¹	<0.06	<0.06	<0.06	
EE2	POCIS	ng L ⁻¹	<0.06	<0.06	< 0.06	
E1		ng L ^{-1*}	<0.07		0.33	1.92
E2	\A/a+an	ng L ^{-1*}	nd	0.33	0.43	0.23
EE2	Water	ng L ^{-1*}	nd	nd	nd	nd
Analyte		Units		20	15	
E1		ng L ⁻¹	<0.23	0.31	0.42	0.41
E2	POCIS	ng L ⁻¹	<0.06	<0.06	0.06	0.07
EE2		ng L ⁻¹	<0.06	<0.06	<0.06	<0.06

^{*}LOD water samples by LC-MS/MS: E1: 0.07 ng L⁻¹ E2: 0.07 ng L⁻¹, EE2, 0.11 ng L⁻¹. 5 L sample n = 2 Effective sampling rates POCIS (ng/sampler/day)*: E1: 0.39, E2: 0.46, EE2: 0.235

Dublin Bay PAHs

Analyte	Estimated Water Concentrations (ng L ⁻¹) SPMD
Acenaphthene	<1.19
Acenaphthylene	<1.47
Anthracene	< 0.84
Benzo(a)anthracene	< 0.63
Benzo(a)pyrene	<0.74
Benzo(b)fluoranthene	< 0.61
Benzo(ghi)perylene	<1.00
Benzo(k)fluoranthene	< 0.69
Chrysene	0.84
Dibenzo(a,h)anthracene	< 0.80
Fluoranthene	2.25
Fluorene	<0.98
Indeno(1,2,3-cd)pyrene	<0.91
Naphthalene	<5.73
Phenanthrene	1.04
Pyrene	3.73

Outline

- Traditional separation methods
- Compliance monitoring -EQS

Emerging chemicals of concern

Polar and non-polar organics

- Longer-term monitoring
- Trend monitoring
- Passive sampling

- Sensor platform development
- Single and multi-analyte systems
- Integration of technologies

Environmental pollutants (toxins, pharmaceuticals)

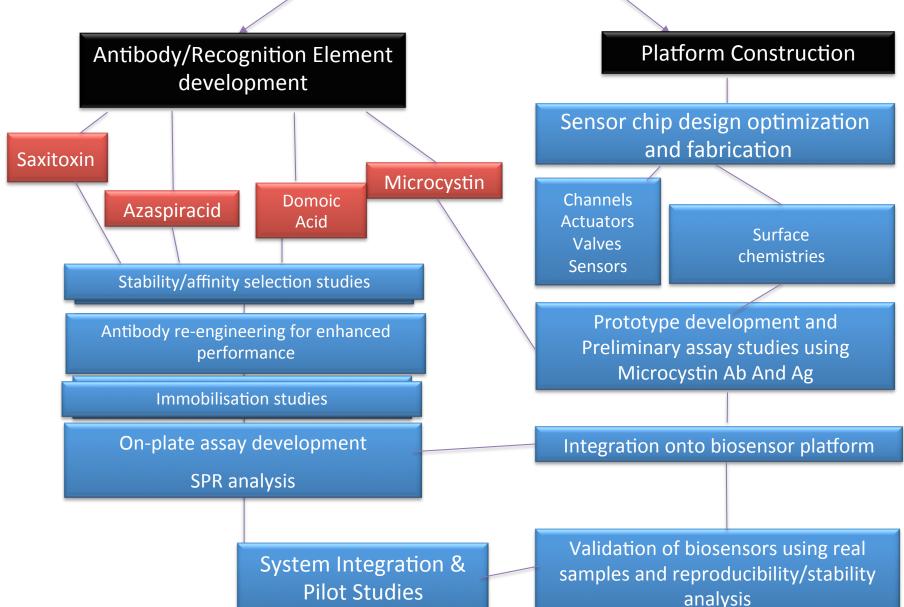
A single sample

4-6 weeks

Up-to a year autonomously

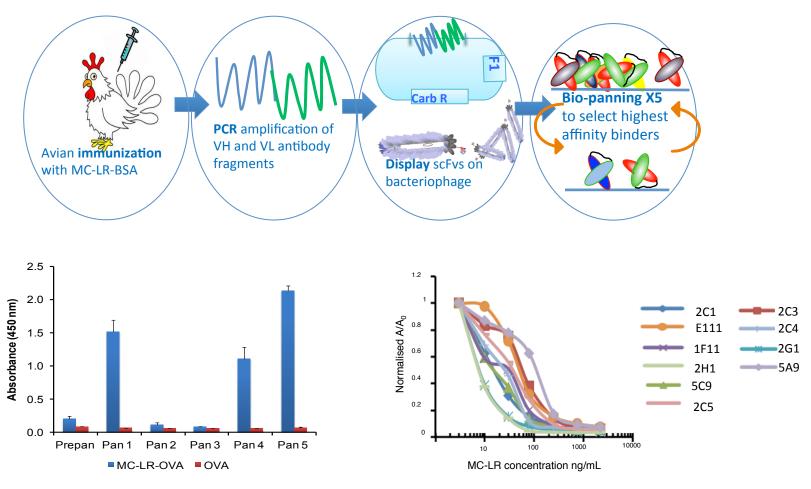
Spot sampling

Longer-term monitoring of trends

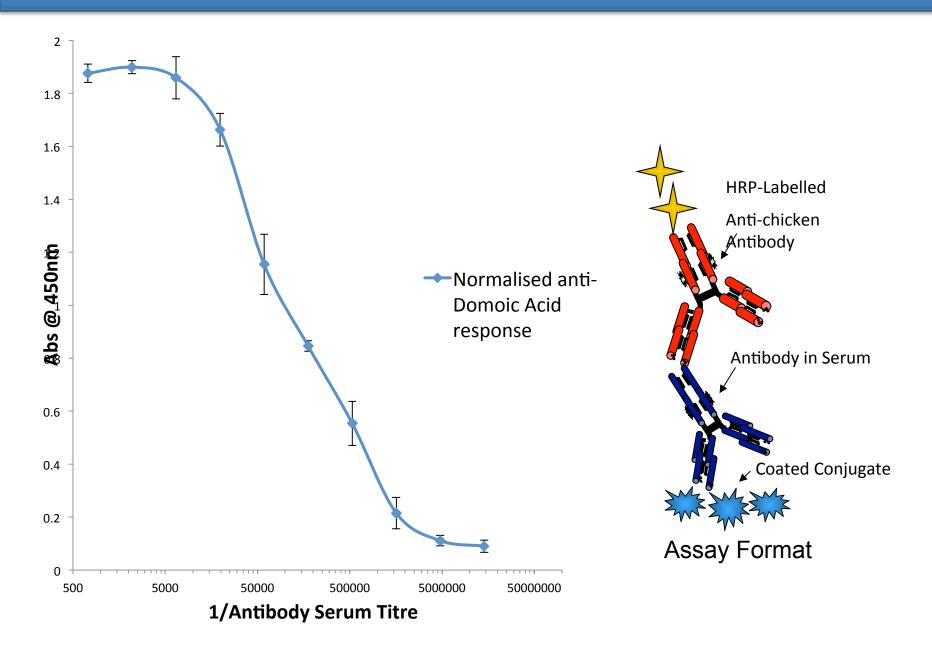

Continuous real-time monitoring of certain parameters

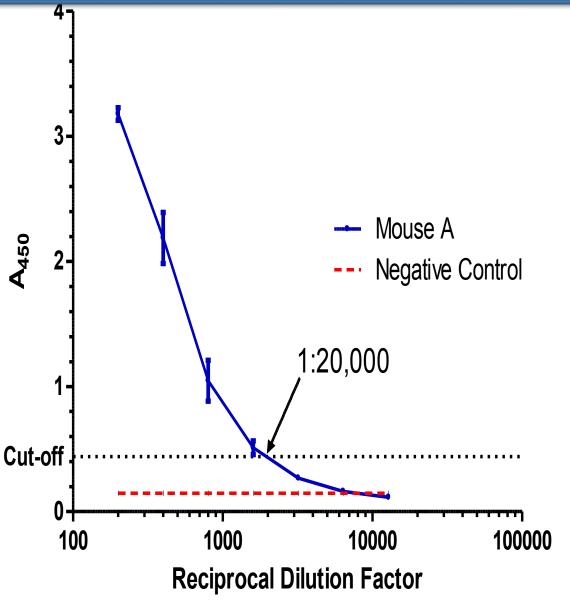
Antibody based sensors:

- Immunoassays have increased in popularity and are routinely used for analyte identification today.
- They are highly sensitive and capable of detecting toxins at levels similar levels to HPLC.
- Attempts to miniaturize the detection systems and to develop in-situ monitoring systems have been made, a lateral flow 'dipstick' style assay for toxins developed
- EU FP7 project Mariabox Oceans of Tomorrow call → algal toxin monitoring and micro-pollutant detection.


Sensor platform Integration Plan

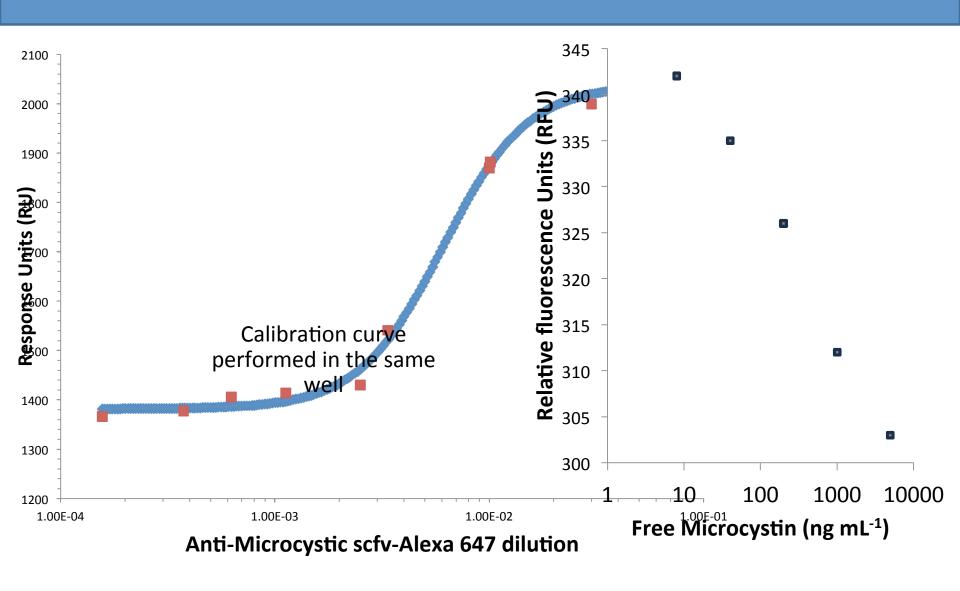
Methodologies


Development of anti-microcystin recombinant antibodies

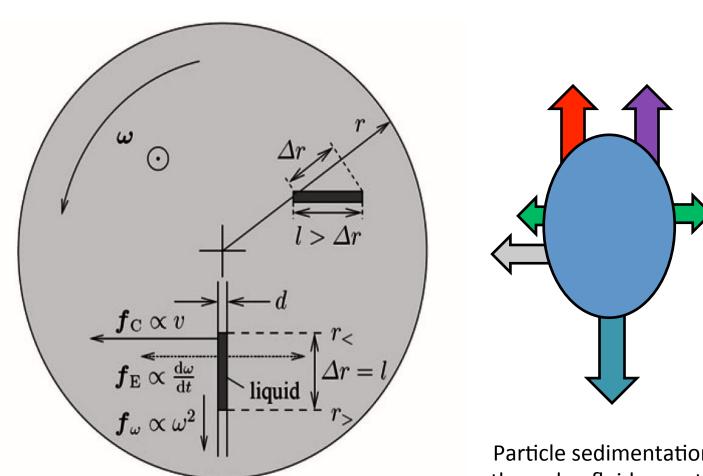

Antibodies produced from each round of biopanning

The most sensitive binder was determined by inhibition ELISA

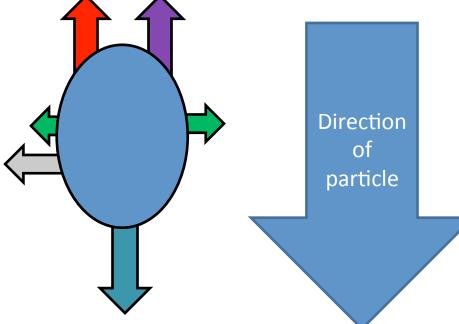
Domoic Acid Chicken Serum Titre



Azaspiracid

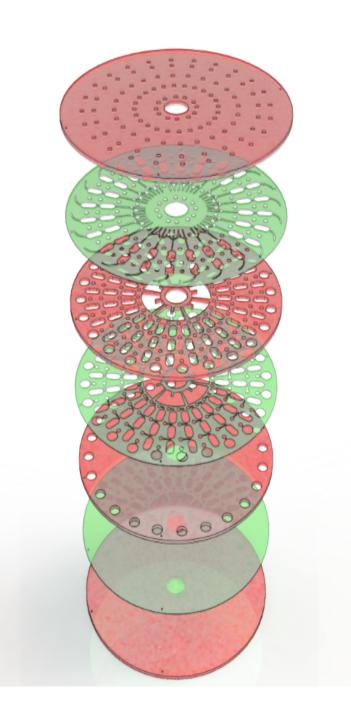


- ScFv library successfully constructed
- Preparation of conjugates underway for biopanning
- Polyclonal antibodies successfully isolated

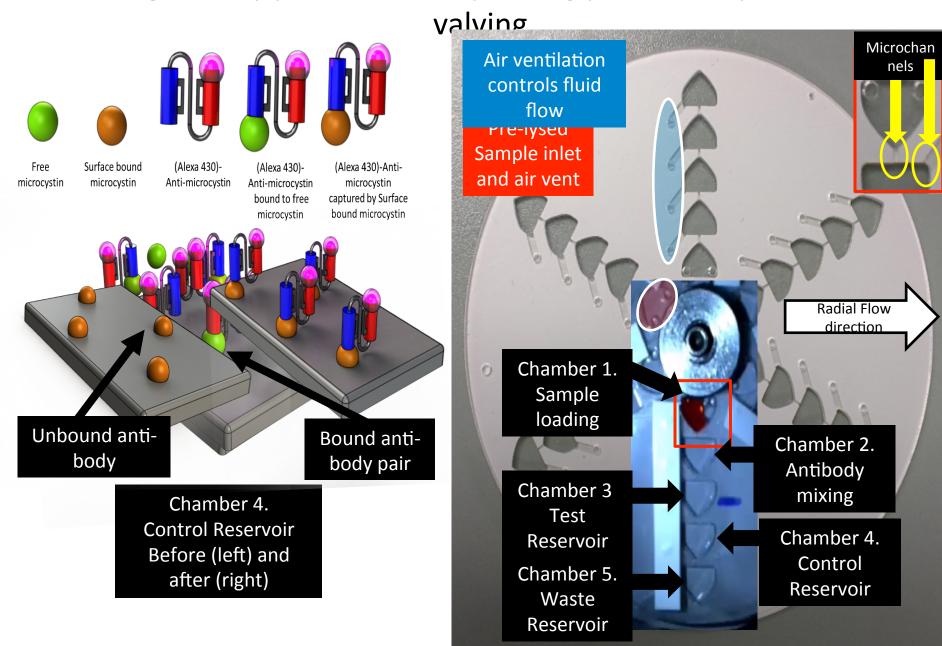

Analysis of capture raw optical data generated

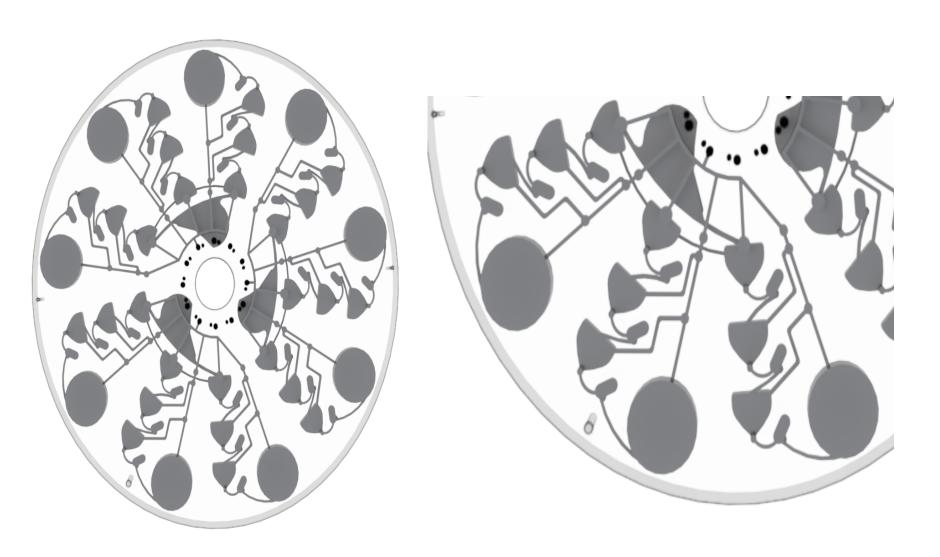
Fluidic movement on rotating platform

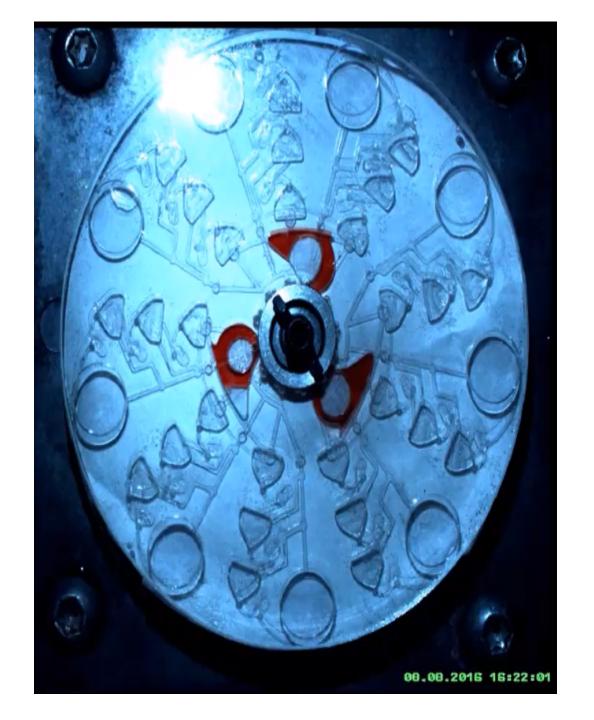
Forces on acting on a rotating disc

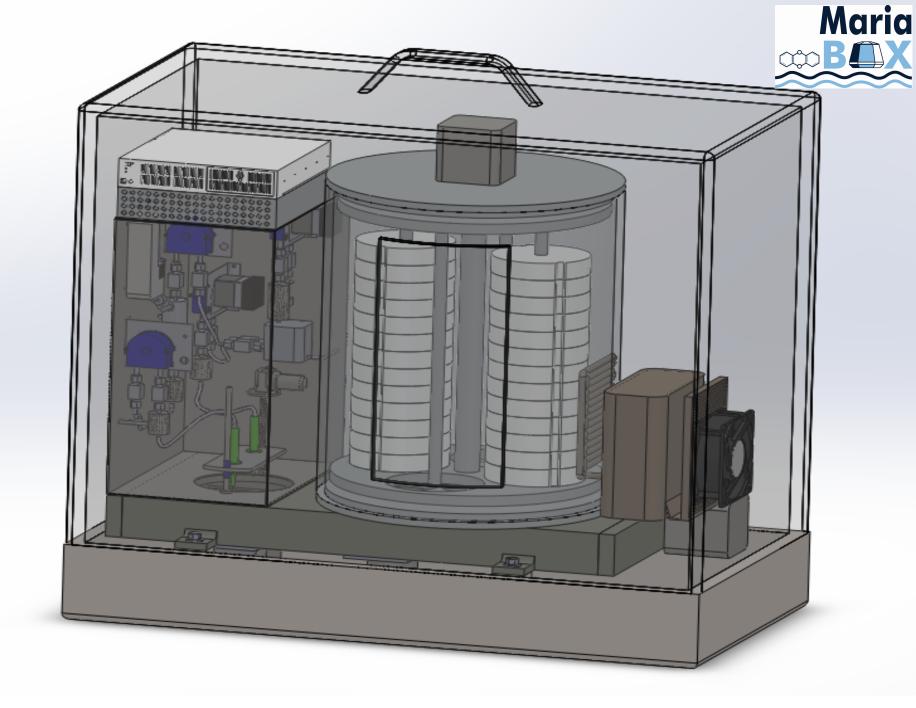

Particle sedimentation through a fluid on anticlockwise rotating disc

ToxiSense microfluidic System

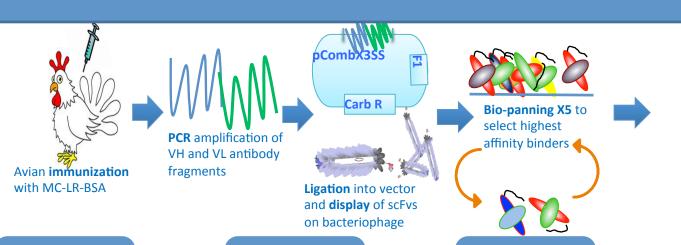



- On-board microfluidics (Lab-On-A-Disc platform)
- Manufactured from poly(methyl methacrylate) (PMMA) (Red) (Radionics™) and pressure sensitive adhesive (PSA) (Green)(Adhesives Research Inc. ™)
- Easily modifiable
- Microcystin-LR detection: Proof of concept
- High sensitivity
- Low sample size
- Cheap to manufacture




Single assay proof of concept using pneumatic pressure

3 day – three analyte detection disc



Diclofenac

Mecoprop

Carbamezapine

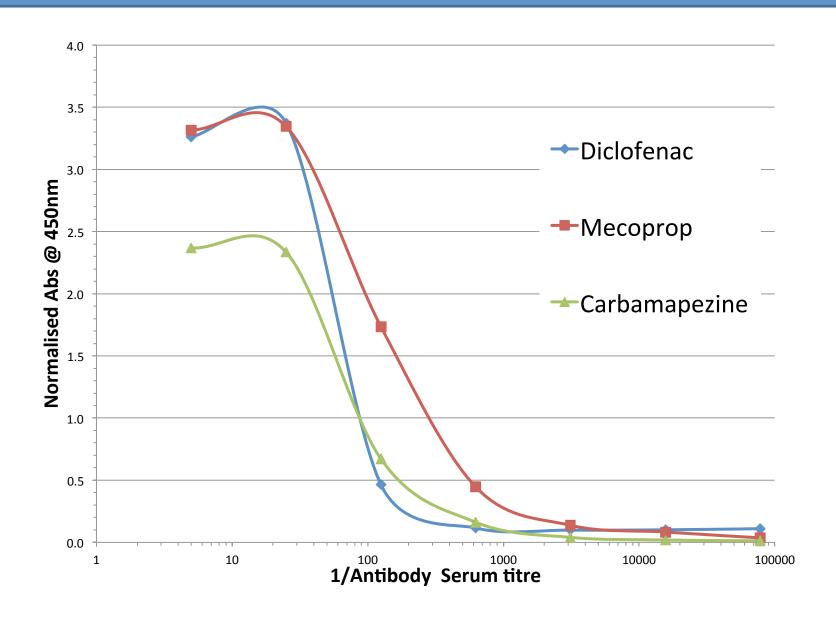
Recombinant antibody-based microfluidic sensor

Microfluidic disc

 The antibodies and chemical conjugates will be incorporated onto a microfluidic disc- based immunosensor.

Immunisatior

- Diclofenac, mecoprop and carbamapazine were conjugated to proteins and were immunised into an avian host.
- Immune response was identified using a polyclonal ELISA.


Recombinant antibody generation

- Genetic material was then isolated for use in the production of recombinant antibodies (rAbs).
- Generation of three immune antibody libraries for each chemical

Antibody identification

- Phage display and biopanning will be used to isolate most potent binders.
- They will be tested in matrix and crossreactivity studies.
- Affinity tested using SPR.

Recombinant antibody assessment

Conclusion

Watch List chemicals

Industries with no trade effluent licenses

Continuing need to develop real-time monitoring platforms

- Traditional separation methods
- Compliance monitoring -EQS

Emerging chemicals of concern

Polar and non-polar organics

- Longer-term monitoring
- Trend monitoring
- Passive sampling

- Sensor platform development
- Single and multi-analyte systems
- Integration of technologies

Environmental pollutants (toxins, pharmaceuticals)

A single sample

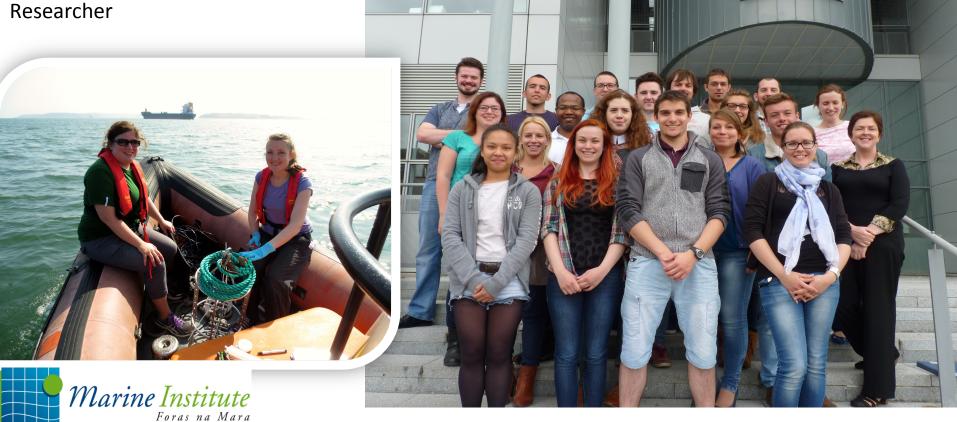
4-6 weeks

Up-to a year autonomously

Spot sampling

Longer-term monitoring of trends

Continuous real-time monitoring of certain parameters


Dr. Caroline Murphy,
Postdoctoral

Prof. Richard O'Kennedy, Prof. Jens Ducree, Physics. Professor of Biological Sciences, DCU

Acknowledgements

This Beaufort Marine Research Award is carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006-2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the National Development Plan 2007–2013.