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ABSTRACT
Lifelogging is the process of automatically, ambiently and digitally
recording episodes of one’s life experiences. NTCIR-12 Lifelog1

test collection was initially created, as support for the Informa-
tion Retrieval (IR) community, to develop new and novel lifelog-
ging retrieval and visualisation systems. In this paper, our goal is
organising and analysing the NTCIR-12 Lifelog dataset by using
a time series approach to facilitate automatic discovery of repeat
events.
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1. INTRODUCTION
Lifelogging is the act of recording aspects of life in digital format.
Lifelogs can consist of heterogeneous sensor data such as images,
GPS coordinates, WiFi streams, accelerometer and light level mea-
surements amongst others. Lifelogging can take many forms, such
as capturing everything seen through wearable cameras, detection
of people met (through bluetooth devices), identifying places vis-
ited (through GPS), calculating distances or speed (by accelerome-
ter readings), etc. The lifelogging vision is that the user never for-
gets anything since everything is being tracked, photographed and
recorded. The added value is comprehensive memory reinforce-
ment [16].

The Lifelogging concept has existed for more than 7 decades. The
concept of logging and storing all of an individual’s accumulated
digital profile was first proposed in 1945, by Bush [7], using the
Memex concept. More recently, Bell’s “MyLifeBits" project [11],
captured all of a subject’s personal data in digital form and created
software that allowed access to these data. The goal technologi-
cally is to create a personal archive, or a "portable, infallible, arti-
ficial memory" that can be exploited to increase job productivity,
serve as a basis for medical treatment or to improve performance in

1http://ntcir-lifelog.computing.dcu.ie

ACM ISBN .

DOI:

school and in many other scenarios.

Visual lifelogging is the process of automatically capturing images
and storing these in a personal repository. Although technologies
for visual lifelogging have existed for some time, the development
of many generations of wearable camera technologies has been pi-
oneered by Mann since the 1990s and has addressed, from an early
stage, many of the fundamental challenges found in wearable lifel-
ogging (personal imaging [33]). Visual lifelogging has gained in
popularity due to projects such as the Microsoft Sensecam [17],
which has shown how wearable camera data can aid human mem-
ory. The use of wearable cameras has been explored so far mainly
in this role, but also for health monitoring and well-being, in social
iterations and for leisure activity records amongst others. However,
a recent study [4] suggests that lifelogging has even wider applica-
tion and that an increasing number of devices will be available in
the near future. A prominent example is Google Glass2, which has
received considerable media attention since its first announcement
to the public.

To date, much of the research on lifelogging has focused on devel-
oping sensors [1], capturing and storage of data [1], processing data
into annotated events [9], search and retrieval of information [9],
assessing user experience and designing user interfaces for appli-
cations of the memory aids [17, 16], as well as diet monitoring [39],
analysis of activities of daily living (ADL) [34] and similar. How-
ever, these features are now comparatively well understood [17],
resulting in improved wearability of devices and inexpensive stor-
age [11]. The challenge has now shifted to that of retrieving the
most relevant information from the vast quantities of captured data
[3, 31], where relevance is determined by the specific need.

The NTCIR-12 Lifelog dataset was initially created for support-
ing the Information Retrieval (IR) community to develop new and
novel lifelogging retrieval and visualisation systems, i.e. as a test
baseline. In this paper, we provide an in-depth analysis of the
NTCIR-Lifelog dataset. We focus in particular on identifying re-
peat events (motifs) that lifeloggers have experienced, since these
can help establish typical user behaviour patterns. The paper is or-
ganised as follows: In Section 2, we provide an overview of Lifel-
ogging data collections and review the background to the time se-
ries approach. In Section 3 we discuss our methodology in detail,
while in Sections 4 and 5, we describe, respectively, the data sets
used in our experiment and the results obtained. Conclusions and
future direction are discussed in Section 6.

2https://www.google.com/glass/start/



2. BACKGROUND

2.1 Lifelogging Data Collections
The vast majority of published Information Retrieval (IR) research
assesses effectiveness using resources known as test collections, in
conjunction with evaluation measures. Test collections have a his-
tory dating from the 1990s: TREC in US, CLEF in Europe and
NTCIR in Asia run evaluation campaigns aimed at supporting the
development, testing and evaluation of IR systems. In 2016, for the
first time, NTCIR has included The NTCIR12-Lifelog as a pilot
task [20]. This represents the first dataset test collection in Lifel-
ogging for the Information Retrieval community. The purpose of
the NTCIR-12 Lifelog pilot task is to explore methods of searching
through large lifelog archives. Two subtasks are, 1) the Lifelog Se-
mantic Access Task (LSAT); to examine search and retrieval from
lifelogs and 2) the Lifelog Insight Task (LIT); to investigate knowl-
edge mining and visualisation of lifelogs [13].

NTCIR-12 Lifelog data were generated by three individuals, wear-
ing the Autographer camera (as shown in Fig.1) for periods of
about one month, capturing on average 1000-15000 images per
day, where a sample image is also shown (Fig.1). This camera uses
5 built-in sensors which include on accelerometer, magnetometer,
temperature, color, PIR (infrared motion detector), and GPS. It has
a 5 megapixel low light image sensor and offers a 136 degree wide-
angle lens. It captures images and other sensor readings automat-
ically, recording the wearer’s every moment. In the NTCIR-12
Lifelog, every image was resized down to 1024 x 768 resolution
and all faces were burred manually. Data statistics are reported in
Table 1.

Although the concept of lifelogging is not novel, the quality and
number of quantifying activities is currently burgeoning. This is
principally a result of a rise in the profile of lifelogging and its
being seen as a key aspect of self-awareness and personal archiv-
ing. Given the nature of the data i.e., personal information content,
privacy and security issues have been carefully considered by all
lifeloggers [28]. To the best of our knowledge, there have been
only two public lifelogging datasets which focus on Image collec-
tions, "All I have Seen" (AIHS) [18] and "The Egocentric Dataset
of the University of Barcelona" (EDUB) [5] before publication of
the NTCIR12-Lifelog data set. Table 2 provides a short summary
of comparison statistics for the three visual lifelogging datasets.

From the table, it is clear that the NTCIR-12 Lifelog collection
is much larger compared to the previous two visual Lifelogging
datasets. We have examined AIHS datasets in our previous research
[22] and have noted there that these are far from perfect, due to
incompatible Lifelogging devices and errors occurring during the
lifelogging process. The AIHS dataset reportedly includes 19 days
with a total of 45612 images, but if each image is examined, actual
coverage is 29 days with a total of 43,399 images. Similarly, for the
NTCIR-12 Lifelog dataset; e.g. for Lifelogger 2 on the tenth day
of collection, some images are not in the correct order while the
ninth day collection for Lifelogger 3 shows most images to be the
same. Such anomalies can obscure formal data analysis and must
be detected at the exploratory stage.

2.2 Time Series Approach
Authors define IR in different ways: Some state that as a field it is
concerned with organising information [40]; others emphasise the
range of different materials that need to be searched [46]. The pilot

Table 1: Summary of NTCIR-12 Lifelog dataset

Lifeloggers Number of Collection
Days

Total of Collection
Images

1 26 37,140
2 25 24,401
3 28 26,583

Total: 79 Total: 88,124

Figure 1: Autographer Wearable Camera and Sample an im-
age from the NTCIR12-Lifelog Test Collection

Lifelog task aims at prototyping comparative evaluation of infor-
mation access and retrieval systems operating over personal lifelog
data. In this paper, we are concerned with both organisation and
analysis of the information.

Exploring a range of techniques and using a variety of lifelogging
devices has been well explored by the community. However, lifel-
ogging is concerned with more than just the technology used to cap-
ture the record; it needs sound organisation and analysis [14]. Re-
cently, following the development of computer networks, large vol-
ume databases, machine learning technologies and the wide choice
of computing devices, it has become realistically practical for re-
searchers to investigate the underlying patterns of our daily lives

Current applications address this e.g. by employing automatic clas-
sifiers for segmenting a whole day’s recording into events and then
searching the historical record [9]; or by building ontology-based
multi-concept classifiers and searching for specific events [44]. Such
concept recognition relies on the objects already being identified in
the system and on training classifiers from a set of defined objects.
While supervised methods can yield better (more accurate) results
in the form of patterns known as priori, they need an expert to input
their prior knowledge into the system. Also the results for the clas-
sifier depends heavily on there being sufficient good quality train-
ing data (i.e. is biased to detect activities which the expert fees in
beforehand). Given that visual lifelogs usually consist of large and
often unstructured collections of multimedia information, such a
‘concept-based’ and ‘rule-based method’ for analysing lifelogging
data is not suitable for all use-cases. Ideally, an algorithm should
be able to detect unknown phenomena occurring at different fre-
quencies in such data. In our previous work, we introduced and
evaluated the use of sophisticated time series analysis methods for
organisation and analysis of large lifelog data sets [24, 25, 26, 27].

Over the last several years there has been considerable research
into the role of the maximal eigenvalue of the correlation matrix
over small time windows. This research has been in the areas
of Financial time series [38], electroencephalographic (EEG) data
[41], magnetoencephalographic (MEG) data [21] and various other
forms of multivariate time series. We apply a similar approach



Table 2: Summary of Three Lifelog dataset

Name Publish
Year

Camera Description Annotations Remarks

AIHS 2010 SenseCam 1 Lifelogger; 19 Days Collections; To-
tal 45,612 Images;

labels 4500 images We examined the dataset found
this dataset includes 29 days
with a total of 43,399 Images;

EDUB 2015 Narrative 4 Lifeloggers; 2 days each; Total 8 Days
Collections; Total 4912 Images;

labels objects n/a

NTCIR-12
Lifelog

2016 Autographer 3 Lifeloggers; about one month time
period collections each; Total 79 Days
Collections; Total 88, 124 Images;

Using the CAFFE
visual concept de-
tector to identify
1,000 visual con-
cepts;

n/a

Table 3: The NTCIR12-Lifelog Data Set

Lifelogger Day
Number

Date Images Lifelogger Day
Number

Date Images Lifelogger Day
Number

Date Images

1 1 23-02-2015 1,392 2 1 20-04-2015 1,402 3 1 15-06-2015 1,130
1 2 24-02-2015 1,506 2 2 21-04-2015 1,038 3 2 16-06-2015 761
1 3 25-02-2015 1,570 2 3 22-04-2015 1,211 3 3 18-06-2015 985
1 4 26-02-2015 1,454 2 4 23-04-2015 1,100 3 4 19-06-2015 192
1 5 27-02-2015 1,280 2 5 24-04-2015 948 3 5 20-06-2015 460
1 6 28-02-2015 1,375 2 6 25-04-2015 1,004 3 6 21-06-2015 1,094
1 7 01-03-2015 1,527 2 7 26-04-2015 1,034 3 7 24-06-2015 1,299
1 8 02-03-2015 1,423 2 8 27-04-2015 1,389 3 8 28-06-2015 1,066
1 9 03-03-2015 1,129 2 9 28-04-2015 864 3 9 01-07-2015 956
1 10 04-03-2015 1,450 2 10 30-04-2015 1,089 3 10 11-07-2015 1,690

Total: 14,106 Total: 11,079 Total: 9,573

Table 4: Summary of Ground Truth

Lifelogger Events Catalogue No. of
Events

Lifelogger Events Catalogue No. of
Events

Lifelogger Events Catalogue No. of
Events

1 Attending Lecture 2 2 Attending Lecture 1 3 Cooking 12
1 Cooking 35 2 Cooking 17 3 Drinking 33
1 Doing Laundry 3 2 Cycling 7 3 Driving 13
1 Drinking 43 2 Doing exercise 3 3 Eating 23
1 Driving 37 2 Doing Laundry 3 3 Ordering Food 10
1 Eating 34 2 Drinking 52 3 Playing Lotto 2
1 Fixing Car 3 2 Eating 27 3 Playing with Phone 99
1 Giving Lecture 5 2 Ordering Food 15 3 Reading paper 20
1 Ordering food 20 2 Playing Guitar 6 3 Shopping 5
1 Playing with Phone 158 2 Playing with Phone 86 3 Sitting 29
1 Reading Paper 37 2 Reading Paper 29 3 Standing 32
1 Shopping 3 2 Shopping 4 3 Talking with People 89
1 Sitting 228 2 Sitting 135 3 Using Coffee Machine 2
1 Standing 107 2 Standing 68 3 Walking 130
1 Talking with People 162 2 Talking with People 99 3 Watching TV 47
1 Using Coffee Machine 5 2 Using Coffee Machine 1 3 Working in front of

Computer
55

1 Walking 236 2 Walking 170
1 Watching TV 80 2 Watching TV 6
1 Working in front of

Computer
163 2 Working in front of

Computer
114



therefore, to initial analysis of lifelog image data streams. The
aim, underlying application of this multiscaled cross-correlation
matrix technique, is to extract dynamic features from time series,
for which atypical or non-stationary characteristics are exhibited,
symptomatic of “Distinct Significant Events" in the data.

The wavelet transform (WT) is a mathematical tool applicable to
several areas including image analysis [47], meteorology [8], sig-
nal processing [32] and financial time series[6] and can be used to
decompose a signal into different time horizons. It is useful in di-
viding the data series into components on a scale-by-scale basis, to
enable to study each component individually to examine the time
series in details. As we want to compare values for different image
pixel values, we may do so over a range of time scales.

Motifs or recognisable sub sequences of time series, occur fre-
quently and can be linked to specific, previously unknown, cases
[29]. Motif analysis can be formed in many medical applications,
e.g., measuring data from body sensors [35] and selecting maxi-
mally informative genes [2], protein sequence identification [37]
and others. Time series motifs are used also for finding patterns in
sports in motion capture data [43] as well as in video surveillance
applications [15]. Many researchers have studied the extraction of
characteristic features from multi-dimensional time series data. In
Tanaka et al. [43], Principle Component Analysis (PCA) is used
to transform multi-dimensional time series into a one dimensional
realisation to detect motifs that are common to all. More recently,
Minnen et al. [36] extended a motif discovery method for single
time series to detection of motifs occurring across several dimen-
sions of a multi dimensional signal. Visual lifelogs contain records
of a wearer’s activities and events that occur over different time pe-
riods. Consequently, we argue that motifs can represent activities
of different length and timing, representing different attributes of
big data. We explore this idea by analysing high frequency patterns
in multi-dimensional visual lifelogging data.

3. DATA SET
The NTCIR12-Lifelog data was generated using wearable cameras
for images and the Moves smartphone application for location &
activities. Descriptive statistics of this data set are reported in Ta-
ble 3. As mentioned previously, the organisers of the NTCIR12-
Lifelog also identified about 1,000 concepts by using the CAFFE
visual concept detector. The output of this concept detector, how-
ever, can not be used to evaluate our method since it includes only
simple visual objects such as desktop computer, beer glass, banana,
car wheel and so on. Moreover, the annotations provided are not
very accurate. In order to assess our methodology, we therefore first
had to create a gold standard by identifying key lifelogger activi-
ties. We manually annotated activities that the three lifeloggers per-
formed over ten days, resulting in annotations for a total of 34,758
images 3. Descriptive statistics of these extracted data are reported
in Table 4.

4. METHODS
Our previous results[23, 24] indicate that different distinct events or
activities can be detected at different scales through wavelet analy-
sis. Building on this observation, we aim in this paper to extract the
motifs of different wavelet scales using the Minimum Description
Length (MDL) principle. In this section, therefore, we first give a

3https://enaliblog.wordpress.com/downloads/

review of the Cross-correlation matrix structure and the Maximum
Overlap Discrete Wavelet Transform (MODWT). Then, we intro-
duce the Symbolic Aggregate approXimation (SAX) algorithm for
discretization of time series data into symbolic strings. Finally, we
detail our motif extraction algorithm, based on the MDL princi-
ple.

4.1 Cross-Correlation Matrix and Eigenvalues
Dynamics

The equal-time cross-correlation matrix, capturing between a time
series, is calculated using a sliding window approach. The equal-
time cross-correlation matrix may be expressed by:

C ≡ Cij ≡
〈
Gi(t)Gj(t)

〉
−
〈
Gi(t)

〉〈
Gj(t)

〉
σ(i)σ(j)

(1)

Here, time series Gi(t), i=1,...,N of a collection of images, where
N is the number of pixels in one image and is smaller than the win-
dow size T , and σ(i) is the standard deviation of Gi.

The cross-correlation matrix C is limited to the domain -1≤C≤1,
whereC=±1 defines perfect positive/negative correlation andC=0
corresponds to no correlation.

The diagonalization of C, gives its eigenvalues λi, with i=1,...,N
with rank order from the largest to the smallest. Given that the el-
ements on the maim diagonals of a matrix must sum to a constant
value under linear transformation [12], this value (the Trace) must
equal

∑
iλi. So, if some values of λ increase, others must decrease

(a feature known as Eigenvalue Repulsion[10]).

Two limiting cases for eigenvalue distribution: (i) perfect correla-
tion,Ci≈1, when the maximal eigenvalue has the valueN , (all oth-
ers taking value zero). (ii) where the time series comprise random
values of average correlation Ci≈0 with their respective eigenval-
ues distributed around unity (any deviation being down to random
correlations). Between these extremes, those eigenvalues on the
lower end of the spectrum are often much less than the maximal
eigenvalue. In order to examine the dynamics of the each value of
λwith a sliding window, each can be normalised in time to:

λ̃i(t) =
(λi − λ)

σλ
(2)

where λ and σλ denote the mean and standard deviation of the
eigenvalues over a particular period of interest. Such normalisa-
tion allows for visual comparison of eigenvalues at both extremes
of the spectrum, even in cases where there is substantial difference
numerically. The reference period for evaluation of λ and σλ of the
eigenvalue spectrum can be taken to be a sub-period of low volatil-
ity (so aiding visibility of high volatility periods), or the entire time
period studied.

4.2 Wavelet Multiscale Analysis
The wavelet transform (WT) is used to decompose a signal into dif-
ferent time horizons. In particular, the discrete wavelet transform
(DWT)[45] is useful in dividing the data series into components of
different frequencies, so that each component can be studied sepa-
rately in order to investigate the data series in depth.

The Maximum Overlap Discrete Wavelet Transform, (MODWT)[45],
is a linear filter that transforms a series into coefficients related to
variations over a set of scales. Like the DWT it produces a set of



time-dependent wavelet and scaling coefficients with basis vectors
associated with a location t and a unitless scale τj=2j−1 for each
decomposition level j=1,...,J0. Unlike the DWT, the MODWT has
a high level of redundancy. However, it is non-orthogonal and can
handle any sample size N , whereas the DWT restricts the sample
size to a multiple of 2j . MODWT retains downsampled4 values
at each level of the decomposition that would be discarded by the
DWT. This reduces the tendency for larger errors at lower frequen-
cies, when calculating frequency dependent variance and correla-
tions, as more data are available.

Decomposing a signal to J levels, using the MODWT, theoretically
involves the application of J pairs of filters. The filtering operation
at the jth level consists of applying a rescaled father wavelet5 to
yield a set of detail coefficients

D̃j,t =

Lj−1∑
l=0

ϕ̃j,lft−l (3)

and a rescaled mother wavelet6 to yield a set of scaling coeffi-
cients

S̃j,t =

Lj−1∑
l=0

φ̃j,lft−l (4)

for all times t = ...,−1, 0, 1, ..., where f is the function to be
decomposed [42]. The rescaled mother, ϕ̃j,t=

ϕj,t

2j
, and father,

φ̃j,t=
ϕj,t

2j
, wavelets for the jth level are a set of scale-dependent

localised differencing and averaging operators and can be regarded
as rescaled versions of the originals. The jth level equivalent filter
coefficients have a width Lj = (2j − 1)(L − 1) + 1, where L is
the width of the j = 1 base filter. In practice the filters for j > 1
are not explicitly constructed because the detail and scaling coeffi-
cients can be calculated, using an algorithm that involves the j = 1
filters operating recurrently on the jth level scaling coefficients, to
generate the (j+1)th level scaling and detail coefficients[42]. Each
of the sets of coefficients in a wavelet is called a ‘crystal’.
The wavelet variance ν2f (τj) is defined as the expected value of
D̃2
j,t if we consider only the non-boundary coefficients7. An unbi-

ased estimator of the wavelet variance is formed by removing all
coefficients that are affected by boundary conditions and is given
by

ν2f (τj) =
1

Mj

N−1∑
t=Lj−1

D̃2
j,l (5)

where Mj = N − Lj + 1 is the number of non-boundary co-
efficients at the jth level[42]. The wavelet variance decomposes
the variance of a process on a scale-by-scale basis (at increasingly
4Downsampling or decimation of the wavelet coefficients retains
half of the number of coefficients that were retained at the previous
scale. Downsampling is applied in the Discrete Wavelet Transform
5The Father wavelet is also known as the scaling function; this
function filters the lowest level of the transform and ensures all the
spectrum is covered.
6The Mother wavelet, also known as the wavelet function; this
wavelet function is, in effect, a band-pass filter and scaling it for
each level halves its bandwidth.
7The MODWT treats the time-series as if it were periodic using
“circular boundary conditions". There are Lj wavelet and scaling
coefficients that are influenced by the extension, and which are re-
ferred to as the boundary coefficients.

higher resolutions of the signal) and allows us to explore how a
signal behaves over different time horizons.
The wavelet covariance between functions f(t) and g(t) is simi-
larly defined to be the covariance of the wavelet coefficients at a
given scale. The unbiased estimator of the wavelet covariance at
the jth scale is given by

νfg(τj) =
1

Mj

N−1∑
t=Lj−1

D̃
f(t)
j,l D̃

g(t)
j,l (6)

where all the wavelet coefficients affected by the boundary are re-
moved[42], and Mj = N − Lj + 1.

The MODWT estimate of the wavelet cross-correlation between
functions f(t) and g(t) may be calculated using the wavelet covari-
ance and the square root of the wavelet variance of the functions at
each scale j. The MODWT estimator, of the wavelet correlation is
given by

ρfg(τj) =
νfg(τj)

νf (τj)νg(τj)
(7)

where, at scale j, νfg(τj) is the covariance between f(t) and g(t),
νf (τj) is the variance of f(t) and νg(τj) is the variance of g(t).

4.3 Dimensionality Reduction and Discretiza-
tion

We use a dimensionality reduction algorithm based on Piecewise
Aggregate Approximation (PAA) [29, 19] called Symbolic Aggre-
gate approXimation (SAX) [30]. We apply this technique to trans-
form the Largest eigenvalue time series into a sequence of symbols.
For the largest eigenvalue time series λ1 with number of images n,
this time series can be reduced to a string of arbitrary length w,
(where w < n) and the alphabet size of arbitrary length a, (where
a > 2). The Largest eigenvalue time series λ1(t) = {x1, ..., xn}
of length n can be represented as aw-dimensional space by a vector
λ̄ = {x̄1, ..., x̄w}:

x̄i =
w

n

w
n
i∑

j=w
n
(i−1)+1

xi (8)

SAX allows us to reduce the time series from n dimensions tow di-
mensions, where the data are divided into w equal sized "frames".
The mean value of the data falling within a frame is calculated and a
vector of these values becomes the data-reduced representation. Fi-
nally, a "Behaviour Symbol"(BS)is assigned for every subsequence
of PAA symbols. Table 5 summarizes the major notation used in
this and the next subsections.

4.4 Estimating Extracted Motif Candidate Based
on MDL Principle

Several theoretical information theory principles from literature are
relevant to the current analysis, including AIC (Akaike’s Informa-
tion Criterion), BIC (Bayesian Information Criterion) and MDL
(Minimum Description Length).

The AIC estimates the best model based on “prediction capability”,
while BIC estimates the best model based on Bayesian principles,
i.e. can be refined by additional data. Our approach is focused on
finding frequent patterns, however, rather than prediction for the
time series. The MDL principle seeks the ‘best’ model to describe
a set of data defined as that which minimises the description length



Table 5: Summary of the notation
λ1 A time series λ1(t) = {x1, ..., xn}
λ̄ A Piecewise Aggregate Approximation of a

time series λ̄ = {x̄1, ..., x̄w}
λ̂ A symbol representation of a time series λ̂ =

{x̂1, ..., x̂w}
w The number of PAA segments representing

time series C
a Alphabet size(e.g., for the alphabet=a,b,c, a=3)

Tmin Analysis window (e.g., for the alphabet
A=bacc, Tmin=4)

BS Behaviour Symbol (e.g., for the alphabet
A=bacc)

BSS Behaviour Symbol Sequences (e.g.,
ABCBBCBDEBCBDE....in Fig. 2)

DL Description Length

of the entire data set. The underlying concept is selection of the
best model to compress the data in a meaningful way.

The ‘data encoding cost’ is the lower bound of description length
that is required to encode each segment. The ‘parameter encoding
cost’ is the description length that is required to describe the order
of BS in each segment. Finally, the ‘segmentation cost’ is required
to describe the location of all segments. The work-flow of the MDL
pattern algorithm can be visualized in Fig. 2. For example, in this
figure, the length of the first segment is s1=7, the length of the
second segment is s2=3 and so on. In addition, we assume that the
jth BS has a length lij . A data encoding cost for the jth BS in the
ith segment is calculated then as:

−lij log2
lij
ti

(9)

By calculating this cost for all unique Behaviour Symbol Sequences
(BSS) in the i-th segment, we obtain the data encoding cost of the
whole segment as: ∑

j

−lij log2
lij
ti

(10)

Using the following equation, we then calculate the data encoding
costDL1(C̃|SC) of C̃ that is segmented by the pattern SC:

DL1(C̃|SC) =

m∑
i

∑
j

−lij log2
lij
ti

(11)

We calculate the complementary parameter encoding cost of each
segment as log2ti.

Then, the second segment cost DL2(C̃|SC) of C̃ is calculated
as:

DL2(C̃|SC) =

m∑
i

log2ti (12)

and the segmentation cost DL3(C̃|SC) as:

DL3(C̃|SC) = mlog2(

m∑
i

ti) (13)

Finally, based on this table, we obtain the description length of C̃

that is segmented by the pattern SC as follows:

MDL(C̃|SC) = DL1(C̃|SC) +DL2(C̃|SC) +DL3(C̃|SC)
(14)

We use Eq. (15) as the MDL estimation function for the MDL pat-
tern detection algorithm.

Figure 2: Calculation of the MDL pattern algorithm

5. EXPERIMENTAL EVALUATION
First, the MODWT of the pixels for each image was calculated
within each window of size 400 images and the correlation matrix
between pixels at each scale found. The Eigenvalues of the corre-
lation matrix in each window were determined, and the Eigenvalue
time series were normalised in time. Then, the largest Eigenvalue
for different window sizes was calculated. Finally, the SAX algo-
rithm was applied to transform the time series to PAA symbols.

Fig. 3 shows the Lifelogger 1 time series of the Largest Eigenvalue
for different wavelet scales. The wavelet scales 1-9 correspond re-
spectively to periods of 1-2 minutes, 2-4 minutes, 4-8 minutes, 8-16
minutes, 16-32 minutes, 32-64 minutes, 64-128 minutes, 128-256
minutes and 256-512 minutes. From this figure, we note that the



different features, found at various scales, suggest that the correla-
tion matrix captures different major events with different time hori-
zons. From high frequency to low frequency (top to bottom), the
time series becomes smoother. Low frequency analysis removes
small-scale changes, typical at high frequency and associated with
noise. The peaks in the series become more pronounced of low
frequency (large-scale). These peaks reflect larger changes in the
images.

Fig. 4 shows the time series of the largest Eigenvalue dynam-
ics across different wavelet scales for the three Lifeloggers. The
Heatmaps show that different lifeloggers have different life pat-
terns. For example, for Lifelogger 1, some areas are consistently
captured by the camera at certain scales, such as the section of map
around Day 8, (captured by wavelet scales 4, 5, 6 and correspond-
ing to periods of 8-16, 16-32 and a 32-64 minutes). These peaks
refer to periods when the Lifelogger was sitting in the living room;
the camera consequently captures the ceiling lights. For Lifelog-
ger 3, the section of the map around Day 1 at high frequency scales
and section of the map around Day 7 at middle frequency scales are
consistently captured by the camera. These peaks involve the Lifel-
ogger sitting in the living room and the camera capturing lights of
the ceiling and TV. By examining the data sets, we note that Lifel-
ogger 3’s lifestyle is more active compared to the other two Lifelog-
gers. Activities include passing through airport and train stations,
visiting the pub, attending a party in a friend’s home and so on. The
Fig.4 Heatmap reflects the increased number of peaks in Lifelogger
3’s time series compared to the others two. The Heatmap shows
that some features are consistently captured at certain scales and
others across scales, suggesting that the correlation matrix success-
fully highlight different major events with different time horizons.

As shown in Table 6, our approach extracted key "motifs" such
as Working in front of a computer. We defined a ‘match’ pair as
motif similarity identified for this event, while a ‘mismatch’ was
recorded if the event occurred but was not identified by the time
series motif technique. The results suggest that the high frequency
wavelet scales perform better for Lifelogger 1 &3 while the middle
frequency wavelet scales are more accurate for Lifelogger 2. Un-
fortunately, the number of ‘match’ pairs is less than that of ‘mis-
match’ pairs for each wavelet scale. The main weakness, as well as
strength, for wavelet scales is that different scales highlight differ-
ent different distinct events dependent on the time horizons. In our
example, working in front of the computer can last for several hours
or a few seconds, so that some additional measure indicating event
duration is required. In the wavelet approach also, some events are
missing from some scales but prominent in others. We found that
a few extracted "motifs" among in the consecutive wavelet scales
do overlap. We can roughly calculate our approach accuracy by
adding the ‘match’ pairs of wavelet scales 1, 3, 5, 7 &9 and divid-
ing by the total number of events of identified type. Identification
accuracy for Lifeloggers 1, 2 &3 is ∼ 40%, 76% and 65% of total
events, respectively. We note that this accuracy is quite crude and
suggest that further modification is still needed to allow for motifs
consecutively repeated or persistent over time.

6. CONCLUSIONS
In this paper, we propose a novel approach based on time series
methods for managing large lifelogging data sets. The major con-
tributions of this paper include exploration of a time series ap-
proach for investigation of three lifelogger data sets. This approach
demonstrates strengths in the organisation, structuring and inter-
pretation of vast amount of heterogeneous streams of visual data.

In particular, through application of the Maximum Overlap Dis-
crete Wavelet Transform (MODWT) on equal-time Cross Corre-
lation Matrices, we find that different features occur at different
wavelet time-scales. This suggests that the correlation matrix cap-
tures different major events corresponding to different time hori-
zons. Further, the discovery of distinct behavioural motifs provides
a basis for prototype templates for identification of similar scenar-
ios at specific time scales e.g., ’typical’ lifestyle patterns of lifelog-
gers. Nevertheless, the issue of ‘sustained activity’ or motif persis-
tence rather than short-term events needs to be addressed by future
of refinement of the method.

7. REFERENCES
[1] R. Albatal, C. Gurrin, J. Zhou, Y. Yang, D. Carthy, and N. Li.

Senseseer mobile-cloud-based lifelogging framework. In
Technology and Society (ISTAS), 2013 IEEE International
Symposium on, pages 144–146. IEEE, 2013.

[2] I. P. Androulakis. Selecting maximally informative genes.
Computers & chemical engineering, 29(3):535–546, 2005.

[3] D. Ashbrook, K. Lyons, and J. Clawson. Capturing
experiences anytime, anywhere. IEEE Pervasive Computing,
5(2):8–9, 2006.

[4] I. Askoxylakis, I. Brown, P. Dickman, M. Friedewald,
K. Irion, E. Kosta, M. Langheinrich, P. McCarthy, D. Osimo,
S. Papiotis, A. Pasic, M. Petkovic, S. Spiekermann, and
D. Wright. To log or not to log? - Risks and benefits of
emerging life-logging applications. Technical report,
European Network and Information Security Agency
(ENISA), Nov. 2011.

[5] M. Bolaños and P. Radeva. Ego-object discovery. arXiv
preprint arXiv:1504.01639, 2015.

[6] J.-P. Bouchaud and M. Potters. Theory of financial risk and
derivative pricing: from statistical physics to risk
management. Cambridge university press, 2003.

[7] V. Bush and A. W. M. Think. The atlantic monthly. As we
may think, 176(1):101–108, 1945.

[8] Z. Can, Z. Aslan, O. Oguz, and A. Siddiqi. Wavelet
transforms of meteorological parameters and gravity waves.
In Annales Geophysicae, volume 23, pages 659–663, 2005.

[9] A. R. Doherty, C. J. Moulin, and A. F. Smeaton.
Automatically assisting human memory: A sensecam
browser. Memory, 19(7):785–795, 2011.

[10] A. Dumitru and D. Smith. Eigenvalue repulsion in an
effective theory of su (2) wilson lines in three dimensions.
Physical Review D, 77(9):094022, 2008.

[11] J. Gemmell, G. Bell, and R. Lueder. Mylifebits: a personal
database for everything. Communications of the ACM,
49(1):88–95, 2006.

[12] P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley.
Identifying business sectors from stock price fluctuations.
arXiv preprint cond-mat/0011145, 2000.

[13] C. Gurrin, H. Joho, F. Hopfgartner, L. Zhou, and R. Albatal.
Overview of ntcir-12 lifelog task. In Proceedings of the
NTCIR Conference on Evaluation of Information Access
Technologies, pages 354–360, 2016.

[14] C. Gurrin, A. F. Smeaton, and A. R. Doherty. Lifelogging:
Personal big data. Foundations and trends in information
retrieval, 8(1):1–125, 2014.

[15] R. Hammid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and
C. L. Isbell. Unsupervised activity discovery and
characterization from event-streams. arXiv preprint



0 Day 2 Day 4 Day 6 Day 8 Day 10
4

5

6

7

8

9

10

11
x 10

−3

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
4

5

6

7

8

9

10

11
x 10

−3

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
4

5

6

7

8

9

10

11

12

13
x 10

−3

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
0.004

0.006

0.008

0.01

0.012

0.014

0.016

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
0.004

0.006

0.008

0.01

0.012

0.014

0.016

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
2

4

6

8

10

12

14
x 10

−3

λ 1(%
)

0 Day 2 Day 4 Day 6 Day 8 Day 10
2

4

6

8

10

12

14
x 10

−3

λ 1(%
)

Figure 3: The Largest Eigenvalue λ1 across 9 wavelet scales. Scales 1 to 9 correspond respectively to periods of 1-2 , 2-4, 4-8, 8-16,
16-32, 32-64, 64-128, 128-256 and 256-512 minutes, for Lifelogger 1

Table 6: Motif: ‘Working in front of Computer’ Event
Wavelet Scales Lifelogger 1 Lifelogger 2 Lifelogger 3

Match MisMatch Match MisMatch Match MisMatch
W1 9 154 7 107 5 50
W2 13 150 8 106 11 44
W3 17 146 11 103 7 48
W4 24 139 12 102 15 40
W5 27 136 22 92 19 36
W6 13 150 37 77 11 44
W7 9 154 43 69 5 50
W8 3 160 20 94 0 55
W9 3 160 4 110 0 55
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Figure 4: Heatmap diagram showing the dynamics of the largest Eigenvalue λ1 across 9 wavelet scales. Scales 1 to 9 correspond
respectively to periods of 1-2 , 2-4, 4-8, 8-16, 16-32, 32-64, 64-128, 128-256 and 256-512 minutes.
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[21] J. Kwapień, S. Drożdż, and A. Ioannides. Temporal
correlations versus noise in the correlation matrix formalism:
an example of the brain auditory response. Physical Review
E, 62(4):5557, 2000.

[22] N. Li, M. Crane, C. Gurrin, and H. J. Ruskin. Finding motifs
in large personal lifelogs. In Proceedings of the 7th
Augmented Human International Conference 2016, page 9.
ACM, 2016.

[23] N. Li, M. Crane, and H. J. Ruskin. Visual experience for
recognising human activities. In International Competition
on Evaluating AAL Systems through Competitive
Benchmarking, pages 173–185. Springer, 2012.

[24] N. Li, M. Crane, and H. J. Ruskin. Automatically detecting"
significant events" on sensecam. International Journal of
Wavelets, Multiresolution and Information Processing,
11(06):1350050, 2013.

[25] N. Li, M. Crane, H. J. Ruskin, and C. Gurrin. Application of
statistical physics for the identification of important events in
visual lifelogs. In Bioinformatics and Biomedicine (BIBM),
2013 IEEE International Conference on, pages 589–592.
IEEE, 2013.

[26] N. Li, M. Crane, H. J. Ruskin, and C. Gurrin. Multiscaled
cross-correlation dynamics on sensecam lifelogged images.
In International Conference on Multimedia Modeling, pages
490–501. Springer, 2013.

[27] N. Li, M. Crane, H. J. Ruskin, and C. Gurrin. Random
matrix ensembles of time correlation matrices to analyze
visual lifelogs. In International Conference on Multimedia
Modeling, pages 400–411. Springer, 2014.

[28] N. Li and F. Hopfgartner. To Log or Not to Log? SWOT
Analysis of Self-Tracking, pages 305–325. Springer
Fachmedien Wiesbaden, Wiesbaden, 2016.

[29] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in
time series. In Proceedings of the Second Workshop on
Temporal Data Mining, pages 53–68, 2002.

[30] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a
novel symbolic representation of time series. Data Mining
and knowledge discovery, 15(2):107–144, 2007.

[31] W.-H. Lin and A. Hauptmann. Structuring continuous video
recordings of everyday life using time-constrained clustering.
In Electronic Imaging 2006, pages 60730D–60730D.
International Society for Optics and Photonics, 2006.

[32] S. Mallat. A wavelet tour of signal processing: the sparse
way. Academic press, 2008.

[33] S. Mann. Continuous lifelong capture of personal experience
with eyetap. In Proceedings of the the 1st ACM workshop on
Continuous archival and retrieval of personal experiences,
pages 1–21. ACM, 2004.

[34] R. Mégret, V. Dovgalecs, H. Wannous, S. Karaman,
J. Benois-Pineau, E. El Khoury, J. Pinquier, P. Joly,
R. André-Obrecht, Y. Gaëstel, et al. The immed project:
wearable video monitoring of people with age dementia. In
Proceedings of the 18th ACM international conference on
Multimedia, pages 1299–1302. ACM, 2010.

[35] D. Minnen, T. Starner, I. Essa, and C. Isbell. Discovering
characteristic actions from on-body sensor data. In 2006 10th
IEEE international symposium on wearable computers,
pages 11–18. IEEE, 2006.

[36] D. Minnen, T. Starner, I. A. Essa, and C. L. Isbell Jr.
Improving activity discovery with automatic neighborhood
estimation. In IJCAI, volume 7, pages 2814–2819, 2007.

[37] C. G. Nevill-Manning, T. D. Wu, and D. L. Brutlag. Highly
specific protein sequence motifs for genome analysis.
Proceedings of the National Academy of Sciences,
95(11):5865–5871, 1998.

[38] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral,
and H. E. Stanley. Universal and nonuniversal properties of
cross correlations in financial time series. Physical Review
Letters, 83(7):1471, 1999.

[39] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and
M. Hansen. Image browsing, processing, and clustering for
participatory sensing: lessons from a dietsense prototype. In
Proceedings of the 4th workshop on Embedded networked
sensors, pages 13–17. ACM, 2007.

[40] G. Salton. Automatic information organization and retrieval.
1968.

[41] K. Schindler, H. Leung, C. E. Elger, and K. Lehnertz.
Assessing seizure dynamics by analysing the correlation
structure of multichannel intracranial eeg. Brain,
130(1):65–77, 2007.

[42] S. Sharifi, M. Crane, A. Shamaie, and H. Ruskin. Random
matrix theory for portfolio optimization: a stability approach.
Physica A: Statistical Mechanics and its Applications,
335(3):629–643, 2004.

[43] Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of
time-series motif from multi-dimensional data based on mdl
principle. Machine Learning, 58(2-3):269–300, 2005.

[44] P. Wang and A. F. Smeaton. Using visual lifelogs to
automatically characterize everyday activities. Information
Sciences, 230:147–161, 2013.

[45] D. Wilcox and T. Gebbie. On the analysis of
cross-correlations in south african market data. Physica A:
Statistical Mechanics and its Applications, 344(1):294–298,
2004.

[46] I. H. Witten, A. Moffat, T. Bell, and M. Gigabyte.
Compressing and indexing documents and images. San
Diego, CA, 1999.

[47] Z. Xizhi. The application of wavelet transform in digital
image processing. In MultiMedia and Information
Technology, 2008. MMIT’08. International Conference on,
pages 326–329. IEEE, 2008.


