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Abstract

We propose a new framework for human action localiza-
tion in video sequences. The option to not only detect but
also localize actions in surveillance video is crucial to im-
proving system’s ability to manage high volumes of CCTV.
In the approach, the action localization task is formulated
the maximum-path finding problem in the directed spatio-
temporal video-graph. The graph is constructed on the top
of frame and temporal-based low-level features. To local-
ize actions in the video-graph, we apply a maximum-path
algorithm to find the path in the graph that is considered
to be the localized action in the video. The proposed ap-
proach achieves competitive performance with the J-HMDB
and the UCF-Sports dataset.

1. Introduction
Understanding of human action in video sequences is

useful for a variety of applications such as detecting rele-
vant activities, summarizing and indexing video sequences,
organizing a digital video library according to the relevant
actions, etc. In security applications, CCTV footage can
be analysed in order to index actions of interest and enable
queries relating to actions such as anti-social or criminal
behaviour or to monitor crowd volume or aggression. How-
ever it remains a challenging problem for computer vision
to robustly recognize action due to cluttered backgrounds,
camera motion, occlusion, view point changes and the geo-
metric and photometric variances of objects.

Recent methods [13, 25, 7] for action recognition mostly
focus on action classification rather than action localisation.
Mostly the top-performing classification approaches in the
action modelling process [25, 16, 22] explicitly or implic-
itly use the background information, i.e., the region where
the action is not performed. This significantly contributes
to the classification performance [19, 5] but prevents the
identification of the region where the action is taking place.
However, the action localisation task requires the classified
action to be localised both spatially and temporally. The

Figure 1. A directed video graph construction process

temporal localisation can be efficiently [18] detected us-
ing the typical classification method coupled with the slid-
ing window technique. However, the spatial localisation is
complicated for the classification-based methods due to the
above mentioned use of the background. This paper aims to
address the localisation problem emphasising the spatial lo-
calisation of the action. In particular, we propose an action
localisation framework based on a directed video-graph and
present two major contributions as follows,

First, we propose a new directed video graph suited for
the localisation task. In the graph, the node describes a can-
didate action region and its connectivity (edge) describes
the similarity with the adjacent region regarding cues such
as region colour, motion and region geometry. The discrim-
inative score of each node is calculated using a late fusion
technique based on the corresponding local and regional
features. The late fusion provides a means to integrate a
variety of features of different type and dimensions (local,
global and regional). Also, it makes the video graph repre-
sentation sufficiently flexible to combine a richer set of fea-
tures that has a potential to increase the performance. Sec-
ondly, this paper presents the application of the maximum-
path finding algorithm to identify the localised action. This
method has been successfully adopted in an object tracking
problem [4] where it showed its effectiveness. We propose
that action localisation can be understood as semantic con-
cept tracking over time. Therefore we investigate whether
this approach can be extended to the challenge of action
localisation. The proposed approach is evaluated using
two benchmark action datasets, namely J-HMDB and UCF-
Sports. In the literature [20, 12, 27], these datasets have
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been extensively used for action localization. The remain-
der of this paper is organized as follows: Section 3 presents
a overview of the proposed framework followed the video
graph construction (Section 3.1) and the maximum-path
(MPF) formulation on the video graph (Section 4) and the
experimental result (Section 5).

2. Related Work
Action localisation is becoming crucial for effective

analysis of the realistic video capture scenario that consists
of videos captured in complex settings that have significant
background clutter or contain multiple actors or actions.
The earlier works [20] propose to directly use a classifier
on the action localisation task using 3D sliding window or
similar technique. The main advantage is that the mid-level
representation may not be necessary. However, the sliding
window approach substantially increases the computational
complexity when an input video has a long duration or high-
resolution.

In other approaches, the localisation is primarily based
on the action proposal [8] inspired by the success of the
region proposal methods for the object localisation task in
2D images. For instance, the objectness technique [1] for
object localization is extended to video by [4] and selec-
tive search [21] is modified into spatio-temporal tubelets in
[27]. This class of method overcomes the short-coming of
classifier-based approach by investigating the selected part
or region of the video rather than the entire video. The re-
gion proposal approach is computationally efficient and ob-
tains good results for action localisation in comparison to
the other methods. We adopt this strategy in the develop-
ment of the video graph.

Recently the approaches based on features from convo-
lutional neural networks [11] [14] have achieved significant
progress in the object detection and image classification
task. In particular, the approaches based on regional convo-
lutional neural networks (RCNN) [17] are the state-of-the-
art that have produced best results with a high-margin of
difference compared to competing approaches for the ob-
ject localisation task. Gkioxari et al [8] first applied the
region-based convolutional feature (R-CNN) in the action
localisation task and achieved promising results. However,
the action detection is frame-based and can not take into ac-
count the temporal dynamics of the action which is an im-
portant cue in any action recognition system. More recently,
Weinzaepfela et al. [27] introduced a method to overcome
this weakness by fusing the region-based feature (R-CNN)
with a track descriptor, that is similar to the trajectory fea-
ture used in our approach, and achieved further improve-
ment. This shows that combining the frame-level descrip-
tor, such as R-CNN, with local temporal features (motion
trajectories) that are complementary to each other and im-
proves the performance. Our framework embeds both the

region-based convolutional features (R-CNN) and the local
trajectory features to obtain the discriminative graph model.

In an approach similar to our work, [24] introduces an
action localisation framework based on action proposals
from dense trajectories features. However our proposed
framework differs in several key aspects: first, we de-
velop the effective graph structure that is capable of inte-
grating the different feature types i.e., local trajectory and
RCNN features. Furthermore, the additional cues such as
local, motion and region geometry are captured as the graph
edges. Finally, the localisation is performed by maximising
the path score in a video graph.

3. Proposed Framework
In the localisation framework, given a video, we first ap-

ply a region proposal technique at the frame level. This step
produces the candidate action regions that form the basis for
constructing the video graph. In the video graph, the node
represents the region along with its corresponding features
and the edge describes the similarity with its adjacent re-
gion. To assign the discriminative node score, support vec-
tor machines (SVMs) classifier is built with training videos
for each type of feature (local and regional) and integrated
using a late fusion method (details in Section 3.1.3). Fi-
nally, the maximum-path finding algorithm is used to find
the maximum scoring path in the video graph of a test video.
The regions associated with the maximum path is consid-
ered as the localised action. Next, we describe construction
of the video graph.

3.1. Video Graph Construction

Given a video sequence V = {I1, I2, .., In}, where Ik is
a static frame at the time instance k, we construct the corre-
sponding video graph G(V,E). As shown in Figure 1, the
node ujk describes the action candidate region regions de-
fined by a rectangular region rjk = (xjk, y

j
k, h

j
k, w

j
k) in the

static frame Ik. There are various ways to acquire candi-
date regions such as dense sampling [6] that subdivides the
frame into fixed grids at different scales. However, it has
an implication to substantially increase the number of can-
didate regions whereby the computational complexity in-
creases. Consequently, the alternative strategy is to use the
region proposal method that efficiently identifies the likely
object regions using only texture and edge information. Al-
though any object proposal can be used in our framework,
the selective-search method [21] is used in the experiment
due to the availability of its implementation 1. The region
proposal is applied on the video frames to generate approx-
imately 2000 candidate action regions per frame. Further-
more, we filter the candidate regions where there is no sig-
nificant motion according to the method [8]. This signifi-

1http //koen.me/research/selectivesearch/



Figure 2. The regional feature calculation process

cantly reduces the number of a region by 85% with a loss of
only 4% (action positive regions).

Once the node region is determined, the next important
step is feature extraction process. The recently [27, 8] suc-
cessfully used region-based neural network (RCNN) fea-
tures for action localisation, are adopted for describing the
node region. The RCCN is shown to be highly discrimi-
native as well as able to describe the region with arbitrary
size. However, it does not capture the temporal dynamics of
the action beyond two consecutive frames. Thus, the local
dense trajectory feature is extracted from the node region to
complement the RCCN feature. Next, we discuss how the
features are extracted in detail.

3.1.1 Regional feature

Gkioxari et al [8] introduced RCNN features that operate
separately on the image and optical flow. We use the same
set of RCNN features i.e., rgb-RCNN and flow-RCNN.
Given a region re-scaled to the dimension of 227× 227, the
rgb-RCNN operates on a three-channel of the colour im-
age. It captures the static appearance of the actor/scene. For
flow-CNN feature extraction, the flow image is first formed
by transforming the dense optical flow into a 3-channel im-
age (the flow x & y component and its amplitude) followed
by the re-scaling and convolutional process. The flow-
RCNN captures the motion pattern of the action. In the
experiment, the pre-trained RCNN network2 is used to com-
pute the rgb-RCNN and the flow-RCNN features from the
video frame region associated with the graph nodes as show
in Figure 2. We use the concatenation of the fc7 − layer
(4096 dimension) features of rgb-RCNN and flow-RCNN
network. We refer to the concatenated vector (9192 dimen-
sion) as vfi for the node ui with the corresponding region
ri.

3.1.2 Local feature

Although the proposed approach is not constrained by the
type of local features, we adopt the feature/descriptor de-
scribed in the work [25]. In particular, we use the dense
trajectory [25] that extracts the motion trajectories. In the

2https://github.com/gkioxari/ActionTubes

Figure 3. The procedure of calculating the node score of the action
graph. We use two different feature types: local and region-based.
Each feature is aggregated into final node score using late-fusion
method.

experiment, the trajectory length is set short L = 15 frames
to avoid the drifting trajectory problem. We apply the fea-
ture extraction for the entire video. Then the video graph
node ui is associated with the local features located in its
region rk. For each feature, four descriptors (TRAJ, HOG,
HOF, MBH) are calculated and concatenated to form a sin-
gle vector.

3.1.3 Classifier training and node discriminative score

Since we use two sets of features, two separate classifiers
(regional and local) are trained. For the regional feature, we
train SVM classifiers for each action class c ∈ C, where
ground truth regions are considered as positive examples
and regions that overlap by factor of less than 0.3 times
the area with the ground truth as negative. During training,
the hard-negative mining technique is used. This strategy
has shown significant improvement compared to traditional
training [17] in the object localisation task.

For training a classifier for local features, we use the
Bag-of-Features (BoF) model with the re-formulated scor-
ing function introduced in the work [6] . In the experiment,
the one-against-rest strategy is used to produce a binary
classifier for each action class c. Once the SVM classifier
is learned, the discriminative score for node ui is calculated
as follows:

Regional Classifier: Given a region ri of node ui with
the extracted regional feature vector vfi and the trained clas-
sifiers for action class. Each node ui in the video graph is
assigned with a discriminative score for action class c:

scorefc (ui) = βc + w′c · v
f
i (1)

where the discriminative score is the estimate of a likeli-
hood that action c is performed within the region ri of the
node ui and wc, βc are learned bias and support vector of
the trained regional SVM classifier for action c.

Local classifier: As we formulated the localisation as
the maximum path, the discriminative score should be able
to be combined additively to give the cumulative score
for traversing the path in the video graph. The additivity



requirement on the classifier property is applicable here.
Therefore, we use the linear (additive) SVM classifier for
training. In particular, for each training video, we com-
pute the BoF encoding with K visual words. A training
video with N local features is described by the set S =
{(xi, vi)}Ni=1 , where xi = (xi, yi, ti) refers to the local
feature position in space and time, and vi is the associated
local descriptor. Let h(S) be function maps feature set S
into K-dimensional BoF coded vector.

The one-against-rest strategy is to learn a linear SVM for
each action class c ∈ C. The resulting score function can
be re-formulated as a sum over the contribution from each
feature and this formulation is used calculate the discrimi-
native score for node ui ,

scoretc(ui) = βc +

K∑
j=1

wj
ch

j(S(r)) = βc +
∑
i∈ri

wci
c (2)

where hj(S) denotes the j-th bin count for histogram
h(S). The j-th word is associated with a weight wj =∑

i αh
j(Si) and wc, βc are learned bias and support vec-

tor of the learned SVM classifier for action c.
Late-Fusion: To calculate the final discriminative score

for a given node ui, we use the fusion technique to combine
the respective scores as follows:

scorec(ui) = α · scorerc(ui) + (1− α) · scorelc(ui) (3)

where α is a scalar. In the experiment, we use this param-
eter to investigate the respective feature type contribution to
localisation performance.

3.2. Edge weight

The edge e(ui, uj) represents the similarity between
given nodes ui, uj . In the proposed video graph, the edge is
formed between temporally adjacent nodes as shown in Fig-
ure 4 and the edge direction is used to enforce the path to
flow in time. The action localisation can be understood as
semantic concept tracking over time. In tracking methods
[2][3], the authors use the color, motion cues for successful
object tracking. A rich set of cues is crucial for the accurate
registration of the object over different frames. Therefore
we propose to combine multiple cues (colour, descriptor
and geometric) to determine the edge weight:

e(ui, uj) =

{
fc(ri, rj) + fg(ri, rj) + fd(ri, rj), if adj(ri, rj)
0, otherwise

(4)
where ri, rj are the corresponding region for the node ui

and uj , respectively and adj(ri, rj) implies the temporally
adjacent nodes and the term fc, fg and fd are defined as
follows:

Figure 4. The maximum path in the graph considered to be the lo-
calized action. In the experiment, we use the Boykov-Kolmogorov
method to calculate the maximum flow between node S, T .

• Color Similarity Term (fc): Many colour descriptors
have been proposed in the literature. In the experiment,
we use the region-based color descriptor proposed by
Van et al.[23] due the availability of its implementa-
tion3. The color descriptor (108 dimension) is ex-
tracted from the region rk for each color hannel (RGB)
and concatenated to create the combined descriptor ck.
Then color similarity term fc(ri, rj) is defined as a co-
sine measure between cosine(ci, cj) where ck is con-
catenated color descriptor extracted from a region rk
of the node uk. The cosine similarity is selected due
to it has positive space, where the outcome is neatly
bounded in a range of [0, 1].

• Descriptor Similarity Term (fd): This term is based
on the assumption that the features extracted from the
same actor/action should resemble similarity. In the
experiment, we use the regional feature to determine
the descriptor similarity term as follows: fc(ri, rj) =
cosine(vi, vj) where vj vi is the regional features ex-
tracted at the region ri and rj respectively.

• Geometric Similarity Term (fg): This term encour-
ages the spatial coherence between the node regions.
In other words, the term scores high if the spatial
extent significantly overlaps. The geometric similar-
ity is defined as intersection of over union measure,
fg(ri, rj) = IOU(ri, rj) i.e the full overlap between
the regions gives a score of 1.

4. Action localization in the video-graph
Assuming a video sequence is mapped into directed

video-graph V (G,E) as discussed in Section 3.1. We now
describe how to localize action in the graph. Given a path
p, the score Mc(p) is defined as:

Mc(p) =
∑
i∈p

scorec(ui) + λ
∑

(i,j)∈p

e(ui, uj) (5)

3http://lear.inrialpes.fr/people/vandeweijer/color descriptors.html



where c is the action class and λ is a scalar. The edge
weight e(ui, uj) scores high if the corresponding node re-
gions ri, rj overlap and agree in terms of color and regional
feature. To localize the action, the problem becomes to find
the optimal path p∗ with highest accumulated score:

(p∗, c∗) = argmax
c∈C

arg max
p∈path(G)

Mc(p) (6)

where p∗ = [u1, u2, ..., ut] is the trajectory that maxi-
mizes the video graph with action class c∗. Finally the cor-
responding regions [r1, r2, ..., rt] will be considered as the
localised action in the video sequence. The Maximum path
problem is efficiently solved using dynamic programming.
In the experiment, we have used Boykov-Kolmogorov al-
gorithm to find the maximum flow in the graph by adding
zero-weighted source S and terminal T node as shown in
Figure 4.

5. Evaluation
5.1. Datasets

We evaluate our approach on two widely used datasets,
namely UCF Sports [15] and J-HMDB [10]. On UCF sports
we compare against other techniques and show substantial
improvement from state-of-the-art approaches. We present
an ablation study of our CNN-based approach and show
results on action classification using our action tubes on
JHMDB, which is a substantially larger dataset than UCF
Sports. The UCF Sports dataset consists of 150 videos with
10 different actions. There are on average 10.3 videos per
action for training, and 4.7 for testing 1 . J-HMDB contains
about 900 videos of 21 different actions. The videos are
extracted from the larger HMDB dataset [24], consisting of
51 actions.To date, UCF Sports has been widely used by
scientists for evaluation purposes.

5.2. Experimental Protocol

To quantify our results, we report AUC curves for the
UCF-Sports dataset, a metric commonly used by other ap-
proaches. A number of recent methods have used AP
metrics, and we have compared our method performance
against these reported methods for both the J-HMDB and
UCF-Sports dataset.

5.3. Results

5.3.1 UCF Sports

In Figure 5 we plot the average AUC (Area Under Curve)
for different values of σ (IOU parameter). The curve is
created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold setting. We
plot the curves as produced by the recent state-of-the-art ap-
proaches, Jain et al. [9] , Wang et al. [26], Tian et al. [20],

Figure 5. AUC for varying IoU thresholds for UCF-Sports Dataset

action class local region combined
brush hair 79.1% 59.8% 84.9%

catch 27.8% 11.6% 33.6%
clap 57.3% 20.1% 60.3%

climb stairs 21.8% 23.0% 63.9%
golf 92.3% 29.7% 95.7%
jump 14.4% 9.0% 14.5%

kick ball 14.5% 3.7% 15.5%
pick 42.4% 14.4% 53.9%
pour 92.3% 70.3% 97.1%

pullup 89.8% 52.1% 96.2%
push 63.3% 31.6% 55.8%
run 37.9% 13.7% 42.9%

shoot ball 23.0% 19.9% 26.5%
shoot bow 79.1% 31.0% 79.6%
shoot gun 25.7% 19.6% 48.5%

sit 40.0% 30.5% 50.2%
stand 39.1% 32.3% 42.6%

swing baseball 79.5% 9.6% 81.3%
throw 25.9% 11.1% 28.5%
walk 70.7% 33.7% 77.8%
wave 37.0% 23.9% 50.0%
MAP 26.2% 50.1% 57.1%

Table 1. The performance by action class for J-HMDB dataset
(Split 1)

Lan et al. [12], Action Tube [8] and SMTH [27]. Our ap-
proach outperforms most of these techniques, showing the
most improvement for high values of overlap. In particular,
the proposed method achieves the competitive performance
with the recent state-of-the-art work [27] only falling short
by a slight margin. For comparison with the state-of-the-
art methods, as shown in column 2 at Table 2, our method
achieves competitive performance of MAP = 88.7 % with
IOU parameter σ = 0.5.

5.3.2 J-HMDB dataset

First, we report the performance of the 21 actions of the
J-HMDB dataset. Table 1 presents the result by the differ-



J-HMDB ( σ = 0.5) UCF-Sports ( σ = 0.5)
Action Tube[8] 53.3 % Action Tube [8] 75.8 %
STMH [27] 60.7 % STMH [27] 90.5 %

Our method 56.3 % Our method 88.7 %
Table 2. Comparison of the method with the state-of-the-art meth-
ods

ent combination of features used: local (TRAJ, HOG, HOF,
MBH), regional (flow RCNN + RGB RCNN) and fused (lo-
cal + regional). It is apparent that the fused approach con-
sistently outperforms the individual features. The regional
feature performs significantly better for almost all actions in
comparison with the local counterpart. It proves the highly
discriminative nature of the convolutional feature. Regard-
ing MAP, feature fusing (57.1%) shows the improvement
of 7%, 31 % in comparison to using regional (50.1%) and
local feature (26.2%) alone.

For comparison with the-state-of-art methods, recently
two methods have evaluated their system MAP performance
averaged over all three splits with IOU parameter σ = 0.5.
As shown at column 1 of Table 2, our method achieves com-
petitive MAP performance of 56.30 %.

6. Conclusion

We propose a novel video graph-based framework for
human action localisation from video sequences. The abil-
ity to not only detect but also localize actions in surveillance
video is crucial to improving surveillance system’s capacity
to manage high volumes of CCTV. The proposed approach
can effectively accommodate different types of feature us-
ing the late fusion method. Also, the additional cues such
as colour, motion and the geometrical information are cap-
tured within the graph representation. We perform the ac-
tion localisation by maximising the score associated with
the node and the edge in the video graph. The proposed
approach achieves competitive performance with J-HMDB
and UCF-Sports dataset.
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[4] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple object track-
ing using k-shortest paths optimization. PAMI, IEEE Transactions
on, 33(9):1806–1819, 2011.

[5] L. Cao, Z. Liu, and T. S. Huang. Cross-dataset action detection. In
CVPR (CVPR), 2010 IEEE conference on, pages 1998–2005. IEEE,
2010.

[6] C.-Y. Chen and K. Grauman. Efficient activity detection with max-
subgraph search. In CVPR 2012.

[7] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recog-
nition via sparse spatio-temporal features. In Visual Surveillance
and Performance Evaluation of Tracking and Surveillance, 2005. 2nd
Joint IEEE International Workshop on, pages 65–72. IEEE, 2005.

[8] G. Gkioxari and J. Malik. Finding action tubes. In CVPR, pages
759–768, 2015.

[9] M. Jain, J. Gemert, H. Jégou, P. Bouthemy, and C. Snoek. Action
localization with tubelets from motion. In Conference on CVPR,
pages 740–747, 2014.

[10] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. Black. Towards
understanding action recognition. In ICCV, pages 3192–3199, 2013.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In NIPS, pages 1097–
1105, 2012.

[12] T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models
for joint action localization and recognition. In ICCV 2011.

[13] I. Laptev. On space-time interest points. International Journal of
Computer Vision, 64(2):107–123, 2005.

[14] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recog-
nition: A convolutional neural-network approach. neural networks,
8(1):98–113, 1997.

[15] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from
videos in the wild. In IEEE CVPR 2009.

[16] K. Rapantzikos, Y. Avrithis, and S. Kollias. Dense saliency-based
spatiotemporal feature points for action recognition. In CVPR, 2009.
CVPR 2009. IEEE Conference on, pages 1454–1461. IEEE, 2009.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In NIPS, pages
91–99, 2015.

[18] K. Soomro, H. Idrees, and M. Shah. Action Localization in Videos
Through Context Walk. ICCV, pages 3280–3288, 2015.

[19] W. Sultani and I. Saleemi. Human action recognition across datasets
by foreground-weighted histogram decomposition. In Conference on
CVPR, pages 764–771, 2014.

[20] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable
part models for action detection. In Conference on CVPR, pages
2642–2649, 2013.

[21] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders.
Selective search for object recognition. International journal of com-
puter vision, 104(2):154–171, 2013.

[22] M. Ullah, S. Parizi, and I. Laptev. Improving bag-of-features action
recognition with non-local cues. In BMVC, volume 10, pages 95–1,
2010.

[23] J. Van De Weijer and C. Schmid. Coloring local feature extraction.
In Computer Vision–ECCV 2006, pages 334–348. Springer, 2006.

[24] J. van Gemert, M. Jain, E. Gati, and C. Snoek. Apt: Action localiza-
tion proposals from dense trajectories. In BMVC, volume 2, page 4,
2015.

[25] H. Wang, A. Klaser, C. Schmid, and C. Liu. Action recognition by
dense trajectories. In IEEE CVPR, pages 3169–3176, 2011.

[26] H. Wang, C. Yuan, W. Hu, and C. Sun. Supervised class-specific
dictionary learning for sparse modeling in action recognition. Pattern
Recognition, 2012.

[27] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to track
for spatio-temporal action localization. In ICCV, pages 3164–3172,
2015.


