Novel Chemical Sensors Using Boronic Acids for Glucose Detection

Danielle Bruen, Colm Delaney, Larisa Florea* and Dermot Diamond

Insight Centre for Data Analytics, National Centre for Sensor Research,
School of Chemical Sciences, Dublin City University

Introduction

The use of boronic acids (BAs) for sensing sugars is well-known, as these Lewis acids have a high affinity for diol-containing compounds. In this context, cationic BA derivatives have been investigated for glucose sensing in a two-component sensing system. Cationic BAs have shown to quench the fluorescence of anionic fluorophores, such as 7-hydroxycoumarin (7HC). Subsequent incremental additions of glucose can restore the fluorescence of 7HC. This approach aims to develop non-enzymatic optical glucose sensors through which people suffering from diabetes can track their condition.

Equilibria between BA and diols in aqueous media

Two-Component Sensing Mechanism

Non-Fluorescent

Glucose Sensing

A novel bis-BA sensor (DBA2) was synthesized and used in a two-component system with the 7HC fluorophore. The fluorescence of 7HC was monitored at pH 8.6. It was observed that the fluorescence of 7HC became quenched with increasing concentrations of DBA2 and on sequential additions of glucose, the fluorescence could be restored.

Future Work

This two-component glucose sensing switch can also be incorporated in to a gel matrix, when the sensing groups contain polymerisable units. On immobilising this sensing system in to a gel matrix, the system can be quickly optimised on interchanging the sensing components, as well as providing convenient integration in to a device.

Conclusions

7HC demonstrated a decrease in fluorescence intensity on increased DBA2 concentrations by 98%. On sequential additions of glucose up to 100mM, the fluorescence could be recovered by 16% and in particular, the sensor was most sensitive to glucose in the range of 0.5-5mM, which corresponds to the ocular glucose range in diabetic patients, 0.5-5mM. The incorporation of this sensing system in to gel matrices could provide convenient integration in to wearable sensing platforms, such as smart-patches or contact lens devices.