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Abstract

Deep learning is a more recent form of machine learning based on a set of algorithms

that attempt to learn using a deep graph with multiple processing layers, where lay-

ers are composed of multiple linear and non-linear transformational nodes. While

research in this area has shown to improve the predictive accuracy in a number of

domains, deep learning systems are highly complex and experiments can be hard to

manage. In this dissertation, we present a deep learning system, built from scratch,

which enables fully con�gurable deep learning experiments. By con�gurable, we

mean selecting the overall learning algorithm, the number of layers within the deep

network, the nodes within network layers and the propagation functions deployed

at each node. We use a range of deep network con�gurations together with dif-

ferent datasets to illustrate the potential of this system but also to highlight the

di�culties in tuning the model and hyper-parameters to maximise accuracy. Our

research also provides a conceptual data model to capture all aspects of deep learn-

ing experiments. By specifying a conceptual model, it provides a platform for the

storage and management of experimental snapshots, a key support for experiment

and parameter optimisation and analysis. In addition, we developed a toolkit which

supports the management and analysis of deep learning experiments and provides a

new method for pausing and calibrating experiments. It also o�ers possibilities for

interchanging experiment setup and results between deep learning researchers. Our

validation takes the form of a series of case studies built from the requirements of

end users and demonstrates the e�ectiveness of our toolkit in building deep learning

algorithms.



Chapter 1

Introduction

This dissertation is about data mining with a specialised form of machine learning

called Deep Learning. As an introduction, in x1.1 we provide a brief overview of

machine learning and data mining and the relationship between the two, as both

terms are often used in similar bodies of work. Inx1.2, we then introduce the

specialised form of machine learning known asdeep learning. This is a state of

the art machine learning technique which has great potential for traditional data

mining tasks, but the complexity and scope of running and analysing deep learning

experiments make its practical application is notoriously di�cult. This motivates

the research presented here, as traditional data-mining paradigms are ill-suited to

the usage of deep networks in many applications areas. We discuss some of these real

world applications and a context for our work in x1.3. We de�ne our hypothesis and

outline the contributions made during the course of this research inx1.4. Finally,

we present a summary and outline the structure of the dissertation inx1.5.

1.1 Data Mining and Machine Learning

Data mining is a diverse, inter-disciplinary sub-�eld of computer science. Also

known as knowledge discovery in databases or computational data analysis, data

mining draws from areas such as database systems, data warehousing, statistics,

machine learning, and often overlaps with data visualisation, information retrieval,

and high-performance computing [57], [47]. It emerged in the 1980s as computational
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power, and data capture and storage tools vastly improved [57]. Data analysis was

originally the remit of statisticians, who considered the lack of an apriori hypothesis

bad practice. Data mining can be described as the process of discovering some

previously unknown information from a dataset [57], or the extraction of interesting

patterns, automatically or semi-automatically, from large datasets [137].

Machine learning is the method used to devise complex models and algorithms which

lend themselves to various analytical tasks during the data mining process. Machine

learning is used to accomplish tasks such as prediction, which in the commercial

context is known aspredictive analytics. A computer program is said to learn if its

performance on a task improves with experience, according to some performance

measure [93]. These learned analytical models allow researchers, data scientists,

engineers, and analysts to `produce reliable, repeatable decisions and results' and

uncover `hidden insights' through learning from historical relationships and trends

in the data.

Both Machine learning and data mining involve the study of algorithms that can ex-

tract information automatically. There is a signi�cant overlap between the two �elds,

with the use of very similar algorithms which can be traced back many years [36].

Furthermore, data mining is a research topic that has taken much of its inspira-

tion and techniques from machine learning but with di�erent goals. Whereas data

mining looks to extract knowledge and actionable, meaningful insights forhuman

stakeholders, machine learning looks to discover howmachines can learn from data

and improve their performance on a task [57].

Data mining therefore, encompasses a broader process which relates to a person

carrying out an analysis of data, in a speci�c situation, on a particular data set,

with a goal in mind. Typically, this person will also have to select and engineer

data, leverage the power of the various pattern recognition techniques that have

been developed in machine learning and �nally, present the knowledge gleaned from

the data in an easily consumable format for another person. Quite often, the dataset

is large and complicated, containing special problems such as having more variables

than observations. Usually, the goal is either to generate some preliminary insights

in an area where there was little knowledge beforehand, or to predict future ob-

2



servations accurately. Moreover, analytical procedures can be either `unsupervised'

(we do not know the answer: discovery) or `supervised' (we do know the answer:

prediction ). Common data mining techniques include cluster analyses, classi�cation

and regression trees, and neural networks.

Bordawekar et. al [22] present the main functional goals and problem-types of data

analytics, found after a two year study of the area. The functional goal of this

research isprediction, and its associated problem types are:supervised and unsu-

pervised learning; as well asdescriptive and inferential statistics . This research will

also encounterfeature learning (or dimensionality reduction) and semi-supervised

learning, as some datasets used in this research are high-dimensional and not all

outcomes are labelled. Explanations of the problem types are as follows:

� Supervised learning : predicts the class of an unlabelled sample based on

previous labelled observations.

� Unsupervised learning : segments or �nds patterns in unlabelled data where

grouped samples have common traits.

� Semi-supervised learning : uses both labelled and unlabelled data during

the training process.

� Descriptive and inferential statistics : employs statistical modelling to

describe the dataset or infer information from it.

� Feature learning/dimensionality reduction : reduces the feature-space in

which the data exists or learns those variable interactions most relevant to an

outcome.

1.2 Deep Learning

There is a limit to what can be done with techniques traditionally used to approach

the analytics problems described inx1.1. If more than one problem-type is encoun-

tered in a dataset, the use of many shallow algorithms in conjunction is required. For

example, using a feature selection method and subsequently using a classi�cation

3



algorithm to make predictions. Shallow refers to thedepth of the algorithm's archi-

tecture, speci�cally, the number of levels of learning function operations [12]. Any

architecture with less than threelayers of learning functions is considered shallow

as they consist of one, or at most, two layers.

The desire to approach the problems outlined inx1.1 with a single end-to-end solu-

tion consisting of a deeparchitecture has existed for some time [12]. The realisation

of this came with the advent of Deep Learning.

Deep learning refers to a recent breakthrough in machine learning, wheredeep archi-

tectures, made up of many levels orlayers of non-linear operations are used to model

data. A theory that the brain is organised in a deep architecture, abstracting input

information into multiple levels of meaning, where each corresponds to a di�erent

location in the cortex [12], inspired the creation of these algorithms. Therefore, a

central premise behind deep learning is that, like the brain, these algorithms can

learn high-level, abstract features from data [13]. These high-level features better

represent the outcome or dataset being modelled and correspond tolatent variables

in the dataset [13]. The lower layers in deep architectures correspond to localised,

speci�c learned features and as the data progresses, or isfed forward through the

architecture, it is transformed into even more abstract representations where the

layers deeper in the architecture correspond to higher level representations.

We now give an example of one of many possible uses in a clinical setting. The input

we provide to a deep neural network could be a wide-range of low-level biometric fea-

tures, such as height and weight. The network could then transform and learn those

most relevant to a latent concept like obesity, which could then be combined with

other latent variables to represent an even higher level concept such as metabolic

conditions. We will explain the exact processes behind how these high-level features

are computed in Chapter 3.

The Deep Belief Network in [60] is often seen as the �rst deep learning algorithm

and the paper that began a more serious focus on deep learning, although recent

surveys [117] argue that deep learning has existed for much longer. The Deep

Belief Network [60] solved the characteristic problem ofvanishing gradientsfor deep,

feed-forward, neural network architectures but, Long Short Term Memory [63] had
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already solved this problem forrecurrent architectures. Recurrent architectures are

used in time series prediction and are considered deep intime, as they do not have

multiple di�erent layers of representation but essentially, have a layer for every

data-point in a time-series. In order to train neural network architectures and

increase their accuracy, an error orlearning signal must be back-propagated from

the output to the input of the network. The vanishing gradient problem refers to

previous algorithms where this learning signal disappeared in deeper architectures

so it was not possible to learn multiple layers of features.

When the Deep Belief Network was �rst proposed and implemented, it achieved the

state of the art results [60] on the MNIST (Mini National Institute of Standards

and Technology) hand-written digit dataset classi�cation task [80]. The MNIST

classi�cation task is a benchmark data set in machine learning, which is used to

test new and existing algorithms, comparing their accuracy in determining what

hand-written digit is contained in a picture. Since then, improvements were made

and other deep algorithms such as the Deep Boltzmann Machine [115] continued to

improve upon the state of the art. Today deep learning algorithms continue to break

records on many other benchmark datasets [38], but computer vision, speech recog-

nition and natural language processing remain the subject of most deep learning

applications. However, the issues of complexity and management of deep learning

experiments can be considered as the main obstacle to their more widespread use.

Neural networks and deep neural networks have been applied with great success to

feature learning [77], [61], anomaly detection [48] and sequential prediction [78]. As

neural network layers can be combined, these problems can be approached with one

architectural algorithmic solution, but deep neural networks are notoriously hard to

build, con�gure, optimise and interpret.

1.3 Practical Machine Learning Problems

As part of this research, we regularly worked with domain experts who compiled

data sets, but needed assistance in performing certain analyses not easily possible

with o� the shelf software. Their goals were generally to gain insights and perform
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more in depth or more accurate analyses. In this dissertation, we use two of these

data sets as part of our evaluation.

The �rst data set was The Maastricht Ageing Study [130], from the health and ageing

domain, which arose from a collaboration on the INnovative Mid-life INtervention

for Dementia Deterrence Project (In-Mindd) [35] project. The second, was from

a collaboration with colleagues from the �eld of sport and human performance.

The latter dataset consisted of sensor data gathered from Gaelic Football players

during competitive games. To ensure a more rigorous evaluation of our approach,

we introduced a third dataset, which exhibited similar data properties to the �rst

two but consisted of data gathered from a completely di�erent source and �eld.

This dataset was the Johann Sebastian Bach Chorales MIDI data set [7]. The

introduction of a multimedia music dataset ensures our methods are generic and

not limited to a particular application domain. Furthermore, it is a dataset that

is freely available on line which would allow practitioners to test and recreate our

methods.

The Maastricht Ageing Study (MAAS) was a longitudinal cohort study, in

which biometric and survey data relating to cognitive function and health was col-

lected on ageing individuals in the Netherlands at �xed, 3 year intervals over the

course of a 12 year period [130]. This study resulted in the MAAS data set, which

consists of 3441 unique records and 1835 unique features spread throughout 86 `tests'

or study subsections. The domain experts were interested in a subset of this data

which consisted ofmodi�able dementia risk and protective factors, and how these

related to the probability of a person surviving without dementia. This approach

sought to determine the modi�able factors which inuenced dementia and could en-

able a person to adjust their lifestyle accordingly to lower the risk that they would

develop dementia. A additional focus was placed on how these variablesinteract .

The discovery of multivariate interactions could provide not only a means of more

accurate prediction, but also provide insights into the mechanismin which di�erent

physical attributes inuence each other and the outcome of dementia.

The Gaelic Football Sensor data set consists of information gathered over a

series of 17 competitive games of Gaelic Football. Gaelic Football is a native Irish
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sport overseen by the Gaelic Athletic Association [4] which, like many team sports

involves repeated, short duration, high intensity bouts of anaerobic exercise inter-

spersed with sustained light to moderate aerobic activity. At each of 17 competitive

games, 10 of 15 players in a team were �tted with sensor devices to record heart

rate, speed, distance, latitude, longitude and acceleration. Measures were recorded

multiple times in each second of the game. Other data, such as the teams opponent,

warmup and match start and end times were also recorded. The resulting dataset

contained in excess of 200 million values and 33 features. Due to the nature of con-

tact sport, the devices incur a number of blows during each game, introducing many

potential anomalies. In this case therefore, the analysis motivates anomaly detec-

tion in the �rst instance. Furthermore, the domain expert wanted to predict when

players would reach exhaustion in a game. Predicting future heart rates and how

player bio markers interact in these predictions is the �rst step for this task. These

predictions could then be used to substitute players before they reached their peak

and gain some insight into how various physical elements inuenced performance,

which could then form the basis for improved game and training strategies.

J.S. Bach Chorales data set consists of data on 60 Bach chorales (hymns), coded

as 5665 MIDI events, which relate directly to the number of instances in the dataset.

Each event is labelled as 1 of a possible 101 chords and has 14 attributes to describe

the event along with the chorale ID, event number (a simple index) and a further 14

attributes to describe each event. 12 of these attributes are binary relating to the

presence or absence of each of the simple 12 chromatic pitches possible in a chord

(it does not contain octave information), a string representing the letter name of the

bass note of the chord and �nally, an attribute relating to the meter of the chord

(for how long the chord is sustained). This is a prepared dataset with which we

have domain expertise. Thus, it enabled a further evaluation with the development,

testing and interpreting of result data as experiments progressed.

1.3.1 Deep Learning Application Goals

In examining each of these data sets, although originating from heterogeneous ap-

plication domains, they exhibit similar data properties and problems. Therefore, in
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broad terms, three functions are desirable when building a deep learning solution

for data mining: anomaly detection, (sequential) prediction and learning feature

representations. We provide a brief description of each before de�ning our problem

statement in this next section.

� Anomaly Detection is often a �rst step in data mining applications. Anoma-

lies are generally de�ned as unusual events which occur within a dataset, where

a subset of these events areoutliers. Outliers are occurrences that make either

no physical sense, or appear so extreme they are considered probabilistically

infeasible. The detection of anomalies was an important requirement for the

Gaelic Football dataset, but was also a step in the analysis of the MAAS data.

Human error in data capture is often present in these studies, but aside from

human error, anomalies could contain valuable information. For example, one

individual in the MAAS dataset may develop dementia while adhering to the

pro�le of a not-at-risk lifestyle. Our anomaly detection techniques are evalu-

ated using the J.S. Bach dataset to identify unusual chords in the context of

a chorale. This anomaly detection experiment iscompletely unsupervised as

we do not know those records are anomalous and those that conform.

� Sequential Prediction was a required mining process in each of the three

data sets, as time is a relevant factor in informing predictions. In shallow

architectures, most time-series analyses work on the premise that a current

time point is conditioned on the immediately preceding point or can only

incorporate a short, speci�c window of time. Predicting a time-step based on

all previous time steps is more desirable [65] as short time analyses cannot

fully capture temporal dependencies in high-dimensional sequences.

� Learning Feature Representations is also a requirement common to re-

searchers for all data sets. Either the data ishigh-dimensional meaning too

many features are present, or there is a requirement to learn how the input

features interact to provide greater insight. Learning a feature representation

can overcome both of these problems. Too many features, especially with a

low instance of records can cause a model to over-�t. Over-�tting is when a
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model classi�es (or clusters, etc.) the data upon which it is built very well, but

does not generalise or perform well on unseen data. Many traditional feature

selection methods are sub-optimal [3], [13], [65] and dimensionality reduction

techniques such as Principal Component Analysis remove some of the variance

in the data. Furthermore, features are often hand-crafted - for example, a quo-

tient of two features - for greater predictive power, which is an unsustainable

and non-scalable practice. Discovering variable interactions is a very di�cult

problem due to the high number of possible permutations involved or the need

to identify an apriori hypothesis in relation to latent classes. Furthermore, it is

often necessary to combine these classes with a separate modelling technique

when using traditional mining solutions. Neural networks provide a means to

learn a feature representation [13], [61], but in practice, on non-image data, the

features are notoriously di�cult to interpret. Finally, testing whether these

interactions are accurate in clinical research, remains a di�cult task. Devising

a method to accurately model and test these interactions could lead to far

greater risk prediction in relation to disease.

1.4 Problem Statement and Hypothesis

Building a deep learning experiment is a complex and time consuming process. If

we are to invest the time and computational resources to this approach to machine

learning, it is imperative that we can measure a tangible bene�t in terms of pre-

dictive capabilities. Deep learning experiments are big experiments as there are a

very high number of data transformations and experiments tend to run for many

hours. In reality, there are a high number of parameter settings and combinations of

parameter values that can inuence the quality of the learning algorithm. Further-

more, researchers may wait up to a number of days to discover that settings were

incorrect or that the quality of learning had tailed o� during the experiment. What

is required for researchers in a deep learning setup is the ability to build their own

deep learning con�gurations and thus, test using di�erent deep learners for di�erent

problems across multiple domains. Additionally, this requires technology supports
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to be able to freeze experiments, retrace to previous decisions, analyse across result

sets etc. Finally, researchers should be able to share their experiences (settings,

results) in a well understood fashion for a collective better understanding of how

deep learning machines work.

1.4.1 Hypothesis

The machine learning experiment has been described earlier in this dissertation as

a continuous process of Con�gure, Build, Optimise and Interpret (results), and as

presented in our problem statement, a single experiment can run for many hours

due to the complexity of a Deep Learning machine. In order to adequately support

and manage deep learning experiments, there is a need for a new level of supporting

methodologies and tools.

The hypothesis we present is that in order to enable new levels of deep learning it

requires: a novel approach to con�guring and running deep learning experiments; a

semantically powerful data model representation of all elements of the deep learn-

ing machine; and the development of a toolkit which is based on the data model

approach to deliver functions that manage the experiment and better analyse the

results.

By new levels of deep learning, we refer to: a greater degree of experiment au-

tomation; increased possibilities for the analysis and interpretation of experiments;

and portable, detailed experiment data capture to aid experiment reproduction and

reuse.

1.4.2 Research Questions and Contribution

There are a number of research questions that must be answered as part of this

research and dissertation.

1. Can we design acon�gurable deep learner system which integrates the op-

timisation of both model parameters and hyper-parameters and provides a

platform for the implementation and extension of new methods? There is

little evidence in current state of the art where deep learning frameworks pro-
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vide full, integrated optimisation. For example, Google TensorFlow [1] does

not provide for integrated hyper-parameter optimisation within its software

model. Nvidia Digits [100] does provision for a hyper-parameter sweep, but it

is for some but not all hyper-parameters and does not provide a fully integrated

con�guration and parameter optimisation approach.

2. Is it possible to capture all aspects of a deep learning experiment to enable a

robust interpretation of results at any iteration of the optimisation process?

The bene�t of this level of detail in the analysis phase enables the development

of a set of operators that manipulate both setup parameters and results in the

optimisation of deep learning experiments. It can also be used to exchange

the output from deep learning results across the research community and thus,

allow deep learning researchers to quickly build upon the work of previous

e�orts.

3. Can a set of analytical functions be developed that support the key elements of

result interpretation: selection of the best performing model and selection of

the best hyper-parameter con�guration? Further analytical functions should

include the narrowing of bounds for hyper-parameter search and interpreting

how the abstract learnt features relate to the original dataset features.

The contribution provided in this dissertation is illustrated through the outputs

achieved by answering the above 3 key research questions. We will present a novel

methodology that integrates both data mining and deep learning. Its bene�t to

data mining practitioners is to enable them to incorporate deep learning into their

data mining operations. Its bene�t for deep learning researchers, is the suggestion

of a standard process for experimentation for increased levels of reproducibility and

understanding. This methodology has at its core, a data driven approach to capture

all aspects of the deep learning experiment. This deep learning data model provides

the foundation for both the deep learning software and the toolkit to support ex-

periment con�guration, management and interpretation. Our extensive evaluation

shows that the toolkit developed in this research successfully solve the problems

presented, providing increased levels of experiment automation and enabling new
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insights into, and interpretations of deep learning representations. In summary, this

research provides key methods and tools to enable deep learning interpretations and

experiment automation con�gurations that were not previously possible.

1.5 Summary and Dissertation Structure

As researchers, in order to satisfy the analytical needs outlined in the previous sec-

tion, it is necessary to develop solutions which utilise appropriate techniques in the

current state of the art. In machine learning, this is the area of deep learning. Deep

learning is a complicated form of analysis. Not only do model parameters have

to be optimised but the optimisation of hyper-parameters is also a fundamental

requirement. These hyper-parameters are inputs into the model parameter train-

ing process. This could be the number of iterations that is performed in training

or the number of layers in the deep learning architecture. Furthermore, although

deep learning frameworks exist, implementing new algorithms is cumbersome and

lacks a common methodology. Finally, no framework exists to analyse the results

and parameters of experiments, and use an interpretation of intermediary results

to feed into a new level of experiments. In this chapter, we highlighted the major

requirements of the deep learning experiment: Build, Con�gure, Optimise and In-

terpret. Furthermore, we motivated our research by stating that the system and

toolkit to achieve all these requirements of the deep learning experiment does not

currently exist. The goal of this research is to deliver an overall framework by pro-

viding a con�gurable deep learner; a data driven methodology with fully speci�ed

deep learning data model; a toolkit whose functions are based upon and speci�ed

by the deep learning data model; and which interfaces with the con�gurable deep

learner to deliver powerful new functionality for deep learning researchers. We pro-

vide a comprehensive evaluation using 3 diverse datasets whereby we tackle 3 major

machine learning problems: anomaly detection, feature selection and learning, and

sequential data mining. Thus, we consider our Toolkit to be successfully evaluated

if we can demonstrate the achievement of each of the following major requirements:

1. Application. One or more of the deep learning application goals fromx1.2 are
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achieved on each of the 3 heterogeneous datasets presented. This demonstrates

generic domain application and the possibilities to achieve multiple goals with

a single experiment if experiment data is persisted.

2. Con�guration. An arbitrary number of hyper-parameter con�gurations can

be generated automatically and generically and the relevant number of deep

learning algorithm instances, agnostic of the algorithm employed are con-

structed based on these parameters. This demonstrates the generic, simple

and automatic con�guration of experiments.

3. Optimisation. Model parameters of each deep learning algorithm instance

are optimised and the best performing hyper-parameter con�guration is re-

turned. This demonstrates the integration of hyper- and model parameter

optimisation.

4. Interpretation. Optimal model parameters can be explored to discern what

the network is likely to have learnt; top hyper-parameter distributions can be

explored to determine why they are optimal; and both parameters and per-

formance at any part of the training process can be examined at a reasonable

�delity. This demonstrates increased levels of interpretability, reproducibility

and empirical rigour.

Our approach to these research goals has led to a dissertation structure as follows.

In Chapter 2, we examine the state of the art in deep learning and how the 3 major

machine learning problems are addressed. In Chapter 3 and as an introduction to our

own approach and system, we describe the basic concepts in neural networks and the

pre-existing shallow and deep algorithms used throughout this dissertation, along

with the relevant terminology, notation and mathematical functions. In Chapter 4,

we present the methodology which underpins our data mining and deep learning

experiment approach as well as the architecture of the system we have built to

manage deep learning experiments. In Chapter 5, we provide a detailed description

of our Con�gurable Deep Network design for building deep neural architectures and

optimisation framework which incorporates this design. In Chapter 6, we present our
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conceptual data model for deep learning experiments and the Deep NoSQL Toolkit

which was designed and built using the data model as a blueprint. The toolkit

provides storage of results at any point in a deep learning experiment, interpretation

and analysis of results, and sharing of experiment con�guration and results with

other deep learning researchers. In Chapter 7, we present our evaluation. Finally,

in Chapter 8 we summarise the research presented here and outline possibilities for

future work.
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Chapter 2

Related Research

In the previous chapter, we introduced the �elds of data mining and machine learning

and briey explored a new, specialised �eld of machine learning called deep learn-

ing. We then highlighted problems in its practical application, which motivates

the research presented in this dissertation. Therefore, inx2.1 we explore practical

applications of machine and deep learning, along with current approaches to hyper-

parameter optimisation, a topic which is not well covered in deep learning research.

Subsequently inx2.2, we examine data driven approaches to machine learning which

facilitate sharing, reproducibility and standard description of learning experiments.

In x2.3, we introduce currently available deep learning frameworks by exploring the

most popular approaches. Finally, inx2.4, we summarise the chapter by highlighting

those elements of deep learning research which remain open for continued research.

2.1 Applied Learning: Contrasting Shallow and Deep

This section explores the practical, applied aspects of machine and deep learning

where topics examined relate directly to the requirements outlined inx1.3.1. There-

fore, anomaly detection forms the focus ofx2.1.1, feature learning and dimensionality

reduction is dealt with in x2.1.2 and sequential prediction is covered inx2.1.3. For

each application we examine traditional shallow approaches before exploring the

deep learning equivalent, demonstrating the improvements o�ered by deep learning,

either in terms of accuracy, where deep learning holds the state of the art on a
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benchmark in that area, or o�ers improvements above and beyond shallow learn-

ing such as greatly increased automation. Inx2.1.4, we introduce state of the art

methods of hyper-parameter optimisation, a process integral to any practical deep

learning application.

2.1.1 Anomaly Detection

Perhaps one of the most well known (shallow) clustering algorithms also used for

anomaly detection is DBSCAN [44]. This algorithm has undergone a number of

extensions - such as adding a hierarchical component [26] or a spatio-temporal ele-

ment [19] - since its inception in [44]. As it is a clustering algorithm DBSCAN works

on unsupervised tasks. Local Outlier Factor (LOF) [25] is another unsupervised,

clustering based, anomaly detection technique which shares a similar theoretical

basis to DBSCAN.

Both DBSCAN and LOF algorithms are density based. Density based algorithm

operate on a geometric concept for clustering, which assumes that non-anomalous

data points will be clustered together in a similar region of space. Therefore, a

distance metric is required for both. DBSCAN requires input parametersminPts

and � as hyper-parameters, whereminPts is the minimum number of data points

within a distance of � from the data point being queried. If the current data point has

minPts within the � distance, then the point is added to a cluster as well as all those

points within � distance. DBSCAN, unlike k-means does not require the selection of

the number of clusters beforehand but it does require the setting of theminPts and �

parameters, which can be di�cult if the data is not well understood. We enable the

optimisation of similar parameters by storing the results and comparing di�erent

settings performance on an objective function. DBSCAN can use any distance

metric which is positive but perhaps the most used is Euclidean distance which

su�ers from the curse of dimensionality [10] in contrast to deep neural networks

which automatically reduce dimensions.

In contrast to DBSCAN, Local Outlier Factor (LOF) examines each data point and

determines the degree that the point is anomalous. It examines the point to see

how isolated it is in relation to other points in the data set, or how many other
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data points are close in its locality. Unlike DBSCAN, a major advantage of LOF is

that it does not approach anomaly detection in a binary fashion. Instead, it assigns

a data point as anomalous or non-anomalous and also assigns a measure of how

anomalous each point is. However, the value that is assigned, as with weights in

a neural network, can be di�cult to interpret. A further advantage LOF has over

DBSCAN is that it can handle clusters of di�erent densities, whereas DBSCAN

requires the setting of the density parameter� before execution which means the

density of each cluster examined with DBSCAN is required to be homogeneous. The

major disadvantage with LOF is interpreting the score given and deciding where the

outlier threshold is, although recent e�orts have been made to rectify this [74]. LOF

also requires the setting of a hyper-parameter, that is a value fork - to determine

the number of nearest neighbours to compare a data point. Although e�orts have

been made to lessen its e�ect [73], it requires advance setting and therefore, needs a

hyper-parameter optimisation technique. We include hyper-parameter optimisation

within our deep learning system.

In [81], the authors present a novel approach for anomaly detection incorporating

both density and grid-based clustering algorithms. Their primary focus is high

dimensional data and they test their algorithm on the KDD Cup 1999 network

dataset [83]. The approach taken was to optimise the pMa�a algorithm, using a

Frequency-Pattern tree in an intermediate step in order to improve the detection

rate. In their evaluation, it was shown that the improvement in detection rate had

a negative side e�ect in generating a higher number of false positives. By their

own admission, the algorithm works best for datasets with certain characteristics.

This means that if there is an entire window of anomalous data, this may a�ect the

performance of the detection method.

The authors of [122] developed the Robust Support Vector Machine, to accomplish

a similar but slightly di�erent goal to anomaly detection. They aim to demonstrate

that Robust SVMs can still correctly identify images when unknown outliers exist

in the data. This algorithm is an improvement on the standard support vector

machine (SVM) algorithm as the incorporation of the averaging technique makes the

decision function less susceptible to outliers through an adaptive margin and thus,
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avoids over�tting the learning algorithm. We also classify with data that contains

anomalous points, but the identi�cation of the anomalous data itself is important,

as anomalies can sometimes contain important information in themselves.

In [108], the authors propose an extension tok-means algorithm called x-means

to identify outliers in Gaussian datasets. This work is novel as it did not require

the user setting of the k hyper-parameter. The algorithm performed exceptionally

well with regard to identifying the exact number of clusters and compared well

against the k-means algorithm. It is likely that x-means is faster when compared to

deep learning, but it does not learn a hierarchical feature representation that can

be then used to determine variable interactions and serve as input to classi�cation

procedures. For this reason, deep learning performs better than shallow learning

approaches.

In [119], the authors propose a novel Principal Components Classi�er (PCC) to

detect anomalies on the KDD Cup 1999 network dataset. The dataset relates to

network access data and it contains anomalies in the form of network intrusions.

Therefore anomaly detection in this case is network intrusion identi�cation. The

PCC produced a false positive rate of only 1%, showing their approach was robust to

false positives. Our approach also employs an energy paradigm but in a probabilistic

context. Unfortunately, although they were able to keep their false hit rate static,

all the other metrics degraded signi�cantly in terms of quality with relation to false

positives. In contrast to the KDD cup data set which contained completely clean,

non-anomalous data training data, we worked with real-world datasets, containing

unidenti�ed anomalous examples. All newly created datasets, perhaps generated

from online data or from sensor networks, will be of the same unclassi�ed nature,

which is addressed in our research.

The use of neural networks for anomaly detection has been ongoing since 1999

[50]. With the advent of deep learning, recent projects have returned to using both

shallow [48], [87] and deep neural networks [116], [140], [138] for this purpose. There

has been more recent interest in using neural networks for anomaly detection and

particularly, the use of the free energy measure of ashallow Restricted Boltzmann

Machine to identify these anomalies [48], [87]. Deep neural networks have not been
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exploited for unsupervised anomaly detection before 2016 [140], although there has

been semi-supervised Deep Belief Networks [138] and fully supervised approaches

such as [116].

In [48], the authors use the free energy of aDiscriminative or supervised Re-

stricted Boltzmann Machine to investigate whether data-points are anomalous or

non anomalous. Here, they achieve good results, noting a di�erence in the free

energy between anomalous and non anomalous data when they train and test on

real network tra�c data. However, when they use the KDD Cup 1999 network

tra�c dataset [83] for training and real data for testing, performance degrades sig-

ni�cantly. Therefore, they draw the conclusion that simulated tra�c data is not

a good benchmark for intrusion detection tasks. The application of their work is

unlike ours as our data is fully unsupervised, meaning we have no apriori knowledge

as to whether a sample is anomalous or not. Furthermore, we take a multi-layered

approach and use the free-energy of the top layer of adeep network to determine

whether a sample is anomalous or not.

In [87], the authors also use the free energy of ashallow RBM to detect anoma-

lies but also use a Spatio-Temporal Pattern Network to extract key features from

time series data in order to identify features upon which to train the RBM. Their

method shows that the probability distribution of a normal subsequence sample is

noticeably di�erent to an anomalous subsequence sample when the Kullback-Lieber

divergence is measured between both samples. Unlike our research, this adopts a

shallow machine learning approach butis a fully unsupervised example of anomaly

detection with RBMs. This proves to be an interesting and e�ective approach for

them, but as deep networks can be used as feature extractors in high-dimensional

time series [24], we have adopted this approach in our research.

If we look speci�cally at applications of deeplearning to anomaly detection, there has

been little research [138], [140], [116] and only one study has investigated completely

unsupervised energy based models [140]. In [116], the authors investigate using a

hybrid Deep Belief Network and Support Vector Machine approach. The Deep

Belief Network is used as a generic feature extractor and these high-level features

are fed into a Support Vector Machine classi�cation layer. They discovered that the
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combination of the DBN and SVM performed better than either the DBN or SVM

used in isolation for classi�cation. They also compare the DBN to PCA, Chi-Square

and Gain Ratio feature selection methods and determined the DBN to outperform

these. Our work di�ers in that we are investigating the free enrgy of a top-level

RBM in a completely unsupervisedDBN to determine anomalies in contrast to their

supervised classi�cation task.

The approach taken by the authors in [138] is semi-supervised. They pre-train

a stack of RBMs before unrolling these stacked RBMs and further adjusting the

parameters of all layers together, as unsupervised auto-encoders and performing

a �nal tuning step where the parameters are adjusted with respect to class labels.

This makes adjustments to make the �nal �ne tuning step more sensitve to minority

classes. Their hypothesis was that as the Deep Belief Network learns an internal

con�guration of what data is most probable, if it then receives an input vector and

reconstructs it very closely, the input is not anomalous but if the reconstruction is

very di�erent, then the sample is anomalous. This di�ers from our work in that their

anomaly detection element is semi-supervised, containing some class labels. They

also use reconstruction error instead of the network's energy measure to identify

anomalous samples.

In [140], the authors use both measures of energy and reconstruction error together

to detect anomalies. They also provide di�erent generalised Energy Based Models

for static, spatial (image) and sequence (audio) in contrast to the anomaly detection

aspect of our work which does not account for spatial and sequence information.

In contrast to our method of directly optimising the free energy, they use score

matching instead of Maximum Likelihood Estimation training which results in a

simpli�ed training process and easier generalisation to the spatial and sequence

data. The results of [140], at least match and more often surpass, state of the art

shallow anomaly detection methods on several benchmark datasets. Furthermore,

it seems to be the �rst investigation of its kind and the only research to investigate

deep, unsupervised, energy based models for anomaly detection. However, in [140]

they do not provide a means to investigate and gain insight into what features are

learned in order to detect these anomalies. Furthermore, there are no details as to
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how hyper-parameters were selected for their �nal results.

2.1.2 Representation Learning

We consider feature selection, dimensionality reduction and discovering variable

interactions or latent classes as related under the subject of representation learning.

The authors in [3] review the suite of traditional feature selection methodologies

and their e�cacy with various shallow learning algorithms. They formalise the

process of feature selection into a two step operation which �rst evaluates each

individual feature's predictive power, and subsequently applies a cutting criterion - a

methodology for cutting all but those features evaluated to have the best descriptive

power to an outcome. The number of features cut depends on the parameters and

the cutting criterion used.

Feature evaluation methods used included information gain (the di�erence between

the entropy of the class and the entropy of the class when conditioned on the feature

being evaluated), gain ratio (the ratio between the information gain and entropy of

a feature), gini index (the probability of two instances randomly chosen having

a di�erent class), relief-f (ranks and weights an instance based on the features of

that instance and its Manhattan (L1) distance from the next closest feature) and

relevance (measure for how relevant features are to the needs of a user). Once the

relevance to the classi�cation of each feature in the dataset was analysed, various

cutting criteria were applied. The �ltering methods used were: �xed number (select

a �xed number of features), fraction (select a fraction of the total features), threshold

(choose features whose evaluation is over a certain threshold), threshold given as a

fraction (features that are over a certain threshold, where this threshold is a fraction

of the range of the evaluation function), di�erence (selects features from the greatest

evaluated until the di�erence between that and the subsequent feature is above a

certain threshold) and slope (select features until the slope to the next feature is

over a certain threshold). It was found that when a certain threshold was exceeded,

greater reductions lead to the loss of relevant features, which lead to poor prediction

accuracy. They found that it was not possible to determine which method performed

best overall as each algorithm tended to work best with a particular feature selection
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method. From this project, it can also be seen that much time was spent analysing

the best feature selection method and cutting criterion to use before analysing the

data.

In summary, [3] motivates the need for the automation or an arti�cially \intelligent"

method to perform feature evaluation and selection. Deep learning provides this

automation. The authors could not learn a representation of the data but instead,

a lot of e�ort is consumed by focusing on features to discard and the methods with

which to do this. Deep learning inherently learns a representation of the data and

thus, reduces considerable manual e�ort while learning more relevant features and

not discarding data. It learns this representation while training a classi�er, so only

one algorithm needs to be used rather than a whole suite.

Feature selection is generally treated as a separate step to learning in most mining

applications and this again can be seen in the e�orts of [46], where a new con�dence

metric for medical data classi�cations is proposed. To select relevant features, they

applied a single variable classi�er to only those instances with no missing data and

measured their performance using the area under the receiver operation characteris-

tic curve (AUC) measure. The �nal score calculated the average AUC over multiple

classi�ers and the features were ranked according to this score. There were originally

nine features and the top four ranked were selected to train upon. This number was

chosen as the accuracy of the models learned improved up until a sixth feature was

discarded. Subsequently, a number of multi-variate experiments were performed us-

ing di�erent feature combinations: for example, all nine, top four, etc. The selection

process described is manually intensive, building multiple models until performance

degrades. Our deep learning approach together with the accompanying toolkit will

be shown to provide far greater e�ciency,

By not using deep learning methodologies in [46], an approach which would not

discard any features but learn the most relevant abstraction, a signi�cant manual

overhead is incurred. On the other hand, completely discarding features can also

be detrimental to the �nal model. Although a feature might appear irrelevant to

an outcome on its own, when this feature is combined with one or more other

features, the predictive power of this feature combination could be far greater than
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the predictive power of individual features. This manual crafting of features requires

much time, e�ort and knowledge of the subject area and is unsustainable in large

data sets. Crafting of features is also not possible for the feature selection methods

here. Deep algorithms automatically learn a representation of the data, automating

this process, as will be shown later in this dissertation.

In a similar fashion, Principal Component Analysis (PCA) [69], which is possibly

the most widely used feature reduction technique, discards certain data. The aim

of PCA is to transform the data via a linear orthogonal transformation so the

components into which the data are transformed are linearly uncorrelated. These

components can then be used as the features for a particular analysis. After trans-

formation, the �rst principal component contains greatest variance, the second the

next greatest variance and each component continues in this fashion with decreas-

ing variance. There are an equal number of components to original features but

normally only the �rst two or three principal components are selected as input into

a separate analytical process, discarding the others. Therefore, some variance and

as a result, information in the data, is lost before analysis. In contrast to the non-

linear analysis possible with neural networks PCA is alinear transformation, which

is not as expressive as its non-linear counterpart. Neural networks learn how vari-

ables interact and combine them into more abstract features based onall of the

data instead of discarding it. However, the downside is that the weights and how

they combine are very di�cult to interpret and are often presented as `black box'

solutions [105], although some methods do exist to investigate what shallow net-

works learn [105], [49], [106], [52], [142]. As we use deep learning algorithms, our

approach bene�ts from the more powerful aspects of multiple levels of non-linear

transformations, but this also increases the interpretation complexity.

As one of our unsupervised datasets is taken from a longitudinal study on dementia,

we also examined research [97] which sought to modellatent classes relating to

behaviour and its association with dementia analysis. This would be typical of a

shallow learning approach to extracting latent classes orabstract featuresfrom data.

The authors sought to identify distinct behavioural patterns across six domains:

church-attendance; smoking; alcohol use; social interaction; and physical exercise.
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The methodology used is Latent Class Analysis. Latent Class Analysis can only

measure latent classes from dichotomous (binary categorical) variables and therefore,

continuous values are not possible inputs. Furthermore, LCA requires a number

of further steps after the latent class identi�cation, exponentially increasing the

number of peripheral models needed as the features increase. First LCA is applied

and a number of possible latent class numbers (similar to our number of nodes)

are tested, then multinomial regression is applied to assign a sample to the relevant

class (behavioural sub-category), before �nally running another regression model for

each identi�ed class to evaluate survival probabilities. Neural networks essentially

incorporate all steps into a single end-to-end solution, where latent variables are

identi�ed, samples activate relevant latent variables (hidden nodes) and classi�cation

probabilities are identi�ed all during the course of training. In our approach, a single

algorithm replaces the multiple steps required in this approach, for dimensionality

reduction, latent class analysis and classi�cation. In addition, neural networks can

model continuous data and continuous interactions between sub-categories in anon-

linear paradigm in contrast to the linear LCA. The result is that more expressive

data is captured using our system.

The power of deep algorithms for feature learning and unlabelled class detection can

be seen by a relatively recent application of the Google research team [77]. They

argued that most applications up to that point had only learnt lower level features

with approaches such ask-means or shallow RBMs. They train a deep sparse au-

toencoder on a large dataset ofcompletely unlabelledimages, consisting of randomly

sampled 200x200 frames from 10 million YouTube videos. They argue that time is a

major prohibitive factor in training large deep neural networks, demonstrating their

solution took 3 days on 1,000 parallelised computers consisting of 16,000 cores. As

our datasets are not as large nor our networks as complex - in contrast to their 1

billion trainable parameters - we should not su�er from this issue of training time

as much, but it is still a concern of these networks. An autoencoder is a deep ar-

chitecture where an algorithm is tasked with learning the identity function of the

input. That is, based on certain parameters the autoencoder tries to learn function

to approximately reconstruct the input.
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In [77], high level features relating to a human face detector are successfully learned,

and through experiment the possibility of learning those which relate to a `cat face'

and a human body are also demonstrated. Here, high level features are easily

interpreted, as they can simply be visualised and form a simpli�ed or generic picture

of the object they represent. It is much more di�cult to do this with non-image

data. They successfully test their method on the Labelled Faces in the Wild [64]

and the ImageNet [40] datasets. They demonstrated a70% relative improvement

on the state of the art, showing conclusively that abstract and relevant features

can be learned not only from labelled but alsounlabelled data with deep networks.

In [77], they show how successful deep learning can be in application but do not

give any insight into why the particular con�guration of their deep architecture was

chosen, nor are any of the other hyper-parameters presented. As part of our system,

we include a means to interpret these learned features for non image-based datasets

which shows a wider applicability of this approach.

Regularisation is a method of avoiding over-�tting a model to training data. A

model over-�ts if it correctly characterises the training data but cannot generalise

well to unseen instances. Popular means of doing this are L1 and L2 regularisation,

which is adding a mathematical term to a learning hypothesis cost function in order

to penalise large parameter values and give the model greater generalisation power

[137]. In the case of the L1 regularisation, this term is based on the Manhattan norm

and in the L2 regularisation, the term is based on the Euclidean norm. Recent

regularisation developments in Deep Learning are dropout [62], and dropconnect

[136].

Dropout [61] randomly zeros a subset of activations within each layer, preventing

the co-adaptation of features - where a feature detector is only helpful in the context

of several other feature detectors. These results held the benchmark for accuracy in

the CIFAR-10 tiny images dataset and the Mixed National Institute of Standards

and Technology (MNIST) [80] database [75], but has been surpassed by an extension

of this method called dropconnect [136]. Instead of zeroing or dropping a random

subset of the activation functions, they instead drop a random subset of theweights

in each layer. This form of regularisation provides a means of improving the accuracy
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of deep networks. We have implemented Dropout within our framework as this

method had not been applied for anomaly detection with deep neural networks.

Finally, in the medical context, DBNs have been used for medical text classi�cation

[139], as well as to aid in medical decision making with electronic health records [82].

Neither [139] or [82] provide a methodology on how to choose the initial hyper-

parameter con�guration of a deep learning architecture. Furthermore, they use

third party implementations of a DBN which do not allow for the extension with

further algorithms, activation functions or hyper-parameter con�gurations. In [139],

the authors utilise a single hidden layer in their DBN, which arguably is not a deep

architecture, although they do employ a unsupervised pre-training step. None of

these approaches have the levels of con�guration or control we describe for our

system in Chapter 5.

2.1.3 Sequential Data Mining

The task of predicting disease spread through the mining of micro-blogs on a social

network (Twitter) is tackled by Sadilek et al. [114]. They present a method of

mining noisy, incomplete and temporal geo-located twitter data. An SVM is �rst

trained to label a corpora of over 200 million tweets to evaluate what messages

identify a person as `sick' and what identify a person as `normal' or `other'. Then,

using a conditional random �eld (CRF), they model the temporal aspect of the data

as well as the geographic-location to predict whether a person will get sick based

on time and co-location with sick individuals. They use Viterbi decoding and the

forwards-backwards algorithm to infer missing data, an inference algorithm for the

CRF that computes the posterior marginals of all hidden state variables where there

are a sequence of observations. An approach such as this would be typical of shallow

mining. While they demonstrate a degree of success, they must manually select the

features to use and are limited with CRF, as performance degrades the further they

predict into the future. Deep learning is less vulnerable to these issues. Recurrent

Neural Net variants such as Long Short Term Memory (LSTM) as they have been

shown to learn what they need to hold in-memory from the past for an arbitrarily

long period of time [63], [53]. The problems encountered in longitudinal trials involve
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modelling over a much longer time period, as well as the prediction of much further

into the future than [114]. Therefore, this type of application motivates the use of

a deep network or at least, a Recurrent Neural Network.

Survival analysis is the term used for the most popular type of sequential health

analysis, that is, for the prediction of patient survival rates in datasets like MAAS,

which we introduced in x1.3. It is a prediction of, given the current time point, what

is the probability that a participant would develop a disease at the next time-point

and thus, is a form of supervised sequential prediction. Arti�cial neural networks

(ANNs) exhibit great potential, but have not been widely applied in survival anal-

yses. Deep neural networks exhibit even greater potential, but have been utilised

to a signi�cantly lower degree in this context. Shallow neural networks have been

shown to be at least on par with logistic models developed speci�cally for survival

analysis [86] but more often, can out-perform traditional logistic methods, even in

the health context [103], [118]. There have been reviews of the health bene�t to

be found from ANNs in medical intervention where the authors show that although

ANNs are not in widespread use for health applications, they have had a signi�cant

clinical impact when used. This was notably in areas such as cervical cytology and

the early detection of acute myocardial infarction (heart attack) [85].

The majority of applications of ANNs in survival analysis has tried to predict pa-

tient mortality after surgery and sometimes with great success [2], [118], [86]. There

has been very little work applying ANNs to dementia analysis [5], [89], [90] and only

one of these deals with survival analysis or sequential health analytics. Furthermore,

all previously mentioned studies compare ANN methods to traditional approaches

like Cox's regression or other machine learning algorithms and unlike our research,

do not test deep neural networks for the purpose. Furthermore, none of the studies

provide an analysis of the features learned in hidden layers. This is highly rele-

vant to clinical and health analytics as the interactions between input factors could

generate knowledge on how a disease develops or how an athletes biomarker a�ects

performance. There has been research into variable interactions in survival analysis

using ANNs [37] but once again this, was speci�c to breast cancer surgery and not

widely applicable eg. dementia survival or performance analytics in sport.
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Exploring the work of [89] further, they compare two Neural Nets (MultiLayer Per-

ceptron and radial basis function neural nets) and �nd they are outperformed by

Support Vector Machines (highest), Random Forests and Linear Discriminant Anal-

yses. As ANNs are complex to train, there are several possible reasons for these

�ndings, some of which the authors of [89] mention. Primarily, ANNs are highly

sensitive to the tuning (hyper) parameters used to initialise and inform the training

procedure and can vastly a�ect the quality of models learned. In [89], the only

hyper-parameters optimised are the number of hidden layer nodes, where all other

settings were \commonly used in data mining applications" and not chosen speci�c

to the data in question. Furthermore, [89] uses a grid-search optimisation proce-

dure, in contrast to random search forall hyper-parameters, a methodology shown

to outperform the traditional grid-search [16] technique. Finally, their data-split

methodology is non-optimal for the purposes of choosing hyper-parameters. Their

strategy essentially splits the data in two - a portion for training and evaluating

hyper-parameters and a held-out cross-validation set for evaluating the accuracy of

the overall classi�er. When the data on which the model is trained is also used to

evaluate hyper-parameter performance, this has the e�ect of over-�tting the hyper-

parameters to the training data. Instead to properly evaluate performance,at least

a three-way split is advised, one portion to build the model (training), one to eval-

uate the validity of the hyper-parameters (validation) and a �nal held-out portion

to evaluate �nal performance on completely unseen data (test).

Finally, a review [65] of the current state of music information retrieval, proposes

that deep learning would make it possible to select the relevant features or dimen-

sions in a high-dimensional, sequential dataset. This was shown to be the case in [24]

where they used [65] to motivate the use of deep architectures on music informa-

tion retrieval. In [65], they successfully improved upon the previous state of the

art for accuracy in many music information retrieval and learning datasets. They

proposed a Recurrent Neural Network Restricted Boltzmann Machine (RNN-RBM)

to model the temporal dependencies in high-dimensional sequences, as applied to

polyphonic music transcription. The RNN is a type of neural network where the

connections between units form a directed cycle. This allows the model to create
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an internal state which models the temporal and dynamic data. The RNN is then

fed to an RBM and together, the conditional distribution of the next time step is

modelled given all previous time-steps. Traditional methods use only the previous

time-step to infer the next step. The RNN-RBM is considered deep because the

output of the RNN is the training input of the RBM. An RNN unfolded in time is

also equivalent to a deep architecture. They use the output of the RNN as input to

a conditional RBM to predict the next time step given the previous time-step. To

demonstrate the wide applicability of our approach, we also include a music dataset

in our evaluation but unlike [65], we use a deep stack of RBMs and examine the

feature representations learned.

2.1.4 Hyper-Parameter Selection

The authors of [88] assert that gradient free and model-based optimisation is the

current gold standard in hyper-parameter selection and this is shown to be the case

for deep networks in recent literature [18], [121], [16]. For this reason, we focused

on leveraging a subset of these gradient free techniques.

In [16], the authors propose a random search method to �nd the best hyper-

parameter con�guration for deep architectures. They compare their results to pre-

vious work [76], which used a multi-resolution grid-search coupled with a manual

optimisation intervention element. In [16], they also carry out a series of simulation

experiments where random search is compared to both grid-search and low discrep-

ancy sequential methods. Their main contribution is a large series of non-simulated

experiments which search for the best hyper-parameters in both a one-layer neural

network and Deep Belief Network. These are carried out on eight datasets in order

to recreate and compare the experimental results with those obtained in [76].

Random search is found to outperform grid search on all datasets for single layer

neural networks. For Deep Belief Network experiments, random and grid search

perform comparitively on four datasets, grid search performs best on three datasets,

while random search works best on the fourth. In [16], the authors o�er many rea-

sons as to why random search is a better option. Most of these reasons hinge on their

demonstration that the hyper-parameter search space, although high-dimensional,
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has a low e�ective dimensionality. This means that although there are many param-

eters to tune, only a particular subset of these have a great e�ect on training the

model and this subset is di�erent for every dataset. The property of low e�ective

dimensionality leads to random search being more e�ective than grid search as it

leaves fewer gaps in the search space and it does not require as many iterations in

order to �nd the optimum hyper-parameter con�guration. In our system, we include

both automatic grid and random search but we allow for search at multiple reso-

lutions. Both [16] and [76] chose to globally optimise the parameters of the entire

network at once. We previously explored incrementally tuning the constituent parts

of a deep network, although our evaluation showed this to require some element of

manual intervention [101].

Other techniques include a Bayesian approach [121], where shallow learning ap-

proaches are optimised by modelling their performance as a sample from a Gaus-

sian process. They demonstrate that their method o�ers improvements on previous

approaches and can reach or even surpass human expert selection. In [88], the au-

thors propose a gradient based approach to optimisation through reversible learning.

They argue that a reversible learning gradient approach, allows for a much richer

parametrisation of deep networks in their hyper-parameters, in contrast to previous

approaches where the number of hyper-parameters that can be optimised is limited.

A gradient approach allows for 100s of hyper-parameters to be optimised, where

necessary. Both [121] and [88] involvemeta-iterations which is what we refer to

as hyper-parameter con�guration trials , where complete runs of model parameter

optimisations which are run for di�erent hyper-parameter con�guration trials. Our

framework provides for this high-level approach and therefore, these methods can

easily be integrated. Unlike our approach, none of these methods discussed o�er a

high level focus which examines those elements common to all, or exist in a frame-

work that allows for the analysis of why certain hyper-parameters work for particular

applications.
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Table 2.1: Summary: Application Issues and Requirements

Issues Requirements

Con�guration
a1 Many heterogeneous DN types Develop abstract DN con�g. model
a2 DL experiments complex to perform De�ne steps to perform for DL exp.
a3 Very di�cult to use DL for DM Link DL to existing DM processes

Optimisation
a4 Many approaches to HP opt. Develop abstract model of HP opt.
a5 HP opt. often manual Provide automatic HP opt.
a6 HP choice often opaque, arbitrary Provide empirical (interim) results

Interpretation
a7 No analyses why HPs optimal Provide analysis why HPs optimal
a8 No means to generally analyse MPs Provide generic MP analysis

2.1.5 Summary: Application Issues and Requirements

Table 2.1 summarises the issues we have discovered when deep learning has been

applied to the practical goals for data mining outlined in x1.3.1. Each issue relates

to current shortfalls in the Con�guration, Optimisation or Interpretation of deep

learning (DL) experiments for greater levels of experiment utilisation, automation

and reproduction. First, there are a large number of deep network (DN) types,

approached in heterogeneous ways (Issue a1). Thus, for automation, an abstract,

homogeneous DN con�guration approach is required. Next, there is no de�nition of

the required steps and components in a DL experiment. This would greatly reduce

application complexity (Issue a2). Furthermore, links to existing knowledge extrac-

tion processes would make the development of practical DL data mining solutions

(Issue a3) far easier in business contexts. For optimisation, hyper-parameter (HP)

choice is often manual (Issue a5), or opaque and arbitrary (Issue a6). Abstracting

and automating the approach to the many possible HP optimisation schemes (Is-

sue a4) and capturing interim models, would provide empirical evidence currently

omitted from literature. Finally, hyper- and model parameters cannot or are not

analysed in the literature (Issues a7, a8). Providing the means to analyse these

parameters, generically, would encourage further applications of deep networks as

we understandwhy hyper-parameters are optimal, andwhat a network learns.
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2.2 Machine Learning and Data Models

In this section, we explore data model approaches to machine learning [54], [45],

[133], [134], [79]. Much of this interest is recent and lead to the development of cer-

tain experimental supports to aid in performing, analysing and exchanging machine

learning experiments [45], [133], [134], [79]. Tools such as Ontologies and Model In-

terchange Formats (MIFs) were designed forshallow machine learning paradigms.

However, we believe a rethink was required to capture all aspects of deep learning

experiments.

To accurately reproduce a machine or deep learning experiment, transparency and

empirical reasoning in the choices made throughout the experiment are crucial [20].

Despite this, levels of research on data mining and machine learning experiment

reproducibility, interoperability and exchange are low. Furthermore, �nal results

presented in the literature, are often the product of multiple experiments or multiple

learner optimisations [121], with interim results often omitted. When deep learner

models and resultsare shared, they lack a de�ned data model and are generally

presented in language or library speci�c serialisation formats which establishes a low

level of interoperability. We believe that all aspects of a deep learning experiment

should be capturable and stored, including intermediate results, if required.

There have been attempts to address the issues of learning function interoperabil-

ity [109], [56], [54], [133], to capture the data properties of a machine learning experi-

ment through the development of various ontologies [45], [72], [133], [79] and method-

ologies for the persistent and transparent storage of experiment data [21], [133], [135].

The �rst Model Interchange Format (MIF) de�ned for predictive data mining func-

tions was the Predictive Model Markup Language (PMML) [54] by the Data Mining

Group [56]. Their aim was to provide an open mechanism for working with di�er-

ent types of predictive models which arose in data-mining, by de�ning a convenient

language for exporting and importing model descriptions between di�erent systems.

Their experience with data mining applications had shown the usefulness that a ex-

ible interchange mechanism would provide and that previous interchange formats

tended to be closed and proprietary.
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Although some deep learning models can be represented by PMML, we found it to be

ill-suited to the speci�c concerns of deep learning for a number of reasons. Primarily,

PMML lacks a exible, abstract, conceptual data model to describe certain elements

relevant only to deep learning models and their context within a experiment [54].

As its schema is �xed, it cannot handle a rapidly changing environment such as deep

learning. Finally, because PMML lacks such a conceptual model, it is inextricably

linked to XML. PMML is essentially a pre-de�ned XML schema and for reasons

which we will shortly present, XML is not an optimal mark-up representation for

the data generated from deep learning experiments for a number of reasons.

The focus of PMML is on model deployment and interchange and as it does not

describe many elements in a machine learning experiment, it cannot be used to

implement a storage model for interim results. Speci�cally, it cannot capture cru-

cial information relating to hyper-parameter optimisation. Furthermore, PMML is

focused on predictive models and does not provide su�cient functionality for unsu-

pervised methods [56]. It focuses on the interchange and deployment of predictive

models whereas we capture information on how models are trained. Finally, PMML

can only represent certain �xed model types, as any new model has to be added

speci�cally by the data mining group. Our model provides exible concepts that

can be used to represent general deep learning functions and is extensible.

XML is ill-suited to representation for deep learning for a number of reasons. First,

it is a document-oriented and not data-oriented which means it cannot capture

many �ne grained elements of deep learning. Syntactically, it is quite verbose when

compared to more modern language agnostic serialisation formats, which makes it

more expensive to store and query and harder to read by the human eye [98]. Lastly,

and perhaps most importantly, because of its syntax, XML requires specialised

parsing before it can be imported into programming language data-structures. We

view these reasons as why JSON has surpassed XML in popularity as a web-native

data-interchange format [98] and is therefore, a better interoperable format to deploy

a data model of this type.

The Portable Format for Analytics, PFA [109], [127], [111] abstracts the description

of a machine learning models allowing user-de�ned algorithms and models, which
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more closely aligns with our approach. It incorporates JSON for its implementation,

which is a more suitable language for deep learning as it is a data representation

language, less verbose and faster than XML [98]. Furthermore, PFA provides a

mechanism to export and exchange models found through language-speci�c software

implementations from the environment in which they were built. The aim of PFA is

to provide a means for the deployment of such models in production environments

rather than a mechanism to store and analyse the elements which made up the

experiment which generated the learner modelas well as a means to exchange

and deploy the learner model. Furthermore it is a `mini-language' and not a data

model for concept representation and storage. It provides the capability to take

in and score data according to the learner model that it has implemented. This

means it is a complicated language, whereas we sought to deliver a light-weight

data representation and storage format that is simple to use and contains a formal

description of a deep learningexperiment and model. Finally, it does not capture

the concept of intermediate results.

The authors of [45] present the MEX vocabulary, a lightweight interchange format

for Machine Learning experiments. It is presented as an extension to the PROV-

O [79] ontology, which is a W3C recommended vocabulary for the representation

and exchange of provenance information generated by di�erent applications and sys-

tems. The aim of the vocabulary presented in [45] is similar to our own, but instead

they take a linked-data, semantic web approach instead of a concrete data-modelling

approach. Also similar to our own work, they provide a description of the core ele-

ments of a learning experiment instead of exhaustively de�ning all elements relating

to the knowledge discovery process. Although they represent a generic learning ex-

periment, they do not provision for deep learning experiments, which we contend

encompasses elements unique to deep learning and therefore requires a specialised

representation. Furthermore, they do not link their vocabulary to a persistent stor-

age structure which would physically store all the experiment results. The DMOP

ontology for data mining [72] is fundamentally di�erent to our approach. They

provide an abstract ontology which exhaustively describes theentire knowledge dis-

covery or data mining process but do not provide a physical or implementation
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model for this ontology, which is crucial in pratical applications. We also argue that

an RDF graph-store does not map as well to the hierarchical structures presented

in deep learning. Finally, RDF stores and the aforementioned ontologies are more

suited to metadata whereas an experiment encompasses both dataand metadata.

2.2.1 Summary: Data Model Issues and Requirements

Table 2.2: Deep Learning Data Issues and Requirements

Issues Requirements

Con�guration
b1 Special DL structures not modelled Create conceptual model of DL
b2 DL data requirements evolve rapidly Make schema exible, not �xed

Optimisation
b3 No physical model for ML or DL exps. Provide physical storage model
b4 ML models omit optimisation data Capture optimisation (interim) data

Interpretation
b5 DL uses language speci�c data formats Use interoperable storage format
b6 Verbose data formats expensive Use lightweight data formats
b7 Bulky data models cumbersome Include minimal attributes possible

Table 2.2 summarises the current issues and requirements in relation to the capture

and exchange of DL experiments, which again inhibit automation, application and

reproduction. Primarily, DL utilises specialised structures - tensors, layers - which

have no current representation (Issue b1). Instead, model parameters are typed

as individual integers, limiting usefulness. As a rapidly evolving �eld, with new

networks under constant development, current static data models quickly become

irrelevant (Issue b2) for DL. For optimisation, existent paradigms do not provide

physical models (Issue b3), or capture modeland hyper-parameter optimisation

(Issue b4), a paramount practical concern. Finally, DL experiments and learners

should utilise lightweight, interoperable formats, with minimal required attributes.

Language-speci�c (Issue b5), verbose (Issue b6) and overly-exhaustive paradigms

(Issue b7) are less portable and require steep learning curves.
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2.3 Deep Learning Frameworks

In this section, we examine research into frameworks for deep learning. We discov-

ered that although some frameworks had a wide range of functionality in certain

areas, for example, better model parameter optimisation techniques or a broader

range of deep learning algorithms, none addressall concerns identi�ed in this re-

search as being critical to managing deep learning experiments. At the time of

writing, there are at least 30 deep learning libraries [126] at varying stages of ma-

turity and range of functionality. Therefore, we cover only the most popular deep

learning libraries that are in use today. To attempt to narrow the �eld of discus-

sion, we discuss those libraries listed by Nvidia who are leaders in the �eld of deep

learning as their Graphical Processing Units are the de facto engine of deep learning

research [99].

Ca�ee (Convolutional Architecture for Fast Feature Embedding) [68], CNTK (Com-

putational Network Toolkit) [42], Tensorow [1] and MXNet [31] were all built using

C++. Torch [34] is built on Lua and Deeplearning4j [39] on Java. Finally, frame-

works such as Digits [100], Chainer [129] and Theano [9], [128], [17] are all Python

based. We also include the Python library Neon [124] as this has been reported to

achieve the state performance for training several deep architectures [8]. Further-

more, as Theano operates at quite a low level, tools like Keras [33], Lasagne [41]

and Blocks [132], based upon Theano are better suited to comparison. Of all these

frameworks Ca�ee, Theano, Torch and are the most popular and widely used by

the deep learning community for research and development [71]. Four of the sys-

tems presented are the focus of most comparisons in research [8] and these will be

discussed now.

Ca�ee is primarily focussed on computer vision and multimedia applications [68],

[39], although recently it has been expanding its application aims. Ca�ee is highly

useful, providing a series of pre-trained models and a means to serialise them, but

they are provided as ca�emodel binaries. These require the user of these models

to also utilise Ca�e as their deep learning library of choice. Hyper-parameter opti-

misation is not explicitly provided in this framework as separate libraries must be
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used in conjunction with Ca�ee. Furthermore, although models can be stored, there

is no standard interoperable data model which links the learner generation to the

hyper-parameter optimisation in an interoperable format. Their software model is

layer-based like ours, but does not contain the higher level of abstraction common

to all the deep networks that would allow users to easily implement new layers and

architectures. Finally, Ca�ee does not allow abstract hyper-parameter optimisation

processes to be included into new implementations from the outset.

Deeplearning4j o�ers a package with the most similar functionality to our analytical

toolkit which is called Arbiter, but their con�gurations of hyper-parameter opti-

misation will be di�cult to share. It is based on Java objects and types and has

no published data model, interchange format or experiment database, so sharing is

di�cult. At the time of writing, Nvidias Digits platform is the only library that

o�ers a hyper-parameter sweep, although their sweep is limited to just batch size

and learning rate. In contrast, our data model captures all aspects of deep learning

experiments.

The Theano library [17], [9], [128] was integrated with our own library and thus,

we can extend and adapt its functionality. Neither Keras nor Lasagne have built-in

hyper-parameter optimisation capabilities. Theano has a companion library called

Jobman, which allows you to schedule and run experiments and store the results

of di�erent hyper-parameter trials in a at relational database. However, it is not

based on a published data model that describes each element of a deep learning

experiment, nor does it allow for the storage of interim or �nal model parameters.

There are libraries which implement state of the art optimisation techniques such

as Hypergrad [55], Hyperopt [15] and Spearmint [120] but these frameworks are

not based on a exible software model or published data model for the analysis of

deep learning experiments. Instead, they must be integrated with the deep learning

framework being utilised, or can serve as a segregated wrapper process for deep

learning experiment scripts, which makes experiments hard to repeat and reuse.
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Table 2.3: Deep Learning Framework Issues and Requirements

Issues Requirements

Con�guration
c1 Highly manual algorithm con�g. Provide automatic algorithm con�g.
c2 Separation of concerns Loosely couple toolkit components
c3 Often domain speci�c Make tools domain agnostic

Optimisation
c4 Provide none or limited HP opt. Provide opt. for all HPs
c5 Separate libraries for MP and HP opt. Integrate MP and HP opt.
c6 HP opt tools do not capture MP opt. Capture MPs and HPs
c7 Cannot pause, reload, back-trace exps. Capture interim results

Interpretation
c8 No analysis functions for parameters Provide parameter analysis functions

2.3.1 Summary: Framework Issues and Requirements

Table 2.3 presents the issues found from the review of current deep learning frame-

works. Essentially, no framework covers all three elements of experiment Con�gura-

tion, Optimisation and Interpretation and most only provide limited optimisation

in terms of hyper-parameters (Issue c4) or require separate libraries (Issue c5). A

major issue with wider application of deep learning for current frameworks is that

a number are domain speci�c (Issue c3) and require the manual con�guration of

algorithms (Issue c1). Separation of concerns (Issue c2) is addressed by most frame-

works but we believe that it is important to highlight as capture, con�guration,

optimisation and interpretation should be loosely coupled to provide the greatest

degree of exibility possible for an experimental framework. Issues c6 and c7 are

related to concerns raised in the previous section, but again here we focus on the

parameters themselves rather than the optimisation process as current HP optimisa-

tion frameworks do not capture modeland hyper-parameters and DL frameworks do

not provision for experiment pause, reload or back-tracing. Finally none currently

provide hyper-parameter and model parameter analysis functionality, necessary to

interpret an experiment.
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2.4 Summary of Related Research

The related research in this chapter contrasted shallow learning with deep learning

and highlighted where we make new contributions to the state of the art in deep

learning. With regard to hyper-parameter optimisation, we explored gold standard

methods and provided an overview of the state of the art. What we show to be lack-

ing is a suitable experimental framework that can supportmultiple goals for a single

experiment. There does not exist a framework or method where the multiple out-

comes of: anomaly detection; representation learning for dimensionality reduction

and interaction learning; sequential prediction; and hyper-parameter optimisation,

can beintegrated and understood in a single experiment. By covering these key ar-

eas, this served to highlight how our research makes a contribution to deep learning

in an overall sense.

We also show that there have been attempts to specify a data model for machine

learning. This has obvious bene�ts: a standard for describing these experiments;

sharing and reusing experimental setup and results; extending systems which use

this data model to include new analytical functions which become available to all

researchers. However, we showed that the �eld of deep learning research does not

currently have an adequate data model.

State of the art deep learning frameworks provide certain supports but lack other

functionality present in a traditional data mining and machine learning contexts.

Furthermore, there has been no end-to-end energy based deep learning solution

that allows a user to detect anomalies, discover variable interactions and make

predictions in time-series data, although recent literature points to the potential

for the development of such a solution. We argue that this is because current

frameworks do not have or are not based on aabstract software model andmethod

generally applicable to the majority of deep learning paradigms which integrates

hyper-parameter optimisation.

Table 2.4 therefore summarises the requirements we have presented in previous

sections and the principals which follow from these requirements which we have

used to develop our solution in Chapters 4, 5 and 6. In summary experiments
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Table 2.4: Requirements Summary and Design Principals

Tool Requirements Principals

Con�guration
a1 Develop abstract DN con�g. model Genericness, Extensibility
a2 De�ne steps to perform for DL exp. Simplicity, Reusability
a3 Link DL to existing DM processes Flexibility
b1 Create conceptual model of DL Flexibility, Reproducibility
b2 Make schema exible, not �xed Flexibility, Extensibility
c1 Provide automatic algorithm con�g. Automation
c2 Separation of concerns Atomicity
c3 Make tools domain agnostic Genericness, Reusability
Optimisation

a4 Develop abstract model of HP opt. Genericness, Extensibility
a5 Provide automatic HP opt. Automation, Simplicity
a6/b4/c6 Provide/capture interim results Reproducibility
b3 Provide physical storage model Simplicity
c4 Provide opt. for all HPs Automation, Simplicity
c6 Integrate MP and HP opt. Automation, Simplicity
c7 Capture MPs and HPs Flexibility
Interpretation

a7 Provide means to analyse optimal HPs Interpretability
a8 Provide generic MP analysis Genericness, Interpretability
b5 Use interoperable storage format Reusability, Portability
b6 Use lightweight data formats Simplicity, Portability
b7 Include minimal attributes possible Simplicity
c8 Provide parameter analysis functions Interpretability

should be con�gurable, in that experiments and learner con�gurations should be

generic, extensible, automated, simple, reproducible, reusable and exible, with

experiment framework components themselves loosely coupled and atomic. The

experiment should allow for full optimisation, of model and hyper-parameters, where

the processes involved are generic, extensible, automated, simple, reproducible and

exible. Finally, all parameters and elements of a DL experiment should be portable

and have a means to beinterpreted in a generic and simple way. Some of these

requirements will be satis�ed over the course of our solution design, whereas others

can only be demonstrated to be satis�ed at experiment run-time in Chapter 7.
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Chapter 3

Neural Networks

In the previous chapter, we explored machine learning literature and identi�ed the

need for a framework that enables easy con�guration, running, interpretation and

sharing of deep learning experiments. In this chapter, we aim to explain the theory,

terminology and mathematical notation of neural networks, speci�cally those used

in this research. In x3.1 we provide an introduction to, and the de�nitions of,

several concepts central to the chapter and to the theory. As deep learning is a

substantial and complex topic, we endeavour to make this chapter as accessible

as possible. We break deep algorithms and neural networks into simpler atomic

components and explain thebuilding blocksof these networks inx3.2. In x3.3, we

stitch these components together and explain the shallow and deep neural networks

used throughout this research. It is the most theoretical chapter in the dissertation,

but necessary to give the reader an understanding of the utility and function of

these algorithms. The notation used throughout the chapter we have synthesised

from [96], [84], [125] and [53], but we have altered it in order to try and achieve a

consistent style across heterogeneous neural architectures. The analysis presented

in this chapter was necessary to satisfy therequirement of developing an abstract

approach to the con�guration and optimisation of deep networks in a generic and

extensible manner.
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Figure 3.1: Dataset

3.1 Basic Concepts

Before discussing neural network algorithms, it is necessary to introduce the appro-

priate terminology and notation for the basic concepts that will be used throughout

this and subsequent chapters.

3.1.1 Dataset Concepts

We begin with a de�nition of a Dataset, the input to a neural network or machine

learning algorithm.

De�nition 3.1. Dataset.

Let D be a dataset which we de�ne asD := f V; X; Y g, a triple with a set of feature

variable labelsV := f v1; : : : ; vng, an input data matrix X 2 X m� n and a classi�ca-

tions matrix Y 2 Y m� K , where X is the input space,Y is the target space,m is the

number of rows,n is the number of features andK is the number of classi�cations.

The input and target spaces can be binaryX = f 0; 1gm� n ; Y = f 0; 1gm� K ; or in

the domain of real numbersX = Rm� n ; Y = Rm� K . For unsupervised learning

there are no classi�cations,Y = ? . To refer to all values for a particular feature or

sample, we use the subsequent de�nitions of column vectors and row vectors.

De�nition 3.2. Data Matrix.

A matrix is a 2-dimensional array of numbers. Let X = f x11; : : : ; xmn g be the

attened data matrix, where each elementx ij 2 X refers to the value for thej th

feature in the i th sample.
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In De�nitions 3.2 and 3.1, we show there arem � n values in a data matrix, the

number of samples multiplied by the number of features. The data matrix can also be

thought of containing m horizontal n-dimensional row vectors. These rows of the

data matrix are also known as data row vectors, samples, instances or observations.

De�nition 3.3. Data Row Vector.

Let x i � = f x i 1; : : : ; x in g be the data row vector, wherex i � is set the of values for all

features in the i th sample of the data matrix X, in datasetD.

In de�nition 3.3, a Data Row Vector x i � contains all attribute (or variable) values

f x i 1 to x in g for the i th instance of the data matrix X 2 D . Alternatively, a data

matrix can also be said to containn vertical m-dimensional column vectors. These

columns can also be referred to as feature, attribute or variable vectors.

De�nition 3.4. Data Column Vector.

Let x � j := f x1j ; : : : xmj g be the data column vectorx � j , which contains all sample

values for thej th feature in X 2 D .

In de�nition 3.4, a Data Column Vector x � j , contains the set of all sample (or

instance) valuesx1j to xmj for the j th feature of the data matrix X 2 D .

The Y classi�cation matrix is addressed in the same way as the data matrixX ,

an element is referred to asyij 2 Y . In the case of binary (yes/no; 1 or 0) or

real-valued classi�cations, K = 1. This gives a column vector Y = y� , where yi is

the classi�cation associated with i th sample, either 1 or 0 in the case of binary, or a

numeric value in the case of real-valued outcomes. If there are one or more possible

classi�cations from a discrete set, Y = y� � , a binary matrix. The classi�cation

associated with the i th sample is then a row vector yi � , where yij = 1 if the j th

classi�cation is assigned to the i th sample. Conversely, y� j is a column vector

indicating to what samples a particular classi�cation is assigned.

3.1.2 Neural Network Concepts

The aim here is to provide high-level introductory de�nitions and deal with technical

aspects in the following sections. To describe a neural network, we �rst de�ne a
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Figure 3.2: Neural Network Components

Neural Network, and subsequently theLayer and Node components.

De�nition 3.5. Neural Network.

A neural network L , is a collection of layers,L := f L (0) ; : : : ; L (jL j)g, wherejL j > = 2 .

In de�nition 3.5, jL j is a network's cardinality or number of layers, wherejL j > 2.

Each layer L (l ) is referenced by a superscript indexl, denoting the layer's position

in the network architecture. Figure 3.2 shows there are three distinct layer-types

possible: visible-input, hidden and visible-output.

L (0) is always the input layer. Generally, the output of each node in the bottom

visible input layer represents a feature valuex ij in the dataset. For supervised

models (predicts an outcome given an input) there is avisible output layer. In

such cases,L (jL j) or C refers to the output layer. Layers L (1) to L (jL j� 1) are then

the hidden layers. In unsupervised networks,L (1) to L (jL j) are hidden. Inputs

are combined and an abstract features orvariable interactions are learnt in hidden

layers. We now de�ne the Layer construct.

De�nition 3.6. Layer.

A Layer L (l ) := f N (l ) ; � (l )g, is a tuple containing nodesN (l ) and node parameters
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(a) Node Sending (b) Node Receiving

Figure 3.3: Calculating Activations

� (l ) for those nodes in layerL (l ) of a neural network.

Figure 3.2 shows we apply De�nition 3.6 to all layers in a neural network, to give

a homogeneous data-model. Generally the parameters for the input layer are null

as the outputs of input layer equate to dataset variables,except in the case of some

unsupervised networks, which we describe inx3.3.3. A Layer also combines each

parameter with the appropriate node.

De�nition 3.7. Node Parameters.

The parameters for the l th layer in a network are given by� (l ) := f b(l ) ; W (l )g, W (l )

is the set of weights andb(l ) is the set of biases for a layer.

In De�nition 3.6 we show that a set of weights W (l ) and biasesb(l ) are associated

with each layer and together are referred to as� (l ) . The simplest component of a

neural network is a node, which is the computational unit in a neural network.

De�nition 3.8. Node.

A node N (l )
o can be de�ned with the propertiesf a(l0) ; z(l )

o ; a(l )
o ; f l ; gl g, where l is the

layer identi�er and o the node identi�er within the layer; a(l0) is the vector of inputs;

and z(l )
o and a(l )

o are the linear and output activation energies, calculated byf l and

gl , respectively.
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In De�nition 3.8, a(l0) represents a vector of inputs received from another layerL (l0) .

The single linear activation energy value is given byz(l )
o and generated by the node's

linear activation function f l ; a(l )
o is the single output activation value; and gl is the

nodes output activation function used to calculate the output activation.

Activations are the values calculated by a node and refers to a node'simportance.

We show in Figure 3.3 how parameters are combined with inputs to calculate node

activations. Taking a weight matrix W (l ) as an example, weightW (l )
io is the co-

e�cient combined with input x i , as part of the calculation for oth node in the

current layer L (l ) .

3.2 Neural Network Components

Neural networks consist ofvisible and hidden layers. Visible layers are composed

of observedvariables, which are present in the data input and classi�cation output

layers. Algorithms can learn to map visible inputs directly to visible classi�cation

outputs. More expressive algorithms, like neural networks, can learn an intermedi-

ate representation to better relate inputs to outputs. Hidden layers comprised of

unobservedor latent variables, detailing input variable interactions, make up this

intermediary representation.

We now introduce components which are common to, and reused in, several neural

networks. These components act as building blocks which are combined in di�erent

ways to form more complex learning architectures.

� Feed-forward hidden layers. These are the most basic component of a neural

network. A feed forward layer is integral to all other components as its func-

tionality can be extendedto realise other layers, like those in the descriptions

that follow. Alternatively, it can be combined with other layers to make up

complex networks. Furthermore, in understanding the hidden nodes of a feed-

forward layer, we learn how a network combines inputs which amounts to the

interactions a network learns between them.

� Recurrent hidden layers. These function similar to the basic feed-forward layer,

taking input and extracting learnt features. In contrast, they can account
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for or sequential or time-series data. The recurrency allows the network to

incorporate data from previous time-points into the classi�cation process for

a current time-point, allowing for the use of contextual information in order

to make predictions.

� Regression visible output layers. These layers take input andperform classi�-

cations based on this input. There are three types:linear, logistic, and softmax

regression layers. In the context of this dissertation, their main function is that

of a visible output layer to supervised neural networks. Regression layers ex-

tend the concept of a hidden layer through cost functions, and as regression

itself is a shallow learning algorithm, the ability to update parameters.

Note on Descriptions. We explore components and neural networks, via high

level processes or keyfunctions which we have de�ned for Layer and Learner in

our Con�gurable Deep Network in Chapter 5. For a Layer these are: initialisation

of parameters; propagation of values; and sampling. For a neural network they

consist of: building a hypothesis; calculating a cost; building updatesfor parameters

through the calculation of derivatives; and �nally, optimisation, through a given

training procedure.

Note on Equations. Where possible we describe vectorised equations. Vectorised

calculations allow for a single sampleor a batch (matrix) of samples to be processed

in parallel through standard matrix operations providing greater e�ciency. Where

possible and for simplicity, we will provide equation descriptions in terms of a single

input and output vector.

Note on Equation Inputs. The input to a hidden layer L (l ) can come from an-

other hidden layer in the architecture L (l � 1) or L (l+1) , or from a data matrix X . For

simplicity, we show the equations of Sections 3.2.1 and 3.2.2 as layerL (l ) receiving

the activation energies a(l � 1) from hidden layer L (l � 1) as input. As regression is

itself a learning algorithm, we show the input of the equations in x3.2.3 to be x,

although when functioning as the output layer of a supervised network, the input

would be a(l � 1) , the previous layer's activation energies.
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Figure 3.4: Hidden Layer: Hidden to Hidden

3.2.1 Feed Forward Hidden Layer

Figure 3.4 shows the make-up of a basic feed-forward hidden layer, receiving input

from another hidden layer in a neural network. The hidden layer's function is to

take values from aninput visible layer (the data) or another hidden, transform these

values and output transformed values to the next layer - either anotherhidden layer

or an output layer. Figure 3.4, omits input layer weights for the sake of simplicity.

The hidden layer learnslatent features from the data through these transformation

functions by weighting and combining inputs di�erently in each node.

3.2.1.1 Parameter Initialisation

Before any calculations are carried out, theparameters � (l ) , for a layer L (l ) must

be instantiated. These parameters consist of theweight matrix W (l ) and bias

vector b(l ) . We initialise bias vectors with values of 0 and a dimensionjN (l ) j,

equal to the number of nodes inL (l ) . The dimension of a weight matrix W (l ) is

jN (l � 1) j � j N (l ) j, where jN (l � 1) j is the number of nodes in the previous layerL (l � 1) .

The initial values of the weight matrix depend on the non-linear activation function

employed. In neural networks in general, there are two types of layers: those which

output probabilities and those which output numerical values. Thus, we focus on

two types of activation function and adopt standard initialisation procedures from

the literature [51].

First, we employ the logistic sigmoid function (described shortly in Equation (3.4)),

as its outputs can be interpreted as probabilities. Equation (3.1) shows the ini-

tialisation procedure for binary, logistic units. Weights are drawn randomly and
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uniformly between the bounds shown.

W � U
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jL (i � 1) j + jL (i ) j

#

(3.1)

The second, recti�ed linear function (Equation (3.5)), is used for Recti�ed Linear

Units (ReLU) as this function outputs numeric values. Equation (3.2) shows the

parameter initialisation procedure for the ReLU function. Weights are drawn ran-

domly from the normal distribution, with variance 2
jN ( i � 1) j

.

W � N
�

� = 0 ; � 2 =
2

jN (i � 1) j

�
(3.2)

These random sampling initialisations are employed to breaksymmetry during learn-

ing. Symmetry is when each hidden node receives identical learning signals. The

speci�c procedures outlined in Equation (3.1) and Equation (3.2) were used as they

have been shown to enable the learning ofgood weights [51]. Unless expressly stated

otherwise, the initialisation procedure outlined above is followed forall hidden layers

in non-recurrent architectures in x3.3.

3.2.1.2 Feed-Forward Propagation

The process of transforming values through anode, layer or entire neural network

is calledpropagation. When values are propagatedfrom the input layer through the

architecture, we call this feed-forward propagation. When values or gradients are

propagated towards the input layer, we refer to this as back-propagation. In this

section, we focus onlayer feed-forward propagation.

Linear Function . First, the linear activation for a layer is calculated. This energy

vector is represented byz(l ) 2 RjN j , a vector of real numbers equal in dimension to

the number of nodes in the layer, where each elementz(l )
i is the linear activation for

the i th node in the lth layer.

z(l ) = f l (a(l � 1)) = a(l � 1) � W (l ) + b(l ) (3.3)

49



Figure 3.5: Di�erent Node Routes

Equation (3.3) shows the calculation of a layer'slinear energy z(l ) . The de�ned

function f l : a(l � 1) 7! z(l ) , represents a layer'slinear activation function. The func-

tion receivesa(l � 1) as input, the vector of activation energies from the previous layer

L (l � 1) . The linear energy is calculated as thedot product between a(l � 1) and the

weight matrix W (l ) for the l th layer, before adding a bias vector,b(l ) .

Once z(l ) is calculated, it can be output directly. Figure 3.5 shows this as Option

A, where a(l ) = z(l ) . Alternatively, the process carries out a non-linear transform

on the values in z(l ) . Figure 3.5 shows this as Option B. The most common option

is B, as non-linear transformations can model more complex relationships between

inputs and outputs.

a(l ) = g(z(l ) ) = sigmoid(z(l ) ) =
1

1 + e� z( l ) (3.4)

Non-Linear Function . Equation (3.4) shows the logistic sigmoid function. The

vectorised notation signi�es the application of the function to each valuez(l )
i in z(l ) .

The function g: z(l ) 7! a(l ) invokes a non-linear mapping from the result of the linear

function to a layer's output. Here g is de�ned as the sigmoid function. The logistic

sigmoid function takes each value inz(l ) and returns a value between 0 and 1, which

can be interpreted as a series of probabilities. The output tends towards 1 as a value

z(l )
i approaches +1 and 0 asz(l )

i approaches�1 . The symbol e is Euler's number,

a constant that enables the compression between 0 and 1. In this case,a(l ) is a range

of values between 0 and 1 which can be interpreted asp(N (l ) = 1 ja(l � 1) ; W (l ) ; b(l ) ),

the probability of each node�ring given the input and parameters.
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a(l ) = g(z(l ) ) = ReLU (z(l ) ) = max(0; z(l ) ) (3.5)

Equation (3.5) shows the second activation function used in our experiments. The

Recti�ed Linear Unit (ReLU) function outputs 0 if the linear energy z(l ) is less than

0, otherwise it outputs the linear energy value.

The advantage of the sigmoid function is that values ina(l ) never grow exponentially,

as they are always constrained to be between 0 and 1. Thus, they can be interpreted

as probabilities, but the gradient can vanish. This is not the case for the ReLUs.

ReLUs have the advantage of learning a sparse representation - outputting a lot

of 0's - and its gradient is never 0. Sparse representations generally lead to more

accurate models [12]. The advantages for each function are di�erent, leading to uses

in di�erent situations, but ultimately give a better learning signal.

Sampling Function . In certain cases, thestate s(l )
o of each node in a layer is

required. The state of a node describes whether a node�res or not, outputting 1 if

it does, otherwise outputting a 0 if it does not. For our work, we dealt with sampling

from binary probabilities only: Equation (3.4) generates binary outputs. There are

two ways we generate states. Equation (3.6), shows the �rst, a threshold function.

If the probability calculated for a node a(l )
i is above a given threshold (usually 0.5)

it outputs 1, otherwise it outputs 0.

s(l ) =

8
><

>:

1 if a(l ) > threshold

0 otherwise
(3.6)

The second method shown in Equation (3.7), drawsja(l ) j samples from a Bernoulli

distribution with a probability p = a(l ) . This sets each node to 1 with a probability

of a(l ) and to zero with a probability of (1 � a(l ) ). A Bernoulli distribution is a

discrete probability distribution with two possible outcomes: 1 or 0.

s(l ) = � B (ja(l ) j; a(l ) ) (3.7)

These functions are important as �rstly, they indicate the presence or absence of
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a hidden feature for a particular data sample. Secondly, in binary classi�cations

they are required to determine if a sample is positive or negative. Thirdly, they

are used to generate hidden feature samples during training a Restricted Boltzmann

Machine.

3.2.2 Recurrent Layer

A recurrent hidden layer functions similarly to a feed-forward hidden layer as it takes

inputs, applies transformations and generates outputs. The important di�erence is

that it can incorporate time-series and sequential data processing. We will refer

to each data-point in a sequence as atime-step although the sequence may not

necessarily be time based. For example, hand-writing analysis consists of analysing

a sequenceof letters.

Figure 3.6 shows a recurrent nodeunfolded in time . The node takes input data

x for the current time-step along with the value output from the node itself at the

previous time-step a(l )( t � 1) (note the new index for time). This is the recurrent

process, where layer outputs are passed to the same layer at the next time-step as

well as to the next layer in the architecture.

The recurrent process begins by initialising the hidden nodesh(l ) with a value a(init )

(normally zero), for t = 0, the time-point before the start of the sequence. This

value, set at t = 0 and shown asa(1)(0) , is fed-forward to begin the sequence. The

result of the �rst calculation a(1)(1) is sent to the next hidden layer L (2)(1) at the

current time-point and to the layer itself, one time-step in the future L (1)(2) . This

process is repeated from the start timet � t (time 0) up to the �nal time t. Therefore,

a(l )( t ) at time t is calculated from the output activations a(l )( t � 1) at time t � 1 and

data input at the current time-step a(l � 1)( t ) .

3.2.2.1 Parameter Initialisation

It is necessary to initialise a third parameter for recurrent layers in addition to those

W (l ) and b(l ) outlined in x3.2.1.1. This parameter is the recurrent weight matrix.

The recurrent, hidden to hidden weight matrix WR has a dimensionjN (l ) j � j N (l ) j,

and is used to propagate values from one layer to the same layer a time-step forward
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Figure 3.6: Recurrent Node Unfolded in Time

in the sequence. For logistic units, the initialisation procedure outlined in Equation

(3.1) is used forW (l ) and WR(l ) . For ReLUs, we initialise the input weights W (l )

according to Equation (3.2), but for recurrent weights WR(l ) , we initialise an identity

matrix I jN ( i ) j in order to learn long term dependencies as outlined in [78].

3.2.2.2 Recurrrent Propagation

As the recurrent layer also takes in to account hidden states of the layer at the

previous time-point, its propagation function takes on a di�erent form.

z(l )( t ) = f (a(l � 1)( t ) ; a(l )( t � 1)) = a(l � 1)( t )W + a(l )( t � 1)WR + b(l ) (3.8)

Linear Function . Equation (3.8) shows recurrent propagation. In this equation,

f : a(l � 1)( t ) 7! z(l )( t ) is the recurrent linear function. Its inputs are the activation

outputs from another hidden layer at the current time point a(l � 1)( t ) , and a(l )( t � 1) ,

the activations that the layer itself computed at the previous time-point t � 1. The

parameter W is the weight matrix for the inputs at the current time-point, WR is

the weight matrix for the recurrent inputs and b is the bias vector. The function

�rst computes the dot product between a(l � 1)( t ) with the weight matrix W (l ) , at

time t. This dot product is equivalent to the calculation for ordinary feed-forward

propagation shown in Equation (3.3). Next, the recurrent input a(l )( t � 1) is multiplied
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Figure 3.7: Single Output Regression Representation

with the recurrent weight matrix WR. Finally, the result of these two dot products,

pertaining to the input and recurrent activation energies respectively, are combined

with the bias vector b(l ) to give the linear activation energy z(l )( t ) of the lth layer at

the current time-point t.

When we take the states of the hidden layer at previous time-points into account,

the network not only learns an abstract representation of the input features but also

has an arbitrarily long `memory' in which it can reason about the current time-point

based on the states of previous time-points. We will explore this notion further in

x3.3.2. Once the linear activations are calculated, the same non-linearities outlined

in x3.2.1.2 can be applied, as well as sampling processes, if required.

3.2.3 Output Regression Layer

There are various forms of regression functions which take input features and output

classi�cations or predictions. Conceptually, the di�erent forms of regression are

similar to a neural network hidden layer. The prediction or hypothesis function

of regression can be considered a combination of thepropagation and sampling

functionality of a hidden layer, but we use it as a neural network output layer.

Regression extends the concept of a hidden layer with an ability to calculate acost

and apply updates to parameters in order to lower the computed cost.

We focus on four types of regression with di�erent outputs.

1. Linear regression , corresponding to asingle , real-valued output.

2. Logistic regression , corresponding to a single , binary-class output, for
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Figure 3.8: Multiple Output Regression Representation

example: yes/no; 1/0.

3. Multiple logistic regression , corresponding to multi-class output where

a single input can havemultiple classi�cations.

4. Softmax regression , corresponding to multi-class output where a single

input has a single classi�cation from a range of possibilities.

We break our discussion into six parts. The �rst, x3.2.3.1 describes thehypothesis

functions used to produce the desired outputs. Thehypothesis function takes

input dataset variables and outputs numeric predictions or probabilities that are

used for classi�cation. The second,x3.2.3.2 describes thecost functions used

for di�erent classi�cation types and the regularisation functions combined with

these cost functions. Cost functions measure the di�erence between theground truth

and the hypothesis output. Regularisation gives a means to increase the cost if

model parameters are overly large. The �nal three sections then cover the functions

required and the mechanism by which we minimise the (possibly regularised) cost

function. Minimising a cost function - using derivative , parameter update and

optimisation functions - brings predictions closer to the ground truth. Minimising

a regularised cost function results in simpler models with smaller weight values and

thus, should have better classi�cation performance on unseen instances. These cost

and regularisation functions, as well as the procedure for calculating and applying

updates, are also used in more complicated learning algorithms and will therefore,

be referred to when discussing the neural networks inx3.3.

Figure 3.7 shows regression, consisting of an input vector and a single classi�cation

node output, as is the case with linear and logistic regression. Figure 3.8 shows
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multiple classi�cation nodes, as is the case with softmax and multiple logistic re-

gression. Weinitialise parameters for regression with zeros instead of the random

procedure discussed inx3.2.1. This process is also adopted for neural networkoutput

layers. We adopt this initialisation procedure as we assume no collinearity between

abstract hidden features in a neural network, which form the input to the regression

layer. Collinear variables are highly correlated, where one input variable can be

used to predict another.

3.2.3.1 Hypothesis Function

The regressionhypothesis functionh� (x), produces a continuous numeric valueor

probability, when given input x. This enables aprediction denoted asŷ. Linear ,

logistic and softmax regression hypothesis functions each have a di�erent form and

the type of regression employed is dependent on the type of variable to be classi�ed.

Linear Regression. Equation (3.9) shows the hypothesis function forlinear regres-

sion. The prediction ŷ is equal to the output of the hypothesis function h� (x). The

hypothesis function for linear regression is directly equivalent to the linear propaga-

tion function f of a hidden layer with one node (corresponding to a single output

prediction), given by Equation (3.3) in x3.2.1.2. Therefore the predictionŷ is equiv-

alent to z in Equation (3.3). It predicts a real-valued, numeric output ŷi 2 Rm , for

each data samplex i � 2 X m� n .

ŷ = h� (x) = f (x) (3.9)

Logistic Regression . Equation (3.10) shows the logistic hypothesis function,

where the function f is given by the linear function in Equation (3.3) and g is

equivalent to the sigmoid function given by Equation (3.4) in x3.2.1.2. Therefore,

the logistic regression hypothesis function is directly equivalent to the activation en-

ergy a of a hidden layer with one node and a sigmoid activation function. Instead of

representing the probability of a node �ring or not, the hypothesis function output

represents a class membership probabilityp(ŷ = 1 jx; � ). The node state s given by

the sampling function in Equation (3.6) is equivalent to the actual prediction ŷ of
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logistic regression, where ^yi 2 f 0; 1gm .

ŷ = h� (x) = g(f (x)) (3.10)

Multiple Logistic Regression . The process and calculations described for logis-

tic regression are extended for multiple logistic regression. Where logistic regression

calculates a single binary probability of class membership, multiple logistic regres-

sion calculates many, where for each classi�cation, the same calculation described

for logistic regression is repeated for every possible class. This is equivalent to a

hidden layer with multiple hidden nodes and a sigmoid activation. The output ŷi

is a vector of ones and zeros, with ones indicating a positive prediction for the class

referenced by that index.

Softmax Regression . As was the case with multiple logistic regression softmax

regression outputs probabilities for multiple classes, butunlike multiple logistic re-

gression the output predicts membership of asingle class. As such, the output is a

binary vector. If there are K possible classi�cations andm samples, we have a clas-

si�cation matrix Y� � 2 f 0; 1gm� K where each classi�cation vector for a sampleYi �

is of length K and has a (positive) bit in the position which represents the correct

classi�cation. This is known as 1-of-k or one-hot encoding.

h� (x) = p(ŷ = kjx; � ) =
ezk

P K
k0=1 ezk 0

for k 2 f 1; : : : ; K g (3.11)

ŷ = argmax
k2f 1;:::;K g

ezk

P K
k0=1 ezk 0

(3.12)

Equation (3.11) shows the softmax hypothesis function. Similar to logistic regres-

sion, its input is a vector z 2 RK , of real-valued numeric outputs from a linear

function f (x), where K is the number of possible classi�cations. The hypothesis

function also has K outputs where each output h� (x)k represents the probability

that the classi�cation at index k is positive, p(ŷ = kjx; � ).

The softmax function is a generalised version of the logistic sigmoid function. Each

value zk in z undergoes a transformezk and is then normalised by the sum of all

transformed elements
P K

k0=1 ezk 0. As all elements sum to 1, the output corresponds
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to a vector of mutually exclusive class probabilitiesh� (x) 2 (0; 1)K . Equation (3.12)

then outputs an index k 2 f 1; : : : ; K g, of the element with the highest probability,

corresponding to the predicted classi�cation.

3.2.3.2 Cost Functions and Regularisation

Every hypothesis function requires acost function, the measure which evaluates

performance and is minimised to give more accurate predictions. The cost function,

like the hypothesis function, is dependent on the type of classi�cation required. For

linear outputs, we employ themean squared error cost; for binary probabilities as

is the case inlogistic and multiple logistic regression, we use thecross entropy cost;

and for mutually exclusive multi-class classi�cations as with softmax regression, we

employ the negative log likelihood cost. The procedure used to minimise the

cost will be presented inx3.2.3.3.

Although we discuss cost functions in the context of regression, they are also used

in more complex learning architectures and will therefore, be referred to in later

sections. We represent the cost function asJ (� ), the cost of all model parameters�

at a particular point in training.

Jmse(� ) =
1
2

�
1

jX j

jX jX

i =1

(h� (x) i � yi )2 (3.13)

Mean Squared Error . Equation (3.13) shows the mean squared error cost func-

tion, used for evaluating real-valued numeric predictions. Its input is the given

ground truth vector y and the predictions ŷ output from the hypothesis function

parameterised by � . The output is a measure of how much error exists in the pre-

dictions made with model parameters � . The error for a sample is given by the

di�erence between the prediction and ground truth, ŷ � y. The di�erence is squared

to ensure a positive value for the error of each prediction and �nally the result is

averaged over the number of predictions made with the current parameters, which is

usually the number of samples in a data matrix or data batchjX j. The co-e�cient

of 1
2 makes the derivative calculation easier as we will see inx3.2.3.3.
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Jce(� ) = � p logq = �
1

jX j

jX jX

i =1

yi logh� (x i � ) � (1 � yi ) log(1 � h� (x i � )) (3.14)

Cross Entropy Cost . Equation (3.14) measures the di�erence between two proba-

bility distributions: p, the `true' distribution of actual target values andq the model

distribution, or predicted probability outcomes. We measure the probability of an

event occurring as well as the probability of the complementary situation, the event

not occurring, therefore, p 2 f y; 1 � yg and q 2 f h� (x); 1 � h� (x)g. When yi = 1 we

use the probability of the event occurring h� (x) and the next term is zero as 1� 1

is 0. Whereas whenyi = 0 we use the term 1� h� (x) as 1� 0 is 1. When min-

imised, cross entropy brings the model distribution closer to the actual distribution,

improving the quality of predictions.

Jnll (� ) = �
1

jX j

jX jX

i =1

logh� (x i � )c (3.15)

Negative Log-Likelihood . In Equation (3.15), the hypothesis h� (x i � )c, is equiv-

alent to P(ŷic jx i � ; � ), the probability the model assigned to the actual class. Fur-

thermore, when minimised, Equation (3.15) raises the probability of the actual class

versus all other classes. Byminimising the negative probability of the actual class,

we are raising the probability the model assigns to the correct class. The likeli-

hood of the model parameters, conditioned on the data matrixX (the classi�cation

conditioned on the input variables (yjx) is equal to the probability of the data ma-

trix conditioned on the model parameters, as shown in Equation (C.1) in Appendix

C, which is the origin for this cost function. The cross-entropy cost is actually

equivalent to negative log likelihood with only two classes.

Regularisation. A regularisation function computes a value which is added to

a cost function, such as those introduced in Equations 3.13, 3.14 and 3.15. The

purpose of a regularisation function is to incorporateactual model-parameter values

into the cost and not just the result they give through a hypothesis function. The
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e�ect of regularisation is to encourage model parameters to take on smaller values

by penalising those which are overly large. The result is a simpler model which is

less likely to over�t the training data. Over�tting occurs when models perform very

well on data they are trained on but do not generalise well with unseen instances.

R(� ) =
nX

i =1

j� i jp (3.16)

Equation (3.16) shows the general form for a regularisation function. In e�ect, the

regularisation function sums the absolute values for all model parameters, raised

to the power p and adds the result to the cost function. The parametersp and �

are hyper-parameters wherep refers to the type of regularisation employed and�

is the strength of the regularisation, or how much large parameters are penalised.

Generally, the value chosen forp is 1 or 2, giving L1 or L2 regularisation, respectively.

For regression,� is a single instance of weights and biases, but for neural networks

� encompasses the model parameters for each layerf � (1) ; : : : ; � (jL j)g

3.2.3.3 Parameter Updates

Once we have instantiated parameters for a model, de�ned a hypothesis function

to make predictions and have a method to determine the cost of these predictions,

a mechanism is still required to compute thevalue which we use to update model

parameters and lower the cost. Thederivative function , which computes the

derivative of a cost function with respect to model parameters, gives this value.

For each cost function in x3.2.3.2, we explore the relevant derivative. For clarity

and simplicity, we refer to model parameters here in their combined form� . The

derivatives explored here form the foundation, and will be used for the explanation of

more complex derivatives required in the update functions of the neural networks in

x3.3. We use derivatives in the regression optimisation process, which minimises the

cost to achieve better accuracy. This update process outlined in Equation (3.21), can

be generalised and is used forall learning algorithms employed in this dissertation.

Derivative of Mean Square Error Cost . Equation (3.17) shows the partial

derivative of Jmse(� ) with respect to the model parameters. We provide a full
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derivation in Appendix D, Equation D.7. The derivative is essentially an error signal

(the hypothesis output minus the ground truth) used to inform updates. This error

signal is then combined with the input to update model parameters.

@Jmse(� )
@�

=
@1

2(h� (x) � y)2

@�

= ( h� (x) � y)x

(3.17)

Derivative of Cross Entropy Cost . Equation (3.18) shows the expansion, via the

chain rule, of the intermittent functions in the derivative of the cross entropy cost

with respect to model parameters. The chain rule, described in Appendix D.1.1,

allows us to expand complex derivatives required to improve hypothesis outputs

and are crucial to complicated neural networks. We do not provide derivations

of the individual terms here, but refer the reader to Appendix D. The term on

the left of Equation (3.18) expands into three on the right. The �rst, derived

in Equation (D.8), is the derivative of the cross entropy cost (Equation (3.14))

with respect to the output of the logistic function, a. This is multiplied by the

second, which we derive in Equation (D.4), the derivative of the logistic function

(Equation (3.4)) with respect to the output of the linear function, z. Finally, these

are multiplied by the derivative of the linear function with respect to the model

parameters, which we calculate in Equation (D.3).

@Jce(� )
@�

=
@J(� )

@a
�

@g(z)
@z

�
@f(x)

@�
(3.18)

Equation (3.19) shows the substitution of the terms derived in Equations (D.8),

(D.4) and (D.3) for those in Equation (3.19), before they are simpli�ed and presented

in the �nal line, which shows the result in an alternative formulation as a = h� (x),

the hypothesis for logistic regression.
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@Jce(� )
@�

=
(a � y)
a(1 � a)

� a(1 � a) � x

= ( h� (x) � y)x

(3.19)

Derivative of Negative Log Likelihood . In the case of softmax regression, we

take the same approach as with the cross entropy derivative, but the chain rule

expansion takes a slightly more complicated form. There are multiple output prob-

abilities, but the cost depends solely on the probability of the correct classi�cation.

Therefore, we have to calculate the derivative of the cost of the correct classi�ca-

tion probability, but with respect to the parameters for all outputted probabilities.

Equation (3.20) shows the correct classi�cation as indexk and all other parameters

indexed asi , as well as the �nal result. As the result ends up the same as Equa-

tion (3.19), we will not perform a detailed derivation here but refer the reader to

Equation (D.10), in Appendix D.

@Jnll (� )
@�

=
@J(� )
@ak

�
@ak
@zi

�
@zi
@�i

= ( h� (x) � y)x
(3.20)

The important thing to note here is that although there are di�erent derivatives,

with varying degrees of complexity for the di�erent cost functions, the result always

ends up thesame, an important point for the explanations to come in x3.3.

Update Function. Given the calculated gradient, we can now de�ne the parameter

updates. Equation (3.21) shows how we update parameters for a regression model.

� := � � �
@J(� )

@�
(3.21)

The update procedure is the same forevery other learning algorithm described in

this dissertation. The procedure takes each model-parameter (weight or bias) and

replaces each parameter simultaneously, with the value attained by subtracting the

relevant cost function derivatives multiplied by a learning rate � . The learning rate
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is a hyper-parameter which de�nes the magnitude of weight updates, informing us

how much to lower the cost function for each iteration.

3.2.3.4 Parameter Optimisation

There are many methods to optimise model parameters but in this dissertation we

will focus on gradient descent. The optimisation process performs many iterations of

model parameter updates to minimise a cost function and thus, improve the quality

of predictions. The procedure for basic gradient descent can be seen in Algorithm

1 and is repeated until the model converges on the lowest cost possible.

Algorithm 1 Basic Gradient Descent Algorithm

1: while cost 6= minimum do
2: Compute the hypothesis given the input h� (x)
3: Calculate the cost of the current parametersJ (� )
4: for � (i ) in � do
5: Determine the gradient @J(� )

@�
6: end for
7: Update all parameters in parallel � := � � � @J(� )

@�
8: end while

There are three types of gradient descent: batch Gradient Descent (GD) uses the

entire dataset for each update; Stochastic Gradient Descent (SGD) uses a single

data sample for each parameter update; and Mini-batch Stochastic Gradient Descent

(MSGD) uses a subset orbatch of the data to update parameters. All procedures

ultimately achieve a better model accuracy.

Throughout this dissertation, we focus on mini-batch stochastic gradient de-

scent (MSGD) [23], with an additional process called early-stopping [112]. A

data matrix is �rst split into training, validation and test sets X t ; X v ; X s, which

are disjoint subsets of the data matrix X . For each iteration of optimisation, we

calculate the hypothesis for each sample in a smallbatch (subset of samples), get the

mean cost for this batch and calculate the relevant derivative so the update de�ned

in Equation (3.21) can be performed, until the lowest cost is achieved.

Early stopping introduces another hyper-parameter calledpatience , through which

MSGD can terminate early in order to prevent over-�tting. It is the minimum

number of iterations that will be performed before exiting the optimisation process.
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Early-stopping also requires testing the model at regular intervals on a separate,

`held-out' validation set, X v . If performance on the validation set keeps improving

over a certain threshold, the patience is increased and the optimisation process

continues.

MSGD is computationally more e�cient than performing updates based on the

entire dataset (batch GD). In non-convex, non-smooth error functions, it also enables

the optimisation function to escape poor local minima (which leads to poor accuracy)

and �nd better minima to enable improved accuracy. Early stopping helps to avoid

over-�tting by adding regular evaluation of the model's performance on held-out

validation data. It terminates the procedure once the validation performance stops

improving. One cannot test the predictive power of a model using the data used

to train the model as it will result in an upwardly biased estimate of accuracy.

The patience parameter ensures the optimisation procedure exits when performance

stops improving on the held-out validation set.

3.3 Neural Network Types

In this section, we describe the four types of shallow and deep neural networks

used throughout the dissertation. The descriptions which follow build upon the

components outlined in the previous section and will therefore, refer heavily to the

content and equations ofx3.2.

3.3.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a form of supervised feed-forward neural net-

work. Its purpose is to make classi�cations or predictions when given input data. A

secondary purpose, is to learn a layer ofabstract, higher level features in its hidden

layer, to better represent the data, determine variable interactions and give more

accurate predictions. Although its architecture can be extended to include multiple

hidden layers, the learning signal tends to vanish in deeper architectures. In this

dissertation, we de�ne a Multi-Layer Perceptron as a feed-forward neural network

with one hidden layer.
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Figure 3.9: Single Class Multi-Layer Perceptron

Figure 3.9 shows a representation of a Multi-Layer Perceptron with a single output

node, corresponding to a linear or binary classi�cation task. It is also possible to

have an MLP with multiple output nodes, which would be the case for multi-class

classi�cation. It is composed of ahidden layer and an output regression layer, com-

bining the two and incorporating their functionality. Its functionality therefore, is

essentially described as a combination of a feed-forward hidden layer fromx3.2.1 and

a regression output layer fromx3.2.3. Parameter initialisation occurs as described

in x3.2 for the visible and hidden layers.

3.3.1.1 Hypothesis and Cost Functions

Equation (3.22) shows the Multi-Layer Perceptron hypothesis function. The input

x propagates �rst through the hidden layer transformation g1: x 7! g1(x) = a(1) and

is then input into an output regression layer, which holds the classi�cation function

g2: a(1) 7! g2(a(1) ) = a(2) , where a(2) is the output classi�cation.

h� (x) = a(2)

= g2(f 2(a(1) ))

= g2(f 2(g1(f 1(x))))

(3.22)

As described inx3.2.1, the hidden layer transformation can be solely linearf 1: x 7!

f 1(x) = z(1) using � (1) , as de�ned in Equation (3.3), or combined with a non-linear
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function g1: z(1) 7! g1(z(1) ) = a(1) . In our case either the sigmoid function (from

Equation (3.4)) or the ReLU (from Equation (3.5)) are employed. The purpose of

these hidden layer functions is to learn the abstract feature representations to better

model input and output relationships. The linear function allows input features to

be weighted whereas the non-linear function allows more complex representations

to be learnt. For fully connected hidden layers in general, each node in the hidden

layer L (1) , is connected to every node in layerL (0) , and every node inL (2) . Each

activation energy a is passed through these connections.

The activation energiesof the hidden layera(1) are then sent to the output regression

layer where values propagate throughg2 to output predictions, as described inx3.2.3.

Classi�cation dependent, this is a solely linear transform f 2: a(1) 7! f 2(a(1) ) = z(2)

(Equation (3.3)), using � (2) , for real-valued classi�cation tasks; or combined with

the logistic (Equation (3.4)) or the softmax functions (Equation (3.11)) for binary

and multi-class tasks respectively.

The cost function employed for a Multi-Layer Perceptron is dependent on the

classi�cation being performed, as described inx3.2.3. Furthermore, the same cost

functions introduced in Equations 3.13, 3.14 and 3.15 are used and for the same

classi�cation tasks. The di�erence is the more complicated MLP hypothesis, de�ned

in 3.22, replaces that de�ned for Regression when calculating relevant costs.

3.3.1.2 Updates and Optimisation - Error Backpropagation

In order to calculate the gradients which will be used to update the model param-

eters, a process callederror back-propagation is required. The parameters of each

layer must be updated with respect to the cost of the hypothesis output. This is

performed by back-propagatingwhat we call the error gradient from the top output

layer through to the hidden and input layers. Essentially, we �nd the error between

the hypothesis output and the ground truth, then back-propagate this error through

the layers to determine the performance of the hidden features and update network

parameters accordingly, in order to improve classi�cation performance.

To update MLP parameters, we are required to compute two forms of gradient

values. Equation 3.23 shows the �rst, the gradient of the cost with respect to the
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output layer parameters ; and Equation 3.24 shows the second, the gradient of

the cost with respect to the hidden layer parameters . The chain rule (Appendix

D.1.1) is again employed for easier gradient computation, as it was inx3.2.3.3.

@J(� )
@�(2)

=
@J(� )
@z(2)

�
@f2(a(1) )

@�(2)

=
@J(� )
@a(2)

�
@g2(z(2) )

@z(2)
�

@f2(a(1) )
@�(2)

(3.23)

Error Gradient . We can see the �rst two lines of Equations (3.23) and (3.24) are

the same, save for the layer index. Thus we de�ne theerror gradient.

@J(� )
@�(1)

=
@J(� )
@z(1)

�
@f1(x)
@�(1)

=
@J(� )
@z(2)

�
@f2(a(1) )

@a(1)
�

@g1(z(1) )
@z(1)

�
@f1(x)
@�(1)

(3.24)

Equation (3.25) de�nes error-gradient � (l ) , which represents the derivative of the cost

with respect to the linear activations z of the l th layer. It carries the error signal

we back-propagatethrough the layers, allowing us to update model-parameters to

improve classi�cations. This term is important as it allows us to express the value for

the layer gradient in a simplegeneral form for this and more complicated algorithms.

� (l ) :=
@J(� )
@z(l )

(3.25)

Layer Gradient General Form . If we substitute � from Equation (3.25) into the

�rst lines of Equations (3.27) and (3.28), it gives us a convenient, general form for a

layer's gradient, shown in Equation (3.26). This formula allows us to calculate the

values used to updateany feed-forward neural network layer parameters through

error back-propagation. This formula will be used again for algorithms in x3.3.2 and

x3.3.4 and again in Chapter 7 for our experiments.
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@J(� )
@�(l )

= � (l ) � a(l � 1) (3.26)

Output Layer Gradient . As we mentioned at the beginning of the section, the

error-gradient has adi�erent form for an output layer L (jL j) and an inner, hidden

layer L (l ) . The output error gradient � (jL j) for a Multi-Layer Perceptron is shown in

Equation (3.27). It is the di�erence between the hypothesis and the ground truth

h� (x) � y. This calculation was shown in Equations (3.17), (3.19), (3.20) where

di�erent cost functions were shown to produce the same gradient. The error gradient

� is then multiplied by the previous layer activations to get the layer gradient. This

formula can be generalised to the output layer ofany neural network which uses

mean square error, cross entropy or negative log likelihood loss if we replace the

output layer index (2) with ( jL j) and the hidden layer index (1) with ( l ).

@J(� )
@�(2)

= � (2) � a(1) = ( h� (x) � y) � a(1) (3.27)

Hidden Layer Gradient . In Equation (3.28), we can see how errors areback-

propagated through to hidden layers. To calculate the hidden layer � (1) , we require

the error gradient � (l+1) of the next layer, which in this case � (2) , is the output

gradient. As can be seen in Equation (3.28),� (1) , is the dot product of � (2) and the

transpose of the parameters� T (2) , whose result is multiplied element-wise with the

derivative of the layers activation function. This formula can be generalised to any

feed-forward neural network hidden layer if we replace the layer index (1) with (l )

and the layer index (2) with ( l + 1), as shown in Equation (3.29).

@J(� )
@�(1)

= � (1) � x

= ( � (2) � T (2) ) � g0
1(z(1) )x (3.28)

The power of these expression can be fully realised when presented with deep archi-
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tectures such as those inx3.3.2 and 3.3.4 as they give a uniform way to approach

the updates of each hidden layer in much deeper architectures.

� (l ) =
@J(� )
@z(l )

= ( � (l+1) � � T (l+1) ) � g0(z(l ) ) (3.29)

The same update function, de�ned in Equation (3.21), is again used for the MLP.

However, where there was only one parameter to update for the Regression learner,

the process iterates through all parameters for each layer in the MLP, where the

parameters are� = f � (1) ; : : : ; � jL jg. The same optimisation process of MSGD, de-

scribed in x3.2.3.4, is again used as each parameter must be updated in parallel.

3.3.2 Recurrent Neural Network

A Recurrent Neural Network [53] is a form of supervised neural network which

can accommodate sequential data. Unlike a Multi-Layer Perceptron, which can be

described as a combination of a feed-forward hidden layer and a regression layer,

a Recurrent Neural Network is a combination of arecurrent hidden layer, outlined

in x3.2.2 and anoutput regression layer, as shown in x3.2.3. A Recurrent Neural

Network is used in place of a Multi-Layer Perceptron when the dataset is sequential

in nature. By sequential, we mean time-based or where the context of a particular

data sample has meaning. For example, the sports performance dataset used for

evaluation purposes in Chapter 7 uses heart rate data which is time-based and

prior heart rate values have an e�ect on current heart rate values. The Recurrent

Neural Network is also the �rst deep neural network. Although it is not deep in

the traditional sense of number of hidden layers, it is deep if unfolded over time, as

described in x3.2.2. As all processes to describe a recurrent neural net have been

described in sections 3.2.2, 3.2.3 and 3.3.1, we will only briey cover these topics

here and describe how they are used in the Recurrent Neural Network paradigm.

Parameter initialisation occurs in the same fashion as a Multi-Layer Perceptron

where the hidden layer parameters are initialised using Equations (3.1) and (3.2) and

regression parameters are initialised to zero as described inx3.2.3. Thehypothesis

function takes the same form as the Multi-Layer Perceptron, described inx3.3.1.1
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except the linear function used in the Multi-Layer Perceptron is replaced with the

recurrent linear function de�ned in Equation (3.8), for the hidden layer. For the

non-linear functions, we employed both the sigmoid (de�ned in Equation (3.4) and

the ReLU (de�ned in Equation (3.5)), in di�erent experiments. The regression layer

operates in the same way as described inx3.2.3 except instead of the regression layer

receiving input from the dataset, it receives its input from the recurrent layer. The

cost functions are again dependent on the type of classi�cation being performed

and regularisation can be added as perx3.2.3.2, with the di�erence being there are

now multiple sets of model parameters� = f � (1) ; : : : ; � (jL j)g.

Another di�erence between the Recurrent Neural Network and the Multi-Layer Per-

ceptron is the derivatives . Instead of regular back-propagation, a process known as

back-propagation through timeis required. This is very similar to the regular back-

propagation process, with all necessary formulae de�ned previously inx3.3.1.2. The

di�erence is besides theinput-to-hidden and hidden-to-out weight matrices, we must

update the recurrent hidden layer parameters. Although these gradients are calcu-

lated as normal hidden layer gradients using Equation (3.26), theerror-gradient

must be passed back as to the point in time where wetruncate the gradient, and

possibly to the beginning of the sequence (t = 0). For example, if we are calculating

the cost of the input at time t = t we use the hidden states fromt = f 0; : : : ; t � 1g.

Therefore, the error gradient is passed back from timet through t � 1; t � 2 and

possibly as far back ast = 0, in order to adjust the hidden-to-hidden parameters

to better classify at current time-point t. Finally, the same process forparameter

updates and optimisation is used. This process e�ectively adjusts what is learn-

ing in the 'memory' of the Recurrent Neural Network and allows it to better use

past time points to reason about and classify current time-points.

3.3.3 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) [58] is a two layer neural network, with

one hidden and one visible layer. It is the onlyunsupervisedalgorithm discussed in

this dissertation. Unsupervised algorithms do not learn models which classify data

but which may, for example, extract patterns, like clusters, from the data. The
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aim is for nodes in the hidden layer to learn abstract features which better describe

the data and allow us to perform analyses where classi�cations do not exist. For

example, to determine how input features cluster and combine in the hidden nodes,

input feature interactions can be extracted, which is an analysis we perform on the

Bach dataset in our evaluation. The Restricted Boltzmann Machine also provides a

means to learn the abstract features which further aid in prediction for deep learning

applications.

Like Regression, a Restricted Boltzmann Machine extends the concept of a hidden

layer. However, unlike Regression and other learning algorithms we have described,

a Restricted Boltzmann Machine is anenergy-based learning algorithm. Energy-

based models, through an energy function , associate a real-valued, scalar energy

value with each variable con�guration (sample) in a dataset [12]. In this research,

we cover two types of Restricted Boltzmann Machines:

� Bernoulli Restricted Boltzmann Machines (BRBM): for binary input

nodes (variables).

� Gaussian-Bernoulli Restricted Botlzmann Machines (GRBM): for real-

valued, Gaussian input nodes.

Input variables to both types of Restricted Boltzmann Machine must be homoge-

neous because of the requirements of theenergy function which will be discussed

in x3.3.3.1. Two types of RBM are required, to handle two possible types of input

variables. The BRBM can only handle binary input features. This is su�cient for

binary and categorical data but information is lost if we bin (make categorical),

continuous data. Therefore, the use of the Gaussian RBM is also motivated, as

it can handle continuous Gaussian input. Although the BRBM and the GBRBM

have di�erent types of visible nodes, corresponding to the di�erent types of input

variables, both havebinary hidden units. Parameter initialisation is carried out

according to the procedure outlined inx3.2.1.1.
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Figure 3.10: Restricted Boltzmann Machine

3.3.3.1 Hypothesis Function

The concept of anenergy function is taken from particle physics, where stable and

therefore, desirable con�gurations of particles occupy alow energy state and are

more probable [12]. For example, liquid water is more stable than steam, occurs

more often in nature (more probable) and has less energy (heat). Therefore, the

energy function for water would output a higher value for steam than water.

Applying this to data, the aim is to learn an energy function which outputs a low

energy for desirable (probable) con�gurations of the data and a high energy for

unusual con�gurations. The following is a theoretical example in the context of the

sports performance dataset introduced in Chapter 1, which we will refer to here as

the GAA dataset. Assume there is a player who is moderately active throughout a

match but is only in contact with the ball once, for a very short period. During this

period, they increase their athletic work-rate dramatically. The energy function for

the player, at this point in the match, should output a much higher energy than at

other points, as the biometric sensors receive values which are farless probablefor

the player in the context of this match.

In both the BRBM and GBRBM, we express the energy of the models in terms of

their free energy . The free energyallows us to express the energy of a con�guration

in terms of the visible nodes alone, leading to an easier expression of the cost function

as we marginalise the hidden variables. Thetotal energy functions E(x; h) for both

algorithms and the relationship between the total energy and free energy is shown

in Appendix B.3. We de�ne the free energy function of a Restricted Boltzmann

Machine to be its hypothesis function.
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F � (x) = �
jx jX

i =1

x i b
(0)
i �

jh(1) jX

j =1

log(1 + ez(1)
j ) (3.30)

F � (x) =
jx jX

i =1

(x i � b(0)
i )2

2
�

jh(1) jX

j =1

log(1 + ez(1)
j ) (3.31)

Equations (3.30) and (3.31) show thefree energy function F : x 7! F (x) of the

Bernoulli and Gaussian-Bernoulli Restricted Boltzmann Machines, respectively.

The input x to these function represent a data samplex i � , where the row index is

omitted for simplicity. Therefore, in both equations x i is the value for the i th

feature in a visible input layer. The variable z(1)
j represents the linear activation

of the j th hidden node. The bias term b(0) represents thevisible bias, used when

propagating values from the hidden to the visible layer. This parameter will be

further utilised in the context of Gibbs Samplingin x3.3.3.3. Finally, the number of

nodes in the hidden and visible layers are given byjh(1) j and jxj, respectively. There

is no variance parameter� in our formulation of the Gaussian-Bernoulli free energy,

as we standardise input data to have zero mean and unit variance. Furthermore, we

do not add Gaussian noise to thereconstructions (discussed later inx3.3.3.3). The

free energyis the complementary value to the systemstotal energy. It is the amount

of energy that is still available to the system for use. To revisit our earlier example,

the player who only has one very short period of hard athletic activity will have a

lot of free energy throughout the game and little during their period of increased

work.

3.3.3.2 Cost Function

As before, the cost function computes a value which is used to evaluate the hy-

pothesis function output. For the RBM monitoring cost function, we again use the

negative log likelihood, but unlike the cost function presented previously in (3.15),

we do not have a classi�cation. Therefore, we must use anapriori probability p(x),

in place of aconditional probability p(yjx). The apriori is a measure of the proba-

bility of observing an event x, out of all possible events, rather than the probability
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of obtaining a classi�cation y, given an input sample x.

P(x i � ) =
e�F (x i � )

P

x
e�F (x i � )

(3.32)

Equation (3.32) shows the data sampleapriori calculation for an RBM. The free

energy for a samplex i � is computed and divided by sum of all possible free energies.

In practice, only the sum of free energies in the training set is computed. To again

use the GAA analogy, we receive a data-samplex i � for a particular point in the

match and calculate the free energy. Equation 3.32, calculates the probability of

observing this particular sample out of all other samples measured throughout the

match.

Jnll (� ) = �
1

jDj

jDjX

i =1

P(x i � ) (3.33)

Equation (3.33) shows the form of the negative log likelihood for the RBM. Minimis-

ing this measurement, raises the probabilityP(x i � ) of a training sample x i � com-

pared to all other samplesx0
i � 2 X . As the probability of the sample is raised, from

Equation 3.32 we can see that the free energy will also be raised. Furthermore, as the

free energy depends on the values in the visible layers and the marginalised hidden

layer values, the joint probability distribution P(x; h) is also learned, maximising

the probability of the training data in the visible and hidden layers. Therefore,

the more often the network sees a variable combinationor a similar combination of

variables, the more it will raise the free energy and lower the total energy of that

type of con�guration.

In relation to our GAA example, most measurements for a player with a low gen-

eral work rate will be similar, showing low values for heart rate, acceleration, etc.

Therefore, the RBM will receive inputs and calculate free energies resulting from

these types of measurements often, raising their free energy. Abstract, hidden layer

variables will also be learnt to reect this. Therefore, if similar con�gurations are

encountered, the result will be a high-free energy, whereas unusual, high-work rate

con�gurations will produce a low free energy or high total energy. This satis�es
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the aim of the RBM where desirable con�gurations of the data produce a low total

energy.

3.3.3.3 Updates and Optimisation - Contrastive Divergence

To train both types of Restricted Boltzmann Machine, we usen step Contrastive

Divergence , CDn . Contrastive divergence amounts to gradient descent with n

steps of Gibbs sampling at each iteration of the gradient descent procedure. We

use CD1, Contrastive Divergence with 1 step of Gibbs Samplingat each iteration,

instead of running the Gibbs chain to convergence. We useCD1, as this is a standard

approach in the literature and shown to have good performance [59]. To keep the

gradient calculation homogeneousfor both RBMs, we standardise continuous data

to zero mean and unit variance and do not add Gaussian noise when sampling

the visible nodes in the GRBM. Otherwise, we would require a di�erent gradient

function for the GRBM.

As we use gradient descent, we are again required to calculate thegradient - the

partial derivative of the cost function (3.33) with respect to model parameters � .

This will be substituted into the update function presented in Equation (3.21) and

used to optimise model parameters in gradient descent. Equation (3.34) shows the

function to calculate the gradient for an RBM. Contrastive Divergence and Gibbs

sampling are required to calculate this gradient.

@Jnll (� )
� ij

= hx i hj i data � h x0
i h

0
j i model (3.34)

Contrastive Divergence consists of two phases: thepositive phasehx i hj i data and

the negative phasehx0
i h

0
j i model . The angle brackets in Equation (3.34) denote expec-

tations (means) of the distribution speci�ed by the subscript that follows. Therefore,

the positive phase refers to values in the visible and hidden layers generated by the

data and the negative phase refers to values which are generated by themodel,

through Gibbs sampling.

In the positive phase , data is forward-propagated to calculate the probabilities of

the hidden layer to give h. The linear function 3.3 and the sigmoid function 3.4 are
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used for this. The binary states are then sampled with Equation (3.7). This gives

the values necessary forhx i hj i data and is the mean of the outer product ofx and h,

the input data and the hidden states calculated from the input data, respectively.

The positive phase relates to thedata itself and the abstract features extractedfrom

the data. For example, the positive phase gets a data sample from the GAA dataset

and might extract a hidden feature like `high work rate': `(yes/no)'.

In the negative phase , binary states are calculated for the hidden layer from the

data x. Values (not gradients) are then back-propagated to the visible layer, with

the functions (3.3) and (3.4). This gives a reconstruction x0 of the data and is

equivalent to one step of Gibbs sampling. The hiddenh0 states are then calculated

by propagating the reconstruction x0 forward. The visible reconstruction and the

hidden states generated from it, give the variables forhx0
i h

0
j i model . The negative

phase is necessary to extract theinternal representation the model holds about the

data. For example, if the algorithm is trained on the player with a low general

work rate, then the model will make the 'high work rate' abstract feature �re with

a low probability and output low values for visible features such asheart rate. This

becomes the probabilistic characteristics the model learns about a player.

The purpose of the two phases of Contrastive Divergence is to bring the models

internal representation P(x; h) closer to the actual distribution of variables. There-

fore, the visible and hidden states generated from the data, as well as the visible and

hidden states generated from the model, provide a means to update the parameters

in gradient descent and better model the data in the visible and hidden layers. For

example, in our experiments in Chapter 7, we have a set of input variables that are

transformed into a completely new set of abstract variables in the hidden layer. The

updating process carried out by the algorithm determines how inputs are combined

in the hidden nodes by assigning and updating weights that combine inputs into the

abstract features and thus learns the joint distribution.

It is important to note, that for the back-propagation process, the transpose of

the weight matrix is used. When we use the transpose,Wij = W T
ji , the same weight

propagates the value from thei th visible node to the j th hidden node and back-

propagates the value fromj th hidden node to the i th visible node. The transpose
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ties the feed-forward and back-propagation weights, which is necessary to use the

RBM learning algorithm. Furthermore, less parameters need to be learned and a

form of regularisation occurs because the weights are constrained. Weights are tied

for both types of Restricted Boltzmann Machines, but for value back-propagation

we use di�erent reconstructed visible states for each. This keeps the reconstructed

visible statesconsistent with the variables that were inputted to each RBM. In the

case of the GRBM, linear activation energies are used to give Gaussian visible unit

reconstructions. For BRBMs, a Bernoulli state sample is taken for the visible units,

from the logistic activation to give a reconstruction of Bernoulli input variables as

was shown in Equation (3.7).

3.3.4 Deep Belief Network

A Deep Belief Network [60], [14] di�ers from the RBM, in that it contains multiple

hidden layers. Furthermore, unlike the Multi-Layer Perceptron and recurrent neural

network, it can be successfully trained with more than one hidden layer. This

means that each subsequent layer learns a more abstract feature representation and

increases the accuracy of the model. The accuracy does not increase inde�nitely, but

like the number of nodes in a hidden layer, the number of hidden layers becomes

another hyper-parameter. A Deep Belief Network can be used for unsupervised,

supervised problems, or a combination of the two forsemi-supervisedapplications.

For example there may be a class imbalance or not all samples are classi�ed. All

necessary mathematical functions were de�ned in previous sections and no new

mathematical functions are required here. Parameter initialisation occurs according

to the methodology outlined in x3.2.1.1, with cost functions already outlined in

x3.2.3.2.

3.3.4.1 Optimisation

Training procedures and deep architectures are what characterise Deep Belief Net-

works. We have already mentioned that an arbitrary number of hidden layers are

possible in the architecture, given enough data. Unsupervisedpre-training , cou-

pled with a supervised or unsupervised�ne-tuning training procedure [60], [14]
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Figure 3.11: Deep Belief Network

ushered in the modern paradigm of deep learning.

We will �rst discuss unsupervised-pre-training which is the prerequisite for both su-

pervised �ne-tuning and unsupervised �ne-tuning. We will give examples of unsuper-

vised pre-training with the assumption that we will next be performing supervised

�ne-tuning, as this is a more intuitive way of explaining the optimisation process.

Unsupervised Layer-Wise Pre-Training . Unsupervised pre-training greedily

optimises each hidden layer of a deep neural network, individually, as a Restricted

Boltzmann Machine. The aim is to �rst �t the model parameters to the data

alone, without respect to a speci�c classi�cation or task. Therefore, when we then

want to �ne-tune , with respect to, for example, a classi�cation, the parameters are

already partially optimised. Thus, those parameters which optimise the network for

a particular classi�cation task are easier to �nd. Pre-training in e�ect, narrows the

search space for optimising the weights for an outcome of interest and thus, provides

an improvement to the learning process. It is similar to �rst �nding clusters which

describe the data very well and subsequently, using these clusters to train a classi�er

for increased predictive accuracy.

Figure 3.12 shows this process. First,L (0) and L (1) are treated as the visible and
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Figure 3.12: Pre-Training DBN Layers as RBMS

hidden layers respectively of an RBM and trained as such, according to the procedure

outlined in x3.3.3. Once the �rst layer has been optimised as an RBM, the process

proceeds toL (2) , where L (1) is now treated as the visible layer and L (2) as the

hidden. The visible states for L (1) are found by propagating dataset values from

L (0) to L (1) with the already optimised � (1) . This process is repeated as many times

as there are hidden layers in the architecture. It is important to note that for each

layer the RBM weights are tied, where for example,� (1) is used to calculateL (1) and

� (1) T is used to calculateL (0) .

Fine-Tuning With Supervised Back-Propagation . When unsupervised pre-

training has completed, �ne-tuning with supervised back-propagation tunes the en-

tire network with respect to a classi�cation outcome. Once pre-training is complete,

�ne-tuning with back-propagation proceeds exactly as if we were optimising a Multi-

Layer Perceptron, as described inx3.3.1. The parameters optimised in pre-training

are used to instantiate the hidden layers of the MLP, then the relevant output clas-

si�cation layer is added to the top of the architecture andall weights and biases are

then adjusted with standard back-propagation.
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3.4 Summary

In this chapter, we presented a detailed discussion of neural networks. As part of that

description, it was necessary to begin with basic concepts common to most machine

learning approaches, before a full description of all of the components required to

build a deep learning system. At that point, we were able to discuss the di�erent

forms of neural networks which led to a description of what comprises a deep learner.

Our next step is to develop an architecture in which deep learners can be deployed.

In the following chapter, we describe our methodology for building deep learning

experiments and the architecture we designed to enable these experiments.
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Chapter 4

Methodology and Architecture

Chapter 3 illustrated the wide range of components that comprise a deep learning

experiment. It also demonstrated the signi�cant complexity involved in both the

construction of deep learning experiments and the analysis of results. The main goal

of this chapter is to present a high level overview of an architecture developed to

manage the deep learning experiment. Thus, this chapter provides a landscape for

the more detailed research which follows in subsequent chapters. Inx4.1, we present

an overall methodology for deep learning. This draws on elements from standard

and pre-existing data mining approaches but also highlights the signi�cant e�orts

required in the preparation of both input data and the experiment itself. Thus, this

methodology satis�es requirements a2 and a3 presented inx2.4 as we have de�ned the

steps to perform a deep learning experimentwhich is linked to existing data mining

processesand was designed to besimple, reusableand exible . In x4.2, we describe

our system architecture in terms of the functionality of application layers and system

components, wherein we satisfy requirement c3, as we designatomic components,

each dedicated to aseparate concernwithin the deep learning experiment process.

4.1 An Approach to Deep Learning

Deep learning is a relatively new �eld, rooted in arti�cial intelligence and neural net-

work research. As such, deep learning experiments presented in the literature often

lack a common approach, underlying data model, or basis for standard knowledge-
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extraction process models. The application of pre-existing data mining processes

to the specialised �eld of deep learning could greatly bene�t the presentation and

understanding of experiments, as well as allowing easier integration of deep learning

into business processes.

In this section, we present our methodology and data pipeline for data-mining with

deep learning. Before detailing our extended version, we will briey introduce some

widely used and pre-validated methodologies, some of which we integrated and ex-

tended in our own architecture.

Generally, a data mining or machine learning experiment follows a certain proce-

dure to extract optimal models. As such, industry and academia have gone to great

lengths to agree upon a standard process for the extraction of knowledge from data.

The CRoss Industry Standard Process for Data Mining (CRISP-DM), de�ned in

1999, is the current industry standard for data mining [30]. It is the most widely

used framework [110] consisting of:business understanding, data understanding,

preparation, modelling, evaluation and deployment. The SEMMA [6] process - Sam-

ple Explore Modify Model Assess - de�ned by the SAS Institute Ltd. for their

enterprise mining software, is the next most used standardised model [110]. Both

give a good general overview of the data mining process but are better suited to

business applications. The problems presented here motivates both a more technical

and explicit approach.

Two processes which go into greater technical detail are those presented in [57],

and the data mining curriculum of the ACM SIGKDD (Association of Computing

Machinery Special Interest Group on Knowledge Discovery in Databases) curricu-

lum committee [29]. The method outlined in [57] builds on theknowledge discovery

in databasesprocess, �rst presented in [47]. These approaches mainly focus on:

data cleaning, integration, selection, transformation and mining, followed by pat-

tern evaluation and knowledge presentation[57]. The data mining curriculum is

focused on:databaseand data managementconcerns,data preprocessing, choice of

model and statistical inference considerations, interestingness metrics, algorithmic

complexity considerations, post-processing of discovered structure, visualisation and

understandability, maintenance, updates, and model life cycle considerations[29].
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Figure 4.1: Data Mining Framework for Deep Learning Overview

Although more �ne-grained, the concepts dealt with in these frameworks are still

quite abstract in terms of their speci�cation. This has led to the development

of ontologies to elaborate upon more �ne-grained issues. These ontologies include

those that describe data mining and machine learning experiments [45] or learning

algorithms and data mining concepts in more general terms [72].

High-level process models such as CRISP-DM are too general to account for the

critical and more granular elements of deep learning experiments. Ontologies, al-

though more �ne-grained, are not �ne-grained enough in some respects, as they

often focus onconcepts and their relations, rather than describing data attributes,

which is at the level one needs to specify. Furthermore, ontologies are expensive to

construct and require a signi�cant learning curve for researchers. Consequently, we

aim to address both high and low level issues with our approach, de�ning easy to

understand processes and artifacts, which aid in performing and understanding a

deep learning experiment.

Figure 4.1 shows our methodology, which �rst breaks data mining with deep learning

into three, high-level processes. The �rst,Preparation, of the data and environment,

will be detailed in x4.1.1. Learning, the next step, will be focus ofx4.1.2. Finally,

Post-Processingwill be elaborated upon in x4.1.3. Figure 4.1 also shows that each

of these high-level steps contain a series of lower-level elements, resulting in a hier-
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archy of experimental concerns. Each lower level concern will be addressed in the

appropriate section.

Our core contributions can be found in the second and third steps, where we have

developed two artifacts to address a deep learning experiment with even greater

granularity: a software model to address architectural and procedural concerns; and

a lightweight, exible and interoperable data model to describe its data properties

and their relations. These are the focus of Chapters 5 and 6, respectively. We have

also designed an artifact to semi-automate the data transformation workow for the

Preparation step. The workow does not form the core of our contribution and will

be dealt with in x4.1.1 with a brief discussion.

The higher level steps of Preparation, Learning and Post-Processing were chosen

to map almost directly to Data Preparation, Modelling and Evaluation steps of

the CRISP-DM solution. As this is essentially an industry standard for data min-

ing [30], [110], it allows us to integrate deep learning experiments seamlessly into

existing workows. The lower level concerns, shown below the graphic in Figure

4.1, were selected in order to form a representative superset of the elements out-

lined in [57] and [29]. The functions in italics are those we have added to extend

the original frameworks. These were added as they are important aspects of deep

learning experiments not explicitly represented in the original methodologies. Thus,

we consider it necessary to highlight these components.

The concept behind each process is simple. InPreparation the knowledge worker

selects, transforms and prepares the data so it can be directly input to a learning

algorithm. They also con�gure the experimental environment, consisting of any

software libraries and experiment management tools. InLearning, the knowledge

worker takes input data and using the con�gured environment, builds the relevant

learner model, which can be used to satisfy some pre-de�ned analytical goal. Finally

in Post-Processing, they take the models and data generated during the Learning

process and perform the required evaluations, interpretations and visualisations.

The process is iterative, with each step repeated as required. Often, the result of

one procedure can lead to a discovery which informs a subsequent step, leading

to the possible repetition of particular steps, each time with greater knowledge.
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For example, in the Post-Processing step, when learner models are analysed, this

information can lead to the discovery of information, like better hyper-parameter

settings, which could then be fed back into theLearning step in order to improve

upon classi�cation or description accuracy.

4.1.1 Preparation Stage

We now explore the �rst of three processes in our methodology, concerned with

preparation of the experimental environment and the data. The outlined method-

ology �rst addressesDatabase and Data Management Issues , as well asData

Selection and Integration which converts raw data to target data, an example of

which would be the extraction of data from an operational data store, to a data

warehouse fact table or comma separated value �le. These elements are extremely

important when data mining. In fact, when combined with other preparatory con-

cerns, this process has been shown to consume up to 80% of the time on a data

mining task [141].

In deep learning literature experiments generally begin withtarget data. Therefore,

as this research is mainly focused on the deep learningexperiment aspect of data

mining, we assumetarget data will be input and we explore those elements of our

methodology concerned with extractingknowledge from this target data.

During this research, we identi�ed a number of concerns when converting target

data into a format suited to a deep learning algorithm. These elements arecrucial

in order to ensure the framework is domain agnostic (requirement C2). Principally,

Homogeneity of Input Variables is often required, particularly with energy

based models such as the Restricted Boltzmann Machine (RBM). In the context

of the RBM, this refers to homogeneity of the data type - binary or continuous.

However, with variants such as Auto-Encoders and Recurrent nets, this can refer to

the data being on a homogeneousscale, where the data values of one feature do not

span a signi�cantly larger range than other features.

Variable homogeneity is achieve throughcleaning missing data from the data set and

transforming either the scale or type of each feature. Once features are transformed

to the relevant scale or type, they can also be transformed, at a language data-
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