Concurrent Validity of Fitbit Charge HR and Microsoft Band 2 to Measure Heart Rate

Clare M. McDermott 1,2, Andrew McCarren 2,3, Kieran M. Moran 1,2, Niall M. Moyna 1,2
1 School of Health and Human Performance, Dublin City University, 2 Insight Centre for Data Analytics, 3 School of Computing, Dublin City University

Abstract:
Purpose: Wrist-worn monitors are developed to unobtrusively measure heart rate (HR) at rest and during exercise. This study assessed the concurrent validity and reliability of the Microsoft Band 2 (Microsoft-Band2) and Fitbit Charge HR (Fitbit) to measure HR at rest and during exercise.

Methods: Healthy men (n=12) and women (n=12) (mean ± SD; age 24.3 ± 3.1 yr) were tested on two occasions separated by at least 7 d. The same protocol was used during each visit and consisted of 3-min conditions in the following order - supine, sitting, 6 km.h⁻¹ walk, 10 km.h⁻¹ run, and 12 km.h⁻¹ run. HR was continuously measured using a Holter monitor, Microsoft-Band2, and Fitbit, and averaged across each 3-min condition. A Bland Altman analysis was conducted to calculate the intervals of agreement (95%). A 2 tailed t-test at α = 0.05 was used to compare the mean differences in measurements with the Holter for both devices and an F-test (α = 0.05) was used to compare the measurement dispersion characteristics of both devices.

Results: The intervals of agreement for the Fitbit had comparable dispersion characteristics with the Microsoft-Band2 with the exception of the supine condition (p = 0.004). The difference between Fitbit and Holter are significantly further from zero than the difference between Microsoft-Band2 and Holter for sitting (p = 0.004) and 6 km.h⁻¹ walk (p = 0.001).

Conclusion: Microsoft-Band2 is more accurate than Fitbit at seated rest and during low intensity exercise, walking, and is comparable to Fitbit at 10km.h⁻¹ run.

INTRODUCTION
Advances in wearable technology has led to the emergence of new consumer-based wrist-worn HR monitors for personal health management. There is currently limited information available on the validity of wrist-worn HR monitors. The purpose of this study was to assess the validity of two commonly used wrist-worn HR monitors - the Fitbit Charge HR and the Microsoft Band 2.

METHODOLOGY
A total of 12 male and 12 females (mean ± SD; age 24.3 ± 3.1 yr, height 172.9 ± 10.1 cm; weight 69.4 ± 13.3 kg, BMI 23.1 ± 3.1. kg/m²) made 2 separate visits to the vascular health research laboratory at DCU. Participants were fitted with a Holter monitor and wore both a Fitbit and a Microsoft-band2 (figure 1a-c) during each laboratory visit.

RESULTS
The intervals of agreement for the Fitbit had comparable dispersion characteristics with the Microsoft-Band2 with the exception of the supine condition (F 24,24 = 3.05, p-value = 0.004). The MB displayed significantly higher accuracy for both sitting (t 24 =2.93, p-value=0.004) and the 6 km.h⁻¹ walk (t 24 =3.24, p-value=0.001). During the 10 km.h⁻¹ run, there was an equivalent difference between the Holter and both the Microsoft-band2 and the Fitbit, but in opposite directions.

Presented at the Faculty of Sport and Exercise Medicine Conference, RCSI, Dublin, Ireland. September 2017

Figure 1a
Figure 1b
Figure 1c

During each visit which was separated by 7 d, HR was measured while supine, sitting, walking and (figure 2). The dispersion between the Holter monitor and the Fitbit and Microsoft-Band2 were compared for each experimental condition using a F-test at α=0.05. The mean difference for each watch with the Holter monitor were then compared using a 2 tailed paired t-test at α=0.05.

Figure 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SD Holter-MB</th>
<th>SD Holter-Fitbit</th>
<th>F 24,24</th>
<th>P-value</th>
<th>Mean Holter-MB</th>
<th>Mean Holter-Fitbit</th>
<th>t 24</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine</td>
<td>8.97</td>
<td>2.93</td>
<td>3.05</td>
<td>0.004</td>
<td>-3.977</td>
<td>-0.058</td>
<td>2.03</td>
<td>0.026</td>
</tr>
<tr>
<td>Sitting</td>
<td>4.746</td>
<td>3.295</td>
<td>1.44</td>
<td>0.188</td>
<td>-0.768</td>
<td>2.689</td>
<td>2.93</td>
<td>0.004*</td>
</tr>
<tr>
<td>6 km.h⁻¹</td>
<td>5.405</td>
<td>7.825</td>
<td>1.91</td>
<td>0.141</td>
<td>-2.916</td>
<td>3.222</td>
<td>3.24</td>
<td>0.001**</td>
</tr>
<tr>
<td>10 km.h⁻¹</td>
<td>6.832</td>
<td>6.245</td>
<td>1.09</td>
<td>0.414</td>
<td>-2.902</td>
<td>2.147</td>
<td>2.67</td>
<td>0.007**</td>
</tr>
<tr>
<td>12 km.h⁻¹</td>
<td>6.887</td>
<td>7.346</td>
<td>0.937</td>
<td>0.561</td>
<td>4.166</td>
<td>6.141</td>
<td>0.961</td>
<td>0.373</td>
</tr>
</tbody>
</table>

Figure 4: Bland Altman plots