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Abstract

Spoken Content Retrieval Beyond Pipeline Integration of Automatic
Speech Recognition and Information Retrieval

David N. Racca

The dramatic increase in the creation of multimedia content is leading to the devel-
opment of large archives in which a substantial amount of the information is in spoken
form. E�cient access to this information requires e�ective spoken content retrieval (SCR)
methods. Traditionally, SCR systems have focused on a pipeline integration of two funda-
mental technologies: transcription using automatic speech recognition (ASR) and search
supported using text-based information retrieval (IR).

Existing SCR approaches estimate the relevance of a spoken retrieval item based on
the lexical overlap between a user's query and the textual transcriptions of the items.
However, the speech signal contains other potentially valuable non-lexical information
that remains largely unexploited by SCR approaches. Particularly, acoustic correlates of
speech prosody, that have been shown useful to identify salient words and determine topic
changes, have not been exploited by existing SCR approaches.

In addition, the temporal nature of multimedia content means that accessing content
is a user intensive, time consuming process. In order to minimise user e�ort in locating
relevant content, SCR systems could suggest playback points in retrieved content indic-
ating the locations where the system believes relevant information may be found. This
typically requires adopting a segmentation mechanism for splitting documents into smaller
\elements" to be ranked and from which suitable playback points could be selected. Ex-
isting segmentation approaches do not generalise well to every possible information need
or provide robustness to ASR errors.

This thesis extends SCR beyond the standard ASR and IR pipeline approach by: (i)
exploring the utilisation of prosodic information as complementary evidence of topical
relevance to enhance current SCR approaches; (ii) determining elements of content that,
when retrieved, minimise user search e�ort and provide increased robustness to ASR errors;
and (iii) developing enhanced evaluation measures that could better capture the factors
that a�ect user satisfaction in SCR.
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Chapter 1

Introduction

The past few decades have seen an explosion in the amount of multimedia content that is

being created and stored in digital format. This accumulation of data has been facilitated

by advances in new technologies which have provided individuals with relatively low-cost

devices that are able to produce and process high-quality audiovisual material. Almost

every person on the planet has now access to powerful recording devices that could �t

in a pocket. In combination with advances in mobile networks, this is causing a true

revolution in the amount of video and audio that people generate and consume. Instant

communication on social media platforms, which had mostly been driven by text, is now

more frequently being driven by the sharing of images, voice messages, and video.

In addition to personal users, there is a need to process the increasing volume of mul-

timedia content produced in the enterprise and corporate sector. It is common nowadays

to hear \this call may be recorded for quality assurance purposes"every time one tries

to contact a bank, TV, or internet service providers. Apart from call centres, media

professionals involved in the broadcast of radio and TV are interested in tools for the

editing, clustering, and automatic transcription of audio and video. Universities and in-

dividuals around the world o�er online courses based on video lectures and are interested

in providing users with tools for browsing and searching through such collections. TV-

on-demand services are greatly enhancing the experience of users by implementing, for

instance, automatic categorisation of movies, content-based search, and personalised show

recommendations. Many companies are now using advanced telecommunication systems

with recording capabilities that enable them to store business meetings and oral present-

ations for later consumption.

In all these contexts, the large amounts of audiovisual content available exceed the

capability of users to manually handle, manage, and access the information contained on

it. Therefore, it is imperative to develop computational techniques to permit automatic,

e�cient, and e�ective access to the relevant information contained within large collections

of multimedia recordings. Frequently, much of the information of interest contained in an

audiovisual recording is principally encountered within its audio stream, that is, within
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the spoken content or speech, as opposed to its visual stream which, although important,

may only provide non-critical information. Examples of this type of content may include

documentaries, interviews, meetings, lectures, and broadcast news, where most of the

information is conveyed through speech.

This thesis investigates several aspects relating to the automatic retrieval of relevant in-

formation from within collections of multimedia recordings, where most of the information

of interest is in spoken form. More speci�cally, this thesis deals with aspects associated

with the use of speech information that go beyondwhich words are spoken tohow they

are spoken, the challenge of recovering from potential errors in the automatic recognition

of spoken words, and that of estimating user satisfaction and measuring the quality of a

list of search results.

1.1 Overview of spoken content retrieval (SCR)

This section introduces the basic concepts related to SCR. It provides a brief description

of the fundamental technologies that are needed for developing practical SCR systems,

previous research carried out in the area, and highlights current challenges in the �eld.

1.1.1 Information access and retrieval from spoken content

Spoken content retrieval (SCR) is concerned with the development of automatic methods

to facilitate the search for information in a collection of speech recordings that satis�es an

information request from the user (Chelba et al., 2008; Larson and Jones, 2012a; Lee et al.,

2015). The reason why a user turns to an SCR system in the search for information is

the so-calledinformation need (Larson and Jones, 2012b), a term borrowed from the �eld

of information retrieval (IR) (Manning et al., 2008) to refer to the de�cit of information

which the user is seeking to satisfy by using a search tool.

Commonly, the audio content within a collection is organised as a set of individual au-

dio �les, each containing the audio stream of a single recording instance. Less frequently,

the spoken collection is just a long continuous stream of unsegmented audio without any

given �le structure. Even when the collection is organised into individual �les, the inform-

ation contained in each �le may well cover multiple topics that users may be interested in.

In a meeting retrieval system, for instance, users may be interested in �nding the particular

location within a meeting where a decision was made or where a particular item from the

agenda was discussed. In broadcast news retrieval, interests may vary between �nding all

recordings covering the same news story to �nding all instances where a particular person

is mentioned. When retrieving content from lectures or academic presentations, searchers

may be interested in �nding a lecture they missed, one where a new topic was presented,

or the exact moment when the lecturer introduces a new topic.

In order to satisfy the speci�c information needs that users may have, a SCR system

must then provide users with pointers to where the content requested is exactly located
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in the collection. These pointers can be as simple as a path in a �le system indicating

which audio �le contains the relevant information, or as advanced as a playback tool with

embedded audio that, once clicked, commences playback of the audio stream from the

exact point in time where the relevant information is located. These set or list of playback

pointers are also referred to as \jump-in" or \listen-in" points. The user is said to be

satis�ed with the pointers produced by a SCR system, if the information being sought can

be found e�ectively within the audio streams by following the playback pointers within a

reasonable amount of time.

Reducing the time that users need to spend listening to audio material is critically

important for maximising user satisfaction in SCR applications. In fact, time is one of

the main reasons why search systems are useful: if time was not a concern, then users

could just �nd the required information by manually assessing every document in the

collection. This approach would obviously be ine�cient for users who will likely have to

spend most of their time assessing irrelevant content. One of the goals in IR is thus to

reduce the auditing of irrelevant content, with the ultimate goal of reducing the time and

e�ort required by users to locate the relevant information.

Because information in audio format is less easily accessible than in text format, au-

ditioning time plays a major role in SCR applications. As opposed to the consumption

of text content, the consumption of speech requires sequential processing and thus addi-

tional time and e�ort from part of the user. By contrast, textual content is immediately

accessible in the sense that the information contained need not be processed in sequence.

In addition, text content usually contains explicit structural information (headings, para-

graphs, sections) that can facilitate its navigation, permitting almost immediate random

access to individual pieces of information. Although structural information may also be

present in spoken content, for instance in the form of speaker turns, it remains tacit in the

audio stream and is therefore not immediately available to the SCR system. Advanced

playback interfaces that permit the increase of playback speed or random seeks may help

users reduce auditioning time yet these cannot provide users with immediate access to

speech content which still needs to be listened to by users.

The consideration of aspects related to the access of information in audio and text

media establish a clear di�erence as to how user satisfaction or the e�ectiveness of a re-

trieval system should be measured. While in the text domain, \retrieval e�ectiveness" is

frequently quanti�ed by the amount of relevant material that is returned to the user, rel-

ative to the amount of irrelevant material. In the speech domain, \retrieval e�ectiveness"

must additionally take into consideration factors related to the temporal characteristics of

speech media such as the amount of time users waste in listening to non-relevant material.

1.1.2 SCR system overview

Stated naively, SCR is the application of automatic speech recognition (ASR) and textual

information retrieval (IR) to collections of speech recordings (Larson and Jones, 2012a).
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Figure 1.1: Block diagram showing the architecture and components of a conventional SCR system.

In the so-called \cascading" approach to SCR (Lee et al., 2015), the following processing

steps are involved: (i) an ASR system is used to convert speech into text, particularly

to obtain a text transcript of every spoken document in the collection; (ii) an IR engine

is then used to create an index of the text collection and to rank transcripts in order of

estimated relevance to the user query; and (iii) playback pointers corresponding to the

top ranked transcripts are then generated and retrieved as search results to the user for

further consumption.

Figure 1.1 depicts the architecture and main components of a standard SCR system.

The dashed lines in the diagram divide components into two large groups: those that are

used at indexing time to construct a timed search index (top group), and those that are

used at retrieval time (bottom group) to generate the search results. The timed index

�le created in the indexing process is a series of data structures containing information

about the occurrence of individual spoken words across documents, along with their time

of incidence within the audio streams. Since ASR systems are incapable of recognising

words that are not in the recognition vocabulary, the timed index may include additional

information to help search for out-of-vocabulary terms. This includes word proxies (Chen

et al., 2013), lattices or N-best list, or subword units such as morphemes or phonemes.

While indexing components do not generally have major limitations in terms of processing

time, retrieval components are designed so that search results can be produced as quickly

as possible (less than a second in practice) to avoid wasting the time of the user.

Beyond their classi�cation into indexing and retrieval time, the components of an SCR

system can be additionally grouped by their functionality: IR components, which deal

with the indexing, processing, and searching of textual data; ASR components, which

perform speech-to-text conversions; and content structuring components, which provide

the means for detecting relevant regions within large spoken documents and determining

the location of playback pointers.
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Information retrieval

Information retrieval (IR) (Manning et al., 2008) deals with the problem of �nding content

that is relevant to a user's information need within a collection of items. A user typically

expresses their information need as a text query, which is most commonly formulated as a

sequence of keywords or as a description in natural language. The query is then provided

as an input to an IR system which searches for items in the collection containing one or

more words from the query and presents them back to the user as a list of items ranked

by their estimated likelihood of relevance.

In order to provide quick search response times, text indexing techniques (Zobel and

Mo�at, 2006; Manning et al., 2008) are used to construct a search index. The index is pre-

populated with pointers and statistics about the occurrence of words in the documents

so that documents that match the query can be e�ciently identi�ed at retrieval time.

During this process, a lexicon containing the list of unique words found in the documents

is created along with an inverted index, which stores information about the number of

times a particular word occurs in a given document.

Prior to the construction of a search index, the text contained in the documents needs

to be processed. This process usually consists of tokenisation, removal of punctuation

symbols and stop words, and stemming (Manning et al., 2008). In the context of IR,

tokenisation involves the identi�cation of linguistic units to be used as indexing terms of

documents. Normally, only semantically meaningful units of a language such as phrases,

words, morphemes, phonemes, are used as indexing terms. Stop word removal is useful

in IR because it reduces the size of the index without signi�cantly harming retrieval

performance. This is because terms that occur frequently in the collection are less useful

in distinguishing relevant from non-relevant documents. Finally, stemming is used to

cluster semantically similar terms with di�erent su�xes into a single equivalence-class.

When a query is provided to the IR system, the text of the query is processed in a similar

manner as documents in order to maximise the overlap between them.

In IR jargon, \matching" refers to the process of scoring every document in the collec-

tion against the query. These scores are estimated based on the number of terms shared

between the query and each document, so that they either re
ect the probability of rel-

evance of the documents, or their degree of semantic similarity with respect to the query.

The total order induced over the collection of documents by these relevance scores can

then be used to suggest the order in which documents should be inspected by the user.

Two popular ranking models are the vector space model (VSM) (Salton, 1979) and

the probabilistic relevance model (Sp•arck Jones et al., 2000). Under the scope of these

general models, several ranking functions have been proposed (Salton and Buckley, 1988;

Zobel and Mo�at, 1998; Robertson et al., 1994), most of which calculate a relevance score

as a linear combination of weights associated to each term in the query matching the

document.

The main principle governing how weights are assigned to terms in a document states
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that higher weight values should be given to terms that are representative of the content

of the document and that can discriminate this document from others. Term weights are

typically de�ned based on three fundamental statistics: (i) the number of times a term

occurs in the document under consideration; (ii) the length of this document; (iii) and the

number of documents in which a term appears across the whole collection. Several schemes

have been proposed in the past that de�ne functions for deriving e�ective term weights

from frequency information (Zobel and Mo�at, 1998). Usually, terms with high within-

document frequencies relative to the length of the document, and with low document

frequencies relative to the size of the collection are given larger weight values. Because

relevance scores are calculated as the sum of term weights, those documents containing

higher weighted terms in the current query are thus likely to appear at higher ranks in

the list of results for this query.

Content structuring (segmentation)

In order to reduce the amount of time that users need to spend auditioning audio material,

an SCR system should ideally indicate the most likely starting time of the relevant part in

the audio �le and also potentially the time span of material that contains likely relevant

information. In practice, this is normally achieved by splitting documents into a set of

sub-documents, referred to eitherpassagesor segments. The resulting sub-documents can

be then treated as documents from a IR perspective, and be indexed and later ranked

according to their relevance score against the query.

The process of splitting documents into passages for retrieval has long been the fo-

cus of research in the IR community and is known as passage retrieval (Callan, 1994;

Kaszkiel and Zobel, 1997, 2001). A generalisation of passage retrieval is XML retrieval,

where the passages to be ranked are organised in a hierarchical fashion into multiple levels

of content granularity (Fuhr et al., 2002; Fuhr and Lalmas, 2007). The most e�ective

passage retrieval and XML retrieval techniques exploit document-level as well as passage-

level evidence at di�erent granularity levels, for improved ranking of relevant passages or

documents (Kaszkiel and Zobel, 2001; Ogilvie and Callan, 2005; Arvola et al., 2011). Tech-

niques that seek to improve the ranking of relevant passages given the context from their

container documents and that of their adjacent passages, are known as contextualisation

techniques (Kek•al•ainen et al., 2009; Arvola et al., 2011).

Research in SCR has applied passage retrieval techniques for �nding listen-in or jump-

in, and listen-out or jump-out time points close to the beginning and respectively the end

of relevant fragments in collections of spontaneous and conversational speech (Oard et al.,

2006; Larson et al., 2011; Eskevich et al., 2013a; Akiba et al., 2011). In these approaches,

the spoken collection is �rst segmented into short passages, which are then ranked by

relevance to the query. The playback pointers to be shown to the user are then given

by the time o�sets of the ranked passages relative to the start of the documents where

they occur in. Most approaches adopted for segmenting spoken collections into individual
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passages are based on windowing (Stan�ll and Waltz, 1992; Callan, 1994; Kaszkiel and

Zobel, 1997, 2001) or automatic text segmentation methods (Hearst and Plaunt, 1993;

Choi, 2000; Malioutov and Barzilay, 2006).

Windowing consists of generating passages by moving a �xed-length window across

the text document. The window is positioned at the beginning of the document and

moved towards the end in steps given by a �xed length unit. A new passage containing

the words that fall within the sliding window is generated at each step until the end of

the document is reached. Additional improvements in retrieval performance can often be

obtained by setting the step length to be smaller than the length of the window so that

the resulting passages overlap (Stan�ll and Waltz, 1992; Callan, 1994; Kaszkiel and Zobel,

1997). The length units are usually de�ned in terms of time or in number of words (Quinn

and Smeaton, 1999).

Text segmentation algorithms seek to divide a text or speech document into semantic-

ally coherent units by exploiting features that are informative of topic shifts. These include

methods based on lexical cohesion (Hearst, 1997; Reynar, 1998; Choi, 2000; Malioutov and

Barzilay, 2006), and others that exploit multimodal features in either a supervised or un-

supervised fashion (Reynar, 1998; Shriberg et al., 2000; T•ur et al., 2001; Galu�s�c�akov�a and

Pecina, 2014b).

When overlapping passages are indexed, the matching component may return pointers

to passages that overlap in the result list. In the process of doing this, it may assign

di�erent ranks to passages that are adjacent in the original speech recordings. Depending

on the application domain, users may be dissatis�ed if presented with a list of similar

playback pointers since these may be perceived as duplicate results. Two general segment

consolidation strategies have been developed to deal with these issues: �ltering (Wartena,

2012) and recombination (Abberley et al., 1999b; Johnson et al., 2000). Filtering consists

of removing passages from the list of results that overlap or that are close to another

passage ranked higher in the result list. In this strategy, only the result with the highest

rank is kept. Recombination consists of merging passages that overlap or that are close

to another passage ranked higher in the result list. In this case, the combined passage is

normally assigned the rank of the highest scoring merged passage.

Automatic speech recognition (ASR)

Automatic speech recognition is concerned with the identi�cation of words spoken in

continuous speech, possibly by multiple speakers, across highly variable acoustic condi-

tions (Levinson et al., 1983; Rabiner, 1989). Early ASR systems were only capable of

recognising among a small number of words spoken in isolation, by a single speaker, in

controlled recording environments. Subsequent improvements of ASR technology during

the 1980s and 1990s gave rise to large vocabulary continuous speech recognition (LVCSR)

systems capable of transcribing speech produced by multiple speakers and considering a

much larger number of words (60,000 or more) (Gauvain et al., 1999; Rousseau et al.,
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2011).

The most e�ective speech recognition systems are based on statistical models that are

able to handle the high complexities of the speech signal as well as the high variations that

exist in spoken language. A popular statistical framework for ASR systems models the

mapping between phonemes underlying spoken words and acoustic input from the speaker

via hidden Markov models (HMMs) (Levinson et al., 1983), and the space of possible

word sequences in a language via statistical language models (LMs) (Katz, 1987). The

recognition process then consists of searching for the sequence of words that best explains

the acoustic patterns observed and that has the highest language model probabilities. To

make this inference practical, the number of possible words that can be recognised is �xed

in advance, limited by the vocabulary of the language model.

ASR systems can produce predictions in multiple formats. A lattice is a graph that

represents multiple hypotheses made by the recogniser, where nodes are points in time

and arcs represent hypothesised words along with their con�dence scores. The 1-best

hypothesis is the sequence of words corresponding to the path in which the ASR system

has greatest con�dence. Typically, SCR systems only consider the 1-best hypothesis from

the ASR in the indexing process, although advanced matching techniques (James and

Young, 1994) may consider recognition units from less likely hypotheses in an attempt to

match words from the query that may be missing from the 1-best hypothesis or the LM

vocabulary.

Despite recent improvements in ASR technology (Hinton et al., 2012), transcription

errors are still a common issue in modern ASR systems, especially in domains where speech

is informal, unstructured, spontaneous, and conversational. The quality of ASR systems

is frequently measured by estimating the word error rate (WER) of an ASR hypothesis,

by counting the number of word deletions, substitutions, and insertions with respect to

the perfect transcription of the utterance. State-of-the-art ASR systems can produce

transcripts with WERs that range between 9%-11% for broadcast news (Bell et al., 2015;

Wu et al., 2016), 10%-40% for multi-genre TV broadcast (Bell et al., 2015), 5%-40%

for general spontaneous conversational speech (Lileikyte et al., 2015; Xiong et al., 2016;

Chiu et al., 2017; Enarvi et al., 2017), and 45%-50% for YouTube videos (Hinton et al.,

2012). Recognition rates can vary greatly depending on the domain, genre, spontaneity,

language, and audio quality of the speech material as well as the amount of training data

and computing resources available. With su�cient training and computing resources, ASR

technology can attain WERs as low as 5% for relatively clean telephone conversations

in American English (Xiong et al., 2016). By contrast, in more challenging conditions,

practical ASR systems can transcribe conversational speech with WERs as high as 20%-

40% (Lileikyte et al., 2015; Chiu et al., 2017; Enarvi et al., 2017).

As SCR systems principally rely on �nding occurrences of query terms in ASR tran-

scripts, ASR errors represent one of the main challenges in achieving e�ective retrieval.
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1.1.3 Open problems in SCR

In order to motivate the research questions addressed in this thesis, this section describes

in detail some of the limitations present in existing approaches to SCR, as well as aspects

of SCR that have not been explored in full by previous research.

The problem of handling ASR errors in the speech transcripts

Due to the inherent di�culty of the speech recognition task, ASR systems produce erro-

neous transcriptions of the spoken material. This results in incorrect words being inserted

and correct words being substituted or deleted in the predicted text. These errors complic-

ate the task of the IR engine which principally relies on �nding overlapping terms between

the query and the documents to �nd relevant documents.

While human transcripts are free from ASR errors, transcripts produced by an ASR

system are relatively inexpensive to obtain. They are also free from misspellings and, most

importantly, contain word time information which is necessary in SCR for determining the

potential location of candidate relevant regions within long spoken documents. Practical

SCR thus requires the indexing of ASR transcripts which in turn necessitates of retrieval

techniques that could handle recognition errors e�ectively.

Research in SCR has mainly focused on understanding how ASR errors a�ect the per-

formance of IR models and on developing techniques to make retrieval robust to these

errors. These aspects were extensively explored in the context of the Text REtrieval Con-

ference on spoken document retrieval (TREC SDR) benchmarks (Voorhees and Harman,

2005) which evaluated the e�ectiveness of SCR systems over a collection of broadcast news

speech recordings. Several techniques were then proposed to deal with ASR errors, notably

including: the exploitation of multiple hypothesis produced by the ASR (Crestani et al.,

1997; Siegler et al., 1997; Tsuge et al., 2011); the indexing of phonetic units instead of

words (James and Young, 1994; Smeaton et al., 1997; Chelba et al., 2008); and the applic-

ation of pseudo-relevance feedback (PRF) to expand the query and document's contents

with terms extracted from external error-free corpora (Johnson et al., 1999b; Singhal and

Pereira, 1999; Woodland et al., 2000).

The techniques developed at TREC SDR were found so e�ective at reducing the impact

of ASR errors over IR performance that SCR was considered a \solved problem" (Garo-

folo et al., 2000). However, later analysis suggested that broadcast news speech does not

present major di�culties for SCR since this type of speech content is normally planned,

formal, redundant, and clearly delivered (Allan, 2001). For collections containing record-

ings of spontaneous or conversational speech, such as interviews, business meetings, or

telephone conversations, it was later discovered that ASR errors can signi�cantly decrease

the e�ectiveness of SCR systems (White et al., 2005; Eskevich et al., 2012c; Akiba et al.,

2011). The increased di�culty was attributed to the characteristics of casual speech,

where information tends to be conveyed by a less diverse set of content-bearing words,
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and structural cues, such as topic shifts, are less clearly delivered.

In addition to the spontaneity levels of the speech content, it has been also pointed out

that ASR errors may have a major impact on SCR e�ectiveness when the units of text to be

ranked are short passages (60-100 words) extracted from an ASR transcript (Allan, 2001).

The main reason being that short passages may not contain enough occurrences of query

terms for the matching process to be able to recover from query terms being misrecognised

by the ASR. Although considering longer excerpts of text, containing a greater number of

terms, may seem like a reasonable solution, previous research has shown that the use of

long passages can be detrimental to SCR performance when the granularity of the passages

di�ers from that of the relevant content (Wartena, 2012; Eskevich et al., 2014).

As evidenced in previous research, expansion of passages with related terms extracted

from in domain parallel corpora, can o�er increased robustness to ASR errors (Johnson

et al., 1999b; Singhal and Pereira, 1999; Woodland et al., 2000). Nonetheless, these tech-

niques require the availability of an external text corpus with a domain similar to the tar-

get collection, which may be di�cult to obtain. Contextualisation techniques (Kek•al•ainen

et al., 2009; Arvola et al., 2011) can o�er an alternative solution to passage expansion

that does not require external corpora. In these techniques, the relevance score of a pas-

sage is computed based on the terms contained in the passage plus those contained in

the remainder of the document. Although contextualisation techniques have been shown

e�ective in textual passage and XML retrieval tasks (Carmel et al., 2013; Arvola et al.,

2011), only a limited amount of work has explored their e�ectiveness in SCR (Nanjo et al.,

2014; Shiang et al., 2014), while none of these has properly evaluated the capabilities of

these techniques for reducing the impact of ASR errors.

The challenge of exploiting speech beyond lexical information

Current approaches for retrieval and content structuring for SCR have mainly sought to

exploit the lexical representation of the spoken content that results from the ASR process,

omitting other valuable information that is encoded in the speech signal. However, beyond

its lexical representation, speech is known to encode richer information about what is said

through the way words are pronounced. This is known as prosody and includes the pitch,

duration, and loudness of speech.

Variations in pitch, duration and loudness have frequently been associated with various

aspects of spoken communication. They are used for marking emphasis or focus on partic-

ular words, indicating the intentions or speech acts of an utterance, expressing emotions

and attitudes, and facilitating the understanding of ambiguous syntactic expressions (Wag-

ner and Watson, 2010; Hirschberg, 2002). Furthermore, prosody is believed to encode the

information status of words and how this status changes over time. There is evidence that

words considered \new", \important", \focused", \not given", \unpredictable", \inaccess-

ible", or \informative" in a discourse are more likely to be emphasised acoustically than

others (Prince, 1981; Hirschberg and Grosz, 1992; Silipo and Crestani, 2000; Hirschberg,
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2002; Wagner and Watson, 2010; Ward and Richart-Ruiz, 2013; R•ohr, 2013). Acoustic

emphasis given to a particular word in speech is known as acoustic/prosodic prominence.

Thus, while ASR transcripts are generally noisy and content originating in spoken form

is likely to be more informally structured, spoken content has signi�cant amounts of ex-

pressive information available that might also potentially be exploited in the segmentation

and retrieval processes.

Although a considerable amount of research has been done in the exploration of the util-

ity of prosodic information in various speech processing tasks, such as speech summarisa-

tion (Chen and Withgott, 1992; Koumpis and Renals, 2005) and segmentation (Hirschberg

and Grosz, 1992; Shriberg et al., 2000), little research has been done to explore its dir-

ect utility in SCR. It was suggested that prosody can be used to improve the ranking of

relevant content in SCR (Silipo and Crestani, 2000). This is because acoustically promin-

ent words tend to be also those that are most descriptive of the content being conveyed,

according to the term weights produced by a ranking function (Crestani, 2001).

Building upon Silipo and Crestani's �ndings, other researchers have attempted to ex-

ploit prominence information in SCR and topic tracking tasks by combining lexical inform-

ation of words with acoustic features for the calculation of enhanced term weights (Chen

et al., 2001; Guinaudeau and Hirschberg, 2011). Their approach consists of implementing

an alternative term weighting scheme which increases the lexical weight of terms whenever

their individual occurrences are found to be emphasised in the speech content. Research-

ers obtained mixed results with this technique. While prominence information was found

useful for improving the retrieval of speech fragments discussing similar topics in a French

corpus (Guinaudeau and Hirschberg, 2011), preliminary SCR experiments conducted over

broadcast news speech in Mandarin Chinese showed no bene�ts from using these enhanced

term weights in an SCR task.

Considering the ambivalence of these �ndings, it is thus unclear if prosodic prominence

information could be e�ectively used to improve existing term weighting techniques for

SCR. Furthermore, limitations of the speech collections available at the time put a restric-

tion in the set of SCR experiments that researchers could conduct and limited their ability

to address this problem in more detail. Recently, researchers have collected and released

new test collections for SCR research that contain a large number of speech documents

transcribed with improved ASR systems, numerous examples of search queries, as well as

high-quality relevance assessments in various levels of spoken content granularity. It is

therefore worthwhile to revisit the problem of exploiting prosodic information over these

new datasets to seek for de�nitive answers and extend previous analysis to new languages,

genres, and SCR tasks.

The problem of structuring content and of measuring user satisfaction

Content structuring still remains an open issue in SCR despite having been the focus of a

number of existing studies (Eskevich et al., 2012b; Wartena, 2012; Eskevich et al., 2013c,
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2014; Galu�s�c�akov�a and Pecina, 2014b). While the segmentation problem is generally un-

ambiguous for formal and planned speech in which the information is explicitly presented

in a structured manner, this is not the case in domains where speech is conversational and

spontaneous. In such cases, segmentation into unambiguous semantically meaningful units

may not be possible. For instance, in broadcast news, information is normally presented

as a sequence of distinct news stories where boundaries between stories are easily recog-

nisable. By contrast, the structure of a business meeting or a lecture may be less obvious

and therefore harder to recognise automatically.

Popular approaches to automatically segment spoken material for SCR purposes fall

into two broad categories. The �rst seeks to identify topic boundaries based on the lexical

and acoustic properties of the transcribed spoken material (Hearst, 1997; Shriberg et al.,

2000; Malioutov and Barzilay, 2006). The second, based on sliding windows, disregards

topic structure and seeks to divide speech into arbitrary passages of similar length (Stan�ll

and Waltz, 1992; Kaszkiel and Zobel, 1997, 2001). Surprisingly, the latter approach has

proven considerably more e�ective in work to date (Tiedemann and Mur, 2008; Wartena,

2012; Eskevich et al., 2012b; Galu�s�c�akov�a and Pecina, 2014b). The reason being that arbit-

rary passages are less a�ected by ASR errors; they can alleviate the di�culties associated

with estimating relevance scores for passages that vary in length; and they can adapt

better to di�erent information requests. However, careful investigation of window-based

approaches reveals them often to be sub-optimal, to provide poor playback listen-in points

with consequential poor user experience, and to negatively a�ect the e�ectiveness of re-

trieval models compared to an optimal segmentation (Kaszkiel and Zobel, 2001; Eskevich

et al., 2012b; Wartena, 2012).

Much of the di�culty in determining if there is a single superior content structuring

approach for SCR, has been associated with the problem of evaluating the output of SCR

systems. Early evaluation measures proposed for estimating the quality of SCR results

were based on adaptations of standard measures originally developed for the evaluation of

document (Harman, 1993), passage (Allan, 2004), or XML retrieval (Kamps et al., 2007)

tasks, which estimate the proportion of relevant content retrieved at top ranks relative

to the amount of irrelevant material. Although these measures may be appropriate in

the context of text retrieval, they do not account for the temporal aspects involved in

the auditioning of spoken content, namely, the time a user must invest in listening to the

audio snippets retrieved.

Improved adaptations of evaluation measures have been proposed by a number of

researchers (Liu and Oard, 2006; Galu�s�c�akov�a et al., 2012; Eskevich et al., 2012c; Aly

et al., 2013a) to take account of a number of dimensions that are believed to a�ect user

satisfaction in SCR. The main aspects considered being: the amount of relevant content

retrieved measured in time units, its ranking, and additional time constrains such as

the distance between the time pointers returned by the system and the beginning of the

relevant content. Despite these improvements, most of these measures tend to assign
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disproportionate importance levels to the relevance, ranking and time dimensions, and

can thus only o�er a partial solution to the evaluation problem. Novel measures for IR

evaluation proposed recently (Mo�at and Zobel, 2008; Chapelle et al., 2009; Smucker and

Clarke, 2012) attempt to model the behaviour of users when assessing a ranked list of

results, but have not been fully explored in the context of SCR.

1.2 Research questions

Considering the open problems in SCR discussed in Section 1.1.3, as well as the previ-

ous research carried out in the area, this thesis investigates existing and proposes novel

techniques for SCR along three directions: (i) the utilisation of non-lexical acoustic in-

formation for the detection of informative keywords; (ii) the adoption of contextualisation

techniques for increasing SCR robustness to ASR errors; and (iii) the development of novel

evaluation measures that could permit a fair comparison of di�erent content structuring

methods in SCR.

With regards to the challenge of exploiting non-lexical information, this work advances

the investigations of Crestani (2001), Chen et al. (2001), and Guinaudeau and Hirschberg

(2011), and studies the utility of acoustic/prosodic prominence features for improving

existing SCR indexing techniques and term weighting schemes. In particular, the focus is

on determining whether acoustic features derived at the word-level can be e�ectively used

to estimate important mentions of indexing terms, and whether this acoustic evidence can

be further combined with lexical features to improve SCR e�ectiveness. These objectives

can be summarised in the following research questions:

RQ-1: Can information about which prosodic units are made prominent in speech be

combined with lexical information to derive improved term weighting schemes and

retrieval functions that could enhance SCR e�ectiveness?

This thesis seeks to answer RQ-1 empirically by conducting SCR experiments with re-

trieval functions that combine prosodic prominence and lexical information about terms

to calculate relevance scores.

With respect to the challenge of handling ASR errors in the speech transcripts, this

thesis investigates if contextualisation techniques can make the ranking process more ro-

bust to ASR errors. In this regard, the task under investigation is passage retrieval, in

which the units to be retrieved are relatively short in length and may not contain su�cient

terms to compensate for speech recognition or segmentation errors. This objective can be

stated more formally as:

RQ-2: Can contextualisation techniques increase the robustness of standard text retrieval

approaches to ASR errors when the retrieval units are made from short fragments

of speech transcripts?

13



In order to answer RQ-2, the e�ects on retrieval e�ectiveness produced by di�erent contex-

tualisation techniques are analysed under various conditions of speech recognition errors

in the transcripts.

Lastly, in relation to the problems of content structuring and evaluation in unstructured

collections, this thesis �rst provides a critical overview of existing evaluation measures for

SCR, and then investigates alternative measures that could provide more appropriate es-

timates of user satisfaction in the context of SCR. These alternative evaluation measures

are then used to carry out an unbiased comparison of di�erent content structuring tech-

niques applied to SCR with the goal of determining which technique results more e�ective

in terms of maximising user satisfaction. This set of goals can be summarised in the

following research questions:

RQ-3-A: Can existing evaluation measures for SCR estimate levels of user satisfaction

appropriately?

RQ-3-B: Can enhanced evaluation measures be developed to address the shortcomings of

existing evaluation measures for SCR?

RQ-3-C: Which content structuring techniques are most e�ective in SCR in terms of

maximising user satisfaction?

Answers to these research questions are �rst sought by reviewing previous research in

IR and SCR evaluation, emphasising work that has focused on aspects related to the

modelling of user browsing behaviour when scanning a ranked list of search results. Based

on this analysis, a novel framework for SCR evaluation is developed and �nally used to

study the e�ectiveness of di�erent content structuring approaches.

1.3 Thesis structure

This thesis begins by describing the principal technologies underlying modern SCR sys-

tems: information retrieval for text collections (IR), automatic speech recognition (ASR),

and content structuring applied to IR tasks. It then continues with an in depth overview

of previous research conducted in SCR, emphasising previous studies that focused on the

interactions between ASR errors and IR techniques, the comparison of content structur-

ing methods, and the exploitation of acoustic/prosodic information. This is followed by a

description of the collections and software used for the experimental work in this thesis.

The development of techniques and experimental work carried out in this thesis are then

presented, followed by the conclusions and suggestions for future work.

The remainder of this thesis is structured into the following chapters:

Chapter 2 overviews the fundamental technologies needed for SCR. It starts by describ-

ing basic concepts and existing techniques used for creating indexes and retrieving

relevant content within large collections of text documents, including those used
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in the experimental work of this thesis. This is followed by a description of the

fundamental aspects related to ASR technology, including a high-level overview of

the individual components required for an operational ASR system. Most content

structuring approaches adopted in SCR are based upon research on the application

of automatic text segmentation techniques to text retrieval tasks. Chapter 2 thus

examines these techniques in detail.

Chapter 3 provides a critical review of previous and current research in SCR. The earli-

est experimental studies in SCR focused on relatively small collections of voice mail

and broadcast news, and then switched onto more challenging conversational speech

content such as interviews, general TV broadcasts, and lectures. Much of previous

research in the area has mainly been driven by evaluation campaigns and research

benchmarks, and has focused on the challenges of handling ASR errors and struc-

turing content. Although not part of mainstream research, previous studies have

investigated the potential bene�ts of using acoustic/prosodic information to improve

SCR e�ectiveness. All of these studies are discussed in Chapter 3.

Chapter 4 describes the speech collections, queries, and software used in the experi-

mental work of this thesis. Ideally, test collections for SCR research must: (i) be

large enough to account for a varied number of interesting topics to search for; (ii)

have available queries with associated relevant judgements, preferably carried out

at sub-document granularity levels; (iii) be transcribed automatically by at least

one ASR system. Due to the lack of availability and high costs associated to the

creation of these data sets, the experimental work in this thesis is based on spoken

collections that, despite not meeting all requirements outlined above, are still use-

ful for the goals set in this thesis. In particular, the BBC collection is a relatively

large (3000 hours) dataset containing English recordings of general TV content (talk

shows, documentaries, series, etc) with 100 queries and low-quality �ne-grained rel-

evance assessments. The Spoken Document Processing Workshop (SDPWS) collec-

tion is a small (30 hours) data set of lecture recordings in Japanese, that contains a

230 queries, high-quality �ne-grained relevance assessments, and a large number of

transcripts produced by ASR systems of di�erent quality.

Chapter 5 describes a series of experiments that seek to determine whether acous-

tic/prosodic information can be used to improve current lexical-based term indexing

techniques. This chapter �rst describes the approach adopted for feature extraction

and their posterior word-alignment against speech transcripts. It then elaborates on

the derivation of heuristic-based prominence scores for individual indexing terms,

and on their integration into a ranking function for speech content. Two groups of

experiments are then described. The �rst group investigates if prominence scores

can provide a meaningful increase in retrieval e�ectiveness when integrated via the

heuristic-based approach. The second group uses machine learning techniques to
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study the relationship between prominent and informative terms, as well as the value

that prominence information might have for improving content ranking in SCR.

Chapter 6 investigates the bene�ts of using contextualisation techniques for improving the

ranking of speech passages in adverse conditions of ASR errors. This chapter begins

by motivating the adoption of these techniques in SCR. Existing contextualisation

techniques are then described and their ability to improve retrieval e�ectiveness

evaluated under di�erent conditions of ASR errors in the speech transcripts.

Chapter 7 introduces a novel user-centric framework for the evaluation of spoken passage

retrieval. Evaluation measures under this framework are then used to carry out a

large-scale comparison of existing content structuring approaches.

Chapter 8 describes the conclusions of this thesis, provides concrete answers to the re-

search questions stated in Section 1.2, and suggests directions for future work.

Appendix A provides a list with all publications derived from this dissertation.

Appendix B describes a series of index similarity metrics used to measure the quality of

a search index built from ASR transcripts.

Appendix C provides a detailed description of LambdaMART, a learning-to-rank method

based on regression trees that was used in the experiments presented in Chapter 5.

Appendix D describes the general optimisation method used to tune the parameters of

retrieval models in the experiments presented in Chapters 5 and 6.

Appendix E describes the results of retrieval experiments with a SCR method that ex-

ploits prosodic/acoustic features by leveraging the output of a binary classi�er.
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Chapter 2

Review of Fundamental

Technologies in SCR

Information retrieval (IR) is the study and development of automatic indexing and ranking

techniques that permit searching for relevant information within a collection of informa-

tion sources. These techniques seek to solve the problem of \content overload" in which

searching for a particular piece of information by browsing becomes impractical as the

size of the collection grows over time. Content overload is more severe in spoken collec-

tions, since the browsing of speech material is more time consuming than the browsing of

text. For this reason, IR is a fundamental technology to enable practical SCR systems for

collections of more than trivial size.

Applying automatic text indexing and ranking techniques to collections of speech re-

cordings requires the ability to recognise and quantify important keywords or indexing

terms that are spoken in the audio streams. For this purpose, current SCR applications

make use of Large Vocabulary Continuous Speech Recognition (LVCSR) technology, or

Automatic Speech Recognition (ASR) in short.

When the spoken documents to be indexed discuss more than one topic or when they

are too long to be auditioned within a reasonable amount of time, it is convenient to

segment documents into shorter units that could be individually indexed and retrieved by

the SCR system. Decisions involving how to best divide a spoken document into topically

homogeneous retrieval units with the objective of maximising retrieval e�ectiveness while

minimising user-auditioning time lie in the realms of content structuring technologies for

SCR.

This chapter presents a review of these three technologies that are fundamental for

SCR applications. Section 2.1 describes automatic text indexing and retrieval. Section 2.2

reviews fundamental concepts on ASR technology. Finally, Section 2.3 examines content

structuring and topic segmentation techniques, while their applications to text retrieval

tasks are reviewed in Section 2.4.
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2.1 Information retrieval (IR)

In a broad sense, IR deals with the problem of �nding documents that are relevant to

an information need provided by the user in the form of a query. When documents and

queries are given in natural language, and when the goal is to produce a ranking of the

most relevant documents to a query, this task is commonly known asranked retrieval.

To solve this task e�ciently, a standard IR system �rst constructs a search index of the

document collection, which permits fast access to term statistics at querying time. These

aspects related to indexing and document representation are described in Section 2.1.1.

When a query is issued by the user, a retrieval model is then used to produce a ranking

of matching documents. In this regard, Section 2.1.2 describes some important models for

ranked retrieval, including the one used in the experiments described in this thesis. Finally,

Section 2.1.3 reviews some of the evaluation measures introduced in previous research

which seek to measure the quality of the document rankings produced by a model.

2.1.1 Text pre-processing and indexing

Scaling the application of ranked retrieval to collections of hundreds of millions of docu-

ments is only possible in practice through the construction of e�cient search indices. In

a general sense, a search index is a data structure that stores information about the doc-

uments that comprise the collection to be searched. The most important property about

a document that is stored is the number of times a particular indexing feature \points

to" or \appears in" the document. In this context, an indexing feature refers to some

quanti�able property of the document that may be also present in other documents in the

collection. When dealing with documents in natural language, the most commonly used

indexing feature is the word. A query issued to the IR system can then be characterised

in terms of the set of indexing features that should preferably be present in the highest

ranked documents returned by the system or that should in
uence how such ranking is

constructed.

The �rst step towards the construction of a search index is to identify and extract

indexing features from the documents that comprise the collection to be searched. This

step usually requires processing the text with a tokeniser or text segmenter, designed to

divide a document string into a sequence of tokens. Each token identi�ed by a tokeniser

roughly corresponds to a particular word from the language the text is written in. For text

in most European languages, in which words are separated by spaces, text tokenisation is

a fairly simple task and can be done with a carefully designed set of regular expressions

to handle the uses of apostrophes, hyphens, and punctuation symbols. However, for

scripto continua languages like Thai, Japanese, or Chinese, where words boundaries are

not explicitly marked, tokenisation is a less trivial task. In these di�cult cases, it is

common to perform tokenisation by using statistical sequential models (Zhang et al.,

2003; Kudo et al., 2004; Shao et al., 2017). The tokenisation process may additionally
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involve the standardisation of numbers, proper names, and other special words or symbols

considered important for retrieval.

As an additional pre-processing step, it is common practise to discard tokens that

have little or no value for retrieval. These tokens generally correspond to punctuation

symbols and stop words. Stop words are generally function words that are frequently used

in the language and consequently less useful in distinguishing relevant from non-relevant

documents. Finally, stemming or lemmatisation are linguistic processing techniques used

to map semantically related tokens that di�er in their surface form into a single equivalence

class. Lemmatisation consists of mapping a token to its base form or dictionary entry

form (e.g. \walking" to \walk"). While stemming can be seen as a cheap alternative

to lemmatisation and consists of removing/replacing the endings of tokens in order to

reduce their in
ectional variations (e.g. \walking" to \walkin"). A popular and e�ective

stemming algorithm for English is Porter's algorithm (Porter, 1980). For each document,

the stemming or lemmatisation processes produce the ultimate sequence of modi�ed tokens

that will be included in the search index. These resulting tokens are called \indexing

terms" or just \terms", and the set of all terms in the collection is known as the index

vocabulary or lexicon.

Several indexing algorithms have been designed for the construction of search in-

dices (Zobel and Mo�at, 2006). The main objective of indexing is then to build data

structures that could be later used at querying time to score millions of documents e�-

ciently. Two important data structures generated are the lexicon and the inverted index.

The lexicon is a mapping of terms to term IDs with possibly additional information about

the terms such as their document frequency and a pointer to its location in the inverted

index. The inverted index holds a list of postings for each term in the lexicon. Each

posting consists of a document frequency (d; tf ) pair where tf indicates the number of

times the term appears in a documentd. In order to support phrase queries and proximity

search, postings are commonly augmented with the positions at which the terms appear

within the documents. Also, when indexing speech transcripts, postings can be extended

with acoustic features that may be available for each term, such as con�dence scores or

word time-stamps.

2.1.2 Frameworks for ranked retrieval

A framework for ranked retrieval consists of a set of ideas, methods, and principles that

specify how a set of documents may be ranked in order of relevance to a query. Most

standard IR frameworks stipulate that this ranking can be constructed via a function,

designed to calculate a numeric score for each document that re
ects its degree of relevance

with respect to the query. In the IR literature, this score is commonly referred to as a

retrieval status value (RSV) or ranking score (S). To implement such a function, most

standard frameworks adopt a \bag of words" representation for queries and documents

in which these elements are represented by a set of indexing features (terms) taken from
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a �xed vocabulary. In a \bag of words" representation, the order in which terms appear

in an element is completely ignored, as is the fact that some terms may condition the

presence or absence of others within or across elements in the collection. Two major

frameworks that have been used extensively in SCR research are the vector space model

(VSM) (Salton, 1979), and the probabilistic model (Sp•arck Jones et al., 2000) for ranked

retrieval.

The Vector Space Model (VSM)

The vector space model (VSM) (Salton et al., 1975) is one of the oldest and most widely

adopted models in IR. In this model, queries and documents are represented as vectors

in which every component is associated to a particular term in the vocabulary. More

particularly, the vector of a document (query) is constructed so that its i -th component

contains a score or weight that re
ects the extent to which its associated term is con-

sidered representative of the topic of the document (query). For a collectionC with M

distinct terms indexed by i : 1 � i � M , a VSM represents a document by a vector
~d = hd1; : : : ; dM i 2 RM , where di is the weight associated to thei -th term in the docu-

ment. Similarly, a query is represented by a vector~q= hq1; : : : ; qM i 2 RM with qi denoting

the query vector's i -th component. In the application of the VSM to IR, it is common to

assign positive weights to terms that are present in a document (query) and zero weights

to terms that are absent.

The underlying assumption in a VSM is that elements that are semantically similar

will lie in similar regions in the vector space. Based on this assumption, the relevance of

a document d with respect to a query q can be computed as the distance between their

vector representations inRM . When the cosine similarity is used as a measure of distance,

the ranking score ofd for q is calculated as shown in Equation 2.1.

SV SM (q; d) =
~q� ~d

k~qk k~dk
=

P M
i qi diq P M

i q2
i

q P M
i d2

i

(2.1)

The set of functions that establishes how term weights are calculated is known as a

weighting scheme. Weighting schemes are de�ned in such a way that terms that are more

informative of the topic of a document obtain higher weights for that document. For

retrieval purposes, a term is considered informative for a document if it represents the

topic of the document and if it is e�ective in discriminating this topic from others that

may be also present in the collection.

The weighting scheme generally adopted in a VSM involves the product of two factors:

the within-document term frequency tf d(i ), based on the number of times that the i -th

term occurs in the document d; and the inverse document frequencyidf (i ), based on

the number of documents in C that contain the i -th term. The product between tf d(i )

and idf (i ) is commonly known as the term-frequency inverse document frequency (TF-
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IDF) score. Query terms are assigned weights similarly, as the product between a query

frequency qf (i ) and a query inverse document frequencyqidf (i ) factors. Most weighting

schemes also incorporate normalisation factors that scale term frequencies depending on

the total number of terms contained in d or q respectively. When the ranking score is

de�ned as in Equation 2.1, the Euclidean norms of~q and ~d in the denominator act as

length normalisation factors.

The e�ectiveness of the VSM depends heavily on the selection of a good weighting

scheme. A wide range of possible weighting schemes were explored by Salton and Buckley

(1988), while Zobel and Mo�at (1998) later presented an even more complete survey of

existing schemes. When the cosine similarity is used to measure the distance between

vectors, a simple and popular weighting scheme is formed by combiningtf d(i ) and idf (i ),

and qf (i ) and qidf (i ), as shown in Equation 2.2.

tf d(i ) = 1 + log tf i ; idf (i ) = log
N
ni

; (2.2)

qf (i ) = qf i ; qidf (i ) = 1 ;

wheretf i , and qf i are the number of times that the i -th term occurs in d and q respectively,

N denotes the total number of documents inC, and ni the number of documents in C

containing the i -th term.

The Binary Independence Model (BIM)

The Binary Independence Model (BIM) (Sp•arck Jones et al., 2000) is an important model

based on the Probability Ranking Principle (PRP) (Robertson, 1977), which states that

optimal retrieval e�ectiveness can be obtained if documents are ranked in decreasing or-

der of their probability of relevance based on whatever evidence is available about the

information need and document collection.

In this model, every document is assumed to be either relevant (rel ) or non-relevant

(rel ) to the query. A document is then represented by a vector of binary random variables
~d = hd1; : : : ; dM i , where each component variabledi can be 1 if the i -th term is present

in the document and 0 otherwise. Considering a similar representation for a query~q =

hq1; : : : ; qM i , documents can then be ranked according to their odds of being relevant to

q, as shown in Equation 2.3.

SP RP (q; d) =
P(rel j ~d; ~q)

P(rel j ~d; ~q)
=

P(rel j ~q)

P(rel j ~q)

P( ~d j rel ; ~q)

P( ~d j rel ; ~q)
rank= log

P( ~d j rel ; ~q)

P( ~d j rel ; ~q)
(2.3)

The last equation is obtained by applying Bayes' rule twice, removing the components

that only depend on ~q, and by applying a log transformation which does not alter the �nal

ranking of documents.

Under the assumptions that terms occur independently and that the probabilities are
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not a�ected by terms not present in the query, the ranking function of the BIM can be

obtained from Equation 2.3 as shown in Equations 2.4 to 2.6,

SBIM (q; d) =
X

i 2 q;d

log
P(di = 1 j rel ) P(di = 0 j rel )

P(di = 1 j rel ) P(di = 0 j rel )
(2.4)

�
X

i 2 q;d

log
(r i + 0 :5)(N � ni � R + r i + 0 :5)

(R � r i + 0 :5)(ni � r i + 0 :5)
(2.5)

=
X

i 2 q;d

wRSJ (i ) (2.6)

where the resulting weightwRSJ (i ) is known as the Robertson/Sp•arck Jones (RSJ) weight.

In the equations above the expression (i 2 q; d) denotes the setf i : qi = di = 1g so that

all summations are restricted to terms occurring in both q and d. In addition, R denotes

the number of documents inC that are relevant to q, r i the number of relevant documents

containing the term i , while N , ni are de�ned as in the description of the VSM.

Because in practice the exact values ofR and r i are unknown, an approximation of

the RSJ weight for a term-document pair can be obtained by assuming thatR; r i � 0.

Replacing R and r by 0 in Equation 2.5 results in the BIM ranking function, shown in

Equation 2.7,

SBIM (q; d) �
X

i 2 q;d

log
N � ni + 0 :5

ni + 0 :5
=

X

i 2 q;d

cfw (i ) (2.7)

de�ned as the summation of collection frequency weightscfw (i ) across the terms occurring

in both the query q and the document d.

The 2-Poisson model and Okapi BM25

A popular and e�ective ranking function within the probabilistic approach is the Okapi

BM25 (Robertson et al., 1994; Sp•arck Jones et al., 2000). This function originates as an ap-

proximation of the 2-Poisson model, originally proposed by Harter (1975) and subsequently

developed by Robertson et al. (1980), Robertson and Walker (1994), and Robertson et al.

(1994). The 2-Poisson model extends the BIM to consider term frequencies within the

documents and the query, thus making a distinction between documents containing one

from those containing multiple occurrences of a query term.

In the 2-Poisson model, the random variablesdi and qi are re-de�ned so that they can

take any positive value tf i in N0, corresponding to the events of observingtf i occurrences

of the term i in a document or query respectively. Next, all documents containing the

term i are assumed to belong to one of two classes: an \elite" class of documents (E i )

which refers to those that are about the topic denoted by the term; and a \non-elite" class

(E i ), in which the term is merely used in passing and whose content is not strictly about

the \topic" induced by the term. The distribution of a term's frequency across documents

is then modelled as a mixture of two Poisson distributions, each one considering the
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possibility that the document may belong to the term's elite or non-elite classes. More

speci�cally, di is assumed to be distributed under two Poisson distributions:P(� E i
) under

the elite set; and P(� E i
) under the non-elite set.

Besides these distributional assumptions, further assumptions are made about the as-

sociations between term frequencies, eliteness, and relevance. By assuming that term

frequencies are related to the documents' relevance throughout eliteness, this set of as-

sumptions expresses that

P(di = tf i j rel ) = P(di = tf i j E i ) P(E i j rel ) + P(di = tf i j E i ) P(E i j rel )

= � tf i
E i

e� � E i

tf i !
P(E i j rel ) + � tf i

E i

e
� �

E i

tf i !
P(E i j rel ):

Under the assumptions that a term occurs more frequently in its elite than non-elite

documents (� E i
> � E i

), plus that the relevance of a document only depends on its elitness

condition, the probability of a document d being relevant to a query q in this extended

model can be approximated by Equation 2.8.

SBM (q; d) =
X

i 2 q;d

log
P(di = tf i j rel ) P(di = 0 j rel )

P(di = tf i j rel ) P(di = 0 j rel )
�

X

i 2 q;d

tf i

k1 + tf i
cfw (i ) (2.8)

Further developments of the previous approximation lead to the well known Okapi BM25

weighting function (Robertson et al., 1994), shown in Equation 2.9, that accounts for the

issues of length normalisation and incorporates evidence from within-query term frequen-

cies.

SBM 25 (q; d) =
X

i 2 q;d

(k1 + 1) tf i

tf i + k1 (1 � b+ b docl
avel )

(k3 + 1) qf i

k3 + qf i
cfw (i ) (2.9)

In Equation 2.9, docl denotes the length ofd equal to
P

i tf i , avel denotes the documents'

average length in the collection, 0� b � 1 controls the impact of length normalisation,

and k1; k3 � 0 control the rate of increase of the term frequency and query frequency

factors respectively.

Considered as an isolated function, the within-document term frequency factor in

Equation 2.9 is a monotonically increasing function oftf i that approaches an asymptotic

maximum of k1 + 1 as tf i ! 1 . The k1 parameter in
uences how fast this function

approaches its asymptote with every increase oftf i . Large values of k1 signify slower

convergence rate w.r.t. tf i , while small values ofk1 result in faster convergence.

In the BM25 formulation, the length normalisation factor was originally conceived

around the scope and verbosity hypotheses. Under the verbosity hypothesis, authors de-

cide to create relatively longer documents because they have the tendency to be verbose

and repetitive. In such circumstances, using a large value forb to heavily normalise term

frequencies based on document length is appropriate. Alternatively, under the scope hypo-

thesis, documents are relatively long because they cover multiple topics or multiple facets
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of the same topic. In this latter case, using a small value forb seems more appropriate.

2.1.3 Evaluation of ranked retrieval

This section describes the general evaluation framework that is adopted in IR research

to measure and compare the e�ectiveness of retrieval systems. The initial ideas related

to formal evaluation of IR systems were pioneered by Cleverdon, in the context of the

Cran�eld experiments carried out in the early sixties (Cleverdon, 1962; Cleverdon et al.,

1966). In order to enable rigorous, repeatable, and meaningful evaluation of ranked re-

trieval, the Cran�eld methodology proposes to construct a test collection consisting of: a

set of documents; a set of queries or topics; a set of relevance judgements, indicating which

documents are relevant to each query; and a numeric measure for estimating the quality

of a ranked list of documents for a query.

Early IR research focused on small document collections that made exhaustive relev-

ance assessments possible. For instance, the test collection used in the Cran�eld's exper-

iments contained 1398 abstracts of scienti�c articles and a relevance judgement for every

query-abstract pair. Since the beginning of the Text REtrieval Conference (TREC)1, the

size of the document collections used in IR research has grown in various orders of mag-

nitude. From about half million documents in the collections used at the TREC ad-hoc

tracks, to about 1 billion documents in the more recent ClueWeb122 collection used at the

TREC Web (Collins-Thompson et al., 2015) track.

Conventionally, the set of queries used for evaluating a retrieval system are generated

by potential users of the system or by a group of hired annotators who are preferably

knowledgeable of the contents of the document collection. Because the formulated queries

are sometimes ambiguous underspeci�cations of an information need, query creators are

commonly asked to provide a more detailed description of their search needs. In TREC

parlance, a topic consists in the query text, a query ID, and a narrative �eld that describes

it more fully. The number of topics varies across test collections. Traditionally, TREC

collections have contained on the order of 50 topics, which is the minimum number of

queries needed for absolute di�erences in mean average precision (MAP) of 5% be sig-

ni�cant across systems (Voorhees and Buckley, 2002). In combination with signi�cance

testing, this number can be reduced by half and still be useful for determining signi�cant

di�erences among IR systems (Zobel, 1998).

Relevance judgements for query-document pairs are obtained through manual assess-

ments. The procedure for assessing a pair consists of verifying the extent to which the

document is relevant to the information need associated with the query. To facilitate

this task, assessors are provided with the narrative description of the information need.

Relevance is conventionally given as a binary value (the document is either \relevant" or

\not relevant") or in a multi-graded scale of values.

1http://trec.nist.gov
2http://lemurproject.org/clueweb12/
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Because of the vast size of the document collections currently used in IR research,

obtaining relevance judgements for every query-document pair is prohibitive if not im-

possible. To circumvent this issue, strategies for \pooling" small subsets of documents

from the collection to be later assessed for relevance were proposed (Sp•arck Jones and

van Rijsbergen C. J., 1975). In its most basic form, the pooling procedure consists of

producing (for each query) multiple ranked lists of documents by using independent IR

systems. The union of the top-rankedN results (N = 100 in most TREC collections)

from each ranked list is then calculated to form the pool of documents which are �nally

assessed for relevance against the query. Normally, unjudged results that do not form part

of the pool for a query are considered non-relevant by most standard evaluation measures.

Since it is unlikely for a set of pooled documents to contain all documents that are

relevant to a query, concerns have been raised by researchers about whether existing test

collections could be used to evaluate IR systems that did not necessarily participate in the

creation of the pool. Fortunately, Zobel (1998) has shown that results based on a limited

set of pooled documents can still provide a reliable account of the relative performance that

may exist between IR di�erent systems, even for those that did not originally contribute

to the pool.

Evaluation measures for ranked retrieval

A popular evaluation measure used to quantify the quality of a ranked list of results when

relevance judgements are binary is average precision (AP) (Harman, 1993). AP is based

on Precision at rank k (P(k)), which measures the proportion of documents retrieved until

rank k that are relevant to the query. Formally, for a ranked list of results produced for a

query, P(k) is de�ned as shown in Equation 2.10.

P(k) =
1
k

kX

i =1

r i where r i =

8
<

:
1 if the i-th ranked result is relevant

0 otherwise
(2.10)

AP is then de�ned by taking the average across the points in the ranked list at which a

relevant document is found, as shown in Equation 2.11,

AP =
1
R

X

k

P(k) r k (2.11)

where R denotes the total number of documents that are known relevant to the query.

In order to evaluate the performance of a retrieval system across a set of queries, AP

is calculated for every query and the resulting scores averaged. The resulting average is

referred to as the mean average precision (MAP).

E�ectiveness measures such as AP and precision can only be used with binary relevance

judgements. However, multiple degrees of relevance need to be considered if the focus of the

evaluation is on the ability of a IR system to retrieve highly relevant documents on top of
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less relevant ones. Various e�ectiveness measures have been proposed to consider graded

relevance judgements. One of these is a simple adaptation of precision atk known as

generalised precision (gP(k)) (Kek•al•ainen and J•arvelin, 2002), which considers continuous

relevance scoresr k 2 [0; 1]. gP(k) is then calculated asP(k) by using these continuous

relevance scores. SumminggP(k) across all ranksk at which r k > 0 and then dividing by

R results in the generalised average precisiongAP measure.

An e�ectiveness measure more widely used for graded relevance judgements is discoun-

ted cumulative gain (DCG) (J•arvelin and Kek•al•ainen, 2002). The DCG at rank n is shown

in Equation 2.12,

DCG(n) =
nX

k=1

2r k � 1
log(k + 1)

; (2.12)

where r k is an integer value representing the discrete grade of relevance of the document

retrieved at rank k. In Equation 2.12, the numerator represents the gain associated with

the document ranked at position k, while the denominator determines the discounting

factor associated with rank k. To make DCG values comparable across di�erent queries,

it is common to use the normalised version of DCG (nDCG) which divides Equation 2.12

by the maximum DCG value obtainable for the query, equal to that obtained with an ideal

ranking of documents.

Mo�at and Zobel (2008) propose an alternative e�ectiveness measure called ranked-

biased precision (RBP) based on a probabilistic model of user behaviour. Figure 2.1 shows

the states and transitions of this model. The user commences by viewing the document

ranked at position 1 and then continues scanning the rest of the documents. At every

position in the rank, the user can decide to view the next document, with probability p,

or to stop its search, with probability 1 � p. Ranked-biased precision can then be written

as shown in Equation 2.13,

RBP = (1 � p)
X

k

r k pk� 1 (2.13)

where p is the persistence probability and r k is de�ned as in Equation 2.10. It has been

shown that for p = 0 :7 the geometric discounting factor from RBP can closely approximate

the probability that a user would click on a document at a certain position in a web search

results page (Chapelle et al., 2009).

While MAP, nDCG, and RBP apply a discounting function that only depends on the

rank at which a document is located in the result list, the expected reciprocal rank (ERR)

measure proposed by Chapelle et al. (2009) discounts according to the relevance of the

documents located at previous ranks. In their development of ERR, Chapelle et al. (2009)

propose a \cascade" model of user browsing behaviour which accounts for the fact that a

user would be less interested in examining a fairly relevant document if it is ranked below
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Figure 2.1: Underlying user model proposed in ranked-biased precision. Taken from (Mo�at and
Zobel, 2008).

a highly relevant one. ERR is then written as shown in Equation 2.14,

ERR =
X

k=1

1
k

k� 1Y

i =1

(1 � Ri ) Rk ; (2.14)

where Rk is the probability that the user is satis�ed at rank k. The model induced by

ERR assumes that the user continues viewing documents from the ranked list of results

until �nding a relevant document, at which point the user stops the search.

2.2 Automatic speech recognition (ASR)

In order to estimate the grade of relevance of a spoken document with respect to a natural

language query using text retrieval techniques, an SCR system needs to quantify the

amount of term overlap that exists between the query and the spoken words. A pre-

requisite for this is thus the ability to recognise the words spoken in recorded speech.

The technology concerned with the problem of identifying all words spoken in a speech

utterance is automatic speech recognition (ASR).

This section overviews the fundamentals of ASR technology. In particular, the section

focuses on a speci�c type of ASR technology, which deals with the recognition of continuous

speech as opposed to isolated words, unknown speakers as opposed to speech produced

by a single known speaker, and open large vocabularies containing 60,000 distinct words

or more. Systems that fall under this category are said to perform large vocabulary

continuous speech recognition (LVCSR), and have become the standard ASR technology

used in SCR applications.

2.2.1 Overview

The ASR problem is traditionally stated as of �nding the most likely sequence of words

Ŵ = Ŵ1Ŵ2 : : : ŴN spoken in some observed utteranceO. More formally, this probabilistic

speci�cation of the problem can be written as shown in Equation 2.15,

Ŵ = arg max
W 2L

P(W jO) (2.15)
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Figure 2.2: Main components and simpli�ed architecture of a standard ASR system.

that is, the problem of �nding the word sequence Ŵ from among all sequencesW in a

languageL that maximises the probability of W given the acoustic observationO. By

applying Bayes' rule, the probability in Equation 2.15 can be broken down as shown in

Equation 2.16,

Ŵ = arg max
W 2L

P(OjW ) P(W )
P(O)

= arg max
W 2L

P(OjW ) P(W ); (2.16)

where the prior P(O) of the acoustic observation can the neglected because it is the same

for every W . The rightmost expression in Equation 2.16 suggests that the ASR problem

can be disentangled into three sub-tasks: (i) the task of calculatingP(OjW ) given some

acoustic observationO and word sequenceW , known as acoustic modelling; (ii) the task

of computing P(W ), termed as language modelling; and (iii) the task of decoding the

word sequenceŴ that maximises the product between the acoustic and language models

probabilities.

Figure 2.2 shows how these components �t together in the architecture of a typical

ASR system. The acoustic model (AM), language model (LM), and decoder components

are charged with producing hypothesised word sequences given an acoustic observation.

Together, these components comprise the \backend" of the ASR system. In addition

to the backend components, an ASR system implements several \frontend" components

whose main goal is to transform a speech waveform into a sequence of feature vectors
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O = O1O2 : : : OT upon which recognition is based. These vectors represent how the signal

energy varies across its time and frequency dimensions. The following sections describe

the individual components of a ASR system in more detail.

2.2.2 Speech units, signal processing, and feature extraction

Speech sounds are 
uctuations of air pressure produced by vibrations of the vocal folds,

which are excited by an uninterrupted 
ow of air coming from the lungs. The soundwave

produced by these vibrations resonates in the vocal tract and is modi�ed by the position

and shape of di�erent articulators, including the lips, jaws, tongue, and nose. Soundwaves

are commonly visualised by plotting the change of air pressure over time. The amount

of change in air pressure compared to that observed in normal conditions (atmospheric

pressure) is the signal's amplitude. Another important characteristic of a speech signal is

its frequency, corresponding to the number of times the signal repeats itself per second.

Frequency is measured in Hertz (Hz) or cycles per second.

Speech can be digitally recorded by taking voltage samples from a microphone at

regular time intervals. The frequency at which such samples are taken determines the

maximum signal frequency that can be faithfully represented. This is determined by the

Nyquist{Shannon sampling theorem, which indicates that a reliable representation of a

signal can be obtained if sampling at twice the rate of the signal's frequency. Because

human speech produced lies in lower-frequency bands below 8 KHz, speech recorded at 16

KHz is of su�cient quality for ASR purposes.

The individual speech sounds produced in a speci�c language can be categorised into a

set of sub-word units called phonemes. Phonemes are the basic building blocks of speech.

Words are then formed by composing phonemes, which together dictate how each word

is pronounced in a particular language or dialect. While phonemes are used to distin-

guish between words with the same written form but that have di�erent meaning, phones

correspond to physical realisations of phonemes as instantiated in a speci�c speech signal

and do not necessarily dictate the meaning of words. Phones and phonemes are com-

monly represented by symbols from the International Phonetic Alphabet (IPA) (Associ-

ation, 1999). These sound units can then be seen as intermediate representations between

acoustic patterns observed in the speech signal and words from a speci�c language. Thus,

a requirement for solving the speech recognition problem is to �nd a function that could

recognise the individual phonemes being spoken given acoustic patterns observed in the

speech signal.

The frontend components of an ASR system are mainly concerned with the prepro-

cessing of speech data prior to recognition. This process commonly involves the application

of signal processing and feature extraction techniques over the input speech, with the goal

of producing a set of descriptors that can e�ectively capture the characteristics of the in-

dividual phonemes produced by speakers at various points in time. The feature extraction

process can be divided into two parts. The �rst is concerned with slicing the input signal
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into frames and extracting spectral features for each frame. The second process applies

various transformations to these initial features in order to enhance their predictability

power.

Spectral features

Spectral features refer to descriptors calculated from the spectrum of the speech signal,

which contains information about the signal's amplitudes for di�erent frequency rates at

one particular point in time. The spectrum of a discrete-time signal can be obtained by

calculating its discrete-time Fourier transform (DTFT) which separates the signal into its

frequency components. The fast-Fourier transform (FFT) is an e�cient algorithm that

calculates the DTFT.

While the spectrum contains information for a single point in time, a spectogram

provides a visual representation of the spectrum as it varies through time. Figure 5.1

shows a spectogram for an utterance extracted from a broadcast TV recording. The y-

axis represents frequency, while frequency components with high amplitudes (peaks) are

represented by darker colours. The reason why spectral features are useful for ASR is that

phones can be well characterised by the trajectories of energy peaks and other patterns

found in the spectrum. Most notably, vowels can be identi�ed by analysing the location

and trajectory of the strongest frequency components in the spectrum, called formants,

which roughly correspond to a di�erent resonance in the human vocal tract.

Prior to feature extraction, the individual samples of the speech signal are normally

passed through a pre-emphasis �lter which dampens low-frequency components in favour

of high-frequency ones. The samples are then sliced into a sequence of equally-long over-

lapping frames of 20-30 ms. The step size or separation size between frames is frequently

set to 10 ms to allow for overlapping frames that can capture sudden changes in the signal.

Several types of spectral features and extraction algorithms have been proposed that

transform each frame of samples into a feature vector. A classical approach is to use

linear-predictive coding (LPC) to characterise the frequency and intensity of a set of

formants by regression coe�cients (Atal and Hanauer, 1971). The LPC coe�cients can

then be used to obtain linear-predictive cepstral coe�cients (LPCCs) from the signal's

cepstrum (Huang et al., 2001). Cepstral features, like LPCC, tend to be more useful

for ASR since the cepstrum representation can better discriminate between components

related to the excitation of the signal (glottis) and its �lters (vocal tract).

Another type of cepstral features widely used in speech recognition are Mel frequency

cepstral coe�cients (MFCCs) (Davis and Mermelstein, 1980). MFCCs are obtained by

�rst warping the spectrum with a series of triangular bandpass �lters, then applying a

log transformation to the �lters output, and �nally taking the �rst 10-12 coe�cients from

a discrete cosine transformation (DCT). The set of triangular �lters used in the MFCC

calculation is known as the Mel scale �lter bank and is designed to approximate the non-

linear sensitivity of the human ear to di�erent frequency bands.
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Feature transformations

The feature processing stage produces a feature vector for each frame in a spoken utterance.

ASR systems apply additional transformations to these acoustic vectors to facilitate phone

classi�cation. A common approach is to augment the feature vectors with delta and delta-

delta coe�cients. These are the �rst and second derivatives of each coe�cient with respect

to time, normally calculated as di�erences between successive frames.

It is also common to normalise each vector component based on its mean and standard

deviation values by considering all frames available from a single speaker or audio �le.

This standardisation procedure seeks to cancel out variations across speakers and channels.

More sophisticated methods exists for speaker adaptation. For instance, vocal tract length

normalisation (VTLN) attempts to balance out di�erences in the vocal tract shape of

male and female speakers (Lee and Rose, 1996), while speaker adaptive training (SAT)

and maximum likelihood linear transformations (MLLT) (Gales, 1998) permit speaker-

dependent transforms to be learnt and applied iteratively during training.

Prosodic features

In addition to the sets of spectral features described previously, feature vectors may be

augmented with acoustic correlates of prosody. The logarithm of the signal energy is one

of the conventional acoustic features used in ASR. This acoustic correlate of loudness

is useful because it helps to distinguish between voiced and unvoiced sounds, and thus

facilitates the distinction between vowels and consonants.

Besides acoustic correlates of loudness, pitch and duration features have also been

found useful for various ASR related tasks. Kim and Woodland (2001) demonstrated that

these features can be used to recover punctuation symbols in speech transcripts and even

provide increased ASR accuracy. Similarly, Liu et al. (2006) describe an ASR system that

exploits pitch, duration, and energy cues to improve the detection of sentence boundaries

and prediction of �ller words and speech dis
uencies. Other research that suggests that

prosodic cues can be directly used to reduce speech recognition errors include (Chen et al.,

2006; Jeon et al., 2011; Chen et al., 2012).

2.2.3 Language and acoustic modelling

For each utterance, the frontend components produce a sequence of observationsO =

O1 : : : OT , each describing the spectral characteristics of a particular frame. This sequence

is subsequently received by the backend components of the ASR which search for the

most likely sequence of wordsŴ = Ŵ1 : : : ŴN that may explain these observations. Two

important components used for this purpose are the language model (LM) and the acoustic

model (AM).
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The language model (LM)

Within the space of all word sequences that could possibly be generated by randomly

appending individual words from a language, only a small subset of them will be gram-

matical, and only a small proportion of these will be meaningful and frequently used

in spoken language. ASR systems can then take advantage of the fact that some word

combinations are more frequent than others to limit the search space of possible word

sequences in the search for the optimal̂W .

A language model (LM) assigns a probability to a sequence of wordsP(W1 : : : WN ).

A good LM assigns higher probabilities to sequences that are highly used in a language,

and low ones to sequences that are less frequently used. The most common type of LMs

used in ASR are the so-called n-gram language models, in which the probability of the

occurrence of the next word in a sequence is based on then � 1 words that occur before

it. That is

P(W1 : : : WN ) =
NY

i =1

P(Wi j Wi � n+1 : : : Wi � 1)

These conditional probabilities are usually estimated by counting the number of occur-

rences of n-grams in a large corpus of text.

In practice, estimating n-gram probabilities based on observed counts has the issue that

a large number of valid n-grams in a language may not appear at all in the training data

and would be thus assigned a probability of 0. This is a potential problem for ASR since,

given Equation 2.16, sequences with 0 LM probability would never be recognised even if

they obtain high acoustic probability. Several smoothing techniques have been proposed

to tackle this problem, most of which introduce adjustments to the occurrence counts of

rare n-grams so that they acquire non-zero probabilities. The most simple technique is

additive smoothing (Chen and Goodman, 1996) which adds a �xed pseudo-count to non-

occurring n-grams. More sophisticated techniques include Jelinek-Mercer (Jelinek and

Mercer, 1980), Katz (Katz, 1987), and Kneser-Ney (Kneser and Ney, 1995) smoothing,

which use a weighted linear interpolation of decreasingly lower order models (back-o�) for

improving the estimation of rare n-grams.

Modern ASR systems use a combination of n-gram LMs and neural language models

(NLMs), also known as continuous-space language models (Mulder et al., 2015). NLMs

are based on arti�cial neural networks, more speci�cally, on deep neural networks (DNNs),

including feed-forward neural networks (FNNs) (Bengio et al., 2003) and recurrent neural

networks (RNNs) (Mikolov et al., 2010), trained using the back-propagation algorithm

to predict the identity of the n-th word in a sentence given its preceding words. Much

of the success of these approaches lies in their use of continuous vector representations

of words, commonly known as word embeddings (Mikolov et al., 2013). In this respect,

neural network approaches have the capability to map words from the vocabulary onto

a latent vector space so that words used in similar contexts are clustered. This helps to

alleviate the data sparsity problem as the predictions of the model are implicitly based
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Figure 2.3: Graphical representation of a hidden Markov model used to model an individual phone.

on such word clusters. In addition, RNNs can in theory handle arbitrary context lengths,

thus unlike n-gram models, they need not be designed for a �xed number of preceding

words.

The acoustic model (AM)

The main goal of acoustic modelling is to estimateP(OjW ) for a given sequence of acoustic

observations O and words W . The traditional approach to calculate these probabilities

makes use of hidden Markov models (HMMs) (Levinson et al., 1983; Rabiner, 1989). An

HMM models a process that produces sequences of symbols probabilistically. An HMM has

a set of hidden statesQ = f q1; : : : ; qN g, special starting and ending states, and transition

probabilities aij between each pair of states. Some of the states in an HMM are regarded as

emitting states from which the model can produce an observed value. Each emitting state

qi de�nes a probability distribution bi (Ot ) over some set of possible observation valuesOt .

Figure 2.3 shows a left-to-right HMM with �ve states. The generation process begins

at the left-most state of the diagram. At each step, the model decides to transition to

its right state with some probability or to remain in its current state. While visiting an

emitting state, the model produces an observation based on a probability distribution,

depicted in the �gure as an arrow pointing to a density function. This particular HMM

structure with three emitting states and left-to-right transitions is typically used in ASR

systems to model individual phones. The states in the HMM represent some interme-

diate step in a phone's pronunciation, while the self-transitions (loops) model duration

variations. In order to consider variations produced by preceding and following phones,

context dependent systems represent a single phone with three HMM states concatenated

in sequence. Further, it is common to append the HMM structures of various phones

together into sets of triphones to account for acoustic variability. This appending process

can be used to produce word level HMMs based on a pronunciation dictionary or lexicon

which contain transcriptions of word strings into phonemes.

Traditional acoustic modelling techniques use Gaussian mixture models (GMMs) to

model emission probabilities over continuous acoustic vectorsO 2 RN . Under this ap-

proach, the output probability distribution for a state bi (O) based on a GMM with K
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components is given by

bi (O) =
KX

k=1

� k N (O; � ik ; � ik );

where N (O; � ik ; � ik ) is the probability density function of the k-th multivariate Gaussian

component in the mixture. More recently, DNNs have been used instead of GMMs for

estimating emission probabilities (Hinton et al., 2012; Deng et al., 2014; Yu and Deng,

2014). The superiority of DNNs over GMMs for phone recognition can be attributed

to their ability to discover useful features from more primitive spectral descriptors than

MFCCs, their high robustness to small noise perturbations in the inputs, and their e�ective

exploitation of contextual input features.

The use of GMMs or DNNs to model emission probabilities in combination with HMMs

for acoustic modelling is regarded as the hybrid GMM-HMM or DNN-HMM frameworks.

In these frameworks, the likelihood of an acoustic observationO1 : : : OT given an HMM,

M , is given by Equation 2.17,

P(OjM ) =
X

S

TY

t

bs(t ) (Ot ) as(t ) s(t+1) (2.17)

where the summation ranges over all possible sequences of statesS = s(1) : : : s(T) in the

model. The process of recognising the most likely sequence of phones spoken in a given

utterance O then consists of �nding a HMM model M̂ that maximises the likelihood from

Equation 2.17, corresponding to the model that best explains the acoustic observations.

2.2.4 Decoding, output representation, and evaluation

Decoding refers to the process of �nding the most likely sequence of wordsW that max-

imises the product between the acoustic likelihoodP(OjW ) and language model prob-

ability P(W ). The traditional decoding algorithm used for this purpose is the Viterbi

algorithm (Viterbi, 1967), which uses dynamic programming to e�ciently infer the most

likely state sequence from all word HMMs that best match the given observations. In

practice, implementations of this algorithm perform some type of pruning mechanism to

reduce the size of the search space by discarding state paths with low probabilities. A com-

mon pruning technique is beam search in which only the top K scoring paths (hypotheses)

are kept while advancing the search from one time step to the next.

The optimal word sequence found by Viterbi is usually termed a 1-best hypothesis.

For many applications however, it is more convenient to consider more than one recogni-

tion hypothesis. Several decoding algorithms have been developed for this purpose, most

of which extend Viterbi to generate the top N-best recognition hypothesis besides the

1-best (Schwartz and Austin, 1991; Soong and Huang, 1991). Considering alternative hy-

pothesis permits the application of increasingly complex models to iteratively re�ne the

ASR output in a process called multi-pass decoding. For instance, it is common to perform
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