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We conduct the �rst experiment in the literature in which a novel is translated
automatically and then post-edited by professional literary translators. Our case study
is Warbreaker, a popular fantasy novel originally written in English, which we translate
into Catalan. We translated one chapter of the novel (over 3,700 words, 330 sentences)
with two data-driven approaches to Machine Translation (MT): phrase-based statistical
MT (PBMT) and neural MT (NMT). Both systems are tailored to novels; they are trained
on over 100 million words of �ction. In the post-editing experiment, six professional
translators with previous experience in literary translation translate subsets of this chapter
under three alternating conditions: from scratch (the normin the novel translation
industry), post-editing PBMT, and post-editing NMT. We record all the keystrokes, the
time taken to translate each sentence, as well as the number of pauses and their duration.
Based on these measurements, and using mixed-effects models, we study post-editing
effort across its three commonly studied dimensions: temporal, technical and cognitive.
We observe that both MT approaches result in increases in translation productivity: PBMT
by 18%, and NMT by 36%. Post-editing also leads to reductionsin the number of
keystrokes: by 9% with PBMT, and by 23% with NMT. Finally, regarding cognitive effort,
post-editing results in fewer (29 and 42% less with PBMT and NMT, respectively) but
longer pauses (14 and 25%).

Keywords: literary translation, post-editing, neural mach ine translation, statistical machine translation, foreign
literature, foreign �ction

1. INTRODUCTION

Machine Translation (MT) is widely used in the translation industry today to assist professional
human translators, as using MT results in notable increases in translator productivity compared to
translation from scratch. This has been empirically shown inmany use-cases over the last decade
that rely on the phrase- and rule-based paradigms to MT (PBMT and RBMT), for several text types,
including technical documents (Plitt and Masselot, 2010) and news (Martín and Serra, 2014), to
mention just two.

The most common work�ow employed is post-editing, a sequential pipeline in which the source
document is �rst translated with MT, and subsequently, a translator edits the MT translation (e.g.,
�xing errors) to produce the �nal translation.

In most of the use-cases explored in the literature the translation aim is dissemination, and the
translations obtained via post-editing have been found to beof equivalent or higher quality (Plitt
and Masselot, 2010; Green et al., 2013) to those produced from scratch.
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Nonetheless, post-editing has been found to prime the
translator, thus resulting in a �nal translation that is similar to
that initially suggested by the MT system (Green et al., 2013).
Because the MT approaches most widely used to date in post-
editing translation work�ows—RBMT and, above all, PBMT—
are known to lead to literal translations, post-edited translations
are also perceived as being more literal than translations from
scratch (Martín and Serra, 2014).

While this is acceptable for text types such as technical
documents, as the main objective of the translation for these types
of texts is to preserve the meaning of the original, it might not be
the case for other text types of a more creative nature, such as
literary texts, because in this case the objective of the translation
is twofold: not only the meaning of the source text needs to be
preserved but also its reading experience (Jones and Irvine, 2013).

Recently, neural machine translation (NMT) has emerged as a
new paradigm in MT, and has been shown to considerably
improve the translation quality achieved, regardless of
the language pair (Toral and Sánchez-Cartagena, 2017). In
addition, the translations produced by NMT are much more
�uent ( Bentivogli et al., 2016) than those derived by PBMT,
until recently by far the most dominant paradigm in the �eld.
In addition, relevant to this work, it has been claimed that NMT
does not lead to literal translations1, as is the case with PBMT
and RBMT.

At this point, because of (i) the maturity of post-editing in
industry, and (ii) the rise of a new MT paradigm (NMT) that
results in more �uent and less literal translations than previous
models (PBMT and RBMT), it is timely to study the extent to
which current MT technology can be useful in assisting with
professional translations of literary text. In this work we take
the �rst steps in this direction by assessing the e�ort involved
in the post-editing of a novel, along the three dimensions
commonly studied in the literature (Krings and Koby, 2001),
which constitute the research questions (RQs) underpinning this
work:

� RQ1 (temporal e�ort). Does post-editing an MT output (using
the NMT or PBMT paradigm) result in shorter translation
time compared to post-editing of outputs from the other type
of MT system and/or to translation from scratch?

� RQ2 (technical e�ort). Does post-editing on one of the two
MT paradigms result in a lower number of keystrokes than the
other MT paradigm and/or than translation from scratch?

� RQ3 (cognitive e�ort). Does post-editing on one of the MT
paradigms result in changes in cognitive e�ort?

In this work we translate a fragment of a novel with NMT and
PBMT. Subsequently, six professional translators with previous
experience in literary translation translate subsets thereof under
three di�erent conditions: from scratch (the norm in the novel
translation industry), post-editing the translation produced by
the PBMT system, and post-editing that generated by the NMT

1“Neural network-based MT can, rather than do a literal translation,�nd the
cultural equivalent in another language”, according to Alan Packer, Engineering
Director at Facebook, in 2016, cf. https://slator.com/technology/facebook-says-
statistical-machine-translation-has-reached-end-of-life

system. For each sentence translated, we record (i) the timespent
to translate it, (ii) the number of keystrokes used, and (iii) the
number of pauses and time devoted to them. We then use these
three measurements to attempt to provide answers to questions
RQ1, RQ2, and RQ3, respectively.

The rest of the paper is organized as follows. Section 2 outlines
the state-of-the-art in MT of novels. Next, section 3 presents the
MT systems (section 3.1) and the novel (section 3.2) used in our
experiment, followed by the experimental set-up (section 3.3).
Section 4 presents and discusses the results. Finally, in section 5,
we draw our conclusions and propose lines of future work.

2. STATE-OF-THE-ART IN LITERARY
TRANSLATION USING MT

Voigt and Jurafsky (2012)studied how referential cohesion
is expressed in literary (short stories) and non-literary (news
stories) texts and how this cohesion a�ects translation. They
found that literary texts use more dense reference chains
to express greater referential cohesion than news. They then
compared the referential cohesion of human versus machine
translations of short stories from Chinese-to-English. MT
systems had di�culty in conveying the cohesion, which is
attributed to the fact that they translate each sentence in isolation
while human translators can rely on information beyond the
sentence level.

Jones and Irvine (2013)used generic PBMT systems to
translate samples of French literature (prose and poetry)
including a fragment of Camus'L'Étrangerinto English. They
analysed the translations from a qualitative perspective to address
what makes literary translation hard and to discover what the
potential role of MT could be.

Besacier and Schwartz (2015)presented a pilot study where
a generic PBMT system followed by post-editing was applied
to translate a short story from English into French. Post-
editing was performed by non-professional translators, and the
authors concluded that such a work�ow can be a useful low-cost
alternative for translating literary works, albeit at the expense of
lower translation quality.

Simultaneously to the previous work,Toral and Way (2015)
built a PBMT system tailored to a contemporary best-selling
author (Ruiz Zafón) and then applied it to translate one of
his novels,El prisionero del cielo, between two closely-related
languages (Spanish-to-Catalan). For 20% of the sentences, the
translations produced by the MT system and the professional
translator (i.e., taken from the published novel in the target
language) were exactly the same. In addition, a human evaluation
revealed that for over 60% of the sentences, Catalan native
speakers judged the translations produced by MT and by the
professional translator to be of the same quality.

Ó Murchú (2017)machine-translated the sci-� novelAir Cuan
Dubh Drilseachfrom Scottish Gaelic to Irish, a pair of closely
related languages, using the hybrid MT system Intergaelic and
subsequently post-edited the resulting MT output. Post-editing
was 31% faster than translating from scratch and fewer than 50%
of the tokens in the MT output were corrected by the translator.
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Toral and Way (in press)built PBMT and NMT systems
tailored to novels for the English–Catalan language pair. These
were evaluated on a set of 12 widely known novels from the 20th
and 21stcenturies by authors such as Joyce, Orwell, Rowling and
Salinger, to name but a few. Overall, NMT resulted in an 11%
relative improvement (3 points absolute) over PBMT according
to the BLEU evaluation metric (Papineni et al., 2002). In a
human evaluation conducted on the books by Orwell, Rowling
and Salinger, the translations generated by the NMT system were
perceived by Catalan native speakers to be of equivalent quality
to the professional human translations for 14, 29, and 32% of the
sentences, respectively, compared to 5, 14, and 20% respectively,
with the PBMT system. These �ndings have encouraged us to
expand this study to the post-editing of a novel, which we detail
below.

3. MATERIALS AND METHODS

3.1. MT Systems
We trained two MT systems belonging to two di�erent
paradigms: PBMT and NMT. Both are tailored to novels and a
brief description of them follows. For a more detailed account,
the reader is referred toToral and Way (in press).

The PBMT system is trained on a linear interpolation
of in-domain (133 parallel novels from di�erent genres
amounting to over 1 million sentence pairs) and out-of-domain
(around 400,000 sentence pairs of subtitles)2 parallel data,
with version 3 of the Moses toolkit (Koehn et al., 2007).
The n-gram-based language model, in addition to the target
side of the training parallel data, uses monolingual in-domain
(around 1,000 books written in Catalan amounting to over
5 million sentences) and out-of-domain (around 16 million
Catalan sentences crawled from the webLjubešíc and Toral,
2014) data. The system uses 3 reordering models (lexical-
and phrase-based, and hierarchical), an operation sequence
model (Durrani et al., 2011) and an additional language model
based on continuous spacen-grams (Vaswani et al., 2013).
The last two models are trained on the in-domain parallel
data.

The NMT system follows the encoder-decoder approach
and is built with Nematus (Sennrich et al., 2017)3. This
system is trained on the concatenation of the parallel in-
domain training data (133 parallel novels) and a synthetic
corpus obtained by machine-translating the Catalan in-domain
monolingual training data (1,000 books) into English. The
system uses sub-words as the basic translation unit; we
segmented the training data into characters and performed
90,000 operations jointly on both the source and target
languages (Sennrich et al., 2016). Finally, we generate ann-best
list with the NMT system and rerank it with a left-to-right NMT
system4.

2http://opus.ling�l.uu.se/OpenSubtitles.php
3https://github.com/rsennrich/nematus
4This system has the same settings as the regular NMT system, the only di�erence
being that the target sentences of the training data are reversed at the word level.

TABLE 1 | N-gram overlap (n D f 2, 3, 4g), TTR and sentence length for
Warbreakerand the means and 95% con�dence intervals of those measures for
the 12 books previously translated byToral and Way (in press).

Document N-gram overlap TTR Sentence
length

2 3 4

Warbreaker 0.86 0.67 0.41 0.15 12.54

Prologue 0.86 0.63 0.38 13.14

Chapter 1 0.87 0.66 0.41 13.81

Chapter 2 0.89 0.67 0.42 13.08

12 books 0.86 � 0.03 0.63 � 0.03 0.37 � 0.03 0.17 � 0.03 16.78� 3.03

3.2. Novel
The novel used in this experiment is Sanderson'sWarbreaker5.
This book ful�lls our two requirements, namely (i) literary
quality, to make sure that the task is indeed challenging, and(ii)
being freely redistributable, to guarantee the reproducibility of
our experiment. The �rst criterion is attested by its reviewsby
critics, while the second is met as the book was published under
a Creative Commons License (CC-NC-ND speci�cally).

Warbreaker is pre-processed in the same way as the training
data, namely it is sentence-split with NLTK (Bird, 2006) and
subsequently tokenized, truecased, and normalized (in terms of
punctuation) with the corresponding Moses scripts.

In order to have an estimate of the di�culty posed by the
translation of Warbreaker, we use two automatic metrics. The
�rst, type-token ratio (TTR), provides an indication of the
richness of the vocabulary used in the book. The second,n-gram
overlap, corresponds to the percentage ofn-grams in the novel
that are also found in the training data used to build the MT
system. This measure thus provides an indication of the degree
of lexical divergence (or “novelty”) of the book that is to be
translated with respect to the training data.

Table 1shows the TTR andn-gram overlap (forn D f 2, 3, 4g)
of Warbreaker (both for the whole book and for some individual
chapters)6 as well as for the 12 books previously translated with
our MT systems (Toral and Way, in press). For the latter we show
the mean value for the 12 books as well as the 95% con�dence
interval. In addition, we calculate the average sentence length
(average number of words per sentence) as previous research has
shown that the performance of current NMT systems degrades
with increasing sentence length (Toral and Sánchez-Cartagena,
2017).

Comparing the scores ofWarbreakerto those of the twelve
well-known books we have previously translated allows us to have
an approximation as to how challenging translatingWarbreaker
is going to be. The scores forWarbreaker(full book) fall inside
the con�dence intervals obtained for the twelve books for two
measures (2-gram overlap and TTR), they are slightly higher for
another two (3- and 4-gram overlap), and slightly lower for the

5https://brandonsanderson.com/books/warbreaker/warbreaker/
6TTR scores are not shown for chapters as it is computed on 20,000 words, a much
bigger amount of text than what makes up a chapter.
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remaining one (sentence length). According to these results we
expect the novel chosen to be slightly easier to translate than the
average of the twelve novels we translated previously.

As for Warbreaker's individual chapters, we select one for our
experiment that has similar values to the whole book, as that
would make it (to some extent) representative of the book as
a whole. We show the values for the �rst three (prologue and
Chapters 1 and 2) inTable 1and pick Chapter 1 as it is the one
whose results are closest to the whole book for all the metrics
considered (except sentence length, whose value is longer than
the average).

3.3. Experimental Setup
The professional translators performed the translation usingPET
v2.0 (Aziz et al., 2012)7, a computer-assisted translation tool that
supports both translating from scratch and post-editing.PET is
used with its default settings. A snapshot of the tool, as usedin
our experiment, is shown inFigure 1.

The source text translated in the experiment (Warbreaker's
Chapter 1) is made up of 3,743 words distributed in 330
sentences. We divided it into 33 translation jobs, each of which
is made of 10 consecutive sentences (translation segments).
There are three types of translation jobs (translation conditions):
translation from scratch (HT), and post-editing the translation
produced by the PBMT (MT1) and NMT systems (MT2)8.

Six translators (henceforth T1 to T6) took part in the study.
They saw all factors but not all combinations, since they
translated each job in one translation condition. The type of
translation to be carried out for each job by each translatoris
chosen randomly, with the following three constraints:

1. The �rst job is set to translation condition HT for translators
T1 and T2, to MT1 for T3 and T4 and to MT2 for T5 and T6.

2. Two consecutive jobs by a translator cannot follow the same
translation condition.

3. For each translator the number of jobs under each translation
condition is equal, i.e., each translator translates 11 jobs under
translation condition HT, 11 under MT1 and 11 under MT2.

We provided the translators with comprehensive translation
guidelines,9 where it is stated that the aim is to achieve
publishable professional quality translations, both for
translations from scratch and for post-editing. With respect
to post-editing, the guidelines encourage the translator totry
to �x the translation provided by the MT system. Only if this
is deemed too time-consuming to �x (e.g., because the quality
of the MT output is too low) were the translators instructed to
delete it and carry out the translation from scratch.

As in other computer-assisted tools, translations inPET are
related to source sentences on a one-to-one basis. In other
words, each source sentence corresponds to one target sentence
(see Chapter 3). However, in the translation of novels it is

7http://rgcl.wlv.ac.uk/projects/PET/resources/PET-v2.0.tgz
8We referred to the two MT systems as MT1 and MT2 throughout the experiments
so that the translators could not know anything about the MT paradigm into which
they fell.
9The manual is available as part of the Supplementary Material.

not that uncommon to have some cases of many-to-one (more
than one source sentence translated as one target sentence)or
one-to-many (one source sentence translated as more than one
target sentence) translations. Due to this characteristicof literary
translation, translators were told that they could, in addition to
one-to-one translations, perform one-to-many and/or many-to-
one translations. Details on how they could go about this are
provided in the translator's manual.

For each research question (temporal, technical and cognitive
e�ort), we �rst report the (descriptive) results for the samples. For
example, for temporal e�ort, the relative change in translation
productivity with post-editing versus translating from scratch is
provided. Subsequently, we aim to generalize from the samples
(the translators that participate in the study and the sentences
they translate) to populations (any translator and any similar
text) by using mixed-e�ects regression models (Baayen, 2008)10.
Mixed-e�ects regression models distinguish between �xed e�ects
(i.e., the e�ects we are usually interested in) and random e�ects
(i.e., the factors we would like to generalise over). With respect
to random e�ects, a distinction can be made between random
intercepts (i.e., the value of the dependent variable varies on the
basis of the level of the random-e�ect factor), and random slopes
(i.e., the strength of the e�ect of a predictor varies on the basis of
the level of the random-e�ect factor). Speci�cally, we will build
models where we contrast the three translation conditions by
including them as �xed e�ects, while including the translators
(6 levels) and translation segments, or sentences (330 levels) as
random e�ects.

Previous studies in post-editing have shown that results vary
considerably between translators and segments. By taking a
mixed-e�ects regression approach, we are able to include the
by-translator and by-segment random intercepts and slopes to
model the variability associated with translator and segment. For
example, one individual translator may tend to take longer, or
rewrite a larger part of a sentence than another, which is modeled
by a by-translator random intercept. Similarly, one sentence (due
to its structure) may be more likely to be rewritten than another,
or may take more cognitive e�ort to translate, which is modeled
by a by-segment random intercept. In addition, one translator
might show a greater di�erence between the three conditions
than another, which is modeled by by-translator random slopefor
translation condition. Similarly, a by-segment random slope for
translation condition is able to model that a translation condition
may show a greater di�erence for one sentence than for another.

We conduct exploratory analyses, in which we �rst include
random intercepts for translator and segment, and subsequently
add �xed-e�ect predictors one by one. For each predictor,
we check whether its addition results in a signi�cantly better
statistical model by comparing the model that adds that predictor
to a simpler model without that predictor. Any pair of models
is subsequently compared in terms of Akaike's Information
Criterion (AIC; Akaike, 1973). If the AIC of the model that

10For our analysis we use thelme4 R package, for a normal linear regression model
or a Poisson generalized linear regression model, but for a ratio as the dependent
variable, we use the packagemgcv, as beta regression is not implemented in the
lme4 package.
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FIGURE 1 | Snapshot from the translation environment showing the third task, in which the translator is to post-edit the translations produced by the NMT system for
sentences 21–30 of the chapter.

includes the predictor is at least 2 points lower than the model
without the predictor then we consider the �rst model to be
signi�cantly better. The evidence ratio can be calculated on
the basis of the AIC di�erence11 and represents the relative
probability that the model with the lowest AIC is more likely to
provide a more precise model of the data. By using a threshold
of 2 (see alsoGroenewold et al., 2014), we only select a more
complex model if it is 2.7 times more likely than the simpler
model. After including the �xed e�ect predictors separately, we
evaluate (using AIC comparisons) if interactions between the
�xed-e�ect predictors are necessary. After obtaining the best
�xed-e�ects structure, we evaluate the optimal random-e�ects
structure (i.e., by including random e�ects, and evaluatingtheir
inclusion again using AIC comparison) and retain all �xed-e�ect
factors which are signi�cant when the appropriate random e�ects
structure is included. This approach is similar to that used by
Wieling et al. (2011).

An ethics approval for this study was obtained from The
Research Ethics Committee of the Faculty of Arts, University
of Groningen. The professional translators involved in the
study gave written informed consent in accordance with the
Declaration of Helsinki12.

4. RESULTS AND DISCUSSION

As was previously mentioned in section 1, this work has three
research questions, concerning temporal (RQ1), technical (RQ2)
and cognitive e�ort (RQ3). Next we detail the pre-processing of

11Evidence ratio:e
� AIC

2

12https://web.archive.org/web/20091015082020/http://www.wma.net/en/
30publications/10policies/b3/index.html

the data. The subsequent three subsections attempt to provide
answers to these three questions, based on the experimental data
collected.

4.1. Pre-processing
For each translated sentence by each translator, we extractthe
following elements from thePET logs: length of the source
and target text (in words and characters), translation condition
(HT, MT1, or MT2), translation time, number of keystrokes
(total as well as belonging to di�erent categories: letters,digits,
whitespace, symbols, navigation, deletion, copy, cut and paste),
and number of pauses and their duration. Following the �ndings
by Lacruz et al. (2014), we include only pauses longer than 300
ms.

We also pre-processed those translations without a 1-to-1
sentence equivalence. None of the translators produced any 1-
to-many translations, and only three out of the six translators
generated many-to-1 translations. Moreover, these translators
performed such translations in very few cases: from 6 to 10
sentences, i.e., from 1.8 to 3% of the translation units. The
reason given by the translators as to why some of them
produced many-to-1 translations but no 1-to-many was due
to the fact that sentences in novels in Catalan tend to be
longer than in English. Accordingly, con�ating more than one
English sentence into a single Catalan translation equivalent
made sense, albeit on rare occasions. The fact that the vast
majority of translations were 1-to-1 could be attributed to
either of the two following reasons (or a combination of
both):

� While the instructions allowed for translations beyond the
1-to-1 sentence equivalence, the computer-assisted tool used
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FIGURE 2 | Translation productivity measured as words per hour for each of the translators in each of the translation conditions.

expects 1-to-1 sentence equivalence, so translators may feel
discouraged to do otherwise;

� While there may be the perception that in original novels and
their translations, sentences do not tend to correspond 1-to-1,
this is actually the most frequent case, at least for the language
pair we cover in this study. InToral and Way (in press),
we sentence-aligned over 100 novels in English and their
translations in Catalan. Overall, 77% of the sentences were
successfully aligned 1-to-1. The remaining 23% is made up of
alignments that are not 1-to-1 but also of 1-to-1 alignments
that the alignment tool could not align con�dently.

4.2. Temporal Effort
First, we report on translation productivity (measured as words
per hour) per translation condition, as this is a metric commonly
used in related work, e.g.,Plitt and Masselot (2010). Overall,
translators produce 503 words per hour when translating from
scratch (condition HT). Compared to this, post-editing the
translation produced by the PBMT results in 594 words per hour,
an 18% increase in productivity, while post-editing the NMT
output leads to double that �gure: 36% (685 words per hour). This
is clearly indicative of the fact that NMT outputs were superiorto
those from PBMT.

We now zoom in and look at each translator individually.
Results are shown inFigure 2. We can observe a large variability
in translation speed, from the lowest value of 402 words/hour
(translator T3, condition HT) to the highest of 1,140 (T2,
MT2). Despite this variability, we can observe clear trends when
comparing translation conditions: all translators are faster in
condition MT1 compared to HT (relative increases range from
1% for T6 to 46% for T2), and all are faster with MT2 than with
MT1 (increases range from to 0.001% for T1 to 37% for T3).

Next, in order to generalize from samples to populations and
to �nd out whether di�erences are statistically signi�cant, we
build a linear mixed-e�ects regression model in which we predict
translation time13 given two (�xed-e�ect) numerical predictors
(length of the source segment in characters and trial number),
one �xed-e�ect factorial predictor (translation condition) and
two random-e�ect factors (translators and segments). Numerical
predictors are centred and scaled. After �tting the �nal model,
we conduct model criticism by excluding data points which have
an observed value deviating more than 2.5 standard deviations
from the predicted value by the model14 and re�t the model.
In this way, we prevent potentially signi�cant e�ects from being
“carried” by these outliers (which are not well represented bythe
model;Baayen, 2008). We assessed that the residuals of our �nal
model approximately followed a normal distribution and were
homoscedastic.

In the best model, the two numerical �xed predictors are
signi�cant: translators take longer time the longer the input
text and shorter time as they advance through the experiment
(trial number). The e�ect of translation condition is also
signi�cant: compared to HT, translation time in condition MT1
is signi�cantly reduced, and so this is also the case for MT2
compared to MT1.

We �nd a signi�cant interaction between input length and
translation condition.Figure 3 shows that the longer the input
sentence the lower the advantage of MT2 over HT. There
is no such e�ect for MT1 though. The fact that post-editing
NMT is not advantageous over translating from scratch for long

13We transform it logarithmically, since its distribution is heavily skewed to the
right.
14A total of 56 out of 1,980 data points (2.8%) were removed.
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FIGURE 3 | Interaction between the length of the source sentence and the
translation condition on temporal effort.

sentences corroborates the �nding that the translation quality
provided by NMT degrades with sentence length (Toral and
Sánchez-Cartagena, 2017). Table 2 shows the signi�cance level
for each predictor and interaction between predictors, not only
for the model built for temporal e�ort but also for those used
for technical and cognitive e�ort (see sections 4.3 and 4.4,
respectively).

In terms of the random-e�ects structure, the �nal model
included both random intercepts (by segment and translator),
and a by-item (segment) random slope for translation
condition. The random slope re�ects that the di�erence
in temporal e�ort between the three conditions varies per
segment.

4.3. Technical Effort
We measure the technical e�ort by means of the number of
keystrokes used to produce the �nal translation. Similarly to what
was done for temporal e�ort (cf. section 4.2), we calculate the
number of keystrokes per character in the source sentence and
per translation condition (HT, MT1, and MT2), i.e., the number
of keystrokes that it takes to translate one character with each
translation method. Overall, it takes 1.94 keystrokes to translate
each character when translating from scratch (condition HT).
Compared to this, post-editing PBMT (condition MT1) results
in a 9% reduction (1.76 keystrokes per character), while NMT
leads to more than double that reduction, 23% (1.49 keystrokes
per character).

We now zoom in and look at each translator individually.
Results are shown inFigure 4. As with temporal e�ort, there
is large variability across translators and conditions, the lowest
value being 0.8 keystrokes per second (translator T2, condition
MT2) and the highest 2.9 (translator T5, condition MT1). Some
trends arise but they are not as clear as was the case with temporal
e�ort. Compared to HT, the number of keystrokes is reduced
with MT1 for three translators (maximum reduction: 45%, T2)
and is increased with the other three (maximum increase: 13%,
T5). Compared to HT, MT2 results in a reduced number of

TABLE 2 | Signi�cance of predictors in the mixed models built for each effort
dimension.

Predictor Temporal
(time)

Technical
(keystrokes)

Cognitive (pauses)

number mean
duration

ratio

Source length " *** " *** " *** " *** " *

Trial #*** #* #� #** -

Condition (MT1 vs. HT) #*** #** #*** " *** " **

Condition (MT2 vs. HT) #*** #** #*** " *** " *

Condition (MT2 vs. MT1) #* #** #*** " ** -

Length:MT1 - – – – -

Length:MT2 " ** " *** – – –

Signi�cance levels: – (p > 0.1), �(p � 0.1), *(p � 0.05), **(p � 0.01), ***(p � 0.001).
Direction: " (signi�cantly higher),# (signi�cantly lower). Two comparisons are carried out
for level MT2 of the predictor condition (i.e., against levels HT and MT1), hence wecorrect
these p-values with Holm-Bonferroni.

keystrokes for all translators except T6, for whom it increases
slightly (2%). The maximum reduction is, as in the case of MT1,
for T2 (59%).

Next, as for temporal e�ort, we build a statistical mixed
model to predict technical e�ort, for which we consider the
same set of predictors. Our dependent variable is the total
number of keystrokes. As this dependent variable re�ects
count data, we use Poisson generalized linear mixed-e�ects
regression. As in temporal e�ort, all the �xed predictors are
signi�cant. The longer the input, the more keystrokes are
used and the further a translator advances in the experiment,
the fewer keystrokes s/he uses. The e�ect of post-editing is
signi�cant; fewer keystrokes are required with MT1 compared
to HT, and the same occurs when we compare MT2 to
MT1.

The interaction between input length and translation
condition, which was signi�cant for temporal e�ort, is signi�cant
here too, but again only shows a di�erence between HT
and MT2. The interaction is shown inFigure 5. The longer
the input sentence, the smaller the di�erence becomes
between the number of keystrokes used in conditions HT
and MT2.

The optimal random-e�ects structure, in this case, consists
of both a by-translator and a by-segment random slope for
translation condition, and a by-translator random slope fortrial
(re�ecting that the trial, i.e., learning e�ects, are di�erent per
translator).

In the experiment we not only logged the number of
keystrokes used but also their type. We now delve deeper
into the keystroke results by di�erentiating the keystrokes into
three groups: content (digits, letters, white space and symbols),
navigation keys and erase keys15. Figure 4 showed the average

15Other types of keystrokes were logged too, for the operations copy, cut, paste
and undo. However, their usage was negligible in the experiment; they account for
just 0.1% of the total number of keystrokes used, so have not been included in our
analysis.
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FIGURE 4 | Technical effort measured as number of keystrokes per source character for each of the translators under each of the translation conditions.

FIGURE 5 | Interaction between the length of the source sentence and the
translation condition on technical effort.

number of keys per source character for each translator under
each of the translation conditions. Now, we show a di�erent
perspective inTable 3, where we break up the average number
of total keys into three groups of keys and we aggregate the data
for all the translators.

It has been previously shown that post-editing leads to a
very di�erent usage of the keyboard compared to translation
from scratch (Carl et al., 2011). Our results corroborate this:
while post-editing reduces considerably the number of content
keywords used (� 55% with PBMT and� 63% with NMT), that
translation pipeline results in a massive increase in the use of
navigation keys (228% with PBMT and 195% with NMT) and, to
a lesser extent, erase keys (105% for PBMT and 72% with NMT).

Figure 6 shows a complementary view of this data. For
each translation condition, we depict the proportion of keys

TABLE 3 | Average number of different types of keystrokes used to translate each
source character in each translation condition.

Keystroke type Task Type

ht mt1 1 % mt2 1 %

Total 1.94 1.76 � 9 1.49 � 23%

Content 1.52 0.69 � 55 0.56 � 63%

Navigation 0.18 0.59 228 0.53 195%

Erase 0.23 0.47 105 0.40 72%

For conditions MT1 and MT2, the relative changes with respect to translation from scratch
(HT) are shown alongside the absolute values.

that belong to each of the three groups considered (content,
navigation and erase). In translation from scratch, content
keystrokes make up 79% of the total, navigation 9% and erase the
remaining 12%. Post-editing leads to roughly equal percentages
for each keystroke category: 39% content, 34% for navigation and
27% for erase with PBMT and 38, 36, and 27%, respectively with
NMT.

Finally, we show the complete picture with three variables at
once (translators, translation condition and keystroke type) in
Figure 7. The trend is similar across translators for content keys;
all of them use substantially more keystrokes when translating
from scratch than when post-editing. Navigation is the type of
keystrokes for which we observe the highest variation across
translators; on one extreme two translators (T2 and T6) use
very few navigation keys, regardless of the translation condition.
On the other, one translator (T5) uses more than double
the number of navigation keys than the second translator
in number of navigation keys (T3). For erase keys, we see
similar trends across translators; all of them except T2 use
more erase keys when post-editing than when translating from
scratch.
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FIGURE 6 | Proportion of each keystroke type (content, navigation anderase) in each translation condition (HT, MT1, and MT2) aggregating all the translators.

FIGURE 7 | Proportion of each keystroke type (content, navigation anderase) in each translation condition (HT, MT1, and MT2) and for each translator.

4.4. Cognitive Effort
We use pauses as a proxy to measure cognitive
e�ort ( Schilperoord, 1996; O'Brien, 2006). We consider
three di�erent ways of expressing the dependent variable (Green
et al., 2013):

� Count: the number of pauses.
� Mean duration: how long pauses take on average.
� Ratio: the amount of time devoted to pauses divided by the

total translation time.

The number of pauses correlates strongly with the number of
keystrokes (R D 0.87). Due to this and because number of pauses
is a count-dependent variable, we �t number of pauses as the

dependent variable with the Poisson regression model previously
built for technical e�ort (see section 4.3). According to the model,
there are 15.3 pauses per sentence when translating from scratch.
Condition MT1 signi�cantly reduces this by 29% (10.9) and MT2
by 42% (8.8).

The mean duration of pauses correlates weakly with
translation time (R D 0.25) and has no correlation with number
of keystrokes (R D � 0.02). We �t the mean duration of
pauses16 with the model previously built to predict translation
time (see section 4.2). Pauses have a mean duration of 2,243

16We transform it logarithmically, since its distribution is heavily skewed to the
right.
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ms in the translating-from-scratch condition. In condition MT1
this signi�cantly increases by 14% (2,559 ms), while in MT2 this
increases further, by 25% (2,810 ms).

The ratio of pauses is a proportion, and thus we use beta
regression. Pause ratio correlates with translation time (R D 0.57)
and hence we will use the same predictors, interactions and slopes
as in the model previously built to predict time (see section 4.2).
According to the model, pauses take 63% of the translation time
in condition HT. Post-editing, be it with MT1 or MT2, leads to
signi�cant increments of around 2.5 percentage points (65.6 and
65.3%, respectively) of the time devoted to pauses. The di�erence
between MT1 and MT2 is not signi�cant.

5. CONCLUSIONS AND FUTURE WORK

We have conducted the �rst experiment in the literature in which
a fragment of a novel is translated automatically and then post-
edited by professional translators. Speci�cally, we have translated
one chapter ofWarbreaker(over 3,700 words) from English
into Catalan with domain-speci�c PBMT and NMT systems. We
provide all the necessary data, code and instructions to reproduce
our experiments (see section Supplementary Material).

The experiment has been conducted by six professional
translators, who translated consecutive fragments of 10 sentences
each in three alternating conditions: from scratch, post-editing
PBMT, and post-editing NMT. The time taken for each segment
as well as the keystrokes used, the number of pauses and
the duration of pauses were recorded, which has allowed us
to analyse the translation logs and study how post-editing
with PBMT and NMT a�ects temporal, technical and cognitive
e�ort.

Regarding temporal e�ort, compared to translation from
scratch, both PBMT and NMT lead to substantial increases in
translation productivity (measured as word per hour), of 18
and 36%, respectively. This demonstrates convincingly that post-
editing MT output—whatever the system—makes translators
faster than when they translate from scratch. Furthermore,it
indicates that translations output by NMT engines were better
than those from the corresponding PBMT systems. In addition,
we found that the gain with PBMT remains constant regardless
of the length of the input sentence, while the gain with NMT
decreases with long sentences.

With respect to the number of keystrokes used (the measure
used for technical e�ort), NMT again resulted in a more
substantial reduction (23%) than PBMT (9%). As with temporal
e�ort, the reduction in the number of keystrokes for PBMT
remains constant across input sentences of di�erent length, while
the reduction with NMT decreases for long sentences. Finally, we
have observed that the distribution of types of keystrokes isvery
di�erent in post-editing compared to translation from scratch.
While the �rst results in considerably fewer content keywords, it
notably increases the number of navigation and erase keystrokes.

As for cognitive e�ort, which we measured using pauses
as proxies, we found that NMT—and to a lesser extent
PBMT—signi�cantly reduce the number of pauses (42 and 29%,
respectively). Pauses are considerably longer when post-editing
(14% with PBMT and 25% with NMT) than when translating
from scratch. Finally, we observed that pauses take a longer

fraction of the total translation time when post-editing, andthat
the di�erence between PBMT and NMT is not signi�cant.

In this study we have looked at post-editing e�ort, covering its
three dimensions: temporal, technical and cognitive. In the next
phase of this work, we will explore translators' perceptions, which
we recorded during the experiments by means of pre- and post-
experiment questionnaires and a debrie�ng session, and compare
these perceptions to the results and conclusions from the current
study.

Finally, we will assess the quality of the resulting post-edited
translations. In previous post-editing studies this is commonly
measured by assessing the translations in terms of adequacy
and �uency. For literary texts, however, there is an additional
requirement, namely that the translation should preserve the
reading experience of the source text. Accordingly, we aim to
measure this in our future work.
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