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Abstract 

Enhancement of CHO bioreactor performance has typically been derived from optimization of media 

formulations and feeding strategies, with advances in clone selection systems and cell engineering 

also playing an essential role. However, these breakthroughs in media development are usually not 

disclosed by the biopharmaceutical industry or media vendors due to commercial considerations. As 

a result, optimisation of CHO culture performance from the research sector is thus limited and time-

consuming with undesired and/or unexpected effects in essential steps (e. g. transfection) also 

observed. To address this deficit in information, in-house serum-free and chemically-defined media 

(SFM and CDM) were developed as working tools to study the effects of media additives in culture 

performance. Investigating the titer-enhancing effects of zinc, the specific productivity of DP12 and 

rCHO-K1 cell lines could be significantly increased. A correlated effect was also observed at 

transcriptional level, with increased oxidative respiration metabolism also associated with the zinc-

supplemented, higher-producing cultures. Building on from the knowledge gained, further 

investigation on essential additives for CHO survival was then performed, identifying putrescine as 

a vital supplement. Based on this phenotype, a novel auxotrophic-based selection system was 

designed. The method offers a drug-free, easy-to-apply and cost-effective system for cell line 

development, observed to successfully isolate hEPO- and GFP-expressing clones with stable 

production profiles for at least 42 generations. Further characterisation of the polyamine-dependent 

phenotype of CHO by gene expression microarray (Affymetrix) was then performed, suggesting an 

association between cessation of growth and increased G1/S transition but arrest at M/G1 checkpoint. 

Finally, to highlight the essential implications of media additives in other key steps for bioprocess 

optimisation, the effect of media additives in transfection was investigated. Assessing the efficiencies 

of liposome-, lipopolyplexes- and polymer-mediated transfections, an inhibitory role of ferric 

ammonium citrate was identified and a novel strategy to circumvent this inhibition was 

recommended. 
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In 1982, the first recombinant human DNA therapeutic, insulin (Humulin, Eli Lilly & Co.) was 

released to the market (Quianzon et al. 2012). Since then, over 316 biopharmaceuticals have been 

licensed in U.S. and Europe, with monoclonal antibodies (mAbs) the most predominantly approved 

drug (Fig. 1a) (Walsh 2018). Over the past five years, the rate of biopharmaceuticals approval has 

been observed to increase for the first time since 1995, with a total of 112 products licensed since 

2014 – a 2-fold increase (Fig. 1b) (Walsh 2018). In 2017, total sales of up to $188 billion were 

recorded (Walsh 2018). The emergence of the biopharmaceutical patent cliff, with many 

"blockbuster" drugs coming off patent, is a main driver of this effect over the past number of years, 

resulting in a surge of biosimilar approvals and subsequent increase in competitiveness in the market. 

Several production platforms have been investigated and modified to generate therapeutics on an 

industrial scale. While some smaller proteins not requiring complex folding and post-translational 

modification - such as insulin and Hepatitis B vaccine - can be produced in E. coli or yeast, most 

complex therapeutics, such as monoclonal antibodies, are most efficiently produced in an active form 

by using mammalian platforms (Walsh, 2014) and for this reason mammalian cells are the dominant 

production platform (Walsh 2018) (Fig. 2). Bacterial expression systems lack glycosylation 

machinery and recombinant proteins produced by yeast display altered mannose patterns, so these 

platforms are thus limited to the production of non-glycosylated proteins (Lalonde and Durocher, 

2017a). Similarly, other non-mammalian production platforms, including plant-derived systems (such 

as root carrot-derived cell lines), insect cells (such as Sf9) and transgenic animals (such as goat and 

rabbit) also include altered glycosylation patterns, resulting in only a few biopharmaceuticals and 

vaccines successfully approved for commercialisation with these platforms (see list in Dumont et al., 

2016). 

 

a) 

b) 
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Fig. 1 a) Annual product approval over the indicated period. b) monoclonal antibody approval as a 

percentage of total approvals. Figure obtained from Walsh 2018. 

 

Among mammalian-based expression platforms, Chinese Hamster Ovary (CHO) cells have remained 

the leading cellular system, involved in the production of nearly 70% of biopharmaceutical proteins 

(Butler and Spearman, 2014; Lalonde and Durocher, 2017b). As the first mammalian cell line to be 

used for the production of a commercial therapeutic back in 1986 (tissue plasminogen activator; t-

PA), CHO cells have an extensive safety record and widespread regulatory acceptance (Kim, Kim 

and Lee, 2012). Several advantageous features include lack of human virus entry machinery, which 

increases the biosafety of therapeutic production, and high cell densities in serum-free and 

chemically-defined formulations at large-scale culture. Over the last few years, the development of 

amplification systems for this cell line have resulted in high specific productivities, with yields at the 

gram per litre levels reported (Butler and Spearman, 2014; Dumont et al., 2016; Lalonde and 

Durocher, 2017b). Importantly, recombinant proteins produced in CHO cells include post-

translational modifications resulting in bioactive, stable and compatible human therapeutics. 

Differing glycosylation patterns are sometimes observed between human and CHO products, 

although more humanised biopharmaceuticals can be obtained from several glycoengineering 

approaches, alteration of culture conditions and medium formulation strategies (Zhu, 2012; Butler 

and Spearman, 2014). Human-derived cell lines such as HEK293, PER.C6, HKB-11 and CAP have 

also been utilised over the past few years, with few therapeutic proteins developed from these 

platforms approved for the market in 2015 (e. g. rFVIIIFc, Dulaglutide and Velaglucerase alfa) (Zhu, 

2012). Although human cell lines can facilitate acceptable glycosylation patterns for therapeutic 

activity, clear disadvantages are observed with these lines, such as the risk of pathogen contamination 

and the reported ability of the cells to produce Sialyl-Lewisx modifications that could perturb 

bioavailability of the therapeutic (Kim, Kim and Lee, 2012). As a consequence of all the above, CHO 

cell lines are still the main workhorse for biopharmaceutical production. 

 

Fig. 2 Relative use of mammalian compared to nonmammalian-production system for the 

manufacture of biopharmaceuticals approved over the period of times indicated. Figure obtained from 

Walsh 2018. 
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The production of therapeutic proteins is time-consuming and laborious, consisting of the following 

stages: drug discovery, pre-clinical and clinical testing and approval, development and isolation of 

the producer clonal cell line, bioprocess culture and downstream purification. Targeted improvement 

of any of the stages will result in more efficient processes for the pharmaceutical industry. Given the 

vital role CHO cells play in the industry, enhancement of the culture performance profiles of this cell 

line (growth rate, viability, specific productivity, product quality, metabolite production, etc.) is a key 

goal of the biopharmaceutical sector. Three common strategies employed to improve the production 

process are: (i) media development and feeding strategies, (ii) bioprocess optimisation through 

bioreactor design, continuous bioreactor monitoring tools (e.g. pH, oxygen, temperature, glucose, 

lactate levels) and/or bioreactor culturing strategies (fed-batch, batch, perfusion) and (ii) generation 

of more productive cell lines by genetic engineering, clonal selection and amplification (Butler and 

Meneses-Acosta, 2012; Fischer, Handrick and Otte, 2015). These are briefly discussed below. 

 

1. Media optimisation for improved growth and productivity  

When CHO were first used for production of therapeutics (1986), yields of up to 100mg/L were 

reported (De Jesus and Wurm, 2011). Over the past three decades, this has increased almost 50-fold, 

with reported titers now between 3 - 10g/L - this has been achieved mainly from optimisation of 

feeding composition and bioprocess culture systems (Butler and Meneses-Acosta, 2012; Kelley, Kiss 

and Laird, 2018). Media formulations for biopharmaceutical cell culture have been developed to 

ensure sufficient nutrient availability to support healthy cell proliferation and high production 

profiles, while decreasing accumulation of toxic by-products derived from cell metabolism. 

Formulations are also expected to have minimal negative effects on end-product quality, such as 

increased aggregation of proteins or improper glycosylation patterns. Optimisation and research on 

media formulations and feeding compositions are continuously reviewed and updated in order to 

achieve enhanced bioprocessing. Metabolomics studies have become powerful tools in this area, 

identifying key parameters for efficient cell proliferation and product yield to be used for the 

improvement of bioprocesses (Dickson, 2014; Pereira, Kildegaard and Andersen, 2018).  

 

1.1. Removal of serum: Serum-free and chemically-defined media development 

Producer CHO cell lines used during biopharmaceutical production are clonally-expanded colonies 

isolated from a mixed population by using single-cell cloning assays to increase product 

reproducibility. However, these cells grow slowly or often fail to grow when cultured at low cell 

densities, resulting in poor culture performance (Zhu et al., 2012). For this reason, further 

supplements are required in order to sustain cell growth. Fetal bovine serum (FBS) is a rich 

supplement obtained from foetal calves and contains a mixture of all the essential compounds required 

to promote cell proliferation in vitro (van der Valk et al., 2018). Consequently, it was a widely-used 
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additive for CHO culture, consisting of a complex mixture of biomolecules which participate in the 

stimulation of cell proliferation due to the high content of growth factors and hormones (e.g. insulin, 

insulin-like growth factor 1 and 2, fibroblast growth factor, epidermal growth factor). It also acts as 

a source of large amounts of binding proteins which can act as carriers of trace elements, vitamins 

and lipids (e.g. transferrin, albumin). Moreover, these proteins also play a role in the detoxification 

of accumulated by-products, thereby reducing cell death. Proteins, peptides, minerals and cell 

adherence proteins, such as laminin or fibronectin are found in varying concentrations in FBS (van 

der Valk et al., 2004, 2018).  

Despite the advantages provided by this supplement, industrial production of therapeutics for human 

consumption demands the use of serum-free media formulations, mainly due to safety concerns 

arising from serum’s animal-derived origin; these risks include possible viral, mycoplasma and/or 

prion contamination. Additionally, seasonal and continental variability leads to differences between 

batch-to-batch productions that may cause inconsistencies and impact batch productions of the 

eventual therapeutics (Gstraunthaler, 2003; van der Valk et al., 2004). Moreover, serum’s ill-defined 

composition may lead to the inclusion of additional downstream purification steps in order to remove 

contaminating animal proteins (David W Jayme and Smith, 2000). There are also ethical 

considerations with the use of FBS, as blood is extracted directly from the foetal bovine heart and 

processed to produce the serum (van der Valk et al., 2004, 2018). As a consequence of the above, 

several approaches to reduce and replace serum supplementation have been pursued over the years, 

resulting in the development of a range of formulations that can be classified in four types: 1) Serum-

reduced media, the result of initial attempts of serum-free media development which still requires 

low levels of FBS, along with additional supplements to ensure healthy cell growth; 2) Serum-free 

media (SFM), in which serum supplementation is replaced with growth factors and proteins (derived 

or not from animals); 3) Protein-free media (PFM), characterized by the complete removal of high 

molecular weight proteins. However, it may contain small peptides and/or protein hydrolysates; 4) 

Chemically-defined media (CDM), composed by well-defined supplements, which may or may not 

contain recombinant proteins. Additionally, media can be further defined by the term “animal-derived 

component-free media”, indicating an absolute lack of animal-derived supplements (Fig. 3) (David 

W. Jayme and Smith, 2000; Van Der Valk et al., 2010). 
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Fig. 3 Schematic of serum-removed media classification. A serum-free media might be also described 

as chemically-defined media if there is absence of undefined additives (such as hydrolysates) and 

contains recombinant proteins. A medium can be also defined as protein-free and serum-free if the 

formulation has no proteins. Finally, a third media definition includes lack of proteins and undefined 

peptides being then described as serum-free, chemically-defined and protein-free. Moreover, each of 

the formulations used for biopharmaceutical industry tend to avoid the use of animal-derived 

components. Thus, all three can be further classified as animal-derived component-free media.  

 

1.1.1. Basal media 

Media formulations lacking serum supplementation typically differ considerably depending on the 

nutritional requirements of the cell line, the recombinant product generated and the culture system. 

However, the development of a new formulation usually follows the same workflow: selection of the 

most suitable basal media and enrichment of the composition with essential nutritional supplements.  

Historically, the first successful attempt of in vitro tissue culture was based on a mixture of salts 

developed by Ringer and Buxton (named Ringer's solution), who successfully maintained functional 

frogs heart tissue for short periods of time (Yao and Asayama, 2017). Nonetheless, for the culture of 

cells and tissues for longer periods of time, additional supplementation with nutrients and pH 

buffering components was required to complete the formulation (Yao and Asayama, 2017). In 1955, 

Henry Eagle modified the saline solutions being used up until then by adding changing concentrations 

of L-aminoacids, vitamins, cofactors, carbohydrates and salts and tested them on two mammalian cell 

lines, HeLa and L-fibroblasts (Eagle, 1955). With this approach, essential compounds required for 

prolonged cell maintenance were identified, leading to the generation of the Eagle’s Minimal 

Essential Medium (MEM), developed as a base media still requiring low percentages of serum 

CDM

PFMSFM        

No proteins, no 

undefined additives 

Recombinant defined 

proteins with no hydrolysates 

and undefined additives 

Hydrolysates with no 

proteins 

Animal-derived 

component-free 
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addition (Eagle, 1955; Van Der Valk et al., 2010). MEM was well-defined and the removal of any of 

the components resulted in cell death. From this basic approach, a chemically-defined formulation 

was sought. In 1963, serum supplemented to media was replaced by a combination of albumin and 

fetuin serum proteins, resulting in the development of Ham’s F10 formulation. This medium was 

described as one of the first to successfully support isolation of single CHO cells in serum-free 

conditions (Yao and Asayama, 2017;  Evans et al. 1956). Further investigations led to the 

development of a completely defined medium by replacing albumin and fetuin for linoleic acid and 

putrescine, resulting in (the still currently used) Ham’s F12 medium (Ham, 1963b, 1963a; Ham, 

1965). Variations of these formulations have since been designed, with DMEM (Dulbecco's Modified 

Eagle's Medium) being one of the most widely used formulas for cell culture. DMEM has a 4-fold 

increase in the quantity of vitamins and amino acid which supports the culture of a broad range of 

mammalian cell lines. Nutrient enrichment was achieved by combinations of these media, resulting 

in the development of the currently commercially-available DMEM-F12. This new formulation has 

been extensively used as a baseline medium for the development of serum-free formulations for 

several CHO cell lines (Van Der Valk et al., 2010; van der Valk et al., 2018). For instance, Huang et 

al. (2017) reported the development and optimisation of a chemically-defined and protein-free 

DMEM-F12-based media for the growth of an autocrine CHO cell line (Super-CHO), reaching up to 

2.6x106 cells/ml (Huang, Marquis and Gray, 2007). Similarly, DMEM-F12 was used as a basal SFM 

for the study of growth promoting agents, identifying insulin-like growth factor 1 (IGF-1) as an 

important growth-stimulating factor for DG44 cells (Chun et al., 2003). Other basal media have been 

studied less extensively, such as alpha-MEM and IMDM. In 1998, a study to develop a producing 

medium for DG44 cells was performed using alpha-MEM. The final product reached maximal viable 

cell numbers of 5.6x105 cells/ml, similar to the densities observed with 5 % FBS-supplemented media 

(Eun Jung Kim, Kim and Lee, 1998). IMDM (Iscove's Modified Dulbecco's Medium) is another 

popular baseline medium, which was derived from MEM (minimal essential medium) by replacing 

iron with potassium nitrate. For this reason, transferrin or protein-free iron chelator, like ferric citrate, 

must be added to support cell proliferation (Lee et al., 1999; Kim et al., 2006).  

In order to generate further enriched formulations, combinations of two or more basal media have 

been also reported in the literature. For instance, Parampalli et al. published a SFM formulation based 

on a mixture of IMDM:Ham’s F12 (1:1) where the concentration of the supplements was optimized, 

resulting in a final 1.4-fold increased viable cell density compared to the control (1.45x106cells/ml) 

(Parampalli et al., 2007). In 2012, a combination of DMEM-F12:RPMI1640 (2:1:1) supplemented 

with amino acids, insulin, putrescine, ferric ammonium citrate and other components was developed 

for GS-CHO cells, reaching a maxim viable cell density of 3.7x106cells/ml in a 5-day culture; similar 

to that achieved in control EX-CELL 302 commercial medium. Moreover, scaling-up the cultures to 
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2L bioreactors displayed reproducible viable cell density profiles when compared to 125ml shake 

flasks (Zhang et al., 2013). 

 

1.1.2. Additives 

Basal media such as DMEM-F12 provides a mixture of organic and inorganic salts, amino acids, trace 

elements, vitamins, carbohydrates, putrescine, lipids and buffering agents essential for basic growth, 

but fails to support cell proliferation at high cell densities. In 1982, Murakami et al. identified insulin, 

ethanolamine, transferrin and selenium (ITES) as four vital additives to support mouse hybridoma 

cell lines in serum-free conditions (Murakami et al., 1982). During early stages of serum-free and 

chemically-defined media, ITES became extensively popular for the growth of mammalian cell lines, 

resulting in a commercially available supplement for SFM development. Further investigations have 

led to the discovery of more chemically-defined additives that promote cell proliferation for long 

periods of time. In the following section, the most widely used supplements for CHO serum-deprived 

media are outlined. 

 

1.1.2.1.  Hormones and growth factors 

Serum is rich in growth factors and hormones which participate in the activation of antiapoptotic and 

cell proliferation signals (Gospodarowicz and Moran, 1976). For this reason, initial attempts to 

sustain cell cultures in serum-free conditions focused on the supplementation of these proteins 

(Hayashi and Sato, 1976). Insulin has been defined as essential to sustain serum-deprived CHO 

cultures when supplemented at supraphysiological levels (1-20 µg/ml), inducing mitogenic signalling 

pathways with the activation of insulin like growth factor 1 (IGF-1) receptor (Keenan, Pearson and 

Clynes, 2006; Van Der Valk et al., 2010; Ritacco, Wu and Khetan, 2018a). Supplementation of IGF-

1 and its analogue LongR3 IGF-1 (Repligen) have been also explored, reporting similar or even 

increased viability profiles when compared to insulin, at lower supplemented concentrations than 

insulin (Morris and Schmid, 2000; Sunstrom et al., 2000). Additional growth factors have been 

identified from a study of conditioned media samples, identifying fibroblast growth factor 8 (FGF8), 

hepatocyte growth factor (HGF) and vascular endothelial growth factor-c (Vegf-c) as growth 

promoting agents (Lim et al., 2013). However, compared to serum and insulin, their growth 

promoting effects are less effective than those reported for insulin.  

To obtain protein-free formulations, the mitogenic effects of zinc and aurintricarboxylic acid (ATA) 

supplementation have been exploited. Insulin-mediated growth-stimulatory effects mimicked by 

zinc-supplementation have been described in several cell lines (Tang and Shay, 2001; V. V. T. Wong 

et al., 2006) including CHO (at 1.5mg/L Zn), although growth in insulin-replaced media was only 

observed with one of the two CHO cell lines tested (Wong, Ho and Yap, 2004). The role of zinc as 

an insulin-mimic has been associated with the activation of phosphoinositide 3-kinase/Akt pathway, 
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with no interaction with the insulin receptor (Ezaki, 1989; Tang and Shay, 2001). Alternatively, the 

antiapoptotic factor ATA has been previously reported as a growth-stimulation factor in PFM for 

CHO cells (Liu, Chu and Hwang, 2001a; Miki and Takagi, 2015). ATA has been described to induce 

its mitogenic activity through the activation of IGF-1 receptor response in a similar manner as insulin 

(Beery et al., 2001). 

 

1.1.2.2. Carbon sources 

In most serum-free media, glucose is the main source of carbon and energy supplement for CHO 

cells. Industrial media compositions contain amounts at a range from 25 - 35mM. Variations of these 

glucose concentrations over or below the typical limits described have been shown to have an impact 

on the specific growth rate, productivity, nutrient consumption and product quality of CHO cells 

(Altamirano et al., 2000; Wong et al., 2005). From metabolic studies, it is widely known that CHO 

cultures in exponential phase consume glucose in large quantities which is converted to lactate 

through glycolysis, even in the presence of oxygen (Warburg effect) (Dickson, 2014). Limiting-

glucose feeding approaches have been described to elongate the viabilities of the cultures though the 

reduction of lactate accumulation and without changing the transcriptomic expression of the cells 

(Wong et al., 2005; Gowtham, Saski and Harcum, 2017). However, low specific growth and 

productivities are usually displayed as a result. Alternatively, glucose supplementation above 40 mM 

has been reported to increase specific productivity but to cause an accumulation of lactate that results 

in decreased specific cell growth (Lee et al., 2015). For this reason, levels of glucose supplementation 

are usually maintained at 30 mM in growing cultures (Vergara et al., 2018). 

In order to reduce lactate accumulation, “slow metabolised” sugars, such as galactose, mannose or 

fructose, have been also tested. Complete replacement of glucose for either galactose or fructose has 

been reported to reduce cell growth and/or productivity, while mannose-containing cultures achieved 

similar specific growth rates compared to cultures in glucose-supplemented medium (Altamirano et 

al., 2000).  

L-glutamine is an important nutritional component of culture media, playing an essential role as a 

protein precursor as well as an important alternative energy source to glucose (Van Der Valk et al., 

2010). However, L-glutamine represents the main source of ammonia by-product, released for either 

its spontaneous breakdown or metabolism (Jagušić et al., 2016). In order to overcome the lack of 

stability of this essential amino acid, dipeptides of L-alanine‐glutamine (commercially available as 

Glutamax) or glycyl‐glutamine have been developed, increasing the stability of the amino acid 

(Imamoto et al., 2013; Ha and Lee, 2015). Alternative sources such as glutamate or pyruvate have 

been also used as replacements for glutamine, reporting substantial reduction in ammonium secretion 
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(Genzel et al., 2008) and increased productivity profiles compared to non-supplemented cultures 

(Hong, Cho and Yoon, 2010). 

 

1.1.2.3. Iron sources 

Iron is essential for cell cycle progression, growth and division due to its involvement with many 

proteins and enzymes that participate in cell replication. Lack of iron supplementation results in G1/S 

phase arrest, reduction of cell growth and eventual cell death (Yu, Kovacevic and Richardson, 2007). 

However, excessive supplementation also may have detrimental effects. In media, free iron ions are 

highly reactive and may produce ROS species by Fenton redox-cycle reaction, damaging the cells 

(Graham, Bhatia and Yoon, 2019). For this reason, transferrin, the natural iron-chelating protein is 

supplemented in serum-free media formulations (Butler M. et al. 2015). Alternatively, in chemically-

defined and protein-free media, iron has been delivered in the form of ferric citrate, ferric ammonium 

citrate, ferric sulphate, ferric ammonium sulphate or ferric gluconate (Zhang, Robinson and Salmon, 

2006; Bai et al., 2011; Zhang et al., 2013). Sodium selenite has been also described as an effective 

iron-carrier, reporting final cell densities of 10x106 cells/ml and mAb yields of 3 g/L in a 14-day fed-

batch (Zhang, Robinson and Salmon, 2006). Another example is the iron chelating agent tropolone, 

which has not been extensively used in CHO due to patent protection (Zhang, Robinson and Salmon, 

2006). It is noteworthy that, due to the essential nature of this micronutrient, basal media are routinely 

supplemented with traces of iron sources, such as DMEM-F12. However, as described above, 

additional supplementation to PFM and CDM has been observed necessary in order to improve 

cellular proliferation. 

 

1.1.2.4.  Trace elements 

Most trace metals are already part of basal media formulations, such as DMEM-F12. It is noteworthy 

that, even though supplemented at very low levels, metals are essential to sustain healthy cell growth 

in vitro, being involved in many roles: regulatory factors, cellular respiration control, protection 

against oxidative stress and anti-apoptotic agents, among many others (Tan et al., 1984; Gong et al., 

2001; Piret et al., 2004; Chaderjian et al., 2008a; Yuk et al., 2014; Kim and Park, 2016).  

Importantly, analysis of the composition of trace metals between two lots of SFM, revealed significant 

variations in copper, zinc, selenium and cobalt levels (Keenan et al., 2018). These fluctuations have 

been associated with variations in the source and batch of raw materials used for the development of 

SFM formulations, such as hydrolysates (presence of iron salts) and insulin (zinc sometimes used as 

stabiliser). Metals leaching from glass and stainless steel vessels have also been reported, causing 

variability in media composition (reviewed in Graham, Bhatia and Yoon, 2019). Due to the vital 

involvement of metals in key cellular processes, alterations in culture performance may be observed 

in SFM as a consequence of small variations on the levels of these trace elements. 
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The most widely used trace metals for SFM development are copper, zinc and selenium, present as 

traces in basal media formulations. Supplementation of manganese, cobalt and other trace metals such 

as molybdenum and vanadium have been also reported with lower impact. Details on the role of these 

micronutrients are given below. It is also worth noting that further information and strategies for 

media optimisation based on trace metals addition are described in the next section. 

 

1.1.2.4.1. Copper 

Copper is an essential micronutrient for cell growth, being related to oxidative respiration and shift 

to lactate consumption during the stationary phase, thus elongating cell culture (Chaderjian et al., 

2008b; Luo and Pierce, 2012; Yuk et al., 2014; Yuk, Russell, Tang, W. T. Hsu, et al., 2015; Xu, 

Hoshan and Chen, 2016). Copper plays an essential role in the electron transport chain, being a 

cofactor of the cytochrome c oxidase subunit of complex IV (Kang et al., 2014a). Low levels of this 

metal in media have been associated with a reduced number of complex IV (Kang et al., 2014a) and 

increased lactate dehydrogenase function, thus accumulating lactate in the medium (Zagari et al., 

2013a; Kang et al., 2014a; Nargund, Qiu and Goudar, 2015a). Following supplementation of copper 

concentrations above a defined threshold (13nM), induction of a metabolic shift to lactate 

consumption has been reported (Yuk, Russell, Tang, W.-T. Hsu, et al., 2015), resulting in improved 

viable cell density, viability and productivity profiles (Luo et al., 2012). However, reduced viabilities 

(82-90 %) have been observed in DUX-B11 cells cultured in serum-free conditions with 

concentrations of 50-100 µM Cu (Chaderjian et al., 2005). In fact, increased production of reactive 

oxygen species (ROS) are associated with high copper concentrations in culture (Camakaris et al., 

1995). 

 

1.1.2.4.2. Zinc 

Being involved on the activation and function of more than 300 enzymes and transcription factors, 

supplementation with sufficient zinc concentrations is required for proper cell proliferation. The 

importance of this micronutrient in CHO cell growth was reported by Xu et al. Using design of 

experiments (DoE), ZnS04 (at 1mg/L) was identified as one of three most significant supplements 

inducing growth-promoting effects in CHO-K1 cultures in a CDM (Xu et al., 2014). Zinc has been 

described as a powerful antioxidant in culture (Marreiro et al., 2017), acting as a co-factor of 

superoxide dismutase, inducing the expression of glutathione, activating the metal transcription factor 

1 – which plays an important role in regulating oxidative stress – and protecting from lipid 

peroxidation (Marreiro et al., 2017). Zinc has been also observed to display anti-apoptotic properties 

in bioreactor-relevant conditions (Cotter and Al-Rubeai, 1995) and to stimulate glucose uptake 

(Ezaki, 1989). Zinc involvement in mRNA stability has been also reported, mediated by the 

interaction of zinc-finger proteins with nucleic acids (Taylor and Blackshear, 1995; Buchner et al., 
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2015), while a beneficial effect on product titer in CHO has been also described following 

supplementation of zinc at high concentrations (Kim and Park, 2016).  

 

1.1.2.4.3. Selenium 

Selenium has been identified as an essential supplement for mammalian cell culture as well as in 

serum-deprived conditions, enhancing the healthy growth of cells (Mckeehan, Hamilton and Ham, 

1976; Lebkowski, Schain and Okarma, 1995). It is extensively used for serum-free media 

development, with concentrations as low as 20 µg/L commonly supplemented (E J Kim, Kim and 

Lee, 1998; Kim, Kim and Lee, 1999; Lee et al., 1999; Schröder, Matischak and Friedl, 2004). 

Selenium has been described to participate in oxidative-stress protection, constituting selenocysteine-

containing proteins such as glutathione peroxidase and glutathione synthetase (Köhrle et al., 2000; 

Schomburg, Schweizer and Köhrle, 2004). Detoxification of peroxide oxygen radicals by the 

activation of anti-apoptotic pathways has been also observed, promoting longevity of the cultures and 

improved growth profiles (Yoon et al., 2002). Moreover, selenium has been described to play an 

essential role in MAPK pathway and therefore to induce mitogenic growth effects (Zeng and Combs, 

2008).  

 

1.1.2.4.4. Cobalt 

Supplementation of cobalt to culture media has been shown to induce hypoxia-like conditions, 

resulting in the stimulation of glucose uptake and glycolytic pathways. Moreover, antiapoptotic 

protection following serum-deprivation has been also observed in HepG2 cells (Gong et al., 2001; 

Piret et al., 2002, 2004; Torii et al., 2011). In 2014, cobalt was reported to modify the galactosylation 

patterns of a mAb for two CHO cell lines. However, this effect was substantially lower compared to 

manganese supplementation and each cell line presented different sensitivities to the metal, with 

decreased product titer observed at concentrations above 50 µM for cell line 1, but a similar 

phenotypic threshold concentration for cell line 2 was observed at just 5 µM (Hossler and Racicot, 

2015).  

 

1.1.2.4.5. Manganese 

Manganese has been described as an antioxidant, acting as a cofactor of manganese superoxide 

dismutase (Mn-SOD) – a mitochondrial enzyme that eliminates reactive oxygen species by 

conversion into oxygen and hydrogen peroxide (Kaewpila et al., 2008). Manganese plays an 

important role in the regulation of galactosylation and glycosylation processes and for this reason, 

this metal is usually supplemented in serum-free media formulations to enhance product 

glycosylation patterns (Kaufman, Swaroop and Murtha-Riel, 1994; Crowell et al., 2007; Hossler, 
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Khattak and Li, 2009; Graham, Bhatia and Yoon, 2019). However, no effects on cell growth were 

observed in a separate study with supplementations up to 100 µM (Gawlitzek et al., 2009a).  

 

Other trace metals, such as vanadium has also been described to increase cell growth (Ritacco, Wu 

and Khetan, 2018b). 

 

1.1.2.5. Amino acids 

As the starting building blocks for the construction of proteins, amino acids are required for cell 

proliferation and productivity. In response to amino acid-limiting conditions, activation of several 

pathways is observed to decrease the overall cellular translation and induce ER-stress (Kilberg et al., 

2005). Nonetheless, excessive amino acid addition increases media osmolarity and accumulation of 

by-products such as ammonia, therefore resulting in reduced cell growth (González-Leal et al., 2011). 

For this reason, to achieve healthy CHO cell cultures, most amino acid levels have to be maintained 

within specific ranges. Moreover, optimal amino acid supplementation levels vary between cell lines, 

culture systems and compositions of the recombinant protein being produced (Fomina-Yadlin & 

McGrew, 2014). Several studies have demonstrated the effectiveness of adjusting amino acid 

supplementation to achieve high titer and viable cell densities. For example, threonine has been 

reported to alleviate stressing conditions such as high ammonium, dissolved CO2 and osmolality 

effects, resulting in increased VCD and titer profiles (Chen and Harcum, 2005).  

Some amino acids have relatively low solubility and stability, such as tryptophan, glutamine, cysteine 

and tyrosine. To improve their properties and to avoid accumulation of toxic substances derived from 

their breakage, storage of media protected from light participated in maintaining tryptophan levels 

(Mcelearney et al., 2016). The replacement of such amino acids for derivatives has been also 

performed, such as tyrosine-containing dipeptides to improve tyrosine solubility (Kang et al., 2012) 

or s-sulfocysteine, reported to replace cysteine and act as an anti-oxidant in CHO culture media 

(Hecklau et al., 2016). 

 

1.1.2.6. Lipids 

Lipids are an essential constituent of membrane structure acting as cellular stabilizers. Moreover, 

lipids can serve as an energy supply and roles in cellular transport and signalling have also been 

previously described (Ritacco, Wu and Khetan, 2018b). Exogenous addition of lipid is not essential 

for CHO culture. However, increased viable cell density and viability profiles are achieved with the 

addition of the mitogenic lipid lysophosphatidic acid, in the absence of growth factors (Miki and 

Takagi, 2015). Supplementation with ethanolamine phospholipids, major constituents of the cellular 

membrane, has been described to enhance cell proliferation of CHO cells in serum-free media 

formulations (Zhang et al., 2013). Increased CHO growth has been also reported with the 
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supplementation of phosphatidylcholine in serum-free formulations (Sung et al., 2004; Kim and Lee, 

2009), which may have an important role in maintaining the integrity of the cellular membrane 

(Castro et al., 1996). Addition of linoleic acid has been previously reported to stimulate growth of 

CHO cells and supporting cultures for a minimum of 4 subcultures (Eun Jung Kim, Kim and Lee, 

1998). However, linoleic acid is typically supplemented bound to BSA in most of the publications 

(Liu, Chu and Hwang, 2001b; Liu and Chang, 2006). Addition of fatty acids and cholesterol can be 

also performed by using soluble derivates or including small amounts of ethanol. However, high 

concentrations may induce lipotoxicity in CHO cells (Ritacco, Wu and Khetan, 2018b).  

 

1.1.2.7. Vitamins 

Vitamins are essential media additives required in small amounts for cell culture. Vitamins have been 

described to act as enzyme cofactors, biological antioxidants, prosthetic groups or even as hormones 

(Schnellbaecher et al., 2019). Due to their vital roles, vitamins are normally supplemented in basal 

media formulations, such as DMEM-F12, DMEM or RPMI 1640 (Van Der Valk et al., 2010). More 

interestingly, modification in vitamin content has been also reported to enhance growth and titer of 

CHO cell lines (Kim et al., 2005; Zhang et al., 2013).  

Importantly, several factors such as light, heat, oxygen, or reactive oxygen species (ROS) can 

compromise the stability of some vitamins. For this reason, protection of media from the light and 

heat are essential considerations for the proper maintenance of media (Schnellbaecher et al., 2019). 

 

1.1.2.8. Surfactants 

In suspension, CHO-derived cell lines can spontaneously aggregate forming large clumps of cells. 

This effect causes detrimental effects due to the limited availability of oxygen and nutrients for the 

inner cells of the clump (Jing et al., 2016). As a result, several anti-clumping agents have been 

described in the literature which seek to inhibit cell clumping in serum-deprived conditions. Several 

mechanisms of cellular aggregation in suspension culture have been described: DNA released from 

apoptotic cells (Renner et al., 1993), extracellular cell adhesion molecules such as NCAM (neural 

cell adhesion molecule) (Zanghi et al., 1998; Yamamoto et al., 2000) and high amounts of calcium 

(Peshwa et al., 1993). Some examples of the most commonly used additives include Pluronic F68, 

poly vinyl alcohol (PVA), dextran sulphate and suramin (Michaels and Papoutsakis, 1991; Zanghi et 

al., 2000; Jing et al., 2016). Pluronic F68 has been also reported to improve CHO cell growth, 

viability and productivity (Clincke et al., 2011).  

 

1.1.2.9. Polyamines 

The polyamines spermine, spermidine and putrescine are vital for cell growth and cell cycle 

progression and also participate in pathway signalling and apoptosis protection (Igarashi and 
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Kashiwagi, 2019). Intracellularly, polyamines are found interacting mainly with RNA but also with 

DNA, participating in the regulation of gene expression and protein transcription (Igarashi and 

Kashiwagi, 2019). In mammalian cells, polyamine production starts with arginase, an enzyme 

catalysing the conversion of L-arginine to L-ornithine, which is the substrate for ornithine 

decarboxylase to generate putrescine (Fig. 4). The latter is then used for the synthesis of spermine 

and spermidine. In CHO, supplementation of putrescine to serum-free formulations is essential to 

sustain healthy cell growth due to the lack of expression of arginase (Hölttä and Pohjanpelto, 1982). 

It is also worth noting that further investigation by Hölttä and Pohjanpelto (1982) revealed arginase 

activity in several sources of serum, masking the vital requirement of polyamines for culture 

progression.  

 

Fig. 4. Schematic of the initial stages of polyamine biosynthesis: arginase and ornithine 

decarboxylase. 

 

Some basal media such as DMEM-F12 already contain traces of putrescine. However, the level is not 

sufficient to support CHO growth, requiring further supplementation (Hölttä and Pohjanpelto, 1982). 

Spermine and spermidine have been also shown to enhance growth rate and viability of CHO cells 

(Spearman et al., 2016). However, high intracellular polyamine content increases activation of 

catabolism pathways, accumulating toxic by-products that can trigger endoplasmic reticulum stress 

and eventually apoptosis (Zahedi et al., 2017; Dever and Ivanov, 2018). Consequently, polyamine 

content in media has to be controlled below toxic levels (at least, lower than 1mM) (Pastorian and 

Byus, 1997).  

 

1.2. Media additives strategies for CHO optimisation 

Optimisation of media formulation has been a key strategy over many years to enhance CHO 

performance. Some of the strategies to improve CHO viable cell densities, titer and specific 

productivities include the use of peptones and hydrolysates, alternative carbon sources, 

supplementations at increased concentrations or the addition of small molecules and epigenetic 

modifiers (Table 1). In the following section, some of these approaches are further detailed. 
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 Table 1. Some media strategies reported to enhance CHO performance in terms of growth, viability 

and/or productivity. 

Supplementation 

strategy 

Cell Line Phenotype Reference 

Peptones and 

hydrolysates 

   

Yeast hydrolysates DUKX-B11 expressing 

human thrombopoietin 

Increased specific productivity 

rate, extended culture longevity, 

higher viability 

Y. H. Sung, 

Chung, Lee, & 

Lim, 2004 

Soy protein 

hydrolysates 

DG44 Enhanced cell growth and 

viability 

hun, Kim, Lee, 

& Chung, 2006 

Wheat peptones rCHO-K1 expressing 

human interferon-γ 

Improved cell growth and 

productivity 

Burteau et al., 

2003 

Combinations of 

wheat, soy and casein 

peptones 

DG44 expressing an 

IgG mAb 

Increased volumetric productivity 

and cell number 

Davami, Baldi, 

Rajendra, & M 

Wurm, 2014 

Yeast extract rCHO-K1 expressing 

Fc-fusion protein 

Increased specific productivity Hu et al., 2015 

Combinations of 

yeastolate, soy and 

wheat gluten 

hydrolysates 

DG44 and DUKX-B11 

expressing mAbs 

Increased cell growth (soy and 

wheat) or specific productivity 

(yestolate) 

S. H. Kim & 

Lee, 2009 

Yeast peptones CHO-AMW expressing 

mAb 

Increased cell growth rate, high 

cell densities and improved 

production 

Mosser et al., 

2013 

Small molecules    

Sodium butyrate 

(NaBu) 

rCHO expressing 

recombinant human 

thryrotropin 

Increased volumetric productivity Damiani, 

Almeida, 

Oliveira, 

Bartolini, & 

Ribela, 2013 

Lithium chloride (LiCl) DUKX-B11 expressing 

Fc-fusion protein 

Increased specific productivity Ha, Kim, & Lee, 

2014 

Aurintricarboxylic acid 

(ATA) 

rCHO expressing Fc-

fusion protein 

Induced proliferation under 

insulin-free conditions 

Liu, Chu, & 

Hwang, 2001 

Valeric acid rCHO-K1 expressing 

mAb 

Increased culture longevity and 

specific productivity 

Park, Noh, Woo, 

Kim, & Lee, 

2016 

Valproic acid DHFR-derived CHO 

cell line expressing a 

mAb 

Increased titer Yang et al., 2014 

Trace metals    

Iron Citrate rCHO expressing a 

mAb 

Enhanced titer Bai et al., 2011 

Copper DXB11 expressing a 

mAb 

Increased product titers, shift to 

lactate consumption 

Yuk et al., 2015 

Copper rCHO expressing a 

mAb 

Increased VCD and titer, shift to 

lactate consumption 

Qian et al., 2011 
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Copper and iron DG44 expressing a 

mAb 

Increased VCD, viability and titer Qian et al., 2014 

Manganese CHOK1SV and 

DUXK-B11 expressing 

mAb 

Galactosylation patterns Grainger & 

James, 2013 

Pacis, Yu, 

Autsen, Bayer, 

& Li, 2011 

Copper and manganese rCHO expressing a 

mAb 

Increased product quality 

(reduced tryptophan oxidation) 

Hazeltine et al., 

2016 

Zinc and manganese DG44 expressing a 

mAb 

Galactosylation patterns Prabhu, Gadre 

and Gadgil, 

2018 

Zinc DG44 expressing a 

mAb 

Increased titer B. G. Kim & 

Park, 2016 

Alternative carbon 

sources 

   

Combinations of 

glucose, galactose 

and/or glutamate 

rCHO Tissue 

plasminogen activator 

Increased viability and 

productivity 

Altamirano et 

al., 2000, 2004 

Glucose and galactose DHFR-derived 

expressing a mAb 

Increased viable cell density and 

specific productivity 

Sun et al., 2013 

Others    

Rapamycin rCHO-K1 and DG44 

expressing a mAb 

Extended viability profiles and 

increase mAb titer 

Lee and Lee, 

2012; 

Dadehbeigi and 

Dickson, 2015 

Dichloroacetate (DCA) rCHO-K1 expressing a 

mAb 

Extended lifespan, increased titer 

and viable cell density 

Buchsteiner et 

al., 2018 

 

1.2.1. Peptones 

Enhancement of growth and productivity profiles has been pursued with a range of feed/media 

additives. Plant peptones and hydrolysates derived from sources such as rice, wheat, soy, pea and 

yeast hydrolysates have been added to serum-free media (SFM) in CHO cell lines, demonstrating 

subsequent enhancement of viable cell density (Chun et al., 2006), as well as specific-productivity 

and/or final titer of recombinant proteins such as IFN-γ (Burteau et al., 2003), human thrombopoietin 

(Sung et al., 2004) and a range of mAbs (Kim and Lee, 2009; Mosser et al., 2013; Davami et al., 

2014; Hu et al., 2015). However, supplementation with these products introduces undefined elements 

to the media, leading to possible batch-to-batch variability that may affect cellular performance in the 

bioreactor (McGillicuddy et al., 2018).  

 

1.2.2. Small molecules 

A more “chemically-defined” approach has seen the use of chemical reagents, including the 

extensively reviewed sodium butyrate (NaBu) as well as several other reagents (valeric acid, valproic 

acid (VPA), lithium chloride, dimethyl sulphoxide (DMSO)) (Liu, Chu and Hwang, 2001a; Damiani 
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et al., 2013; Ha, Kim and Lee, 2014; Yang et al., 2014; Park et al., 2016), with the aim of improving 

titer of several therapeutically-relevant proteins in CHO cultures. However, the specific productivity 

effects observed with most of these chemicals (NaBu, DMSO, VPA) is frequently associated with 

cytotoxic effects resulting in reduced cellular growth (Sung, Hwang and Lee, 2005; Park et al., 2016). 

 

1.2.3. Trace metals 

Supplementation of media with certain metals has revealed great potential to induce beneficial CHO 

performance features such as improved growth, specific productivity and viability profiles in culture. 

Increased mAb titers have been reported in CHO supplemented with iron-citrate (Bai et al., 2011), 

while supplementation with copper has been extensively reported to increase product titer and to 

extend the lifespan of CHO cultures due to a shift to lactate consumption (Luo et al., 2012; Zagari et 

al., 2013b; Kang et al., 2014b; Nargund, Qiu and Goudar, 2015b; Yuk, Russell, Tang, W.-T. Hsu, et 

al., 2015). Co-supplementation of copper and iron during the scale-up stage has been observed to 

improve cell growth, viability and IgG productivity of CHO cultures. This effect was a consequence 

of the upregulated expression of hypoxia-inducible factor 1 alpha induced by copper (Qian et al., 

2014). Manganese supplementation has been used to modulate the glycosylation patterns of mAb 

(Gawlitzek et al., 2009b; Pacis et al., 2011; Grainger and James, 2013). Reduced tryptophan oxidation 

by manganese and copper supplementation in an IgG4-biopharmaceutical producing CHO culture 

(with no effects on titer or VCD) has also been reported (Hazeltine et al., 2016). Moreover, high zinc 

supplementation to a DG44 culture growing in an in-house and commercial PFM and CDM media 

has been reported to induce up to 6.5-fold increased mAb titer (Kim and Park, 2016). However, a 

suitable ratio between zinc and manganese concentrations has to be achieved in order to obtain proper 

galactosylation patterns (Prabhu, Gadre and Gadgil, 2018). 

 

1.2.4. Reducing by-product accumulation 

As described in the previous sections, accumulation of toxic by-products – primarily lactate and 

ammonium from glucose and glutamine metabolism - is detrimental for CHO cultures (Lao and Toth, 

1997) and approaches to reduce their production have been thus pursued. Combination of the slowly-

metabolised carbon source galactose with glutamate have been reported to dramatically reduce lactate 

and ammonia accumulation, but at a cost of decreased CHO viable cell density profiles (Altamirano 

et al., 2000; Altamirano, Cairó and Gòdia, 2001). In a follow-up study, alternation of the carbon 

source between glucose and galactose alongside the replacement of glutamine by glutamate was 

observed to increase viability, longevity and t-PA production (Altamirano et al., 2004). Similarly, 

Sun et al. reported increased cell density, specific productivity and a lactate switch following glucose-

galactose feeding (Sun et al., 2013). Indirect increased expression of pyruvate dehydrogenase using 

the inhibitor dichloroacetate (DCA) was reported to result in increased viable cell density, culture 
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length and final mAb yield, which was observed to be as a consequence of decreased lactate 

production and glucose consumption profiles (Buchsteiner et al., 2018).  

 

2. Culture strategies 

As biopharmaceutical manufacturing culturing strategies developed, batch was the first and the 

easiest mode of operation; where cells are cultured until the available nutrients are exhausted, closely 

followed by cell viability and growth drops, when product is harvested and purified through 

downstream processes (Bielser et al., 2018). A second system is fed-batch. This mode of operation is 

currently the main workhorse in the biopharmaceutical industry, with feeding strategies targeting the 

control of by-product accumulation (such as lactate or ammonia) and supplementation of nutrient 

levels to suffice cell metabolic requirements (Kelley, Kiss and Laird, 2018; Mellahi et al. 2019). 

Consequently, typical fed-batch culture duration is longer than in batch mode and consequently 

reaches higher product yields at similar volumes. A third system (continuous/perfusion) is described 

by constant feed of media and removal of bioreactor content, with a retention of cells into the 

bioreactor (Bielser et al., 2018). A recent combinatorial approach of perfusion and fed-batch systems 

has also been described, with sustained increased viable cell densities leading to almost 2-fold higher 

titers compared to fed-batch production, which was tested in five mAb-producer CHO cell lines 

(Hiller et al., 2017). Recently, perfusion culture system has shown potential achieving increased cell 

densities and high volumetric productivities compared to fed-batch production (Bielser et al., 2018). 

This intensified culture performance is so dramatic that it can result in the design of smaller 

production plants for similar output levels (Bielser et al., 2018). Moreover, continuous removal of 

recombinant protein from the culture vessel can also help increase the stability of the products 

(Kelley, Kiss and Laird, 2018). However, possible technical issues (such as microbial contamination 

and technical failure), difficulties in mixing high cell density vessels and downstream train 

bottlenecks are still issues that need to be fully addressed to facilitate the successful application of 

continuous production systems (reviewed in Bielser et al., 2018; Kelley, Kiss and Laird, 2018). 

 

2.1. Culture parameters 

CHO cells are very robust, adapting easily to changes in pH, temperature, osmolality, oxygen and 

pressure. This has allowed development of strategies to increase titre and cell growth by altering some 

of the parameters described above (Gagnon et al., 2011; Nasseri et al., 2014). One of the most 

extensively-studied strategies consists of the use of mild hypothermia (30 - 350C) or “cold-shock” at 

advanced stages of the culture in order to induce increased specific productivities (Becerra et al., 

2012; Bedoya-López et al., 2016; Zhou et al., 2018). However, variability in product quality attributes 

such as glycosylation and charge heterogeneity have been reported in low temperature cultures, which 

must be considered when applying this approach (Zheng et al., 2018). Additionally, induction of 
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metabolic switch to lactate consumption has been related to increased productivity profiles (Le et al., 

2012). A pH – glucose feeding strategy has also been developed, generally resulting in higher peak 

viable cell densities and process productivity (Gagnon et al., 2011). The method, named as HiPDOG 

(Hi‐end pH delivery of glucose), involves the continuous monitoring and control of glucose 

concentrations at very low levels based on changes in pH (Gagnon et al., 2011). Enhancing CHO 

performance through various culture strategies has been facilitated by the development of process 

analytical technologies providing in situ adjustment of the essential parameters (pH, CO2, oxygen) 

(Teixeira et al., 2009), enabling more controlled production processes. 

 

3. Cell line development  

In the biopharmaceutical industry, production of therapeutics relies on the generation of stable cell 

lines following two main technologies: dihydrofolate dehydrogenase (DHFR) and glutamine 

synthetase (GS). The DHFR-deficient DG44 and DUXB11 cell lines are commonly used for DHFR-

selection system, while the GS system can be equally used in GS-deficient or parental CHO cells 

(Dumont et al., 2016), in which case methionine sulfoximine (MSX) selection pressure is applied. To 

achieve high producing populations, the use of methotrexate (MTX), a DHFR inhibitor, is included 

to increase the stringency of the selection. Similarly, for the GS system, MSX inhibitor is 

supplemented. However, several rounds of incrementing MTX concentrations are usually required, 

resulting in a 5-6 months selecting process (Goh and Ng, 2018). Compared to DHFR, the GS system, 

selection in glutamine-free medium reduces the accumulation of ammonia in the medium and thus is 

advantageous in maintaining healthy cultures (Edmonds et al., 2006).  

The process begins with the design of an expression vector encoding for the recombinant protein and 

the complimentary marker (DHFR or GS) (Fig. 5). Selection of transfected populations is then 

performed in media depleted of either thymidine, hypoxanthine (DHFR system) or glutamine (for GS 

system), resulting in only the survival of the transfected population. An amplification step is then 

performed in order to obtain high producer populations, using the enzyme inhibitors MTX or MSX. 

In order to survive, cells suffer multiple genomic rearrangements, resulting in increased copy number 

of DHFR or GS (depending on the system used) and also of the heterologous protein. Consequently, 

an heterogeneous pool of cells expressing at different levels and rates is obtained and clonal isolation 

is then performed. Hundreds of clones are screened and only the ones displaying the highest specific 

productivity and growth rates are selected to be expanded. Clonal-derived populations are then 

cultured for several passages and re-assessed for growth and productivity to finally select the best 

performing cell line for large scale production (Lai, Yang and Ng, 2013; Le et al., 2015). 

Development of stable cell lines is a laborious, time-consuming and costly process, generally lasting 

between 6 to 12 months (Gutiérrez-Granados et al., 2018).  
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Fig. 5 Stable cell line development. Image obtained from (Lai, Yang and Ng, 2013). 

 

Advances in cell line development technologies are mainly focused on reducing the timeline of the 

process. Random transgene integration into transcriptionally active loci is one of the major 

challenges. To enhance the expression of heterologous protein, several approaches have been 

developed. For example, site-directed integration into productive chromosomal spots (“hot spots”) 

(using e. g. CRISPR-cas or Cre/Lox systems) (Le et al., 2015; Kelley, Kiss and Laird, 2018) or 

inclusion of chromosomal elements results in an enhancement of transgene transcription (e. g. matrix 

attachment regions (MARS) and ubiquitous chromatin opening elements (UCOEs)) (Lai, Yang and 

Ng, 2013). Other strategies focus on increasing the stringency of the selection process in order to 

increase gene copy number, using attenuated selection markers or controlling the expression of the 

selection marker by an internal ribosome entry site (IRES) (Le et al., 2015; Zhu and Hatton 2018).  

Assurance of clonal-derived cell lines is demanded by regulatory agencies to ensure reproducibility 

over the production process of product quality attributes. For this reason, several rounds of limiting-

dilution cloning or validating the use of a single cell by image analysis are common strategies during 

the single-cell cloning step (Kelley, Kiss and Laird, 2018; Welch and Arden, 2019). Automated high-

throughput platforms have been also developed, enabling the screening of large numbers of plates 

(Priola et al., 2016).  

Large amounts of recombinant protein (at gram level) can be also produced by transient gene 

expression (TGE). This approach consists on the transfection of an exogenous recombinant protein 

with no subsequent selection, resulting in very short production processes with recombinant protein 

expressed after 7-14 days. However, lack of selection pressure leads to an eventual loss of vector 

expression. Currently, TGE technology plays an important role during the early stages of 
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biopharmaceutical development, but still presents some limitations for large scale production (such 

as regulatory acceptance, media suitable for transfection and production, large quantities of DNA 

required) (Zhu, 2012). 

3.1. Cell line engineering – tools and strategies  

Some of the genetic engineering strategies for the enhancement of CHO culture performance have 

focused on the modification of pathways related to cell growth and protein production. For instance, 

overexpression of genes involved in cell proliferation, cell cycle, anti-apoptotic responses or the 

mTORC1 pathway have resulted in increased lifespan of cultures, increased growth and final product 

yields (D. C. F. Wong et al., 2006; Kuystermans and Al-Rubeai, 2009; Dreesen and Fussenegger, 

2011). A major bottleneck for CHO recombinant protein production is protein processing and 

secretion, suggested from the lack of correlation between gene copy number and final protein titer 

reported. Thus, modifications in the unfolded protein response, endoplasmic reticulum chaperones 

and vesicle transporters have also been extensively studied in CHO (reviewed in (Zhou et al., 2018)). 

Metabolomic engineering has been also employed in an attempt to decrease toxic by-product 

accumulation. For example, strategies to decrease lactate production have been achieved by the 

overexpression of fructose transporter (GLUT5) a component of the malate-aspartate shuttle 

(Aralar1) or pyruvate carboxylate (PYC2) (reviewed in Pereira, Kildegaard and Andersen, 2018). 

Over the past few years, enormous advances in genome-editing technologies have been achieved, 

facilitating the generation of modified producer CHO cell lines. These include miRNAs and sponge 

tools, CRISPR/cas9 and RNAi knock-out technologies, zinc fingers nucleases (ZFN) and 

transcription activator-like effector nucleases (TALENs) (reviewed in Fischer, Handrick and Otte, 

2015). Together with the availability of the CHO-K1 and Chinese hamster genome sequences 

(Brinkrolf et al., 2013; Lewis et al., 2013; Xu et al., 2011), these advances in the field have provided 

new opportunities for further genetic improvement of these cell lines. 
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Preface to the Chapters 

In-house serum-free media development 
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Over several years, CHO product yields and culture performance have remarkably improved 

following directed development efforts by the biopharmaceutical industry. A key strategy driving 

these improvements has been the development and optimisation of media formulations. However, 

due to commercial sensitivities around disclosing formulations, industry knowledge regarding the 

efficacy of particular additives or combinations have remained confidential and progress in this area 

is typically not disclosed. Consequently, knowledge of media additives routinely used in commercial 

media is limited in the research sector, reducing efficiency during investigation of media additives 

for CHO culture enhancement or product quality and resulting in potentially repetitive, time-

consuming processes. Moreover, the addition of certain media supplements can negatively impact 

basic culture techniques, such as  transfection efficiencies or affect proteomic sample analysis in mass 

spectrometry and these negative impacts tend to be unknown to wider research community. For these 

reasons, a substantial portion of my research focused on the study of media development for CHO 

and the growth- and production-enhancing effects of selected additives.  

During the initial steps of my research project, development of an in-house serum-free medium for 

CHO cell growth was performed following two approaches described in Fig. 6 and 7. The CHO-K1 

parental cell line was chosen as a model cell line and growth was analysed in 5 ml working volume 

cultures in batch conditions. Cultures were adapted to each testing media prior to cell growth and 

viability assessment (2 to 3 passages), to ensure reproducibility of the results.  

 

 

Fig. 6. Workflow for the development of an in-house serum-free medium (SFM) for growth. The 

process was divided into 4 stages: 1. Basal media; 2. Initial media; 3. Iron Sources; 4. Trace Elements 

(Preliminary tests). The following abbreviations are indicated: basic additives (BA), 

lipids/polyamines (LP), anticlumping agents (AC), ferric ammonium sulphate (FAS), ferric 

ammonium citrate (FAC), ferric citrate (FC), alternative anti-clumping (alternative AC). 
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1. Approach 1 –Addition - SFM development  

Following a thorough literature survey focusing on serum-free, protein-free and chemically-defined 

media development for CHO, an in-house SFM was designed. DMEM-F12 medium was used as basal 

medium (J Van Der Valk et al. 2010; C.-H. Liu and Wu 2009; Egorova-Zachernyuk, Bosman, and 

DeGrip 2011) and eight commonly used supplements (D. Y. Kim et al. 2006; G. M. Lee et al. 1999; 

H. Zhang et al. 2013) were added in three different groups (Fig. 6 - Stage 2): (i) basic additives (BA) 

– considered essential to support cell growth – comprising NEAA, glutamine, rhInsulin and NaSe, 

and (ii) lipids/polyamines (LP) – common additives reported in the literature – comprising linoleic 

acid, ethanolamine, putrescine and phosphatidylcholine. Supplementation with anti-clumping agents 

(AC) was also assessed comparing the widely used pluronic F68 with polyvinyl alcohol (PVA) 

(Costello et al. 2017; Michaels and Papoutsakis 1991; Clincke et al. 2011). Formulation SFM-1, 

containing both BA, LP and the anticlumping agent PVA was identified as the “best performing” 

medium (Fig. 8). 

At stage 3, supplementation of iron sources was performed (Fig. 6 – stage 3). Three iron sources were 

compared: Ferric Ammonium Citrate (FAC), Ferric Citrate (FC) and Ferric Ammonium Sulphate  (S. 

H. Kim and Lee 2009b; Schröder, Matischak, and Friedl 2004b; H. Zhang et al. 2013; Rodrigues et 

al. 2013; Bai et al. 2011; Y. H. Sung, Lim, et al. 2004), resulting in a 2.5-fold increased VCD with 

the addition of FAC. This formulation was named SFM-7 (Fig. 8).  

Finally - at stage 4 – individual supplementation with a set of four trace metals (cobalt, copper, zinc, 

manganese) was performed (Yuk et al. 2014; Chaderjian et al. 2008b; Gong, Hu, Stewart, Ellerbe, 

Figueroa, Blank, et al. 2001; J.-P. Piret et al. 2004; B. G. Kim and Park 2016; Tan et al. 1984), but 

no significant changes were observed in CHO-K1 growth. For this reason, addition of these trace 

metals was not performed.  

This process led us with a final in-house serum-free formulation (SFM-7) that sustained the growth 

of CHO-K1 cultures for 6 days with viabilities over 90% during that period of time (Fig. 8). 

 

2. Approach 2 - Removal – media simplification and cost reduction 

At this stage, we aimed to simplify the formulation in order to obtain a cost-effective product for 

possible commercialisation while identifying essential additives for CHO-K1 growth (Fig. 7). The 

cost of production of 1L of SFM-7 (€32.15) was mainly derived from three components: DMEM-

F12, rhInsulin and phosphatidylcholine. DMEM-F12 medium was the basal medium used for the 

SFM-7 formulation and we did not consider that a cheaper substitute was feasible. However, the more 

expensive phosphatidylcholine and rhInsulin additives had been supplemented in the medium in 

groups of supplements (BA, LP – Fig. 6 -stage 2), indicating that the essentiality of each of these 

individual supplements in our medium had not yet been proven. The removal of phosphatidylcholine 

induced a rapid but shorter growth profile that nevertheless resulted in similar peak VCD to that 
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obtained for SFM-7 (Fig. 8). As the phosphatidylcholine supplement comprised 25 % of the total cost 

of formulating SFM-7 (and considering the similar peak obtained between SFM-7 and 

phosphatidylcholine-removed medium), it was decided (for cost reasons solely) to eliminate this 

supplement from the medium (SFM-8, referred as BCR-F12 in Chapter 4). This formulation was 

further simplified with the removal of linoleic acid (no changes in VCD), resulting in SFM-9. 

Development of a chemically-defined and protein-free formulation was then approached with the 

removal of rhInsulin and replacement with two cost-effective mitogenic agents, zinc and 

aurintricarboxylic acid (ATA) (V. V. T. Wong, Ho, and Yap 2004a; C.-H. Liu, Chu, and Hwang 

2001b; Miki and Takagi 2015). Supplementation with either ATA (15 - 30mg/L) or zinc (0.5 – 

2.5mg/L) resulted in an enhanced VCD and viability profiles compared to SFM-9 (referred as SFM-

F12 in Chapter 2 and 3), resulting in two new CDM products: CDM-ATA (referred as CDM-A in 

Chapter 1) and CDM-Zn, respectively. A peak VCD of 4x106 cells/ml was observed with ATA, while 

a maximal VCD of 3.5x106 cells/ml was displayed in zinc-supplemented medium (Fig. 8).  

 

Fig. 7 Workflow for the simplification of SFM-7 formulation and development of CDM products.  
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Fig. 8. Viable cell density (VCD) (a) and viability (%) (b) of CHO-K1 cells in the SFM and CDM 

developed: SFM-1 (stage 1 product), SFM-7 (stage 2 product), SFM-8 (phosphatidylcholine removal, 

referred as BCR-F12 in Chapter 4), SFM-9 (linoleic acid removal, referred as SFM-F12 in Chapter 2 

and 3), CDM-ATA (ATA-supplemented, referred as CDM-A in Chapter 1), CDM-Zn (zinc-

supplemented). The commercial CHO-S SFM-II was also added as comparison.  

 

Table 2. Media formulations developed 

Additive Concentration SFM-8 SFM-9 CDM-ATA CDM-Zn 

NEAA 1.75X x x x x 

L-glutamine 4mM x x x x 

rhInsulin 10mg/l x x   

NaSe 6.7µg/l x x x x 

Linoleic acid 0.08mg/l x    

Ethanolamine 2.5mg/l x x x x 

Putrescine 1mg/l x x x x 

PVA 2% x x x x 

ATA 30mg/l   x  

Zinc Sulphate 2.5mg/l    x 
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CHAPTER 1 

Zinc supplementation increases protein titer of recombinant CHO cells 

Berta Capella Roca, Antonio Alarcon Miguez, Joanne Keenan, Srinivas Suda, Niall Barron, Donal 

O'Gorman, Padraig Doolan*, Martin Clynes* 
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Preface to the paper – zinc as a titer-enhancer for CHO cells 

During the initial stages of this research project, a chemically-defined medium was developed on the 

basis of CHO-K1 cell growth (described in section 2). In CDM containing aurintricarboxylic acid 

(ATA), cultures displayed the highest VCD and viability profiles among the SFM and CDM 

formulations developed. However, assessment of recombinant protein production of two CHO cell 

lines, an IgG-producing DP12 cell line and an in-house EPO-secreting rCHO-K1 (named SK15), 

revealed low final titers (15 mg/L IgG and 3 mg/L EPO, respectively). For this reason, we aimed to 

increase the productivity of the cells by supplementing with media additives to increase the expression 

of recombinant protein. Several additives have been described in the literature to increase specific 

productivity of CHO cultures, such as the use of peptones and hydrolysates (S. H. Kim and Lee 2009a; 

Mosser et al. 2013; Hu et al. 2015; Davami et al. 2014) and small molecules such as sodium butyrate 

(NaBu) or valproic acid (Damiani, Almeida, Oliveira, Bartolini, & Ribela, 2013; Ha, Kim, & Lee, 

2014; Liu, Chu, & Hwang, 2001). However, the variable and non-specific composition when 

hydrolysates are used and the cytotoxic effects reported with NaBu led us to investigate a different 

approach. In 2016, titer-enhancing effects following zinc supplementation were reported in DG44 

cells (B. G. Kim and Park 2016). At the same time, insulin-mimicking effects by zinc-

supplementation have been described in several mammalian and some CHO cell lines (at 1.5mg/L 

Zn) (Wong, Ho, & Yap, 2004;Tang & Shay, 2001; Wong et al., 2006). Considering these two features, 

supplementation of high zinc concentrations was pursued, resulting in subsequent increased IgG and 

EPO titers. As we had full knowledge of the formulation of our in-house medium, the specific 

productivity of both cell lines could be further enhanced by removing a selected additive - ATA - 

from the zinc-supplemented cultures. Moreover, we could further identify that the productivity-

enhancing effects of zinc was also related to an increase in the mRNA levels of both recombinant 

proteins, indicating a possible effect at transcriptional level. Finally, indirect assessment of the 

metabolic potential of the cells revealed a connection between cultures displaying enhanced titers, 

due to the presence of high zinc concentrations, and increased oxidative respiration metabolism. 

Whether this effect is a consequence of the high productivity profiles or because of the presence of 

zinc needs further investigation. At high levels of intracellular zinc, localisation of this metal into the 

mitochondria has been reported (Lu et al. 2016). However, divergence observations into the 

stimulation of oxidative respiration have been reported in different cell types (Masayoshi, Masatsugu, 

and Shoji 1982; Dineley, Votyakova, and Reynolds 2003; Dakubo et al. 2006). 

Zinc is an essential micronutrient that interacts with hundreds of proteins, being involved in several 

functions. This trace metal is essential to form the secondary structures of zinc finger motifs, 

participating in their stabilisation. In this conformation, these proteins are reported to have high 

affinity for DNA, playing an important role in transcription regulation (Cummings and Kovacic 

2009). Moreover, zinc finger proteins have been also described to participate in mRNAs decay, with 
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reported stabilization of some mRNAs, such as c-fos and Glut4 (Buchner et al. 2015; Taylor and 

Blackshear 1995). At the same time, zinc has been described as a powerful antioxidant agent, 

protecting against ROS species produced during cellular respiration due to its structural role in Cu/Zn-

superoxide dismutase (Marreiro et al. 2017). Altogether this array of effects on diverse cellular 

processes indicates that zinc is a vital media additive for supporting CHO cell culture. 

 

In parallel, the extensively studied metal, copper, was also assessed (Luo et al., 2012; Nargund, Qiu, 

& Goudar, 2015; Yuk et al., 2015), reporting cell line-specific effects in our conditions (Table 3).  

 

Table 3. Summary of copper supplementation effects in SK15 and DP12 compared to CDM+ATA 

without the metal 

Cell line Titer effects VCD and Viability effects 

SK15 60-90% increase No changes 

DP12 20% decrease 

2-25% lower peak and decrease in 

viability by day 4 (above 13.7 mg/L 

Cu) 
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ABSTRACT 

In order to study the impact of zinc and copper on the titer levels of mAb and recombinant protein in 

CHO cells, the IgG-expressing (DP12) and EPO-expressing (SK15) cell lines were cultured in 

chemically-defined media with increasing concentrations of either metal. Supplementation with 25 

mg/L in CDM media resulted in a significant increase in EPO (1.7-fold) and IgG (2.6-fold) titers 

compared to control (no added zinc). Titers at this Zn concentration in CDM containing the insulin 

replacing agent aurintricarboxylic acid (ATA) (CDM+A), showed a 1.8-fold (EPO) and 1.2-fold 

(IgG) titers increase compared to control. ATA appeared to also reduce the specific productivity (Qp) 

enhancement induced by Zn-25, with up to 4.9-fold (DP12) and 1.9-fold (SK15) Qp increase in CDM 

compared to the 1.6-fold (DP12) and 1.5-fold (SK15) Qp increase observed in CDM+A. A 31 % 

reduced Viable Cell Density (VCD) in DP12 was observed in both Zn-supplemented media (3x106 

cells/ml vs 4.2x106 cells/ml, day 5), whereas SK15 Zn-25 cultures displayed a 24 % lower peak only 

in CDM+A (2.2x106 cells/ml vs 3.2x106 cells/ml, day 5). Supplementation with copper at 13.7-20 

mg/L resulted in less significant cell line/product-type dependent effects on titer, VCD and Viability. 

Analysis of the energetic phenotype of both cell lines in 25 mg/L Zn-supplemented CDM medium 

revealed a 2-fold increase in the oxygen consumption rate (OCR) compared to non-supplemented 

cells. Together, these data suggest that high zinc supplementation may induce an increase in oxidative 

respiration metabolism that results in increased Qp and titers in suspension CHO cultures.  
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1. Introduction  

Enhancement of Chinese Hamster Ovary (CHO) culture performance profiles (titer, specific 

productivity (Qp), peak cell density, Viability) is a key goal of the biopharmaceutical sector. 

Industrial production of human therapeutics requires the use of serum-free formulations, mainly 

protein-free and chemically-defined media, due to biosafety concerns (Gstraunthaler, 2003) and to 

facilitate downstream processing. Consequently, in order to improve CHO performance in serum-free 

culture, a range of additives have been evaluated in basal serum-free formulations to optimise growth 

and productivity profiles. 

Supplementations with chemical reagents such as sodium butyrate or valeric acid (Damiani et al., 

2013; Park et al., 2016) have been extensively tested, offering a chemically-defined additive 

alternative for improving specific productivity of several therapeutically-relevant proteins in CHO 

cultures. However, the specific productivity effects observed with some of these chemicals (sodium 

butyrate, lithium chloride, valproic acid) have also been frequently associated with apoptosis (NaBu, 

reviewed by Kim et al., 2013) and/or low growth profiles (Park et al., 2016). 

More recently, metal supplementation has shown substantial potential in improving CHO 

performance features in serum-free culture. For instance, supplementation with iron-citrate has been 

observed to increase mAb titer by 30-40 % (Bai et al. 2011), while extended lifespan of CHO cultures 

and increased product titer have been reported following copper supplementation (Yuk et al., 2015; 

Luo et al., 2012). Additionally, manganese supplementation has been related to the modulation of 

glycoforms patterns of several recombinant products, including mAb (Grainger & James, 2013). 

More recently, Kim and Park (2016) reported the titer-associated benefits of high zinc 

supplementation of a DG44 culture growing in an in-house and commercial media, with up to 6.5-

fold increase in mAb titer observed (Kim & Park, 2016). 

In this study, we aimed to examine the effects of supplementation of a chemically-defined medium 

with copper or zinc on the titer, VCD and Viability profiles of two CHO cell lines producing different 

products in serum-free suspension culture: an IgG-expressing (DP12) and an EPO-expressing CHO-

K1 (SK15).  

 

2. Materials and Methods 

 

2.1. In-house chemically-defined media development 

As commercially prepared media products frequently do not disclose their exact components, two 

chemically-defined media (CDM+A and CDM) were developed based on an in-house serum-free 

medium formulation: DMEM-F12 (D3487) supplemented with sodium selenite (S5261), recombinant 

insulin (I9279), ethanolamine (E0135), ammonium iron (III) citrate (F5879), poly vinyl alcohol, L-

glutamine (Gibco (Dublin, Ireland), 25030024), NEAA (Gibco (Dublin, Ireland), 11140035) and 
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putrescine dihydrochloride (P7505). For the development of chemically-defined and protein-free 

formulation, insulin was replaced with 30 mg/L aurintricarboxylic acid (ATA) (CDM+A medium). 

Due to the chelating nature of ATA, which might mask the effects of the supplemented metals, ATA-

removed medium (CDM) was evaluated. All supplements were purchased from Sigma Aldrich 

(Wicklow, Ireland) unless otherwise stated. 

 

2.2.  Cell culture 

Over the course of this study, two suspension producer CHO cell lines were used: CHO-DP12 (a 

recombinant human anti-IL-8 producer, ATCC CRL-12445 clone#1934) and SK15 (an in-house 

CHO-K1 (ATCC CCL-61) derived cell line, expressing recombinant human erythropoietin (EPO) in 

a pcDNA3.1 vector (Invitrogen) modified with puromycin resistance as selection system) (Costello 

et al., 2019). Both cell lines were maintained in in-house protein-free chemically-defined medium 

supplemented with increasing concentrations of zinc sulphate heptahydrate (1, 10, 15, 25 and 30 

mg/L) or copper sulphate pentahydrate (1, 7.5, 13.7 and 20 mg/L) (added to the basal levels found in 

DMEM-F12: 0.432 mg/L Zn and 1.3 µg/L Cu). Cells were routinely split and re-seeded at 2x105 

cells/ml in 5 ml working volume. At least 2 passages were allowed for adaptation before each test. 

DP12 and SK15 cells were pulsed every second passage with 200 nM MTX (Sigma, M8407) (DP12) 

or 10 µg/ml puromycin (Gibco, A11138-03) (SK15). Viable Cell Density (VCD) and Viability were 

analysed in triplicate using the ViaCount on a Guava easyCyte HT benchtop cytometer (Merck 

Millipore, UK). 

 

2.3. Enzyme Linked Immunosorbent Assay (ELISA) 

Enzyme Linked Immunosorbent assay (ELISA) was performed in order to determine the levels of 

mAb and EPO. For mAb detection, the protocol described in the Human IgG ELISA Quantitation Set 

from Bethyl Laboratories Inc. (E80-104) was followed. For EPO detection, the protocol previously 

described by Costello et al. (2019) was followed, including modifications on incubation times for 

both samples (1.5 h) and capture antibody (overnight). Statistical analysis of the average of each 

biological triplicate of ELISA data obtained was performed in Microsoft excel software using 

Fischer’s Exact Test to determine variance and the two-tailed T-test tools to generate p-values. Cell 

specific productivity (Qp; pg protein/cell/day) was determined as per Clarke et al. (2011).  

 

2.4. RNA isolation 

RNA samples from SK15 and DP12 cultures in Zn-25 and CDM control media were collected at day 

5 from 30ml cultures in shake flasks. Between 1-5x106 cells were collected, centrifuged at 1000rpm 

for 5min and resuspended in 1ml Trizol reagent (Thermo Scientific). RNA was extracted following 

the Trizol protocol as per manufacturer’s instructions. Quantity and quality of the extracted samples 
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were analysed by Nanodrop (Thermo Scientific). To remove potential genomic DNA contamination, 

DNaseI treatment (Sigma Aldrich) was applied as per manufacturer’s protocol. 

 

2.5. RT-qPCR 

The High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) was followed as per 

manufacturer’s protocol to generate cDNA from total RNA samples. cDNA was used for mRNA 

level quantification by qPCR using Fast SYBR Green Master Mix (Applied Biosystems) in a 7500 

(Applied Biosystems). 2XSYBR master mix was prepared with 400nM primers, 200ng cDNA and 

nuclease-free water made up to 20µL per reaction well. Relative quantification was measured by the 

delta delta Ct method with Gapdh as an endogenous control. Each biological replicate was measured 

in technical triplicate wells. The sequences of the primers used were as follows (5’ -> 3’): IgG-LC 

Fwd – CATGTCCCGCTCACGTTT, IgG-LC Rev – CAGGCACACAACAGAAGCA (Beckmann et 

al. 2012); IgG-HC Fwd – ACGGTGTCGTGGAACTCAG, IgG-HC Rev – 

ACGCTGCTGAGGGAGTAGAG (Haredy et al. 2013); hEPO Fwd – 

GCATGTGGATAAAGCCGTCA, hEPO Rev – GCAGTGATTGTTCGGAGTGG; Gapdh Fwd – 

TGGCTACAGCAACAGAGTGG, Gapdh Rev – GTGAGGGAGATGATCGGTGT. 

 

2.6. Energetic phenotype: Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate 

(ECAR) 

An Agilent Technologies XF96 Analyzer was used to analyse the metabolic potential of both cell 

lines. Suspension cells were immobilised prior to analysis with the XF96 Seahorse using 

the "Immobilization of non-adherent cells with Cell-Tak for Assay on the Seahorse XF/XF96" 

protocol (Agilent Technologies, Technical overview, Publication Part Number: 5991-7153EN, 2016). 

Some modifications were applied (as per Kelly et al. 2019): 20 µL Cell-Tak was used per well and 

plates were placed in a non-CO2 incubator at 37 oC for 1 h. Plates were then washed twice and air-

dried for an hour at room temperature before cell plating. The test used was the Agilent Seahorse XFp 

Cell Energy Phenotype Test Kit (Agilent Technologies, 103275-100) with a final seeding density of 

20,000 cells/well and a final concentration of Carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP) and oligomycin of 1 µM, as per manufacturer's instructions. Basal 

(“Baseline levels”) levels of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate 

(ECAR) were first measured under standard conditions (no inhibitors supplemented). The cells were 

then “Stressed” following injection of oligomycin (ATP synthase inhibitor) and FCCP (potent 

uncoupler of mitochondrial oxidative phosphorylation). This supplementation results in the 

maximum cellular respiration state (maximum Electron Transport System) (“Stressed levels”) which 

corresponds to the OCR and ECAR levels of the cells attempting to restore the proton gradient loss 

from the mitochondrial inhibitors supplemented. Consequently, by the continuous monitoring of 
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oxygen concentration changes in the medium (OCR) and pH (ECAR), the XF96 Seahorse instrument 

allows direct quantification of the mitochondrial respiration and glycolysis of the cells (Plitzko & 

Loesgen 2018). 

In order to avoid interference by dead cells, SK15 and DP12 cells were analysed at day 4. A total of 

2 biological replicates for each cell line, with analysis of 11-21 wells/condition per replicate, were 

performed. 

 

3. Results and Discussion 

 

3.1.  Zinc supplementation of CDM+A results in enhanced IgG titer and Qp but lower peak VCD in 

CHO 

Significantly enhanced EPO and IgG titer profiles were observed at Zn-25 medium (Fig. 1), 

displaying a 40-50 % increase in IgG titer (by day 2-4; Fig. 1b) and a 1.8-fold increase in EPO titer 

(by day 8; Fig. 1a) compared to the non-supplemented CDM+A control. No significant effects on 

titer were observed with any of the lower zinc supplementations at later stages of culture.  

Results for Qp are presented in Table 1. A 1.5-fold (SK15) and 1.6-fold (DP12) significant increase 

in Qp was observed at Zn-25 compared to control medium (Table 1). No positive effects were 

displayed at lower zinc concentrations.  

Decreases in peak VCD in both cell lines were observed at 25 mg/L zinc supplementation; a 31 % 

drop in SK15 and a 24 % drop in DP12 at day 5 (Fig. 1c,d). DP12 VCD was also negatively affected 

in Zn-15 medium, with a 12 % lower peak VCD observed (Fig. 1d). Supplementation at lower zinc 

concentrations did not display any effect on VCD in either cell line. Viability profiles were observed 

to be similar between supplemented and control CDM+A medium at all concentrations (Fig. 1e,f). 
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Fig. 1 Titer (a, b), Viable Cell Density (VCD) (c, d) and Viability (e, f) of SK15 (a, c, e) and DP12 

(b, d, f) cells grown in suspension in in-house chemically-defined medium CDM+A supplemented 

with zinc at: 1 mg/L (Zn-1), 10 mg/L (Zn-10), 15 mg/L (Zn-15) and 25 mg/L (Zn-25). Statistical 

differences of titer data compared to the control (CDM+A) are represented as: p-value <0.05 (*) 

3.2. Copper increases EPO titer in SK15 cells 

Compared to the CDM+A control, supplementation with copper resulted in different effects in the 

two CHO cell lines; with EPO titers increased by 80-90 % (at 13.7 mg/L and 20 mg/L Cu, 

respectively) and 65 % (at 1 mg/L and 7.5 mg/L Cu) media, while IgG final titers decreased by 20 % 

following copper supplementation at all concentrations (Appendix A, Supplementary Figure 1a,b). 

Copper-supplemented SK15 cultures displayed similar VCD and Viability profiles to non-

supplemented control CDM+A media for all concentrations; with peak VCD of 3-3.2x106 cells/ml 

1 

 2 

 3 

Fig. 1 4 
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and Viabilities above 91 % until day 5 observed (Appendix A, Supplementary Figure 1c,e). Similar 

to the results obtained for titer profiles (Appendix A, Supplementary Figure 1a,b), DP12 cells were 

observed to be negatively affected, with peak VCD drops of 2-24 % displayed as the concentrations 

of copper increased (Appendix A, Supplementary Figure1d). While similar Viability profiles (to the 

CDM+A control) were observed with supplementations up to 7.5 mg/L Cu, concentrations above 

13.7 mg/L resulted in detrimental effects, with a 25 % drop in DP12 Viability from day 4 to day 6 

(Appendix A, Supplementary Figure 1f). 

Previous studies have reported enhanced titer and VCD profiles following copper supplementation in 

serum-free CHO culture (Yuk et al., 2015, Xu et al., 2016). However, similar to our observations, 

cell line-dependant outcomes have also been reported by Luo et al (2012), with increased VCD and 

mAb titers in two (of three) DUXKB11 CHO suspension cell lines following high copper 

supplementation in a proprietary CDM, but zero effect on either phenotype in the 3rd subline studied. 

Additionally, previous studies supplementing with copper concentrations equivalent to the higher 

levels tested here reported induced DNA damage and reduced Viabilities of CHO-K1 parental cells 

in a cytotoxic study performed in serum-supplemented media (Grillo et al., 2010), which may explain 

the decreased Viabilities observed in the DP12 results presented here (Appendix A, Supplementary 

Figure 1f). 

Table 1. Specific productivity (Qp)(pg/cell/day) of SK15 and DP12 cell lines (day 0 - day 4) in 

CDM+A and CDM supplemented with zinc at: 0 mg/L (Ctl), 1 mg/L (Zn-1), 10 mg/L (Zn-10), 15 

mg/L (Zn-15), 25 mg/L (Zn-25) and 30 mg/L (Zn-30). Statistical differences of titer data compared 

to the respective control are represented as: p-value <0.05 (*), <0.01 (**), <0.001 (***). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SK15 DP12 

CDM+A 

Ctl 1.7 ± 0.5 3.5 ± 0.4 

Zn-1 1.1 ± 0.4 3.1 ± 0.6 

Zn-10 1.3 ± 0.3 3.6 ± 0.6 

Zn-15 1.5 ± 0.3 3.6 ± 0.4 

Zn-25 2.4 ± 1.6 5.8 ± 0.4** 

CDM 

Ctl 3.5 ± 0.4 2.2 ± 0.6 

Zn-1 6.1 ± 0.2 1.6 ± 0.7 

Zn-10 8.1 ± 1.9 6 ± 0.5*** 

Zn-25 11.4 ± 1* 10.4 ± 2.7** 

Zn-30 11.7 ± 2* 16 ± 7.4** 
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3.3. Removal of ATA from CDM+A further increases zinc-induced enhancement of titer and Qp 

Similar to zinc, ATA has previously been used as an insulin-replacement additive in the development 

of PFM for CHO cells (Miki & Takagi, 2015) and its molecular structure provides strong metal 

chelating ability (Kumar Sharma et al. 2000), acting by forming a coat on the cell surface interacting 

with IGF-1R (Beery et al. 2001). To avoid possible interference by chelating activity, a medium 

without ATA (CDM) was formulated and used in order to identify (i) whether addition of zinc by 

itself could replace the growth-stimulatory effects of ATA while simultaneously improving titer and 

(ii) if ATA was masking the maximum positive effects of zinc on product titer due to chelating 

interaction. Moreover, an additional 30 mg/L Zn concentration was also included to evaluate the 

potential for further titer enhancement at higher concentrations.  

 

   1 

2 

 3 
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Fig. 2 Titer (a, b) Viable Cell Density (VCD) (c, d) and Viability (e, f) of SK15 (a, c, e) and DP12 (b, 

d, f) cells grown in suspension in in-house chemically-defined medium CDM supplemented with zinc 

at: 1 mg/L (Zn-1), 10 mg/L (Zn-10), 25 mg/L (Zn-25) and 30 mg/L (Zn-30). Statistical differences of 

titer data compared to the control (CDM) are represented as: p-value <0.05 (*), <0.01 (**), <0.001 

(***)  

Removal of ATA resulted in enhanced EPO and IgG titer profiles following Zn supplementation in 

the concentration range of 10-30 mg/L; displaying a maximal increase of 1.7-fold EPO titer (in Zn-

25) and 3.9-fold IgG titer (in Zn-30) compared to the non-supplemented control (Fig. 2a,b). Final IgG 

yield was also increased by 2.6-fold with 25 mg/L zinc supplementation (vs. 7.1 mg/L in CDM 

control) (Fig. 2b).  

Specific productivity of both CHO cell lines increased as the concentration of zinc increased, reaching 

up to 11.4 pg EPO/cell/day (SK15) and 16 pg IgG/cell/day (DP12) at Zn-30 (Table 1). 

Supplementation with 25 mg/L zinc resulted in a 1.9-fold (SK15) and 4.8-fold (DP12) increase in Qp 

compared to non-supplemented medium. 

VCD and Viability results for each Zn concentration tested are displayed in Fig. 2 (c-f). No effects 

on SK15 VCD (relative to CDM control) were observed at 25 mg/L zinc supplementation (Fig. 2c). 

For DP12, negative effects on maximal VCD were observed in Zn-25, causing a drop of 29 % in peak 

VCD (Fig. 2d). At this zinc concentration, both cell lines displayed lower Viability profiles compared 

to the non-supplemented CDM control medium (90-83 % vs. 94-88 %; Fig. 2e,f).  

Interestingly, the beneficial effects of zinc supplementation on titer were also observed at the 

transcriptional level, with a 25.6-fold (heavy chain) and 4.3-fold (light chain) increase in IgG mRNA 

levels in DP12 cells and a 1.8-fold increase in hEPO mRNA levels in SK15 cells, following 

supplementation at 25mg/L (Fig. 3). This result is in accordance with the IgG expression cassette 

used for the development of DP12 cell line, which enhances IgG heavy chain expression relative to 

light chain as a result of MTX selection and amplification, since the DHFR and heavy chain sequences 

share the same promoter (Gonzalez et al. 2000). 
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Fig. 3 Relative quantification (RQ) of (a) heavy and light chain of IgG (anti-IL-8) antibody in DP12 

cells and (b) hEPO mRNA levels in SK15 cells in CDM Zn25 medium normalized to the mRNA 

levels of the cells in CDM control medium. The Gapdh endogenous gene was used to standardize the 

results. RNA samples analysed were collected at day 5 from 30ml cultures. 

 

 Only a few studies have reported beneficial effects of high zinc supplementation on enhancing 

recombinant protein production in CHO. Zuquelis et al. (2006) observed an 8-fold increase of IFN-

β1a titer following supplementation with 150 µM zinc and a lower (2-fold) increase at 25-50 µM Zn 

(both in adherent CHO-K1 cultures grown in 0.5 % FBS) (Zuquelis et al., 2006). More recently, zinc 

supplementation at 30-60 µM in PFM and CDM in-house formulations increased mAb titer by a 

maximum of 6.5-fold and peak VCD by 1.2-fold in DG44 suspension cultures (Kim & Park, 2016). 

Moreover, Kim et. al (2016) also reported enhanced mAb titer at 90 µM Zn supplementation in CDM, 

which was associated with a lower VCD peak, a finding which is similar to the results presented here 

at Zn-25 (equivalent to 86.93 µM Zn). However, supplementation with zinc concentrations above 100 

µM in CHO suspension cultures has been shown to impact final mAb quality (reduction in 

galactosylation patterns), although the effects can be reversed by addition of manganese (Prabhu et 

al., 2018). 

From the results displayed here, strategies involving supplementation of 25mg/L zinc on commercial 

media may be considered as credible approaches focused on increasing titer in suspension CHO 

cultures utilising commercial media. However, it is important to note that the different additives 

present in each formulation may influence the positive effects observed with zinc (as was observed 

here when zinc was co-supplemented in the presence of ATA (Fig. 1a,b)). Interestingly, Kim et. al 

(2016) have shown increases of 1.2 – 1.5-fold in mAb titer with zinc supplementation to a range of 

three commercial media (Power CHO-2CD (Lonza), CDM4CHO (Hyclone) and EXCELL CD CHO 

(SAFC Bioscience)), although the concentrations used (60µM, 17.25mg/L) were lower than the 

optimal concentration described here. Consequently, due to the lack of disclosure on composition of 

 1 

                2 
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commercial media formulations, it may be necessary to deploy several zinc concentration and 

supplementation strategies to achieve titer enhancement in other culture systems. 

 

3.4. Zn-25 increases the oxidative respiration of DP12 and SK15 cells 

Zinc is involved in the folding, stability and/or activity of hundreds of proteins, being essential for 

several cellular functions such as DNA and RNA synthesis, mRNA stability and protection against 

apoptosis. Moreover, it also participates in the activation of glutathione and antioxidant enzymes such 

as, superoxide dismutase and catalase, hence protecting against ROS species produced during cellular 

respiration (Kloubert & Rink, 2015). However, little is known about its function as a possible additive 

for improving production of therapeutic proteins. 

Batch cultures typically display a stationary phase where growth slows and a production profile is 

observed, correlated with a switch to oxidative respiration (Dickson 2014a). A maximum induction 

of Oxygen Consumption Rate (OCR: indicator of mitochondrial respiration) was observed following 

supplementation at Zn-25, displaying a substantial 1.8-fold (SK15) and 2.1-fold (DP12) increased 

oxygen consumption compared to the CDM non-supplemented medium (Fig. 4a,b). OCR levels were 

also affected at lower zinc concentrations, although to a lesser degree; with an increase of 1.2-fold in 

Zn-10-supplemented SK15 and a 1.3-fold (Zn-1) - 1.4-fold (Zn-10) increase in DP12. Cellular 

Extracellular Acidification Rate (ECAR: indicator of glycolysis) levels were not substantially 

affected following Zn supplementation under stressed conditions (Fig. 4c,d). 
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Fig. 4 Oxygen Consumption Rate (OCR) (a, b) and Extracellular Acidification Rate (ECAR) (c, d) 

of SK15 (a, c) and DP12 (b, d) cells in CDM supplemented with zinc at: 0mg/L (CDM), 1 mg/L (Zn-

1), 10 mg/L (Zn-10) and 25 mg/L (Zn-25) at day 4.“Baseline” indicates OCR and ECAR levels 

measured under normal growing conditions; “Stressed” indicates OCR and ECAR levels measured 

following supplementation of FCCP and oligomycin, which induces maximum cellular respiration 

state (maximum Electron Transport System) of the cells by blocking mitochondrial function. 

Consecutively the mitochondrial respiration and glycolysis of the cells are quantified by the changes 

on the oxygen consumption and pH in both Baseline and Stressed levels. OCR are indicated as pmol 

Oxygen consumed per min whereas ECAR is indicates as mpH/min. 

 

Disrupted homeostasis by high zinc concentrations results in the sequestration by metallothionein or 

internalization into organelles, including mitochondria (Qiping et al., 2016). Zinc has been observed 

to stimulate oxidative phosphorylation and the electron transport chain (ETC) in rat hepatic 

mitochondria (Masayoshi et al., 1982). Increased ATP production and mitochondrial biogenesis has 

been also displayed in melanocytes after zinc supplementation (Rudolf& Rudolf, 2017). However, 

divergent observations have been also reported in rat neurons and prostate epithelial cells, with 

reduced mitochondrial energy production observed following Zn-supplemented conditions (Dineley 

et al. 2005; Dakubo et al., 2006), which might indicate possible tissue-specific effects. While the role 

of zinc in the regulation of energy metabolism in suspension CHO cells is still unclear, the results 

presented here suggest that zinc supplementation strategies at stationary phases on the cultures might 

be suitable for enhancing CHO final titers due to the increased OCR levels and titers displayed.  

 

4. Conclusions 

We have found that supplementation of protein-free media with zinc at 25 mg/L (86.93 µM) resulted 

in a significant increase of both recombinant EPO and IgG titers in two CHO cell lines; SK15 and 

DP12. Although lower peak VCD was also displayed following supplementation, viabilities were 

maintained above 80 % throughout. Increased oxidative respiration was also observed to correlate 

with the increased titer profiles in both cell lines. Together, these data indicate that zinc 

supplementation strategies may be a viable mechanism for increasing specific productivity in CHO 

cell lines. 
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Preface to the paper – Recombinant protein producer selection  

During the development of the in-house SFM (described in: Research performed – serum-free media 

development and study of media additives section), we aimed to simplify the formulation in order to 

reduce cost of production and identify essential supplements. Individual removal of each additive was 

performed, identifying the polyamine putrescine as a vital supplement. In putrescine-deprived media, 

a dramatic negative effect on cell growth and viability was observed. Even though the commercial 

basal medium DMEM-F12 contains traces of putrescine (81µg/L), this level was revealed to be 

insufficient for survival of CHO cells. Polyamines are essential for cell proliferation, playing key 

roles in several cellular processes, including DNA replication, protein expression, cell cycle 

progression and protection against oxidative stress (Heby, O., 1981, Rhee et al 2007, Pegg, 2016). In 

1981, Pohjanpelto et al reported an inhibition of CHO-K1 growth when cells were cultured in serum-

free media (Pohjanpelto et al. 1981). Further investigation of this phenotype revealed an endogenous 

lack of arginase activity in CHO (Hölttä et al. 1982), first enzyme of the polyamine biosynthesis 

pathway. Consequently, CHO cells display a polyamine-dependent phenotype in serum-free 

formulations deprived of putrescine.  

Currently, generation of biopharmaceutical producing cell lines is mainly focused on two selection 

systems: the dihydrofolate reductase (DHFR) and the glutamine synthetase (GS) (Costa et al. 2010). 

Both systems are based on the essential function of each enzyme for healthy cell proliferation. 

Consequently, selection is performed by combining CHO cell lines deficient in expression of either 

of these enzymes and transfection with a vector co-expressing the gene of interest and the 

complementary essential enzyme. Selection occurs by culturing the cells in the absence of the vital 

supplement (thymidine and hypoxanthine for DHFR-deficient cells and glutamine for the GS system), 

impeding the growth of non-transfected populations (Costa et al. 2010). Gene-amplification can be 

performed in both systems with the use of either methotrexate (MTX), a DHFR inhibitor, or MSX, a 

GS inhibitor, resulting in highly producing cell lines. However, alterations in the desired product may 

be introduced as a consequence of long amplification processes, principally with MTX (Guo et al. 

2010). Moreover, as the number of generations increases, unpredictable drops in specific productivity 

profiles are reported in both GS and DHFR generated cell lines (Kim et al. 2011, Chusainow et al. 

2009, Kim et al. 1998). While not onerous, the limitations of these existing systems highlight the 

commercial relevance of developing alternative selection systems that can circumvent these 

challenges and improve this time-consuming and costly step in upstream CHO cell line development.  

For this reason, we aimed to develop an alternative cytotoxic-free selection system based on the 

arginase-deficiency phenotype of CHO. To achieve this aim, we designed a bicistronic vector co-

expressing GFP or hEPO and arginase and transfected into CHO-K1 cells. Cultures were then placed 

in selecting conditions - low putrescine and putrescine-deprived media. Analysing the expression of 

recombinant protein (GFP or hEPO), producer populations were successfully obtained in both 
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conditions. Single-cell derived populations in in-house selecting medium stably expressed GFP or 

hEPO for a total of 42 generations, with no changes in growth and viability profiles. To further 

characterise the system, hEPO-expressing clones were grown in putrescine-containing medium as 

well as commercial media (BalanCD and CHO-S SFM-II), reporting recombinant protein expression 

for at least nine passages (27 generations), with a minimal decrease in hEPO titer by the end of the 

culture.  

The arginase-based selection system designed offers an alternative, drug-free, cost-effective and easy-

to-apply method for CHO but also other arginase-deficient mammalian cell lines, which may be used 

in conjunction with DHFR or GS methods. Due to the novelty, efficacy and applicability of the system 

designed, intellectual property protection has been filed for the work described in this chapter under 

patent application number 1911023.8 (titled: Transfection selection and polypeptide or RNA 

expression). 
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ABSTRACT  

Polyamines have essential roles in cell proliferation, DNA replication, transcription, and translation 

processes, with intracellular depletion of putrescine, spermidine, and spermine resulting in cellular 

growth arrest and eventual death. Serum-free media for CHO-K1 cells require putrescine 

supplementation, as these cells lack the first enzyme of the polyamine production pathway, arginase. 

On the basis of this phenotype, we developed an arginase-based selection system. We transfected 

CHO-K1 cells with a bicistronic vector co-expressing GFP and arginase and selected cells in media 

devoid of L-ornithine and putrescine, resulting in mixed populations stably expressing GFP. 

Moreover, single clones in these selective media stably expressed GFP for a total of 42 generations. 

Using this polyamine starvation method, we next generated recombinant CHO-K1 cells co-expressing 

arginase and human erythropoietin (EPO), which also displayed stable expression and healthy 

growth. The EPO-expressing clones grew in commercial media, such as BalanCD and CHO-S SFM-

II, as well as in a defined serum-free, putrescine-containing medium for at least nine passages (27 

generations), with a minimal decrease in EPO titer by the end of the culture. We observed lack of 

arginase activity also in several CHO cell strains (CHO-DP12, CHO-S, and DUXB11) and other 

mammalian cell lines, including BHK21, suggesting broader utility of this selection system. In 

conclusion, we have established an easy-to-apply alternative selection system that effectively 

generates mammalian cell clones expressing biopharmaceutically relevant or other recombinant 

proteins without the need for any toxic selective agents. We propose that this system is applicable to 

mammalian cell lines that lack arginase activity.  
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1. Introduction 

The Chinese Hamster Ovary cell line (CHO) is the workhorse for the production of therapeutic 

proteins in the biopharmaceutical industry due to their safety record, ability to grow in large-scale 

suspension cultures and extensive knowledge about their genome, thus facilitating genetic 

manipulation. Moreover, introduction of essential post-translational human-type modifications 

(especially glycosylations) are also achievable with this platform. Media formulations, feed 

strategies, bioprocess development and gene expression modifications have driven significant 

increases in final yields over the past years, reaching titer levels of 5-10g/L (1, 2). However, stable 

cell line development and clonal selection still remain as a costly, labour- and time-consuming step 

(3).  

Development of CHO producer cell lines is mainly based on two selection markers: dihydrofolate 

reductase (DHFR), an enzyme required for nucleotide metabolism, and glutamine synthetase (GS), 

essential for intracellular glutamine production (4). In both systems, selection occurs in the absence 

of a vital supplement (thymidine and hypoxanthine for DHFR-deficient cells and glutamine for the 

GS system), preventing the growth of non-transfected populations. Compared to DHFR selection, the 

GS-system can be equally used to derive parental cells lacking GS activity (such as NS0 myeloma or 

SP2 hybridoma cell lines) or expressing glutamine synthetase (such as CHO cells), in which case 

methionine sulphoximine (MSX) selection pressure is applied. However, more stringent selection 

achieved with GS knock out CHO cells have been reported to double mAb bulk culture productivity 

compared to parental CHO-K1 (5). Similarly, the -/-DHFR DG44 and DUXB11 cell lines are 

commonly used for DHFR-selection system. In both cases, highly producing populations are 

generated by increasing the stringency of the selection process with either methotrexate (MTX), a 

DHFR inhibitor, or MSX, a GS inhibitor, thus inducing transgene co-amplification. However, several 

rounds of incrementing MTX concentrations are usually required, resulting in a 5-6 months selecting 

process (6). To note, increased mutation rates have been reported from the long amplification process 

involving mutagenic chemicals, resulting in occasions in variations in the amino acid sequence of the 

desired product (7). Hence, cell line development and pharmaceutical manufacturing in drug-free 

systems is desirable to satisfy safety concerns and achieve more efficient and cost-effective processes. 

Moreover, removal of selection pressure has to guarantee stable specific productivity of the clones, a 

vital attribute for the pharmaceutical industry. However, several reports have suggested unstable 

specific productivity profiles in both GS and DHFR generated cell lines, exposing the limitations of 

these systems (8, 9, 10).  

Putrescine, spermidine and spermine are essential polyamines for cellular development, playing key 

roles in DNA replication, RNA expression, protein synthesis, protection against oxidative stress, 

regulation of apoptosis and cell differentiation (11, 12, 13). Historically, eukaryotic polyamine 

production has been related to arginase, an enzyme catalysing the conversion of L-arginine to L-
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ornithine, and ornithine decarboxylase, decarboxylating the L-ornithine to finally generate putrescine 

(11). However, in some mammalian tissues (such as ovine conceptuses (14) and rat neurons (15) and 

liver (16)) an alternative pathway, already described in plants and prokaryotes, has been recently 

reported. Polyamine homeostasis is tightly regulated by internal systems (such as antizyme-antizyme 

inhibitor) and membrane transport, enabling the uptake or release of these essential polycations for 

healthy growth development (17). In the early 1980s, putrescine-dependence was first identified in 

CHO-K1 when culturing in polyamine-free and serum-free media, resulted in a detrimental cellular 

growth profile due to disorganization of actin bundles and microfilaments (18). Later characterization 

of the phenotype revealed a lack of arginase activity in CHO cells (19), which was also observed to 

induce an arrest in the S phase of the cell cycle (20). Further investigation of polyamine metabolism 

has resulted from the generation of knock out cell lines and use of enzyme inhibitors (such as α-

difluoromethylornithine (DFMO) and 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine 

(AbeAdo)), exposing the vital role of these polycations for healthy cell proliferation (21, 22, 23, 24).  

Based on the polyamine-dependence phenotype of CHO cells and due to the limitations still 

remaining for efficient generation of stable cell lines, we aimed to develop an alternative cytotoxic-

free selection system for producer cell lines.  

 

2. Experimental procedures 

 

2.1. Media development 

Two serum-free media (SFM) were developed: a low putrescine (SFM-F12 medium) and a 

putrescine-free formulation (SFM-F10 medium). The commercial DMEM-F12 medium (Sigma-

Aldrich, D8437) was used as a basal medium for SFM-F12 medium. Due to the presence of putrescine 

in DMEM-F12 medium formulation (81µg/L), a mixture of DMEM high glucose (D5671) and 

Nutrient Mixture Ham's F10 (Sigma-Aldrich, N2147) (1:1) was used for SFM-F10 medium. The latter 

was further supplemented with HEPES, linoleic acid (L1376) and glucose in order to mimic DMEM-

F12 formulation. Both basal media were further supplemented with sodium selenite (S5261), 

recombinant insulin (I9279), ethanolamine (E0135), ammonium iron (III) citrate (F5879), poly vinyl 

alcohol, L-glutamine (Gibco, 25030024), NEAA (Gibco, 11140035) and putrescine dihydrochloride 

(P7505) (25). When indicated, 100µM L-ornithine or 1mg/L putrescine was added to each media. All 

media and additives were purchased from Sigma-Aldrich unless otherwise stated. 

 

2.2. Cell Culture 

The parental CHO-K1 cell line (ATTC CCL-61) was cultured in SFM-F12 medium supplemented 

with putrescine. Cells were maintained in suspension culture in an ISF1-X (Climo Shaker) Kuhner 

incubator at 37oC, 170rpm, 5% CO2 and 80% humidity. Cells were routinely split every 3-4 days and 
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re-seeded at 0.2x106 cells/ml in 50ml spin tubes (Sartorius, DF-050MB-SSH) in a 5 ml working 

volume. Biological triplicates were analysed for viable cell density (VCD) and viability using the 

ViaCount on a Guava easyCyte HT benchtop cytometer (Merck Millipore, UK). Measurements were 

performed in technical duplicates (unless stated). 

For arginase activity tests, DUXB11 (kindly donated by Chasin, L., Columbia University) were 

cultured in MEM alpha medium (Thermo Fisher, 12561056) supplemented with 0.5-2% foetal bovine 

serum (FBS) in T-75 flasks; CHO-DP12 (ATCC, clone #1934) and CHO-S cells were cultured in 

BalanCD Growth A medium (Irvine Scientific) supplemented with 8mM L-glutamine (Thermo 

Fisher, 2503008) in 50ml spin tubes (Sartorius, DF-050MB-SSH) in a 5ml working volume; HEK293 

were cultured in MEM (Sigma Aldrich, M5650) supplemented with 2mM L-glutamine (Thermo 

Fisher, 2503008), 0.1mM MEM non-essential amino acid (Biosciences, 11140050), 1mM sodium 

pyruvate (Thermo Fisher, 11360070) and 10% heat-inactivated horse serum in T-75 flasks; SP2 

(Immune Systems) were cultured in DMEM Glutamax (Gibco, 10566-016) supplemented with 10% 

heat inactivated FBS in T-25 flasks; BHK-21 (Flow Laboratories Irvine) were cultured in MEM 

(Sigma Aldrich, M5650) supplemented with 2mM L-glutamine (Thermo Fisher, 2503008), 1% MEM 

non-essential amino acid (Thermo Fisher, 11140050), 1% sodium pyruvate (Thermo Fisher, 

11360070) and 5% fetal calf serum (FCS) in T-25 flasks; the pancreatic cell lines BxPC-3 (ATCC, 

CRL-1687), MiaPaca-2 (ATCC, CRL-1420), PANC-1 (ATCC, CRL-1469), Capan-2 (DSMZ, ACC 

244) were cultured in DMEM high glucose (Sigma-Aldrich, D5671) supplemented with 5% FCS and 

2% L-glutamine (Thermo Fisher, 2503008) in T-75 flasks. 

Isolation of clonal cells was performed by dilution. A volume of 100µl per well was added in a 96-

well plate at 5 cells/ml. Plates were then incubated uninterruptedly at 37oC and 5% CO2 up to day 7-

10, when plates were inspected to identify and mark wells presenting single colonies. Plates were 

then re-incubated at 37oC. At day 14, 60-70% confluence was observed and colonies were picked and 

expanded to larger volumes. First, 1ml cultures were performed in non-adherent suspension 24-well 

plates (Greiner Bio-one, 662102). After 2-3 days, successful clones were then placed in 50ml spin 

tubes (Sartorius, DF-050MB-SSH) in a 5ml working volume for stability tests.  

For stability tests, the doubling time and generation number of each clone was calculated as per (37). 

Clones were assessed for a total of 41-53 generations (for GFP-expressing clones) and 40-51 

generations (hEPO-expressing clones), depending on the clone. For simplicity, a doubling time of 

24h was assumed for data discussion, resulting in a total of 42 generations experiment.  

 

2.3. Vectors 

Phusion High-Fidelity PCR master mix (Thermo Scientific) was used to obtain the mouse arginase 

coding sequence (CDS) from pcDNA3.1-mArg1, an internal ribosome entry site (IRES) sequence 

from pINDUCER10 vector (kindly gifted by Dr. Stephen Elledge, Harvard Medical School Centre of 
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Genetics and Genomics, Boston, U.S.A) and the human erythropoietin (hEPO) CDS from a 

pLenti6.36.3hEPO. The protocol was followed as per manufacturer's recommendations, with 10ng 

vector used in a total of 50µL reaction volume. Both arginase and IRES fragments were first cloned 

downstream of a green fluorescence protein (GFP) from a modified GFP-expressing vector N44-

CSanDI-Hyg (derived from pcDNA5 CMV-d2eGFP (Addgene, 26164), resulting in a GFP-IRES-

Arg bicistronic vector controlled by a CMV promoter. For the hEPO expressing vector, the hEPO 

CDS replaced the GFP in the GFP-IRES-Arg vector, resulting in a hEPO-IRES-Arg bicistronic 

vector.  

The pcDNA3.1-mArg1 was a gift from Peter Murray (Addgene, plasmid #34573), pInducer10-mir-

RUP-PheS was a gift from Stephen Elledge (Addgene plasmid #44011) (38) and pLenti6.3-hEPO 

was a gift from Juan Melero-Martin (Addgene plasmid #50436) (39). 

Proof of concept tests were performed using the pcDNA3.1-mArg1 vector. 

 

2.4. Transfection and selection 

Vector transfections were performed in 1ml suspension cultures in 24-well tissue-untreated plates 

(Greiner Bio-one, 662102) SFM-F12 medium with putrescine. The TransIT PRO transfection agent 

(Mirus Bio, Mir 5740) was used as per manufacturer's recommendations with minimal changes. 

Briefly, cells were counted and re-seeded at 0.5-1x106cells/ml in fresh media 24h prior transfection. 

A total of 500ng vector were mixed with 1µL TransIT PRO and 100µl media and incubated for 10min 

at room temperature. Cells were re-suspended in fresh media at 2x106cells/ml and 900µl were seeded 

per well. A total of 100µl of vector-TransIT PRO complex suspension was then added to each well. 

Plates were parafilmed and incubated at 37oC, 170rpm with 5% CO2 and 80% humidity in an ISF1-

X (Climo Shaker) Kuhner incubator. A negative control for transfection was also included (no vector 

was added during transfection). Biological triplicate were performed per each transfections. Selection 

was performed in putrescine-free SFM-F12 medium. Cells were also placed in putrescine-containing 

SFM-F12 medium as negative controls. 

For the GFP-expressing vector, the efficiency of the process was assessed 24h post-transfection by 

vector Green Fluorescent Protein (GFP) expression using the Express Plus software of GUAVA 

easyCyte HT benchtop cytometer (Merck Millipore, UK). To determine the amount of fluorescent 

cells, negative control cells (zero fluorescence) were gated and these settings were then used to 

identify the GFP-positive populations. Fluorescence of dead cells and debris were excluded to avoid 

false positive results. Viable cell density and viability were also assessed as previously described.  

 

2.5. Arginase activity 

One million cells were collected per sample and centrifuged at 1000 rpm. Pellets were then washed 

with PBS and finally stored at -80°C until assayed. The arginase activity kit (Sigma-Aldrich, 
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MAK112) was used. Pellets were lysed for 10min in 100µl of lysis buffer as per manufacturer’s 

recommendations, with pepstatin A (Sigma Aldrich, P5318) and leupeptin (Sigma Aldrich, L9783). 

To determine arginase activity, manufacturer's protocol was followed. Arginase activity (U) was 

determined with the following equation:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐴𝑏𝑠 𝑆𝑝𝑙𝑒 − 𝐴𝑏𝑠 𝐵

𝐴𝑏𝑠 𝑆𝑡𝑑 − 𝐴𝑏𝑠 𝑊
 𝑥 

1𝑚𝑀 𝑥 50 𝑥 1000

𝑆𝑝𝑙𝑒 𝑣𝑜𝑙 𝑥 𝑟𝑒𝑎𝑐𝑡 𝑡𝑖𝑚𝑒
 

Being: 

Abs Sple: absorbance sample at 430nm 

Abs B: absorbance blank at 430nm 

Abs Std: absorbance standard at 430nm 

Abs W: absorbance water at 430nm 

Sple vol: sample volume (µl) 

React time: reaction time (min) 

Where one unit of arginase corresponds to the amount of enzyme that will convert 1µmole of L-

arginine to ornithine and urea per minute at pH 9.5 and 37°C. 

Biological triplicates were analysed per each condition and cell line except for pancreatic cell lines, 

which were assessed in biological duplicates.  

 

2.6. RNA isolation and RT-qPCR performance 

RNA was collected by centrifuging 1-5x106cells at 1000rpm, 4°C for 5min. Pellets were re-suspended 

in 1ml Trizol reagent (Thermo Fisher, 15596018) and stored at -80°C until assayed. Total RNA 

isolation was performed as per manufacturer's recommendations (Thermo Fisher). RNA 

quantification and quality were evaluated by NanoDrop (Thermo Scientific). To remove 

contaminating DNA, RNA samples were treated with DNase I (Sigma Aldrich) as per manufacturer’s 

protocol and stored at -80°C. cDNA was obtained using the High Capacity cDNA Reverse 

Transcription Kits (Applied Biosciences) which was followed as per manufacturer’s 

recommendations. A total of 200ng cDNA per reaction well was used for qRT-PCR using Fast SYBR 

Green Master Mix (Applied Biosystems) and run in a 7500 (Applied Biosystems). The 2XSYBR 

master mix was prepared with 400nM primers and nuclease-free water made up to 16µL per reaction. 

Relative quantification was measured by the ddCt method with Gapdh as an endogenous control. 

Technical triplicate wells were run for each clone sample. The sequences of the primers used are as 

follows (5’->3’): Gapdh-Fw TGGCTACAGCAACAGAGTGG, Gapdh-Rv 

GTGAGGGAGATGATCGGTGT, Arg-Fw ACAAGACAGGGCTCCTTTCA, Arg-Rev 

TGCCGTGTTCACAGTACTCT, hEPO-Fw GCATGTGGATAAAGCCGTCA, hEPO-Rv 

GCAGTGATTGTTCGGAGTGG, d2GFP-Fw GACGACGGCAACTACAAGAC, d2GFP-Rv 

TCCTTGAAGTCGATGCCCTT. 
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2.7. ELISA 

For hEPO detection, the protocol previously described by Costello et al. (2019) (40) was followed 

with overnight incubation for capturing antibody and samples (1.5 h). 

 

3. Results 

 

3.1. CHO-K1 cells require supplementation of putrescine or L-ornithine for healthy growth  

During the development of a serum-free medium for CHO cells (SFM-F12) (25), reduction of 

putrescine supplementation to less than 200µg/L was observed to have a dramatic negative effect on 

cell growth, resulting in a consistent drop on viability to less than 55% at concentrations lower than 

100µg/L. In SFM-F12 with increased putrescine supplementation up to 200µg/L, a substantial 

negative effect in VCD and viabilities was still observed (Appendix B, Fig. S1).  

 

Figure 1. CHO-K1 cells require putrescine or L-ornithine supplementation for healthy growth. CHO-

K1 viable cell density (VCD) (lines) and viability (bars) in SFM-F12 medium (81µg/L putrescine) 

(a, c, e) and SFM-F10 medium (no putrescine) (b, d, f) supplemented with: 1mg/L putrescine (a, b, 

circles), 100µM ornithine (c, d, squares) or without any supplementation (e, f, triangles). VCD and 

viability displayed are per each passage (P). Technical triplicates were performed for each condition 
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except for passage 1 in SFM-F12 which was performed in a single tube. Triplicates were seeded for 

subsequent passages in SFM-F12 and SFM-F10. 

 

Intracellular putrescine production requires the conversion of arginine to L-ornithine, which is then 

decarboxylated to generate putrescine. To assess which of the two reactions was causing the 

putrescine-dependent phenotype observed, CHO-K1 cells were cultured for 4 passages in three 

conditions: (i) SFM-F12 medium lacking putrescine, (ii) SFM-F12 medium supplemented with L-

ornithine (100µM) and (iii) SFM-F12 control medium (containing 1.08mg/L putrescine). Due to the 

presence of traces of putrescine (81µg/L) in the DMEM-F12 formulation (basal medium for SFM-

F12 medium), an SFM-F10 medium (based in DMEM:F10 medium (1:1 v/v) - 0 µg/L putrescine) 

was developed and tested under the same conditions as SFM-F12 to compare effects of media fully 

depleted of putrescine. In SFM-F12 (Fig. 1a, c, e), CHO-K1 cells were observed to display a similar 

growth profile in both L-ornithine- and putrescine- supplemented media with consistent viabilities 

(87-95%) maintained among the 4 passages. In contrast, cultures in non-supplemented SFM-F12 (Fig. 

1e) displayed negligible growth. Similar to the SFM-F12 results, SFM-F10 L-ornithine- and 

putrescine- supplemented cultures displayed similar profiles, with growth observed at each passage 

and viabilities increased from P2 to P4 (Fig 1b, d). Zero growth was observed in CHO-K1 cells in 

SFM-F10 non-supplemented medium, with viability decreasing to 15% by P2 (Fig. 1f). It is 

noteworthy that CHO-K1 cells were grown in SFM-F12 medium supplemented with putrescine prior 

to the start of the SFM-F10 test, with no previous adaptation to SFM-F10 medium. This may explain 

the similar growth profiles observed in all three SFM-F10 testing media at P1 and P2 (Fig. 1b, d, f). 

 

3.2. Replenishment of arginase activity results in healthy growth and can be used to select CHO-K1 

cells  

In 1982, Hölta et al. (19) reported a lack of arginase activity in a CHO-K1 cell line in serum-free 

conditions, resulting in a polyamine-dependent phenotype. In accordance with their findings, it was 

hypothesized that a lack of arginase expression could be also occurring in our parental cell line. Based 

on that and, in order to exploit this phenotype, we designed a selection system for CHO-K1 producer 

cell lines. As a proof of concept, a commercial arginase-expressing vector, pcDNA3.1-mArg 

(Addgene), was first transfected and selected in media lacking putrescine (NoP) compared to media 

with putrescine (P). A negative control, consisting of wild type untransfected cells, was also included.  

CHO-K1 cells transfected and selected in SFM-F12 medium lacking putrescine resumed cellular 

growth by passage 6 (day 20), finally reaching VCD and viability profiles similar to the parental 

control cells in putrescine-containing medium by passage 8 (day 26) (Fig 2a, b). Correspondingly, an 

increase in arginase activity was also detected in the transfected and selected cultures (NoP-Arg) from 

P5 (Fig 2c). In contrast, expected minimal arginase activity levels were detected in parental cells, 
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with a cessation of growth in medium without putrescine (NoP-Neg) from passage 2 (day 9) and 

viabilities of 60-69% observed until the end of the culture. Phenotypic characterization of the selected 

mixed populations (NoP-Arg) over a 7-day culture period revealed almost identical VCD and viability 

profiles as parental cells in SFM-F12 medium with putrescine (Appendix B, Fig. S2). 

 

 

Figure 2. Replenishment of arginase activity in CHO-K1 parental cells enables growth in polyamine-

free media. Viable cell density (VCD) (a), viability (b) and arginase activity (c) of CHO-K1 

transfected with 500ng pcDNA3.1-mArg1 vector (P-Arg, NoP-Arg). A negative control of cells with 

no DNA transfected (P-Neg, NoP-Neg) was included. Transfected and non- transfected cells were 

placed in either SFM-F12 medium supplemented with putrescine (P) or selective SFM-F12 medium 

(without putrescine, NoP). For arginase activity analysis, samples for NoP-Neg could not be collected 

at P3, P4 and P7. Triplicate wells were transfected per each condition. 

 

3.3. GFP-expressing clones successfully selected in low putrescine containing media 

After having demonstrated the ability to select CHO-K1 cells transfected with an arginase expressing 

vector in media lacking putrescine, the next step was to determine whether the system could be 

applied to the selection of cells expressing a gene of interest. To achieve this aim, green fluorescence 

protein (GFP) was selected for initial tests due to the ease traceability during the transfection process. 
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A bicistronic vector expressing GFP and arginase linked by an IRES and under the control of a CMV 

promoter was designed for the purposes of this experiment (Appendix B, Fig. S3). 

In SFM-F12 medium, healthy mixed populations were successfully obtained by passage 8, recovering 

VCD and viability profiles similar to the parental control cells (Fig 3a, b). GFP expression was first 

detected at passage 7, with 14.5% GFP expressing cells observed in mixed population 1, 2.9% in 

mixed population 2 and 8.1% in mixed population 3. Interestingly, the GFP-expressing population 

was observed to increase over each passage, reaching an average of 27.2% cells by the end of the 

experiment (P12) (Fig. 3c). In contrast and as expected from previous results, the VCD and viability 

of the untransfected cultures in SFM-F12 medium without putrescine (NoP-Neg) dropped by passage 

2, displaying an average VCD of 0.3-0.6x106cells/ml and viabilities between 57-64% until the end of 

the culture (NoP-Neg). Variability in the viability of the three replicates for the negative control was 

observed by the end of the experiment (P11 and P12), where replicate 2 and 3 displayed viabilities of 

44-49% but 79% viable cells were detected in replicate 1.  

 

Figure 3. GFP-expressing populations can be isolated in polyamine-free media. Viable cell density 

(VCD) (a), viability (b) and percentage of GFP expressing (c) CHO-K1 cells transfected with 500ng 

GFP-IRES-Arg vector (P-GFP, NoP-GFP). A negative control of cells with no DNA transfected (P-

Neg, NoP-Neg) was included. Transfected and non- transfected cells were placed in either SFM-F12 

medium supplemented with putrescine (P) or selective SMF-F12 medium (without putrescine, NoP). 

Triplicate wells were transfected per each condition.  
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Interestingly, selection performed in parallel in putrescine-depleted SFM-F10 medium displayed 

similar profiles to those performed in SFM-F12, with recovery of mixed populations observed at P8 

(Appendix B, Fig. S 4a, b). In this case, a higher percentage of GFP-expressing populations were 

recovered (reaching on average up to 70% by P9), which may be related to the increased stringency 

of this medium (Appendix B, Fig. S4c). It is noteworthy that mixed population 2 was observed to 

unstably express GFP from P6 to P10, displaying a dramatic drop in the percentage of GFP-expressing 

cells by P11, finally resulting in cellular death (P12). Hence, the large error bars displayed at P10 and 

P11. 

Although SFM-F10 medium was observed to outperform SFM-F12 selective medium in terms of 

percentage of GFP-expressing populations obtained, differences in the composition of both media 

resulted in maximal viabilities of 80-85% in control parental cells cultured in SFM-F10 medium (P-

T, P-Neg) (Appendix B, Fig. S4b), while viabilities over 90% were consistently observed in SFM-

F12 media. For this reason, further testing was performed only on SFM-F12 medium.  

 

Figure 4. Long-term growth and stable expression of isolated GFP-expressing clones in selective 

media. Viable cell density (VCD) (a), viability (b) and mean fluorescence intensity (MFI) (c) of seven 

GFP-expressing clones isolated by limited dilution growing in selective medium (SFM-F12 without 
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putrescine) for 14 passages (42 generations). Each clone was maintained in a single tube. Duplicate 

technical readings were performed for each phenotype.  

 

3.4. Long term stably expressing clones can be generated by polyamine and L-ornithine starvation  

To assess the stability of the GFP-expressing populations generated, seven clones were isolated and 

placed in SFM-F12 medium lacking putrescine in order to monitor their growth (VCD), viability and 

GFP expression in terms of mean fluorescence intensity (MFI) and at a mRNA level (relative 

quantification, RQ) for a total of 42 generations (14 passages).  

Consistent growth and healthy viabilities were displayed over the 42 generations (Fig. 4a, b). Clones 

7 and 16 were observed as low producers while clone 12 displayed remarkably increased MFI levels. 

Nevertheless, GFP expression was detected throughout the 42 generations, with an increase in MFI 

levels relative to passage 1 observed in all clones except clone 11 (Fig. 4c). Stable expression was 

also confirmed at a transcriptional level (Fig. 5). Due to the design of the expression vector, almost 

identical GFP and arginase RQ profiles were observed. Interestingly, from passage 4 (12 generations), 

an increase in the RQ of both GFP and arginase were observed with all clones except clone 11. This 

effect might be related to the transference of clones from putrescine-containing media (during single-

cell cloning) to SFM-F12 medium depleted of putrescine, i.e. increased stringency of selection. 
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Figure 5. Long-term stable GFP and arginase mRNA expression of isolated GFP-expressing clones 

in selective media. Relative quantification (RQ) of GFP and arginase mRNA levels in seven GFP-

expressing clones growing in selective media for 14 passages (42 generations) normalized to the 

mRNA levels in passage 2. The Gapdh endogenous gene was used to standardize the results.  

 

3.5. Single clones stably expressing a therapeutically-relevant recombinant protein can be generated 

in polyamine and L-ornithine-free media 

To confirm whether the selection system designed would support the generation and preferential 

survival of clones expressing pharmaceutically relevant therapeutics, a bicistronic vector expressing 

human erythropoietin (hEPO) was designed and transfected into CHO-K1 cells; cultures were then 

plated in selective medium (putrescine-free).  
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Figure 6. hEPO-expressing populations can be isolated in polyamine-free media. Viable cell density (bars, 

VCD) and viability (lines) (a) and hEPO titer (mg/L) (b) of CHO-K1 cells transfected with 500ng hEPO-IRES-

Arg vector (hEPO, stripes) in selective medium (SFM-F12 without putrescine). A negative control of cells with 

no DNA transfected (Neg, black) was included. Triplicate wells were transfected per each condition.  

 

Successful mixed populations were selected by passage 9, as observed for the detection of hEPO 

(0.26mg/L) and the recovery of VCD and healthy viabilities (Fig. 6). Clones were isolated and seven 

of them were randomly selected to assess stability in selective media for a total of 42 generations (14 

passages). Stable titer expression was confirmed over the 42 generations (Fig. 7c). Assessment of 

hEPO and arginase mRNA expression relative to passage 2 was performed on three phenotypically 

divergent clones: clone 4 (low producer but fast growing), clone 10 (high producer but moderate 

growth) and clone 18 (medium producer with moderate growth). Both clones 10 and 18 were found 

to be stable, displaying levels of expression similar to those in passage 2 for at least 36 generations 

(P12) (Fig. 8). In contrast, the low producer clone 4 displayed a 20% decrease on hEPO mRNA 

expression at 18 generations (P6), dropping to less than 50% relative to the expression at passage 2 

by passage 8. Nonetheless, both hEPO and arginase expression were detected over the 42 generations 

(P14) (Fig. 7).  
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Figure 7. Long-term growth and stable expression of isolated hEPO-expressing clones in selective 

media. Viable cell density (VCD) (a), viability (b) and hEPO titer (mg/L) (c) of seven hEPO-

expressing clones isolated by limited dilution growing in selective media (SFM-F12 without 

putrescine) for 14 passages (42 generations). Each clone was maintained in a single tube. Duplicate 

(VCD, viability) or triplicate (titer) technical readings were performed for each phenotype.  
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Figure 8. Long-term stable hEPO and arginase mRNA expression of isolated hEPO-expressing 

clones in selective media. Relative quantification (RQ) of hEPO and arginase mRNA levels in three 

hEPO-expressing clones growing in selective media for 14 passages (42 generations) normalized to 

the mRNA levels in passage 2. CHO-K1 (K1) parental cells were also assessed as control. The Gapdh 

endogenous gene was used to standardize the results.  

 

In order to determine whether the application of 

this selection system may be limited to CHO-K1 

cells, several mammalian cell lines (HEK293, SP2, 

BHK21, Vero, BxPC-3, Capan-2, MiaPaca-2 and 

PANC-1), including three CHO cell lines CHO-

DP12, CHO-S and DUXB11, were assessed for 

arginase activity (Fig. 9). Neither BHK21 nor any 

of the CHO cell lines tested displayed arginase 

activity, indicating that the system may be 

applicable to several parental CHO cell lines. 

Conversely, the HEK293, Vero lines and the 

pancreatic BxPC-3 and MiaPaca-2 cell lines 

displayed arginase activity levels similar to the 

pcDNA3.1-Arg transfected CHO-K1 cells (Fig. 2c), making these parental cell lines unsuitable for 

the system. Finally, low levels of activity were observed in SP2, Capan-2 and PANC-1. Whether this 

activity is low enough to allow application of the arginase-based selection system requires further 

investigation.  

 

3.6. hEPO clones display stable expression in putrescine-containing media 

Due to the vital role played by polyamines in the culture of CHO cell lines in serum-free media (19), 

commercial and chemically-defined formulations contain putrescine levels sufficient to supply the 

metabolic requirements of CHO cells. To address whether clones generated following our polyamine-

starvation method would maintain expression in non-selective conditions, clone 4, 10 and 18 were 

adapted to SFM-F12 medium containing putrescine as well as two commercially available 

formulations of undisclosed composition: a serum-free medium, CHO-S SFM-II (Gibco), and a 

chemically-defined medium, BalanCD Growth A (Irvine). Clones cultured in SFM-F12 and BalanCD 

media displayed constant VCD and viability profiles (Fig. 10a, b). In contrast, SFM-II medium was 

less supportive of healthy cultures, resulting in a decrease in growth from passage 2 (6 generations) 

in two of the clones, reaching consistent VCDs by passage 6 (2.3x106cells/ml, clone 4) and passage 

5 (1.5x106cells/ml clone 10). Moreover, in this medium, the viability of clone 10 dropped to 70% by 

Figure 9. Arginase activity of mammalian cell 

lines. HEK 293, SP2, BHK21, Vero, DP12, 

CHO-S and DUXB11 cells were analysed in 

triplicate. The pancreatic cell lines BxPC-3, 

Capan-2, MiaPaca-2 and PANC-1 were 

analysed in duplicates. 
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passage 6 and to 60% in clone 18 by passage 7. Stable hEPO expression was observed in BalanCD 

and SFM-F12 medium for clone 10 (up to P9, 27 generations), while decreased (23-30% lower) hEPO 

titers were displayed by passage 8 in clone 18 and clone 4 (40-30% lower) by passage 9 (Fig. 10c). 

In SFM-II medium, both clone 10 and 18 performed similarly to the other two media. However, clone 

4 was less stable, with hEPO titer dropping by 60% at passage 6 but maintaining this level until the 

end of the culture.  

 

Figure 10. Long-term growth and stable expression of isolated hEPO-expressing clones in 

commercial and in-house media containing putrescine. Viability, viable cell density (VCD) and hEPO 

titer (mg/L) of three hEPO-expressing clones isolated by limited dilution growing in SFM-F12 

medium with putrescine (+Put), BalanCD Growth A supplemented with L-glutamine (BCD) and 

CHO-S SFM-II supplemented with PVA (SFM-II) for 10 passages (30 generations). Each clone in 

SFM-II was maintained in a single tube. Duplicate tubes were performed for SFM-F12 and BalanCD. 

Duplicate technical readings were performed for each condition.  

To further characterize the capabilities of the system, all three clones were each cultured in both 

commercial media and SFM-F12 with putrescine for a total of 7 days to allow for high hEPO and, 

consequently, arginase expression. Healthy growth and hEPO expression was supported at different 

levels in all media tested, indicating that an increase in the arginase expression had no detrimental 

effect on CHO cell development (Appendix B, Fig. S5).  

 

4. Discussion 

With the results reported here, we have demonstrated the efficacy of a newly developed auxotrophic 

selection system for CHO cells which exploits an arginase-deficiency phenotype observed in several 
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mammalian cells. The method was shown to sustain the survival and growth of arginase-expressing 

transfected cell pools in a polyamine and L-ornithine-free environment, supporting the isolation of 

GFP and recombinant therapeutic protein (erythropoietin) expressing single-cell derived populations. 

Moreover, initial evidence of clonal stability was observed, with the maintenance of VCD, viability 

and production profiles for at least 42 generations in selective media (14 passages). The clones were 

also observed to express and grow in non-selective commercial media for at least 27 generations. 

The routinely used DHFR and GS expression systems, although being described as auxotrophic 

selection methods, require MTX and MSX drug-selection pressure for the generation and isolation of 

high producer cell lines (4), resulting in time-consuming amplification processes (reaching up to 5-6 

months) mainly for the DHFR system (6), as several rounds are required. Moreover, the DHFR-

expressing system is predominately used with CHO cells lacking DHFR expression, thus enabling 

selection in nucleoside-depleted media (26). On the other hand, despite endogenous expression of 

glutamine synthetase in CHO cells, selection of parental producer colonies have been isolated in 

glutamine-free media by MSX pressure. However, the endogenous GS gene has been suggested to 

display activity at a sufficient levels to allow non-producer CHO cells survival, reducing the 

stringency of the GS system (27). Consequently, use of GS-KO CHO-K1 has been found to be optimal 

(5). In contrast, the arginase-expression system proposed here is a drug-free method applicable, but 

not limited to, CHO-K1 parental cells due to their inherent lack of arginase activity, which has been 

further observed as an intrinsic phenotype of several CHO cell lines and some mammalian cells. 

Interestingly, arginase activity was reported by Hölttä et al (1982) in several sources of serum (19). 

As FBS is still a common supplement used in mammalian cultures, arginase-deficiency may be 

masked in some cell lines, which indicates the possibility of a broader applicability of the system 

described here.  

Development of cell lines with stable production phenotypes is an essential attribute in the 

pharmaceutical industry. Hence, several studies have been focused on the characterization of the two 

predominant selection systems. In 2006, Jun et al. reported decreases of 33-62% in specific 

productivity of GS-derived high producer clones over the first batch, reaching further lower 

expression up to passage 6 (28). Similarly, monoclonal antibody was observed to decrease during the 

30 passages assessment of CHO-GS clones in selective and non-selective media (29), while lower 

titer levels were observed after 20 days in a DHFR-derived cell line (10). Further investigation studies 

have revealed loss of gene copies, epigenetic modifications and inefficient or decreased mRNA 

transcription (8, 9, 30, 21, 32) as the main causes of clonal instability, being observed as a widespread 

issue. Compared to GS and DHFR studies, clones isolated with the arginase system proposed here 

have displayed stable GFP and EPO expression at protein and mRNA levels for over 40-53 

generations (depending on the clone - 14 passages) in drug-free selection media. Other alternative 

drug-free selection systems such as OSCARtm (based on knock out cell lines for hypoxanthine 
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phosphoribosyl transferase (HPRT)), have reported lower stability with a rapid mAb expression decay 

displayed after 3 weeks in culture (33). Although clonal stability monitoring in industry is performed 

for periods over 60 generations, initial evidence for stable production have been described for the 

arginase-expressing method, with further characterization to be performed.  

Due to the essential roles of polyamines in the maintenance of cellular wellbeing, it is not surprising 

to observe regulatory pathways to compensate imbalanced intracellular polyamine content. In 

response to critical levels of spermidine, spermine and putrescine, active transport mechanisms 

participate in the maintenance of polyamine homeostasis. In mammals, polyamine transport systems 

are still poorly understood but three models have been suggested: (1) polyamine uptake by 

unidentified membrane permeases, (2) interaction with heparin sulphate and glypican 1 and (3) 

putrescine uptake by a caveolin-1-dependent endocytosis mechanism, which has been associated to 

SLC3A2 (17). Other solute carrier transporters are also under investigation (reviewed in 41) and a 

diamine exporter (DAX) has been identified to have the ability to export putrescine in CHO (42). In 

plants and microorganisms, putrescine can be alternatively produced by arginine decarboxylase and 

agmatinase. In this pathway, arginine is first decarboxylated to agmatine, which is then used as a 

substrate to generate putrescine (11). Recent evidence of agmatinase activity has been reported in rat 

liver (16) and kidney (34) as well as brain and other tissues of several mammalian species (35) where 

agmatine has been described as a potent biological active substance (e.g. acting as a neurotransmitter 

(15), modulator of nitric oxide synthesis or interacting with several receptors, ion channels or 

membrane transporters (35)). Consequently, agmatine degradation to putrescine has been suggested 

as regulatory system rather than an “alternative” pathway for the production of polyamine (36). In 

2014, ornithine decarboxylase knock-out ovarian conceptuses (ODC-KO) were generated and 

observed to compensate polyamine-deficiency conditions by agmatine production. However, this 

phenotype was only observed in half of the ODC-KO ovarian conceptuses while the other half 

displayed lack of agmatine production resulting in cessation of cellular development (14). Similarly, 

we have here observed that removal of putrescine and L-ornithine from media results in a drop of 

viability and VCD of CHO-K1 parental cells and this altered phenotype is maintained for at least 40-

53 generations (depending on the clone - 14 passages). As a result, investigation of agmatine 

expression was not performed. Further research is necessary to determine whether the agmatine-

derived pathway is active and contributes to polyamine production in CHO cells. 

Similar to the findings reported here, lack of arginase activity and subsequent decreases in cellular 

growth has been previously reported with CHO cells cultured in absence of putrescine, with cellular 

death observed after 8-14 days (18, 19) due to the intracellular depletion of the secondary polyamines 

spermine and spermidine (3). As expected, more stringent conditions obtained in putrescine-depleted 

media were here observed to outperform the selection efficiency of the low putrescine-containing 

media. However, traces of this polyamine in media did not impede isolation of arginase-expressing 
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clones, suggesting potentially easy applicability of this system when paired with common basal 

media, such as DMEM-F12. It is important to note that the use of this medium would require clonal 

isolation in order to remove background populations not expressing the gene of interest (such as cells 

only expressing arginase or non-transfected populations); in any case, this is a step that is commonly 

performed to achieve stable high producer clones. 

In conclusion, we have presented here evidences for an alternative method for the generation of stable 

producer CHO-K1 cell lines using an arginase-expressing system in polyamine- and ornithine-free 

media. We have conclusively demonstrated that arginase-expressing selection is efficient, offering a 

drug-free, cost-effective and easy-to-apply method for a range of parental mammalian cells displaying 

lack of arginase activity. The system may be also used in conjunction with GS or DHFR methods, 

offering an alternative to antibiotic-based selection for the generation of double transfectants avoiding 

possible secondary effects from drug selection. To note, the aim of the investigation presented here 

was to prove the feasibility of the system. Further analysis focused on the isolation of high producing 

clones and improvement of the system with modifications such as using an attenuated arginase gene, 

the use of a weak promoter or knock out of polyamine transporters may lead to a more efficient system 

and will be further investigated.  
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Preface to the paper – Polyamine functions 

The design of a selection system for producer CHO cells based on polyamine-dependence, 

highlighted the vital role of these amines in viable cell proliferation in CHO. Intracellularly, 

polyamines are polycations that interact with nucleic acids, ATP and phospholipids, affecting 

multiple cellular processes (Igarashi K et al. 2019). Hence, the function of these amines is not only 

limited to cell proliferation but it is also related to DNA synthesis, RNA expression, protein synthesis, 

cell cycle progression and apoptosis among many other relevant functions. By binding with DNA, 

polyamines can cause chromatin condensation or/and induction of Z-DNA conformation, being 

reported to increase the expression of some genes (Thomas et al. 1995; Dever and Ivanov 2018, Liu 

et al. 2001). Increases on the intracellular polyamine levels have been observed to increase the 

expression of transcription factors, while deprivation of these amines can have an effect on mRNA 

stability (Zou et al. 2006; L. Liu et al. 2009). As a consequence, polyamines regulate the expression 

of multiple genes, being essential for cell survival.  

In CHO, polyamines are an absolute vital supplement due to the lack of endogenous arginase activity 

of these cells, phenotype firstly reported by Höltä et al in 1982 (Hölttä E et al. 1982). Since then, 

studies on the polyamine metabolism in CHO were performed by generating knock out cell lines 

and/or using polyamine biosynthesis enzymes inhibitors (such as α-difluoromethylornithine (DFMO) 

and 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (AbeAdo)) (Pohjanpelto, Hölttä  

and Jänne 1985; Steglich  and Scheffler 1982; Byers et al. 1994). However, even though polyamines 

display major roles on key parameters for the biopharmaceutical area (cell proliferation and protein 

expression), little recent investigation has been carried out (Hyvönen 1989; Jan O. Fredlund and 

Oredsson 1997a; Berntsson, Alm and Oredsson 1999; Pastorian, Hawel, and Byus 2000), with last 

reports in polyamines effects in CHO metabolism from 2008 (Uemura et al. 2008). 

Leading on from the described arginase-based selection system for CHO (Chapter 2) and given the 

critical role these compounds play in various cellular pathways, the impact of polyamine-deprivation 

in CHO was investigated. Due to the broad effects of polyamines, the development of -omic 

technologies have provided new tools for the study of these multifunction amines. For this reason, 

changes on gene expression were assessed by using Affymetrix CHO whole transcriptome microarray 

chips. Moreover, based on the polyamine-dependence of CHO cultures, the use of chemical inhibitors 

such as DFMO or AbeAdo was avoided, eliminating possible off-target effects. 

CHO-K1 cells were starved for putrescine for three days, when samples were collected. Phenotypic 

assessment displayed a drop on cell proliferation while analysis of the cell cycle by flow cytometry 

revealed a substantial increase on the S-phase population over the three days culture. At 

transcriptional level, five major pathways revealed changes in the mRNA levels, being cell cycle, 

p53, spliceosome, protein processing in endoplasmic reticulum and Fanconi anaemia pathway. 
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Moreover, changes in proteins localised in the cellular membrane were observed to display major 

fold-changes between putrescine-containing and starved cultures.  
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ABSTRACT 

Aim: To investigate the impact of polyamine deprivation on the transcriptome of CHO cells 

Results: Polyamines play a central but poorly-understood role in cell proliferation. Most studies to 

date have utilised chemical inhibitors to probe polyamine function. Here we exploit the fact that CHO 

cells grown in serum-free medium have an absolute requirement for putrescine supplementation due 

to their deficiency in activity of the enzyme arginase. A gene expression microarray (Affymetrix) 

analysis of CHO-K1 cells starved of polyamines for 3 days showed that cessation of growth, 

associated with increased G1/S transition and decreased M/G1 transition, was accompanied by 

increased mRNA levels of mitotic complex checkpoint genes (Mad2l1, Tkk, Bub1b) and of the 

transition of G1- to S-phase (such as Skp2 and Tfdp1). mRNAs associated with DNA homologous 

recombination and repair (including Fanconi’s anaemia-related genes) and with RNA splicing were 

consistently increased. Alterations in mRNA levels for genes related to protein processing in the ER, 

to ER stress, and to p53-related and apoptosis pathways were also observed. mRNAs showing highest 

levels of fold-change included several which code for membrane-localised proteins and receptors 

(Thbs1, Tfrc1, Ackr3, Extl1). 

Conclusions: Growth-arrest induced by polyamine deprivation was associated with significant 

alterations in levels of mRNAs associated with cell cycle progression, DNA repair, RNA splicing, 

ER trafficking and membrane signalling as well as p53 and apoptosis-related pathways. 
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1. Introduction 

The polyamines spermine, spermidine and putrescine play multiple roles in cell growth, survival and 

differentiation, being essential for healthy cell proliferation. Due to their cationic state at 

physiological pH, polyamines mainly exist as polyamine-RNA complexes, being described to induce 

ribosome shunting, displacing translation inhibitors and stabilising RNA structures, suggesting an 

important role in the regulation of protein synthesis (Igarashi and Kashiwagi 2019). DNA structural 

changes are also induced by polyamine interaction, increasing chromosomal condensation or 

inducing B- to Z- DNA conformational changes, thus regulating gene expression (Casero, Murray 

Stewart, and Pegg 2018; Igarashi and Kashiwagi 2019). Activation of transcription factors has been 

also observed to be affected by polyamine levels. Consequently, polyamines have an impact on gene 

expression at transcriptional and translational level, affecting the proliferation and viability of 

mammalian cells. 

In 1982, Hölta et al. reported growth arrest of a CHO-K1 cell line in serum-free and polyamine-free 

media, which was associated with a lack of expression of the first enzyme of polyamine production 

pathway (arginase) (E Hölttä and Pohjanpelto 1982). Since then, several studies focused on 

understanding polyamines essential role were performed by generating mutants or supplementing 

polyamine biosynthesis inhibitors (Anehus et al. 1984; Jan O. Fredlund and Oredsson 1997b). 

However, little investigation has been carried out in CHO since the early 2000s. Recently, we have 

described a novel selection system for the generation of recombinant protein producing CHO cells by 

combining the use of an arginase-expressing vector and selection in putrescine-free media (Capella 

Roca et al. 2019). Lack of arginase activity was further confirmed in a panel of three CHO cell lines 

(CHO-S, DP12 and DUXB11), confirming the importance of putrescine for CHO cells. This unusual 

property of CHO cells provides an interesting opportunity to study the effects at a cellular and 

molecular level of polyamine deprivation, without the need to use chemical inhibitors of polyamine 

biosynthesis which although quite specific may also display off-target effects. Given the critical role 

these compounds play in various cellular pathways we therefore decided to investigate the impact of 

polyamine removal on gene expression in CHO cells using Affymetrix CHO whole transcriptome 

microarray chips 

 

2. Materials and methods 

 

2.1. Cell culture 

A parental CHO-K1 cell line (ATTC CCL-61) was cultured in in-house serum-free SFM-F12 medium 

containing 1mg putrescine/L (Capella Roca et al. 2019). To study the effects of polyamine 

deprivation, cells were cultured both with and without putrescine in another in-house SFM-F10 

medium, which has a similar formulation to SFM-F12 but lacks putrescine (Capella Roca et al. 2019). 



 

101 

 

Biological triplicates were analysed for viable cell density (VCD) and viability using the ViaCount 

on a Guava easyCyte HT benchtop cytometer.  

 

2.2. Cell Cycle analysis 

For cell cycle analysis, samples were prepared using the Guava Cell Cycle reagent containing 

propidium iodide, following manufacturer’s instructions, and read on the Guava easyCyte HT 

benchtop cytometer. Data was analysed using the ModFit LT 3.2 software. 

 

2.3. RNA extraction 

Cell pellets from biological triplicates were collected at day 3 from putrescine-deprived and control 

(putrescine-containing) cultures. They were re-suspended in 1ml Trizol reagent and total RNA was 

then isolated following manufacturer's recommendations. NanoDrop was used to evaluate RNA 

quantification and quality. DNase I treatment was performed as per manufacturer’s protocol and 

samples were stored at – 80 C until assessed.  

 

2.4. Microarrays 

RNA quality was assessed using an Agilent 2100 Bioanalyzer. A total of 300 ng was added to each 

Affymetrix CHOGene 2.0 ST array, as per manufacturer's instructions. Data pre-processing and 

analysis of microarray data was carried out using the Transcriptome Analysis Console (TAC) 4.0.1 

(Applied Biosystems). Only differentially-expressed (DE) genes between putrescine-deprived and 

control cells with a fold-change cut off of 1.5 and a Benjamini-Hochberg FDR p-value ≤ 0.05 were 

considered. Enrichment analysis was carried out for the differentially-expressed mRNAs via the 

DAVID interface (http://david.abcc.ncifcrf.gov ) for two databases (Kyoto Encyclopedia of Genes 

and Genomes (KEGG)). The microarray data files have been deposited at Gene Expression Omnibus 

(GEO). 

 

2.5. RT-qPCR 

Samples were prepared using the High Capacity cDNA Reverse Transcription Kits and Fast SYBR 

Green Master Mix, as per manufacturer’s recommendations. RT-qPCR were performed in an 7500 

(Applied Biosystems) as per Capella et al. 2019. Relative quantification was measured by the 

comparative ddCt method (Livak and Schmittgen 2001). Gapdh was used as endogenous control, as 

it was by Veress et al. (2000) but note that they reported stabilisation of Gapdh mRNA following 

polyamine-inhibition treatment. The Ct values for Gapdh from both cultures (with and without 

putrescine) were observed in between the range of 15-16 Ct. It was then considered that the RQ data 

was obtained was accurate, although our qPCR may underestimate fold change of mRNAs showing 

http://david.abcc.ncifcrf.gov/
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differential expression (this does not apply to the microarray results). Technical triplicate wells were 

run per each biological triplicate. The sequences of the primers used are available in Supplementary 

Table 1 (Appendix C).  

 

3. Results and Discussion 

Exploiting the lack of arginase activity of CHO-K1 cells (E Hölttä and Pohjanpelto 1982), the effects 

of polyamine withdrawal in these cells was assessed in serum-free medium. Hence, polyamine 

biosynthesis inhibitors (e. g. α-difluoromethylornithine (DFMO)), commonly used for the study of 

polyamine-deprivation, were not needed, eliminating the danger of possible off-target effects 

(Mamont et al. 1978). Initial assessment of cell proliferation following polyamine starvation revealed 

a decrease in CHO K1 growth, with viability only slightly reduced (Fig. 1a), in agreement with 

previous research (Anehus et al. 1984; E Hölttä and Pohjanpelto 1982; Capella Roca et al. 2019). 

 

 

Fig. 1 (a) Viable cell density (VCD, black lines) and 

viability (dotted lines) of CHO-K1 cells in SFM-F10 

without putrescine (NoPut) and supplemented with 

putrescine (+Put). (b, c, d) Distribution of cell cycle 

population of cultures with putrescine (+Put) and 

without (NoPut) at day 1 (b), day 2 (c) and day 3 (d), 

being populations at G1 (first peak, left) and G2 

(second peak, right) represented in red and S-phase 

cells in stripped lines. Biological triplicates and 

technical duplicates were performed for each 

condition (cell cycle represented corresponds to the 

biological triplicate 3). 
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3.1. Gene expression altered in CHO K1 cells following polyamine-deprivation 

To investigate impact of putrescine deprivation on mRNA levels in CHO cells, RNA samples taken 

at day 3 (when growth arrest had been maintained for 2 days) were hybridised to the Affymetrix 

CHOGene 2.0 ST array. A total of 2,171 mRNAs were found to be differentially-expressed (DE) with 

1,194 mRNAs up- and 977 down-regulated. It should be noted that our methods do not distinguish 

between transcriptional activation of genes and stabilisation of existing mRNAs; in fact as discussed 

by Veress et al (2000) it is likely that polyamine deprivation results in selective stabilisation of certain 

mRNAs since eIF5A, which requires polyamines for an essential posttranslational modification, is 

believed to play a central and selective role in RNA degradation. Our finding that many mRNAs 

involved in RNA splicing are present at higher levels suggests that increased saturation of pre-

mRNAs may also play a role. 

Initial analysis of the data focused on changes in the expression of polyamine metabolism genes in 

order to validate the experiment. An induction of polyamine biosynthesis pathway-related genes 

(ornithine decarboxylase (Odc1) and antizyme inhibitor 1) and down-regulation of genes involved in 

polyamine catabolism (ornithine decarboxylase antizyme 2 and N1-acetyltransferase 1 (Sat1)) was 

observed as expected from the literature (Igarashi and Kashiwagi 2019). These results suggest that 

even though CHO-K1 cells lack endogenous ornithine production pathways (E Hölttä and 

Pohjanpelto 1982; Baumgartner 2000), a response to restore polyamine levels by Odc1overexpression 

is still present in polyamine-deprived CHO cells.  

From a list of 20 mRNAs displaying the largest fold-changes in both directions (10 up and 10 down, 

Table 1 - for top 50 up- and down- see Appendix C, Supplementary Table 2) we chose 6 based on 

their relevance to cell proliferation and involvement with polyamines (Thbs1, Ackr3, Tfrc, Pacrg, 

Tbc1d2 and Extl1) for RT-qPCR validation using primers listed in Supplementary Table 1 (Appendix 

C). All six genes were observed to display RQ changes on the same direction as the microarray data 

(Appendix C, Supplementary Figure 1) providing strong validation of the microarray data. The 

polyamine modulated factor 1 (PMF-1) gene, not detected in the microarray, was also included in the 

RT-qPCR analysis due its reported expression-response to high polyamine levels (Igarashi and 

Kashiwagi 2019). However, a small up-regulation of PMF-1 was observed, although a target gene 

(Sat1) and the co-transcription factor required for its function (Nrf-2) were here observed to be down-

regulated.  
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Table 1. List of the 10 most compelling up-regulated and down-regulated differentially-expressed 

genes considering fold-changes. 

Gene symbol Description Fold-

change 

FDR p-val 

Thbs1 thrombospondin 1 7.79 4.25E-05 

Ackr3 atypical chemokine receptor 3 6.97 2.06E-05 

Tfrc transferrin receptor 6.62 1.07E-05 

Chst2 carbohydrate (N-acetylglucosamine-6-O) 

sulfotransferase 2 of the Golgi network 

4.58 0.0002 

Loc103162148 uncharacterized LOC103162148 4.45 0.0002 

Znf483 zinc finger protein 483 4.24 2.13E-05 

Rnft2 ring finger protein, transmembrane 2 – E3 ubiquitin 

ligase 

3.95 1.62E-05 

Arhgef16 Rho guanine nucleotide exchange factor (GEF) 16 – 

involved in phagocytosis of apoptotic cells  

3.93 1.80E-05 

Pacrg PARK2 co-regulated 3.89 8.71E-05 

Slc17a6 solute carrier family 17 (vesicular glutamate 

transporter), member 6 

3.72 0.0021 

Cornifin-a cornifin alpha -13.85 2.37E-05 

Tbc1d2 TBC1 domain family, member 2 -7.85 2.13E-05 

Cd68 CD68 molecule -7.81 2.13E-05 

Trib3 tribbles pseudokinase 3 – mTORC2/AKT pathway 

inhibitor 

-7.54 1.07E-05 

Ypel3 yippee-like 3 (Drosophila) – apoptosis and cell cycle 

arrest inducer 

-6.84 1.62E-05 

Slc6a9 solute carrier family 6 (neurotransmitter transporter, 

glycine), member 9 

-6.84 1.62E-05 

Gtpbp2 GTP binding protein 2 -6.39 6.82E-06 

Atf3 activating transcription factor 3 – ER stress 

responsive 

-6.19 2.06E-05 

Chac1 ChaC, cation transport regulator homolog 1 (E. coli) - 

ATF3/4 activated under ER stress 

-5.7 1.07E-05 

Extl1 exostosin-like glycosyltransferase 1 -5.63 2.06E-05 

 

Thrombospondin 1 (Thbs1) was the mRNA with greatest increase in level. Increased expression of 

this gene has been already reported in DFMO-treated breast cancer cell lines (Manni et al. 2003; 

Verderame et al. 2007). Thbs1 has been described to induce cell cycle arrest and decreased growth in 

human umbilical vein endothelial cells (Yamauchi, Imajoh-Ohmi, and Shibuya 2007). Substantial up-

regulation (6.69 fold-change) of CXCR7 (Ackr3) was also observed. Several polyamine-derived 

inhibitors (such as Quinazoline‐triazole based antagonists) targeting the chemokine receptor CXCR4 

have been reported (Tsou et al. 2018) while affinity for this receptor by natural polyamines has been 

also described (Smith et al. 2017). Singh et al. (2013) reported that crosstalk can occur between the 

chemokine receptors CXCR 3,4 and 7 via CXCR 11 and 12.  

Due to the essential role of iron during DNA replication, increased expression of Tfrc during the S-

phase of the cell cycle has been reported (Neckers and Cossman 1983). Correlation between iron 
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levels and expression of polyamine metabolism enzymes has been also observed (Lane et al. 2018), 

while uptake of iron by the polyamine transport system has been also observed (Gaboriau et al. 2004). 

In our microarray data, an increase in Tfrc expression was observed, further suggesting a possible 

relationship between iron and polyamines in cell cycle progression. It is also worth noting that a 

substantial down-regulation of Tbc1d2 expression was also detected (-7.8 fold-change). Low 

expression of this gene has been related to a decrease in endocytic receptor recycling, observed with 

lack of Tfrc recycling, which might indicate possible increased Tfrc mRNA detected due to a 

dysregulation on the recycling pathway (Serva et al. 2012). 

The Parkin co-regulated gene (Pacrg), regulated by the same promoter as Parkin, was also considered 

of possible significance due to the involvement of Parkin as a tumor suppressor inducing cell cycle 

arrest (M. H. Lee et al. 2015). 

Regulation of the expression of the heparan sulphate glycosyltransferases EXT1 and EXT2 has been 

previously described to be mediated by polyamines (Imamura et al. 2016) and in our study, down-

regulation of Extl1 was similarly associated with polyamine starvation in CHO.  

All together these data indicate that polyamines cause an impact on the expression of cell membrane 

proteins and receptors involved in cell proliferation, which might contribute to activation of 

proliferating pathways or polyamine transport. 

A decrease in levels of several apoptosis-inducing mRNAs was observed with Ypel3, Trib3, ATF3, 

Chac1, Casp 8 and Bax, which correlates with the high percentage of viability maintained even after 

growth arrest (Fig. 1a). 

From the 2,171 DE transcripts list, enriched pathway analysis using the DAVID interface was 

performed, revealing five statistically significant pathways (Benjamini-Hochberg FDR-corrected p-

value ≤0.05) to be differentially-regulated following putrescine deprivation (Fig. 2). The most 

significant areas which emerged were cell proliferation, Spliceosome, p53-related pathways, 

Fanconi’s Anaemia/DNA repair and Protein Processing in Endoplasmic Reticulum (ER). 

In relation to the cell cycle, the expression of genes related to S-phase and mitosis included increased 

mRNA levels Skp2 and Tfdp1 (participating in the transition to S-phase) and Mad2l1 (part of the 

mitotic complex checkpoint). Supporting these findings, analysis of the cell cycle of the cultures in 

medium without putrescine displayed a continuous decrease on G1 population with a subsequent 

increase in S-phase populations over the three days culture. At the same time an accumulation of cells 

in the G2-phase was also observed by day 3 (Fig. 1 b,c,d). These results suggest arrest caused by 

polyamine-deprivation at possibly 3 points; the G1/S transition, mitosis and possibly also at the G2/M 

transition point. Similar to our findings, CHO cultures deprived of polyamines have been reported to 

display prolonged S-phase (Jan O. Fredlund and Oredsson 1997b; J. O. Fredlund and Oredsson 1996; 

Anehus et al. 1984). However, cell cycle effects on other mammalian cell lines have been reported to 

arrest at different stages depending on the cell line, such as G0/G1 (NIH3T3 mouse fibroblasts) 
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(Landau et al. 2012), G1/S (Hela and MALME-3M) (Yamashita et al. 2013; Kramer et al. 1999) or 

G2/M (MALME-3M) (Kramer et al. 1999). Polyamine deprivation has been reported to induce 

structural changes on microtubules, resulting in delayed cytokinesis in Hela (Yamashita et al. 2013) 

and CHO (Pohjanpelto, Virtanen, and Hölttä 1981). A peak on ODC activity is also detected at late 

stage of the cell cycle (Oredsson 2003), suggesting an involvement of polyamines for proper mitosis 

progression. 

In response to polyamine-deprivation, we observed lower levels of some mRNAs involved in ER 

stress, with the significant lower expression of Ddit3 apoptosis-inducer gene being validated by RT-

qPCR (Fig. 2, Appendix C, Supplementary Figure 1). Increased polyamine catabolism produces toxic 

by-products that can trigger ER stress and eventual apoptosis, as reported by the overexpression of 

Sat1 and SMOX in acute kidney injuries (Zahedi et al. 2017). Similarly, CCl4 treatment of liver 

increased Sat1 expression, inducing tissue damage (Zahedi et al. 2012). Consequently, decreased 

expression of genes related to ER-stress observed in our study might be associated with down-

regulation of Sat1. DFMO treated epidermal IEC-6 cells and NIH3T3 displayed lack of apoptosis 

pathway activity (Li et al. 1999) (effect also observed in our system), although increased ER-stress 

was observed in the NIH3T3 cultures (Landau et al. 2012).  
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Fig. 2 Fold-changes of DE genes from enriched pathways DAVID interface analysis. 
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4. Conclusions 

The research described here is the first step in exploiting the CHO cell requirement for exogenous 

polyamine to investigate cellular roles of polyamines by nutritional depletion rather than by using 

chemical inhibitors. 

Insights have been gained into alterations in mRNA levels for specific genes and pathways, notably 

relating to cell cycle, RNA splicing, DNA homologous recombination and repair, p53-related 

pathways, membrane receptors and protein processing in ER. We realise that much remains to be 

discovered using this inhibitor-free system unique to CHO cells by examining, for example, changes 

at the proteomic and functional levels. In this paper we have demonstrated the power of the serum-

free CHO system to generate new knowledge on polyamine biology, still poorly understood, and we 

hope that the data presented supposes a first step for further investigation in the area. 
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Preface to the paper – A case study on the relevance of media formulation for transfections 

From the previous chapters, media composition has been determined to be a relevant factor to achieve 

enhanced culture performance of CHO cells (growth or productivity). However, alterations in media 

formulation have also a major impact on other bioprocess-relevant parameters, such as transfection 

efficiency. In this last chapter, to further showcase the importance of media additives, the impact of 

SFM-8 (described in Preface to the Chapters – in-house serum-free media development) in the 

transfection of CHO cells was assessed. In this case study, three different chemically-based 

transfection reagents (cationic lipid, cationic polymers and lipopolyplexes) were included to consider 

possible differences between each mechanism and how they may be differently affected by the same 

media additive. Moreover, the effects were confirmed in three CHO cell lines, accounting for possible 

cell line-specific results. Transfection efficiency was monitored using a GFP-expressing vector. The 

levels of percentage of GFP-expressing population as well as the intensity of fluorescence were 

assessed to determine the efficacy of transfection. Initial tests revealed a lack of GFP detection in all 

cell lines tested with two of the transfection reagents and very low efficiencies with lipopolyplexes. 

In order to identify the impeding additive, a step-wise removal protocol was followed revealing ferric 

ammonium citrate (FAC) as an inhibitory supplement for chemical transfection. With the removal of 

FAC, successful transfections were achieved, although viabilities were negatively impacted due to 

the vital role this additive plays in CHO cell culture. To circumvent this effect, an alternative 

transfection protocol was developed, combining transfection in FAC-depleted medium with 

replenishment prior 24h post-transfection.  

Inhibitory FAC effects were observed during the initial steps of transfection, as supplementation of 

this iron source 30 min post-transfection did not impede GFP expression. For this reason, we decided 

to characterise the DNA-delivery particles in order to gain insight into the mechanistic inhibitory 

effect of FAC by assessing their zeta potential and particle size. These parameters have become 

standard in the study of transfection efficiencies, being sensitive to changes in the pH, viscosity, 

temperature or ionic strength of the media (Mandal et al. 2018; Yu et al. 2019; Smith et al. 2017). 

Consequently, changes in the particle size of each of the three DNA-reagent complexes were 

monitored over 1 h incubation in media with and without FAC. Effects in three commercial media 

were also assessed. The results displayed increases in the particles size over the 1h incubation, 

indicating a potential FAC-mediated aggregation or destabilization. However, this effect was not 

observed with polymers transfection complexes.  

Zeta potential gives an indication of the surface charge of the particle under specific conditions (pH, 

temperature, viscosity) (Fig. 10) (Smith et al. 20017; Bhattacharjee 2016). Chemical-based 

transfection rely, in part, to the electrostatic interaction between cellular membrane and transfection-

complex (Kim and Eberwine 2010). For this reason, “negatively charged” complexes may result in 

lack of transfection. Positive zeta potentials were here detected in the absence of FAC in two of the 
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complexes, while liposomes displayed negative zeta potential values. The differences observed in 

zeta potential and particle size between the three transfection reagents indicated that investigation of 

the different mechanistic DNA uptake of each the three transfection reagents requires investigation 

to further understand the negative effects of FAC in transfection. 

 

Fig. 10 Determination of the zeta potential on a negatively charged particle. Immediately on top of 

the particle surface there is a strongly adhered layer (Stern layer) comprising of ions of opposite 

charge i.e. positive ions in this case. Beyond the Stern layer, a diffuse layer develops consisting of 

both negative and positive charges. These two layers of tightly and loosely associated ions are 

collectively referred to as the electrical double layer (EDL). During electrophoresis the particle with 

adsorbed EDL moves towards the electrodes (positive electrode in this case) with the slipping plane 

becoming the interface between the mobile particles and dispersant. The zeta potential is the 

electrokinetic potential at this slipping plane. Image and legend  (adapted) from (Bhattacharjee  2016). 
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ABSTRACT 

While reliable transfection methods are essential for Chinese Hamster Ovary (CHO) cell line 

engineering, reduced transfection efficiencies have been observed in several commercially-prepared 

media. In this study, we aimed to assess common media additives that impede efficiency mediated 

by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based 

(TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and 

serum-free medium (BCR-F12: developed for the purposes of this study), were used to analyse 

transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a 

selection of commercially-available media, BCR-F12 displayed challenges associated with 

transfection in vendor-prepared formulations, with no detection when liposomal-based methods were 

used, reduced (<3 %) efficiency observed when polymer-based methods were used and only limited 

efficiency (25 %) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium 

citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled 

with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency 

observed in all cell lines in FAC-depleted medium (-FAC), although lower viabilities were observed. 

Subsequent early addition of FAC (0.5-5 h post-transfection) revealed 0.5 h post-transfection as the 

optimal time to supplement in order to achieve transfection efficiencies similar to -FAC medium 

while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA 

transfection acting at early stages in all transfection agents and all cell lines studied and a practical 

strategy to circumvent this problem is suggested. 
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1. Introduction  

Transfection is a core technique in molecular biology studies which is used to investigate the role of 

proteins and genes in cellular systems. In the field of biopharmaceutical manufacturing, transfection 

efficiency is a critical early step in upstream cell line development to produce complex proteins, 

typically in Chinese Hamster Ovary cells (CHO), as efficient transient gene expression offers the 

possibility of producing large amounts of recombinant protein rapidly. For this reason, optimization 

of transfection efficiency, accompanied with minimal cellular perturbation is a desirable goal of 

industry, examining the critical parameters affecting this process: cell type, cell line, expressing 

vector, transfection method and cultivation media, among others (1).  

DNA-delivery systems can be broadly classified as biological (virus-mediated), chemical (vector-

assisted) and physical (2, 3). Chemical transfection methods work on the principle of electrostatic 

interaction; forming positively charged complexes with nucleic acid, enabling interaction with the 

cellular membrane and finally releasing the genetic material into the cells (2). Chemical methods can 

be sub-classified into 3 types: (i) lipid-based (lipoplexes; cationic lipid-based), (ii) polymer-based 

(polyplexes) and (iii) lipid mixed with polymer or peptides (lipopolyplexes). Currently, a wide range 

of transfection reagents are commercially available (e. g. Lipofectamine 2000, FuGENE 6, PEI, 

TransIT-X2, TransIT-PRO, TransIT-LT1). Compared to more cost-effective reagents such as calcium 

phosphate or DEAE-Dextran, commercial agents have been advantageously applied to highly 

differentiated cell lines (such as CHO) and serum-free conditions achieving high transfection 

efficiencies (4, 5). Among polymer cationic methods, polyethylenimine (PEI) is the most common 

transfection system used for CHO and HEK293 transient transfection, offering a cost-efficient, easy-

to use and efficient methodology (6). As a result, multiple studies have focused on understanding and 

improving this transfection system (7, 8), resulting in the development of several PEI-derivate agents 

(9, 10). However, other polymer-based methods reported for successful CHO cells transfection (e.g. 

TransIT-X2 (11)) have received less investigation. Cationic lipids are comprised of hydrocarbon 

chains, neutral helpers and a cationic head group (12). Structural changes such as the type of lipid 

and composition of the complex plays a crucial role on final DNA delivery. Thus, several lipids have 

been tested, mainly to improve gene delivery, such as palmstearin, which have been reported to be 

successful in CHO cells, increasing efficiency of a commercial control lipofectamine RNAiMAX 

(13). Improvements in cell transfection have also been observed with the novel use of tomatidine, 

recently described by Rangasami et al (2019), which was reported to induce cell permeability when 

used as a helper lipid (14). Liposomes have frequently been shown to efficiently generate transiently-

expressing (15) and stably-expressing (16, 17) CHO cell lines. However, negative effects on cellular 

viabilities (18) have been described using this method, while poor endosomal escape and subsequent 

increased lysosomal degradation have also been reported (19). To overcome this hurdle, a second-

generation of DNA-delivery systems consisting of ternary structures of cationic lipids, polycations 
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(polymers or peptides) and nucleic acids have been developed, characterized by high transfection 

efficiencies due to the highly condensed DNA complexes together with the generated smaller particle 

sizes (20). Described by Caracciolo, G. et al (2011), lipopolyplexes composed by DNA/protamine 

coated by DOTAP have been observed to outperform the lipid-based DOTAP transfection 

efficiencies in mammalian cells, including CHO-K1 (21). Similarly, TransIT-PRO has been reported 

to display increased transfection efficiency, DNA expression and lower toxicity than PEI and 

Liposome 2000 in CHO-S cells (22). 

One of the key challenges that impact the efficiency of DNA delivery into mammalian cells is the 

composition of the culture media. Previous studies examining the efficiency of several transfection 

methods in combination with commercially-prepared media formulations have reported substantially 

decreased or even fully impeded DNA transfection in HEK293 and CHO cell lines, the two most 

prominent cell lines used in industry for mammalian cell production of biopharmaceuticals (23, 24). 

As the media components in these formulations are frequently not disclosed by the manufacturer due 

to commercial sensitivities, identification of medium components that may interfere with DNA-

delivery remains a challenge to optimization of transfection efficiency in mammalian culture. While 

some media additives have been identified as having a detrimental impact on transfection efficiency 

(1, 25, 26, 27), further investigation is still required to enhance the efficacy of the process. In order 

to assess the ability of media additives to support or impede transfection efficiency, we developed a 

serum-free (SFM) medium (BCR-F12) containing common media supplements and used it to test 

three different chemical-based transfection methods: (i) Lipofectamine 2000 

(liposomes/lipoplexes/cationic lipid-based), (ii) TransIT-X2 (polyplexes/polymer-based) and (iii) 

TransIT-PRO (lipopolyplex system) in three CHO cell lines (DG44, DP12, CHO-K1), measuring the 

percentage of GFP expressing cells from an in-house vector. Following the identification of a single 

media component as a transfection inhibitor, cell culture performance (viability and growth) was then 

assessed in the absence and presence of the interfering additive, in order to develop an efficient 

transfection protocol that simultaneously maintained minimal cellular perturbance. Finally, in order 

to gain insight in the mechanistic inhibitory effects observed, complexes generated with all three 

transfection reagents in each media tested were assessed for size and zeta potential changes. 

 

2. Materials and methods  

 

2.1. Cell culture 

Three CHO cell lines, CHO-DP12 (a recombinant human IgG-producer, ATCC CRL-12445 

clone#1934), an in-house DG44 derived cell line and a CHO-K1 parental (ATTC CCL-61) fully 

adapted to grow in suspension in serum-free media were cultured and maintained in three commercial 

media: a chemically-defined and animal-free medium (BalanCD CHO Growth A medium (Irvine 
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Scientific), a serum-free medium (CHO-S-SFM-II (Thermo Fisher Scientific), and a protein-free 

medium (ProCHO-5 (Lonza)). Cells were also cultured in an in-house serum-free medium (BCR-

F12). The BalanCD Growth A medium lacks hypoxanthine, thymidine, antibiotics and antimycotic 

and it was further supplemented with 8 mM L-glutamine (Gibco). The CHO-S SFM-II is a low-

protein formulation containing hypoxanthine, thymidine, L-glutamine, sodium pyruvate and sodium 

bicarbonate. The ProCHO5 medium contains 0.1 % Pluronic F-68 but lacks thymidine, hypoxanthine 

and phenol red. This medium was further supplemented with 5 mM L-glutamine (Gibco). The in-

house BCR-F12 medium was developed based on DMEM-F12 (1:1, v/v) (Sigma Aldrich, D8437) 

supplemented with sodium selenite, recombinant human insulin, ethanolamine, ferric ammonium 

citrate, poly vinyl alcohol (PVA), L-glutamine (Gibco), NEAA (Gibco), linoleic acid and putrescine 

dihydrochloride (28). The only growth factor supplement in the BCR-F12 serum-free medium is 

insulin, which has been extensively shown to be sufficient to support CHO cell growth in culture 

(29). All supplements were purchased from Sigma Aldrich unless otherwise stated. Cells were grown 

in each media for at least 3 passages, ensuring that similar VCDs were reached at each passage before 

performing transfection tests. Cells were routinely split every 3-4 days and re-seeded at 2x105 cells/ml 

in 250 ml shake flasks in 20-30 ml working volume. Cultures were maintained at 37 oC in suspension 

culture in an ISF1-X (Climo Shaker) Kuhner incubator with a speed of 170 rpm, 80 % Humidity and 

5 % CO2. Viable cell density (VCD) and viability were analysed using the ViaCount reagent (Guava 

Technologies, 4000-0041) on a Guava easyCyte 75 HT benchtop cytometer (Merck Millipore, UK). 

This reagent is a mixture of two DNA-binding dyes (propidium iodide and LDS-751) which 

distinguishes between non-viable and live cells. LDS-751 is membrane permeable dye (30) that stains 

all nucleated cells, while propidium iodide stains non-viable cells due to the lack of integrity of their 

membranes (31). The detection of viable cells is recorded when the fluorescence signal is 

accompanied by the signal of forward light scatter (FSC) in the appropriate intensity (in the 

photomultiplier tube 2, PM-2), which is related to cell size. If a lower FSC intensity is detected, the 

signal is recorded as cell debris. For this study, in order to exclude GFP detection from the VCD and 

viability fluorescence signal, the ExpressPro software was used and cell gating was performed using 

healthy cultures following the easyCyte™ System User Guide (0110-8493 Rev B). Statistical analysis 

of the VCD and viability data obtained was performed in Microsoft excel software using two‐tailed 

homoscedastic student t‐test to generate p-values. This is the form of Student's t-test which is 

appropriate to use when comparing sets of data which have similar variances - for the type of data 

presented here, it is reasonable to assume a normal distribution. 

𝑡 =
𝑥1 − 𝑥2
𝑠1

√𝑛1
+

𝑠2

√𝑛2

 

Described in (32).  
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2.2. Transfections 

An in-house GFP expressing vector (named as N44), based on CMV-d2eGFP pcDNA5 vector 

(Addgene) (modified with a functional hygromycin selection and modifications in the cloning site) 

was used for the purposes of this study due to the expression of destabilized GFP (d2GFP). Despite 

its lowered stability profile, the d2GFP vector was utilised in order to monitor minor effects on 

transfection efficiency between cell lines, transfection reagents and media – these minor effects would 

have been missed if the more stable eGFP vector and protein was used. Vector DNA was extracted 

from 5 ml Component Escherichia coli DH5α (Invitrogen) transformed cultures using the GeneJET 

Plasmid MiniprepKit (Thermo Fisher Scientific) as per the manufacturer’s instructions. Vector 

extractions were assessed for quality and quantity using the NanoDrop ND-100 (NanoDrop 

Technologies). Three transfection systems were used in this study: (i) a lipoplexes/cationic lipid-

based transfection method (Lipofectamine 2000 (Thermo Fisher Scientific)), (ii) a polymer-

based/polyplexes system (TransIT-X2 (Mirus Bio), not Polyethyleneimine (PEI)-based) and iii) a 

lipopolyplex-mediated system (TransIT-PRO (Mirus Bio)). Transfections were performed following 

manufacturer’s recommendations for CHO cells with no adaptation of the protocol per each cell line. 

Briefly, cells were counted and re-seeded at 1x106 cells/ml in fresh media 24 h prior transfection. For 

TransIT-PRO, a total of 500 ng vector was mixed with 1 µL reagent and 100 µl media and incubated 

for 10 min at room temperature. For Lipofectamine 2000, 800 ng vector was diluted in 50 µl media. 

In parallel, 1 µL Lipofectamine 2000 was mixed with 50 µl media. Both mixtures were incubated for 

5 min and then gently mixed and incubated for an additional 20 min at room temperature. For 

TransIT-X2, 500 ng vector was mixed with 50 µl media and 1 µl TransIT-X2 was mixed in 50 µl 

media. Both were then combined, gently mixed and incubated for 30 min at room temperature. All 

complexes were generated in basal DMEM-F12 medium (Sigma Aldrich, D8437). Cells were re-

suspended in fresh media without PVA at 2x106 cells/ml (TransIT-PRO) and 1x106 cells/ml (TransIT-

X2) and 900 µl were seeded per well. For Lipofectamine 2000, cells were also re-suspended in media 

without PVA at 1.6x106 cells/ml and 500 µl were seeded per well. A total of 100 µl of vector-complex 

suspension was then added to each well per each transfection reagent. Plates were parafilmed and 

incubated at 37 oC in an ISF1-X (Climo Shaker) Kuhner incubator. Media change was not performed. 

For TransIT-PRO, the PRO boost reagent was not used. A negative control for transfections was also 

prepared following the same protocols as per TransIT-X2, TransIT-PRO and Lipofectamine 2000. 

However, DNA was not added to prepare the complexes. Each transfection condition tested was 

performed in triplicate wells. For the negative control, one to two wells were used for each testing 

condition. Viable cell density (VCD) and viability were assessed 24 h post-transfection using the 

ViaCount on a Guava easyCyte HT benchtop cytometer (Merck Millipore, UK). Technical replicates 

were performed for each transfected and non-transfected well.  
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2.3. Detection of GFP expression 

The detection of GFP-expressing cells was performed 24 h post-transfection by flow cytometry using 

the Express Plus software for the Guava easyCyte benchtop cytometer (Merck Millipore, UK). To 

determine the amount of fluorescent cells, negative control cells (cells that did not express GFP 

fluorescence above autofluorescence levels) were gated by modifying the voltage in the applicable 

channel to remove autofluorescence signal - these settings were then used to identify the GFP-positive 

populations. Fluorescence of dead cells and debris were excluded to avoid false positive results. 

Technical replicates were performed for each transfected and non-transfected well. Statistical analysis 

of the transfection data obtained was performed in Microsoft excel software using two‐tailed 

homoscedastic student t‐test to generate p-values (as per VCD and viability data). 

 

2.4. Measurement of size and zeta potential 

A Malvern Zetasizer Ultra, using ZS XPLORER version 1.2, (Malvern Panalytical Ltd, UK) was used 

for measuring the size of the complexes using Dynamic light scattering (DLS) at 37 °C. Triplicate 

measurements were performed.  

Samples for zeta potential measurements were placed in a ZEN1002 dip cell cuvette and 

measurements were obtained using Phase Analysis Light Scattering at 25 °C, using the Smoluchowski 

model. Zeta potential values were obtained using monomodal mode due to the dispersant 

conductivity. Between two to five replicates were performed per sample. 

 

3. Results 

 

3.1. BCR-F12 transfection efficiencies perform similarly to commercial media preparations 

A serum-free formulation (BCR-F12) was developed and compared to a range of three commercially 

available media (BalanCD Growth A, CHO-S-SFM-II and ProCHO5) to assess whether its 

transfection efficiency profile was representative of the issues observed in commercial formulations. 

Figure 1 displays the efficiencies observed in three CHO cell lines (DG44, DP12 and CHO-K1), 

measured as percentage of GFP-expressing populations (excluding autofluorescence signal based on 

non-transfected control cells), at 24 hours post-transfection using a range of three transfection agents; 

Liposome 2000 (Liposomes), TransIT-X2 (Polymers) and TransIT-PRO (Lipopolyplexes). The N44 

vector expressing the destabilized GFP (d2GFP) was used to assist in monitoring minor changes 

between media and transfection agents. 

In BalanCD, transfection was not supported with any of the transfection agents or cell lines used, 

while in contrast, 44-60% GFP-expressing populations were detected in SFM-II with all three DNA-

delivery systems and in all cell lines (Fig 1). In ProCHO5, all 3 cell lines displayed transfection 
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efficiencies between 31 % - 65 % using polymers or lipopolyplexes agents; however, GFP expression 

was not observed in any of the 3 cell lines when liposomes were used. The GFP expression levels 

observed following transfection in the candidate BCR-F12 medium indicated that it is a suitable 

model for studying medium-related transfection disruption; only the lipopolyplex method returned 

GFP-expressing populations (25 %) in all 3 cell lines, while polymer-based transfections resulted in 

< 3 % efficiency and GFP expression was not detected with liposomes. 

 

Fig. 1 Transfection efficiency in commercial and in-house media. Percentage of GFP-expressing 

DG44 (a), DP12 (b) and CHO-K1 (c) cells 24 h post-transfection with d2GFP in three commercial 

media: BalanCD growth A (CDM), CHO-S SFM-II (SFM) and ProCHO5 (PFM) and an in-house 

SFM (BCR-F12). Three transfection systems were tested: Liposomes (Lipofectamine 2000), 

Polymer-based (TransIT-X2) and Lipopolyplexes (TransIT-PRO). Triplicate transfections were 

carried out for each media, cell line and transfection method combination. Two negative control wells 

were included for each media, cell line and transfection method, displaying between 0.0 - 1.7 % GFP 

(data not shown).  
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3.2. SIFA additives interfere with BCR-F12 transfection with all transfection systems studied 

As our in-house BCR-F12 medium formulation was observed to display transfection issues 

representative of those seen in commercial media formulations (Fig. 1), identification of the BCR-

F12 medium additives that may contribute to the decreased transfection efficiencies was attempted. 

To achieve this aim, all the additives supplemented to DMEM-F12 basal medium to develop BCR-

F12 were removed in two groups. The first group comprised lipids and polyamines - linoleic acid, 

ethanolamine and putrescine which were suspected to inhibit transfection or interfere with DNA-

complex formation (25, 26, 33, 34) – this is the “LP” formulation. The second, “SIFA” formulation 

comprised the rest of the additives - sodium selenite, insulin, ferric ammonium citrate and non-

essential amino acids supplements. Basal medium (DMEM-F12) used for the development of BCR-

F12 formulation was also included as a control in order to assess maximal transfection efficiency 

achievable without supplemental additives, while DG44 cells were used as an initial model cell line, 

as transfection efficiencies for the different methods and in the different media were observed to be 

representative for all three cell lines (except for ProCHO5 medium) (Fig 1). Compared to BCR-F12 

medium, transfection efficiencies in Basal media increased from 1 % to 16 % in liposomes and 

increased 6.3-fold (5 % to 31 %) when using polymers (Fig 2). No significant differences were 

observed between transfections performed in LP and BCR-F12 media with any of the 3 methods, 

indicating that these formulations are practically identical with regard to transfection performance. 

However, in SIFA medium, efficiencies were observed to be restored to similar levels observed in 

Basal medium (31 - 33 % GFP-expressing cells in polymer-based transfection and 15 - 16 % GFP 

positive cells in liposomes), indicating that the major impediment additive to transfection in 

liposomes and polymer-based methods was removed (Fig 2). Conversely, a small but significant 

effect was observed in lipopolyplexes-mediated transfection efficiencies, displaying slightly lower 

efficiencies in SIFA and Basal media than in BCR-F12 (19 % compared to 21 %). 

 

Fig. 2 Transfection efficiency in BCR-F12, LP, SIFA and Basal media. Percentage of GFP 

expressing DG44 cells 24 h post-transfection with d2GFP in DMEM-F12 (Basal), in-house 

formulation BCR-F12, BCR-F12 lacking linoleic acid, ethanolamine and putrescine (LP) and BCR-
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F12 lacking sodium selenite, insulin, FAC, NEAA and L-glutamine (SIFA). Three transfection 

system were used: Liposomes (Lipofectamine 2000), Polymer-based (TransIT-X2) and 

Lipopolyplexes (TransIT-PRO). Triplicate transfections were set for each media and transfection 

method combination. A negative control well was included for each media and transfection method, 

displaying between 0.1 - 1.5 % GFP (data not shown). Statistical differences between transfection 

efficiencies observed in LP and SIFA conditions compared to the ones in BCR-F12 are represented 

as: p< 0.001 (***), p<0.01 (**). 

 

3.3. FAC reduces transfection efficiency of liposomes and polymer-based agents in DG44 cells 

Individual removal of each component of the SIFA group was then performed in DG44 cells in order 

to identify whether the enhancement of transfection efficiencies observed was a result of single or 

combinatorial components. As larger effects were observed in polymer- and liposomal-mediated 

transfection (Fig. 2), we first focused on these two agents. Following this step-wise removal approach, 

ferric ammonium citrate (FAC) was identified as a key additive interfering with both systems, as its 

removal resulted in a dramatic increase in the percentage of GFP-expressing cells observed (15 % 

compared to no detection when liposomes were used and 25 % compared to 3 % when polymers were 

used) relative to transfections in BCR-F12 (Fig. 3a). By contrast, individual removal of the other four 

additives (L-glutamine, insulin, sodium selenite, NEAA) did not show any positive effect on 

transfection efficiencies when liposomes were used (Fig. 3a). Polymer-mediated transfection of the 

d2GFP-expressing vector resulted in a small but significant (p< 0.001) improvement in transfection 

efficiencies (10 %, 9 %, 4 % and 5 %) observed following the removal of insulin, sodium selenite, L-

glutamine and NEAA (respectively) relative to the transfections in BCR-F12 (Fig. 3a). In the control 

Basal medium, lower GFP-expressing populations were achieved compared to the previous 

comparison Figure 2, which was likely associated with random biological variability between 

experiments. 

As individual removal of components was anticipated to affect cell line performance, viable cell 

density (VCD) and viability assessments 24 h post-transfection were also carried out, revealing that 

supplement removal resulted in significantly decreased VCD levels in all cases except for DG44 

transfected with polymers in medium lacking NaSe, in which VCD was observed to be unaffected. 

FAC removal had a considerable impact, with VCD decreased by 1.8-fold (liposomes) and 1.5- fold 

(polymers) compared to DG44 cells in BCR-F12 medium and viabilities decreased to 84 % 

(liposomes) and 74 % (polymers) compared to 95 - 96 % in BCR-F12 (Fig. 3b). VCD and viability 

results 24 h post-transfection in Basal medium were poorer than those observed in -FAC medium 

when using the polymer-based agent (VCD decreased by 56 % and viabilities reduced to 61 %). In 

this medium, transfections mediated by liposomes displayed a significant (p< 0.05) VCD decrease of 

11 %, while viability reported similar values to that observed in -FAC medium. Viability tests showed 
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that individual removal of L-glutamine, insulin, non-essential amino acids and sodium selenite did 

not significantly impact this parameter (Fig. 3b), except for liposomes-mediated transfection, 

displaying a decrease to 91 % DG44 viability when transfected in medium without insulin. 

In a separate experiment, FAC removal was shown to have a similar effect when the lipopolyplex 

transfection method was used in the DG44 cell line, with the percentage of GFP-expressing cells 24 

h post-transfection almost doubling (from 20 % to 38 %) when transfected in medium without FAC 

(Fig. 3c); this result was also associated with a drop in viability (89 % to 74 %) and (interestingly) a 

small (9 %) increase in VCD (Fig. 3d). 

Data on the mean fluorescent intensity (MFI) (Appendix D, Supplementary Fig. 1a) revealed no 

relationship between GFP expression and transfection efficiency in BCR-F12 medium, as removal of 

FAC resulted in both increased MFI and % GFP-expressing populations in all three transfection 

reagents. 

 

Fig. 3 Transfection efficiency, viable cell density and viability obtained with individual 

supplement removal. Percentage of GFP expressing DG44 cells (a) and viable cell density (VCD, 

bars) and viability (lines) (b) 24 h post-transfection with d2GFP vector in BCR-F12 medium (Basal 

with added FAC, L-glutamine, insulin, sodium selenite and non-essential amino acids), in Basal 

medium (DMEM-F12) and in BCR-F12 medium with individual removal of: FAC (-FAC), L-

glutamine (- Glut), insulin (- Ins), sodium selenite (- NaSe) and non-essential amino acids (- NEAA). 

DMEM-F12 (Basal) and BCR-F12 were included as a control media. Two transfection systems were 

tested: liposomes (triangles) and polymers (squares). Percentage of GFP expressing DG44 cells (c) 

and VCD (bars) and viability (symbols) (d) are represented for lipopolyplexes transfection in BCR-
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F12 medium and BCR-F12 without FAC (-FAC). Triplicate transfections were set for each media 

and transfection method combination. A negative control well was included for each media and 

transfection method, displaying between 0.1 - 1.3 % GFP (data not shown) and viabilities between 

92 – 97 % for all three transfection methods (data not shown). Statistical differences between 

transfection efficiencies observed in each testing media compared to the ones in BCR-F12 are 

represented as: p< 0.001 (***), p< 0.01(**) and p< 0.05(*). 

 

3.4. FAC removal facilitates transfection in DP12 and CHO-K1 cell lines 

To confirm this FAC-depleted result on transfection efficiency was not cell line-dependent, CHO-K1 

and DP12 cells were transfected in FAC-depleted medium (-FAC) using all 3 methods. Similar to the 

results shown for DG44 (Fig. 3), transfection efficiencies were enhanced in both cell lines for all three 

transfection agents used, making the -FAC medium very similar to Basal medium in the DP12 cell 

line (Fig. 4a) and superior to Basal for the CHO-K1 cell line (Fig. 4b). In DP12, GFP-expressing 

populations were successfully generated in -FAC medium 24 h post-transfection when using 

liposomes (12 % efficiency), while an 8.5-fold increase in transfection efficiency was observed with 

polymer-mediated transfection compared to BCR-F12 medium and a small but significant (p< 0.001) 

increase (26 % to 34 %) in transfection efficiency for the lipopolyplexes system (Fig. 4a). In CHO-

K1, transfections performed in -FAC medium also resulted in higher efficiencies for all 3 methods 

(Fig. 4b). Similar to DP12, GFP-expressing populations were detected in -FAC medium when using 

liposomes (15 %), while a 5.2-fold increase in transfection efficiency was observed with polymers 

compared to BCR-F12. Similar to the results observed for DG44 but in a marked contrast to that seen 

in DP12, the largest transfection efficiency increase was observed with the lipopolyplexes system in 

CHO-K1, displaying an almost 5-fold increase in GFP-expressing populations (8 % compared to 38 

%; Fig. 4b). However, it is worth noting that the transfection efficiencies for BCR-12 medium 

presented in Figure 4b are much lower than those presented for BCR-12 medium in Figure 1. As a 

result, the possibility that these lower efficiencies adversely complicate interpretation of the 

transfection efficiency increase observed with the CHO-K1 lipopolyplexes system cannot be fully 

excluded. CHO-K1 transfections in -FAC medium displayed a higher number of GFP-expressing 

populations (1.7-fold in polymer-based transfection and 2.4-fold with liposomes) compared to Basal 

medium for all three methods (Fig. 4b), while in -FAC medium DP12 performed very similarly to the 

cells in Basal medium (Fig. 4a). 

In the absence of FAC, increased MFI levels were also observed in both cell lines with the three 

transfection agents, except for lipopolyplexes-mediated CHO-K1 transfection, which reported lower 

expression than in FAC-containing medium (Appendix D, Supplementary Fig. 1c). As expected from 

the transfection efficiencies data (Fig. 1), comparison with ProCHO5, SFM-II and BalanCD revealed 

substantially lower expression in the in-house serum-free medium. Interestingly, among the three 
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transfection reagents and media conditions tested, polymer-mediated transfection in SFM-II medium 

was observed as the only transfection condition to display high MFI levels across the three CHO cell 

lines (Appendix D, Supplementary Fig. 1a,b,c). While lipopolyplexes were observed to be optimal 

for high GFP expression in DP12 (independent of media), CHO-K1 and DG44 cell lines reported 

increased MFI levels when transfected with polymers in both ProCHO5 and SFM-II. 

As in the DG44 cell line, removal of FAC resulted in decreased viability profiles compared to BCR-

F12 in both DP12 and CHO-K1 with all 3 transfection agents tested (Fig. 4c,d), underlining the 

importance of this element to culture performance. Compared to the cells in BCR-F12, VCDs for 

DP12 in -FAC medium were lower for all three methods. CHO-K1 cells demonstrated similar VCDs 

(to BCR-F12) in -FAC medium when liposomes were used, but lower VCD for polymers and 

lipopolyplexes (Fig. 4c,d). It is important to also note that cells transfected in -FAC medium generally 

displayed unchanged or slightly improved VCD and viability profiles compared to those observed in 

Basal medium (Fig. 4d). 

 

Fig. 4 Transfection efficiency with FAC removal. Percentage of GFP expressing DP12 (a) and 

CHO-K1 (b) cells 24 h post-transfection with d2GFP vector in BCR-F12, DMEM-F12 (Basal) and 

BCR-F12 without FAC (- FAC) media. Viable cell density (VCD, bars) and viabilities (symbols) of 

DP12 (c) and CHO-K1 (d) cells 24 h post-transfection are also represented. Three transfection system 

were used: Liposomes (Lipofectamine 2000) (triangles), Polymer-based (TransIT-X2) (squares) and 

Lipopolyplexes (TransIT-PRO) (circles). Triplicate transfections were set for each cell line in each 

condition (media and transfection method combination). A negative control well was included for 

each media and transfection method, displaying between 0.0 - 0.5 % GFP (data not shown) and 

viabilities between 86 – 93 % (DP12) and 90 – 96 % (CHO-K1) for all three transfection methods 
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(data not shown). Statistical differences between transfection efficiencies observed in -FAC medium 

compared to the ones in BCR-F12 are represented as: p< 0.001 (***), p< 0.01(**) and p< 0.05(*). 

 

3.5. Ferric ammonium citrate affects zeta potential and size of some transfection reagents  

Zeta potential and particle size have become standard analytical parameters to characterise DNA-

delivery complexes and study transfection efficiency (35, 36, 37). Both of these physicochemical 

characteristics are dependent on the environment, thus being sensitive to several parameters such as 

pH, viscosity or ionic strength (38). In order to gain insight into the mechanistic inhibitory effect of 

FAC, the zeta potential and size of the three DNA-complex particles used here (liposomes, polymers 

and lipopolyplexes) were characterised in each testing medium. 
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Fig. 5. Size of liposomes, lipopolyplexes and polymers complexes in different media. Liposomes 

(a), lipopolyplexes (b) and polymers (c) were placed in BCR-F12 without FAC (NoFAC), BCR-F12 

with FAC (+FAC), ProCHO5 and BalanCD and the size (nm) was analysed every 10 min during an 

hour incubation in the Malvern Zetasizer X. Each measurement was performed in triplicate.  

 

Particle size was analysed in intervals of 10 min over an hour incubation in order to identify possible 

particle destabilization (such as aggregation) over time. For comparison, size was also analysed in 

complex formation medium (DMEM-F12). Interestingly, in DMEM-F12 all three complexes reported 

similar sizes, with 367 nm +/- 18 observed in liposomes, 377 nm +/- 11.8 in lipopolyplexes and 406 

nm +/- 51 in polymers. As the size of these complexes in DMEM-F12 was only assessed at time 0h, 

to compare with the media-effects during transfection, this data is not represented in figure 5. 

However, when diluted in some of the transfection media, increased sizes of the complexes were 

observed. Liposomes became bigger over time when diluted in BCR-F12+FAC (484 - 542 nm), 

ProCHO5 (431 - 460 nm) and BalanCD (389 - 439 nm), while in the absence of FAC complexes of 

301 to 326 nm were observed (Fig. 5a). Lipopolyplexes displayed two distinguishable behaviours 

depending on the media (Fig. 5b), as follows. In both ProCHO5 and BCR-F12 without FAC, similar 

particle sizes (to DMEM-F12) were observed at the beginning, slightly increasing over the incubation 

time. Conversely, in media containing FAC and in BalanCD, big particle sizes of 536 nm and 848 

nm were already observed at time zero. In these media, indication of particle aggregation were also 

detected due to prompt drops and increases in size observed over the incubation time, possibly as a 

consequence of the sedimentation of these big particles. Similar to that observed for liposomes and 

lipopolyplexes, polymer complexes in BalanCD were observed to increase in size to 485 nm 

compared to the particles in DMEM-F12, BCR-F12 with and without FAC and ProCHO5, which 

were observed to be 398 nm, 371 nm and 294 nm, respectively (Fig. 5c). In all four media, polyplexes 

sizes were increased over the 1 h incubation, with signs of aggregation or increased variability in 

sizes observed in both FAC and NoFAC media as well as BalanCD. 

Zeta potential does not correspond to the particle charge but gives an indication of the surface charge 

determined by the electrophoretic mobility of the complexes under specific conditions (pH, 

temperature, viscosity), thus being influenced by media composition (37, 38). Liposomes in DMEM-

F12, BCR-F12 NoFAC and BCR-F12+FAC were observed to behave similarly, with zeta potential 

values ranging from -35 to -30 mV (Fig. 6a). In contrast, the presence of FAC had a substantial effect 

on the zeta potential of polymers and lipopolyplexes, inducing negative zeta potentials of -17 mV and 

-6.9 mV, respectively, while measurements in DMEM-F12 and BCR-F12 without FAC displayed 

positive zeta potentials (11 – 17 mV, polymers and 11 – 10 mV lipopolyplexes) (Fig. 6b,c). 

 

 



 

131 

 

 

Fig. 6. Zeta potential of liposomes, lipopolyplexes and polymers complexes in different media. 

Liposomes (a), lipopolyplexes (b) and polymers (c) were placed in DMEM-F12, BCR-F12 without 

FAC (NoFAC) and BCR-F12 with FAC (+FAC) and the zeta potential was determined by Phase 

Analysis Light Scattering in the Malvern Zetasizer X. Each measurement was performed between 

two to five times (depending on the conductivity of the media). Statistical differences observed in 

zeta potential in NoFAC and +FAC media compared to the ones in DMEM-F12 are represented as: 

p< 0.001 (***) and p< 0.01(**). 

 

3.6. Ferric ammonium citrate inhibits transfection during the initial stages of the process 

Due to the importance of iron for the maintenance of cell culture performance (39), supplementation 

of FAC at early stages post-transfection was assessed in order to determine the optimal time to 

schedule FAC addition for maximal culture performance while not adversely affecting transfection 

efficiency. The manufacturer's instructions suggested that supplementation with additional additives 

should not be performed earlier than 4 h (polymers and liposomes) and 24 h post-transfection 
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(lipopolyplexes). A 4 h gap in iron supplementation was observed to have an adverse effect mainly 

on viability for all 3 cell lines (Appendix D, Supplementary Fig. 2) and for this reason, a period of 

0.5 - 5 h post-transfection was examined to determine the transfection-inhibitory effects of FAC 

supplementation. Interestingly, supplementation with 100 µM FAC at 0.5 h post-transfection was 

sufficient to restore transfection efficiencies for all three methods; dramatically increasing 

efficiencies for liposomes (from no detection to 22 %) and polymers (3 % to 28 %), while also 

increasing transfection efficacy (27 % to 38 %) for the lipopolyplexes method (Fig. 7). 

Supplementation of FAC at timepoints later than 0.5 h resulted in similar (or slightly worse) 

transfection efficiencies in almost all cases examined, reaching similar percentages of DG44 GFP-

expressing populations (Fig. 7). Following on from this comprehensive test in DG44 cells, a 

simplified protocol, examining just the 0 h, 0.5 h and 4 h timepoints, identified that 0.5 h was the 

optimal supplementation timepoint for DP12 and CHO-K1 as well; the single exception being later 

(4 h) supplementation optimal for lipopolyplexes-based efficiency in CHO-K1, increased to 38 % at 

4 h, compared to 25 % for the same method at 0.5 h (Appendix D, Supplementary Fig. 3 (b.)) 

Supplementation with FAC at 0.5 h also resulted in higher viabilities for all three cell lines and all 

methods tested (Appendix D, Supplementary Table 1), with the single exception of the lipopolyplexes 

method in DG44 cells, where viabilities increased slightly (from 83 % to 84 %) when FAC was 

supplemented at the later 4 h timepoint. 

 

Fig. 7. Effect of FAC supplementation at 0- 5 h post-transfection on the percentage of GFP 

expressing DG44 cells 24 h post-transfection. Three transfection agents were tested: liposomes, 

polymers and lipopolyplexes. Transfections were performed in BCR-F12 medium without FAC. 

Supplementation of 100 µM FAC was performed at different time points (0 h, 0.5 h, 1 h, 2 h, 3 h, 4 

h and 5 h) post-transfection. Non-supplemented media (- FAC) was added as a control. Triplicate 

transfections were carried out for each condition (timepoint and transfection method combination). A 

negative control well was included for each condition and transfection method, displaying between 

0.1 – 0.4 % (lipofectamine), 0.1 – 2.4 % (polymers) and 0.2 – 0.7 % GFP (lipopolyplexes) (data not 

shown). The 2.4 % GFP-expression detected only in polymer-transfection in -FAC medium was 
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suspected to be a consequence of cross-contamination between the transfected and non-transfected 

wells, as all other negative controls in each transfection reagents and media combinations displayed 

% GFP below 1.3 %. Transfection efficiencies observed in FAC-supplemented medium at each time 

point (0.5 – 5 h) compared to the ones at 0 h control were statistically significantly different with a 

significance of p< 0.001, represented as (***) per 0.5 h and 4 h timepoints. 

 

4. Discussion 

Due to the importance of achieving optimal transfection efficiencies for the generation of stably-

expressing clones and/or rapid recombinant protein production by transient gene expression in CHO 

cells, continued efforts to enhance the efficiency of this process are essential. Following our 

development of an in-house serum-free medium where the formulation was known, ferric ammonium 

citrate (FAC) was identified as an inhibitory supplement for all cell lines and chemical transfection 

methods used (Liposome 2000, TransIT-X2 and TransIT-PRO in CHO-K1, DG44 and DP12 cells). 

With the aim of obtaining GFP-expressing populations while maintaining healthy cultures, we 

showed that transfection in -FAC medium followed by replenishment of FAC 30 min post-

transfection (rather than 4 h or 24 h) facilitates high transfection efficiencies and delivers satisfactory 

CHO culture viabilities. 

Driven by regulatory and process concerns, the removal of serum from routine use in mammalian 

culture media has resulted in the development of a wide variety of commercially-available, 

chemically-defined serum-free formulations, optimized for high cell culture performance in terms of 

growth and volumetric productivity. However, the use of these SFM formulations has also frequently 

been associated with poor transfection efficiencies. For instance, Ye, J., et al (2009) observed media-

dependent effects in PEI-mediated transfections of CHOK1SV cells in a range of eight commercial 

protein-free and chemically-defined media, with less than 1mg/L mAb titer detected 4 days post-

transfection in ProCHO5 (also analysed in this study) but high yields obtained in ProCHO4 and 

UltraCHO media (24). Similarly, we have shown differences between the serum-free, protein-free 

and chemically-defined commercial media examined. In certain media, these differences may be 

absolute, displaying zero transfection in BalanCD but high transfection efficiencies in CHO-S-SFMII, 

with all three cell lines and transfection agents. In other media the differences are mixed - as observed 

in ProCHO5 - with zero transfection detected with liposomes, but high transfection efficiencies in 

both polymers and lipopolyplexes. In either case, the presence or absence of transfection-inhibitory 

molecules in the media formulations are likely to be the key factors contributing to this outcome. Cell 

proliferation has been suggested to play a role in transgene expression and thus, cultures displaying 

increased growth rates have been observed to achieve increased transfection efficiencies (40, 41). In 

this study, although specific growth rate (µmax) was not calculated, all three cell lines were observed 

to perform differently in each media as per VCD levels achieved on passage day (day 3) during cell 
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maintenance (data not shown), which is an indicator of different growth profiles in each media. By 

comparing VCD levels, in this study we have not observed a direct linear relationship between 

increased VCD and transfection efficiency. A similar effect has been previously reported in 

transfections mediated by cationic-lipids and PEI complexes, which were observed to achieve 

efficient transgene expression independently of cell proliferation (42, 43), indicating possible 

alternative pathways influencing efficient transgene expression. Further analysis on specific growth 

rate would provide more information to characterize this possible effect. 

Since the composition of many available media is typically not disclosed by manufacturers, we 

developed an in-house SFM formulation to study the impact on transfection efficiency following 

removal of various standard supplements. The presence of media additives such as polymers and anti-

clumping agents (dextran and heparin sulphate) have been suggested to hinder PEI mediated 

transfection, affecting the stability and uptake of the DNA complexes formed (1). In 2001, a study 

focused on the effects of serum and transfection efficiency in five mammalian cell lines (including 

CHO) revealed that the lipid part of serum (mainly cholesterol, LDL, HDL and phospholipids) caused 

inhibition of liposomal-mediated transfection. Interestingly, Son et. al (25) further reported successful 

transfection and liposomal-complex formation in delipidated-serum medium, thus demonstrating the 

critical role of lipid content in transfection media. In HEK293, a source-dependent effect of peptone 

supplementation was described to alter PEI transfection efficiencies, describing beneficial 

transfection effects with 0.5% gelatine peptones but inhibition of DNA delivery when casein-derived 

peptones were added (26). In this study, FAC has been observed as an inhibitory element for 

transfection and/or GFP expression of three CHO cell lines (DG44, DP12 and CHO-K1) and three 

chemical transfection methods (liposomal-based (Lipofectamine 2000), polymer-based (TransIT-

X2), and lipopolyplex-based (TransIT-PRO)). Ferric citrate (Iron (III) citrate) has been previously 

identified to impede PEI-mediated transfection of CHO-S and DXB11 cell lines when supplemented 

over 50 µM (27). A subsequent study (44) identified that the decreased transfection efficiencies may 

be due to a net negative zeta potential detected in the complexes formed in the presence of iron, 

leading to lower interaction of PEI:DNA complexes with CHO-S cellular membranes in ferric citrate-

supplemented CD-CHO medium. In this work, we have built on these two previously published 

studies to demonstrate that the inhibiting effect of FAC is not limited to PEI, but also affects another 

polymer-based method (TransIT-X2), as well as cationic lipid-based methods (lipofectamine 2000) 

and the mixed lipid: polymer lipopolyplexes method (TransIT-PRO). In accordance with previous 

reported data for PEI (27, 44), the zeta potential of lipopolyplexes and polymer complexes studied 

here were adversely affected in the presence of FAC, with negative zeta potentials detected. 

Interestingly, lipid-mediated complexes displayed equal negative zeta potential in all media tested, 

independent of the presence of FAC, which indicates a possible alternative inhibitory mechanism. 

Chemical agents deliver DNA to cells by hydrophobic and electrostatic interactions with the 
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negatively charged cellular membrane and thus positive zeta potential has been reported for 

successful DNA delivery (45, 46). However, the negative lipid-mediated complexes formed here were 

capable of generating GFP-expressing populations, an effect also reported by Son et al. (47, 25). The 

published literature on the influence of zeta potential on successful lipid-mediated transfection has 

shown mixed results, with some studies reporting positive zeta potentials (45, 46, 48), mainly 

measured in water, PBS or diluted media, but negative zeta potentials in lipid-mediated transfection 

have also been demonstrated, measured in culture media (47).  

We have here observed that in the absence of iron (BCR-F12 NoFAC), smaller lipopolyplexes and 

lipid-mediated complexes were obtained, relating to increased transfection efficiencies compared to 

FAC-containing medium. These results indicate a potential FAC-mediated influence on the 

encapsulation of DNA into lipopolyplexes and liposome complexes and/or an increase in the 

aggregation of the complexes, leading to a decreased transfection efficiency caused by decreased 

cellular uptake. However, this effect was not observed in polymer-DNA complexes, which displayed 

increased sizes in -FAC medium compared to medium with FAC. The influence of complex size on 

cellular uptake has been reported in the literature, but without unanimity as to its importance, with 

some studies defining this parameter as essential (49, 50) while others reporting no effect on achieving 

successful transfection (51). Several steps are involved in the generation of producer cells, which 

include successful transport through the cellular membrane, but also efficient DNA-carrier complex 

formation, cytoplasm transport, and nuclear localization (52), which could be disrupted by FAC. 

Internalisation of DNA-delivery particles has been described to be mainly mediated by endocytosis, 

with endosomal escape one of the critical steps to achieve DNA expression. Among the three 

transfection agents used here, different strategies have been proposed for successful endosomal 

release, such as the proton sponge strategy (mostly described in polyplexes), the membrane fusion 

strategy (described in liposomes) and membrane disruption and pore formation (mediated by peptide 

or/and polymer complexes) (53). Recently, an alternative random Brownian motion was described 

for intracellular trafficking of lipofectamine-containing vesicles (54), indicating that further 

investigations are still required to fully understand the mechanisms involved with each type of 

transfection agent. In our study, GFP was used as an indirect measure of traceability of efficient 

transfection (55, 56). Future work to confirm that the different conditions/additives impact the actual 

transfection efficiency and not GFP expression could be carried out by labelling the plasmid DNA 

with (e.g.) rhodamine dye (57) to follow membrane interaction and intracellular vesicles trafficking 

and could further investigate the mechanistic effect of FAC in lipoplex, polymer and liposome DNA-

delivery. 

Iron is vital for healthy growth of mammalian cells, with limited availability of this metal resulting 

in poor cell densities and eventual cellular death (39). Moreover, supplementation with iron citrate 

forms (such as FAC) has been also shown to be essential for increased mAb titers in CHO culture 
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(58). For these reasons, we aimed to identify the optimal timepoint for FAC supplementation post-

transfection in -FAC medium which would deliver satisfactory outcomes in both cellular viability 

and transfection efficiencies. Eberhardy, et al. (2009) had previously reported that FAC interference 

occurs at early stages of transfection and interestingly, FAC supplementation during the initial 4 h 

was reported to decrease PEI-mediated transfection in adherent DUXB11 cultures (27). In this study, 

supplementation as early as 30 min post-transfection has been shown to positively impact transfection 

efficiency mainly in polymers and liposomes mediated transfection, with slight enhancement in 

lipopolyplexes. Moreover, FAC supplementation at this timepoint has delivered beneficial cellular 

viability in all three cell lines and with all three transfection methods studied.  

During the course of this study, differing transfection efficiencies between cell lines (2 to 3-fold lower 

for BCR-F12 than for SFM-II and ProCHO5), transfection agents and media were observed. The in-

house serum-free medium underperformed in terms of transfection efficiency and GFP expression 

(MFI levels) compared to two of the commercial media (ProCHO5 and SFM-II), which was likely 

due to differences in media formulation additives interfering with, or impeding, efficient transfection 

(also reported previously 1, 24, 25, 26). Moreover, from in-house experimentation (data not shown), 

the BCR-F12 medium is defined as a low-producing medium, in which DP12 have been observed to 

reach up to 51 % less mAb titer than in the SFM-II commercial medium. This aspect of our in-house 

medium may have contributed to the low MFI levels detected even in -FAC medium. Interestingly, 

from the combined data of MFI and percentage of GFP expressing cells, it was revealed that high 

transfection efficiencies and expression can be achieved by using the polymer-based TransIT-X2 

transfection agent in combination with the commercial medium CHO-S SFM-II (in our conditions).  

In a recent study, transfections performed under the same conditions on a range of ten cell lines were 

observed to differently perform in terms of transfection efficacy (18), an effect that has been here 

similarly observed in the in-house -FAC medium. It is worth noting that all three CHO cell lines were 

transfected using the manufacturer’s recommendations for CHO cells but adaptation of the protocol 

was not performed per each cell line. The use of this standardised approach may explain some of the 

variability in transfection efficiencies observed between cell lines in the different media. Even though 

it is possible the transfections were performed in non-optimal conditions for each cell line, the 

inhibitory effects of FAC are not considered to be dependent on a suboptimal transfection condition, 

as removal of FAC enabled CHO transfection with all reagents tested. 

In conclusion, FAC was observed to interfere with DNA transfection mediated by the three chemical 

agents studied, acting at early stages of the process. Although previously reported to interfere with 

the interaction between DNA-complexes with the cell membrane, the effects of FAC on the zeta 

potential and complex sizes were here observed to be dependent on the transfection reagent, 

indicating that further investigation examining other essential steps of the DNA-delivery process 

(such as endosomal escape) is needed to fully understand FAC inhibition effect. To circumvent this 
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issue, a practical strategy to recover successful transfection while increasing CHO culture viabilities 

post-transfection was devised, involving transfection in -FAC medium followed by replenishment of 

FAC just 30 min post-transfection. 
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5. Summary and Conclusions 

The research work undertaken in this manuscript in preparation for a PhD. thesis by Publication aimed 

to focus on two clear elements of the 3 main strategies for improvement in CHO-based bioprocesses: 

namely (i) medium optimisation and (ii) CHO cell line engineering. With regard to (i), the impact of 

media additives on CHO performance has been comprehensively highlighted over the course of this 

research project. From the development of an in-house serum-free medium as a working tool, the 

titer-enhancing properties of the trace metal zinc were studied to better understand its potential role 

in improving CHO bioreactor performance. The research work then further built on the knowledge 

gained to investigate other important additives for CHO survival, eventually resulting in (ii), the 

design of a novel selection system to potentially rival the already well-established DHFR and GS 

selection systems. This novel innovative method offers the prospect of successful upstream cell line 

development without the use of cytotoxic drugs. As part of this invention discovery, the relevance of 

polyamines as essential components for CHO survival was established. Even though the absolute 

requirement of polyamines for CHO survival in serum-free conditions was first described in the early 

eighties, the vital role these amines play in CHO cell proliferation is still not fully understood. 

Exploiting this dependent phenotype, the effects of this multifunctional additive at transcriptomic 

level were investigated. Finally, the role media formulation additives play in a key step – transfection 

– in the generation of producer cell lines was analysed and an alternative method to optimise this 

essential process was recommended.  

Conclusions specific to each chapter are discussed below 

 

Chapter 1: Zinc supplementation increases protein titer of recombinant CHO cells 

 

▪ High zinc supplementation at 25mg/L improves the specific productivity of two producer 

CHO cell lines, increasing product titer but negatively affecting VCD profiles. 

▪ Building on previous reported work (Kim and Park 2016), our work has expanded the 

available knowledge in the field by demonstrating that the titer-enhancing effects of high zinc 

supplementation may be independent of cell line specificity (result demonstrated in two 

producer CHO cell lines: DP12 and SK15 (rCHO-K1)) and product type-specificity 

(supplementation increased titer of both IgG mAb and hEPO). 

▪ The titer-enhancing effects of zinc were attenuated by the presence of ATA in the medium 

(CDM+A). This results indicates that the positive effects of zinc may be offset by the 

presence of other additives.  

▪ At 25mg/L zinc, increased mRNA levels of both hEPO and IgG proteins were observed, 

which may be linked to higher transcriptional rates or increased mRNA stability, or a 

combination of both.  
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▪ By contrast, copper supplementation displayed cell line-specific effects at the range of 

concentrations tested. While SK15 displayed increased hEPO titers with no changes in VCD 

and viability profiles, DP12 cells growing in medium supplemented with copper were 

observed to be negatively impacted in both of these parameters. 

▪ Increased oxygen consumption rate (OCR) – indicative of oxidative respiration metabolism 

– in zinc-supplemented producing cultures was observed. Increased oxidative respiration was 

also observed to correlate with the increased titer profiles in both cell lines. 

▪ Zinc increases specific productivity but decreases cell growth. This result suggest that zinc 

supplementation strategies at stationary/production phases on the cultures might be suitable 

for enhancing CHO final titers. 

▪ The work described above was published in Cytotechnology (doi: 10.1007/s10616-019-

00334-1) 

 

Chapter 2: An arginase-based system for selection of transfected CHO cells without the use of toxic 

chemicals 

 

▪ Based on the polyamine-dependence phenotype of CHO cells and due to the limitations (lack 

of stability and toxicity of amplifying/selecting agents) in the current selection systems used 

by the biopharmaceutical industry (GS and DHFR) for the generation of stable cell lines, an 

alternative cytotoxic-free selection system was developed.  

▪ The efficacy of the newly developed auxotrophic selection system was reported. The method 

was shown to sustain the survival and growth of arginase-expressing transfected cell pools in 

a polyamine- and L-ornithine-free environment, supporting the isolation of GFP and 

recombinant therapeutic protein (hEPO) expressing single-cell derived populations. 

▪ This arginase-based system avoids the use of toxic selective agents and selection can be 

performed in low putrescine medium, such as the commercial DMEM-F12. Consequently, 

this method offers an easy-to-apply, cost-effective alternative to the GS and DHFR selection, 

with no need for customised media. 

▪ Clones generated from this system can be maintained for at least 42 generations in selecting 

media, demonstrating considerable stability in their production and growth profiles. Although 

clonal stability monitoring in industry is performed for periods over 60 generations, these 

results indicate initial evidence for stable production, which is of direct value to potential 

biopharma scientists in industry and academia.  

▪ Clones can be also maintained in putrescine-containing media and in commercial 

formulations. In both cases, productivity can be maintained for at least 27 generations. This 
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indicates that cell lines can be generated in putrescine-free media but modifications in media 

formulations for bioreactor-scale production cultures are not required.  

▪ The system may also present broader applicability than CHO, as other biopharmaceutical 

relevant cell lines displaying low arginase were identified (e.g. SP2).  

▪ Due to the lack of drug treatment and easy-to-use method designed, the system may be also 

applied to non-biopharmaceutical relevant cell lines that display low or lack of arginase 

(Capan-2, PANC-1) for the generation of recombinant cell lines. 

▪ The system may be also used in conjunction with GS or DHFR methods, offering an 

alternative to antibiotic-based selection for the generation of double transfectants. 

▪ In response to critical levels of intracellular polyamine, active transport mechanisms 

participate in the maintenance of polyamine homeostasis decreasing or increasing the 

intracellular levels by exporting/importing polyamines from the environment. This effect 

may result in a mixed population of non-transfected and transfected cells due to the 

overproduction of polyamines in high expressing clones and the uptake from non-transfected 

cells. For this reason, single-cell cloning is essential. Moreover, it has to be considered that 

the possible lack of stability of clonal-derived populations may lead to inefficient mixed 

populations.  

▪ Compared to the GS/DHFR system, the arginase-based system attempts to avoid the use of 

cytotoxic drugs. However, this may lead to the obtaining of lower producers compared to the 

amplified GS/DHFR system.  

▪ From the activity of arginase, L-ornithine and the by-products urea are generated, 

intracellular accumulation of which could lead to cytotoxic effects.  

▪ Following further investigations on the selection system, a single resistant parental CHO 

culture was obtained, displaying increased arginase activity. This effect indicated that 

arginase in CHO may be epigenetically repressed, but under high external pressure (with lack 

of polyamines) the repression may be reversed. 

▪ The work described above was published in Journal of Biological Chemistry (doi: 

10.1074/jbc.RA119.011162). 

▪ Due to the novelty, efficacy and applicability of the system designed, intellectual property 

protection has been filed for the work described under patent application number 1911023.8 

(Titled: Transfection selection and polypeptide or RNA expression; Authors: Berta Capella 

Roca, Martin Clynes, Niall Barron and Padraig Doolan). The research outlined has been the 

result of the work performed with my supervisors (Prof. Martin Clynes and Dr. Padraig 

Doolan) and with the collaborative support of Prof. Niall Barron (NIBRT). This process has 

been possible to the collaboration with DCU’s KTI (Invent) and Jonathan Myers (Barker 
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Brettell LLP) that have contributed to the preparation of the invention disclosure documents 

and novelty research.  

 

Chapter 3: Altered Gene expression in CHO cells following polyamine starvation 

 

▪ Polyamines play a central but still not fully understood role in cell proliferation and even less 

knowledge is available on the role they play in CHO. Due to the lack of arginase activity of 

these cells, CHO provide an interesting platform to study the effects at a cellular and 

molecular level of polyamine deprivation, without the need for chemical inhibitors of 

polyamine biosynthesis. An investigation of the impact of polyamine removal on gene 

expression was therefore performed. 

▪ Due to the multiple effects of polyamines at both transcription and translational levels, the 

use of an -omics platform (Affymetrix CHO whole transcriptome microarray chips) was used 

to gain insights into the vital cellular functions polyamines play in CHO.  

▪ Starving CHO-K1 cells of the essential culture additive putrescine resulted in an 

accumulation of cell populations at two stages of the cell cycle: S-phase and G2-phase. This 

effect was correspondingly observed at transcriptomic level, with the overexpression of genes 

related to S-phase transition and arrest in M/G1.  

▪ Increased expression of genes involved in DNA repair (such as RAD51, BRCA2) and RNA 

splicing (genes from the spliceosome complex) was also observed to be correlated with the 

large amount of cells observed to be found in the S-phase following putrescine starvation. 

▪ Removal of polyamines was also significantly associated with a decreased expression of 

genes related to ER stress and apoptosis pathways.  

▪ Polyamine-deprivation displayed a major impact on the increased expression of genes 

previously reported to be affected by polyamine levels or suggested to interact with these 

amines (transferrin receptor, thrombospondin 1, CXCR7, EXTL1). These genes were also 

described as cell membrane proteins and receptors involved in cell proliferation. These data 

suggest that these genes may contribute to activation of proliferating pathways or polyamine 

transport. 

 

Chapter 4: Investigation and circumvention of transfection inhibition by ferric ammonium citrate in 

serum-free media for CHO cells  

 

▪ An in-house SFM supplemented with common media additives was used to assess the 

inhibitory effects of these supplements in transfections mediated by three chemical 
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transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), 

and lipopolyplex-based (TransIT-PRO) were assessed.  

▪ Removal of FAC from the medium resulted in increased/successful transfections in all three 

transfection methods but lower viabilities were observed. To circumvent this negative effect 

early addition of FAC (0.5-5 h post-transfection) was tested, revealing 0.5 h post-transfection 

as the optimal time to supplement in order to achieve transfection efficiencies similar to -

FAC medium, while retaining acceptable cellular viability profiles. 

▪ From three commercial media formulations examined, differences in the efficiency and 

support of transfection were observed between formulations and transfection reagents. 

BalanCD medium did not support transfection with any of the reagents while CHO-S-SFMII 

supported transfection with all three transfection reagents. In ProCHO5, zero transfection 

was detected with liposomes, but high transfection efficiencies in both polymers and 

lipopolyplexes. From the results observed, the presence or absence of transfection-inhibitory 

molecules in the media formulations are likely to be the key factors contributing to this 

outcome. 

▪ In BalanCD, analysis of the size of the DNA-complexes generated with the three transfection 

reagents were observed to be the biggest compared to the other media tested. However, 

transfections were not achieved with any of the agents tested in this medium. These results 

suggests a destabilization or aggregation of transfection complexes, possibly related to the 

media formulation. 

▪ FAC affects the size of the DNA-complexes generated with liposomes and lipopolyplexes, 

increasing their sizes. This result suggest that for liposomes- and lipopolyplexes-mediated 

transfections, size may matter. This effect was not observed with DNA-polymers complexes. 

▪ In medium containing FAC, the zeta potential of complexes formed with lipopolyplexes and 

polymers was affected, displaying negative potentials that could induce a lack of complex-

cell membrane interaction. In liposomes-complexes, a negative zeta potential was detected 

independent of the presence of FAC. This result indicates that liposomes might interact with 

the cell membrane with a separate system to electrostatic interactions. 

▪ Differing effects of FAC on the zeta potential and size particles observed between the three 

transfection reagents indicates that the mechanistic inhibitory effect of FAC may be different 

for each transfection reagent, most likely based on the underlying chemistry of each. 

▪ From combined data of MFI and percentage of GFP expressing cells, the polymer-based 

TransIT-X2 transfection agent in combination with the commercial medium CHO-S SFM-II 

(in our conditions) was identified to display the highest transfection efficiencies and 

expression levels.  
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6. Future work 

 

Chapter 1:. Zinc supplementation increases protein titer of recombinant CHO cells 

 

▪ As one of the implications of this research is that zinc should be considered as a beneficial 

additive in the formulation of a suitable media for CHO culture, product quality from cells 

cultured in zinc-supplemented medium should be assessed in terms of glycosylation patterns 

due to the involvement of this trace metal as a co-factor of glycosyltransferases. As per 

previously published research (Prabhu, Gadre and Gadgil, 2018), it is possible that lower 

galactosylation patterns might be a consequence of zinc supplementation - in this case, a 

double supplementation with increased manganese (strong co-factor of galactosylatses) could 

be attempted to recover galactosylation patterns  

▪ At concentrations of zinc of 25mg/L, titer was enhanced but VCD and viability were 

negatively affected. Similar to Zn-25, supplementation of 10mg/L (second highest 

concentration tested) resulted in increased titer compared to non-supplemented cultures. 

However, at this concentration, little or zero (depending on cell line) negative effects were 

observed in viability and VCD profiles. These results suggest that study of the effects of zinc 

supplementation in the range of 10-25mg/L may identify an optimised concentration to 

achieve high biomass, high specific productivity and extended viability profiles.  

▪ Zinc enhances the final titer of the cultures but decreases cell growth. The effect suggest that 

supplementation of zinc at later stages of the culture may increase final titers. To test this 

possible titer-enhancing strategy in a fed-batch operation mode, CHO cells could be cultured 

in growth media (devoid of zinc) until reaching high cell densities. At this stage, feeding with 

media containing zinc could result in increased titers.  

▪ Increased mRNA levels of both products (IgG and hEPO) were observed following high zinc 

supplementation. To investigate whether this effect was a result of increased mRNA stability, 

cultures growing in zinc-supplemented medium could be treated with actinomycin D (a 

transcription inhibitor). Samples should be then collected at several time-points post-

treatment (e.g. every 30min or 1h) to analyse the differences in mRNA levels (e.g. by RT-

qPCR) of both recombinant proteins over time. The results should be compared to a non-zinc 

supplemented control culture.  

▪ Intracellular zinc homeostasis is regulated by several systems, such as the expression of 

transporters that distribute free zinc ions among cells. Increased OCR levels (indirectly 

associated to an increased oxidative respiration metabolism) were observed following zinc-

treatment. Identifying if zinc accumulates in the mitochondria could assist in the 

understanding if a possible link between zinc and the oxidative respiration metabolism exists. 
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In order to gain insight in the mechanistic function of zinc, this study could be performed in 

two ways. One, samples of zinc-supplemented and non-supplemented cultures could be 

collected for the analysis of zinc transporters at proteomic level by using western blots. 

Alternatively, the localisation of intracellular supplemented zinc could be followed by using 

fluorescently labelled zinc (such as Zinpyr-1). After treatment with this labelled zinc, the 

mitochondria could be dyed (such as MitoFluor Red 589) and by using fluorescence 

microscopy, co-localisation of both fluorophores could be assessed. 

▪ The increased titer profiles were associated with higher OCR levels, an indication of 

increased oxidative respiration metabolism (OXPHOS) and were also correlated with high 

zinc supplementation. For this reason, there may be a potential connection between the three 

parameters (titer, OXPHOS and zinc). For example, it could be that zinc induces a switch to 

OXPHOS metabolism and this results in increased titers. A second hypothesis is that zinc 

increases recombinant protein production (e. g. increased mRNA stability) which leads to a 

switch in the metabolism to reach the energetic levels required for high production. To gain 

insight into the mechanistic effect of zinc, a metabolomic approach could be taken by 

analysing changes in the intracellular and extracellular levels of metabolites by Gas-

chromatography-mass spectrometry (GC-MS). This analysis should be performed in non-

producer and very high producer cells, to identify titer-enhanced effects or metabolism-

switch effects (or both). If changes in the oxidative respiration of non-producers are observed 

in zinc-supplemented medium, an indication that zinc can induce a switch of metabolism 

would be obtained. Similarly, if very high producers are used (in which the supplementation 

of zinc has no effect on productivity) and changes in the metabolism are observed, zinc could 

be indicative of this effect. With this approach, further insights on the mechanism and 

possible implications of zinc as titer-enhancer that could be used for optimisation of the 

culture parameters would be obtained. Moreover, information on the changes of metabolites 

would also give an indication of possible limiting metabolites to improve the process (in 

terms of VCD and/or viability), which could lead to increased titers. 

 

Chapter 2: An arginase-based system for selection of transfected CHO cells without the use of toxic 

chemicals 

 

▪ In order to isolate highly producing clones while avoiding the use of cytotoxic agents, an 

altered arginase marker displaying low activity should be used. The increased stringency of 

this selection strategy would force the cells to increase the gene copy number or integrate the 

maker (and the recombinant protein) into a chromosomal “hot spot” – highly expressed site. 
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Consequently, this strategy would ultimately result in high producer clones. The arginase 

could be modified by including random mutations or using a less efficient codon code. The 

suitable modified arginase to be used should be based on the activity levels displayed, 

prioritising low activity levels but sufficient to support growth.  

▪ The use of a different expression vector strategy could also increase the expression of 

recombinant protein and enable the isolation of high producers, following the same principle 

as per the attenuated arginase strategy described above. This strategy would consist of having 

the expression of arginase and the recombinant protein controlled by two different promoters: 

a strong promoter for the expression of recombinant protein (such as cytomegalovirus (CMV) 

or human elongation factor 1α promoter (EF1A)) and a weak promoter controlling the 

expression of arginase (such as thymidine kinase promoter (TK) or human ubiquitin C 

promoter (UbC)). Comparison of this approach with the attenuated arginase should be 

performed to determine the best strategy to achieve high production. 

▪ Arginase generates L-ornithine to be converted into putrescine by ornithine decarboxylase 

(ODC). ODC is a rate-limiting enzyme that participates in the regulation of intracellular 

polyamine content. At high arginase expression, increased production of polyamines may be 

induced, leading to the inhibition of ODC activity. This effect may then lead to the 

accumulation of L-ornithine, which can cause cytotoxic effects. At the same time, the 

conversion of arginine to L-ornithine generates the by-product urea, accumulation of which 

is also toxic for the cells. For this reason, the intracellular levels of L-ornithine should be 

assessed to determine whether accumulation is occurring (e.g. using the Ornithine Assay Kit 

(Fluorometric), Biovision). If confirmed that L-ornithine accumulation is in fact occurring as 

a consequence of using the technology, this result would highlight a possible limitation of the 

described novel system. Intracellularly, detoxification of ornithine and urea is achieved 

though the urea cycle. However, a previous study reports that there is a lack of expression of 

this pathway in CHO (Altamirano et al. 2013). Hence, to overcome the possible accumulation 

of L-ornithine and urea, the use of CHO cell lines overexpressing the urea cycle (such as the 

reported CHO-OTC1-A19 (Chung et al. 2003), expressing carbamoyl-phosphate synthase 1 

(CSP1) and ornithine transcarbamylase (OTC)) may be necessary, potentially resulting in the 

detoxification of these toxic by-products. 

▪ The system developed is not limited to just biopharmaceutical production; offering an easy-

to-apply, cost-effective and drug-free alternative to the still widely used antibiotic-based 

selection system in the academic sector. For this reason, assessment of the arginase activity 

of other mammalian cell lines and generation of arginase knock-out cell lines should be 

performed to extend the applicability of the system. Moreover, the threshold arginase activity 

tolerated for the system to successfully achieve the isolation of expressing-populations should 
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be performed in different cell lines to determine whether knock-out are necessary. To achieve 

this, mammalian cell lines (such as the pancreatic Panc-1 and Capan-2 described in this study) 

should be placed in serum-free media lacking polyamines and L-ornithine and growth and 

survival should be assessed. Parental cells being unable to support growth would be then 

suitable for selection. Combination of the arginase activity and survival data in polyamine-

free media would then help indicate the threshold arginase activity levels needed to determine 

whether a cell line requires or not an arginase knock-out to be used with our system.  

▪ Due to the possibility to obtain resistant colonies, an arginase knock-out CHO cell line (using 

e. g. CRISPR/cas9 technology) should be developed. 

▪ Improvement of the SFM-F10 medium (completely devoid of putrescine content) should be 

performed in order to increase the stringency of the selection process, while achieving high 

VCD and viabilities of the expressing populations. This process should be performed by 

adjusting the composition of SFM-F10 (based on DMEM:F10) to a similar formulation to the 

SFM-F12, used for the development of producer cell lines during this study (based on 

DMEM-F12).  

▪ Possible mixed populations of non-transfected and transfected cells may be obtained due to 

the release of polyamines by high expressing clones and their uptake from non-transfected 

cells. For this reason, attenuation of the polyamine transport system should be performed by 

knocking out (CRISPR/cas9) some of the transporters. Knowledge on the polyamine 

transport systems is still limited, but at least three transporters have been identified 

(SLC22A16, SLC3A2, DAX). Due to the importance of polyamine homeostasis to maintain 

cell survival, individual knock-outs (instead of all three combined in a single KO) should be 

performed, which would result in an attenuation of the transport system. This process could 

ultimately result in a decrease of the non-transfected background populations.  

 

Chapter 3: Altered gene expression in CHO cells following polyamine starvation 

 

▪ From the data obtained by microarray analysis, the expression of genes involved in pathways 

related to cell proliferation (cell cycle, DNA repair, RNA synthesis, apoptosis and ER) were 

observed to be significantly affected. Due to the relevance of these pathways to explain the 

phenotype observed when removing polyamines (lack of growth), further validation of these 

results should be performed by RT-qPCR in order to confirm the results observed.  

▪ Intracellularly, polyamines are mainly found interacting with RNA, being described to 

regulate the translation of several mRNAs. For this reason, proteomic profiling by mass-

spectrometry would be interesting to further understand the involvement of polyamines in 
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CHO proliferation and, at the same time, validate the results on cell cycle observed at mRNA 

level. 

▪ The pathways identified to be affected during the microarray analysis are regulated by 

phosphorylation. This phenotype indicates that study not only of the overall proteome 

expression but focus on the changes in the phosphorylation state of the proteins should be 

assessed to correlate the changes with possible activation/deactivation of the pathways. This 

approach could be achieved by analysing the samples in mass-spectrometry using protocols 

for phosphopeptide enrichment (as described in Kaushik et al 2018).  

▪ Analysis of the changes at miRNA should be also performed (with microarrays), due to the 

regulatory role of this small RNAs on the expression of mRNAs. 

 

Chapter 4: Investigation and circumvention of transfection inhibition by ferric ammonium citrate in 

serum-free media for CHO cells 

 

▪ Although a protocol was designed to circumvent the negative effects of FAC during 

transfection, a possible further optimisation of the process could be achieved by testing 

whether alternative iron sources (such as iron sulphate) are also inhibitory of cell transfection. 

This assessment should be tested with the three transfection agents. Moreover, iron sources 

to be used have to display similar cell performance (in terms of growth and viability) to FAC 

in order to avoid media changes between cell culture and transfection processes.  

▪ To gain more insight into the inhibitory-effects of FAC, use of labelled DNA (with e.g. 

rhodamine or fluorescein) in order to follow the transfection process and determine whether 

the complexes in FAC-containing medium interact with the membrane, get into the cells, 

achieve endosomal escape and/or get into the nucleus. Combining this approach with the GFP 

results could give indications on whether FAC has an impact on the expression of the DNA.  
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Appendices 

Appendix A (Chapter 1 supplementary material) 

 

Supplementary Figure 1. Titer (a, b), VCD (c, d) and Viability (e, f) of SK15 (a, c, e) and DP12 (b, 

d, f) cells grown in suspension in in-house chemically-defined medium CDM+A supplemented with 

copper at: 1 mg/L (Cu-1), 7.5 mg/L (Cu-7.5), 13.7 mg/L (Cu-13.7) and 20 mg/L (Cu-20). Statistical 

differences in titer data compared to the control (CDM+A) are represented as: p-value <0.05 (*) and 

<0.01 (**). 
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Appendix B (Chapter 2 supplementary material)  

 

 

Fig. S1. CHO-K1 cells require concentrations over 200µg/L putrescine for healthy growth. 

Viable cell density (continuous lines) and viability (discontinuous lines) of parental CHO-K1 cells in 

SFM-F12 medium supplemented with different concentrations of putrescine: 0µg/L (Put-0), 100µg/L 

(Put-100), 150µg/L (Put-150) and 200µg/L (Put-200) compared to optimal putrescine concentration 

(control, 1mg/L). Triplicates were performed per each condition.  

 

Fig. S2. CHO-K1 cells expressing arginase recover growth profiles similar to parental cells in 

putrescine media. Viable cell density (VCD) (a) and viability (b) of CHO-K1 arginase expressing 

populations in SFM-F12 medium without putrescine (NoP) and medium with putrescine (P) 

compared to parental CHO-K1 cells in SFM-F12 medium containing putrescine (P-Neg). Triplicates 

were performed per each condition.  
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Fig. S3. hEPO-IRES-Arg Bicistronic map (generated in Vector NTI Advance10 (Invitrogen)). 

 

Fig. S4. GFP-expressing populations can be isolated in polyamine-free SFM-F10 medium. 

Viable cell density (VCD) (a), viability (b) and percentage of GFP expressing (c) CHO-K1 cells 

transfected with 500ng GFP-IRES-Arg vector (P-GFP, NoP-GFP). A negative control of cells with 

no DNA transfected (P-Neg, NoP-Neg) was included. The NoP-GFP culture was discontinued at P4 

as viabilities dropped to less than 30%. Transfected and non- transfected cells were placed in either 

SFM-F10 medium supplemented with putrescine (P) or selecting SFM-F10 medium (without 

putrescine, NoP). Triplicate wells were transfected per each condition.  
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Fig. S5. Characterisation of hEPO-expressing clones in commercial and SFM-F12 media 

containing putrescine in batch cultures. Viable cell density (VCD), viability and hEPO titer (mg/L) 

of three hEPO-expressing clones in SFM-F12 medium with putrescine (+Put), BalanCD Growth A 

supplemented with L-glutamine and CHO-S SFM-II supplemented with PVA in 5ml batch cultures 

for 7 days. Biological triplicates and duplicate (VCD, viability) or triplicate (titer) technical readings 

were performed for each phenotype.  
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Appendix C (Chapter 3 supplementary material)  

Supplementary Table 1. Primers used for qRT-PCR validation 

Gene Fwd (5’-> 3’) Rev (5’-> 3’) 

Skp2 GGTCCTTTATGGAGCAACCA CCACTGCAGATTCGGAAAAT 

Tfdp1 CCTCCCAACTCTGTCATCCA CTTCAGCAGAACAGTTCCCC 

Mad2l1 GGAAGAATCAGGACCCCAGT AGGGATTTTGTAGGCCACCA 

Ddit3 CTAGACTCCGCATCCCTAGC ACTGACCACTCTGTTTCCGT 

Thbs1 TTCCTGTTGCATGTGTGTGG GGGAATCAGGTTGGCGTTTT 

Ackr3 ATCTTGAACCTGGCCATTGC CTGGTTATGCTGCACGAGAC 

Tfrc CACTTCCTGTCACCCTACGT AAAGCCGTGAGAGTGTGAGA 

Pacrg GCATCTAGTTGTGTCAGCGG TCGCCAATGTTCTCCCTCTT 

PMF-1 TCCTGAGGTGACAAAGTGGG CCAGGGAGTTCAAGACAGCT 

Tbc1d2 CATACTGCCGGCTGAGTACT TCACTGATGAGAGAGTCGGC 

Extl1 GATGGTGGGCTTTCTGACAC AGTGGGTAAAGAGGGTGTGG 

Gapdh TGGCTACAGCAACAGAGTGG GTGAGGGAGATGATCGGTGT 

 

Supplementary Table 2. List of the 50 most compelling up-regulated and down-regulated 

differentially-expressed genes considering fold-changes. 

Gene Symbol Description Fold 

Change 

FDR P-

val 

Thbs1 thrombospondin 1 7.79 4.25E-05 

Ackr3 atypical chemokine receptor 3 6.97 2.06E-05 

Tfrc transferrin receptor 6.62 1.07E-05 

Chst2 carbohydrate (N-acetylglucosamine-6-O) 

sulfotransferase 2 

4.58 0.0002 

LOC103162148 uncharacterized LOC103162148 4.45 0.0002 

Znf483 zinc finger protein 483 4.24 2.13E-05 

Rnft2 ring finger protein, transmembrane 2 3.95 1.62E-05 

Arhgef16 Rho guanine nucleotide exchange factor (GEF) 

16 

3.93 1.80E-05 

Pacrg PARK2 co-regulated 3.89 8.71E-05 

Slc17a6 solute carrier family 17 (vesicular glutamate 

transporter), member 6 

3.72 0.0021 

E2f8 E2F transcription factor 8 3.59 2.06E-05 

LOC100757526 putative P2Y purinoceptor 10 3.55 6.54E-05 

Rab7b RAB7B, member RAS oncogene family 3.52 4.17E-05 

LOC100774651 cysteine-rich protein 1 3.47 2.06E-05 

Rab7b RAB7B, member RAS oncogene family 3.44 1.98E-05 

Immp1l IMP1 inner mitochondrial membrane 

peptidase-like (S. cerevisiae) 

3.42 2.89E-05 

Arhgef37 Rho guanine nucleotide exchange factor (GEF) 

37 

3.4 4.40E-05 
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Skp2 S-phase kinase-associated protein 2, E3 

ubiquitin protein ligase 

3.37 0.0002 

LOC100774336 von Willebrand factor A domain-containing 

protein 5A-like 

3.33 0.0001 

Serpinb1 serpin peptidase inhibitor, clade B (ovalbumin), 

member 1 

3.33 1.80E-05 

LOC100753285 uncharacterized LOC100753285 3.29 0.0001 

Col6a1 collagen, type VI, alpha 1 3.23 0.0002 

Ccne2 cyclin E2 3.2 6.25E-05 

LOC100761037 serpin B6-like 3.19 0.0013 

Pdss1 prenyl (decaprenyl) diphosphate synthase, 

subunit 1 

3.16 1.87E-05 

Mid1 midline 1 (Opitz/BBB syndrome) 3.16 5.03E-05 

Polk polymerase (DNA directed) kappa 3.14 0.0002 

Eda2r ectodysplasin A2 receptor 3.12 0.0107 

Col3a1 collagen, type III, alpha 1 3.12 4.60E-05 

Gtf2f1 general transcription factor IIF, polypeptide 1, 

74kDa 

3.1 2.06E-05 

Rgs16 regulator of G-protein signalling 16 3.08 3.79E-05 

Il6 interleukin 6 3.08 0.0001 

Col12a1 collagen, type XII, alpha 1 3.05 6.76E-05 

Atp2b4 ATPase, Ca++ transporting, plasma membrane 

4 

3.05 1.98E-05 

Apool apolipoprotein O-like 3.04 2.89E-05 

Traip TRAF interacting protein 3.04 2.13E-05 

Cdh9 cadherin 9, type 2 (T1-cadherin) 3.04 4.51E-05 

Zwint ZW10 interacting kinetochore protein 2.99 2.06E-05 

Taf9b TAF9B RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 31kDa 

2.97 0.0001 

Hspg2 heparan sulphate proteoglycan 2 2.96 5.60E-05 

Pcdh7 protocadherin 7 2.95 6.18E-05 

Crip1 cysteine-rich protein 1 (intestinal) 2.94 8.45E-05 

Fus fused in sarcoma 2.93 2.89E-05 

Rad51ap1 RAD51 associated protein 1 2.91 2.37E-05 

LOC100773941 low-density lipoprotein receptor-related protein 

1B 

2.9 2.13E-05 

Dna2 DNA replication helicase/nuclease 2 2.89 5.30E-05 

Clspn claspin 2.87 5.21E-05 

Nqo2 NAD(P)H dehydrogenase, quinone 2 2.86 3.97E-05 

Gpc6 glypican 6 2.86 2.89E-05 

Adm adrenomedullin 2.85 7.91E-05 

Cornifin-a cornifin alpha -13.85 2.37E-05 

Tbc1d2 TBC1 domain family, member 2 -7.85 2.13E-05 

Cd68 CD68 molecule -7.81 2.13E-05 

Trib3 tribbles pseudokinase 3 -7.54 1.07E-05 

Ypel3 yippee-like 3 (Drosophila) -6.84 1.62E-05 
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Slc6a9 
solute carrier family 6 (neurotransmitter 

transporter, glycine), member 9 
-6.84 1.62E-05 

Gtpbp2 GTP binding protein 2 -6.39 6.82E-06 

Atf3 activating transcription factor 3 -6.19 2.06E-05 

Chac1 
ChaC, cation transport regulator homolog 1 (E. 

coli) 
-5.7 1.07E-05 

  -5.65 1.62E-05 

Extl1 exostosin-like glycosyltransferase 1 -5.63 2.06E-05 

  -5.31 4.52E-05 

  -5.27 1.80E-05 

  -5.16 9.51E-05 

Exd1 exonuclease 3-5 domain containing 1 -5.03 1.80E-05 

LOC100750381; 

LOC103162814 

interferon-inducible protein AIM2; 

uncharacterized LOC103162814 
-4.82 2.06E-05 

LOC100762031 interferon-induced GTP-binding protein Mx2 -4.71 2.13E-05 

Abhd6 abhydrolase domain containing 6 -4.7 4.40E-05 

  -4.68 1.62E-05 

Herpud1 

homocysteine-inducible, endoplasmic 

reticulum stress-inducible, ubiquitin-like 

domain member 1 

-4.66 1.17E-05 

Rnf157 ring finger protein 157 -4.57 4.51E-05 

LOC100773612 ribosomal protein S6 kinase alpha-2 -4.48 1.80E-05 

Atf3 activating transcription factor 3 -4.45 8.05E-05 

Ccbe1 collagen and calcium binding EGF domains 1 -4.31 3.43E-05 

  -4.29 0.0003 

Abca1 
ATP-binding cassette, sub-family A (ABC1), 

member 1 
-4.25 3.43E-05 

Klf8 Kruppel-like factor 8 -4.23 1.62E-05 

LOC103161775 uncharacterized LOC103161775 -4.22 3.95E-05 

Fat4 FAT atypical cadherin 4 -4.09 6.79E-05 

Dgat2 diacylglycerol O-acyltransferase 2 -3.99 2.89E-05 

Klhl24 kelch-like family member 24 -3.98 1.98E-05 

Ddit3 DNA-damage-inducible transcript 3 -3.98 1.80E-05 

Bfar bifunctional apoptosis regulator -3.86 1.80E-05 

Uso1 USO1 vesicle transport factor -3.85 1.98E-05 

  -3.79 1.62E-05 

LOC100754734 25-hydroxycholesterol 7-alpha-hydroxylase -3.78 7.89E-05 

Tmem140 transmembrane protein 140 -3.76 1.87E-05 

Abca1 
ATP-binding cassette, sub-family A (ABC1), 

member 1 
-3.75 3.95E-05 

Mroh1 maestro heat-like repeat family member 1 -3.73 2.89E-05 

LOC103161640 NKG2D ligand 1-like -3.67 0.0002 

Rwdd3 RWD domain containing 3 -3.66 0.0001 

Elk3 
ELK3, ETS-domain protein (SRF accessory 

protein 2) 
-3.58 2.76E-05 

Amdhd2 amidohydrolase domain containing 2 -3.54 0.0001 

Pdk1 pyruvate dehydrogenase kinase, isozyme 1 -3.52 2.13E-05 



 

8 

 

Clybl citrate lyase beta like -3.41 2.06E-05 

Sat1 spermidine/spermine N1-acetyltransferase 1 -3.41 2.76E-05 

Gabarapl1 GABA(A) receptor-associated protein like 1 -3.39 4.51E-05 

C3ar1 complement component 3a receptor 1 -3.39 2.89E-05 

Cln3 ceroid-lipofuscinosis, neuronal 3 -3.39 1.98E-05 

 

 

 

Supplementary Figure 1. (a) RT-qPCR of DE genes chosen for validation: Skp2, Tfdp1, Mad2l1, 

Ddit3, Parcg, Ackr3, Tbc1d2, Tfrc, Thbs1, Extl1. Biological and technical triplicates were performed. 

The endogenous gene Gapdh was used. (b) Comparison between fold-changes (FC) from microarray 

data and relative quantification (RQ) data from RT-qPCR for DE genes validated. The y-axis 

represents the values for FC and RQ of DE genes. Fold-changes and relative quantification are from 

DE genes expressed in polyamine-deprived media relative to the genes expressed in polyamine-

containing conditions. 
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Appendix D (Chapter 4 supplementary material) 

Supplementary Table 1. Effect of FAC supplementation at 0, 0.5 and 4 h post-transfection on the 

viability of DG44, CHO-K1 and DP12 cells 24-hours after transfection. Three transfection agents 

were tested: liposomes, polymers and lipopolyplexes. Transfections were performed in BCR-F12 

medium without FAC. Supplementation of 100 µM FAC was added at 0 h, 0.5 h and 4 h post-

transfection. Triplicate transfections were carried out for cell line in each condition (timepoint and 

transfection method combination). The BCR-F12 medium without FAC (- FAC) was used as control. 

 

  FAC added at  

0h post-

transfection 

FAC added at  

0.5h post-

transfection 

FAC added at  

4h post-

transfection 

- FAC 

Liposomes DG44 80 ± 1.5 67 ± 2.7 49 ± 2.8 48 ± 5.7 

CHO-K1 97 ± 0.6 84 ± 1.8 77 ± 2 66 ± 3.2 

DP12 91 ± 1 54 ± 1.1 46 ± 6.4 46 ± 3.8 

Polymers DG44 86 ± 2.1 83 ± 3.8 80 ± 1.2 71 ± 1.7 

CHO-K1 93 ± 0.4 85 ± 0.9 82 ± 1 77 ± 1.5 

DP12 90 ± 3.4 85 ± 0.9 75 ± 3.8 76 ± 1.5 

Lipopolyplex 

 

DG44 88 ± 1.1 83 ± 2.5 84.1± 1.6 84 ± 0.8 

CHO-K1 95 ± 0.8 91 ± 1.3 82 ± 3.1 77 ± 1.3 

DP12 88 ± 1 79 ± 1.3 71 ± 1.4 65 ± 3.5 

 

 

 

Supplementary Fig 1. Mean fluorescent intensity (MFI) levels in different media. DG44 (a), DP12 

(b) and CHO-K1 (c) cells 24-hours after transfection. Three transfection agents were tested: 

liposomes, polymers and lipopolyplexes. Transfections were performed in BalanCD, SFM-II, 

ProCHO5 and in-house BCR-F12+FAC (with FAC) and BCR-F12 NoFAC (without FAC). Triplicate 

transfections were carried out for each cell line in each condition (media and transfection method).  
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Supplementary Fig 2. VCD and viability of CHO cells with FAC supplementation at 4 h. VCD (a) 

and viability (b) of DG44, DP12 and CHO-K1 cells in BCR-F12 supplemented with FAC at 4 h post-

seeding compared to cells in medium containing FAC (0 h). Statistical differences between VCD and 

viabilities observed at the 4 h FAC-supplemented medium compared to those in BCR-F12 with FAC 

(0 h) are represented as: p< 0.001 (***) and p< 0.05 (*). 

 

 

Supplementary Fig 3. Effect of FAC supplementation at 0, 0.5 and 4 h post-transfection on the 

percentage of GFP expressing cells. DP12 (a) and CHO-K1 (b) cells 24-hours after transfection. Three 

transfection agents were tested: liposomes, polymers and lipopolyplexes. Transfections were 

performed in BCR-F12 medium without FAC. An amount of 100 µM FAC was supplemented at 0 h, 

0.5 h and 4 h post-transfection. The BCR-F12 medium without FAC (- FAC) was used as control. 

Triplicate transfections were set for cell line for each condition (timepoint and transfection method 

combination). A negative control well was included for each condition, displaying between 0.0 - 0.2 

% GFP (data not shown). Statistical differences between transfection efficiencies observed in medium 

supplemented with FAC at 0.5 and 4 h compared to the ones supplemented at timepoint 0 h are 

represented as: p< 0.001 (***). 
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