
Reducing Knowledge Loss in Open Source
Software Projects

Mehvish Rashid, B.Sc., M.Sc.

A Dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisors: Dr. Paul M. Clarke, Prof. Rory V. O’Connor, Dr.

Murat Yilmaz

March 2020

DECLARATION

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Ph.D is entirely my own work, and

that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge breach any law of copyright, and has not been

taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed: ID No.: 17211694

(Mehvish Rashid)

Date:

Acknowledgements

This journey of PhD was possible with the consistent support and

encouragement from my supervisors Dr. Paul M. Clarke and late Prof. Rory O’

Connor. They both were pre-emptive in providing feedback, positive criticism

and directing this research towards a fruitful outcome. I am grateful to them for

being there and making this research a lifetime experience of learning and

extending my horizon.

I am extremely grateful to the Dublin City University (DCU) and Lero - The

Irish Software Research Centre, for their support, financial and otherwise, which

made my PhD studies possible.

A constant source of motivation and strength for me in this journey is my

mother (Mehboob) and late father (Abdul Rashid) who always had faith in me

and kept me going through the trying times. I am thankful to both of them for

being my guiding light and showering their unconditional love and affection on

me.

I extend my thanks to Dr. Andrew MacCarren, Dr. Alessandra Mileo, and Dr.

Marija Bezbradica in the School of Computing, DCU, for their valuable feedback

that helped me to refine this work.

I sincerely thank Dr. Murat Yilmaz, for assisting with the supervision of the

latter stages of my work.

A part of my PhD journey also comprised of friends, who made me laugh and

lend an ear in time of need. I drove them crazy with my level of anxieties but

they always found a way to be my true friends. I truly thank them all with the

depth of my heart and cherish their constant presence during all those times.

Last but not the least I would like to thank anyone who one way or another

became part of my PhD journey including the security personnel who ensured a

secure work environment during the night times and staff members who helped

to keep the office space clean.

Contents

Abstract . viii

Related Peer Reviewed Publications ix

List of Figures . ix

List of Tables . xiii

List of Terms and Abbreviations xv

1 The Focus of Research 1

1.1 Introduction . 1

1.2 Motivation . 4

1.3 Research Objectives . 5

1.4 Research Hypothesis and Research Questions 6

1.5 Research Process . 8

1.6 Thesis Structure . 9

2 Literature Review 11

2.1 Introduction . 11

2.2 Background . 14

2.2.1 Open Source Software (OSS) 14

2.2.2 Organisational Structure in OSS Projects 16

2.2.3 Data, Information, and Knowledge 21

2.3 Literature Review and Snowballing 22

2.3.1 Details on Snowballing Procedure 23

2.3.2 Initial Baseline Set of papers 24

2.3.3 Inclusion/ Exclusion Criteria for Baseline Set 25

2.4 Quality Assessment . 26

2.5 Iterations in Snowballing . 28

2.5.1 Backward Snowballing . 28

2.5.2 Forward Snowballing . 28

ii

CONTENTS

2.6 Application of Snowballing for Literature Review 29

2.6.1 Identifying the Baseline Set 29

2.6.2 Final Baseline Set . 29

2.7 Iterations . 31

2.7.1 Iteration 1 - Backward and Forward Snowballing 31

2.7.2 Iteration 2 - Backward and Forward Snowballing 32

2.7.3 Iteration 3 - Backward and Forward Snowballing 32

2.8 Data Synthesis . 33

2.9 Discussion . 35

2.9.1 Examining Knowledge Loss in OSS 35

2.9.2 Impact of Knowledge Loss in OSS projects 37

2.10 Reducing Knowledge Loss in OSS Projects 42

2.11 Manifestation of Knowledge in OSS Projects 47

2.11.1 Knowledge Creation . 48

2.11.2 Knowledge Sharing . 50

2.12 Knowledge Retention in OSS Projects 53

2.13 Chapter Summary . 59

3 Research Methodology 61

3.1 Introduction . 61

3.2 OSS Project Structure . 62

3.3 Philosophical Background . 63

3.3.1 Positivism . 64

3.3.2 Interpretivism . 64

3.3.3 Pragmatism . 65

3.3.4 Research Philosophy Adopted 66

3.4 Research Methodology and Methods 67

3.4.1 Quantitative Research . 67

3.4.2 Qualitative Research . 69

3.4.3 Mixed Methods Research 73

3.4.4 Research Design Adopted - Mixed Methods Research . . . 75

3.4.5 Data Analysis . 77

iii

CONTENTS

3.4.6 Validity Concerns in Mixed Method Research 78

3.5 Empirical Research . 79

3.6 Chapter Summary . 82

4 Proactive Knowledge Retention Canonical Model 83

4.1 Introduction . 83

4.2 Canonical Model Development Process 84

4.3 Selection of Data Components . 85

4.3.1 Knowledge Retention in Organisations 86

4.3.2 Knowledge Retention Practices in Organisations 89

4.3.3 Knowledge Retention Mitigation Techniques and OSS

Guides Online Resources 93

4.4 Data Preparation . 94

4.5 Analysis - Principles of Grounded Theory 95

4.6 Application of Grounded Theory 98

4.7 Practices by Researcher . 109

4.8 Canonical Model of Proactive Knowledge Retention in OSS projects109

4.8.1 Communication . 110

4.8.2 Contributor Motivation . 113

4.8.3 Core Development Practice 115

4.8.4 Environment/ Ecosystem/ Culture 120

4.8.5 Governance and Leadership 123

4.9 Chapter Summary . 128

5 Survey and Data Collection 130

5.1 Survey Development Process . 130

5.2 Setting the Objectives . 131

5.3 Survey design . 132

5.3.1 Defining Target Population and Survey Sample 132

5.3.2 Conceptual Model of Survey 133

5.3.3 Data Collection Approach 134

5.3.4 Survey Instrument Design 134

5.3.5 Approaches for Data Analysis 135

iv

CONTENTS

5.3.6 Validity Considerations . 136

5.4 Survey Instrument Development 137

5.5 Evaluating the Survey Instrument 139

5.6 Obtaining Valid Data . 140

5.7 Analysing the Survey Data and Reporting 141

5.8 Conducting the Survey . 142

5.8.1 Contributor Selection from GitHub 142

5.8.2 Selection of Projects . 145

5.8.3 Plain Language Statement (PLS) 146

5.8.4 Sending Surveys using GMass 147

5.8.5 Phase - I: Pilot Survey . 147

5.8.6 Phase - II: Survey . 148

5.9 Chapter Summary . 149

6 Data Analysis 151

6.1 Data Analysis Overview . 151

6.1.1 Overview of Survey Participants 151

6.1.2 Likert-Type Scale . 154

6.1.3 Data Summary . 155

6.2 Ranking Technique . 160

6.2.1 Designing Practice Ranking Scheme 160

6.3 Categorical Ranking of Practices 164

6.3.1 Ranking of Practices Based on the Number of OSS Projects 165

6.3.2 Ranking Practices Based on Number of Years in OSS . . . 169

6.3.3 Ranking based on the Number of Years in Programming . 174

6.4 Ranking based on role type in OSS 180

6.4.1 Bug Reporter . 184

6.4.2 Code Contributor . 185

6.4.3 Maintainer . 186

6.4.4 Reviewer . 187

6.4.5 Committer . 188

6.4.6 Document Writer and Editor 189

v

CONTENTS

6.4.7 Tester . 191

6.4.8 Integrator . 192

6.4.9 Others . 193

6.5 Qualitative Data on PKR Model Completeness 195

6.6 Chapter Summary . 196

7 Evaluation of Practices 197

7.1 Evaluating Practice Preference – Number of OSS projects 198

7.2 Evaluating Practice Preference - Number of Years in OSS 203

7.3 Evaluating Practice Preference - Number of Years in Computer

Programming . 205

7.4 Evaluating Practice Preference - Different Roles in OSS projects . 208

7.5 Chapter Summary . 210

8 Conclusion 212

8.1 Research Overview . 212

8.2 Primary Impacts . 214

8.3 Recommendations for OSS projects 216

8.4 Research Limitations . 218

8.5 Future Work . 220

Bibliography 222

Appendices 248

A Literature Review 248

A.1 List of Primary Studies . 248

B Proactive Knowledge Retention Canonical Model Development254

B.1 Master Table Containing Data Components Linked to data Sources 254

B.2 Merging Conceptual Duplicates 266

B.3 Primary Classification of Data Components 286

B.4 Categorisation of Practices . 295

B.5 PKR Practices and Categories - Revisiting Change and Renaming 310

B.6 PKR Practices - First Review . 315

vi

CONTENTS

B.7 PKR Practices - Second Review 320

B.8 PKR Practices - Third Review 328

B.9 PKR Practices - Fourth Review 343

B.10 PKR Practices - Fifth Review . 356

C The Survey Instrument and Data Collection 367

C.1 Survey Instrument . 367

C.2 Data Collected Through Survey Instrument 380

C.3 Data Collected Through Survey Instrument (Questions 5-13) . . 384

C.4 Data Collected Through Survey Instrument Questions 13-22 . . . 388

C.5 Data Collected Through Survey Instrument (Question 23-32) . . 392

D Data Analysis 397

D.1 Description of Knowledge Retention Practices 397

vii

Reducing Knowledge Loss in Open Source Software
Projects

Mehvish Rashid

Abstract

From conception, to implementation, to deployment and to retirement,
software development is a knowledge-intensive activity. To address the demands
of knowledge acquisition and exchange, various mechanisms, processes and
ceremonies have been established. These general knowledge acquisition and
exchange challenges are amplified in Open Source Software (OSS) development
where software developers are often volunteers, where their commitment to an
OSS project may be transient, outside the reach of regular employment
contractual arrangements, and in an environment where contributors may be
widely geographically distributed. It is therefore the case that OSS projects
present with very specific and highly demanding knowledge exchange challenges,
and failure to address and manage these challenges can result in the lack of
adoption, or worse the total collapse, of an OSS project.

This work is focused on identifying a set of practices that can be adopted in
OSS projects to reduce knowledge exchange challenges, and this is important
work for which no substantial earlier contribution exists. To develop a set of
OSS Knowledge Retention (KR) practices, a variety of sources are incorporated,
including knowledge management in general, software engineering based
knowledge creation and adoption, and community feedback. Following a survey
of OSS project contributors, a suite of 31 OSS KR practices is identified and
ranked, though differences can be seen in terms of practice appreciation
depending on OSS project experience level and role. This set of OSS KR
practices can be adopted by OSS projects so as to reduce the knowledge
exchange challenges in their projects, and to promote longer term OSS project
viability and success.

Keywords: Open Source Software, Knowledge Loss, Knowledge Management,
Knowledge Retention, Software Engineering.

viii

Related Peer Reviewed Publications

1. Rashid, M., Clarke, P. M., & O’Connor, R. V. (2019). A mechanism to

explore proactive knowledge retention in open source software communities.

Journal of Software: Evolution and Process.

2. Rashid, M., Clarke, P. M., & O’Connor, R. V. (2019). A systematic

examination of knowledge loss in open source software projects.

International Journal of Information Management, 46, 104-123.

3. Rashid, M., Clarke, P. M., & O’Connor, R. V. (2018). An Approach to

Investigating Proactive Knowledge Retention in OSS Communities. In

European Conference on Software Process Improvement, pages 108-119.

Springer, Cham.

4. Rashid, M., Clarke, P. M., & O’Connor, R. V. (2017). Exploring knowledge

loss in open source software (OSS) projects. In International conference on

software process improvement and capability determination, pages 481-495.

Springer, Cham.

5. Rashid, M., Clarke, P. M., & O’Connor, R. V. (2017). Reducing Knowledge

Loss in Open Source Software. In: Proceedings of the 13th International

Symposium on Open Collaboration, pages 23-25, Galway, Ireland.

6. Rashid, M. (2016). Remedying knowledge loss in free/libre open source

software. In Proceedings of the 20th International Conference on Evaluation

and Assessment in Software Engineering, Article 4, pages 1-4. ACM.

ix

List of Figures

1.1 Model of research process (adapted from (Oates, 2006)) 9

2.1 Mind map of the organisational structure in OSS projects. 21

2.2 Data - information - knowledge (Rhem, 2005) 22

2.3 Overview of literature review using snowballing 23

2.4 The detailed view of snowballing procedure to search papers . . . 24

2.5 Overview of literature review using snowballing 31

2.6 Applying snowballing process to search relevant papers on

Knowledge Loss in OSS . 33

2.7 The yearly distribution of papers 34

2.8 The distribution of papers according to the type of research

conducted . 35

2.9 Impact of knowledge loss in OSS projects 42

2.10 Knowledge Sharing Model (KSM) (Sowe et al., 2008) 51

2.11 Mind map of the knowledge creation and sharing in OSS projects 53

2.12 Mind map of mitigation approaches to knowledge loss in OSS projects 57

3.1 Onion model representing contributors in OSS projects users

(Crowston et al., 2004; Crowston and Howison, 2005; Mockus

et al., 2002) . 63

3.2 Monomethod (1 and 8) and mixed-model designs (2 to 7) (Johnson

et al., 2007) . 74

3.3 The overall research methodology and road map for chapters 4-7 . 81

4.1 Development process of PKR canonical model in OSS projects . . 85

4.2 Pyramid of knowledge types and associated Knowledge

Management (KM) strategies (Jansen, 2008) 88

4.3 8-step review process and outcome for every review with the

number of categories and practices in PKR canonical model . . . 108

x

LIST OF FIGURES

4.4 Proactive Knowledge Retention (PKR) model developed for OSS

projects . 128

5.1 The process of survey development 131

5.2 Process to extract survey participants from GitHub 142

5.3 GitHub web page populated with projects with most stars 143

5.4 Data relevant to contributors profiles on GitHub 146

5.5 Data collected from the survey . 149

6.1 11-point Likert Scale used for conducting OSS community survey 155

6.2 The distribution of responses for practices (1-9) and frequency on

the Likert scale (0-10) . 157

6.3 The distribution of responses for practices (10-18) and frequency

on Likert scale (0-10) . 158

6.4 The distribution of responses on practices (19-31) and frequency

on Likert scale (0-10) . 159

6.5 Distribution of responses obtained for 31 practices based on

Median, Mean, Std (SD), AvgDev (MAD) 161

6.6 Ranking pyramid - the overall ranking of practices 164

6.7 The disparity among three categories of contributors based on the

number of OSS projects and values obtained for mean, median,

SD, and MAD . 165

6.8 Hierarchy of practices based on the number of OSS projects . . . 169

6.9 The disparity among three categories of contributors based on the

number of years OSS and values obtained for mean, median, SD,

and MAD . 170

6.10 Hierarchy of practices based on the number of years in OSS . . . 174

6.11 The reported effectiveness of practices based on number of years

in computer programming . 175

6.12 Hierarchy of practices based on the number of years in computer

programming . 180

6.13 Mean values by role type . 181

6.14 Median values by role type . 182

6.15 SD values by role type . 183

xi

LIST OF FIGURES

6.16 MAD values by role type . 184

7.1 The practice preference for contributors with experience based on

the number of OSS projects . 198

7.2 Ranking of practices based on contributors with an experience of

1-5, 5-10, 10+ in OSS projects 201

7.3 Preference trend of contributors on the agreement among three

categories of contributors . 204

7.4 Ranking of practices on their effectiveness by contributors with

varying experience in programming 206

7.5 The ranking trend of practices by contributors performing tasks in

varying roles in OSS projects. 208

xii

List of Tables

2.1 Five search strings to extract initial baseline set in SB 25

2.2 Quality assessment criteria to evaluate papers 27

2.3 Representation of knowledge retention techniques with knowledge

conversions type and codification strategy 44

2.4 Summary of Research focus on KM relevant activities in OSS

(Crowston et al., 2012) . 46

3.1 Three philosophical concerns . 66

3.2 Summarising three types of research methodologies 78

4.1 Master table with data components and link to sources 94

4.2 Example of merging conceptual duplication 99

4.3 Example of primary classification 100

4.4 Example of categorising classification of practices 101

4.5 PKR practices and relevant category 102

4.6 PKR practices the first review . 103

4.7 PKR Practices the second review 104

4.8 PKR Practices the third review 105

4.9 PKR Practices the fourth review 106

4.10 PKR Practices the fifth review . 107

5.1 Conceptual model of survey . 134

6.1 Representation of OSS contributors profile in the survey population 152

6.2 Overview of the survey data obtained 156

6.3 Ranking of overall practices . 163

6.4 Categorical ranking of practices based on 1-5 numbers of OSS

projects . 166

6.5 Categorical ranking of practices based on 5-10 numbers of OSS

projects . 167

xiii

LIST OF TABLES

6.6 Categorical ranking of practices based on 10+ numbers of OSS

projects . 168

6.7 Categorical ranking of practices based on 1-5 numbers of years in

OSS . 171

6.8 Categorical ranking of practices based on 5-10 numbers of years in

OSS . 172

6.9 Categorical ranking of practices based on 10+ numbers of years in

OSS . 173

6.10 Categorical ranking of practices based on 1-2 numbers of years in

programming . 176

6.11 Categorical ranking of practices based on 2-5 numbers of years in

programming . 177

6.12 Categorical ranking of practices based on 5-10 numbers of years in

programming . 178

6.13 Categorical ranking of practices based on 10+ numbers of years in

programming . 179

6.14 Ranking of practices based on bug reporters in OSS projects . . . 185

6.15 Ranking of practices based on code contributors in OSS projects . 186

6.16 Ranking of practices based on maintainers in OSS projects 187

6.17 Ranking of practices based on reviewers in OSS projects 188

6.18 Ranking of practices based on committers in OSS projects 189

6.19 Ranking of practices based on document writers and editors in OSS

Projects . 190

6.20 Ranking of practices based on testers in OSS projects 191

6.21 Ranking of practices based on integrators in OSS projects 192

6.22 Ranking of practices based on others in OSS projects 193

6.23 Ranking of practices based on nine roles in OSS projects 194

D.1 Practice description against Practice No. 398

xiv

List of Terms and Abbreviations

BSB Backward Snowballing. 28, 29, 31, 32, 218

CSS Closed Source Software. 15–17, 19, 35, 36, 40, 41, 46, 49, 57–59

FSB Forward Snowballing. 22, 24, 28, 29, 32, 218

KL Knowledge Loss. 3–6, 9, 11–14, 22, 26, 30, 35–37, 41, 42, 45, 47, 53, 54,

57–60, 66, 75, 79, 86, 93, 95, 131, 218

KM Knowledge Management. xiii, 42, 43, 45, 46, 59, 60, 89, 91, 114

KR Knowledge Retention. 42–46, 57, 58, 60, 66, 80, 82, 86, 89, 93–95, 113, 116,

138, 199, 214, 216, 217, 220, 221

OSS Open Source Software. 1–4, 9–12, 14, 15, 24, 26, 40, 51, 132, 138, 142

PKR Proactive Knowledge Retention. x, xi, 9, 77–79, 82, 84, 85, 93–96, 101,

102, 104, 107–110, 128, 131–134, 137, 138, 141, 150, 213

QDA Qualitative Data Analysis. 96

SB Snowballing. 22, 23, 25, 27–29, 32, 33, 48, 59, 218

xv

Chapter 1

The Focus of Research

1.1 Introduction

Open Source Software (OSS) is enlisted as one of the four core components of

Open Science (OS), which relates to the movement that provides free accessibility

to scientific research data and its dissemination to all levels of inquiring society

(Pontika et al., 2015). OSS is a broad term used to embrace software developed

and released under an "open source" license allowing technically inclined users

free access to the code, to inspect, modify and redistribute the software (Crowston

et al., 2004, 2006). In 2001, European Commission (EC) used the term FLOSS,

Free/Libre Open Source Software, for the first time to avoid taking sides on

debate on the distinction between free software and open-source software. OSS is

a term used to identify software developed and released under an "open source"

license that complies with Open Source Definition (OSD). The OSD uses either a

short definition based on four criteria as in the Free Software Foundation (FSF)

or a more extended version based on ten criteria as in the Open Source Initiative

(OSI). The difference between these two definitions is only of language while

underlying meaning and outcome is the same. "The freedom to use, change, sell,

or give away the software, the availability of source code, and the protection of

authors’ intellectual property rights are the central tenets of the OSD" (Feller

et al., 2002). Users with the technical inclination can use, freely access the code,

inspect, modify and redistribute the software (Crowston et al., 2006). However,

the freedom to use source code from an OSS project and its distribution vary

1

Chapter 1. The Focus of Research

based on which category of OSS license agreement is applied.

There are three main categories of OSS licenses based on their degree of

restrictiveness: Strong-copyleft, weak-copyleft and non-copyleft (Subramaniam

et al., 2009). A strong-copyleft or restrictive license requires that any derivatives

of the original software are also licensed in a similar manner. Weak-copyleft

licenses allow the derivatives of the software to be released under a different

license. Non-copyleft licenses allow the software, including derivatives, to be

redistributed under a different license than the original one. While free software

mostly identifies with GNU Public License (GPL), OSS license agreements may

vary based on the incorporation of the software that can be either propriety or

free.

Another term to represent free software is Free Open Source Software (FOSS).

The term "free" in FOSS was not considered by some to adequately express the

notion of freedom and consequently, in 2001, the European Commission (EC)

introduced the term Free/Libre Open Source Software (FLOSS), to avoid taking

sides in the debate and to stay neutral on the distinction between free software

and open-source software.

This research refers to the term OSS with a focus on projects that comply

with OSD, with the purpose of not excluding projects based on their license

restrictions and the types of existing collaborations, commercial involvement, or

volunteer based. The objective is to investigate projects operating under the

umbrella of OSS irrespective of the organisational setup, design a mechanism to

reduce Knowledge Loss (KL).

The importance of OSS is of vital importance in our daily work routine and

there are thousands of OSS projects operating worldwide, including Linux

operating system, Apache Web Server, Mozilla Firefox, OpenOffice, Perl,

Python, GCC, Android and Chrome by Google, and many more (Rashid et al.,

2019b). There has been an exponential rise in OSS products and their use, as

indicated by 430,000 projects hosted in 2014 on the SourceForge portal (Silic

2

Chapter 1. The Focus of Research

and Back, 2017). The projects are of varying sizes and at times involve

commercial firms that heavily depend on OSS system (Crowston et al., 2012).

During 2014 Google’s 2014 Google’s open source mobile Android operating

system had about one billion users across all devices (Van der Meulen and

Rivera, 2014). A survey conducted in 2015 reported that almost 78% of

companies run operations on OSS and 66% of companies have incorporated

open source software to create products for customers (Software, 2015).

The term OSS in this research is applicable to a vast variety of projects

complying with OSD. This research investigates the problem of KL in OSS

projects due to contributor turnover. The phenomenon where contributors

working in project teams join, leave, or change their role is referred to as

’turnover’ (Foucault et al., 2015). The turnover can be catastrophic for the

project if a contributor who is knowledgeable on major parts of the system

leaves and this reduces the spread of the knowledge (Donadelli, 2015). In OSS

projects, a smaller percentage of core contributors about 20% perform 80% of

coding tasks. Contributor turnover is rated as being very high both in the

software industry (Zhou, 2009) and in OSS projects (Foucault et al., 2015; Otte

et al., 2008; Rigby et al., 2016; Robles and Gonzalez-Barahona, 2006) and

mitigating its effects is considered a significant problem (Fronza et al., 2013).

Turnover is inevitable due to the transient nature of OSS project workforces

(Michlmayr, 2007a; Xu, 2006; Yu et al., 2012) causing KL (Izquierdo-Cortazar

et al., 2009; Rigby et al., 2016). KL due to contributor turnover, is the loss of

experience and expertise in projects. Contributor turnover impacts software

quality (Foucault et al., 2015; Mockus, 2010) and productivity

(Izquierdo-Cortazar et al., 2009; Schilling et al., 2011), which might also

threaten the overall sustainability of projects.

3

Chapter 1. The Focus of Research

1.2 Motivation

The teams in projects evolve due to contributors who are constantly joining,

leaving, or changing their role in the project. In many large projects, a high

turnover has been observed leading to the formation of the new development

teams (Robles and Gonzalez-Barahona, 2006). KL impacts the productivity of

the OSS projects in two ways:

1 The effort required to acquire knowledge to perform the maintenance tasks

2 The loss of effort when code is orphaned and removed from the project

In order to write quality software, code-knowledgeable contributors are required.

Searching knowledge is argued to be time consuming and costly (Von Krogh

et al., 2005). The search efforts can vary depending on the source and the level

of details. A post or a query on the project mailing list requires less effort while

searching through the results of a search engine or examining the clues into source

code documentation is perhaps more time consuming (Von Krogh et al., 2005).

A study on the GNOME project reported that 30 months’ time is needed for the

contributor to understand the software code and to make a contribution (Herraiz

et al., 2006). Developers gradually become productive taking more than a year’s

time on a project to reach a productivity plateau (Zhou and Mockus, 2010). The

time to complete distributed tasks is estimated to be three times longer than for

co-located tasks (Zhou and Mockus, 2010). The time required by a new person

to learn the inner workings of the project when experienced contributors leave,

causes considerable productivity loss (Izquierdo-Cortazar et al., 2009). In-depth

understanding of software code and interconnecting file structure is not required

to complete simple tasks. On the other hand, contributors may have difficulty

performing non-trivial tasks due to ‘information blocking’, i.e. unavailability of

the relevant information to complete a task (Izquierdo-Cortazar et al., 2009). The

productivity of the contributor and overall project suffers due to the information

4

Chapter 1. The Focus of Research

blocking and a lack of understanding of the code base. According to estimates,

information blocking consumes 60% of developers efforts (Liu et al., 2005).

During the preparation of a release, contributors make changes to align their

work with the goals of the release (Michlmayr, 2007a). As abandoned code

increases on the project, the numbers of reported defects increase as well (Otte

et al., 2008). The maintenance of abandoned code is difficult because the team

lacks knowledge of its creation and structure (Herbsleb and Mockus, 2003). The

source code that remains unmaintained (unless a stable legacy system) has an

element of uncertainty for the development team since the contributors who

wrote it have left the project (Izquierdo-Cortazar et al., 2009). Removal of

unmaintained code results in loss of existing functionality and may impact users

of the system (Michlmayr, 2007a).

1.3 Research Objectives

The objective of this research is to systematically investigate KL and mitigate

its implications in OSS projects. The goal is to reduce KL by identifying

knowledge retention best practices through systematic study and by

engagement with practitioners. "Knowledge is information combined with

experience, context, interpretation and reflection" (Davenport et al., 1998).

Knowledge generation is continuous through the process of knowledge creation

and sharing in OSS projects and is cyclic in nature. There are two kinds of

knowledge generated, namely tacit and explicit, tacit knowledge being that has

not been made explicit, that may for example be in the mind of one or more

individuals but not documented (Ryan and O’Connor, 2013). Both tacit and

explicit knowledge are inevitably created as software is produced, and the

advent of agile software development (Beck et al., 2001) has placed an emphasis

on reducing explicit documented knowledge.

The impact of this development suggests a heightened demand to address

5

Chapter 1. The Focus of Research

tacit knowledge retention in software development projects and especially on OSS

projects where contributor continuity is unpredictable and where contributors

might not have face-to-face communication opportunities on a regular basis but

only through asynchronous means of communication facilitated by technology-

mediated channels. The KL due to the loss of experience and expertise on the

project impacts productivity and additional time is required to learn the workings

of the project when original contributors are no longer accessible (Izquierdo-

Cortazar et al., 2009).

1.4 Research Hypothesis and Research Questions

The central hypothesis of this work states that:

Knowledge retention practices can be adopted towards effectively

addressing knowledge loss in OSS projects.

The reactive approach of knowledge retention refers to enablement of

knowledge transfer activities when the contractually bonded employee is leaving

the organisation. In OSS projects, inevitable turnover due to transient nature of

contributors (Michlmayr, 2007b; Yu et al., 2012) (Yu et al. 2012; Michlmayr

2007; Xu 2006) and absence of contractual bindings for notification before

contributors leave, make it difficult to enable any reactive knowledge transfer

activity. Therefore, the reactive approach of knowledge retention that may be

practised in a traditional software organisation may prove wholly ineffective for

OSS projects. The central hypothesis stresses the need for proactive knowledge

retention practices in OSS projects arising from the difference of organisational

and governance structure between OSS and traditional software organisations,

e.g. absence of contractual agreement between employer and employee. The

proactive approach in OSS projects is to retain knowledge while contributors are

part of the project. The central hypothesis leads to the first research question:

6

Chapter 1. The Focus of Research

RQ1. What is the existing state-of-the-art literature on knowledge

loss due to turnover in OSS projects?

OSS projects might be considered an extreme example of globally

distributed projects with transient contributors performing tasks in different

roles. The characteristics pertaining to the OSS development come in different

flavours and vary from project to project. OSS projects either can have

commercial involvement with stakeholders who strategically employ

contributors to participate in development of software to be later on attributed

to a product or can be purely community based with contributors mostly

volunteers participating towards software development. In the former, the work

settings resemble to the ones in the development of propriety software, while in

later the work settings are similar to horizontal hierarchy with informal

management and self-assigned tasks. The challenge is to formulate the proactive

knowledge retention, which can resonate with the idiosyncratic nature of OSS

projects without causing an overhead to the productivity of the project and

contributors. The OSS communities focus on self-direction and favour intrinsic

value system and therefore imposing a strategy that calls for the contributor to

give away their freedom to choose freely will cause deviation from the

enthusiasm of doing well for the society. The next step ahead is to identify

knowledge retention practices and evaluate on their effectiveness in OSS

projects work settings, which leads to the following research question:

RQ2. What are the effective knowledge retention practices in OSS

projects?

In order to investigate RQ2, the following two sub-questions need to be answered,

which are iterated as follows:

RQ2.1 How can a comprehensive set of knowledge retention practices

be developed for OSS projects?

7

Chapter 1. The Focus of Research

RQ2.2 How can OSS knowledge retention be evaluated in OSS

projects?

1.5 Research Process

The research process for this work is adapted from the process model presented

by (Oates, 2006). In the model, research questions formulate based on the

researcher‘s motivation and by conducting the literature review. In order to

investigate research questions a research strategy is identified. In the next step,

a data generation method is aligned with the research strategy, traceable to

research questions. Selecting right method for data generation ensures that

collected data is suitable to investigate the research questions. Final step

presented by Oates (2006) model of research process is data analysis. Figure 1.1

entails the four step research process representing the work in entirety. The

outcome of data analysis marks the end of research process by reporting

research findings and conclusions. The description for each step follows:

1 Research initiation - involves identification of concepts and research

questions based on the motivation and related literature review.

2 Research strategy - Identifying an approach to conduct research on the

identified questions.

3 Data generation - Formulating a reliable approach for data collection to

satisfy research requirements and to obtain valid results for research

questions

4 Data analysis and evaluation - Identifying suitable methods for data

analysis and presenting evaluations.

The research findings and conclusions are the final outcome of the data

analysis.

8

Chapter 1. The Focus of Research

Figure 1.1: Model of research process (adapted from (Oates, 2006))

1.6 Thesis Structure

This thesis comprises of the following chapters.

Chapter 2 presents a systematic examination of the state-of-the-art literature

on the phenomenon of KL in OSS due to contributor turnover using snowballing

as a search strategy. The literature review elaborates on problem identification

and details the impact of KL in OSS projects and discusses mitigation techniques

to reduce KL in OSS projects.

Chapter 3 discusses the research methodology designed to investigate and

to devise a set of PKR practices for OSS projects. The chapter describes

philosophical concerns, emphasises research methodologies including research

design, research methods, and selection of a suitable methodology for empirical

investigations in this work.

Chapter 4 elaborates on the development process of Proactive Knowledge

Retention (PKR) practices for OSS development environment. The PKR

practices are derived from literature inOSS and traditional software

organisations, which are referred as data sources. In order to develop the PKR

canonical model, the candidate details are selected from data sources referred as

data components, which go through a rigorous process to consolidate PKR

9

Chapter 1. The Focus of Research

practices by applying the principles of grounded theory.

Chapter 5 entails the process of designing the survey instrument and

conducting the survey for data collection. The goal of conducting the survey is

to evaluate the effectiveness of PKR practices by engaging with OSS

practitioners. The OSS contributor profiling in the survey sources rich data

from contributor evaluations on the effectiveness of proactive knowledge

retention practices in OSS projects.

Chapter 6 details the techniques for data analysis that result in the ranking

of practices. Extensive data analysis incorporates the profiling of contributors

based on their experience in OSS projects. The preference trend of contributors

is described in detail with the identification of practices that are ranked as most

effective.

Chapter 7 entails the difference of opinion on the effectiveness of particular

practices among various sub-groups of OSS contributors. The evaluation of

practices in this chapter revolves around the disparity of practice ranking

among the experienced, middle level experienced and inexperienced group of

contributors in OSS projects. Contributors classify based on their contributions

to the number of OSS projects, contributions by the number of years in OSS

projects, on the number of years in computer programming, and by different

roles in OSS projects.

Chapter 8 summarises the research conducted to answer research questions,

research methodology adopted, and the main findings. The primary impacts

of the research and recommendations for OSS projects are also discussed. The

limitations in this research along with and future work are also articulated.

10

Chapter 2

Literature Review

2.1 Introduction

This chapter discusses the literature review conducted to explore the phenomenon

of Knowledge Loss (KL) in OSS projects. The methodology followed to conduct

the literature review and its results have already been accepted through peer-

review (Rashid et al., 2019b). The text that follows in this chapter essentially

mirrors the content of this published material, and includes the knowledge and

substantive findings on the subject.

OSS development is known to be a knowledge focused activity which relies

heavily on contributors who can be volunteers or paid workers and are

geographically dispersed. While working on OSS projects contributors acquire

project related individualistic knowledge and gain experience and skills, which

can remains unshared with others and is usually lost once contributors leave a

project. Most of the software development organisations face the problem of KL

as employees leave, but this situation is exasperated in OSS projects where

contributors can be volunteers with largely unpredictable engagement duration.

Contributor turnover is inevitable due to the transient nature of OSS project

workforce causing KL, which threatens the overall sustainability of OSS projects

and impacts negatively on software quality and contributor productivity. The

objective of literature review is to deeply and systematically investigate the

phenomenon of knowledge loss due to contributor turnover in OSS projects as

presented in the state-of-the-art literature and to synthesise the information

11

Chapter 2. Literature Review

presented on the topic. Furthermore, based on the learning arising from the

investigation it is the intention to identify mechanisms to reduce the overall

effects of KL in OSS projects.

Software development is a knowledge-intensive activity, which involves

intense complexity (Clarke et al., 2016). OSS has had a profound impact on the

way in which software is developed and consequently on the perception of

software development (Hagan et al., 2007). OSS is one of the representative

examples of open collaboration (Lee et al., 2017). In OSS projects, contributors

can be volunteers or paid workers who participate in software development

activities. While working on OSS projects contributors acquire project related

knowledge and gain experience and skills. Examples of knowledge that are

required to accomplish software development tasks on projects include

application domain, system’s architecture, use of particular algorithms to code,

insights into requirements, programming language and development

environment (Anquetil et al., 2007). Valuable individualistic knowledge, which

remains unshared with others, is lost once contributors leave the project.

Organisations constantly face the problem of KL as employees leave (De Long

and Davenport, 2003; Jennex and Durcikova, 2013; Viana et al., 2015), a

situation which is perhaps exasperated in OSS projects (Izquierdo-Cortazar

et al., 2009; Rigby et al., 2016) where most contributors are volunteers with

largely unpredictable engagement durations (Robles et al., 2005). The

phenomenon of volunteers joining and leaving at their discretion is more

common in OSS projects than with hired employees in Closed Source Software

(CSS) (Robles et al., 2005). Contributor attrition leads to KL in OSS projects.

The phenomenon where contributors working in project teams join, leave, or

change their role is referred to as ‘turnover’ (Foucault et al., 2015). The turnover

can be catastrophic for the project if a contributor who is knowledgeable on major

parts of the system leaves and this reduces the spread of the knowledge (Rigby

et al., 2016). Contributor turnover is rated as being very high both in the software

12

Chapter 2. Literature Review

industry (Zhou, 2009) and in OSS projects (Foucault et al., 2015; Otte et al., 2008;

Rigby et al., 2016; Robles and Gonzalez-Barahona, 2006) and mitigating its effects

is considered a significant problem (Fronza et al., 2013). Turnover is inevitable

due to the transient nature of OSS project workforces (Michlmayr, 2007a; Xu,

2006; Yu et al., 2012) causing KL (Izquierdo-Cortazar et al., 2009; Rigby et al.,

2016). KL is the loss of experience and expertise in OSS projects, which not only

impacts software quality (Foucault et al., 2015; Mockus, 2010) and contributor

productivity (Izquierdo-Cortazar et al., 2009; Schilling et al., 2011), but which

might also threaten the overall sustainability of OSS projects.

OSS projects are constantly evolving as indicated in the adaptated staged

model for OSS systems (Capiluppi et al., 2007), and maintenance plays a

significant role in project evolution (Lin et al., 2017; Rigby et al., 2016). As

asserted “it is harder to separate out maintenance and development since they

tend to occur together" (Michlmayr, 2007a). A system that stops evolving is an

indication that it may become a legacy in the near future (Capiluppi et al.,

2007). KL in this work refers to the loss of experience and expertise in OSS

projects that can result in the decline of evolution on OSS systems (Joblin

et al., 2017).

To gain an insight into the phenomenon of KL in OSS projects due to

turnover, a literature review is conducted. The research question is structured

using the PICOC (Population, Intervention, Comparison, Outcome and

Context) criteria to structure research questions for a Systematic Literature

Review (SLR) (Petticrew and Roberts, 2008), with only population,

intervention, and outcome being relevant for the research question:

• Population: Open Source Software and associated synonyms.

• Intervention: Knowledge loss and turnover.

• Outcome: Existing themes and patterns related to knowledge loss and

turnover in OSS projects

13

Chapter 2. Literature Review

The related research question is:

What is the existing state-of-the-art literature on knowledge loss due

to turnover in OSS projects?

The remainder of the chapter is structured as follows: Section 2.2 provides

an insight into the set up of OSS projects, work structure and knowledge

relevant concepts. Section 2.3 presents the literature review methodology,

section 2.4 details quality assessment, section 2.5 discusses the concept of

iterations in snowballing and section 2.6 presents the application of the

literature review methodology. The details on iterations and selection of paper

is given in section 2.7. Section 2.8 elaborates on data synthesis. Section 2.9

articulates a discussion on problem identification and details the impact of KL

in OSS projects. Section 2.10 discusses concept of knowledge retention. Section

2.11 discusses the manifestation of knowledge in OSS projects. Section 2.12

comprises of mitigation techniques to reduce KL in OSS projects.

2.2 Background

2.2.1 Open Source Software (OSS)

OSS is enlisted as one of the four core components of Open Science (OS), which

relates to the movement that provides free accessibility to scientific research

data and its dissemination to all levels of inquiring society (Pontika et al., 2015).

OSS is a term used to embrace software developed and released under an "open

source" license that complies with Open Source Definition (OSD). The OSD

uses either the shorter version based on a four point criteria as in Free Software

Foundation (FSF) or the longer version based on a ten point criteria as in Open

Source Initiative (OSI). The difference between the two definitions is one of

language while the underlying meaning and outcome is the same. "The freedom

to use, change, sell or give away the software, the availability of source code and

14

Chapter 2. Literature Review

the protection of authors’ intellectual property rights are the central tenets of

the OSD" (Feller et al., 2002). Users with a technical inclination can use, freely

access the code, inspect, modify and redistribute the software (Crowston et al.,

2004, 2006). However, the freedom to use and distribute source code from OSS

varies based on which category of OSS license agreement applies (Scacchi,

2007). There are two main categories of OSS licenses: copyleft and non-copyleft

(DeBrie and Goeschel, 2016). Copyleft or a restrictive license requires that any

work based on copyleft license, when incorporated with other work, stays under

the copyleft license. Further, the complete code with modifications and the

notice of modifications and attributions is accessible to the user free of cost.

Examples of restrictive licenses are GNU General Public License (GPL versions

2 and 3), the Affero GPL (AGPL), and Mozilla Public License (MPL) and the

Lesser GPL (LGPL). Less restrictive licenses such as LGPL and MPL, do not

strictly adhere to OSD criteria and are considered as weak copyleft licenses.

Non-copyleft or permissive licenses allow the distribution of software without

any source code or modifications and provide a royalty free license to use the

software for commercial purpose. Permissive licenses are useful for businesses

who intend to sell the product as propriety software. Examples of permissive

licenses are the Massachusetts Institute of Technology (MIT) License, Apache

License 2.0, W3C, and the BSD License. While free software mostly identifies

with GPL, OSS license agreements may vary based on the incorporation of the

software that can be propriety or free. Another term used to represent free

software is Free Open Source Software (FOSS). The term "free" in FOSS fails to

express the notion of freedom and becomes invisible, with the main stress on

OSS. In 2001, the European Commission (EC) used the term Free/Libre Open

Source Software (FLOSS), for the first time to avoid taking sides in debate and

stay neutral on the distinction between free software and open-source software.

Three differences exist between OSS and CSS or commercial software

(Capiluppi et al., 2007). The first concerns the availability of commercial

15

Chapter 2. Literature Review

software releases to third parties only when it is complete, running, fully tested

and authorised (Capiluppi et al., 2007). Conversely, OSS systems are available

before the first official release while still in versioning system repositories, and

at any instant might be downloaded (Michlmayr, 2007b). The second difference

of OSS to CSS, relates to the presence of an evolution stage (on going software

development) in OSS after the start of the servicing stage (no new

functionalities are added but fixes are performed to existing system). The third

difference noticed was the transition of the OSS from a phase out (no fixes of

existing functionalities or addition of new ones) to evolution.

Software maintenance is an ongoing activity in software development,

comprising several types of activities relating to fixing faults in the system,

adapting the system to changes in the operating environment and adapting the

system to changes in the original requirements (Basili, 1990). Software

maintenance is the field which is concerned with the evolution of a software

system after its initial release (Michlmayr, 2007b). In OSS, maintenance and

development (or evolution) are not considered as two separate phases of the

software development cycle (Michlmayr, 2007b). Maintenance in an OSS

project is compared to reinvention (Crowston et al., 2012), which is "a

continuous source of adaptation, learning and improvement in OSS functionality

and quality" (Scacchi, 2003). Overall maintenance activities in OSS projects are

ongoing along with the evolution of the system.

2.2.2 Organisational Structure in OSS Projects

The development in OSS projects is distinguished from CSS or traditional

software by the usage of the terms: ’cathedral’ and ’bazaar’ (Raymond, 1999).

In the cathedral, control is with one main person who controls progress. On the

contrary, in the bazaar, the contributor decides when to contribute to a project

(Crowston et al., 2004). In the cathedral phase, software development starts

with a smaller group of developers and the source code is not shared or

16

Chapter 2. Literature Review

accessible to users. While in the bazaar phase, software development has a large

number of volunteers who can access the source code and contribute such as

adding new requirements, bug fixes, and reporting defects. It is argued that a

typical OSS project starts with a cathedral development style and then

transitions to a bazaar development style and cathedral and bazaar phases are

not considered mutually exclusive in OSS development (Capiluppi and

Michlmayr, 2007).

In OSS, each project is considered similar to an organisation as in software

industry or CSS. The layered structure called an onion model represents the

organisational structure in the OSS community (Crowston and Howison, 2005;

Dinh-Trong and Bieman, 2004). The teams in OSS have a hierarchical

onion-like structure, consisting of core, co-developer, active users and passive

users. The core is a small group of contributors who are responsible for most of

the code and ensure the design and evolution of the project. Co-developers

contribute by reviewing or modifying the code or providing bug fixes. Active

users use the recent release and contribute bug reports or feature request but do

not contribute code. The farthest group of members from core is passive users

and their number is difficult to predict (Crowston et al., 2004). The

representation of contributors in OSS projects can deviate from the above

presented onion model. For instance, Linux developers organise themselves into

two groups, ’core’ and ’periphery’ (Lee and Cole, 2003). The core consists of the

project leader and hundreds of maintainers. Periphery is a large group of

developers further divided into two teams: development and bug reporting.

Core contributors go through all roles starting as a user and progressing to be

among the core group of contributors (Ye et al., 2008). There can be different

paths that may be followed to become a core contributor. It is reported that

volunteers joining the OSS project follow the onion model and climb the ladder

to become a core contributor based on the meritocracy, while hired developers

are integrated into the project faster (Herraiz et al., 2006).

17

Chapter 2. Literature Review

OSS project collaborations can be of three types: community-based,

non-profit organisation and commercially based. Community projects are online

projects where contributors participate voluntarily and contribute their time as

is suitable for them (Xu, 2006). Volunteers collaborate on OSS projects during

their free time without profiting directly by any economic incentives for their

efforts (Robles et al., 2005). The motivation for volunteers to participate in OSS

projects is to learn new skills, make code contributions and become known

within the OSS community, which might pave the way to future career

opportunities (Crowston, 2011). Volunteers drive on intrinsic motivation, which

relates to the feeling of satisfaction, competence, and fulfilment from code

writing (Schilling et al., 2011; Xu, 2006). There is also an intrinsic motivation

for the knowledge provider such as altruism or learning by helping others solve

problem. In OSS, it is hard to predict when a volunteer will leave a project.

This unpredictable nature of commitment from volunteers creates an element of

risk within OSS projects and managing volunteer contributors can cause certain

problems not evident in traditional software development (Robles and

Gonzalez-Barahona, 2006). The development of free software slows or stalls in

the absence of the lead developer who initiated the project or when a

contributor decides to stop working on the project. Community open source

projects take their organisational form from an Internet-based community, and

the developers are mostly the volunteers (Lee and Cole, 2003). For instance,

volunteers who manage the Apache project are in fact developers with a

full-time job who work part-time on the Apache project. Debian is a project in

which all contributors are volunteers (Robles et al., 2005). The tasks performed

by volunteers in Debian include maintaining software packages, supporting the

server infrastructure, developing Debian-specific software, for instance, the

installation routine and package management tool, translating documentation

and Web pages.

In non-profit organisation projects, developers are either paid workers or

18

Chapter 2. Literature Review

volunteers. The project is mature enough and is funded as a formal

organisation. There is still some element of a community project maintained in

such projects, for example, the Apache Software Foundation (Xu, 2006). In

commercially involved projects, a software company sponsors projects and

employs the majority of contributors. A commercial company, Netscape,

managed the Mozilla project in the past. The developers hired for the project

worked full-time and for pay (Dinh-Trong and Bieman, 2004). Companies like

IBM, HP, SUN (now acquired by Oracle), sponsor OSS projects in which major

contributors are paid developers (Fitzgerald, 2006). The organisational

structure of OSS projects is considered to be highly dynamic as compared to

CSS or traditional software development organisations (Jensen and Scacchi,

2005). Furthermore, the contributors in the OSS projects are transient in

nature. While Internet-based knowledge communities are great avenues for

contributors to learn and expand their skill sets, it is argued that they influence

job hopping behaviour due to the availability of more opportunities, since it

sends a strong signal to a potential employer of the contributors expertise and

skills (Huang and Zhang, 2013). OSS projects can be a hub of innovation and

evolving ecosystems with the involvement of commercial organisations

(Capiluppi et al., 2012; Crowston et al., 2012) which align their strategic goals

with the product development in OSS projects. OSS communities operate on

globally distributed and virtual environments using the Open Source Software

Development (OSSD) model (Jensen and Scacchi, 2005). The development in

OSS projects is independent, self-assigned and in parallel streams without much

coordination due to geographical dispersion (Michlmayr, 2007b). In OSS, tasks

are not assigned and contributors make contributions based on their interest

and discretion (Mockus et al., 2002).

The collaboration and communication is through asynchronous means,

facilitated by technology-mediated channels (Sharif et al., 2015; Sowe et al.,

2008; Vasilescu et al., 2014). In an informal, loosely defined community,

19

Chapter 2. Literature Review

reciprocity is highly relevant to OSS development (Kuk, 2006). It is argued that

interaction is of a strategic nature between individual developers and highly

resourceful developers. This leads to the formation of smaller but better

organized structures in OSS development (Kuk, 2006). Some measures

suggested to gauge the impact of knowledge sharing communities include

participation inequality, conversational interactivity, and cross-thread

connectivity (Kuk, 2006). Participation inequality, if it exists to a certain level,

has a positive impact on knowledge sharing. Moreover, strategic interaction

expands knowledge sharing through reciprocal and overlapping activities (Kuk,

2006).

Epistemic interactions in OSS development involves a balancing act between

exploration and exploitation activities (Lee and Cole, 2003). As an example, the

successful Linux kernel development project has adopted a simple two-tier

structure for interaction through mailing lists. The first tier consists of the

peripheral mailing lists useful for innovation and for criticisms to encourage

learning and quality control. The second tier consists of the core mailing lists,

helpful for selecting and retaining the features, applications, and codes for the

future incremental additions to the next product release (Kuk, 2006).

Altogether, OSS projects have an organizational outlook of an extreme

example of large-scale globally distributed software engineering (GSD) (Joblin

et al., 2017; Mockus et al., 2002). In such a dense environment where

interaction and networking among community members is complex and spreads

across various online communities, contributor departure can cause serious

damage to the OSS project. Figure 2.1 summarises the organisational structure

of an OSS project as a mind map. In the parenthesis reference to the respective

study is given, which are listed under primary studies (e.g. PS1, PS2, PS3 and

so on) in appendix A.1.

20

Chapter 2. Literature Review

Figure 2.1: Mind map of the organisational structure in OSS projects.

2.2.3 Data, Information, and Knowledge

It is important to clarify the relationship among "data", "information", and

"knowledge". Data can be considered the raw material for information, which,

in turn, can be considered the raw material for knowledge (Zins, 2007). Data

represent observations and facts without any context or meaning and

information is the result of associating data in a meaningful context (Zack,

1999b). In order to convert data into information, it must be contextualised,

categorised, calculated and condensed (Davenport et al., 1998). There are

different views on the definition of knowledge. Nonaka in (Nonaka, 1994),

defines knowledge as "a justified belief that that increases an entity’s capacity

for effective action". Schubert et al., using state of mind perspective, "define

knowledge by emphasising, knowing and understanding through experience and

study" (Schubert et al., 1998). This research refers to knowledge as experience

and expertise built by a contributor that evolves from the day-to-day

interaction on OSS project.

Knowledge is driven from information (Davenport et al., 1998) Knowledge is

the product of an individual’s experience and accumulates because of

communication or inference (Zack, 1999b). Knowledge storage is argued to be

impossible and it is asserted that information leads to knowledge transformation

21

Chapter 2. Literature Review

(Aggestam et al., 2010). The stored information based on the individual

experience is utilised to make decisions. The conversion of data, information,

and knowledge is depicted in Figure 2.2.

Figure 2.2: Data - information - knowledge (Rhem, 2005)

2.3 Literature Review and Snowballing

In order to find the relevant literature on the topic of KL in OSS, the literature

review was discharged using the snowballing (SB) approach (Wohlin, 2014). The

SB process is executed in iterations starting from a baseline set of papers using

Backward snowballing (BSB) and Forward Snowballing (FSB) involves looking

through the reference list of the baseline papers and FSB searches for studies that

cite papers from the baseline set. The snowballing process comes to an end once

no new papers are found on the relevant topic (Felizardo et al., 2016). SB is an

efficient and reliable way to conduct a systematic literature review, providing a

robust alternative to mechanically searching individual databases for given topics

(Wohlin, 2014). The step-by-step process illustrated by Wohlin was followed, in

which he affirms that the SB approach finds papers almost similar to the ones

in the conventional style of systematic literature review, which involves database

search. The SB literature review methodology specified the research question,

search strategy, inclusion, exclusion, and quality criteria, and data synthesis.

The search strategy, and inclusion, exclusion and quality criteria, are applied as

22

Chapter 2. Literature Review

a part of the SB procedure, as explained in the next section. Execution of the SB

procedure was followed by data synthesis. The overview of the literature review

methodology is visualised in Figure 2.3.

Figure 2.3: Overview of literature review using snowballing

2.3.1 Details on Snowballing Procedure

This section details the SB procedure to search relevant papers. The selection

of a baseline set of papers and iterations in SB will rigorously follow the given

criteria for inclusion, exclusion, and quality assessment. A detailed view of the

SB procedure is depicted in Figure 2.4. The initial baseline papers are pooled

from search engine using search string(s) designed to reflect the topic. The final

23

Chapter 2. Literature Review

baseline papers are selected from a pool of initial baseline papers, which are then

subjected to subsequent iterations using backward and FSB. Papers found in an

iteration are assessed based on relevancy to the topic using inclusion, exclusion

and quality criteria. Consequently, new papers are added to the set of final

baseline papers. The iterations continue until no new papers are found.

Figure 2.4: The detailed view of snowballing procedure to search papers

2.3.2 Initial Baseline Set of papers

For the purpose of this search, no distinction is drawn concerning the following

terms: Free/Libre Open Source Software (FLOSS), OSS, Free Open Source

Software (FOSS), and Free Software. The search strings are designed using a

combination of all three terms to represent OSS. Google Scholar is used to

search each string to avoid bias in the selection of publishers (Wohlin, 2014).

Table 2.1 shows the five strings designed to be executed on Google Scholar, to

extract an initial baseline set in SB.

24

Chapter 2. Literature Review

Table 2.1: Five search strings to extract initial baseline set in SB

Open source software and turnover and "knowledge loss"
Free open source software and turnover and "knowledge loss"
Free software and turnover and "knowledge loss"
Free/ Libre software and turnover and "knowledge loss"
Libre software and turnover and "knowledge loss"

The SB approach outlined later in this section represents a comprehensive

pursuit of related works that are identified in the initial baseline of relevant

research papers. Accordingly, this methodology will consider the top 30 search

results, provided by Google Scholar for each of the search strings. Most likely

Google Scholar search returns the best results in the first few pages. To

establish the baseline set of papers it was expected to collect 150 papers from

Google Scholar using five search strings and then subject them to systematic

inclusion/ exclusion analysis, followed by extensive SB iterations.

2.3.3 Inclusion/ Exclusion Criteria for Baseline Set

The initial baseline set of papers will be further assessed, to be included in the

final baseline set, by applying inclusion or exclusion criteria in two phases. In the

first phase, papers will be included based on the following criteria:

• The papers that are available in full-text 1

• Papers written in English

• Papers are peer-reviewed

• Papers relevant to the topic are to be included after reading the title

• When it is unclear from the title abstract and introduction it will be read
1The reason for the unavailability of the paper may be because it is simply not published

through any of the leading and most widely read outlets (including posting by the researcher
themselves online). It should be noted that the researcher had access to all leading research
databases.

25

Chapter 2. Literature Review

• When it is unclear from the title abstract and introduction it will be read

In the second phase, the full texts of papers is evaluated utilising quality

assessment criteria to make a final decision on inclusion or exclusion of papers

into the final baseline set.

2.4 Quality Assessment

The three main concerns relevant to quality assessment are rigour, credibility and

relevance as defined below (Dybå and Dingsøyr, 2008):

• Rigour - Has a thorough and appropriate approach

• Credibility - Are the findings well-presented and meaningful?

• Relevance - How useful are the findings to the software industry and the

research community?

The above three concerns are assessed through eleven recommended quality

assessment criteria in (Dybå and Dingsøyr, 2008) has been effectively used by

Kitchenham and Brereton with some adaptions (Kitchenham and Brereton,

2013). In this literature review, the main intention is to find literature relevant

to KL due to contributor turnover in OSS. After reviewing the quality criteria

presented by (Dybå and Dingsøyr, 2008; Kitchenham and Brereton, 2013), the

following check list was formulated to assess papers for their quality assessment,

as given in Table 2.2.

26

Chapter 2. Literature Review

Table 2.2: Quality assessment criteria to evaluate papers

The given quality criteria will be applied thoroughly during the SB procedure

including the selection of the baseline set of papers and subsequent iterations of

SB.

27

Chapter 2. Literature Review

2.5 Iterations in Snowballing

Iterations in SB include BSB and FSB described in this section.

2.5.1 Backward Snowballing

In BSB, the references from each paper in the baseline set will be reviewed based

upon the relevance to the topic and the inclusion and exclusion criteria will be

applied in two different phases similar to the one applied to the baseline set of

papers. The only difference will be in inclusion and exclusion criteria for the first

phase. The following criteria will be applied in the first phase of BSB (Badampudi

et al., 2015):

• Read the title of the referenced paper

• Read the context in which the reference appears in the paper

• Review the abstract of the referenced paper

It is important to understand the context in which the reference is cited within

the text of the paper. The referenced paper in full will be assessed based on the

criteria of inclusion and exclusion, and quality assessment given in section 2.3.3

and section 2.4 respectively.

2.5.2 Forward Snowballing

Identification of a new paper in FSB is based on the papers citing the paper

under examination (Wohlin, 2014). This information is available from the

Google Scholar search engine. The inclusion and exclusion criteria is based on

the following steps (Badampudi et al., 2015):

• Read the title of the citing paper

• Read the abstract of the paper citing the paper under examination

28

Chapter 2. Literature Review

• Understand the context in which the paper is being cited

The final two steps for FSB are in reverse order as compared to BSB

(Badampudi et al., 2015). Reading the abstract before the context of use in

FSB will give the researcher clarity on the topic of the paper and enable him or

her to understand the context in a better way. The newly identified papers at

the end of an iteration in the SB procedure will be added to the final baseline

set. The iterations will cease when no new papers are found.

2.6 Application of Snowballing for Literature

Review

2.6.1 Identifying the Baseline Set

The queries in Table 2.1 were executed on Google Scholar using Zotero2 (a free

tool for managing bibliographies) to retain Google Scholar results generated by

executing the queries and removing duplicates. Zotero further facilitated to

download the citation details of the papers including electronic versions. Quotes

around the term knowledge loss help to search it on Google Scholar as one

word. During the execution of the search strings, three search strings returned

results less than 30. For those search strings that returned more than 30 results

on Google Scholar, only the top 30 results were selected. In all, 129 publications

were extracted and after identifying 62 duplicates 67 individual papers

remained. Inclusion/ exclusion criteria given in section 2.3.3, were applied on

these 67 publications.

2.6.2 Final Baseline Set

The exclusion criteria were applied in two phases, the outcome of phase one

resulted in 21 papers out of 67 papers. One replication study was found (Nassif
2http://www.zotero.org/

29

Chapter 2. Literature Review

and Robillard, 2017) based on earlier work in the paper (Rigby et al., 2016) which

was not peer reviewed and used the same experimental method. According to the

guidelines given when a study uses the same experimental method but different

material, it is treated as a multi-case case study, and it is believed to increase

the scope and size of the study and not the quality (Kitchenham and Brereton,

2013). The replication study found among 67 papers was excluded. Peer reviewed

doctoral symposiums were not included in the initial baseline set, as these short

papers (1-4 pages) proposed future work. In case, it was not clear from the title of

the paper to include or exclude it, the abstract, introduction and conclusion was

read. A number of papers were excluded because they did not discuss knowledge

loss or turnover in the context of OSS projects. Furthermore, papers with a focus

on knowledge relevant issues in organisations other than in OSS projects were

excluded, giving in all 21 papers at the end of phase one.

In phase two, the full text of 21 papers was evaluated based on the criteria

to assess quality (section 2.4) and details were retained in an excel spread sheet

for future reference. One paper that is on knowledge transfer challenges and

mitigation in Global Software Development (GSD) was included, since OSS is

considered to be an example of GSD (Herraiz et al., 2006; Lin et al., 2017).

Five papers excluded focused on topics including knowledge gaps in post-merger

integration, managing knowledge and organisational costs, strategies to manage

KL in organisations, a peer reviewed short paper on impact of mentoring with a

research model, and on open innovation. The final baseline set consisted of 16

papers that discuss OSS in relation to KL or turnover. The selection of a final

baseline set of papers is shown in Figure 2.5. In the next step, 16 papers were

iterated as detailed in the following section.

30

Chapter 2. Literature Review

Figure 2.5: Overview of literature review using snowballing

2.7 Iterations

2.7.1 Iteration 1 - Backward and Forward Snowballing

During the first iteration, the first step in BSB was to read titles of referenced

papers in the baseline set. In all 643 titles referenced in the baseline set of papers

were read for relevance to this work. As a result, 41 papers were identified for

further evaluation. It was found that 20 of the papers were already included

in the baseline set or the first iteration of BSB. Examination of the remaining

21 papers led to the exclusion of four papers leaving 17 papers to add to the

collection of relevant literature. Forward snowballing was applied to 16 papers

in the baseline set. The Google Scholar search engine was useful to find a total

number of papers citing the corresponding paper in the baseline set. In all, 203

papers cited 16 papers in the baseline set. Only 24 papers were relevant to this

work and 23 were already included in either the baseline set of papers or through

the first iteration of BSB. Iteration 1 resulted in 18 new papers from the initial

16 papers in the start set.

31

Chapter 2. Literature Review

2.7.2 Iteration 2 - Backward and Forward Snowballing

The 18 papers resulting from iteration 1 were iterated by following the steps of

BSB and then FSB. During BSB, 845 references appeared in 18 papers and after

reading all titles and applying inclusion exclusion criteria on selected ones, only

two new papers were included. Google Scholar was then employed to find out

papers that cited the 18 papers from Iteration 1. The papers that were cited in

more than 100 publications, titles only for the first 100 papers were read. During

FSB, 1174 paper titles were read and two new papers were found. Iteration 2

ended with four new papers.

2.7.3 Iteration 3 - Backward and Forward Snowballing

During iteration 3, four papers resulting from iteration 2 were iterated. In BSB,

252 titles were read for their relevance to this research and no new papers were

found. In FSB, 226 papers cited four papers on Google Scholar. However, no

new papers were found in iteration 3. Consequently, iteration 3 marked an end

to the SB procedure. The SB phase ended with 38 papers, which are listed under

primary studies (e.g. PS1, PS2, PS3 and so on) in appendix A.1. The application

of the SB procedure is summarised in Figure 2.6.

32

Chapter 2. Literature Review

Figure 2.6: Applying snowballing process to search relevant papers on Knowledge
Loss in OSS

2.8 Data Synthesis

Data synthesis was performed by collating and summarising the contents of the

included 38 papers, similar to the guidelines provided for systematic literature

review (Keele et al., 2007). At first, the text of each study is analysed to derive

individual themes. Secondly, the derived set of themes are analysed on their

relationship with each other based on the inferences made from the study.

The three iterations from the application of the SB procedure yielded 38

33

Chapter 2. Literature Review

papers. During iterations, the general information collected was about paper

title, venue of publication, and year of publication. The specific information on

papers is constituted upon 12 quality assessment criteria given in section 2.4.

The papers selected are from year 2000 to year 2017, the year wise distribution

is given in Figure 2.7.

Figure 2.7: The yearly distribution of papers

There are 18 conference papers, 17 journal papers, and 3 peer reviewed papers

published in workshops. The distribution of papers based on the research type is

shown in Figure 2.8.

34

Chapter 2. Literature Review

Figure 2.8: The distribution of papers according to the type of research conducted

2.9 Discussion

The emerging themes identified from the papers in this work are subjective in

nature and a rigorous process was followed to collect papers in a systematic

literature review. In this section, the problem of KL in OSS projects is examined

and the subsequent section lists the impact of KL in OSS projects.

2.9.1 Examining Knowledge Loss in OSS

The evolution of an OSS project results in teams of contributors who are

constantly joining, leaving, or changing their role in the project. The

phenomenon of resources joining and leaving in this fashion is referred to as

turnover (Foucault et al. 2015). Some of the reasons for the contributors leaving

OSS projects include loss of interest in the project, new career opportunities, no

new learning or improvement of skills (Shah 2006). The author of the source

code has a strong relationship with the authored code. When the author of the

code leaves the project and their code is abandoned, software development can

halt due to KL (Rigby et al., 2016). KL is a problem that has been reported

equally in CSS (Izquierdo-Cortazar et al., 2009; Jennex and Durcikova, 2013;

35

Chapter 2. Literature Review

Viana et al., 2015) and OSS (Izquierdo-Cortazar et al., 2009; Rigby et al., 2016)

projects. The phenomenon of contributors joining and leaving at their

discretion is more common in OSS projects than with hired employees in CSS

(Robles et al., 2005).

A moderate amount of turnover is thought to bring innovation to the project

(Ling et al., 2005) (Ling et al. 2005). Similarly it is reported that in Wikipedia,

an online community, moderate levels of membership turnover positively affect

collaborative success (Ransbotham and Kane, 2011). However, in OSS projects,

contributor turnover is reported to have a negative impact on quality (Foucault

et al. 2015) and productivity, as due to KL, extra time is spent to learn the

workings of the project (Izquierdo-Cortazar et al., 2009). In many large OSS

projects, a high turnover has been observed leading to the formation of the

succeeding development teams (Robles and Gonzalez-Barahona, 2006). In order

to continue with the software development tasks, succeeding development teams

require knowledge about the developed source code. Constant evolution requires

that new contributors be knowledgeable enough to perform maintenance tasks

on the project during the absence of the earlier owner of the system (Rigby

et al., 2016).

A study on the GNOME 3 project reported that 30 months’ time is needed

for the contributor to understand the software code and to make a contribution

(Herraiz et al., 2006). A lack of understanding of the design of abandoned code

(Mockus, 2010) slows down the contributors and impacts their productivity

(Schilling et al., 2011). Searching knowledge is argued to be time consuming

and costly (Von Krogh et al., 2005). The search efforts can vary depending on

the source and the level of details. For instance, a post or a query on the

project mailing list requires less effort, while searching through the results of

search engine use or examining the clues in source code documentation is time

consuming (Von Krogh et al., 2005).
3GNOME is a well-known large Libre project sponsored by several companies.

https://www.gnome.org/foundation/

36

Chapter 2. Literature Review

Accumulated knowledge, which is not codified, is lost once the contributors

leave the project. Contributors gain skills, experience while working on software

projects, and take the knowledge with them once they leave the project. In

this work knowledge, loss refers to the loss of accumulated knowledge that is not

available or is too costly to reacquire once the contributor leaves the OSS project.

2.9.2 Impact of Knowledge Loss in OSS projects

In this section, the effects of the KL phenomenon on OSS projects are unfolded

and consolidated by synthesis of the data collected from the relevant literature.

A) Abandoned code - When a contributor who has owned or worked on

code files leaves the OSS project, the files or Lines of Code (LOC) are orphaned

or abandoned (Izquierdo-Cortazar et al., 2009). Abandoned code characterises

the situation of KL in terms of efforts lost that affect the productivity of the

OSS project. It is emphasised that with the increase of orphaned lines of code,

the project may become invisible to the current contributors, since the major

parts of the code is written by the contributors who are no longer available

(Izquierdo-Cortazar et al., 2009). Researchers have quantified KL based on the

number of lines of code and files that become orphaned or abandoned when a

contributor leaves (Izquierdo-Cortazar et al., 2009; Rigby et al., 2016). During

the preparation of a release, contributors make changes to align their work with

the goals of the release (Michlmayr, 2007a). A central person or body then

selects a subset of the developed code for the “official” releases and makes it

widely available for distribution (Mockus et al., 2002). At the time of release,

the unmaintained source code is removed from the project since the original

contributors who maintained it are not there anymore. The code has an element

of uncertainty for the development team since the contributors who wrote it

have left (Izquierdo-Cortazar et al., 2009). Removal of unmaintained code

results in loss of existing functionality and may impact users of the system

Michlmayr (2007a). It is reported that on average, 12% of Source Line of Code

37

Chapter 2. Literature Review

(SLOC) is abandoned and as abandoned code increases on the project, the

numbers of reported defects have been shown to increase as well (Otte et al.,

2008). The maintenance of abandoned code is difficult because the team lacks

knowledge of its creation and structure (Donadelli, 2015).

B) Project Instability - The stability of the OSS project and its success

is dependent on the ability to sustain contributors and a strong combination of

experience and knowledge is associated with contributor retention (Schilling et al.,

2011). Contributors who work on modifying files by others have a better chance

of survival (Lin et al., 2017), since it diversifies their experience and knowledge

about the work of others. There is a focus on identifying newcomers at an earlier

stage of joining an OSS project, with a higher chance of contributors staying

for the long term by being trained by the current contributors Schilling et al.

(2012). In another study for the purpose of decision making and observation,

the assessment of community stability is based on the estimations of the future

participation (Rastogi and Sureka, 2014). Lack of sustained contributors lead to

the failure of 80% of OSS initiatives (Colazo and Fang, 2009).

C) Discontinued Knowledge Building - Knowledge building results

from collaboration and the use of a variety of tools and resources including

Internet Relay Chat (IRC), Concurrent Version System (CVS), bug report,

Feature request, patches, tasks and news (Ge et al., 2006). From the initiation

of the problem to resolution, contributors with different expertise and

knowledge contribute to knowledge building in the community. Knowledge in

collaborative online communities is not concentrated with an individual but

rather results from the collaboration of contributors. Community members who

leave not only take their knowledge and expertise but also the established

relationship with other members (Wang and Lantzy, 2011). The knowledge

building process may discontinue due to disruption in social ties.

D) Community Health Chaos - The driving force of OSS projects is

their communities consisting of ad hoc or informal, foundation or non-profit and

38

Chapter 2. Literature Review

commercial companies (Zheng et al., 2008). Community health is affected by

turnover due to loss of human capital and social capital (Wang and Lantzy

2011). Consequently, with human capital the long-term knowledge, which is

tacit in nature, is lost. Furthermore, in the case of social capital, the developed

relationship among community members is disrupted. Social capital has

resources embedded in social relationships with inherent norms and values

(Droege and Hoobler, 2003). Furthermore, social structures have a central role

in knowledge creation (Nonaka, 1994). Members who are central in the

structure of the community, their departure has a higher impact on the

community health and membership turnover in Wikipedia, has a significant

negative effect on group outcomes, and there exists an association between

social capital losses through member turnover and group (Wang and Lantzy,

2011). Moreover, member turnover in Wikipedia is associated negatively with

the group productivity (Qin et al., 2014).

E) Damage to the Ecosystem - In a software ecosystem, "collections of

software projects are developed and evolve together in the same environment"

(Lungu, 2008). Disruption of an ecosystem not only has an impact on the

technical aspects (such as its package dependencies), but also on social aspects

(Mens, 2016). Ecosystems evolve over time "through socio-technical changes

that may greatly impact the ecosystem’s sustainability. Social changes like

developer turnover may lead to technical degradation" and there is a high

probability that contributors will abandon an ecosystem if contributors do not

interact in discussion with others (Constantinou and Mens, 2017a). It is

reported that when a contributor with a central position in the community

unexpectedly left, it was a cause of major disruption in the community (Mens,

2016). More specialised or central leavers cause risk to the functioning of an

ecosystem (Lin et al., 2017). For example, a package containing only a few lines

of source code but with thousands of dependent projects, when removed, had

important consequences "almost breaking the internet" (Mens, 2016).

39

Chapter 2. Literature Review

F) Evolutionary Pressure - When contributors withdraw from a project

and new ones join, the transition influences the evolution of the contributor’s

network and generates evolutionary pressure (Joblin et al., 2017). Evolutionary

pressures are due to the difference in turnover rates between core and peripheral

developers (Joblin et al., 2017). Evolution of the system will require the new

contributor to have knowledge on the project to perform maintenance tasks, in

the absence of the owning developers who owned the system earlier. In the

absence of a contributor, original owner of the files or system and a successor

to files with related knowledge on the project to perform maintenance tasks, the

files are at a risk of abandonment (Rigby et al., 2016).

G) Non-uniform Knowledge Distribution - A small subset of

contributors, typically 20%, called core members, make major code

contributions of about 80% in OSS projects (Mockus et al., 2002). It is worth

noting that this distribution is in line with the Pareto Principle (also known as

the 80/20 rule) that states for many events, roughly 80% of the effects come

from 20% of the causes, demonstrating that most of the activity in OSSprojects

is carried out by a small group of people (Goeminne and Mens, 2011).

Knowledge distribution in OSS projects among contributors is found to be

non-uniform, one developer leaving can cause a major file loss (removal of file

ownership leads to its abandonment) in the system (Rigby et al., 2016).It is

reported that on the Gimp project, when relevant project knowledge is limited

to a small set of contributors, one contributor leaving results in the loss of up to

80% of files in the system and when knowledge is distributed across a larger

group of contributors, file loss is minimised when one contributor leaves, as seen

in the case of Linux project (Donadelli, 2015).

H) Knowledge Differentiation - Knowledge differentiation refers to the

extent of specialisation of team members in different knowledge domains (Chen

et al., 2013). Knowledge differentiation in CSS teams shows that knowledge

differentiation is specifically important for software development and it involves

40

Chapter 2. Literature Review

integrating knowledge from various domains, such as software architecture,

software design methodologies, and business application domain knowledge

(Tiwana, 2004). Although OSS teams are different from CSS teams in various

ways, the baseline for the knowledge intensive nature of software development

does not change for CSS or OSS contributors. In the case of Freenet, a file

sharing OSS project, it was found that the majority of contributors specialize in

coding few and not all modules, because of existing knowledge barriers between

the modules (Von Krogh et al., 2003). Coding specialization exhibits knowledge

differentiation in OSS teams (Chen et al., 2013). The knowledge differentiation

concept intertwines with knowledge distribution and can have consequences in

OSS projects when the contributors leave. The impact of contributor turnover

has been realised in the software engineering community and it has been

asserted that most existing studies are conducted in the open source

communities as compared to non-open source communities. The data collection

is mainly from software project management and obtained by performing

qualitative observations and quantitative analysis of contributor activity (Bao

et al., 2017). This section discussed the main impacts of Knowledge Loss in OSS

projects. The impact of KL on quality and productivity was discussed in section

2.9.2. Similarly, the role of knowledge in relation to maintenance, reinvention,

and evolution was discussed in section 2.2.1, all of which is illustrated in the

mind map in Figure 2.9. The list of primary studies appear in mind map within

parenthesis abbreviated as PS1, PS2, PS3 and detailed in appendix A.1

41

Chapter 2. Literature Review

Figure 2.9: Impact of knowledge loss in OSS projects

2.10 Reducing Knowledge Loss in OSS Projects

The KL phenomenon and its impact in OSS projects were discussed in 2.9. In

this section, the focus is on the literature that discusses the reduction of KL in

OSS projects due to contributor turnover. Attention is first directed to

Knowledge Retention (KR) in organisations, which mainly comes into focus

when an employee is leaving and the need for a KR mechanism in an

organisation is assessed based on the following (Lindvall and Rus, 2003):

1. A lack of knowledge in the organisation and an overly long time to acquire

knowledge due to a steep learning curve

2. Employees repeating mistakes and performing rework because they forget

what they learned from previous projects.

3. Chances of employees owning key knowledge becoming unavailable

Knowledge Retention relates to capturing knowledge in an organisation and

is an important aspect of Knowledge Management (KM). KM is defined as the

approach adopted by an organisation to engage workers in relevant activities of

creating, managing, sharing and reusing knowledge (Dingsøyr et al., 2009). KM

42

Chapter 2. Literature Review

also refers to coordination and exploitation of knowledge in an organisation and

making the right knowledge available to the right people while benefiting from

it for competitive advantages (Drucker, 1999). KM enables an organisation to

enhance its capabilities to deal with new and unusual situations (Choi et al.,

2008). Knowledge retention can be seen as a way of embedding and enabling

knowledge within an organisation and a critical factor for sustainable performance

(Doan et al., 2011).

The KR strategies in an organisation advance innovation, organisational

growth, efficiency, employee development, and competitive advantage.

Sometimes techniques such as exit interviews are used to capture the knowledge

of the employee. Some organisations also follow formal knowledge retention

strategies. It is an effort-demanding task to identify potential knowledge for the

organisation. The structure of the organisation in the context of how well it

supports knowledge retention is of importance as well. Once the person who has

the potential knowledge leaves the organisation, it is hard to retain this

knowledge.

Codification and personalisation are considered useful strategies for managing

knowledge intensive activities like software development (Donnellan et al., 2005).

Codification is the documentation of the knowledge to be stored, disseminated,

and reused. Personalisation is the development of networks to connect people

where they can share tacit knowledge (Hansen et al., 1999). In knowledge bases,

codification captures electronic information and personalisation deals with the

ways humans use and process knowledge (Donnellan et al., 2005). Organizations

implement codification strategy to encourage the reuse of explicit knowledge.

The core techniques designed to retain knowledge in an organisation are

mainly dependent on its knowledge-sharing practices. There are many

techniques that facilitate knowledge capture, sharing and reapplication, namely

after-action reviews, communities of practice, face-to-face meetings, mentoring

programs, expert referral services, video conferencing, interviews, written

43

Chapter 2. Literature Review

reports, use of training and technology-based systems to transfer the knowledge

(De Long and Davenport, 2003).

Table 2.3: Representation of knowledge retention techniques with knowledge
conversions type and codification strategy

In Table 2.3, KR techniques practiced in organisations with the type of

knowledge conversion and managing strategy are given. Community of Practice4

are used as a long term strategy by management to retain knowledge before it is

lost (De Long and Davenport, 2003), where experienced members deal with the

problem of losing expertise by contributing valuable lessons to member

companies. Post-mortem reviews are a practical method to capture and reuse

experience from projects that are complete or have finished a major activity

phase (Dingsøyr, 2005). Mentoring is suggested to be a logical approach for

transferring important tacit and implicit knowledge (De Long and Davenport,

2003). Story telling can play a valuable role in transferring knowledge to convert

tacit knowledge into explicit knowledge (De Long and Davenport, 2003).

Software engineers in their daily work environment, create projects and product

memory, which are based on their experience (Rus et al., 2002). Experienced

based memory is built on software engineering practices and product memories,

which are an indirect or direct effect of software development. Some examples

include version control systems, change management, documentation design

decisions, and requirements traceability. Interviews in an organisation is a
4A community of practice is a group of people who share a concern or a passion for something

they do, and learn how to do it better as they interact regularly

44

Chapter 2. Literature Review

knowledge transfer process used to integrate the knowledge captured into the

organisation (De Long and Davenport, 2003). Training is another knowledge

transfer practice found to include some combination of formal classroom

training, eLearning, video or computer-based training, on-the-job training,

coaching and shadowing (De Long and Davenport, 2003).

KR practices that are used in organisations to overcome KL due to leaving

employees have been briefly discussed. In contrast to organisations, KR is not

formally practiced in OSS projects. The research community recognises KM in

OSS development as challenging because of its highly distributed, dynamic work

structure, and knowledge-intensive characteristics (Ciborra and Andreu, 2001;

Crowston et al., 2012). KM is one of the social processes and is of potential

importance to manage the knowledge necessary for a successful development

effort in OSS projects (Crowston et al., 2012). “Social processes capture

cognitive, verbal, and behavioural activities performed by team members to

manage interpersonal relationships among them” (Marks et al., 2001).

The research on knowledge management in OSS projects has focused on

knowledge reuse (Dafermos, 2005; Hemetsberger and Reinhardt, 2004; Huysman

and Lin, 2005; Lakhani et al., 2003; Lee and Cole, 2003; Singh et al., 2006;

Von Krogh et al., 2005), cross boundary learning in source communities

(Huysman and Lin, 2005), knowledge sharing involving strategic interaction

(Kuk, 2006), learning theory on knowledge creation and sharing in online

communities (Lee and Cole, 2003), and learning driven by criticism and error

correction and a social view of learning that have overcome problem of tacit

knowledge transformation (Hemetsberger and Reinhardt, 2004). The details are

summarised in Table 2.4 including the name of the KM related activity,

description of study and literature references.

45

Chapter 2. Literature Review

Table 2.4: Summary of Research focus on KM relevant activities in OSS
(Crowston et al., 2012)

Further research is required to explore suitable KR practices applicable in

OSS projects as indicated by one of the questions raised on mechanisms and

team norms that are used to store knowledge contributed by team members. In

CSS organisations KR mainly comes into focus when an employee is leaving an

organisation (Lindvall and Rus, 2003). On the contrary, in OSS projects the

unpredictable nature of commitment from contributors creates an element of risk

(Robles and Gonzalez-Barahona, 2006). In OSS, contributors can leave since they

are not under any contractual binding as in CSS organisations.

In this literature review, it was found that KM relevant activities of

knowledge creation and knowledge sharing are evident in OSS projects as

46

Chapter 2. Literature Review

discussed in the following section 2.11. Furthermore, literature examination

directed the researcher to 10 mitigations to reduce the impact of KL due to

contributor turnover in OSS projects detailed in the following section 2.12.

2.11 Manifestation of Knowledge in OSS Projects

OSS projects are considered an example of GSD (Herraiz et al., 2006). OSS

contributors are scattered globally while working together on projects. They

collaborate on tasks through asynchronous technology mediated channels and

utilise them to acquire and share knowledge. Earlier knowledge in this work is

defined as "experience and expertise built by contributors that evolves from the

day-to-day interaction on the OSS project’". The manifestation of knowledge in

OSS projects is experienced in operations of OSS communities. The knowledge

manifestation in OSS projects can be explained by three categories consisting of

an object of knowledge development, a process of knowledge development, and a

location of knowledge (Venzin et al., 1998). Accordingly, the object of

knowledge refers to procedural knowledge and knowledge of events including

trends within and outside the organisation. Further, the knowledge

development process refers to either cognitive abilities or the knowledge

construction process. The knowledge construction process includes knowledge

creation, sharing, transfer, and its application. Finally, location of knowledge

refers to carriers of knowledge, who can be individuals, groups, organisations,

inter-organisations, and customers. Principally the location of knowledge is an

indication towards tacit knowledge, which requires physical presence.

Availability of tacit knowledge is dependent on its transfer and encoding before

the contributor leaves the organisation. Contributors who participate in OSS

projects with various forms of contributions (Emanuel, 2014) have project

relevant tacit knowledge and are responsible for its transfer and encoding before

they leave the project.

47

Chapter 2. Literature Review

No specific details on Knowledge Transfer (KT) in OSS projects was

identified. Since OSS projects are considered an extreme case of GSD, a paper

found earlier was revisited, and through the SB process that investigated the

mitigation strategy on KT in GSD settings (Nidhra et al., 2013). The paper

enlists mitigation strategies based on personnel, project and technology factors.

Some mitigation strategies similar to the ones listed in section 2.12 were

identified. In order to resolve personnel challenges mitigation strategies applied

are mentoring and shadowing, proactive learning and peer-to-peer help. In

addition, project relevant challenges are mitigated by acquiring knowledge from

community of practice and by maintaining documents and process. Finally,

technological challenges are overcome by using document management systems,

e-mails, wikis, instant messaging, configuration management system web-based

mentoring, and access to a knowledge repository.

The following sections discuss knowledge creation and knowledge sharing as

part of the knowledge construction process in OSS projects, based around

literature found in this review.

2.11.1 Knowledge Creation

Knowledge creation takes place when individuals are collectively working and

interacting on a task and are constantly acquiring relevant knowledge. Nonaka

et al. (Nonaka et al., 2000), explain the knowledge creation process involving

conversion of tacit knowledge to explicit knowledge which is then "crystalized".

The process of knowledge creation is based on four modes of knowledge

conversion: Socialisation, Externalisation, Internalisation, and Combination are

coined as SECI. Socialisation is the sharing of experience and results in the

creation of new tacit knowledge from the existing tacit knowledge.

Externalisation is the conversion of tacit knowledge to explicit knowledge.

Externalisation results in articulated knowledge. Combination is the addition of

the new explicit knowledge to the existing explicit knowledge in the knowledge

48

Chapter 2. Literature Review

system. Internalisation is the conversion of explicit knowledge to tacit

knowledge. In internalisation, knowledge is acquired from artifacts in explicit

form, and new mental models are created resulting in tacit knowledge. The

process of knowledge creation as detailed by SECI, can be used to explore

knowledge creation in OSS projects (Rashid et al. 2017).

Further, two dimensions of knowledge are said to be widely used namely

tacit vs. explicit and individual vs. collective (Nidhra et al., 2013). Individuals

create individual knowledge and it exists with them, while collective actions of

group leads to the creation of collective knowledge (Nonaka, 1994). Furthermore,

founded on the combinations of the two dimensions of knowledge, four types of

knowledge are proposed (Lam, 2000):

• Embrained Knowledge: Individual - Explicit (e.g. theoretical knowledge)

• Embodied Knowledge: Individual - Tacit (e.g. practical experience)

• Encoded Knowledge: Collective - Explicit (e.g. written rules, procedures)

• Embedded Knowledge: Collective - Tacit (e.g. routines, norms)

Knowledge creation in OSS projects differs from the CSS organisation, as

highlighted through five organising principles of the community based model:

intellectual property ownership, membership restrictions, authority and

incentives, knowledge distribution across organisational and geographical

boundaries and dominant mode of communication (Lee and Cole, 2003). In CSS

organisations, the knowledge is owned by the organisation with access given to

employees, the knowledge distribution is within the boundaries of the firm and

mostly with face-to-face communication. On the contrary, in OSS projects, the

knowledge contributions and sharing is open without any membership

constraints, distribution of knowledge extends outside the community, and

interaction of contributors is on a larger scale than in CSS organisations. In

OSS projects, knowledge creation is through social interaction among

49

Chapter 2. Literature Review

individuals and organisations, and it is dynamic in nature (Nonaka and

Takeuchi, 1995).

2.11.2 Knowledge Sharing

In OSS projects, knowledge sharing is an ongoing activity in an intensely

people-oriented and self-organised community (Sowe et al., 2008). Knowledge

sharing is declared as a cognitive task and an OSS team is considered an

example of a complex cognitive system (Chen et al., 2013). Knowledge sharing

is through asynchronous means of communication and with a collection of

artifacts, which are publicly available for reuse (Rashid et al., 2017). OSS

contributors demonstrate their technical competence by actively participating in

mailing-list discussions, reporting bugs and submitting code (Von Krogh et al.,

2003). In a longitudinal study, it was established that core contributors’

knowledge sharing behaviours brings a high level of skills and understanding to

the project teams (Licorish and MacDonell, 2014). Effective knowledge sharing

improves the productivity of the project (Levy and Hazzan, 2009).

Measures of knowledge sharing activities identified with knowledge posting

and viewing are indicators of the good state of health in virtual communities

(Koh and Kim, 2004). Utilising a similar concept of knowledge sharing activities

such as posting and viewing, the Knowledge Sharing Model (KSM) in Figure

2.10 is developed, by analysing e-mail exchanges in Debian projects among a list

of participants (Sowe et al., 2008). The KSM model follows a constructivist

approach, which stresses the active and autonomous role of the learner and

knowledge is constructed based on the learner’s interaction with the learning

environment while prior knowledge impacts the learning process (Sowe et al.,

2008).

50

Chapter 2. Literature Review

Figure 2.10: Knowledge Sharing Model (KSM) (Sowe et al., 2008)

The model uses a simple measure of two values consisting of e-mail messages

posted by knowledge seekers and the number of replies posted by knowledge

providers. The analyses of knowledge sharing trends and information contained

in e-mails can be utilised to identify what kind of knowledge exchanges are

happening in the contributors’ community. Moreover, the number of

contributions made on the project can determine the expertise level of the

group responding to knowledge seekers.

A study on the schema of information types sought in OSS mailing lists

asserted that mailing lists are a strong representative of communication in

OSSand offer an insight into information seeking needs (Sharif et al., 2015).

The findings suggest that 42 percent of information sought on mailing lists is on

understanding task implementation and understanding bugs. Mailing lists are a

primary source of communication in OSS where knowledge sharing is abundant

(Sowe et al., 2008). Programmers never meet face to face but coordinate all

their activities (Mockus et al., 2002). In an OSS project, a mailing list is

reported to have a multidimensional construct including knowledge

differentiation, knowledge location and knowledge credibility (Chen et al. 2013).

51

Chapter 2. Literature Review

Knowledge differentiation refers to the extent of specialisation in different

knowledge domains, knowledge location is about who knows what, and

knowledge credibility is assessed by the task performance of individual

developers.

Gamification (Yilmaz et al., 2016) is another emerging form of knowledge

sharing in OSS communities (Vasilescu et al., 2014). The community members

vote upon the questions and answers posted on a site, the numbers of votes

reflect the poster’s reputation and a measure of his or her expertise by the

potential employer. A gamification element on sites is found to have increased

the engagement of the participants and popularity of the site. In OSS

communities, gamification is argued to provide a better visibility of contributors

activities (Vasilescu et al., 2014).

The social media sites also serve for contributors to learn, collaborate, share

knowledge and interact with users of software (Vasilescu et al., 2014).

Contributors contribute on software development sites such as GitHub for

coding, Jira to track issues, StackExchange network for open query submission

and response, StackOverflow for professional programmers and CrossValidated

for statisticians and data miners. Blogs are also considered an effective way of

sharing knowledge due to easier access to the internet (Hsu and Lin 2008).

Knowledge is also stored in repositories namely: Concurrent Versions System

(CVS), Subversion (SVN), Frequently Asked Questions (FAQs), project

websites, blogs, bug reporting and bug tracking databases (e.g. Bug Tracking

System BTS) and mailing lists (Sowe et al., 2008). Figure 2.11 summarises

primary studies in a mind map on literature that discusses knowledge creation

and knowledge sharing in OSS projects.

52

Chapter 2. Literature Review

Figure 2.11: Mind map of the knowledge creation and sharing in OSS projects

2.12 Knowledge Retention in OSS Projects

The examination of selected literature on KL in OSS projects resulted in themes

including mitigation of KL in OSS projects. A body of researchers from the

software engineering community have focused on the impact of turnover in OSS

projects and have highlighted some ways to alleviate its effect, referred as

mitigation techniques at this point of research. The identified mitigation

techniques are discussed in this section.

A) Visualisation of Resources - A visualization word cloud has been

proposed to show quickly the level of cooperation of the team in the project

(Fronza et al., 2013). A large variety of data collection is without human

intervention and rendered as a Wordle. Intensity of colour and size of the letter

in a Wordle indicate a need for resources. A Visualization word cloud does not

cause overhead on the productivity of the contributors.

B) Pair Programming and Shared Code Ownership - In order to

mitigate the effects of turnover on the ecosystem, the usage of techniques such

as pair programming and shared code ownership are suggested (Mens, 2016).

C) Successor - A successor is a person who has relevant expertise and is

53

Chapter 2. Literature Review

knowledgeable on the work of other contributors. Identification of successors and

involving them as co-owners is presented as a method to reduce the risk associated

with developer turnover (Rigby et al., 2016). The files with a successor were not

at risk of abandonment even when the owning developer left. A successor was

there to perform maintenance tasks (Rigby et al., 2016).

D) Centralisation - Governance structures in Ericsson is argued to be

similar to OSS, and a centralised approach is implemented to secure quality

(Britto et al., 2016). The situation of KL faced was because of the recurrent

movement of resources in and out of products and constantly changing business

needs. In such a situation, the adoption of a centralised approach helped in

architectural knowledge stability and its availability to new developers and

teams.

E) Removal of Knowledge Barriers - Only a few OSS contributors transit

to a higher learning state, due to high learning barriers. Consequently, it can take

newcomers up to 60 weeks to become an effective contributor to a OSS project

(Adams et al., 2009). Knowledge retention in OSS projects can also be improved

by the removal of knowledge barriers: namely, lack of technical experience, lack

of domain expertise and lack of project practices that hinder the contributions

(Steinmacher et al., 2015a,b).

F) Knowledge Map and TMS - An insight into the area of expertise

members, a knowledge map or directory can be used on the project website

(Chen et al., 2013). Organizations such as IBM have used such a directory as

their internal knowledge portal. In order to leverage OSS project teams, a focus

is required towards facilitating the TMS development within the teams, based

on knowledge location, the usage of the developer mailing list and knowledge

credibility (Chen et al., 2013). These dimensions are reported to have positive

effects on communication quality, improving team performance and reduce the

impact of turnover.

54

Chapter 2. Literature Review

G) Diversity of Core Contributors - For an OSS project to survive, a

diversity of core developers is required (Wahyudin et al., 2007). When a key

contributor abandoned an OSS project, it revealed a very fluctuating proportion

of developer contribution. A significant imbalance between the contribution and

the response from the developers’ community was noticed. The reason for the

dying project was that a diversity of core contributors were missing from the

project (Wahyudin et al., 2007). Diversity of core contributors also relates to the

underlying concept of uniform knowledge distribution stated next.

H) Uniform Knowledge Distribution: - The communication of the OSS

project is directed by the core contributors. Their attitudes and involvement in

knowledge sharing were linked to the demands of their wider project teams

(Licorish and MacDonell, 2014). The core contributors bring high levels of skills

and cognitive characteristics to their project teams. They start the project and

provide high levels of ideas, suggestions, information, comments, instructions

and answers to their teams, and are the centre of their project’s knowledge

activities. The more code changes, core developers perform, the more knowledge

they provide (Licorish and MacDonell, 2014). However, their least involvement

in communication and task changes results into some negative team attitudes.

This kind of disruption in communication in OSS projects can hinder knowledge

sharing. Another resolution to the non-uniform distribution of knowledge may

be the proactive assignment of maintenance tasks on the code written by other

contributors. As indicated that contributors who modify codes from other

contributors stay longer on the project (Lin et al., 2017). This will create a

balance of equal development of skills on the OSS project. For example,

contributors who normally perform documentation tasks should be assigned

some coding tasks.

I) Gamification - A gamified environment has important implications for

knowledge management in software engineering (Vasilescu et al., 2014) and OSS

projects. As observed, Q & A gamification increased the engagement of

55

Chapter 2. Literature Review

knowledge providers and the quickness of response. This finding suggests that Q

& A site designers should consider gamification elements to increase contributor

engagement, which indirectly can help to raise the popularity of their sites. For

example, gamification features in Stack Overflow’s guarantee that a question

will be replied to by enthusiastic experts within minutes of being posted

(Zagalsky et al., 2016). On Stack Overflow, a crowd approach is used where

participants contribute knowledge independently of each other and gamification

qualities are used to evaluate who provides the best answer, gains the most

points (Zagalsky et al., 2016). Knowledge is curated in gamification other than

being developed, as is the case with mailing lists. Curation is a mechanism to

provide a tool for keeping the channel clear of what seems to be unnecessary

information (Zagalsky et al., 2016).

J) Improving Code Review Feedback Time for non-Cores - Peer

reviews are conducted asynchronously in OSS projects to empower experts who

provide feedback to code contributors (Rigby et al., 2014). As indicated by a

social network analysis of the code review data from eight popular OSS

projects, core developers as compared to peripheral contributors have the

benefit of receiving quicker feedback, face shorter review intervals and have a

higher code acceptance rate (Bosu and Carver, 2014). Due to the lack of an

established reputation, peripheral developers wait 2 to 19 times (or 12 to 96

hours) longer than core developers to complete the review process. Accordingly,

a delay in receiving feedback on reviews may negatively motivate a peripheral or

new contributor (Bosu and Carver, 2014). An improvement to the timings of

the review feedbacks in OSS projects to peripherals can result in a uniform

distribution of knowledge, reduce the effects of turnover, and motivate

newcomers to stay for a longer duration.

This section explained the manifestation of knowledge in OSS projects using

the knowledge construction process mentioned in section 2.11. It was found that

in OSS projects, knowledge creation, and knowledge sharing is abundant through

56

Chapter 2. Literature Review

asynchronous communication. Section 2.12 discussed 10 mitigation techniques to

reduce KL in OSS projects visualised as a mind map in Figure 2.12.

Figure 2.12: Mind map of mitigation approaches to knowledge loss in OSS
projects

In the literature relating to OSS projects the emphasis is on the retention of

contributors (Constantinou and Mens, 2017a; Schilling et al., 2012), the

stability of contributors (Lin et al., 2017; Rastogi and Sureka, 2014; Robles and

Gonzalez-Barahona, 2006), reducing the associated risks by identifying

successors to the maintenance task (Rigby et al., 2016) and effects of turnover

mainly on quality and productivity (Foucault et al., 2015; Izquierdo-Cortazar

et al., 2009; Qin et al., 2014; Rigby et al., 2016). One study also reflected on the

behaviour of the contributors in OSS projects (Garcia et al., 2013), the presence

of negative emotions before contributors leave.

In CSS projects, the contributors with different roles such as developers,

analysts, and testers are bound by legal contracts that ascertain that they

manage conflicts and demonstrate a certain level of collaboration. In OSS

projects, the transient nature of contributors means they may not cooperate

well if confronted with conflicts or when they are not motivated (Garcia et al.,

2013). Furthermore, in OSS projects, the review found no evidence of specific

rules or formal process for the initiation of KR process before a contributor

leaves.

Typical strategies for KR in CSS are reactive in nature. These strategies

57

Chapter 2. Literature Review

include knowledge capture and storage by codification, conducting interviews

and identifying lessons learned or best practice from projects that departing

employees made contributions to (Daghfous et al., 2013). The outcome of these

strategies captures a small portion of the knowledge created, acquired and used

in the workplace (Daghfous et al., 2013). Similar to CSS, the knowledge sharing

in OSS projects is reactive. The contributors ask for information when required

through the asynchronous means of communication. In OSS projects, proactive

knowledge retention practices are required that resonate with the work

environment and are non-intrusive, non-invasive, without any overhead on the

productivity of contributors, and promise freedom to practise by free will.

While elaborating knowledge collaborations in social media communities,

emphasis is on two stages, the creation stage when information is developed and

formed, and the retention stage when the created information is preserved and

refined through ongoing collaboration (Ransbotham and Kane, 2011).

Contributor turnover is ongoing even after the community has a successful

collaboration, it is suggested that social media communities must create and

retain knowledge (Ransbotham and Kane, 2011). In the case of OSS

communities, it can be implied that KR is also a result of a two-stage process,

where the first stage is about knowledge creation and the second stage enables

the retention practices to manage knowledge.

The knowledge gap created due to turnover of contributors in OSS projects

indicates missing KR practices. In Figure 2.12, ten mitigation techniques to

reduce KL are highlighted. Nine of these mitigation techniques focus on the

practices that can be followed in OSS projects. For instance, improving the

timing of feedback would be beneficial to boost the intrinsic motivation of

non-core contributors and achieve uniform knowledge distribution on projects.

The knowledge management literature emphasizes intrinsic motivation in

promoting employees’ knowledge sharing due to its consistently positive and

lasting effect (Pee and Lee, 2015). The practice of gamification is another way

58

Chapter 2. Literature Review

to share knowledge but also has implications for extrinsic motivation. The

prospective employer will choose the contributor with the best answer to a

question. Knowledge Management in OSS projects is considered a challenging

task. Abundant knowledge sharing was found but not any specific practices for

KR in OSS projects. The concept of health metrics is proposed for stakeholders

to assess whether a project initiative is likely to be sustainable and is worth

supporting (Wahyudin et al., 2007). A status overview of health in OSS

projects is evaluated from the project data available on web repositories. KM

should be one of the evaluation factors to assess the knowledge sharing

activities of OSS projects for their sustainability in the future. The field might

benefit from additional metrics for KM evaluation in OSS projects, similar to

the ones provided to evaluate the health of OSS projects such as developer and

user community liveliness, product quality by using defect management of open

issues and service delays, communication through number of downloads mailing

lists posts and response rate.

2.13 Chapter Summary

The objective of this literature review was to understand the phenomenon of

KL due to contributor turnover in OSS projects. In order to understand the

phenomenon of KL in OSS projects, a literature review using SB as a search

strategy was employed. The review identified 38 papers after filtering from a

large number of papers (more than 2000) in a comprehensive search. The papers

spread over the period of the year 2000 to 2017. The majority of the papers

employed empirical methods as their research methods. This review identified 10

impacts from KL and 10 mitigation techniques to overcome KL in OSS projects

OSS projects are considered an extreme case of global software engineering

with dynamic, dispersed, and transient contributors collaborating through

technologically mediated channels. In comparison to contributors in CSS

59

Chapter 2. Literature Review

organisations, contributors in OSS are not contractually bound. To perform

maintenance tasks on OSS projects, knowledge is acquired using asynchronous

communication where the knowledge seeker asks questions. Delays incurred

acquiring certain kinds of knowledge to perform various tasks impacts the

productivity of the contributor and the overall project. Further, the lack of

knowledge results in poor quality code and increases the number of defects in

the code repository.

Organisations invest in KM activities to organise, create, share, reuse,

transfer, and retain knowledge. Knowledge sharing was found to be abundant

but there was no evidence of knowledge retention to reduce the impact of KL in

OSS projects. Moreover, knowledge sharing is reactive in nature, initiated by

the contributor while looking for task-relevant knowledge. This suggests that

there is insufficient attention paid to KM in general in OSS, in particular, there

would appear to be an absence of proactive measures to reduce the potential

impact of KL. This is the finding of the robust literature review employed, it

has enabled a complete response to Research Question 1, and it justifies further

research effort to identify proactive knowledge retention practices for OSS

projects.

This chapter identified that phenomenon of KL exists in OSS projects and

currently there is no existing mechanism for KR in OSS projects. In the

following chapter a research methodology is presented to further investigate the

gap identified in this literature review of non-existing KR mechanisms to reduce

KL in OSS projects.

60

Chapter 3

Research Methodology

3.1 Introduction

This chapter discusses the research methodology contributing to the formation

of proactive knowledge retention practices in OSS projects to transform

contributors’ use of knowledge, and engagement in knowledge relevant activities

including knowledge sharing and knowledge transfer. The research methodology

presented in this chapter is already published in (Rashid et al., 2018) which was

extended as an invited journal publication (Rashid et al., 2019a). The text of

this chapter largely mirrors the text and content of these previously published

artefacts which were completed as part of this research work.

This chapter discusses the research methodology designed to investigate the

research question RQ2 detailed in chapter 1 section 1.4 and reiterated here:

RQ2. What are the effective knowledge retention practices in OSS

projects?

In order to investigate RQ2, the following two sub-questions need to be answered,

which are reiterated as follows:

RQ2.1 How can a comprehensive set of knowledge retention practices

be developed for OSS projects?

RQ2.2 How can effectiveness of knowledge retention practices be

evaluated in OSS projects?

61

Chapter 3. Research Methodology

The chapter is structured as follows: section 3.2 entails the OSS project

structure, section 3.3 describes philosophical concerns in research, section 3.4

discusses different research designs and one for this research including data

analysis and validity concerns. Section 3.5 explains the empirical implication of

this research. Finally, section 3.6 summarises the chapter while recollecting the

important details.

3.2 OSS Project Structure

Contributors in OSS projects interact on technology-mediated channels to acquire

and to share knowledge such as mailing lists, forums, and Internet Relay Chat

(IRC). The contributors who are skilled and experienced on a specific module

of the project may not explicitly share their acquired knowledge and on their

leaving, the project suffers the knowledge gap. In contrast to contributors in

OSS projects, employees in traditional organisations may be under contractual

obligation to notify their employer before leaving the organisation and to fulfil a

notice period during which knowledge transfer concerns can be addressed. The

workforce in OSS projects is of a transient nature due to inevitable turnover

(Michlmayr, 2007b; Xu, 2006; Yu et al., 2012) and further, departing contributors

may not provide notice and in an instant, may no longer be available for the

purpose of knowledge transfer activities.

OSS projects have a hierarchical onion-like structure, consisting of core,

co-developer, active users, and passive users (Crowston et al., 2004; Crowston

and Howison, 2005; Mockus et al., 2002). The knowledge distribution in OSS

projects is not uniform (Rigby et al., 2016). A small subset of contributors,

typically 20%, called core members, make major code contributions of about

80% in OSS projects (Mockus et al., 2002). Absence of a contributor who is the

original owner of the files or system on the project to perform maintenance

tasks results in risking files to abandonment (Rigby et al., 2016). As depicted in

62

Chapter 3. Research Methodology

Figure 3.1 of the onion model, knowledge distribution in OSS projects is

non-uniform with a higher concentration of code contributors in the centre of

the onion than in the outer layers. The focus of this research is on the uniform

distribution of knowledge among contributors, by the introduction of continuous

knowledge transfer practices, which this work refers to as a proactive knowledge

retention practices in OSS projects.

Figure 3.1: Onion model representing contributors in OSS projects users
(Crowston et al., 2004; Crowston and Howison, 2005; Mockus et al., 2002)

3.3 Philosophical Background

Worldviews provide a general philosophical direction to research with common

elements having different stances (Creswell and Clark 2011). Philosophical

worldviews shape the approach taken for research by influencing research

designs and research methods (Creswell 2014). Worldviews differ in: ontology

which is the nature of reality; epistemology which refers to how we gain

knowledge about what we know; axiology which explains role of values in

research; methodology determines the process of research; and rhetoric is the

language of research (Lincoln et al. 2011). The three worldviews reflected as

63

Chapter 3. Research Methodology

different philosophical concerns in research are positivism (also called post

positivism), interpretivism, and pragmatism. Underlying philosophical concerns

further determine the selection of the research method to conduct any research.

3.3.1 Positivism

The positivists advocate in the quantification of their learning through numbers

and the use of statistical equations to predict human behaviour (Rubin and

Rubin, 2011). A positivist believes that social life is pretty stable and constant

(Denzin, 1973). In such an approach, if the learning of a concept is not possible

through quantifiable methods it is generally ignored. The positivists extract

simple relationships from a complex real world in numbers without considering

the context (Denzin, 1973). Positivists stress on deterministic philosophy,

reductionism, observation and measurement, and theory verification (Creswell,

2014). In deterministic philosophy, causes determine the effects or outcomes.

Reductionism is about reducing ideas into small discrete tests consisting of

variables based on hypothesis and research questions. Knowledge development

by positivist is through observing and measuring objective reality in numbers,

and by verification of laws and theories that govern the world.

3.3.2 Interpretivism

Interpretivist focuses more on human thoughts and actions in social and

organisational contexts (Klein and Myers, 1999). Interpretivists (also called

constructivists) believe in understanding the context and meaning by taking

into account the real setting of the world in which they live and work.

Interpretivist led research tends to develop subjective, varied, and multiple

meanings about an object enabling them to unfold complex views, which are

collected from many participants on the situation being studied (Creswell,

2014). Interpretivist in an open-ended questioning, a researcher carefully hears

64

Chapter 3. Research Methodology

all views of participants and shapes their interpretation from cultural and

historical experiences (Creswell, 2014). Moreover, the outcome of a research led

by an interpretivist generates or inductively develops a theory or pattern of

meaning (Creswell, 2014).

3.3.3 Pragmatism

The third philosophical perspective, pragmatism, advocates an alternative world

view to positivism and interpretivism and primarily focuses on the problem to

be researched and the consequences of the research (Creswell and Clark, 2011).

Pragmatism offers a middle position or mixed methods research movement with

a practical and outcome-oriented method of inquiry based on action and leads

by enabling researchers to have better answers to their research questions

(Johnson and Onwuegbuzie, 2004). Pragmatism is about adopting a research

approach that strikes a balance between positivism and interpretivism.

Pragmatism takes a value-oriented approach to research and reach an agreement

about importance of culturally derived values and desired conclusion (Johnson

and Onwuegbuzie, 2004). Pragmatism as a worldview arises out of actions,

situations, and consequences rather than preceding conditions. Instead of

focusing on methods, researchers place a greater emphasis on the research

problem and use all approaches available to understand the problem (Rossman

and Wilson, 1985). Pragmatism as a philosophical underpinning for mixed

methods studies, focuses attention on the research problem and uses pluralistic

approaches to derive knowledge about the problem (Tashakkori and Teddlie,

2010) and is concerned with real-world practice. The three philosophical

concerns with their main characteristics are summarised in Table 3.1.

65

Chapter 3. Research Methodology

Table 3.1: Three philosophical concerns

3.3.4 Research Philosophy Adopted

The philosophical position adopted in this research is that of pragmatism, with a

focus on the research problem and enabling empirical research to find answers to

the research questions presented in chapter 1. The pragmatist worldview reflects

the direct action oriented approach of a researcher towards the investigation of the

research problem at hand. This research would benefit by adopting pragmatism

and approaching the problem by understanding it in a practical manner and

by using multiple methods in research. As explained earlier in chapter 1, the

goal of this research is to reduce KL by identifying KR best practices through

systematic study and by engagement with practitioners. The identification of an

overarching set of knowledge retention best practices requires understanding of

the phenomenon and exploration in real life with multiple contexts and with the

ability to quantify the concepts. The view taken in this research is that of taking a

middle position between two extremities of being a positivist or an interpretivist.

Solely being an interpretivist or positivist is inadequate in terms of addressing

the objective of this research. The insights provided by the use of qualitative

and quantitative research in a mix method can be integrated into a workable

solution under pragmatism with an understanding that goal of mixed methods

research is not to replace either qualitative or quantitative approach but to use

their strengths and minimize the weaknesses of both in single research studies

and across studies (Johnson and Onwuegbuzie, 2004).

66

Chapter 3. Research Methodology

3.4 Research Methodology and Methods

The terms research methodology and research methods are at times used

interchangeably. Research Methodology is defined as "the collection of methods

or rules by which a particular piece of research is undertaken" and as the

"principles, theories and values that underpin a particular approach to

research" (Somekh and Lewin, 2005). Another definition states: "methodology

is the overall approach to research linked to the paradigm or theoretical

framework" (Mackenzie and Knipe, 2006). In general, research methodology is a

systematic approach to achieve particular goals of the research. Research

designs under each research approach provide specific directions and guidelines

to conduct research (Creswell 2014).

The research method refers to "systematic modes, procedures or tools used

for data collection and analysis" (Mackenzie and Knipe, 2006). A method is

mainly a set of principles through which empirical data is collected and analysed

(Easterbrook et al., 2008). Research methods can be classified as qualitative,

quantitative or both (Wohlin et al. 2003). The three types of research designs

are quantitative (section 3.4.1), qualitative (section 3.4.2), and mixed methods

(section 3.4.3).

3.4.1 Quantitative Research

"The quantitative research mainly focus on deduction, confirmation, theory or

hypothesis testing, explanation, prediction, standardized data collection, and

statistical analysis" (Johnson and Onwuegbuzie, 2004). Quantitative research is

based on the use of statistical methods and establishes relationships between

variables (Runeson and Höst, 2009) or quantifies a relationship by comparing

two or more groups (Creswell, 2014). The aim is to identify a cause-effect

relationship. Quantification is the confirmation of a hypotheses rather than the

formation of the hypothesis (Sharif et al., 2015). Quantitative research employs

67

Chapter 3. Research Methodology

numbers to capture or describe some phenomenon but may be limited in the

sense that it can miss (or overlook) certain important information (Rubin and

Rubin, 2011). The strategies of inquiry employed in quantitative research are

experimental designs such as true experiments and quasi-experiments, and

non-experimental design such as surveys (Creswell, 2014).

• Experiments determine that if special treatment to a group can influence

an outcome. Controlled experiments are quantitative in nature since they

measure different variables and attain varying results. The variables are

repetitively changed and measured again (Wohlin et al., 2003). The

variables to be measured in quantitative research are identified based on

the theory (Easterbrook et al., 2008). In controlled experiments a cause

and effect relationship is studied by manipulating independent variables

and observing the effect on dependent variables (Easterbrook et al., 2008).

Controlled experiments are sometimes referred to as research in small

(Kitchenham et al., 1995) and have a limited scope. The controlled

experiments have a fixed design and the procedure to run an experiment is

a formal one. Experiments are not a suitable research method for this

work. The goal of this research as described in chapter 1 is to find best

KR practices in OSS projects and to evaluate them for their effectiveness.

The study of cause and effect relationship or intervention caused by

changing variables to determine the influence on the outcome, does not

resonate with the goal of this research.

• The primary means of gathering data are interviews or questionnaires

which are sent to a large number of representing population (Wohlin

et al., 2003). When conducting a survey, a sample of a representative

population is selected based on criteria and results may be generalised for

the sample population. The survey has to be designed carefully ensuring

that the questions are understandable by the participant and the data

68

Chapter 3. Research Methodology

collected from the target population is valid and useful in servicing the

hypothesis exploration and research questions. In this research

questionnaire does meet the requirement of collecting data from a large

number of practitioners in OSS projects to determine the effectiveness of

KR practices.

Quantitative research focus on data collection that is largely of a numeric

type and the required information is specified in advance and data is gathered

using scaled instruments while interpretations are made on the basis of the

statistical results (Creswell, 2014). The use of a questionnaire most likely

includes a numerical rating scale for quantitative data collection (Johnson and

Onwuegbuzie, 2004). In order to collect data, researchers can employ an

instrument or test, which has a set of questions to evaluate the confidence

towards an approach, or use checklist to identify and observe people involved in

some task (Creswell, 2014). The specific questions asked from the participants

are predetermined based on a set of variables. In this research a survey

instrument detailed in chapter 5 has been employed to collect the qualitative

data.

3.4.2 Qualitative Research

Qualitative research refers to the study of objects in their natural setting

(Wohlin et al., 2003). A qualitative researcher tries to understand the causes

while interpreting a phenomenon by accepting that there are multiple

interpretations of the explanations given to them by the subjects in the study

(Denzin and Lincoln, 2011). In qualitative research the subject is the person

who participates in the study to evaluate an object and tends to interpret and

understand a range of different views of the subjects on the concerned problem

at hand (Wohlin et al., 2003). Case studies, ethnographies, post-mortem

analysis, action research (Shull et al., 2008), phenomenology, grounded theory,

and narrative (Creswell, 2014) are primarily qualitative in nature.

69

Chapter 3. Research Methodology

• A case study investigates a contemporary phenomenon in a real life context

and the control is lower than with experiments. Case studies provides the

richer and deeper description of the studied phenomenon (Runeson and

Höst, 2009). A case study is an observational study on an ongoing project,

while experiment is a controlled study (Easterbrook et al., 2008). It has

been noted that case studies can combine data collection by using methods

such as interviews, questionnaires, archives, and observations (Eisenhardt,

1989). Similarly, a case study can also embed other research methods e.g.

a survey may be conducted within a case study (Runeson and Höst, 2009).

The use of mixed method approach explains that survey can be used within

a case study (Yin, 2013). In this research, case study can be a candidate

research method for investigation. The case study requires selection of some

OSS projects in order to find KR practices and send questionnaires to OSS

contributors. The goal of the research is to design KR practices and attain

feedback from OSS contributors on the effectiveness of KR practices and it

should not be limited by the selection of certain OSS projects than others.

• The post-mortem analysis method helps to learn from past experience and

improve software development process by consulting the projects’

documents and interviewing people who were involved with the object

under analysis, for example, a project (Wohlin et al., 2003). A

post-mortem is normally conducted close to finish an activity or project

and analyses can be performed for projects that are still underway using

this retrospective approach (Wohlin et al., 2003). Post-mortem research

limits the selection of OSS projects and is not considered as a research

approach in this work.

• Ethnography is another research method applied in a participant-observer

manner (Shull et al., 2008). The researcher participates with the team

members to observe and understand the social interaction taking place in

70

Chapter 3. Research Methodology

the community (Easterbrook et al., 2008). Employing ethnography again

limits the researcher to interact with only limited number of OSS

contributors to design KR practices. The results on the effectiveness of

KR practices will only be from a small number of OSS contributors, which

are not sufficient to meet the goal of this research.

• In action research, the researcher applies an iterative problem solving

approach to a current situation to improve it (Easterbrook et al., 2008).

The action research method requires an agreement from the problem

owner(s) to collaborate and identify the problem. Further, the problem

owner(s) should be involved to solve the problem (Easterbrook et al.,

2008). Action research is not considered to be a suitable research

approach for this work considering the limitations imposed on the

researcher to find specific OSS project for collaboration. Every OSS

project is different in work setting, domain, and varies in rules and policies

implemented. It is not feasible for the researcher to find enough projects

to design KR practices or find adequate number of OSS contributors to

evaluate KR practices.

• Narrative research is a design from humanities where the researcher asks

one or more than one individual to share stories of their lives (Riessman,

2008). This information is then retold in the form of a narrative in

chronological order (Creswell, 2014). The narrative combines life view of

an individual shared as stories with those of the researcher’s life as a

collaborative narrative (Costantino, 2001). Narrative research does not

fulfil the goals of this research to design KR practices or to evaluate their

effectiveness in OSS projects.

• Phenomenological research is a design originating from philosophy and

psychology where the researcher describes the experiences of participants

about a phenomenon as provide by participants (Creswell, 2014). The

71

Chapter 3. Research Methodology

details provided on experiences of several participants about a

phenomenon develops into a core description of a phenomenon under

study (Creswell, 2014). Phenomenological design strongly underpins the

philosophical attributes of a research topic and involves conducting

interviews (Giorgi, 2009). This work does relate to phenomenological

research aspects by inquiring OSS contributors of their experience through

survey interviews in the form of a questionnaires.

• Grounded theory is another qualitative research design of inquiry from

sociology, which facilitates the researcher in deriving a general, abstract

theory about a process, action, or interaction grounded in the views of

participants (Creswell, 2014). The data collection involves using multiple

stages until a data saturation point is reached and no new information is

found, the data refinement is through interrelationship of categories of

information (Strauss and Corbin, 1998). The principles of Grounded

Theory are employed, during the analysis of the qualitative data using

coding, memoing and constant comparison (chapter 4, section 4.5 and 4.6)

to develop PKR canonical model. The development process of the PKR

canonical model is detailed in chapter c4 section 4.2.

Surveys, case studies and post-mortem analysis can be classified as both

quantitative and qualitative based on the design of the investigation (Wohlin

et al., 2003). The survey can be qualitative or quantitative based on the

questionnaires design, type of data and application of any statistical methods

(Wohlin et al., 2003). Survey conduction can be in retrospect or can be

launched before the execution of a project where the objective is to get some

ideas of the outcome of the forthcoming project (Wohlin et al., 2003).

Data collection in qualitative research involve observing the behaviour of

individuals and conducting interviews with individuals where they can talk

about a topic openly mostly without the use of specific questions. The

72

Chapter 3. Research Methodology

information in qualitative data collection emerge from the participants of the

study with the data in textual form or recordings (Creswell, 2014). Researchers

make interpretations from the themes or patterns that emerge from the data.

Qualitative research theory may be applied after the data collection while

following the process of coding (data analyses by labelling and categorising)

(Easterbrook et al., 2008).

3.4.3 Mixed Methods Research

“Mixed methods research is formally defined as the class of research where the

researcher mixes or combines quantitative and qualitative research techniques,

methods, approaches, concepts or language into a single study” (Johnson and

Onwuegbuzie, 2004). Mixed methods involves combining qualitative and

quantitative research by the collecting qualitative data, which is open-ended

and without predetermined responses, and quantitative data, which is

closed-ended in nature and the selection of responses is from predetermined list

of answers (Creswell, 2014). The mixed methods are valued and thought to

neutralize the weakness and bias that arises in research by the usage of just one

method (Creswell, 2014).

Mixed methods design can vary based on the combination of quantitative and

qualitative research as depicted in Figure 3.2. Design 1 and 8 are mono method

designs with the use of only one research method decided with research objectives

and carried throughout the data collection and analysis stage. The mixed-model

designs are depicted by design 2, 3, 4, 5, 6, and 7.

73

Chapter 3. Research Methodology

Figure 3.2: Monomethod (1 and 8) and mixed-model designs (2 to 7) (Johnson
et al., 2007)

The mixed method data collection comprises of both types of data quantitative

and qualitative, to measure the concepts, parallel variables, or constructs, under

study and have the following characteristics (Creswell, 2014):

• Both kinds of data is collected such as qualitative, which is open-ended and

quantitative, which is closed-ended data to investigate research questions

or hypotheses.

• The qualitative and quantitative data analysis is conducted for both types of

data. The procedures for both qualitative and quantitative data analysis are

detailed to perform analysis with adequate sampling, sources of information,

data analysis steps.

• The qualitative and quantitative data are integrated during the analysis

through merging the data, connecting the data, or embedding the data.

• The mixed method also incorporates the timing of both types of data

collection such as concurrent or sequential and the proportion of each type

of data collection such as equal or unequal.

74

Chapter 3. Research Methodology

3.4.4 Research Design Adopted - Mixed Methods Research

The pragmatist worldview adopted in this research lays the foundation to the

research methodology including the research design. Pragmatically inclined

researchers focus more on the desired outcomes and solution to the problem.

Mixed methods research applies pragmatist system of philosophy where "the

researcher mixes or combines quantitative and qualitative research techniques,

methods, approaches, concepts or language into a single study" (Johnson and

Onwuegbuzie, 2004).

In this work, mixed method research is employed to investigate the research

questions stated in section 1.1 and reiterated in the begining of this chapter.

The objective of this research is to systematically investigate knowledge loss and

mitigate its implications in OSS projects. The goal is to reduce KL by

identifying knowledge retention best practices through systematic study and by

engagement with practitioners. Mixed method research emerges from

pragmatism, a worldview that offers to combine the positivist view of

quantifying the object of research and the interpretivist view of interpreting

different meaning associated with it. Therefore, both research types, qualitative

and quantitative, which merge in mixed method research design, serve the

purpose of understanding the phenomenon of knowledge retention in OSS

projects and generalizing the results to a larger community of OSS projects.

This research adopts a mixed method approach with qualitative and

quantitative data collection and an independent data analysis for each data

type. The findings from analysis will be merged to understand and elaborate

the phenomenon of proactive knowledge retention in OSS projects. There are

five major rationales related to the decision of researchers to conduct mixed

method research (Johnson et al., 2007):

• Triangulation is validation of results obtained from different methods and

designs while studying the same phenomenon

75

Chapter 3. Research Methodology

• Complementarity is the explanation, enhancement, illustration, and

clarification of the results obtained from one method with the results from

the other method

• Initiation is the reframing of the research question by discovering

inconsistencies and contradictions

• Development of method by using the findings from one method to update

the other method

• Expansion is extending the range of research by using different methods for

different inquiry components

In this research, the rationale of using mixed method research is related to

triangulation, complementarity, and expansion. Using qualitative and

quantitative methods will facilitate a triangulation of results from different

perspectives on the phenomenon of knowledge retention in OSS projects.

Complementarity will further play an essential role to use one method to

elaborate and clarify the results obtained from the other method i.e.

complementing the results of quantitative methods with the help of the

qualitative method. Using different methods for different inquiry components

will also expand the breadth and range for descriptive research. At a practical

level, mixed methods has its strength, for utilising both qualitative and

quantitative research to overcome the limitation of each approach; at a practical

level the mixed method approach is complex and sophisticated; and at a

procedural level, a mixed method approach provides offers the potential to

establish a more rounded understanding of the problem (Creswell, 2014).

The data collection for this research adopts mixed methods that involve both

data types, i.e. qualitative data and quantitative data. The data collection

for the purpose of developing PKR canonical model involves qualitative data.

Further, to evaluate the PKR canonical model a survey instrument is employed

for qualitative and quantitative data collection. The purpose of data collection

76

Chapter 3. Research Methodology

using the survey is to evaluate the proposed set of practices in proactive knowledge

retention canonical model for their effectiveness and improvement based on the

feedback from the OSS community. The PKR canonical model itself is developed

following a rigorous process, the development process is entailed in chapter 4

section 4.2. The data collection to develop PKR canonical model is through the

selection of data components entailed in section 4.3. The PKR canonical model

forms the basis to develop survey instrument to be employed for data collection

from contributors in OSS projects as discussed in chapter 5.

The quantitative and qualitative data collection through survey instrument

is performed in parallel. Rather than using one type of data collection the

combination of both quantitative data (close-ended questions) and qualitative

data (open-ended questions) overcomes the weakness arising from the use of

only one data type.

3.4.5 Data Analysis

The textual data collected for the development of PKR canonical model is

analysed based on the Grounded Theory techniques of coding, memoing, and

constant comparison further explained in chapter 4, section 4.5. For the

qualitative and quantitative data collected through survey, there are different

possible ways to analyse the data. The data collections can be merged by a

side-by-side comparison, by transformation procedure or by table or graph

(Creswell, 2014). In side-by-side comparison, the results from both types of

data collection are reported separately and then findings are compared. In

transformation procedure, the qualitative data is transformed to quantitative

data by changing the qualitative themes into quantitative variables. The two

types of data collection can also be merged in the form of tables and graph

while displaying both forms of data and merging them in a single visual. This

research adopts side-by-side comparison and analyse the qualitative and

quantitative data collections separately and then results will be combined to

77

Chapter 3. Research Methodology

incorporate the feedback from OSS contributors into PKR canonical model.

Table 3.2 summarises the three types of research methodologies and specific

details on research design, data collection, and analysis.

Table 3.2: Summarising three types of research methodologies

3.4.6 Validity Concerns in Mixed Method Research

There are key validity concerns while using the mixed method research that

uses both qualitative and quantitative data. The first one is of unequal sample

size when qualitative and quantitative data is collected (Creswell, 2014).

Generally quantitative sample size is larger than qualitative sample size to

perform statistical tests. The sample size for a qualitative data collection is

small since the intention is to study the sample extensively and gain an in-depth

perspective. The second concern is that it can be problematic to compare the

findings from two data types with different variables and merge them will lead

78

Chapter 3. Research Methodology

to incorrect strategy for inquiry (Creswell, 2014). The third concern is to have

the same participants in qualitative and quantitative data collection for a better

comparison (Creswell, 2014).

In relation to the first concern, the qualitative and quantitative data collection

is conducted simultaneously through survey questionnaire from each participant

in such a way that both data types are represented equally in the sample size.

For the second concern, the two types of data collection are analysed separately

by using side-by-side comparison. The results of both analyses will be merged

and reported collectively. To account for the third concern, the design of the

survey questionnaire ensures that same concepts are measured in collection of

both qualitative and quantitative data by same set of participants removing any

inconsistencies.

3.5 Empirical Research

Empirical studies are emphasised to provide a scientific basis for software

engineering Wohlin et al. (2003) and to investigate the social and cognitive

processes surrounding complex software systems (Shull et al., 2008). Empirical

methods allow for informed and well-grounded decisions and allow the

investigation of a phenomenon by experimenting and experiencing it in the real

world settings (Wohlin et al., 2003). Empirical research employ surveys, case

studies and post-mortem analysis as strategies of inquiry under both qualitative

and quantitative approach (Wohlin et al., 2003). Typically, case studies, action

research, and ethnography are primarily qualitative in nature (Shull et al.,

2008).

In this research, mixed method approach is adopted to empirically

investigate KL due to contributor turnover by designing and evaluating PKR

canonical model for its effectiveness in OSS projects. The development of PKR

canonical model follows a rigorous process and is described in chapter 4. OSS

79

Chapter 3. Research Methodology

projects are diverse in nature and vary intrinsically in their governance, policies,

organisational structure, domain, and software development practices. In order

to investigate KR in OSS project, the data collection from only a few OSS

projects will not serve the purpose of this research.

Similarly, the nature of examination requires that the findings be validated

by collecting more than one type of data i.e. qualitative and quantitative.

Mixed method research allows collection of both types of data in this research

by employing surveys. The development of the survey instrument, the selection

of the survey participants from OSS community and execution of the survey to

collect data is discussed in chapter 5.

80

Chapter 3. Research Methodology

Figure 3.3: The overall research methodology and road map for chapters 4-7

The data collected through the survey to evaluate the effectiveness of PKR

canonical model is analysed in chapter 6. The evaluation and research findings

are presented in chapter 7. Figure 3.3 depicts the overall research methodology

including and the road map for chapters 4 to chapter 7.

81

Chapter 3. Research Methodology

3.6 Chapter Summary

The worldview embraced in this research is of pragmatism, which closely relates

with the research objectives of investigating proactive knowledge retention

strategy in OSS projects. A pragmatist takes an action-oriented approach with

an outcome of the research. A pragmatist takes a middle position between a

positivist and an interpretivist. To examine the objectives of this research under

a pragmatist worldview, mixed method approach will be applied. The mixed

method research design will allow concurrent data collection of both qualitative

and quantitative types to follow with analysis. In the case of the data collected

through survey instrument the findings from the analysis of qualitative and

quantitative data will be merged for a better understanding of the phenomenon.

The development of survey instrument and data collection is detailed in the

chapter 5. The responses from the survey questionnaire will be used to evaluate

and improve the proposed PKR practices in OSS projects. The PKR canonical

model developed by employing qualitative research, presents a set of proposed

KR practices, which underpins the design of the survey instrument presented in

chapter 5. The next chapter discusses the development process of PKR canonical

model.

82

Chapter 4

Proactive Knowledge Retention

Canonical Model

4.1 Introduction

The purpose of this chapter is to elaborate the development process of Proactive

Knowledge Retention (PKR) canonical model for OSS projects. The various

definitions relating to the term "canonical" are: “established or well-known or

widely recognised as a model of authority or excellence” 1; “conforming to a

general rule or acceptable procedure” 2; “authoritative or standard; conforming

to an accepted rule or procedure” 3; and “the term canonical depicts the

standard state or manner of something” 4. In this work, PKR canonical model

represents a set of practices, which conform to the dynamic work structure in

OSS projects and can be effectively used as a well-known or widely recognised

model of excellence. The PKR canonical model evolved based on the belief of

being proactive in knowledge sharing and transfer among contributors, while

they are still active in OSS projects. The earlier literature review on knowledge

loss due to contributor turnover in OSS projects led to the identification of

knowledge retention mitigation techniques detailed in chapter 2, section 2.12

that can prove beneficial to alleviate knowledge loss in OSS projects.
1https://www.vocabulary.com/dictionary/canonical
2https://www.merriam-webster.com/dictionary/canonical
3https://www.webopedia.com/TERM/C/canonical.html
4https://www.techopedia.com/definition/1320/canonical

83

Chapter 4. Proactive Knowledge Retention Canonical Model

A consolidated view of PKR practices based on literature in OSS and in

organisations is the baseline for the formulation of the PKR canonical model.

The PKR canonical model intends to transform contributor’s use of knowledge

and engagement in knowledge relevant activities including knowledge sharing and

knowledge transfer.

In the sections to follow, the details on the canonical model development

process are presented, which include selection of data components, data

preparation, and analysis using principles of grounded theory and finally an

elaboration on the developed PKR canonical model.

4.2 Canonical Model Development Process

In order to develop the PKR canonical model, the candidate details are selected

as data components from the data sources, which are further refined and

classified into categories by applying the principles of grounded theory. Data in

the context of PKR canonical model refer to all textual descriptions selected for

the construction of PKR canonical model. A data component refers to one

textual description selected from one of the three data sources and is considered

as one unit among all data. Data contains all data components employed for

the construction of PKR canonical model.

The canonical model was developed in three phases, selection of data

components, preparation of data, and data analysis. In the first phase, data

components were selected from three data sources as the starting point for the

development of the canonical model elaborated in section 4.3. In the second

phase, the data collected from three sources is prepared and refined by following

a sequence of steps explained in section 4.4. In the third phase, the collected

data is analysed through the principles of grounded theory as explained in

section 4.5 and 4.6. The complete process followed to develop the PKR

canonical model is illustrated in Figure 4.1.

84

Chapter 4. Proactive Knowledge Retention Canonical Model

Figure 4.1: Development process of PKR canonical model in OSS projects

4.3 Selection of Data Components

This section elaborates the selection of data component fundamental to the

construction of PKR canonical model. In order to develop the canonical model

the selection of data components is from three data sources: (1) KR practices

employed in organisations detailed in sections 4.3.1 and 4.3.2, (2) knowledge

loss mitigation techniques presented in OSS literature, and (3) open source

85

Chapter 4. Proactive Knowledge Retention Canonical Model

guides online. The requirement of the first data component is fulfilled by the

identification of KR literature on organisations. Identification of knowledge loss

mitigation techniques is from OSS literature entailed in chapter 2. Additionally,

"OSS guides" were identified from online resources, which aggregates best

practices from OSS community. Moreover, any existing online resources were

also consulted to find any additional practices relevant to OSS projects5.

4.3.1 Knowledge Retention in Organisations

The competitive advantage of organisations currently lies particularly in the

application of employee knowledge. The continuity of an organisation’s

functioning is dependent on the experience and skills. Knowledge continuity

ensures elimination of the KL threat during employee turnover and other

personnel changes (Urbancová and Linhartová, 2011). KR can be seen as a way

of embedding and enabling knowledge within an organisation and a critical

factor for sustainable performance (Doan et al., 2011). KR strategies used in an

organisation advance innovation, organisational growth, efficiency, employee

development, and competitive advantage. The three categories of KR initiatives

in organisations identified in the literature are (Leibowitz, 2011):

1. Recognition and reward structure.

2. Knowledge personalization and codification.

3. Retaining key employees.

Recognition and Reward Structure - In order to encourage employees

to participate in KR activities, a recognition and reward structure can be

incorporated in the core processes of the organisation. Furthermore, to

encourage contribution of knowledge, based on codification and personalisation

a reward system is established for people documenting and sharing knowledge
5https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

86

Chapter 4. Proactive Knowledge Retention Canonical Model

(Hansen et al., 1999). A reward structure is based on using either intrinsic

motivators or extrinsic motivators. Intrinsic motivator includes acts that make

the job more satisfying such as praise and recognition. Extrinsic motivation is

related to monetary incentives (Gammelgaard, 2007). Organisations like Xerox,

and Hewlett-Packard reward people for sharing their knowledge (Rus et al.,

2002). A reward system is not only associated with the sharing of existing

knowledge but also with the external knowledge from outsiders. Managers are

rewarded in organisations for learning from their competitors, which are source

of external knowledge (Menon and Pfeffer, 2003). Using the combination of

extrinsic and intrinsic rewards is (Gammelgaard, 2007). In the two types of

reward structures, the long lasting one is intrinsic reward structure. As an

example of intrinsic motivation, Google consists of a user community mainly of

software engineers, where the knowledge is shared by answering questions and

helping solve problems that other software engineer post, without being

compensated, thus software engineers willingly share their knowledge. Even

though the technology changes very quickly, capturing the gained knowledge

still is worth the effort (Rus et al., 2002).

Personalisation and Codification - Codification and personalisation are

also considered as useful strategies for knowledge bases to be further used in

knowledge intensive activities like software development (Donnellan et al.,

2005). Codification is the documentation of the knowledge to be stored,

disseminated, and reused. Personalisation is the development of network to

connect people where they can share tacit knowledge (Hansen et al., 1999). In

knowledge bases, codification captures electronic information and

personalisation deals with the ways humans use and process knowledge

(Donnellan et al., 2005). Organizations implement codification strategy to

encourage the reuse of explicit knowledge. Figure 4.2 illustrates two strategies

namely personalisation and codification employed by organisations to manage

knowledge (Jansen, 2008). In a personalisation, the nature of the most

87

Chapter 4. Proactive Knowledge Retention Canonical Model

knowledge in the organisation remains tacit. The only knowledge that is made

explicit is about people who have the information. The left pyramid in the

figure depicts personalisation strategy, the knowledge pyramid is broad for the

tacit knowledge and becomes smaller for the documented and formal knowledge.

On the contrary, an organization following a codification strategy, codifies and

stores explicit knowledge in documents and databases. Personalisation relates

to connecting people, which includes tools such as mentoring, job rotation,

knowledge fairs and communities. While codification involves tools used for

after action reviews such as various knowledge repositories, and lessons learned

system (Liebowitz, 2008).

Figure 4.2: Pyramid of knowledge types and associated Knowledge Management
(KM) strategies (Jansen, 2008)

Retaining Key Employees - The key employee can be retained by

implementing phased retirement systems. The key employees after the

retirement can be retained through programs such as leave of absence, part-time

work, and temporary jobs. Bringing back retirees in different capacities can also

help to retain knowledge (Leibowitz, 2011).

88

Chapter 4. Proactive Knowledge Retention Canonical Model

4.3.2 Knowledge Retention Practices in Organisations

The knowledge retention techniques in organisations were briefly discussed in

reference to knowledge conversion in chapter 2, secion 2.10. As one of the data

source to construct canonical model, this section delves into more detail on KR

practices in organisations as presented in the literature.

The core techniques designed to retain knowledge in a organisation are

mainly dependent on its knowledge sharing practices. There are many

techniques that facilitate knowledge capture, sharing, and reapplication namely

after-action reviews, communities of practice, face-to-face meetings, mentoring

programs, expert referral services, video conferencing, interviews, written

reports, use of training or and technology-based systems to transfer the

knowledge (De Long and Davenport, 2003). Knowledge sharing should be

encouraged in organisations by documenting and storing knowledge in a KM

repository whenever contributors collaborate to resolve issues. The knowledge,

when recorded, can help resolve issues for others facing similar problem (Rus

et al., 2002). Tacit knowledge is transferrable with practices involving more

face-to-face interaction, such as mentoring and after-action reviews

(post-mortem). Whereas in explicit and rule based knowledge, the less

face-to-face interaction is required, making it more feasible to use training or

technology-based systems to transfer the knowledge.

Technology is often used to enable the set of supporting KM activities in

software engineering such as supporting document, competence management,

and software reuse rework (Rus et al., 2002). Relevant technical tools allow for

the retention of supporting documents, and competence management and used

by software organisations for supporting software engineering practices along

with KM. For example, document management tools frequently employed in

organisations are Hyperwave, Microsoft SharePoint, Lotus Domino, and Xerox

DocuShare. Similarly, some organisation use expert management systems to

89

Chapter 4. Proactive Knowledge Retention Canonical Model

identify experts. Competence management systems such as SkillScape,

SkillView allow expert to add their profiles. KnowledgeMail is another tool that

automatically generates competence profiles by assuming that people’s e-mail

and document reflect their expertise. Further, the activity of software reuse

enables programmers to reuse the existing software in repositories to reduces

the rework (Rus et al., 2002).

A) Interviews and Trainings

Training is another knowledge transfer practice found to include some

combination of formal classroom training, eLearning, video or computer-based

training, on-the-job training, coaching, and shadowing (De Long and

Davenport, 2003). Interviews are considered as an expensive approach to

knowledge capture. Delta Airline and Tennessee Valley Authority interview

their employees retaining critical specialised knowledge. NASA has

commissioned some senior-level retirees to write case studies.

B) Storytelling

Story telling can play a valuable role in transferring knowledge to convert

tacit knowledge into explicit knowledge (De Long and Davenport, 2003). It is

not found useful for fact based technical tasks. NASA, the World Bank, and

IBM made productive use of storytelling, and there is ongoing research in this

area.

C) Community of Practices

Community of practices are used as a long term strategy by management to

retain knowledge before it is lost (De Long and Davenport, 2003). Companies

like Buckman and Shell have experience in building distributed global

communities, which is found challenging in geographically distributed

organisations. Siemens and BMW to resolve the challenges of losing expertise

through retirement and attrition found a cross-company community network.

Intel, Infineon Technologies, and Winterthur Insurance Switzerland joined the

"Leaving Experts Community of Practice". Members of the community must be

90

Chapter 4. Proactive Knowledge Retention Canonical Model

experienced in dealing with the problem of losing expertise and be able to

contribute valuable lessons to member companies. Furthermore, they cannot be

a competitor to any member company.

D) Experience Based Memory

Rus et al. claim that software engineers in their daily work environment

based on their experience create project and product memory (Rus et al., 2002).

Version control, change management, documenting design decisions, and

requirements traceability are software engineering practices that help build

project and product memories as an indirect or direct effect of software

development. One way to manage knowledge built on experience suggested is to

divide the responsibility of capturing and reusing experience, between separate

parts of development organisation as in "Experience Factory" (EF). EF builds

on the technical and social KM infrastructure and reuses life cycle experience,

processes, and products. Experience is collected from software development

projects and are packaged and stored in an experience base (Dingsøyr and

Conradi, 2002). The EF analyses includes resources such as all experience

types, lesson learned, project data, and technology reports. EF also provides

repository service for these resources. The EF supports software development

by providing tailored experiences including valuable knowledge. Ericsson

implemented a version of EF called experience engine, which relies on tacit

knowledge rather than experience stored in experiences bases (Rus et al., 2002).

E) Job Rotation

In software organisations, job rotation enhances knowledge exchange and

transfer where people work in different job roles, tasks, and domains. Job

rotation legitimises experience that allows people in the organisation to work in

diverse knowledge domains (Fægri et al., 2010). It is argued that the approach

of job rotation adds unnecessary redundancy and incurs cost unjustifiable in an

organisation (Fægri et al., 2010). Job rotation has positive effect of job on

knowledge acquisition (Santos et al. 2016). Some development practices, such

91

Chapter 4. Proactive Knowledge Retention Canonical Model

as pair programming, facilitate knowledge sharing between peers, while job

rotation helps knowledge spread throughout the project or organisation (Rus

et al., 2002).

F) Mentoring

Mentoring is suggested to be a logical approach for transferring important

tacit and implicit knowledge. It is argued that most companies due to resource

limitations and an inadequate availability of experts find mentoring difficult to

sustain in long term (De Long and Davenport, 2003). For example, Quest has

adopted a "buddy approach" where experts are involved to mentor younger

employees.

G) Post-mortem

Post-mortem reviews are a practical method to capture and reuse experience

from projects that are complete or have finished a major activity phase

(Dingsøyr, 2005). The intention of a post mortem review is to learn through a

collective activity and to build knowledge based on the experience to improve

future practice. The tangible outcome of a post-mortem is a report. In Apple a

similar approach is used where results are published based on a project survey,

collecting useful information on project, a debriefing meeting, and a ‘project

history day’. Microsoft invests considerable efforts into writing ‘Post-mortem

reports’. The reports contain details on what has worked well for the last

project, what has not worked well and teams that need improvement for the

next project. Dingsøyr relate post-mortem to Nonaka and Takeuchi model of

combination of learning through socialisation (Dingsøyr 2005). In post-mortem,

learning takes place through socialisation, and when individuals share

experiences, tacit knowledge is externalised. Knowledge is shared from

individual level to organisational level. Post-mortems are an attempt to codify

knowledge from projects, where the main output is the report. It can be seen as

a systematic mechanism of capturing, storing, interpreting and distributing

relevant experience from projects (Huber, 1996).

92

Chapter 4. Proactive Knowledge Retention Canonical Model

This section discussed that organisations worldwide utilise KR practices to

convert tacit knowledge to explicit knowledge. The technology is used to store

experience-based knowledge of the employees in the knowledge systems as the

outcome of the process used to convert tacit knowledge to explicit. Experiences

and knowledge of employees are valued, and resources are invested in

organisations to capture it effectively. KL due to contributor turnover is

globally recognised in organisations operating in diverse domains. KR is

enabled in organisation using variety of approaches such as post-mortem,

experience-based memory, interviews, trainings, job rotation, storytelling,

mentoring, and learning based on communities of experts. The mentioned KR

practices used in organisations to reduce KL are selected data components

contributing towards the development of PKR canonical model.

4.3.3 Knowledge Retention Mitigation Techniques and

OSS Guides Online Resources

In chapter 2, section 2.12, KR mitigation techniques in OSS projects were

discussed. These techniques are also one of the data sources for data

components utilised for the construction of the PKR Canonical Model.

Open Source Guides were created and are curated by GitHub along with input

from outside community reviewers, but they are not exclusive to GitHub products

(Eghbal et al., 2018). The goal of open source guide to aggregate community best

practices, not what GitHub (or any other individual or entity) thinks is best with

the intention to accumulate enough resources for people creating open source

projects (Eghbal et al., 2018). Open source guides focus on six aspects in open

source community including how to contribute to open source, starting an open

source project, finding users for your project, building welcoming communities,

best practices for maintainers, and leadership and governance. The review and

tagging technique is thoroughly applied to the OSS guides online. Consequently,

93

Chapter 4. Proactive Knowledge Retention Canonical Model

key KR practices suitable for OSS projects were highlighted.

4.4 Data Preparation

The three data sources are explained in section 4.3. In order to construct a

PKR canonical model a systematic approach is required to consolidate data

components from three data sources by traversing and capturing the real

essence of the intertwined articulated concepts. In this section, details follow on

the selection of data components from three data sources. Data used in the

construction of PKR canonical model is of textual nature. The data component

refers to the textual description selected from three data sources mentioned in

section 4.3.

Table 4.1: Master table with data components and link to sources

Data components are extracted while keeping a track to original sources in

the master table as illustrated in Table 4.1. Consolidation of all data components

in the master table while keeping track tot the source is the preliminary step

94

Chapter 4. Proactive Knowledge Retention Canonical Model

before the application of a specific approach for data analysis resulting in the

PKR canonical model. KR practices in organisations are discussed in section

4.3.2. The details on each KR practice is added as a data component to the

master table with an ‘x’ indicating the source of the data component against the

column name, e.g. ‘literature from organisations’. Initially 11 different KR data

components from literature on organisations are added to master table. The 13

data components are identified from KL mitigation techniques in an extensive

OSS literature review in chapter 2, section 2.12 and mentioned in section 4.3.3

as one of the data source, were added to the master table. The selected set of 31

data components from open source guides were also added to the master table

with an indication to the source, e.g. open source guides. In all, there are 55

data components from three data sources are consolidated in the master table.

In the next step, the master table containing data components is searched

for the instances of textual duplication. Textual duplication are the details

existing in the master table more than once. The details of data components are

compared to identify instances of text with similar meaning and descriptions.

The elimination of duplication activity, does not require any documentation and

only requires appending an additional data source against the data component

in the master table. There was one instance of textual duplication observed

relevant to mentoring, which was common in two data sources, i.e. traditional

organisations and OSS guides. The final outcome of removing textual

duplication was remaining 54 data components in the master table. The

complete master table containing 54 data components along with data sources

appears in appendix B.1.

4.5 Analysis - Principles of Grounded Theory

The details of practices gathered in the master table require a systematic

translation into a canonical model through Qualitative Data Analysis (QDA) .

95

Chapter 4. Proactive Knowledge Retention Canonical Model

QDA tends to be inductive in nature and the qualitative data analyst identifies

important categories in the data, as well as patterns and relationships, through

a process of discovery (Schutt 2011). The textual data is described in ways that

capture the setting or people who produced this on their own terms rather than

in terms of predefined measures and hypotheses (Schutt 2011). Grounded

theory principles are utilised to conduct QDA and to develop the PKR

canonical model with rigour as illustrated in Figure 4.1. Glaser’s definition of

grounded theory is, a general methodology of analysis linked with data

collection that uses a systematically applied set of methods to generate an

inductive theory about a substantive area (Glaser, 1992). Grounded theory

emphasises the systematic approach to data collection, handling and analysis

(Douglas 2003). The canonical model is systematically developed using coding,

constant comparison, and memoing from the principles of grounded theory.

In Grounded Theory, data analysis involves what is commonly termed coding,

"taking raw data and raising it to a conceptual level" (Corbin and Strauss, 2008).

Coding involves interacting with data using techniques such as asking about the

data, making comparisons between the data, and in doing so, deriving concepts to

stand for those data, then developing those concepts in terms of their properties

and dimensions (Corbin and Strauss, 2008). Open coding refers to the process of

breaking down, conceptualising, and re-assembling data while interrogating data

line by line, by sentence or by paragraph, or as a document in its entirety, using

comparison (Corbin and Strauss, 2008; Holton, 2007). It is a form of content

analysis that is used to find and conceptualise the underlying issues amongst the

noise of the data (Allan, 2003). Coding is the central process by which grounded

theories are derived and which enables the analyst to think with an open mind

and overcome inherent biases during the research process. The codes obtained are

grouped together based on a theme to form concepts and are not used as labels

under which similar instances of the same phenomenon are counted. Moreover,

“codes capture patterns and themes and cluster them under a ‘title’ that evokes

96

Chapter 4. Proactive Knowledge Retention Canonical Model

a constellation of impressions and analyses for the researcher” (Lempert, 2007).

Constant comparison refers to "the analytic process of comparing different

pieces of data for similarities and differences" (Corbin and Strauss, 2008). This

method of analysis "generates successively more abstract concepts and theories

through inductive processes of comparing data with data, data with category,

category with category, and category with concept" (Bryant and Charmaz,

2007). This type of comparison is considered essential to all analysis because it

allows the researcher to differentiate one category or theme from another and to

"identify properties and dimensions specific to that category or theme" (Corbin

and Strauss, 2008). In the case of this research, the various data codes identified

in the selected data components must be compared for similarities and

differences through constant comparison until a final set of categories emerge.

Here the constant comparison is applied in successive iterations producing a

better version of practices under each category.

The coding of data in Grounded Theory occurs "in conjunction with analysis

through a process of conceptual memoing, capturing the theorist’s ideation of the

emerging theory" (Bryant and Charmaz, 2007). Memos can be considered to be

"written records of analysis" and during the process of memoing, a certain degree

of analysis occurs and the very act of memoing "forces the analyst to think about

the data and it is in thinking that analysis actually occurs" (Corbin and Strauss,

2008). Memos are both a methodological practice and a simultaneous exploration

of processes in the social worlds of the research site (Lempert, 2007). Memos are

not intended to describe the social worlds of the researcher’s data, instead they

conceptualize the data in narrative form (Lempert, 2007).

Memo writing is essential to Grounded Theory methodological practices and

principles and the fundamental process if researcher/ data engagement that

results in a "grounded" theory (Lempert, 2007). Memo writing is the

methodological link, the distillation process, through which the researcher

transforms data into theory and the researcher analytically interprets data

97

Chapter 4. Proactive Knowledge Retention Canonical Model

through sorting, analysing, and coding the "raw" data in memos, the Grounded

Theorist discovers emergent social patterns (Lempert, 2007). It is the

methodological practice of memo writing that roots the researcher in the

analyses of the data while simultaneously increasing the level of abstraction of

his/her analytical ideas (Charmaz, 2006). Ultimately, it is the integration of

these abstract analyses developed in the memos that the researcher shares with

a public audience (Lempert, 2007).

4.6 Application of Grounded Theory

In order to analyse the selected data components, the principles of grounded

theory are applied effectively as illustrated in Figure 4.1. There are five different

phases to analysis of selected data components consisting of merging conceptual

duplicates, primary classification, categorising classification, revisit change and

renaming, and reviews. Central to analysis are grounded theory principles of

coding, memoing, and constant comparison. The details of phases are elaborated

in this section.

Merging conceptual duplicates – After the removal of textual

duplication in data preparation phase section 4.4, the data components are

dissected to understand and analyse the underlying meaning of the text. The

words thought to be useful part of the concept were highlighted in bold. The

details of the concepts were constantly compared with each other to find

conceptual duplication present among data components. In Table 4.2 an

example of merging conceptual duplicates is presented. The two data

components numbered 18 and 20 discuss the similar underlying concept of

guidelines and relevant to good documentation. The details of both data

components are merged together. The different data components brought

together in Table 4.2 are highlighted by using different colours of text.

98

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.2: Example of merging conceptual duplication

Once this redundant activity of finding conceptual duplicates was complete,

11 data components were merged with the text of other data components. The

complete master table containing 43 data components after the removal of 11

conceptual duplicates along with data sources appears in appendix B.2.

Primary classification – During primary classification the data

components were grouped into categories on a preliminary level. Memos were

written to identify and to record the rationale behind considering grouping of

data components, under a particular category. A short few words description

was written in the memo to identify emerging practices from the data

components. An example of primary classification appears in the Table 4.3,

where the details of the memo for the primary classification are recorded along

with the preliminary category and a tagline for practice in "Primary

Classification and Memo Description" column. The complete table with 43 data

components with 2 practices added by the researcher explained in section 4.7, to

benefit OSS projects (highlighted in yellow), are given in appendix B.3.

99

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.3: Example of primary classification

Categorising classification - In categorising classification, data

components now referred as practices are grouped under the main category.

The main text to be considered for the phrasing of the practice is highlighted in

bold appears under "data component" column. The main categories

encapsulate and deliver the vital meaning of each category under which the

data components are consolidated as practices. Overall eight categories are

identified namely adoption of technology oriented tools, knowledge transfer and

sharing, knowledge centralisation, encouraging knowledge contributions,

uniform knowledge distribution, motivation, community health, and governance

and leadership. Categories "encouraging knowledge contributions" and

"motivation" also have sub-categories. An example of categories extraction from

the contents of data components is shown in Table 4.4. The categorisation for

all 45 practices are shown in appendix B.4.

100

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.4: Example of categorising classification of practices

Revisit change and renaming - At this stage consolidation of practices

under main categories is complete and the researcher revisits the accuracy and

consistency of classification. The description of practices has reduced in words

and are more refined. In case of changes or renaming of the categories or

practices, memos are written. The PKR practices were classified under 8

categories including sub-categories of "motivation" and "encouraging knowledge

contributions". The category of "encouraging knowledge contributions" have 2

sub-categories consisting of "removal of knowledge sharing barriers", including 6

practices and "standardising project rules and policy", including 10 practices.

The category of "motivation" has two sub-categories containing in all 6

practices, 3 on intrinsic motivation and remaining 3 on extrinsic motivation. In

Table 4.5 motivation category with respective sub-categories can be viewed. The

complete set of PKR practices before the reviews are presented in appendix B.5.

101

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.5: PKR practices and relevant category

Reviews – The PKR practices presented in entirety classified under

categories, went through rigorous review process extending to eight different

sessions. The reviewers consisted of the researcher and two supervisors with an

expertise in relation to the application of grounded theory. The thought process

followed during the review process was constantly recorded in memos. The

different colours have been used during the review process to differentiate

between changes made at every review (e.g. green for the first review, purple for

the second review, amber for the third review and so on).

The first review emphasised on improving the naming convention, changing

the perspective of practices by associating them with outcomes, refining the PKR,

and attaining balance in the model i.e. more uniform structure of classification.

The set of PKR practices in its current state had categories with three levels

of classifications. Iterations helped to refine every practice in the current set of

PKR practices and distinct practice are further refined under a category. The

implication of associating process with the outcome, led to the emergence of

more terms for the classification of practices. In all 14 terms were identified as

categories while associating each practice with the outcome in the reference of

its vitality to the OSS projects. An example of changes applied in first review

appears in Table 4.6. The table for first review in entirety is given in appendix

B.6.

102

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.6: PKR practices the first review

The second review concerns were raised on the systematic categorisation

of the practices and readability with a focus on the process. To overcome the

concerns in the second review, the emerging categories from the first reviews

were processed further through constant comparison and the prominent

categories were highlighted to accommodate all practices. Understanding the

context of the emerging categories in the first review, the naming of categories

is revised in the second review for clarity. At the end of second review, constant

comparison resulted in 7 categories of KPR practices. The categorical structure

of classification now attained uniformity and had simple hierarchy of only one

level. To convey the meaning of the practice to its practitioners, the details of

the practices were also revised to make longer text shorter and conversely the

shorter text longer. An example of changes made is shown in Table 4.7. The

table for second review in entirety is given in appendix B.7.

103

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.7: PKR Practices the second review

In the third review, the first concern was on the usage of the model and the

second on the distinction among different types of roles contributors exhibit as

mentioned in the practices i.e. cores, non-cores, and integrators. Furthermore,

rephrasing of the text constituting the practice name and description was required

to refine and represent the set of PKR practices. The first concern was about

using the PKR practices, which was resolved by adding a practical example on the

application of every PKR practice and the second was rectified by documenting

roles involved in OSS projects. An example of some rows highlighting changes is

shown in Table 4.8. The table for third review in entirety is given in appendix

B.8.

104

Chapter 4. Proactive Knowledge Retention Canonical Model

Table 4.8: PKR Practices the third review

During the fourth review it is realised that model contains some practices,

which are more suitable to be considered examples of other practices. For

instance, practice named "Job rotation to acquire different skills" is considered

as an example of practice “Advocating diversification of core contributor’s

specialisation”. Job rotation is for knowledge exchange and transfer while

people take turn to work in different job roles, tasks, and domains. Job rotation

legitimises experience that allows people in the organisation to work in diverse

knowledge domains. Some development practices, such as pair programming,

105

Chapter 4. Proactive Knowledge Retention Canonical Model

facilitate knowledge sharing between peers, while job rotation helps knowledge

spread throughout the project or organisation. Another practice on "adopting

use of collaborative tool for code review" is removed from “governance and

leadership” and is merged as an example of practice “establishing explicit code

review guidelines”, and details on the use of collaborative tool for code reviews

are included in the description of the practice. An example of changes is shown

in Table 4.9.

Table 4.9: PKR Practices the fourth review

Similarly, in the fourth review a thorough examination revealed that some

practices with the evolution of model seem suitable in another category, e.g.

“establishing explicit code review guidelines” is moved under “core development

practices” category from “governance and leadership” category. The practice of

“establishing explicit code review guidelines”, after the internal review is

106

Chapter 4. Proactive Knowledge Retention Canonical Model

thought to be more suitable under “core development practices” category

because it provides insights to code review guidelines.

The recursive process of constant comparison in the fourth review, to refine

the model and re-organisation led to the change in the classification structure of

practices and upholding them as examples of PKR practices resulted in

obsoleting two categories namely “knowledge sharing and transfer” and

“Removal of knowledge barriers”. As a result, 32 PKR practices were classified

under five categories. The table for fourth review in entirety is given in

appendix B.9.

Table 4.10: PKR Practices the fifth review

The set of PKR practices during the fifth review did not require any changes

in the classification scheme or the phrasing used for the practices. The remaining

concern was to articulate a description of the practices that captured the real

essence of the practice and to provide meaningful examples for its relevance to

107

Chapter 4. Proactive Knowledge Retention Canonical Model

OSS projects. An example of changes is shown in Table 4.10. The table for fourth

review in entirety is given in appendix B.10.

The remaining three reviews were performed individually and comments were

exchanged among researcher and the reviewers. The only focus now was to revise

the evolved PKR canonical model and look for any remaining inadequacies and

inconsistencies. The revisions in the last three reviews altered the description of

some practices for clarity purpose with minor changes. As the PKR canonical

model emerged with much clarity and more focused on the purpose, in the last

review, the practice "advocate a maximum limit for code review feedback for all

contributors" was realised to be more suitable as a guideline under the practice

"establish explicit code review guidelines".

Figure 4.3: 8-step review process and outcome for every review with the number
of categories and practices in PKR canonical model

The feedback from last three reviews on the PKR canonical model was

effectively incorporated to further improve and refine the PKR canonical model

108

Chapter 4. Proactive Knowledge Retention Canonical Model

towards its final state with 5 categories and 31 practices. Figure 4.3 depicts the

entire review process and summarises the outcome after every review conducted

affecting the number of categories and number of practices in the PKR

canonical model.

4.7 Practices by Researcher

There are three practices thought to be of benefit to OSS projects and were

appended to the PKR canonical model by the researcher. Before the canonical

model was presented in entirety, the researcher added two practices during

primary classification: 1) Assessing contributors on the meritocracy level for

knowledge sharing and transfer similar to the one followed for code

contributions on the project, and 2) Project policy to invite contributors from

all roles to participate in peer reviews to transfer project relevant knowledge

and experience. The first practice suggests on introducing ascending

meritocracy level of contributors on knowledge sharing and transfer activities

similar to the one followed for code contributions on the project. The second

practice focuses on proactive assignment of task to non-cores in OSS projects.

This can also be an incentive to escalate meritocracy levels. The last practice

that was added to the PKR canonical model is on projecting a policy that

encourages peer review contributions from all project roles.

4.8 Canonical Model of Proactive Knowledge

Retention in OSS projects

The PKR canonical model is composed of 31 practices grouped under five PKR

categories. The details on each PKR category and practice are given in this

section.

109

Chapter 4. Proactive Knowledge Retention Canonical Model

4.8.1 Communication

Knowledge is the product of an individual’s experience and accumulates because

of communication or inference (Zack, 1999b). On the completion of PKR

canonical model five different practices are identified under communication

category. The details of each practice with example(s) are given in the following

passages. Note that P1 = Practice 1; P2 = Practice 2, etc.

P1. Establish communication mechanisms from cores to non-cores

contributors

Communication between core and non-core contributors is an important

factor for knowledge transfer and sharing leading to uniform knowledge

distribution, as "communication in OSS projects is directed by the core

contributors and their attitudes and involvement in knowledge sharing is linked

to the demands of the wider project teams" (Licorish and MacDonell, 2014).

Core contributors can bring higher level of skill and cognitive characteristics to

their project teams. However, OSS teams with less communication from active

core contributors can result in negative team attitudes. This kind of disruption

in communication in OSS projects can hinder knowledge sharing. This practice

advocates active communication from cores, while being the centre of their

project’s knowledge activities, on matters such as high-level ideas, suggestions,

information, comments, instructions, answers to other contributor questions and

also engaging with software code, as the more changes made to the code, the

more knowledge they provide (Licorish and MacDonell, 2014) especially to

non-core contributors.

This practice can be implemented through community of practice where a

network of experienced contributors collect and exchange knowledge with

non-core contributors. Community of practices are used as a long term strategy

by management to retain knowledge before it is lost (De Long and Davenport,

2003). For example, Siemens and BMW to resolve the challenges of losing

110

Chapter 4. Proactive Knowledge Retention Canonical Model

expertise through retirement and attrition created a cross-company community

network. Intel, Infineon Technologies, and Winterthur Insurance Switzerland

joined the "Leaving Experts Community of Practice" (De Long and Davenport,

2003). Members of the community must be experienced in dealing with the

problem of losing expertise and be able to contribute valuable lessons to

member companies.

A community of practice can be employed in OSS project to create by

involving experienced cores, who contribute towards sharing valuable lessons

learned and experience on the project to non-cores. Another example of

communication mechanism from cores to non-cores in OSS projects can be of

using story telling to generate, share, and discuss stories for the quick

integration of new learning. NASA, the World Bank and IBM have all made

productive use of storytelling (De Long and Davenport, 2003). A third example

to improve communication from core to non-cores can be of conducting

interviews to capture knowledge and distribute it to other contributors by

integrating it into an organisation. In OSS projects, interviews can serve to

transfer knowledge from cores to non-cores. Accenture found the materials used

to develop training content most likely come from face-to-face interviews

conducted before an employee leaves the organisation (De Long and Davenport,

2003).

P2. Explicit identification of communication protocol/ mechanisms

between integrators and contributors

Communication is important to the progress and success of the project,

contributors need to understand what protocol, and mechanisms exist for

communications in a project. In a typical OSS project the maintainer role has

commit rights on the project, specifically the main branch. The contributor

wishing to make modification creates a project’s branch and after completing

changes, sends a request to the project ’maintainers’, who has commit rights to

the project. Furthermore, an "integrator", merges a branch (a subset of the

111

Chapter 4. Proactive Knowledge Retention Canonical Model

same project) into the main branch of the project. Integrators should be

proactive by establishing a professional communication etiquette, and reactive

by following discussions and intervening in cases where discussion diverges from

the etiquette. For instance, integrator and contributors should agree on

minimum communication protocols that increase each other’s awareness and

rendezvous points for mandatory information exchange (Eghbal et al., 2018).

The communications mechanisms such as the use real-time communication

channels (e.g., IRC or its evolved counterpart GITTER, which is better

integrated in GitHub) (Eghbal et al., 2018). Furthermore, communication is

public and accessible; anybody can read past archives to get up to speed and

participate.

P3. Establish response time parameters for project queries or issues

This practice focuses on the timely response to queries or issues on the project,

which helps to engage contributors and make them feel more involved in the

project. Furthermore, interest of contributors looking forward to get involved

in the project will be heightened when they receive timely response to their

queries resulting in new contributors on the project. Responding effectively when

someone files an issue, submits a pull request, or asks a question about the project,

makes the project community feel that they are part of a dialogue and builds their

enthusiasm to participate. In case, the request cannot be reviewed immediately,

acknowledging it early helps increase engagement among project community. For

example, setting up notifications on social media or channels i.e. Stack Overflow,

Twitter, or Reddit issue an alert when someone mentions a project, an alert is

generated to the responsible person (Eghbal et al., 2018). This mechanism can

be employed to help establishing response time parameters in OSS projects.

P4. Actively elicit views of project community on major concerns

Eliciting the views of the wider project community is important. Making

other people feel heard, and committing to resolving their concerns, goes a long

way to diffuse sensitive situations. Ensuring that everybody feels heard and

112

Chapter 4. Proactive Knowledge Retention Canonical Model

that all information has been made public before moving toward a resolution.

This practice adheres more to achieving communication objectives by focusing

more on the adopting an approach to reach out to contributors and find out

their views on major concerns through open discussions. For example to elicit

views of project contributors, the emphasis is on "consensus seeking" rather

than consensus (Eghbal et al., 2018). Community members discuss major

concerns until they feel they have been adequately heard. On the contrary,

voting emphasises getting to an "answer", rather than listening to and

addressing each other’s concerns.

P5. Promote documentation of solutions to problems commonly

experienced by multiple users

OSS users can face many issues while working on a project. This practice

promotes the documentation of common solutions to problems experienced by

users and access to all contributors on the project (Eghbal et al., 2018). This

practice demonstrates the use of documentation as an effective mode to

communicate knowledge to the contributors of the project. An example of

implementing this practice can be when multiple users run into the same

problem, document the answers in the some file such as README and provide

access to it to all contributors.

4.8.2 Contributor Motivation

P6. Formalise a knowledge contribution recognition program

In order to encourage employees to participate in KR activities, a

recognition and reward structure can be incorporated in the core processes of

the project. A reward structure can be based on using either intrinsic

motivators or extrinsic motivators. Intrinsic motivator includes acts that make

the job more satisfying such as praise and recognition, whilst extrinsic motivator

is related to monetary incentives (Gammelgaard 2007). Reward is associated

with extrinsic motivation of a contributor and relates to encouraging knowledge

113

Chapter 4. Proactive Knowledge Retention Canonical Model

providers by rewarding them. To encourage contribution of knowledge, based on

codification (formal documentation) and personalisation (sharing knowledge

through socialisation) a reward system is established for people documenting

and sharing knowledge (Hansen et al., 1999) and rewarding knowledge

provider’s by recognition. Organisations like Xerox, and Hewlett-Packard

reward people for sharing their knowledge (Rus et al., 2002). Reward system is

not only associated with the sharing of existing knowledge but also with the

external knowledge from outsiders. Managers are rewarded in organisations for

learning from their competitors, which are source of external knowledge (Menon

and Pfeffer, 2003). Similarly, a knowledge recognition program can be organised

in OSS projects, where project contributors can learn from other community

members and apply knowledge in their projects. A recognition program can be

associated with knowledge activities comprising of sharing, documenting,

disseminating, and any other action facilitating knowledge propagation.

P7. Reward active knowledge contributors with project seniority

Contributors progress to become a core contributor in OSS project based on

meritocracy and mainly on the number of the code contributions they submit.

The practice suggests to utilise the concept of extrinsic motivation and have

an additional criteria for assessing a contributor based on knowledge sharing

and transfer activities on the project. Active knowledge sharing can be seen

as a mechanism to contribute towards contributor’s seniority. In particular a

gamified environment has important implications for KM in software engineering

(Vasilescu et al., 2014) and OSS projects, as gamification has the potential to

increase engagement of knowledge providers.

There is also intrinsic motivation for the knowledge provider such as altruism

or learning by helping others solve problem (Vasilescu et al., 2014). Contributors

in OSS communities may earn high status because of their free knowledge sharing

activities (Wasko et al., 2005). Status can place contributors in high demand and

can bring opportunities in the future for securing monetary rewards. The reward

114

Chapter 4. Proactive Knowledge Retention Canonical Model

is not formal or assured, but may be a motivator to participate.

For example, gamification features in Stack Overflow’s guarantee that a

question will be replied to by enthusiastic experts within minutes of being

posted (Zagalsky et al., 2016). In Stack Overflow, a crowd approach is used

where participants contribute knowledge independently of each other and

gamification qualities are used to evaluate who provides the best answer is the

one that gains the most points (Zagalsky et al., 2016). Knowledge is curated in

gamification other than being developed as is the case with mailing lists.

Curation is a mechanism to provide a tool for keeping the channel clean of what

seems to be unnecessary information (Zagalsky et al., 2016). Here the number

of points gained by the contributor can serve as a extrinsic motivation to gain

recognition and earn a repute in OSS community. At the same time

gamification identifies people who are more knowledgeable and active based on

the point given to them.

P8. Promote a culture of appreciation for knowledge contributors

Appreciation is an extrinsic type of motivation for contributors. This practice

encourages the cultivation of a culture in OSS projects, where the objective is

to motivate contributors to share knowledge by appreciating their efforts in the

project. An example of this practice can be similar to thanking contributors

using newsletters and blog posts (Eghbal et al., 2018) that visibly and openly

appreciate their constant efforts to share knowledge and support make project a

success.

4.8.3 Core Development Practice

P9. Encourage pair programming and shared code ownership

In order to mitigate the effects of turnover on the ecosystem, the usage of

techniques such as pair programming and shared code ownership are suggested

(Mens, 2016). Pair programming facilitates knowledge sharing between peers and

is considered under the category of core development practice as it represents a

115

Chapter 4. Proactive Knowledge Retention Canonical Model

proactive approach towards KR in OSS projects. It further can facilitate effective

knowledge sharing in the OSS projects.

Examples of pair programming discussed here are remote pair programming

and a pairing variation namely expert novice pairing. Remote pair programming

is not just for the corporate sector and can also be implemented in open-source

projects (Monus, 2018). It was found that effective remote teaming could be

done with the PC sharing software and audio support Baheti et al. (2002). Pair

programming only works remotely when both developers can see the screen where

the code is written and the key is to find the right screen sharing software for you

and your colleague (Monus, 2017).

Expert-novice pairing creates many opportunities for the expert to mentor the

novice. This pairing can also introduce new ideas, as the novice is more likely to

question established practices. The expert, now required to explain established

practices, is also more likely to question them. However, in this pairing, an

intimidated novice may passively "watch the master" and hesitate to participate

meaningfully. Also, some experts may not have the patience needed to allow

constructive novice participation (Williams and Kessler, 2002).

116

Chapter 4. Proactive Knowledge Retention Canonical Model

P10. Project a policy that encourages peer review contributions

from all project roles

Peer reviews are conducted asynchronously in OSS projects to empower

experts who provide feedback to code contributors (Rigby et al., 2014). Peer

review is a collaborative activity and inviting contributors from different roles

can lead to uniform knowledge distribution from cores to non-cores. This is

included as the core development practice since peer review is one of the key

development activities in OSS development. An example of this practice can be

that core team proactively invites contributors irrespective of their role on the

project and encourage them to participate in peer reviews.

P11. Classify defects for suitability across the various contributor

levels

Labelling a bug to suit the level of contributor expertise will benefit OSS

project to recruit more contributors and get them started with tasks according

to their knowledge and expertise level. In addition, labelling bugs helps in

identifying the types of tasks and facilitate their resolution based on the

suitability of contributor. This practice is included under the category of "core

development practices", because it benefits the development of the OSS project.

For example, "first timers only", "good first issue", or "documentation" are

examples of labels make it easy for someone new on the project to quickly scan

issues on the project and get started (Eghbal et al., 2018). Similarly, resisting

fixing easy (non-critical) bugs by core contributor provides opportunities to

recruit new contributors.

P12. Ensure the presence of test files and associated testing

artefacts

Test files and testing artefacts help in testing the software code and can be

one of the core development practices to directly impact the quality of the code.

Therefore, it is of utmost importance to ensure the presence of test files and

associated testing artefacts. Test files include tests and other checks to improve

117

Chapter 4. Proactive Knowledge Retention Canonical Model

and ensure the quality of the software code. A contributor in the OSS project can

effectively utilise test files and artifacts to test her code for quality purpose. This

practice facilitates programmers at any level from novices to experts to test their

code for bugs, fulfilling the requirements, and invalid outcomes before sending it

off for review. For example, if tests are added for the project, explanation should

be provided on how they work in a file specifically designated for this purpose

e.g. Test Files (Eghbal et al., 2018).

P13. Label substantial new items of work "Work In Progress"

Labelling on going work as “work in progress” attracts more contributors

interested in the ongoing updates. Furthermore, more expertise in the OSS

development is pooled in by such informative labelling activity. It can be a

piece of information on current work that is communicated to contributors.

This practice encourages and invites more contributions while working on a

substantial update, and therefore is included in the category of "core

development practices". For example, this practice can be applied, while

working on a substantial project update, through a pull request and marking it

as a Work In Progress (WIP). That way, other people can feel involved in the

process early on (Eghbal et al., 2018).

P14. Introduce non-restrictive commit access to contributors where

appropriate

In OSS project not every contributor has right to commit code. The code

review policies describe the process for commit access, where generally code

commit access is given only to selected contributors. This practice advocates

non-restrictive access to contributors (Eghbal et al., 2018). The practice can be

applied by giving contributors commit access on the project where appropriate,

to allow them to be more excited to polish their patches. This expedites the

learning and correction process. Further benefit of applying this practice can be

that it helps in finding new maintainers for projects that had not been worked

on in a while. An example of this practice can be to allow contributors to

118

Chapter 4. Proactive Knowledge Retention Canonical Model

commit their code to a repository where it does not effect the main branch, but

at the same time contributor code is reviewed by other contributors.

P15. Establish explicit code review guidelines

Code review guidelines are effective in the review of code and associated

corrections. Code review checklists can be a useful way to provide team

members with clear expectations for each type of review. The use of a

collaborative code review tool is recommended to allow reviewers to log bugs,

discuss them with the author, and approve changes in the code guidelines

should at least provide details about the expected code style, commit format,

pull request process, and available communication options.

One example of code review guidelines can be to advocate a maximum limit

for code review feedback for all contributors. The main focus is to respond to a

submitted code review by cores and non-cores alike. In particular, quick review

feedback from core to non-core contributors is positively associated with

knowledge preservation and exchange. It has been observed that due to the lack

of an established reputation, peripheral (or non-cores) developers can wait 2 to

19 times (or 12 to 96 hours) longer than core developers, to complete the review

process ((Bosu and Carver, 2014). Accordingly, a delay in receiving feedback on

reviews may negatively motivate a peripheral or new contributor (Bosu and

Carver, 2014). An improvement to the timings of the review feedbacks in OSS

projects of peripherals or non-cores can result in a uniform distribution of

knowledge, reduce the effects of contributor turnover, and motivate newcomers

to stay for a longer duration. An example of overcoming delay to core review

feedback time, is to set a maximum time limit to respond to a submitted code

review by cores and non-cores alike.

P16. Release post-mortem reviews to all contributors

Post mortem or after-action review promotes learning through a collective

activity to build knowledge based on the experience and to improve future

practice. In post-mortem reviews, learning takes place through socialisation and

119

Chapter 4. Proactive Knowledge Retention Canonical Model

when individuals share experiences, tacit knowledge is externalised, thus

knowledge is shared from individual level to organisational level. Post-mortem

reviews are an attempt to codify knowledge from projects, where the main

output is the report, and can be seen as a systematic mechanism of capturing,

storing, interpreting and distributing relevant experience from projects.

For example, Apple used a method for post-mortem approach (Collier et al.,

1996) based on a project survey, collecting useful information on project, a

debriefing meeting, and a ‘project history day’. Microsoft invests considerable

efforts into writing ‘Post-mortem reports’ (Dingsøyr, 2005). The reports contain

details on what has worked well for the last project, what has not worked well

and teams that need improvement for the next project (Cusumano and Selby,

1998). In OSS projects post-mortem reports can be maintained to codify the

experiences and lesson learned on the project and improve the future projects.

4.8.4 Environment/ Ecosystem/ Culture

P17. Build a supportive community for conflict resolution

"Any popular project will inevitably attract people who will deliberately or

otherwise harm, rather than help project’s community and this may start

unnecessary debates, quibble over trivial features and escalate to potential

bullying of others" (Eghbal et al., 2018). If left unchecked, negative people will

make other people in community uncomfortable. Project leaders should adopt a

zero-tolerance policy towards these types of people. An OSS community with

an ability to resolve conflicts will last longer and with time evolve and more

productive. For example, adopting a code of conduct builds a supportive

community is the key to resolving conflicts. "A code of conduct is a document

that establishes expectations for behaviour for project’s participants. Adopting,

and enforcing, a code of conduct can help create a positive social atmosphere for

project community" (Eghbal et al., 2018).

120

Chapter 4. Proactive Knowledge Retention Canonical Model

P18. Explicitly identify project contributors

The contributors who contribute to the project can be listed along with other

details of the project. This practice can facilitate to maintain the network of

contributors in OSS project and helps to establish an ecosystem that can be

a source of linking contributors in OSS community. Explicit identification of

contributors who contribute to the project can also be helpful for other to reach

out to the contributors on the project for queries, solutions, and support. As a

result, more contributors will end up joining the project. Example of identifying

the contributors can be that designating leaders simply as add their names to

README or a CONTRIBUTORS text file. CONTRIBUTORS or AUTHORS

file in the project that lists everyone who contributed or contributes to the project

(Eghbal et al., 2018).

P19. Allow self-organization of project roles

Self-organisation is related to letting people decide what role they want on

the project. In OSS project, contributors when allowed to choose roles by their

discretion gives them a sense of freedom and independence to operate in a

dispersed and distributed community synced mostly through asynchronous

means of communication. This practice will also create an environment where

contributors are more cooperative and respectful towards each other’s opinions

and suggestions, while collaborating on different tasks. This practice can also

help in the propagation of sharing knowledge among contributors since they are

more enthusiastic about their roles and willing to elaborate on the tasks they

are performing to others. For example, letting people self-organize and

volunteer for the roles they are most excited about and interested in, rather

than assigning them (Eghbal et al., 2018).

P20. Create a culture to share knowledge altruistically

Creating knowledge sharing awareness among contributors and evolving an

altruistic philosophy is a primary motivation behind many OSS project.

Knowledge sharing should be introduced as a vital cultural element in OSS

121

Chapter 4. Proactive Knowledge Retention Canonical Model

projects in order to stabilise ecosystem and extending selfless gesture of doing

good to the society. This practice introduces the idea of sharing knowledge as a

part of a core culture where contributors willingly share knowledge as a selfless

deed and for the betterment of OSS community. As an example of intrinsic

motivation is, Google consists of a user community mainly of software engineers.

The knowledge is shared by answering questions and helping solve problems

that other software engineer post, without being compensated (Lindvall and

Rus, 2003).

P21. Make project documentation publicly accessible

Making project documentation publicly accessible enhances the visibility of

a project. This practice also enables the building and strengthening of the

ecosystem, as the project and project document should have an open access to

all project community. When communication is public and accessible, anybody

can read past archives to get up to speed by going though mailing lists, blogs

and participate. This can be related to the communicating changes in the

documentation on the fly, but it is more of an adoption of a culture or

environment where documentation is given public access to be viewed by the

contributors of the project. For example, public communication can be as

simple as directing people to open an issue instead of emailing directly to

project leader or commenting on project’s blog. Further, setting up a mailing

list, or creating a Twitter account, Slack, or IRC channel for people to talk

about the project (Eghbal et al., 2018).

P22. Foster an open-minded culture towards diverse types of

contributions

OSS project governing teams and other contributors should adopt a culture

to be open and accepting towards all kind of contributions, no matter how small

or large it is. This kind of openness and culture encourages contributors who are

casually contributing to the project but their efforts are recognised and accepted.

For example, the types of contributions to accept can be a bug report or a small

122

Chapter 4. Proactive Knowledge Retention Canonical Model

fix making it easier for casual contributors to contribute (Eghbal et al., 2018).

P23. Encourage mentorship of new comers

Mentoring new contributors helps promote enthusiasm and a willingness to

work on the project and submit quality contributions. Mentoring is suggested

to be a logical approach for transferring important tacit and implicit knowledge

(De Long and Davenport, 2003). It is argued that most companies due to

resource limitations and an inadequate availability of experts find mentoring

difficult to sustain in long term (De Long and Davenport, 2003). This practice

is useful to overcome knowledge barriers faced by OSS contributors who are new

to a project and are also enthusiastic about the project, but need a bit

assistance in skills or knowledge can be considered for mentoring through their

first contribution. For example, resist fixing easy (non-critical) bugs. Instead,

use them as an opportunity to recruit and mentor new contributors (Eghbal

et al., 2018).

4.8.5 Governance and Leadership

P24. Update project documents frequently

This practice is useful for the removal of knowledge barriers and is the

responsibility of the contributor working on the project to ensure that

documents are up to date. In case of problem or clarification required on the

process it should be brought to the attention of team leaders. This practices

advocates accessibility and correctness of knowledge available. The knowledge

centralisation and updating has to be monitored by team leaders and its

accessibility to contributors and teams. Also team leads or people governing

OSS project are generally more knowledgeable to update the documents at the

central location. For example centralisation as explained while inspecting the

governance structures in Ericsson, which is argued to be similar to OSS, and

where a centralised approach is implemented to secure quality (Britto et al.,

2016). The knowledge loss was due to the recurrent movement of resources in

123

Chapter 4. Proactive Knowledge Retention Canonical Model

and out of products and constantly changing business needs. In such a

situation, the adoption of a centralised approach helped in architectural

knowledge stability and its availability to new developers and teams.

Centralisation also involves actively maintaining the project documents.

P25. Enable a strategy of successor identification

Identification of successors and involving other contributors as co-owners with

relevant expertise knowledgeable on the work of other contributors is presented

as a method to reduce the risk associated with developer turnover (Rigby et al.,

2016). The files with a successor were not at risk of abandonment even when the

owning developer left. A successor was there to perform maintenance tasks (Rigby

et al., 2016). A visualization word cloud has been proposed to show quickly the

level of cooperation of the team in the project (Fronza et al., 2013). Intensity

of colour and size of the letter in a wordle indicate the need for resources. In a

similar fashion, adopting real-time visualisation of resources can facilitate in the

identification of successors. Project leaders, owners or team leaders in OSS may

relocate resources on projects based on the visualisation of resources when there

are less resources than required. Decisions to use a technology tool that depicts

the real-time visualisation of resources is mainly upon the main leaders of the

project.

Another example is to develop a Transactive Memory Systems / Knowledge

map / Knowledge portals. An insight into the area of expertise members, a

knowledge map or directory can be used on the project website (Chen et al.,

2013). In order to leverage OSS project teams, a focus is required towards

facilitating the TMS development within the teams, based on knowledge

location, the usage of the developer mailing list and knowledge credibility (Chen

et al., 2013). The team leaders would be able to keep the track and identifying

people who are knowledgeable on the work of others. Transactive Memory

System development within the teams is based on knowledge location, the usage

of the developer mailing list and knowledge credibility. An insight into the area

124

Chapter 4. Proactive Knowledge Retention Canonical Model

of expertise members, a knowledge map or directory can be used on the project

website internal knowledge portal, serving as a way to help knowledge workers

familiarize themselves with their colleagues knowledge, K- Portals are rapidly

evolving into broad-based platforms for supporting a wide range of Knowledge

worker tasks.

P26. Proactive assignment of varying tasks to non-cores

The skill set of core contributors is generally better than that of non-core

contributors. Typically cores contributors make 80% of the knowledge

contributions in OSS projects. In order to uniformly distribute knowledge from

cores to non-cores, the team leads can proactively assign different tasks to

non-core contributors. Leaders in OSS projects can govern the proactive

assignment of different tasks to non-cores. As indicated that contributors who

modify code from other contributors stay longer on the project (Lin et al.,

2017). This will create a balance of equal development of skills on the OSS

project. For example, contributors who normally perform documentation tasks

should be assigned some coding tasks.

P27. Advocate diversification of core contributor specialisation

For an OSS project to survive, a diversity of core developers is required

(Wahyudin et al., 2007). When a key contributor abandons an OSS project it

can often reveal a very fluctuating proportion of developer contribution. An

imbalance can occur between the contribution submitted and response from

specialised core developers in community due to missing diversification.

Forming a “core team” of maintainers, or even subcommittees of people who

take ownership of different issue areas (for example, security, issue triaging, or

community conduct), as suggested can be the solution to the imbalance in

diversification of cores (Eghbal et al., 2018).

As an example, job rotation allows for knowledge exchange and transfer while

people take turn to work in different job roles, tasks, and domains. Job rotation

legitimises experience that allows people in the organisation to work in diverse

125

Chapter 4. Proactive Knowledge Retention Canonical Model

knowledge domains (Fægri et al., 2010). Some development practices, such as

pair programming, facilitate knowledge sharing between peers, while job rotation

helps knowledge spread throughout the project or organisation (Lindvall and Rus,

2003).

P28. Distribute project leadership

Distributed project leadership is related to sharing project ownership. This

practice helps community to find support in the absence of the main leader and

to keep the project maintenance ongoing. Maintenance in OSS projects continues

the evolution process of the developing system. Shared ownership facilitates

the project and the maintainer to either step away from project, on hiatus or

permanently, request other contributors to take over. For example, a project

leader should find support for project users and community while she plans to be

away from a project and be sure to communicate her unavailability and inform

contributors that who the new or temporary leader is (Eghbal et al., 2018).

P29. Explicit process for role progression The policy to progress in the

project should be elicited by the team leaders on the project and made explicit

for all project contributors. It is important for all contributors to see what can

be the outcome of their efforts reflected as their personal progress on the project.

This also serves as a motivation to contribute in order to progress to the highest

level of recognition on the project. For example, documenting the process on

the project to progress down the funnel i.e. from users to contributors and to

maintainers (Eghbal et al., 2018).

P30. Document project rules and policies

Document project specific rules, policies and roadmaps should be provided

by the project leaders. There can be changes made later to the rules and

policies but the responsibility of documentation mainly lies with the leadership.

Also for a person joining a new project, provision of these documents enables

them to evaluate on the basis of the elaborated rules and policies. Transparency

about project’s roadmap, the types of contributions required for the project,

126

Chapter 4. Proactive Knowledge Retention Canonical Model

how contributions are reviewed, or why certain decisions are made on the

project. Clearly state rules, policies, project vision, goals and any related

information in a dedicated file such as Readme that is accessible to project

contributors (Eghbal et al., 2018).

P31. Establish mechanisms for training

Training is an effective mechanism for knowledge transfer. Training of

contributors is important in overcoming potential knowledge barriers in OSS

projects. Removal of knowledge barriers: namely, lack of technical experience,

lack of domain expertise and lack of knowledge on project hinder contributions.

For example training is also a knowledge transfer practice found to include some

combination of formal classroom training, e-Learning, video or computer-based

training, on-the-job training, coaching, and shadowing (De Long and

Davenport, 2003).

127

Chapter 4. Proactive Knowledge Retention Canonical Model

Figure 4.4: Proactive Knowledge Retention (PKR) model developed for OSS
projects

4.9 Chapter Summary

This chapter articulates discussion on the rigorous process followed to develop

the PKR canonical model and concludes with the identification of 31 practices

classified under five categories. The description of each practice is provided in

detail along with example from the real world and its utility in OSS projects.

The overall structure of the practices is illustrated in Figure 4.4. A number on

every edge of the pentagon indicates the number of practices identified under

each category. The next chapter 5 discusses the development of the survey

128

Chapter 4. Proactive Knowledge Retention Canonical Model

instrument and its deployment for data collection to evaluate the effectiveness

of PKR canonical model based on the feedback from OSS contributors.

129

Chapter 5

Survey and Data Collection

This chapter discusses the development of the survey instrument by strictly

adhering to survey development process from the literature with some

adaptation as presented in the following section. The developed survey

instrument is further deployed for the data collection, which is described in the

later part of this chapter.

5.1 Survey Development Process

Survey is thought to be more than an instrument in the form of questionnaire or

checklist to gather information (Kitchenham and Pfleeger, 2008). Accordingly,

survey is considered a comprehensive research method to collect information

and utilise it in describing, comparing or explaining knowledge, attitudes and

behaviour (Fink, 2003). In this work, the survey process is adapted from the

following six main activities iterated here (Kitchenham and Pfleeger, 2008):

• Setting the objectives

• Survey design

• Developing the survey instrument (i.e. the questionnaire)

• Evaluating the survey instrument

• Obtaining valid data

• Analysing the data

130

Chapter 5. Survey and Data Collection

The survey process includes the steps above and an additional seventh step of

survey reporting (Ciolkowski et al., 2003). Survey reporting records the execution

of the survey and reports the survey results (Kitchenham and Pfleeger, 2008). The

following sections further detail each activity involved in the survey development

process. Figure 5.1 depicts the process of survey development.

Figure 5.1: The process of survey development

5.2 Setting the Objectives

OSS projects might be considered to represent a plethora of accumulated

knowledge in the form of contributors or knowledge workers with varying levels

of experience and expertise. Contributions themselves represent one aspect of

knowledge sharing in OSS communities. Contributions are of various types

including bug reporting, bug fixing, documenting, code writing, participating in

code reviews, and replying on mailing lists to resolve problems faced by other

contributors. Due to the transient nature of contributors in OSS projects

causing KL, the project-relevant knowledge at times remains unshared or

becomes inaccessible to others. The author of this work suggests that KL in

OSS projects due to contributor turnover can be reduced by introducing PKR

practices in OSS projects that can transform contributors’ use of knowledge and

engagement in knowledge relevant activities including knowledge sharing and

knowledge transfer. "The heart of any knowledge-retention strategy is its

knowledge-sharing practices" (De Long and Davenport 2003).

131

Chapter 5. Survey and Data Collection

The goal of this survey is to gather data on OSS projects and gain an

understanding of contributors and feedback on PKR practices to support the

research objective of systematically constructing a robust canonical model for

OSS project PKR and through engagement with practitioners.

5.3 Survey design

The design of this survey incorporates the principles of scientific rigor. The

dataset created in this survey will be obtained through engagement with the

open source community. The privacy and safety of respondents will be prioritised,

while maintaining the scientific rigor of the survey design and fielding process.

This survey design considers the following activities to operationalise survey goals

consisting of important decisions and activities as follows (Ciolkowski et al., 2003):

1. Defining the target population and the survey sample

2. Derive a conceptual model of the objects and variables of the survey

3. Approach for data collection

4. Survey instrument design

5. Approaches for data analysis

6. Validity issues

5.3.1 Defining Target Population and Survey Sample

GitHub is the world’s largest collection of OSS (Borges et al., 2016), with 85

million repositories hosted and supporting a community of 28 million people to

learn, to build and to share software, as reported by the GitHub website on June

2018 1 . The users of OSS projects on GitHub use stars to indicate their interest

and likeness for the project, which serves as a proxy measure of their popularity
1https://github.com/about

132

Chapter 5. Survey and Data Collection

(Borges et al., 2016). The target population for this survey is the open source

community. In order to fulfil the major goal of this survey, which is to evaluate

a canonical model of PKR in OSS projects, a sample comprising of OSS projects

would suffice for evaluating the proposed canonical model.

The projects will be selected based on popularity from a collection of

GitHub OSS projects based on the number of stars as a proxy for popularity

because it reveals how many people manifest interest or appreciation to the

project (Borges et al., 2016). Another study limits the number of repositories to

the top 5,000, based on the number of stars, to focus on the maintenance

challenges faced by highly popular projects (Coelho and Valente, 2017). The

sampling of OSS projects from popular OSS projects listed in GitHub will

follow an approach similar to (Coelho and Valente, 2017). The details on the

selection of OSS projects are given in the later section 5.8.2.

5.3.2 Conceptual Model of Survey

The conceptual model for this survey follows from Goal, Question, and Metrics

(GQM) approach. GQM states the goals in advance leading to a selection of

only those metrics that are relevant for achieving these goals (Koziolek, 2008).

After defining the goals, the questions are asked to attain the goals, and data

is collected to answer the questions. There are two areas identified for data

collection: contributor profile, and evaluation of canonical model for PKR in

OSS projects. The two areas for data collection are selected considering their

relevance to the goal of this survey.

The set of contributor profile questions are designed to enable a deeper

evaluation of the data obtained, for example based on the experience of

respondent,or on the OSS role type of respondents. classify them based on their

contribution in OSS projects. The second and more substantial part of the

survey is concerned with the evaluation of PKR practices. The categorical

difference among contributors based on their experience serves as a

133

Chapter 5. Survey and Data Collection

distinguishing factor for the evaluation of PKR practices. The feedback and

evaluation on PKR practices gives an insight into the respondents’

understanding of the value of individual practices. These two survey

components, along with their dimensions, are presented as a conceptual model

for this survey in Table 5.1.

Table 5.1: Conceptual model of survey

5.3.3 Data Collection Approach

Surveys are useful in collecting qualitative, quantitative or both types of data

through questionnaires or interviews (Wohlin et al., 2003). The data collection

is through a self-administered questionnaire (Kitchenham and Pfleeger 2008),

which is designed using Google Forms. The data collection is anonymous and to

manage sending surveys and set up follow-ups with partipants, GMass 2 is utilised.

More details on data collection are elaborated in section 5.8.4. Anonymity of

participant is preserved as a means to promote honest and uninhibited feedback

from OSS contributors.

5.3.4 Survey Instrument Design

The design of survey instrument in this work embeds a series of questions in the

form of a questionnaire. Interviews and questionnaires focus on asking a series

of questions based on one or two types of questions: open questions and closed
2https://www.gmass.co/

134

Chapter 5. Survey and Data Collection

questions (Lethbridge et al., 2005). A question is open when the respondents are

asked to frame their own reply and a question is closed when the respondents

are asked to select an answer from a list of predefined choices (Kitchenham and

Pfleeger, 2008). Likert scales and multiple-choice questions are considered to

be examples of closed questions and conversational responses are open questions

with a textual input. It is recommended to always have some open questions to

gain information that cannot be conveyed by more specific information seeking

questions (Lethbridge et al., 2005). The design of survey instrument in this work

considers both open ended and close ended questions.

5.3.5 Approaches for Data Analysis

The approach to analyse data depends on the type of measurement scales used.

Classical measurement theory defines four basic types of measurement scale

(Ghiselli et al., 1981):

1. Nominal: The scale values are unordered categories, and no mathematical

manipulation makes sense.

2. Ordinal: The scale values are ordered, but the intervals between the values

are not necessarily of the same size, so only order-preserving manipulations

such as ranking make sense.

3. Interval: The scale values are ordered and have equal intervals, but there is

no zero point, so only sums and differences make sense.

4. Ratio: The scale values are ordered and have equal intervals with a zero

point, so any mathematical manipulation makes sense.

The responses obtained in this survey consist of a single selection from the list

(nominal), multiple answers from the list (nominal), selection on Likert scale

(ordinal), and text entered as passage. During data analysis, the selection of

method is such to align with the type of data obtained and the objective of

135

Chapter 5. Survey and Data Collection

research. The approach adopted in this work for data analysis is entailed in

chapter 6.

5.3.6 Validity Considerations

Validity issues forecast any possible problems with survey design during survey

implementation and execution (Ciolkowski et al., 2003). Validity considerations

for this survey include internal validity, external validity, experimental validity

and construct validity as described here:

• Internal validity - The control in a survey is usually quite low and it is

impossible to know whether the respondents answer truthfully, or whether

other effects bias the results (e.g., history effects—external events that

influence someone’s view and attitude towards a question) (Ciolkowski

et al., 2003). In order to promote internal validity and allow the

researcher to draw conclusions, a duration for respondents to take this

survey is set at 9 weeks. Internal validity is also concerned with possible

inaccurate and imprecise responses (Ciolkowski et al., 2003). This survey

minimizes this error by carefully designing the questionnaire and by

conducting a pilot study (Ciolkowski et al., 2003).

• External validity - deals with the extent to which the results represent the

population. The sample of OSS projects collected from GitHub is based on

the initial selection of 1020 different projects (one repository is equivalent

to one project) representing the target population. While considering the

number of contributors from the top 1020 OSS projects, there are too many

contributors to survey, and the amount of effort required for such is simply

too large. Therefore, obtaining a large number of respondents in absolute

terms is considered a pragmatic approach (i.e. 1020 projects include more

than 25000 contributors and this is a large population from which certain

useful inferences can be made). The details on the selection of targeted

136

Chapter 5. Survey and Data Collection

population and OSS contributors appear in the later section 5.8.1.

• Experimental validity - relates to the reproducibility of results with a

different sample. In this survey, the reproducibility of results may vary from

the same respondents over a given time span, as their experience and views

evolve.

• Construct validity - relates to asking the right questions in the survey

instrument to evaluate object of interest. In this survey, the questions are

derived from the conceptual model (Section 5.3.2) and a pilot study further

minimises the construct validity threat.

5.4 Survey Instrument Development

The survey instrument design includes one open question, and multiple closed

questions. There are questions with pre-defined answers and with an additional

response of ‘other’ as appropriate, to obtain a participant’s opinion and to

enable the elicitation of a richer and more informative suite of responses from

participants. The survey also uses 11-point Likert scales, which has an equal

percentage of positive and negative choices against a question, with an

additional option of selecting neutral options (Allen and Seaman, 2007).

The operationalisation of survey goals (Ciolkowski et al., 2003) requires

inspection of a conceptual model and its transformation into a set of questions.

The survey goals are operationalised in the survey instrument for this research

by associating them with a set of questions grouped together under two different

sections namely, project contributor profile and feedback on PKR practices.

Contributor profile - The profiling of contributors in OSS projects

provides the details on their total experience in OSS projects, role, and their

overall experience in programming. There are four profile questions in the

survey that enabled the extraction of rich data from the evaluation of the PKR

practices.

137

Chapter 5. Survey and Data Collection

Evaluation of PKR practices - A canonical model developed in chapter 4

represents PKR practices in OSS projects. The canonical model is evaluated

and finalised through widespread and systematic practitioner engagement. The

data components utilised to structure the canonical model are gathered from:

the knowledge sharing and transfer practices mentioned in OSS literature;

knowledge retention and transfer practices from traditional organisations in

literature; and the open source guide hosted online 3. The open source guide

provides community-led input on the conduct of open source communities but is

not a published artefact that is routinely referred to or adopted in published

academic literature. The evaluation of KR practices facilitate in evaluating the

draft canonical model, ultimately producing a robust canonical model for PKR

in OSS projects that is firmly rooted in the literature and in the practitioner

expertise and opinion.

Surveys instruments designed by other researchers, while studying OSS

communities, used as a reference for some of the questions in designing this

survey instrument are listed here:

• GitHub in 2017 4 : A detailed survey designed to collect data about the

attitudes, experiences, and backgrounds of those who use, build, and

maintain OSS (Geiger 2017).

• R community 5 : Survey designed to study the information seeking and

information providing behaviours in R community (Vasilescu et al. 2014).

• Pull-based Request 6: Survey designed to understand the contributor’s

perspective on the GitHub pull based model to guide the design and

process of the tools to reduce barriers for the contributors (Gousios et al.

2015).
3https://opensource.guide/
4http://opensourcesurvey.org/2017/
5http://goo.gl/mZtz9X
6http://dx.doi.org/10.5281/zenodo.46063, Feb. 2016/

138

Chapter 5. Survey and Data Collection

Through examining the type and volume of questions adopted in similar

related research, the survey instrument produced for this research can leverage

the accumulated efforts of other researchers in this space, thereby bringing

increased quality to this research’s survey instrument. The final survey

instrument consists of:

• 3 questions - only one option to be selected

• 1 question - selection of multiple options including ‘Others’

• 31 questions - selection on 11-point Likert scale

• 1 question - textual input as a paragraph

The survey instrument designed using Google Forms can be viewed in appendix

C.1.

5.5 Evaluating the Survey Instrument

Evaluation of the survey instrument refers to pre-testing or pilot study and is

primarily formulated on the following baselines (Kitchenham and Pfleeger, 2008):

1. To assess that the questions come across as intended by the researcher.

2. To assess the likely response rate and the effectiveness of the follow-up

procedures.

3. To evaluate the reliability and validity of the instrument.

4. To ensure that our data analysis techniques match our expected responses.

The evaluation of this survey instrument follows two steps, internal review,

and a pilot study. At first, supervisors evaluated the survey instrument internally,

Dr. Paul Clarke and Prof. Rory O’Connor. Then a pilot study was conducted

by selecting a smaller subset of participants from the original sample size of the

139

Chapter 5. Survey and Data Collection

top 1020 OSS projects. The pilot study follows the same process and procedures

defined for the survey as a check that everything works as envisaged and that data

can be collected effectively. Furthermore, the efficacy of the survey instrument

is evaluated in the pilot study. Section 5.8.5 articulates the details relating to

validity concerns for the survey instrument.

5.6 Obtaining Valid Data

Validity of data obtained depends on the establishment of a robust data

collection technique, which in this study is through a survey instrument. The

sample or subset of a population that is representative of larger population

helps in attaining precise and reliable findings (provide useful answers) and

corrections (Kitchenham and Pfleeger, 2008). It is instructive to consider the

target population and sampling procedure from the perspective of analysing

data leading to any meaningful conclusions, similar to (Kitchenham and

Pfleeger, 2008):

• Will the analysis results address the study objectives?

• Can the target population answer our research questions?

The target population for this survey is from the OSS community. The

details on the selection of the target population with sample size appear in

section 5.8.1. The minimum number of responses required from this survey

study is 120 considering that every survey is complete with valid responses and

the survey participant has an authentic profile.

140

Chapter 5. Survey and Data Collection

5.7 Analysing the Survey Data and Reporting

Typical analyses compare different populations of respondents; analyse

associations and trends, or the consistency of scores (Ciolkowski et al., 2003).

The data analysis for quantitative and qualitative data will be performed

independent of each other. Responses obtained from open questions may utilise

memoing, and thematic coding to aggregate the findings. The quantitative

analysis will partition responses into more homogenous groups and compare

different populations of respondents based on their profile, and also analyse

associations accordingly (as well as attempting to identify response trends that

are common across all participants).

Data analysis also inspects responses from the participants for completeness

or incompleteness, and consistency. Furthermore, in case a survey response is

incomplete, deciding to include it or exclude it from the analysis without

introducing any systematic bias. The findings from both types of analysis are

combined to understand and elaborate knowledge-relevant activities in OSS

projects and to evaluate and improve the canonical model of PKR practices.

The details of the data analysis performed are presented in chapter 6.

The reporting of the survey involves the evaluation of the compiled survey

results and disseminating information to the concerned parties in academia, in

OSS communities, and more broadly in the software engineering field. The details

of evaluations consolidated from the analysis of data collected from the survey

are presented in chapter 7.

141

Chapter 5. Survey and Data Collection

5.8 Conducting the Survey

This section elaborates the deployment of the survey for the data collection. The

survey instrument was designed in section 5.3.4. The preceding step to the survey

deployment is the selection of the participants in OSS projects. The following

sections discuss the details on the selection of survey participants, and conducting

the survey.

5.8.1 Contributor Selection from GitHub

GitHub is the world’s largest collection of OSS (Borges et al., 2016), with 85

million repositories hosted and supporting a community of 28 million people to

learn, to build and to share software, as reported by GitHub website on June 2018.

The users of OSS projects on GitHub use stars to indicate their satisfaction,

interest and appreciation for the project, which serves as a proxy measure of

their popularity and the number of stars are observed to be directly related with

number of forks, programming languages, users or organisations and domains

(Borges et al., 2016). The process to extract contributors is summarised in Figure

5.2.

Figure 5.2: Process to extract survey participants from GitHub

The GitHub Search API functions similar to Google, while performing search

142

Chapter 5. Survey and Data Collection

to find a specific item such as a user or a specific file in a repository. The design

of the Google API attend to user’s need and aim to find the specific results that

best meets user’s needs. The GitHub Search API provides up to 1,000 results for

each search.

• The default limit when using the GitHub API to extract project

repositories is 30x34=1020. For this work, the default limit is used to find

the contributors to target.

Contributors were extracted with search criteria based on ranking of ‘most

stars’ and by running a python script to correlate the e-mail addresses of

contributors. The GitHub search then populates the top 1020 OSS projects 7,

based on the criteria of number of stars, as a proxy measure for the popularity

of projects, as shown on GitHub website portrayed in Figure 5.3.

• https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=

Repositories

Figure 5.3: GitHub web page populated with projects with most stars

7Note: The data extraction was on 20-10-2018; the names of the projects that appear on
the GitHub website will vary over time.

143

https://github.com/search? o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search? o=desc&q=stars%3A%3E1&s=stars&type=Repositories

Chapter 5. Survey and Data Collection

The GitHub Search API employed to search repositories are detailed on the

following link:

• https://developer.github.com/v3/search/#search-repositories

Using GitHub API, the endpoint was queried to get all 34 pages, each page

displays listings of 30 repositories by default. There are 34 pages extracted using

GitHub API repositories. Each page has 30 repositories:

34 (pages) x 30 (repositories on each page) = 1020 repositories

Overall, 1020 repositories were extracted, out of 2,819,5548 using the link:

• https://github.com/search?o=desc&p=2&q=stars%3A%3E1&s=stars&

type=Repositories

There is a limit on the number of anonymous calls that can be made to

GitHub. To overcome the issue of requests limits, an authentication personal

access token was generated from the settings of a valid GitHub account. The

generated personal access token was passed as a request parameter to increase

the limit of anonymous API calls to 5000 per hour.

Each of 1020 project repositories were iterated by making a call to

contributors_url to retrieve the details of contributors. Only the top 30

contributors in the each repository were selected, based on the number of

contributions. Within the top 1020 projects, contributors from just a single

project were not retrieved, because the project in question seemed to have an

infinite number of contributors. Some projects has less than 30 contributors. If

the number of contributors was less than 30 all contributors on the project were

retrieved. Next, the details on the profiles of contributors were retrieved by

iterating through contributors_url for every contributor. The profile details

included contributors e-mail addresses and other relevant information. A total
8https://github.com/about

144

https://developer.github.com/v3/search/#search-repositories
https://github.com/search?o=desc&p=2&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&p=2&q=stars%3A%3E1&s=stars&type=Repositories

Chapter 5. Survey and Data Collection

of 27634 contributors were extracted among whom 13366 have public e-mails

addresses.

The results were displayed in JSON (JavaScript Object Notation), a

readable format for structuring data. In order to convert JSON to csv, the

Jupyter Notebook App was utilised to run python code. The Jupyter Notebook

App is a server-client application that allows editing and running notebook

documents via a web browser. A notebook kernel is a "computational engine"

that executes the code contained in a Notebook document.

Also, the Jupyter Notebook App embeds the Pandas library, a software library

written for the Python programming language for data manipulation and analysis.

Notebook documents generate human-readable documents containing the analysis

description and the results, for example in tables, as well as executable documents

which can be run to perform data analysis. Pandas is an open source, BSD-

licensed library providing high-performance, easy-to-use data structures and data

analysis tools for the Python programming language. The Pandas library object

"dataframe" is used to store the JSON data structure and convert it to csv. The

extracted names of the repositories with details on other attributes were verified

from GitHub webpage:

• https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=

Repositories

5.8.2 Selection of Projects

The public_repos attribute extracted among contributor’s profile indicates the

number of contributions that contributor made to different repositories on

GitHub. This is used as the criterion to select contributors considered to be

experts in OSS contributing. From 13367 contributors who have valid e-mail

addresses only those were selected who have contributed to repositories in the

range of 1 to 3955. The highest number of contributions from a contributor to

145

https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories

Chapter 5. Survey and Data Collection

GitHub repositories are 3955. Figure 5.4 gives an example of details on

contributor’s profile retrieved from GitHub.

Figure 5.4: Data relevant to contributors profiles on GitHub

It is observed that with an increasing number of contributions, the number of

contributors tend to decrease. For example, 445 contributors made contributions

ranging from 151 to 200 repositories. On the contrary 68 contributors made

contributions ranging from 300 to 350 repositories.

5.8.3 Plain Language Statement (PLS)

In order to comply with General Data Protection Regulation (GDPR), a Plain

Language Statement (PLS), was included in the beginning of the survey, where

the participant has to give consent before taking the survey. The data collected

from the survey is anonymous, i.e. the collected responses can not be traced back

to the participants. In order to keep the survey anonymous, option for follow-

ups on Google Form, which requires enabling the "collection of e-mail option",

is disabled. The PLS statement and consent form can be viewed in the survey

instrument document in Appendix C.1.

146

Chapter 5. Survey and Data Collection

5.8.4 Sending Surveys using GMass

GMass is a marketing extension, used to mass e-mail campaigns that integrates

with Gmail accounts. GMass suits the requirements of this work for issuing the

survey, scheduling follow-ups as reminders and ensuring that they do not end up

in the Spam folder of recipients. These measures effectively improve the response

rate of the survey.

5.8.5 Phase - I: Pilot Survey

The pilot consisting of 50 surveys was conducted selecting contributors from 989

unique e-mail addresses with the selection criteria of 151 to 159 contributions in

GitHub using GMass. The selection criteria for contributors ensured that they

have enough experience contributing to OSS projects to attempt the survey and

share their feedback. One e-mail address was not found to be valid. GMass (free

subscription) limits sending more than 50 surveys in 24 hours. The follow-ups

on the survey were set to one reminder after 3-days. A pilot survey response

rate of 8% was achieved, which is considered positive given that no relationship

existed between the researcher and the pilot participants. Furthermore, the pilot

participants did not recommend changes to the survey but were provided with the

opportunity to do so if desired. It should however be kept in mind that response

rates while although informative, are alone not good proxies for study validity

(Curtin et al., 2000; Keeter et al., 2006). Furthermore, a response rate not to be

effectively considered a sufficient evidence to judge study quality and/or validity

(Morton et al., 2012).

The pilot survey was successful and responses were collected in Google Forms.

The setup for survey including GMass and Google Form was working in entirety.

The next step was to send the survey to all contributors extracted from GitHub

in Figure 5.2 by overcoming the sending limit on GMass. To extend the survey

sending limit on GMass, a subscription was purchased from GMass, which enabled

147

Chapter 5. Survey and Data Collection

the researcher to send 1950 e-mails every 24 hours.

5.8.6 Phase - II: Survey

The next stage after conducting the pilot survey was to issue the survey to the

remaining contributors. During one week, a total of 10588 surveys were issued.

The range of contributions represented by the public_repos field for the data

collected from GitHub for contributors, was set to 1-3955 and excluding the e-

mails already used to conduct pilot survey. The surveys were sent by placing

all selected e-mail addresses in the ‘To’ field using Gmail compose e-mail option

merged with GMass. Incomplete e-mail addresses were removed after attempting

to locate correct e-mail address on GitHub profile.

• A total of 233 delivery failures and 158 bounces were recorded in the

"bounce" folder of GMass.

• A total of 132 responses were received for the survey over the period of:

08-04-2019 to 15-06-2019

• The effective response rate of survey is: 132 / (10588-391) = 1.29%

Where 10588 is the number of OSS contributors with an e-mail address and

391 are the bounces. A selection from the collected data is depicted in Figure 5.5.

The complete data collection is divided into four appendices: data on contributor

profile and practices 1 - 4 appear in C.2 , data on practices 5 - 13 appear in C.3,

data on practices 14 - 22 appear C.4, and data on practices 23 - 32 appear C.5.

148

Chapter 5. Survey and Data Collection

Figure 5.5: Data collected from the survey

Queries from contributors - There were e-mail queries from OSS

contributors on the research along with an expression of interest to be informed

on the outcome of this work. The overall assessment of the e-mail

correspondence did not identify new items relevant for this research. A list is

maintained by the researcher for OSS contributors to be informed on the

outcome of this work and disseminate the findings.

5.9 Chapter Summary

This chapter discussed the process to design the survey instrument and the

deployment of the survey instrument resulting in the data collection. The

survey design process is based on seven steps, setting the objectives, survey

149

Chapter 5. Survey and Data Collection

design, developing the survey instrument, evaluating the survey instrument,

obtaining valid data, analysing the data, and survey reporting. The responses

are based on open questions and close questions. The target OSS population is

selected based on the popularity of OSS projects from GitHub. The selection of

the participants from GitHub was by executing a sequence of programs to

obtain the profiles of OSS contributors. The profiles were also verified for their

accuracy from GitHub website by random selection of contributors.

The noted response rate for the survey is 1.29%. The main goal of the survey

instrument is to evaluate and improve the PKR canonical model based on the OSS

contributor feedback. The OSS contributor profiling will allow for an in-depth

analysis of collected data and effectiveness of PKR practices in OSS projects.

The following chapter 6 discusses data analysis performed on the collected data.

150

Chapter 6

Data Analysis

In this chapter, the data collected through survey instrument is analysed. This

analysis commences by providing an overview of the collected data.

6.1 Data Analysis Overview

Of the 132 responses obtained, a total of 126 were deemed valid for analysis.

The remaining six were disregarded from the study as they presented as

problematic. Three of the discounted responses contained negative or

disparaging commentary suggesting that the responses from these participants

were not earnest in addressing the objectives of the study. In the case of a

further three responses, the profile of the responses, either all fully agreeing or

all fully disagreeing with the value of practices indicated that the respondents

did not give due consideration to the practices, which was further confirmed by

analysis of the timestamps for responses which were entered very rapidly by the

participants. The remaining 126 responses were progressed to the detailed

analysis stage.

6.1.1 Overview of Survey Participants

Certain participant profiling data was collected to enable a thorough analysis

of the responses in the context of the experience and roles of the respondents

in OSS. In terms of experience based on the number of OSS projects, 73% of

the respondents report contributions to 5 or more different OSS projects can be

151

Chapter 6. Data Analysis

considered positive in terms of the informed view of survey participants. Refer to

Table 6.1 for a breakdown on contributors’ percentage of participation by number

of OSS projects.

Table 6.1: Representation of OSS contributors profile in the survey population

In terms of OSS role types, some respondents reported contributing only in one

role while other respondents reported contributing in two or more roles. Overall,

19.2% of the respondents contribute as code contributors, 8.1% contribute as

testers, 16.6% contribute as bug reporters, 14.19% contribute as maintainers,

14.19% contribute as committers, 12.3% contribute as reviewers, 10.18% report

contribute as document writers/ editor, 4.47% contribute as integrators, and

0.46% (3 responses) contribute as others. Refer to Table 6.1 for a breakdown

of reported role types. A broad spectrum of role types are represented in the

participant population is considered positive to the research effort, as there is no

single viewpoint dominating the population.

In this research, the term most experienced in OSS relates to contributors

who have selected 10+ on any of the three attributes, e.g. contributions on 10+

projects, have been contributing for 10+ years or have programming experience

of 10+ years. Alternatively, the least experienced group of contributors are those

with the selection of 1-5 for the first two attributes and 1-2 for the third attribute.

152

Chapter 6. Data Analysis

The remainder of the selection including, e.g. 2-5, 5-10, formulate the group of

contributors with middle level experience.

In terms of experience based on number of years in OSS projects, 57%

reported to have contributions in OSS projects for more than 5 years. In terms

of programming experience, 2% contributors report 1-2 years, and 72% report

more than 5 years. Table 6.1 depicts the breakdown of percentage on

contributors’ participation by the number of years in computer programming.

As a general comment, the profiling demonstrates that a broad spectrum of

OSS contributors have participated in this study. The data collected is

representative of various OSS contributors contributing in different roles, with

varying levels of experience in programming ranging from relatively

inexperienced to highly experienced. The dynamic profiles of respondents will

allow for a detailed comparison of the views’ of different types of OSS

contributors, while also bringing balance to the research as a whole, wherein no

single perspective is over represented in the research population.

Of the 126 participants under analysis, the following profiles were observed:

• The majority of the contributors are experienced in OSS projects, about

55% have worked on more than 10 projects.

• The majority of contributors contributing to OSS projects are experienced

above 4 years, about 57% population is inclusive of contributors having an

experience of 5-10 and 10+ years in OSS projects.

• Regarding programming experience, 54% of contributors have more than

10 years of experience and 27% have 5 to 10 years of experience.

• In the role type, there is a general balance of OSS activities in the

respondents with no one role type dominating the sample, e.g. code

contributors 19.2%, testers 8.17%, bug reporters 16.6%, maintainers

14.19%, committers 14.19%, reviewers 12.34%, document writers/ Editors

10.18%, and integrators 4.47%.

153

Chapter 6. Data Analysis

6.1.2 Likert-Type Scale

Likert developed a procedure for measuring attitudinal scales to address the

difficulty of measuring character and personality traits referred to as a Likert

scale (Likert, 1932). The original Likert scale was constituted on five response

alternatives: strongly approve (1), approve (2), undecided (3), disapprove (4),

and strongly disapprove (5) and during data analysis a composite score was

calculated from a set of questions representing attitudinal scale (Boone and

Boone, 2012). The evaluation of practices obtained in this work is from survey

based on Likert-type items, and during data analysis, the researcher does not

intend to calculate a composite score for responses obtained against a set of

practices, which is applicable for the analysis of responses gathered for a Likert

scale (Boone and Boone, 2012). As argued that a single Likert-type item

inquires of the respondent about their choice among several ordered alternatives

presented and each Likert-type item reflects a discrete approximation of the

continuous latent or hidden variable (Clason and Dormody, 1994).

The emphasis here is that the discrete nature of the response is acknowledged

while performing an analysis of single items from Likert scales and implication of

ignorance of the discrete nature of responses can produce inferential errors (Clason

and Dormody, 1994). Accordingly, in Likert-type items, "number(s) are assigned

in order to express a "greater than" relationship; however, how much greater is

not implied and because of these conditions, Likert-type items fall into the ordinal

measurement scale" (Boone and Boone, 2012). Furthermore, the recommended

data analysis procedures for ordinal measurement scale items include a mode or

median for central tendency and frequencies for variability (Boone and Boone,

2012). The technique to rank practices based on the evaluations of respondents

is elaborated in section 6.2.

As per details available in earlier chapters, the evaluation of the 31 practices

is conducted using a Likert-type items scale. The values on the scale range from

154

Chapter 6. Data Analysis

0 to 10 (0 indicates that a practice is not effective practice in OSS projects, and

10 indicates that a practice is highly effective in OSS projects). A Likert-type

items scale is shown in Figure 6.1.

Figure 6.1: 11-point Likert Scale used for conducting OSS community survey

6.1.3 Data Summary

The data is collected as responses on Likert-type items against four profile

questions: the contributor’s contribution to the number of OSS projects, the

activities in OSS projects, the number of years contributing to OSS projects,

and the number of years in computer programming. The data collected from

survey indicates that most of the contributors perform more than one activity

in OSS projects.

The contributor activities in OSS projects are categorised as bug reporters

(108), code contributors (125), committers (92), maintainers (92), reviewers (80),

document writers, or editors (66), testers (53), integrators (29), and others (3).

The data collection from the survey represents contributors from the major roles

in OSS projects. Contributors who identify themselves as others were three in

number, two of which are community managers and one relates to identification

of new ideas in OSS projects. The categorisation by the number of years in OSS

projects indicate that majority of contributors have contributed for more than

10 years. Similarly, categorisation by the number of years in OSS projects shows

that the majority of contributors have been active for 1 to 5 years. Categorisation

by the number of years in computer programming shows that the majority of

contributors have more than 10 years of programming experience. The responses

obtained against four profile questions are summarised in Table 6.2.

155

Chapter 6. Data Analysis

Table 6.2: Overview of the survey data obtained

Figures 6.2, 6.3, and 6.4 depicts the distribution of responses obtained for

practices along with their counts using Likert-type item scale. As a general

observation, the data collected for each practice as evident from plots in the

Figures 6.2, , 6.3, and 6.4, is not normally distributed. Normal distribution is bell-

shaped, and perfectly symmetrical around its centre (Petrie and Sabin, 2019). At

the first glimpse of data, the distribution trend for most of the practices presents

with left skewness, for example Practice 2 (P2), Practice 3 (P3), Practice 4 (P4)

and others. A trend of distribution around the middle value is also noticed for

the responses obtained on the Likert-type scale for Practice 6 (P6), Practice 16

(P16), Practice 17 (P17), Practice 23 (P23), Practice 26 (P26), Practice 29 (P29),

156

Chapter 6. Data Analysis

and Practice 30 (P30). The descriptions of practices against abbreviation P1, P2,

P3 and so on, appear in Appendix D.1.

Figure 6.2: The distribution of responses for practices (1-9) and frequency on the
Likert scale (0-10)

157

Chapter 6. Data Analysis

Figure 6.3: The distribution of responses for practices (10-18) and frequency on
Likert scale (0-10)

158

Chapter 6. Data Analysis

Figure 6.4: The distribution of responses on practices (19-31) and frequency on
Likert scale (0-10)

159

Chapter 6. Data Analysis

6.2 Ranking Technique

In this section, the view of data is presented in accordance with median, mean,

standard deviation, and average deviation. Median gives the central location

of the data. Varying the highest or the lowest value in data will not make any

difference to the value of median. The value of median remains the same even with

added outliers and skewed data (Petrie and Sabin, 2019). When data distribution

is not symmetrical or open-ended, median is the right measure of central tendency

(Sundaram et al., 2010). However, calculation of mean includes all data values

or all information in the data and so it is thought to be more efficient than the

median, which does not include all values in the data (Petrie and Sabin, 2019).

Standard Deviation (SD) represents the spread or variability of data values

by calculating the average value of the squares of the distances between the data

values and mean (Ross, 2014). Another statistical measure of dispersion is Mean

Absolute Deviation (MAD), which finds out the absolute distance between each

data point and the mean and provides the measure of expected deviation of a

random variable from its mean value (Yager and Alajlan, 2014). In this analysis,

the values of mean, median, SD, and MAD are calculated for each practice and

ranked. The values of mean and median are ranked in descending order and

values of SD and MAD are ranked in ascending order. All four ranking measures

are utilised to perform a final ranking of practices into a hierarchy.

6.2.1 Designing Practice Ranking Scheme

The data collected as responses to evaluate 31 practices is plotted to observe

the trend of evaluation in each practice. In the Figure 6.5, the median bar chart

illustrates these trends; x-axes represent the practice number and y-axes represent

the values of calculated measures (i.e. median, mean, SD and MAD). The medians

for most of the practices, with the exception of Practice 6, are around or above

6.

160

Chapter 6. Data Analysis

Figure 6.5: Distribution of responses obtained for 31 practices based on Median,
Mean, Std (SD), AvgDev (MAD)

Incorporating the calculations from mean to analyse the evaluation trend of

practices does not show a significant change from the median representation,

rather in general, a minor decrease in values of mean but almost equal to median.

Comparison between mean and median generally reveals information about

the shape of the distribution. “A distribution, or data set, is symmetric if it

looks the same to the left and right of the center point” (Ramachandran and

Tsokos, 2009). Inferring on the distribution of data obtained from OSS

contributors while evaluating 31 practices, and considering median as a center

point, if mean equals median, then it is a symmetric distribution, if mean is

greater than median, it is a positively skewed distribution and if mean is less

than median, it is negatively skewed. In the data set obtained as responses of

161

Chapter 6. Data Analysis

OSS contributors while evaluating 31 practices, distribution for most of the

practices is negatively skewed.

Figure 6.5 also includes the calculated values of SD for all practices. The

standard deviation is a measure of statistical dispersion from the centre of data

around the mean (Ross, 2014). In order to rank practices for their effectiveness an

understanding is required about the dispersion of opinions among respondents for

each practice around mean. A preferable practice that is regarded a high rating

based on the evaluation of respondents is closer to the mean and will show low

variance from the mean as indicated by SD value. Alternatively, MAD (AvgDev)

calculates the average distance from a set of data between each data value and

the mean. The bar plots of mean, median, SD and MAD are depicted in Figure

6.5 .

Table 6.3 presents the basic ranking of practices. In order to obtain a single

rank against each row, a comparison on the ranking obtained for each practice

based on mean, median, SD, and MAD is performed. To arrange the practices

into a ranked order, the mean and median values are considered in combination,

with the practices first being sorted based on their mean values. Subsequently,

the median value is considered, and any instances where there appears to be a

large deviation from the mean to the median are examined for specific reasons

for this deviation. This involves also looking to the SD and MAD values to get

a sense for the observable variation in the generated mean values. Using these

additional perspectives, it is possible to refine the practice ranking, especially in

cases where the presented mean values are equal or almost equal. This process

is used in the various rankings applied in this thesis, and the outcome of this

process as alied to the survey population as a whole is presented in Table 6.3.

Although various approaches to grouping the practices were explored, when

the various categorisations were considered (the results of such analysis are

presented later in this chapter) there was no one formula that worked

consistently well for all categorisations and therefore, it was decided to simply

162

Chapter 6. Data Analysis

group the data based on the absolute number. Accordingly, practices with a

mean value of between 5 and 6 were grouped together, while practices between

6 and 7 were also grouped together. This, it is accepted, is a relatively crude

grouping strategy but it was the most effective one identified as being useful

across all categorisations and allows for a single interpretation across all

categorisations which aids in consistency of understanding.

Table 6.3: Ranking of overall practices

163

Chapter 6. Data Analysis

Nevertheless, the limitations of this approach are discussed in the limitations

section of this thesis. This grouping is also identified in Table 6.3, as indicated

by the enclosed areas: e.g. rank 1-5 is in group 1, rank 6-13 is in group 2.

The groupings corresponding to Table 6.3 are depicted in Figure 6.6. The

segregation of practices in is denoted by a line in Table 6.3. The practices with

highest rankings are placed in the topmost layer (Layer 3) of the pyramid in Figure

6.6. The middle layer of pyramid constitutes cluster of practices highlighted in

Layer 2 and Layer 1. The last layer, Layer 0 or the base of the pyramid contains

practices that are least preferable by OSS contributors highlighted as darker grey.

The description of practices against each practice number appears in Appendix

D.1.

Figure 6.6: Ranking pyramid - the overall ranking of practices

6.3 Categorical Ranking of Practices

This section presents the ranking of practices based on contributor categories

outlined in section 6.2 of this chapter. The ranking scheme presented in section

164

Chapter 6. Data Analysis

6.2 is applied throughout in order to group practices based on the effectiveness

reported by contributors in different categories.

6.3.1 Ranking of Practices Based on the Number of OSS

Projects

In Figure 6.7, mean, median, SD, and MAD values are illustrated, to demonstrate

the effectiveness of practices by three groups of OSS contributors with varying

experience based on the number of OSS projects namely: 1-5, 5-10, and 10+

projects.

Figure 6.7: The disparity among three categories of contributors based on the
number of OSS projects and values obtained for mean, median, SD, and MAD

.

Tables 6.4, 6.5, and 6.6 entail the categorical ranking of practices using mean,

165

Chapter 6. Data Analysis

median, SD, and MAD values, based on contributors’ contributions to the number

of projects. The contributors among all categories, 1-5, 5-10, and 10+, who base

their experience on the number of OSS projects rank P13 at the highest place.

The segregation similar to Table 6.3 is applied to rankings obtained in Table 6.4,

6.5, and 6.6 resulting into four levels, level 0, level 1, level 2 and level 3.

Table 6.4: Categorical ranking of practices based on 1-5 numbers of OSS projects

166

Chapter 6. Data Analysis

Table 6.5: Categorical ranking of practices based on 5-10 numbers of OSS projects

167

Chapter 6. Data Analysis

Table 6.6: Categorical ranking of practices based on 10+ numbers of OSS projects

The pyramid in Figure 6.8 depicts the preference hierarchy of practices by

respondents divided in three groups based on the number of OSS projects. The

highest preference by OSS Contributors appear in the topmost layer of the

pyramid, referred to as Layer 3. The bottom layer or the base of the pyramid

contains the cluster of practices that are reported as least effective by OSS

168

Chapter 6. Data Analysis

contributors across the different categories. The description of practices against

each practice number appears in Appendix D.1.

Figure 6.8: Hierarchy of practices based on the number of OSS projects

6.3.2 Ranking Practices Based on Number of Years in OSS

The opinions on the effectiveness of practices for contributors with varying

number of years, 1-2, 5-10, 10+ in OSS projects are depicted in Figure 6.9 using

mean, median, SD, and MAD values.

169

Chapter 6. Data Analysis

Figure 6.9: The disparity among three categories of contributors based on the
number of years OSS and values obtained for mean, median, SD, and MAD

The ranking of practice effectiveness according to the population of

contributors, categorised by the number of years (1-5, 5-10, and 10+) in OSS

projects, is shown in Tables 6.7, 6.8, 6.9.

170

Chapter 6. Data Analysis

Table 6.7: Categorical ranking of practices based on 1-5 numbers of years in OSS

Table 6.7 represents the ranking of PKR practices based on 1-5 years of

contributor’s experience in OSS projects. The contributors with an experience

of 1-5 years in OSS are considered relatively inexperienced to contributors with

10+ years in OSS. Considering the experience gained with number of years in

OSS projects, the ranking PKR practices among contributors can differ from

the rather experienced contributors due to the preference of certain practices

over others. A detailed evaluation of PKR practices based on contributors

experience is presented in chapter 7.

171

Chapter 6. Data Analysis

Table 6.8: Categorical ranking of practices based on 5-10 numbers of years in
OSS

172

Chapter 6. Data Analysis

Table 6.9: Categorical ranking of practices based on 10+ numbers of years in
OSS

The pyramid in Figure 6.10 depicts the hierarchy of the practices by the

preference of three groups based on the number of years contributing to OSS

projects. The group of practices with highest preference by OSS Contributors

appear in the topmost layer of the pyramid in Figure 6.10. The practices that

are least preferable by OSS contributors cluster at the base of the pyramid. The

description of practices against each practice number appears in Appendix D.1.

173

Chapter 6. Data Analysis

Figure 6.10: Hierarchy of practices based on the number of years in OSS

6.3.3 Ranking based on the Number of Years in

Programming

The opinion on the effectiveness of practices is evaluated for contributors in OSS

with varying number of years in computer programming based on the value of

mean, median, SD, and MAD is depicted in Figure 6.11. The population is

categorised into four groups by years: 1-2, 2-5, 5-10, and 10+. The difference of

opinion on the effectiveness of practices can be observed in Figure 6.11.

174

Chapter 6. Data Analysis

Figure 6.11: The reported effectiveness of practices based on number of years in
computer programming

The ranking of practice effectiveness, categorised by the number of years in

computer programming, is presented in Tables 6.10, 6.11, 6.12, 6.13.

175

Chapter 6. Data Analysis

Table 6.10: Categorical ranking of practices based on 1-2 numbers of years in
programming

176

Chapter 6. Data Analysis

Table 6.11: Categorical ranking of practices based on 2-5 numbers of years in
programming

177

Chapter 6. Data Analysis

Table 6.12: Categorical ranking of practices based on 5-10 numbers of years in
programming

178

Chapter 6. Data Analysis

Table 6.13: Categorical ranking of practices based on 10+ numbers of years in
programming

The pyramid in 6.12 depicts the hierarchy of the practice effectiveness as

reported and based on the number of years contributing to OSS projects. The

group of practices considered highly effective by OSS Contributors appear in the

topmost layer of the pyramid in 6.12. The practices that considered least effective

by OSS contributors cluster at the base of the pyramid.

179

Chapter 6. Data Analysis

Figure 6.12: Hierarchy of practices based on the number of years in computer
programming

6.4 Ranking based on role type in OSS

In OSS projects, contributors may perform a variety of tasks simultaneously. A

ranking of practices based upon on their reported effectiveness by role type gives

an insight on the preference of certain practices over others. In this section,

responses from contributors in nine different OSS project role types are analysed.

The observed values of mean, median, SD, and MAD for each role are given in

Figures 6.13, 6.14, 6.15, and 6.16 respectively. The overall ranking of practices

can be viewed for each in the following sub sections.

180

Chapter 6. Data Analysis

Figure 6.13: Mean values by role type

181

Chapter 6. Data Analysis

Figure 6.14: Median values by role type

182

Chapter 6. Data Analysis

Figure 6.15: SD values by role type

183

Chapter 6. Data Analysis

Figure 6.16: MAD values by role type

6.4.1 Bug Reporter

The ranking of practice effectiveness based on the role of OSS bug reporter is

identified in Table 6.14 and demonstrates that P13, P4, P20, P12, P14, and P15

are considered to be the most effective practices by OSS project bug reporters,

with P16, P6, P26, and P28 considered the least effective.

184

Chapter 6. Data Analysis

Table 6.14: Ranking of practices based on bug reporters in OSS projects

6.4.2 Code Contributor

The role of code contributors, which is prominent in the data collected (17%),

identifies P13, P20, P12, P4, P15 and P14 as the most effective practices. The

least effective practices for code contributors are P29, P16, P26, P28, and P6.

Table 6.15 details the values of mean, media, SD, and MAD utilised in the ranking

of practices, as found to be effective by code contributors.

185

Chapter 6. Data Analysis

Table 6.15: Ranking of practices based on code contributors in OSS projects

6.4.3 Maintainer

Table 6.16 depicts the practice ranking based on the reported effectiveness by

OSS project maintainers who identify P13, P20, P4, and P12 as the most effective

practices and P16, P29, P26, P28, and P6 as least effective.

186

Chapter 6. Data Analysis

Table 6.16: Ranking of practices based on maintainers in OSS projects

6.4.4 Reviewer

Of the survey participants, 11% report being OSS project reviewers. Among OSS

project reviewers, P13, P20, P4, P12, and P14 are considered the most effective

practices, with P23, P29, P26, P6, and P28 the least effective. Table 6.17 depicts

the practice effectiveness ranking as reported by OSS projct reviewers.

187

Chapter 6. Data Analysis

Table 6.17: Ranking of practices based on reviewers in OSS projects

6.4.5 Committer

The contributors who have the right to commit code to OSS repositories

represent 13% of the total population of contributors in the data collection.

Table 6.18 depicts the ranking of practices based on the opinion of committers

on the effectiveness of certain practices over other practices. Accordingly, the

five top most effective practices are P13, P20, P4, P12, and P15, Similarly the

188

Chapter 6. Data Analysis

least effective practices reported for the role of committer are P23, P16, P26,

P28, and P6.

Table 6.18: Ranking of practices based on committers in OSS projects

6.4.6 Document Writer and Editor

The role of document writer and editor constitutes 9% of the total population

in data collection of OSS projects. Table 6.19 depicts the ranking obtained from

189

Chapter 6. Data Analysis

document writers and editors based on their responses regarding the effectiveness

of practices. The top five practices for document writers are P13, P12, P20, P4,

and P14, with P29, P23, P28, P26, and P6 being reported as the least effective

practices within the document writer and editor OSS role type.

Table 6.19: Ranking of practices based on document writers and editors in OSS
Projects

190

Chapter 6. Data Analysis

6.4.7 Tester

Testers in the collected data from OSS projects constitute 17% of the population,

which is equivalent to that of code contributors. The effectiveness of practices

evaluated by the group of OSS project testers is shown in Table 6.20. The top

most effective practices as reported by testers are P13, P4, P20, P12, and P14,

with the least effective being P6, P16, P23, P26, and P28.

Table 6.20: Ranking of practices based on testers in OSS projects

191

Chapter 6. Data Analysis

6.4.8 Integrator

Integrators constitute 4% of the total population in the collected data. The

ranking in Table 20 gives the overall opinion on the effectiveness of practices as

reported by integrators. In Table 6.21, the ranking for the most effective practices

for integrators are P13, P20, P12, P4, and P14; and the least effective practices

for OSS project integrators are P28, P26, P6, P23, and P29.

Table 6.21: Ranking of practices based on integrators in OSS projects

192

Chapter 6. Data Analysis

6.4.9 Others

A very small number of contributors also selected the role of “other”, where they

mainly identified as community manager, and community supporter. The ranking

on the effectiveness of practices for these role types is depicted in Table 6.22. P12,

P31, P13, P20, and P22 are rated as the most effective practices in this cohort,

with P28, P11, P16, P18, and P7 being the least effective.

Table 6.22: Ranking of practices based on others in OSS projects

193

Chapter 6. Data Analysis

Table 6.23 summarises the ranking of PKR practices for all 9 roles including

"Others".

Table 6.23: Ranking of practices based on nine roles in OSS projects

194

Chapter 6. Data Analysis

6.5 Qualitative Data on PKR Model

Completeness

As noted previously, there was a survey question included regarding the

completeness of the practice listing created and used in this research. This

question was only completed by a small number of respondents, where the

prevailing sentiment was that the survey included a "rather exhaustive list".

There was also an expression on "Actually, I took some ideas to my job project,

thanks for sending it to me!". There were also some other interesting responses

to this question, including the suggestion that a practice should be included to

"identify ... contributors and talk with them". This suggests that in some

projects, the contributors may not be known and this is an aspect of OSS

projects that may be worthy future extended research. There was also some

disagreement on the need for a Code of Conduct on OSS projects, with one

respondent suggesting that such Codes not be used at all and another stressing

that they should be policed more vigilantly. This too can be examined in more

detail in future work. The creation of a public changelog as a means to register

contributors was also recommended by one respondent. As part of later work,

these additional suggestions can be examined further with a view to extending

the canonical model. However, there were no instances of overwhelming and

frequent suggestions for new practices or extensions to existing practices, and

therefore, the decision in the context of this research is not to include these

additional concepts at this time.

195

Chapter 6. Data Analysis

6.6 Chapter Summary

In this chapter an analysis of the data collected in the survey was presented. Of

the 132 responses obtained, a total of 126 were deemed valid for analysis. the

profiling demonstrates that a broad spectrum of OSS contributors have

participated in this study. The data collected is representative of various OSS

contributors contributing in different roles, with varying levels of experience in

programming ranging from relatively inexperienced to highly experienced. As a

general observation, the data collected for most of the PKR practices on

plotting is not normally distributed.

The values of mean, median, SD, and MAD are utilised to rank of practices

into a hierarchy. A consolidated view of PKR practice ranking based on the

preference of OSS contributors is presented by ranking pyramid, where practices

with highest rankings are placed in the topmost layer 3 and practices with least

ranking are placed in the layer 0. The categorical ranking of PKR practices is

also performed utilising the data on contributors’ experience profile including

contributions to the number of OSS projects, number of years in OSS, role(s)

adopted in OSS, and number of years in general programming. The outcome of

the categorical ranking is also consolidated as ranking pyramids. Finally, the

rankings of PKR practices are presented based on contributor’s role in OSS

projects.

Taking an overview of the initial ranking of practices in the population, it is

evident that P13, P20, P12, P4, P19, P21, P15, P3, P11, P9 are valued relatively

higher than other practices. Similarly, practices P23, P16, P26, P28, and P6 are

least valued across the population.

In the following chapter 8, the outcomes of this analysis are further evaluated

to highlight PKR practices preference trend among contributors with varying

experience in OSS projects.

196

Chapter 7

Evaluation of Practices

The previous chapter discussed the details of the statistical analysis performed

on the data collected from the OSS community survey. The OSS contributors

evaluated practices for their effectiveness from highly effective to least effective.

The responses obtained from OSS contributors after the analysis resulted in the

ranking of practices on the spectrum of 1 to 31 based on the varying experience

and role(s) of contributors in OSS projects.

In this chapter, the opinion of various sub-groups concerning the effectiveness

of particular knowledge retention practice is discussed. The sub-groups of interest

stem from the classification sought in the survey itself, namely: 1) the total

number of OSS projects contributed to, 2) the total number of years contributing

to OSS projects, 3) the total number of years in computer programming, and 4)

the role(s) performed in OSS project(s). The evaluation of disparity of reported

practice effectiveness among OSS contributors is based on the assessment of mean,

median, SD, and MAD values.

Section 7.1 evaluates the practice preference by contributors with an

experience on certain number of OSS projects. Section 7.2 articulates the

discussion on the practice preference of contributors categorised by the number

of years working in OSS. Section 7.3 discusses the practice preference of

contributors categorised on the number of years in computer programming. The

discussion on the practice preference by contributors performing different roles

in OSS follows in Section 7.4.

197

Chapter 7. Evaluation of Practices

7.1 Evaluating Practice Preference – Number of

OSS projects

This section elaborates on the reported effectiveness of knowledge retention

practices evident by their acquired ranking from contributors with an experience

on certain number of OSS projects. Figure 7.1 highlights the mean, median, SD,

and MAD values from three categories of contributors for 31 practices.

Figure 7.1: The practice preference for contributors with experience based on the
number of OSS projects

The most interesting aspect of Figure 7.1 is the observation that there is a

tendency for those with greater experience levels to downgrade the perceived

effectiveness of certain practices, while at the same time these same participants

are tending to place heightened importance on other practices. This is

198

Chapter 7. Evaluation of Practices

particularly evident for P16 (Establish core to non-core knowledge sharing

practices (e.g. interviews)). Practices P23 - 26 (Proactive assignment of varying

tasks to non-core contributors; Advocate diversification of core contributor

specialisation; Distribute project leadership to the wider support community

when primary leaders are absent; Document role progression process (e.g. from

contributor to integrator to maintainers), P28 (Establish training mechanisms

(e.g. on-the-job training and shadowing)) and P29 (Create a knowledge

contribution recognition program (e.g. a reward structure)), which are all

reported to have relatively less effectiveness among those with the highest

number of OSS projects.

There are some considerable grounds for concern in some of this information;

for example, it suggests that the most experienced OSS contributors in terms of

numbers of projects worked on do not value highly some core KR practices that

are focused on assisting those with less experience/ knowledge on projects,

including establishing non-core knowledge sharing practices, establishing

training mechanisms and creating a knowledge contribution recognition

programme (all of which are ranked lowly). The reasons for this might be that

such practices in fact create work for the more experienced contributors, and

more of the type of work that perhaps they are not inclined towards. Perhaps

there is an expectation among seasoned OSS campaigners that individuals

should be able to get up to speed themselves. This might be applicable to some

extent, but the greater resilience of larger and growing projects must, over time,

depend on continuing to attract contributors. In this respect, there are perhaps

some knowledge sharing frailties in the more experienced OSS contributors.

And this conflicts somewhat with the reported effectiveness of the practice of

promoting an altruistic knowledge sharing culture in OSS projects (P12), which

is rated as highly effective by the most experienced contributors.

From this data, one possible interpretation is that the most experienced

contributors value altruism and knowledge exchange, but are to some extent

199

Chapter 7. Evaluation of Practices

restrained when it comes to actually supporting these activities personally.

Furthermore, this data suggests that those with lower levels of OSS project

experience crave greater recognition and importance in OSS projects, while

those who have already attained these objectives are not particularly inclined to

spend time helping others to supplant them. However, in respect of P4 (Ensure

the presence of testing artefacts (e.g. unit tests, test scripts, test cases)), we can

see that those who have worked on greater numbers of projects value this

practice very highly, and more highly than those of less experience. This

suggests that testing artefacts are critically important to OSS projects, and the

voice of experience recognises this point.

Interestingly in this case is the observation that the better the testing

infrastructure on a project, there is perhaps a reduced need for other

communications. This is tricky proposition to fully evaluate within the limited

context of this research but one possible interpretation is that those who have

worked on many projects have formed the view that the testing artefacts are

highly important, and one can postulate good reasons for this in a community

where contributors are transient and not bound to the project. At least the

presence of testing artefacts can guard against the impact of discontinuity of

contribution from certain contributors. As a basic observation: those who have

worked on many projects would appear to be suggesting that it is much more

important to get the testing artefacts from the contributors than to promote

communication and training in the project. This observation should not be

casually overlooked, it is perhaps a fundamental constraint on OSS projects

that because of the transient nature of the contributor population, there is

insufficient time or opportunity for training and various other forms of

knowledge exchange, and therefore, getting the testing artefacts in place holds

great value for the project.

Figure 7.2 depicts the ranking of the PKR practices based on the practice

preference of OSS contributors with varying experience in OSS projects. In

200

Chapter 7. Evaluation of Practices

Figure 7.2, further interesting insights are evident in the data based on

experience in higher numbers of OSS projects. For example, practice P1

(encourage pair programming and shared code ownership), is most highly

recommended by contributors with middle level of experience (5-10) and least

preferred by contributors with 1-5 OSS projects. The reason might be that

contributors’ with 5-10 projects are knowledgeable and skilled to perform tasks

on the project independently and collaborations can slow their work progress,

while for inexperienced contributors (1-5 projects), this group may not yet be

ready to collaborate because they are in the learning phase.

Figure 7.2: Ranking of practices based on contributors with an experience of 1-5,
5-10, 10+ in OSS projects

In Figure 7.2, practices P7, P22 and P31 are all interesting under this

201

Chapter 7. Evaluation of Practices

evaluation because relatively inexperienced contributors (in terms of experience

with numbers of OSS projects) have ranked these practices are being relatively

more effective than those with greater numbers of OSS projects. P7 is

concerned with having explicit code reviews and setting a maximum time limit

for obtaining code review feedback. One interpretation here is that relatively

inexperienced contributors seek timely feedback on their code contributions,

perhaps as a mechanism to learn and grow, but perhaps also in an effort to

integrate into the OSS project more smoothly and quickly. In contrast, more

experienced contributors, whose time may be required in order to perform

reviews, may place higher importance on other activities and, for example, may

have a preference for actually coding over performing code reviews. This

interpretation, if valid, would lend weight to the broader conclusion that those

who are more experienced are perhaps more capable of getting up to speed, and

prefer not to be too heavily engaged in knowledge dissemination activities, be

they code reviews, or training, or other communication.

Relative newcomers are in contrast demonstrating a strong appetite to be

involved in these same activities. This all falls back to the stakeholder

objectives and it may be the case that those with less experience want more

input from those of greater experience, but those with greater experience prefer

to be doing what the prefer (e.g. coding) than helping less experienced staff get

up to speed. This proposition is intuitively appealing but raised some issues for

OSS projects as it may consolidate the major knowledge of a project in the

minds of a relatively small number of contributors over time, and this may

lessen the resilience and growth potential of the OSS project as a whole. Or, it

may be that some very experienced individuals simply want to work on projects

with other very experienced, self-motivated and self-starting individuals. The

observation that P22 (identify successors for key code contributors) is ranked

quite highly by those with less OSS project experience – having worked on fewer

projects – and relatively lowly by those who have worked on many projects,

202

Chapter 7. Evaluation of Practices

further suggest that relatively inexperienced individuals seek to become more

experienced. They also, it would appear, seek to have their work explicitly

recognised as evidenced by the relatively high ranking of P31 (promote a

culture of appreciation for knowledge contributors (e.g. words of appreciation

through blogs and newsletters)). Where work is more recognised, one’s profile is

raised, and one’s opportunities increase. So, perhaps there is some quite basic

natural competition phenomenon at work in this respect.

Generally speaking, for the majority of the other practices, the distance

between the rankings and the means/medians is not particularly large and

therefore, all that can be said for these other practices is that at a general level,

participants tend to largely agree on the importance of these other practices

irrespective of the number of OSS projects they have worked on.

7.2 Evaluating Practice Preference - Number of

Years in OSS

In this section, the preference disparity of practices is discussed for contributors

who have been contributing to OSS projects for some time (as opposed to the

previous section which examined the total number of projects worked and not

the number of elapsed years over which a contributor has been working on OSS

projects). The contributors experience is presented in three categories, 1-5, 5-10,

and 10+ years in OSS projects. The preference trend among three categories

of contributors, based upon the number of years in OSS project is depicted in

Figure 7.3.

203

Chapter 7. Evaluation of Practices

Figure 7.3: Preference trend of contributors on the agreement among three
categories of contributors

A visual inspection of 7.3 suggests that there is general agreement among

contributors of varying years of experience on OSS projects concerning the

effectiveness of practice. And at the extremities, for example P13 (Make project

documentation publicly accessible (e.g. public access to archives, mailing list,

and to open an issue)) and P6 (Introduce non-restrictive commit access to

non-core contributors where appropriate), there would appear to be general

agreement across all categories in respect of the ranking. That is, all parties

agree that making project documentation publicly available it is very effective,

and that introducing non-restrictive commit access is not an effective knowledge

retention practice.

204

Chapter 7. Evaluation of Practices

There are however some notable inconsistencies across the three categories.

For example, in the case of P3 (Use bug labelling so that contributors can

effectively select tasks and make contributions (e.g. "suited for newcomers",

"Feature xyz")), there is a significant difference in the ranking suggested by

those with many years’ experience on OSS projects and those with relatively

few years of experience. In the case of the latter group, there would appear to

be a strong desire to get information about bug so that they can get involved in

their resolution. However, in the case of the former group, this is not considered

to be quite so important. Perhaps it is the case that newer OSS contributors are

eager to find defect resolution work and establish their technical bona fides. For

established contributors, this is perhaps much less of a pressing concern and

they may already benefit from relationships in the OSS projects that more

readily allow them to discover information concerning specific defects.

In the case of P5 (Label substantial new items of work as "work in progress"

indicating an opportunity for more contributions), we also see that those with

fewer years of OSS project experience seek to have more information about new

work items, which might be interpreted as a desire to get more information and to

become more established on various OSS projects. More established contributors

seem less convinced of the effectiveness of P5, perhaps because they already

have a foothold and can target (or maybe even create) new work items through

established project channels.

7.3 Evaluating Practice Preference - Number of

Years in Computer Programming

Figure 7.4 depicts the ranking of practice effectiveness based on the number of

years of programming experience held by participants. As with the evaluation

of practice effectiveness based on number of years in OSS projects, a general

observation can be made that there is general agreement in the main on the

205

Chapter 7. Evaluation of Practices

ranked order of practice effectiveness, irrespective of the number of years of

general programming experiences. There are perhaps three notable exceptions

to this: P19, P8 and P4.

Figure 7.4: Ranking of practices on their effectiveness by contributors with
varying experience in programming

In the case of P19 (Encourage open discussion to resolve matters concerning

the project community), we see that those with the least years of experience

rank open discussion very highly. This may be interpreted as new entrants to

the programming field, eager to learn from more experienced members and with

a strong desire for open communication to support this objective. In contrast,

those with greater levels of general programming experience may not benefit

as much from such open discussions. Rather, it might be the case that these

206

Chapter 7. Evaluation of Practices

discussions hold only major immediate benefit for inexperienced staff, with those

who are more experienced having to give of their time for the benefit of more

junior contributors. As in some of the earlier evaluation, here we might again

be seeing self-interest and personal value concerns emerging in the data: those

who are more experienced have perhaps increased value and power on projects,

and training newer arrivals might act to erode this position. Of course, some of

this can presumably also be attributed to programmers enjoying programming as

opposed to training new programmers.

With P8 (Publish findings of post-mortem reviews such as lesson learned on

the project to all contributors), a similar trend again emerges: those newer to the

general programming field are keen to get information about OSS projects; in this

case, information about lessons learned from post-mortem reviews. This contrasts

with more experienced programmers who seem considerably less concerned about

obtaining access to post-mortem reviews. While the reasons for this cannot be

determined in the scope of this work, the suggested interpretation is that at least

in part, the discrepancy in respect of P8 may boil down to the desire of new

entrants to the field to get as much information as possible.

In the case of P4 (Ensure the presence of testing artefacts (e.g. unit tests,

test scripts, test cases), new entrants to programming have ranked this practice

substantially lower than their more experienced counterparts. This may be a

simple case of inexperienced programmers having an underappreciation for the

importance of testing artefacts, especially on OSS project where contributors are

transient and typically not contractually tied. It can furthermore be seen in the

case of P4 that the more experienced programmers are, the more importance that

is assigned to the presence of testing artefacts. This is perhaps the result of lessons

learned through experience: one of the more effective ways to increase confidence

in software work products is to attempt to control quality through testing (though

clearly this is only one aspect of overall software quality assurance).

207

Chapter 7. Evaluation of Practices

7.4 Evaluating Practice Preference - Different

Roles in OSS projects

As a general observation, the ranking of OSS knowledge retention practice

effectiveness does not seem to vary greatly depending on the contributor role

type. In some cases, there is in fact a very high level of clustering to be

observed, see for example practices P4, P12, P13, and P20 in 7.5.

Figure 7.5: The ranking trend of practices by contributors performing tasks in
varying roles in OSS projects.

If there is one major further observation that can immediately be seen in 7.5,

it is that the role type “others” is frequently presenting as an outlier to otherwise

208

Chapter 7. Evaluation of Practices

strongly clustered rankings. The contributors in the role of “others” identify

themselves mainly as community managers and as such may not, for example,

require access to documentations because they already occupy a central position

in the community and are given an access without any hindrance. The preference

of community managers is P9, which advocates building a supportive community

for conflict resolution. However, since there were only three “other” role type

participants across the entire population, the outlying nature of their rankings

should be largely overlooked as the number of respondents is too low from which

to base any general interpretation.

The role of document editor / writer might be considered to be a marginal

outlier in respect of a small number of practices; specifically, P31, P11, P5. In

the case of P31 (Promote a culture of appreciation for knowledge contributors

(e.g. words of appreciation through blogs and newsletters)), this practice is

ranked marginally higher than for the various other contributor types. It might

be inferred from this that document writers may feel somewhat

underappreciated, that perhaps the more programming-oriented contributions

to OSS projects eclipse document writers when it comes to being appreciated

(or feeling appreciated).

For P11 (Allow self-organization of project roles) and P5 (Label substantial

new items of work as "work in progress" indicating an opportunity for more

contributions), the document editor / writer role ranks these only marginally

lower than other OSS project role types. Document writers might see

self-organisation as less important as it may make their task of writing

documents more difficult as it may become more challenging to identify the

contributor(s) of interest when documenting certain features. They may also see

the opportunity for more technical contributions as promoted in P5 as creating

additional documentation work for them personally, and perhaps sometimes

these new project additions might not seem warranted to document writers /

editors. In any case, there are only marginal differences in evidence in the

209

Chapter 7. Evaluation of Practices

specific data, and these interpretations in respect of document writers / editors

should be considered as anecdotal or weak in strength.

7.5 Chapter Summary

In terms of the number of OSS projects worked on, the data demonstrates a

certain level of homogeneity in terms of reported knowledge retention practice

effectiveness. However, there are also some interesting inconsistencies. For

example, there is evidence in the data that those on the fringes of OSS projects

may desire to move closer to the core, while at the same time, the data suggests

that those at the core of OSS projects may not have a strong desire to support

newcomers into core positions on projects.

There is also some evidence that relatively inexperienced OSS project

contributors and programmers may seek to use OSS projects as a means to

improve their knowledge, value and reputation. In the data, we see that

relatively inexperienced contributors want quick feedback on code reviews and

opportunities for recognition and advancement; more so than their more

experienced OSS project colleagues. And perhaps in the context of OSS

projects, it is not appropriate, valid or fair to expect experienced and highly

specialised enthusiasts and volunteers to start spending less time on activities

that they enjoy (i.e. coding and contributing to coding projects) in order to

train more inexperienced OSS project members. Maybe there is simply no

personal value proposition in such training work for experienced OSS

contributors and programmers; and perhaps it is appropriate to expect

inexperienced contributors to have to work hard to demonstrate their abilities

and worth to a project. However, in cases where OSS projects are large or

growing quickly, it is clearly the case that increased attention would need to be

focused on on-boarding and this could be achieved by promoting some of the

practices that highly experienced contributors seem to undervalue in the data

210

Chapter 7. Evaluation of Practices

obtained in this study.

From several difference experience perspectives, there is clear evidence in the

data that the presence of testing artefacts is ranked highly, this is especially

true for more experienced contributors and programmers who rank this practice

considerably higher in some cases. Higher levels of experience on OSS projects

(and programming in general), confer more importance on testing artefacts.

Where workforces are transient and not contractually bound, it is clearly

beneficial that testing artefacts are created as a means to verifying other code

based contributions.

As a general statement, the ranking of individual knowledge retention

practices is relatively coherent across all OSS contributor types; what variation

arises is largely in the context of experience where the inexperienced desire

more experience and centrality on OSS projects, while the more experienced

OSS campaigners might prefer to spend time doing the things they like best

while sustaining their position, reputation and centrality on projects. Or put

differently: much of what can be seen in this evaluation can be accounted for by

basic human behaviour.

211

Chapter 8

Conclusion

8.1 Research Overview

This work set out to investigate the following central research hypothesis.

Knowledge retention practices can be adopted towards effectively

addressing knowledge loss in OSS projects.

The research questions investigated in this research are:

RQ1. What is the existing state-of-the-art literature on knowledge

loss due to turnover in OSS projects?

RQ2. What are the effective knowledge retention practices in OSS

projects?

While investigating RQ2, the following two sub-questions emerged, which are

iterated as follows:

RQ2.1 How can a comprehensive set of knowledge retention practices

be developed for OSS projects?

RQ2.2 How can OSS knowledge retention be evaluated in OSS

projects?

To address research question RQ1, a systematic literature review methodology

was employed. The snowballing methodology identifies the relevant literature

212

Chapter 8. Conclusion

on knowledge loss due to contributor turnover in OSS projects. Snowballing is

considered an efficient and reliable way to conduct a systematic literature review,

providing a robust alternative to mechanically searching individual databases for

given topics. The robust methodology adopted for the literature review includes a

research question, search strategy, inclusion, exclusion, quality criteria, and data

synthesis. The snowballing technique is rigorously applied and the outcome of

the literature review itself is published separately (Rashid et al., 2019b).

The research methodology adopted in this work is based on mixed methods

research and is published in a conference paper (Rashid et al., 2018) and an

extended version is published in a journal paper on invitation (Rashid et al.,

2019a).

In order to address research question RQ2 in entirety, sub questions RQ 2.1

and RQ 2.2 were investigated. RQ2.1 was addressed by following a systematic

process to develop a proactive knowledge retention canonical model in OSS

projects. In order to develop the PKR canonical model, candidate practices are

selected as data components from disparate sources, which are classified into

categories by applying Grounded Theory principles of coding, memoing, and

constant comparison to systematically and rigorously distil the set of knowledge

retention practices for OSS projects. A total of 31 practices were ultimately

identified and classified.

Equipped with the comprehensive set of proactive OSS knowledge retention

practices and a robust methodology, the research next moved to answer RQ2.2

by developing a survey instrument that could be employed to evaluate the

effectiveness of knowledge retention practices in OSS projects. Over a period of

2 months, a survey instrument was carefully developed, and ultimately prepared

for online deployment.

The survey was deployed in the time period of 08-04-2019 to 15-06-2019,

after which the data was carefully examined for validity and subjected to a

range of analyses and evaluations. A total of 126 valid responses were received

213

Chapter 8. Conclusion

for the survey (which represented a response rate of 1.29%). The profiling of

OSS contributors demonstrates that a broad spectrum of OSS contributors have

participated in this study. The data sample is representative of various OSS

contributors contributing in different roles, with varying levels of experience in

OSS and programming ranging from relatively inexperienced to highly

experienced. The result of the data analysis is detailed in chapter 6 and the

corresponding evaluation of practices is presented in chapter 7 of this thesis.

8.2 Primary Impacts

There are many individual contributions in this work but those of major impact

are as follows:

• A comprehensive set of OSS project Knowledge Retention (KR) practices

was developed for the first time in this research (presented as KR

canonical model. When discharging the survey instrument, respondents

were asked to propose any additional practices, but none were forthcoming

which demonstrates the comprehensive nature of the KR practices

assembled in this work. The effectiveness of the practices was evaluated

though the application of a survey instrument in the OSS community,

thereby proving the research hypothesis.

• Confirmed that the OSS role types adopted in this work is comprehensive

(they could be extended to include the role of Community Manager although

these are very few in number).

• A robust survey was utilised to help develop a ranking for OSS KR practice

effectiveness. The survey instrument could be further utilised to inquire of

the opinion of OSS contributors and to assess and improve the knowledge

exchange mechanisms in projects and overall community health.

214

Chapter 8. Conclusion

• The results from the survey demonstrate that there are some clear

differences among certain sub-groups of the OSS population, tending to be

differentiated largely on the level of experience with OSS and

programming in general. There is evidence that relatively inexperienced

OSS project contributors and programmers may seek to use OSS projects

as a means to improve their knowledge, value and reputation. From the

data analysis, it is observable that relatively inexperienced contributors

want quick feedback on code reviews and opportunities for recognition and

advancement; more so than their more experienced OSS project

colleagues.

In contrast to less experienced contributors, those with more experience

and established recognition, report relatively less value in certain

practices, for example the establishment of non-core knowledge sharing

practices, establishing training mechanisms, and creating knowledge

contribution recognition programmes. The explanation for this

phenomenon is worthy of further research but may present with a

multifaceted set of reasons. On the one hand, contributors with high

experience have already less to gain in a social power context from

assisting juniors who may ultimately challenge their power. This

argument, however, is not likely to be so simple. Perhaps more

experienced contributors are in some cases more gifted programmers, and

their OSS contribution enjoyment may stem from what are essentially

programming related tasks. Furthermore, some junior staff may require

very high levels of hand-holding and could seek to adopt the benevolent

support of senior contributors only as a basis for their personal training

and advancement. Upon detailed examination therefore, the reasons for

such a phenomenon could prove complex. Nevertheless, for large and

growing OSS projects, there could be significant benefits in adopting the

KR practices proposed in this research (as discussed in recommendation 3

215

Chapter 8. Conclusion

below).

8.3 Recommendations for OSS projects

• Recommendation 1. In general, use the OSS KR practices developed in

this work as a means to understand KR strengths and weaknesses.

• Recommendation 2. Apply the general KR ranking schema developed in

this work in order to maximise the impact of KR investments in projects.

As a general strategy, start by implementing those practices on the higher

level of the pyramid in Figure 6.6.

• Recommendation 3. If the OSS project is experiencing growth or if the

project is large in size, strongly consider promoting some of the practices

that have been ranked lowly by experienced OSS campaigners as a means

to quickly and efficiently incorporate new contributors to the project.

Some examples of practices highly rated by relatively less experienced

contributors include P3, P5, P7, and P19. For instance, with P3 (use bug

labelling so that contributors can effectively select tasks and make

contributions (e.g. "suited for newcomers", "Feature xyz")), contributors

with relatively few years of experience, there would appear to be a strong

desire to get information about bugs so that they can get involved in their

resolution. Similarly, in the case of P5 (Label substantial new items of

work as "work in progress" indicating an opportunity for more

contributions), contributors with fewer years of OSS project experience

seek to have more information about new work items, which might be

interpreted as a desire to get more information and to become more

established on various OSS projects. Also, P19 (Encourage open

discussion to resolve matters concerning the project community), suggests

that those with the least years of experience rank open discussion very

highly. For certain OSS projects, for example those that are growing

216

Chapter 8. Conclusion

quickly or experiencing relatively higher levels of contributor turnover, the

survivability of the project may be enhanced through the adoption of

these types of practices.

• Recommendation 4. Customise the ranking of practices based on the

trend highlighted by relatively experienced and inexperienced contributors

in the project. For instance, if an OSS has mostly highly experienced

contributors, then practices rated to be highly effective for experienced

contributors should be prioritised. On the contrary, for a project with

mostly inexperienced contributors the practices identified to be highly

effective in this situation should be prioritised. The canonical model

classifies practices based on categories including communications, core

development practices, governance and leadership, environment/

ecosystem/ culture and contributor motivation. The OSS projects striving

to strengthen the KR mechanisms by one focus area should identify their

requirements and prioritise practices from that particular area in their

work settings. Furthermore, the priority of practices can be changed

according to the requirement of the OSS project.

• Recommendation 5. The KR practices should be part of the

fundamental documents in OSS projects, for example included under

project guidelines, manuals of on-boarding minimising knowledge sharing

barriers for newcomers (Steinmacher et al., 2015b), and respective

manuals on becoming a mentor on the project. This will enable awareness

on knowledge retention in OSS communities. Adopting KR practices for

Knowledge Management, as a manifesto in OSS projects is highly

recommended.

217

Chapter 8. Conclusion

8.4 Research Limitations

While every effort was taken at every stage to guard academic robustness in this

research, it does nevertheless exhibit some limitations that should be articulated.

In this section limitation concerning the literature review, survey, and overall

analysis are discussed.

In the literature review, a SB approach is used to identify relevant papers.

It is arguable that there is a possibility that the SB method is weak and does

not provide enough coverage of the relevant literature in this review. The SB

method is shown in literature to provide coverage similar to database searches

(Wohlin, 2014). The SB search strategy can be effectively employed in place of

the database search to find relevant papers. In order to overcome the first threat,

the rigorous SB steps presented in section 2.3 were adopted.

A second possible threat is the misinterpretation of the concepts during data

synthesis, in terms of generalization to all OSS projects in the papers. To

overcome the second threat, the dynamic nature of OSS projects is considered,

which can be purely volunteer based or hybrid with commercial involvements.

Not every OSS project community follow the same policies and practices and

they vary constantly. The third threat in this literature review is that the

concepts consolidated in this review are from the common understanding of the

researcher, therefore themes in this work may be subjective and personal to

some extent.

There is a possibility that some relevant literature was missed while reading

the paper titles in BSB and FSB. In the case where the text of the title was

not clear, abstracts and conclusions of the papers were examined to ensure that

important information was not disregarded in the search. The objective of this

review was to include papers that discussed KL in OSS projects due to contributor

turnover. Papers that use OSS to design technological solutions for knowledge

storage were not included in this literature review.

218

Chapter 8. Conclusion

In relation to the survey and representation of OSS contributors, the

limitations are as follows:

• In future work, the limit of extracting participants from 1020 projects on

GitHub can be extended.

• This work does not account for cases where participants have more than

one account existing on GitHub with different e-mails addresses. There is a

possibility that they each receive a copy of the survey. This work assumes

that each participant only took the survey once.

• The survey participants were genuinely engaged with the research theme

and appeared ethically sound regarding their input. The responses

collected through Google Forms were inspected individually for relevant

validity details such as the removal of certain responses are discussed in

chapter 5.

• This work is limited in that of the survey respondents, just 2% reported

having less than 2 years programming experience. This is considered to be

a limitation because one aspect of this work seeks to develop a knowledge

retention practice reference list for use by all contributor types, and perhaps

importantly, to elicit the views of those who are relatively inexperienced

and who seek to be involved in OSS projects. However, upon more detailed

consideration, it may be the case that these are in fact student programmers

or those learning to program and that they are not yet at the stage where

they might be able to contribute to OSS projects. Since the survey did

not request an explanation where respondents have less than 2 years of

programming experience, it is not possible to identify a firm conclusion in

this respect.

In terms of data analysis the limitations are as follows:

• The classification of practices into groups is based on the absolute mean

219

Chapter 8. Conclusion

value for the effectiveness of each practice. This is a somewhat crude

grouping mechanism but having examined various other grouping

techniques it proved to be the most understandable across all the various

analyses. It is nevertheless accepted that this is an unsophisticated and

somewhat arbitrary grouping mechanism and that it allows for a practice

with an mean effectiveness of 6.999 to be grouped separately to a practice

with a mean effectiveness of 7.001, when in fact there is very little

difference between these two mean values. In this sense, the grouping

could be misinterpreted and therefore it is important to highlight this

limitation. The benefit of the chosen grouping technique is that it allows

for a single interpretation of groupings across the various categories of

analysis.

• The focus of this research does not consider different OSS project licensing

schemes, and this may have an impact on the flow of knowledge among

contributors due to constraints imposed by the commercial involvement of

the project. This could form part of the scope of extended future research.

8.5 Future Work

1. Perform qualitative work relevant to KR mechanisms and study the

relationship among the practices proposed and evaluated in this work.

2. Examine OSS projects of different sizes and profiles to fully articulate the

specific needs of specific OSS projects in terms of knowledge retention

practices.

3. Develop an OSS KR practice assessment tool that projects can use to rate

their own KR level. This could be a standard devised based on the KR

canonical model used for the evaluation of OSS projects, determining which

practices are to be implemented or improved. The KR practices can be

220

Chapter 8. Conclusion

operationalised by incorporating mechanisms that motivate contributors at

an intrinsic level to follow them.

4. Examine the possibility of adopting KR practices in OSS projects in agile

development environments, and perhaps in general software engineering

also, especially globally distributed.

221

Bibliography

Adams, P. J., Capiluppi, A., and Boldyreff, C. (2009). Coordination and

productivity issues in free software: The role of brooks’ law. In 2009 IEEE

International Conference on Software Maintenance, pages 319–328. IEEE.

Aggestam, L., Söderström, E., and Persson, A. (2010). Seven types of knowledge

loss in the knowledge capture process. In ECIS, page 13.

Allan, G. (2003). A critique of using grounded theory as a research method.

Electronic journal of business research methods, 2(1):1–10.

Allen, I. E. and Seaman, C. A. (2007). Likert scales and data analyses. Quality

progress, 40(7):64–65.

Anquetil, N., de Oliveira, K. M., de Sousa, K. D., and Dias, M. G. B. (2007).

Software maintenance seen as a knowledge management issue. Information and

Software Technology, 49(5):515–529.

Badampudi, D., Wohlin, C., and Petersen, K. (2015). Experiences from

using snowballing and database searches in systematic literature studies. In

Proceedings of the 19th International Conference on Evaluation and Assessment

in Software Engineering, page 17. ACM.

Baheti, P., Gehringer, E., and Stotts, D. (2002). Exploring the efficacy of

distributed pair programming. In Conference on Extreme Programming and

Agile Methods, pages 208–220. Springer.

Bao, L., Xing, Z., Xia, X., Lo, D., and Li, S. (2017). Who will leave the company?:

a large-scale industry study of developer turnover by mining monthly work

222

report. In 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR), pages 170–181. IEEE.

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software

development. IEEE software, 7(1):19–25.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001).

Manifesto for agile software development.

Boone, H. N. and Boone, D. A. (2012). Analyzing likert data. Journal of

extension, 50(2):1–5.

Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the factors

that impact the popularity of github repositories. In 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 334–344.

IEEE.

Bosu, A. and Carver, J. C. (2014). Impact of developer reputation on code review

outcomes in oss projects: An empirical investigation. In Proceedings of the 8th

ACM/IEEE international symposium on empirical software engineering and

measurement, page 33. ACM.

Britto, R., Smite, D., and Damm, L.-O. (2016). Software architects in large-scale

distributed projects: An ericsson case study. IEEE Software, 33(6):48–55.

Bryant, A. and Charmaz, K. (2007). The Sage handbook of grounded theory. Sage.

Capiluppi, A., Gonzalez Barahona, J. M., and Herraiz, I. (2007). Adapting the

“staged model for software evolution” to floss. In to FLOSS’, ESEC/FSE’07

Joint 11th European Software Engineering Conference (ESEC) and 15th ACM

SIGSOFT Symposium on the Foundations of Software Engineering (FSE-13)

2007, Cavat near Dubrovnik, Croatia, 03-07 September.

223

Capiluppi, A. and Michlmayr, M. (2007). From the cathedral to the bazaar:

An empirical study of the lifecycle of volunteer community projects. In IFIP

International Conference on Open Source Systems, pages 31–44. Springer.

Capiluppi, A., Stol, K.-J., and Boldyreff, C. (2012). Exploring the role

of commercial stakeholders in open source software evolution. In IFIP

International Conference on Open Source Systems, pages 178–200. Springer.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through

qualitative analysis. sage.

Chen, X., Li, X., Clark, J. G., and Dietrich, G. B. (2013). Knowledge sharing in

open source software project teams: A transactive memory system perspective.

International Journal of Information Management, 33(3):553–563.

Choi, B., Poon, S. K., and Davis, J. G. (2008). Effects of knowledge management

strategy on organizational performance: A complementarity theory-based

approach. Omega, 36(2):235–251.

Ciborra, C. U. and Andreu, R. (2001). Sharing knowledge across boundaries.

Journal of Information technology, 16(2):73–81.

Ciolkowski, M., Laitenberger, O., Vegas, S., and Biffl, S. (2003). Practical

experiences in the design and conduct of surveys in empirical software

engineering. In Empirical methods and studies in software engineering, pages

104–128. Springer.

Clarke, P., O’Connor, R. V., and Leavy, B. (2016). A complexity theory viewpoint

on the software development process and situational context. In Proceedings of

the International Conference on Software and Systems Process, pages 86–90.

ACM.

Clarke, P. and O’Connor, R. V. (2012). The situational factors that affect the

224

software development process: Towards a comprehensive reference framework.

Information and Software Technology, 54(5):433–447.

Clason, D. L. and Dormody, T. J. (1994). Analyzing data measured by individual

likert-type items. Journal of agricultural education, 35(4):4.

Coelho, J. and Valente, M. T. (2017). Why modern open source projects fail.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, pages 186–196. ACM.

Colazo, J. and Fang, Y. (2009). Impact of license choice on open source software

development activity. Journal of the American Society for Information Science

and Technology, 60(5):997–1011.

Collier, B., DeMarco, T., and Fearey, P. (1996). A defined process for project

post mortem review. IEEE software, 13(4):65–72.

Constantinou, E. and Mens, T. (2017a). An empirical comparison of developer

retention in the rubygems and npm software ecosystems. Innovations in

Systems and Software Engineering, 13(2-3):101–115.

Constantinou, E. and Mens, T. (2017b). Socio-technical evolution of the ruby

ecosystem in github. In 2017 IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 34–44. IEEE.

Corbin, J. and Strauss, A. (2008). Basics of Qualitative Research: Techniques

and Procedures for Developing Grounded Theory. sage.

Corbin, J. M. and Strauss, A. (1990). Grounded theory research: Procedures,

canons, and evaluative criteria. Qualitative sociology, 13(1):3–21.

Costa, E., Soares, A. L., and de Sousa, J. P. (2016). Information,

knowledge and collaboration management in the internationalisation of

smes: a systematic literature review. International Journal of Information

Management, 36(4):557–569.

225

Costantino, T. E. (2001). Narrative inquiry: Experience and story in qualitative

research.

Creswel, J. W. (2009). Research design: Qualitative, quantitative, and mixed

methods approaches. Los angeles: University of Nebraska–Lincoln.

Creswell, J. (2014). Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. SAGE Publications.

Creswell, J. and Clark, V. (2011). Designing and Conducting Mixed Methods

Research. SAGE Publications.

Crowston, K. (2011). Lessons from volunteering and free/libre open source

software development for the future of work. In Researching the Future in

Information Systems, pages 215–229. Springer.

Crowston, K., Annabi, H., Howison, J., and Masango, C. (2004). Effective

work practices for software engineering: free/libre open source software

development. In Proceedings of the 2004 ACM workshop on Interdisciplinary

software engineering research, pages 18–26. ACM.

Crowston, K. and Howison, J. (2005). The social structure of free and open source

software development. First Monday, 10(2).

Crowston, K., Howison, J., and Annabi, H. (2006). Information systems success

in free and open source software development: Theory and measures. Software

Process: Improvement and Practice, 11(2):123–148.

Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012). Free/libre open-

source software development: What we know and what we do not know. ACM

Computing Surveys (CSUR), 44(2):7.

Curtin, R., Presser, S., and Singer, E. (2000). The effects of response rate changes

on the index of consumer sentiment. Public opinion quarterly, 64(4):413–428.

226

Cusumano, M. A. and Selby, R. W. (1998). Microsoft secrets: how the

world’s most powerful software company creates technology, shapes markets,

and manages people. Simon and Schuster.

Dafermos, G. N. (2005). Management and virtual decentralised networks: The

linux project (originally published in volume 6, number 11, november 2001).

First Monday.

Daghfous, A., Belkhodja, O., and C. Angell, L. (2013). Understanding and

managing knowledge loss. Journal of Knowledge Management, 17(5):639–660.

Davenport, T. H., Prusak, L., et al. (1998). Working knowledge: How

organizations manage what they know. Harvard Business Press.

De Long, D. W. and Davenport, T. (2003). Better practices for retaining

organizational knowledge: Lessons from the leading edge. Employment

Relations Today, 30(3):51.

DeBrie, E. and Goeschel, D. (2016). Open source software licenses.

DeLong, T. J. (1982). Reexamining the career anchor model. Personnel, 59(3):50–

61.

Denzin, N. K. (1973). The research act: A theoretical introduction to sociological

methods. Transaction.

Denzin, N. K. and Lincoln, Y. S. (2011). The Sage handbook of qualitative

research. Sage.

Dingsøyr, T. (2005). Postmortem reviews: purpose and approaches in software

engineering. Information and Software Technology, 47(5):293–303.

Dingsøyr, T., Bjørnson, F. O., and Shull, F. (2009). What do we know about

knowledge management? practical implications for software engineering. IEEE

software, 26(3):100–103.

227

Dingsøyr, T. and Conradi, R. (2002). A survey of case studies of the use

of knowledge management in software engineering. International journal of

software engineering and knowledge engineering, 12(04):391–414.

Dinh-Trong, T. and Bieman, J. M. (2004). Open source software development: a

case study of freebsd. In 10th International Symposium on Software Metrics,

2004. Proceedings., pages 96–105. IEEE.

Doan, Q. M., Rosenthal-Sabroux, C., and Grundstein, M. (2011). A reference

model for knowledge retention within small and medium-sized enterprises. In

KMIS, pages 306–311.

Donadelli, S. M. (2015). The impact of knowledge loss on software projects:

turnover, customer found defects, and dormant files. PhD thesis, Concordia

University.

Donnellan, B., Fitzgerald, B., Lake, B., and Sturdy, J. (2005). Implementing an

open source knowledge base. IEEE Software, 22(6):92–95.

Douglas, D. (2003). Grounded theories of management: A methodological review.

Management Research News, 26(5):44–52.

Droege, S. B. and Hoobler, J. M. (2003). Employee turnover and tacit knowledge

diffusion: A network perspective. Journal of Managerial Issues, pages 50–64.

Drucker, P. F. (1999). Knowledge-worker productivity: The biggest challenge.

California management review, 41(2):79–94.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software

development: A systematic review. Information and software technology, 50(9-

10):833–859.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). Selecting

empirical methods for software engineering research. In Guide to advanced

empirical software engineering, pages 285–311. Springer.

228

Eghbal, N., Keepers, and B., Wills, S. (2018). Open source guides. URL:https:

//opensource.guide/, (visited on 01/15/2019).

Eisenhardt, K. M. (1989). Building theories from case study research. Academy

of management review, 14(4):532–550.

Emanuel, A. W. R. (2014). Statistical analysis of popular open source software

projects and their communities. In 2014 6th International Conference on

Information Technology and Electrical Engineering (ICITEE), pages 1–6.

IEEE.

Fægri, T. E., Dybå, T., and Dingsøyr, T. (2010). Introducing knowledge

redundancy practice in software development: Experiences with job rotation

in support work. Information and Software Technology, 52(10):1118–1132.

Felizardo, K. R., Mendes, E., Kalinowski, M., Souza, É. F., and Vijaykumar, N. L.

(2016). Using forward snowballing to update systematic reviews in software

engineering. In Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, page 53. ACM.

Feller, J., Fitzgerald, B., et al. (2002). Understanding open source software

development. Addison-Wesley London.

Fink, A. (2003). The survey handbook. Sage.

Fitzgerald, B. (2006). The transformation of open source software. MIS quarterly,

pages 587–598.

Flick, U. (2018). Doing Grounded Theory. Qualitative Research Kit. SAGE

Publications.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., and Falleri, J.-R. (2015).

Impact of developer turnover on quality in open-source software. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages

829–841. ACM.

229

https://opensource.guide/
https://opensource.guide/

Fronza, I., Janes, A., Sillitti, A., Succi, G., and Trebeschi, S. (2013).

Cooperation wordle using pre-attentive processing techniques. In 2013

6th International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE), pages 57–64. IEEE.

Gammelgaard, J. (2007). Why not use incentives to encourage knowledge sharing.

Journal of Knowledge Management Practice, 8(1):115–123.

Garcia, D., Zanetti, M. S., and Schweitzer, F. (2013). The role of emotions

in contributors activity: A case study on the gentoo community. In 2013

International Conference on Cloud and Green Computing, pages 410–417.

IEEE.

Ge, X., Dong, Y., and Huang, K. (2006). Shared knowledge construction

process in an open-source software development community: An investigation

of the gallery community. In Proceedings of the 7th international conference

on Learning sciences, pages 189–195. International Society of the Learning

Sciences.

Geiger, R. S. (2017). Summary analysis of the 2017 github open source survey.

arXiv preprint arXiv:1706.02777.

Ghiselli, E., Campbell, J., and Zedeck, S. (1981). Measurement Theory for the

Behavioral Sciences. A Series of books in psychology. W. H. Freeman.

Giorgi, A. (2009). The descriptive phenomenological method in psychology: A

modified Husserlian approach. Duquesne University Press.

Glaser, B. (1992). Emergence Vs Forcing: Basics of Grounded Theory Analysis.

Sociology Press.

Goeminne, M. and Mens, T. (2011). Evidence for the pareto principle in open

source software activity. In the Joint Porceedings of the 1st International

230

workshop on Model Driven Software Maintenance and 5th International

Workshop on Software Quality and Maintainability, pages 74–82. Citeseer.

Gousios, G., Zaidman, A., Storey, M.-A., and Van Deursen, A. (2015).

Work practices and challenges in pull-based development: the integrator’s

perspective. In Proceedings of the 37th International Conference on Software

Engineering-Volume 1, pages 358–368. IEEE Press.

Hagan, D., Watson, O., and Barron, K. (2007). Ascending into order: A reflective

analysis from a small open source development team. International Journal of

Information Management, 27(6):397–405.

Hansen, M. T., Nohria, N., and Tierney, T. (1999). What’s your strategy

for managing knowledge. The knowledge management yearbook 2000–2001,

77(2):106–116.

Hemetsberger, A. and Reinhardt, C. (2004). Sharing and creating knowledge

in open-source communities: the case of kde. In Paper for Fifth

European Conference on Organizational Knowledge, Learning, and Capabilities,

Innsbruck.

Herbsleb, J. D. and Mockus, A. (2003). An empirical study of speed

and communication in globally distributed software development. IEEE

Transactions on software engineering, 29(6):481–494.

Herraiz, I., Robles, G., Amor, J. J., Romera, T., and González Barahona, J. M.

(2006). The processes of joining in global distributed software projects. In

Proceedings of the 2006 international workshop on Global software development

for the practitioner, pages 27–33. ACM.

Hoffart, N. (2000). Basics of qualitiative research: Techniques and procedures for

developing grounded theory. Nephrology Nursing Journal, 27(2):248.

231

Holton, J. A. (2007). The coding process and its challenges. The Sage handbook

of grounded theory, pages 265–89.

Hsu, C.-L. and Lin, J. C.-C. (2008). Acceptance of blog usage: The roles

of technology acceptance, social influence and knowledge sharing motivation.

Information & management, 45(1):65–74.

Huang, P. and Zhang, Z. (2013). Participation in open knowledge communities

and job-hopping: evidence from enterprise software. MIS Quarterly,

Forthcoming.

Huber, G. P. (1996). Organizational learning: a guide for executives

in technology–critical organizations. International Journal of Technology

Management, 11(7-8):821–832.

Hutchison, C. S. (2001). Personal knowledge, team knowledge, real knowledge.

In EUROCON’2001. International Conference on Trends in Communications.

Technical Program, Proceedings (Cat. No. 01EX439), volume 1, pages 247–250.

IEEE.

Huysman, M. and Lin, Y. (2005). Learn to solve problems: A virtual ethnographic

case study of learning in s gnu/linux users group. The Electronic Journal for

Virtual Organizations and Networks, 7.

Huysman, M. H., Lin, Y., et al. (2006). Learn to solve problems: a virtual

ethnographic case study of learning in a gnu/linux users group.

Izquierdo, J. L. C., Cosentino, V., and Cabot, J. (2017). An empirical study

on the maturity of the eclipse modeling ecosystem. In 2017 ACM/IEEE 20th

International Conference on Model Driven Engineering Languages and Systems

(MODELS), pages 292–302. IEEE.

Izquierdo-Cortazar, D., Robles, G., Ortega, F., and Gonzalez-Barahona, J. M.

(2009). Using software archaeology to measure knowledge loss in software

232

projects due to developer turnover. In 2009 42nd Hawaii International

Conference on System Sciences, pages 1–10. IEEE.

Jansen, A. G. J. (2008). Architectural design decisions. University Library of

Groningen.

Jennex, M. E. and Durcikova, A. (2013). Assessing knowledge loss risk. In 2013

46th Hawaii International Conference on System Sciences, pages 3478–3487.

IEEE.

Jensen, C. and Scacchi, W. (2005). Modeling recruitment and role migration

processes in ossd projects. ProSim05, 39.

Joblin, M., Apel, S., and Mauerer, W. (2017). Evolutionary trends of

developer coordination: A network approach. Empirical Software Engineering,

22(4):2050–2094.

Johnson, R. B. and Onwuegbuzie, A. J. (2004). Mixed methods research: A

research paradigm whose time has come. Educational researcher, 33(7):14–26.

Johnson, R. B., Onwuegbuzie, A. J., and Turner, L. A. (2007). Toward a definition

of mixed methods research. Journal of mixed methods research, 1(2):112–133.

Keele, S. et al. (2007). Guidelines for performing systematic literature reviews

in software engineering. Technical report, Technical report, Ver. 2.3 EBSE

Technical Report. EBSE.

Keeter, S., Kennedy, C., Dimock, M., Best, J., and Craighill, P. (2006). Gauging

the impact of growing nonresponse on estimates from a national rdd telephone

survey. International Journal of Public Opinion Quarterly, 70(5):759–779.

Khondhu, J., Capiluppi, A., and Stol, K.-J. (2013). Is it all lost? a study of

inactive open source projects. In IFIP International Conference on Open Source

Systems, pages 61–79. Springer.

233

Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review

process research in software engineering. Information and software technology,

55(12):2049–2075.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995). Case studies for method

and tool evaluation. IEEE software, 12(4):52–62.

Kitchenham, B. A. and Pfleeger, S. L. (2008). Personal opinion surveys. In Guide

to advanced empirical software engineering, pages 63–92. Springer.

Klein, H. K. and Myers, M. D. (1999). A set of principles for conducting and

evaluating interpretive field studies in information systems. MIS quarterly,

23(1):67–94.

Koh, J. and Kim, Y.-G. (2004). Knowledge sharing in virtual communities: an

e-business perspective. Expert systems with applications, 26(2):155–166.

Koziolek, H. (2008). Goal, question, metric. In Dependability metrics, pages

39–42. Springer.

Kuk, G. (2006). Strategic interaction and knowledge sharing in the kde developer

mailing list. Management science, 52(7):1031–1042.

Lakhani, K. R. and Von Hippel, E. (2004). How open source software works:“free”

user-to-user assistance. In Produktentwicklung mit virtuellen Communities,

pages 303–339. Springer.

Lakhani, K. R., Von Hippel, E., et al. (2003). How open source software works:"

free" user-to-user assistance. Research Policy, 32(6):923–943.

Lam, A. (2000). Tacit knowledge, organizational learning and societal

institutions: An integrated framework. Organization studies, 21(3):487–513.

Lee, G. K. and Cole, R. E. (2003). From a firm-based to a community-based model

of knowledge creation: The case of the linux kernel development. Organization

science, 14(6):633–649.

234

Lee, S., Baek, H., and Jahng, J. (2017). Governance strategies for open

collaboration: Focusing on resource allocation in open source software

development organizations. International Journal of Information Management,

37(5):431–437.

Leibowitz, J. (2011). Knowledge retention: What practitioners need to know.

Lempert, L. B. (2007). Asking questions of the data: Memo writing in the

grounded. The Sage handbook of grounded theory, pages 245–264.

Lethbridge, T. C., Sim, S. E., and Singer, J. (2005). Studying software engineers:

Data collection techniques for software field studies. Empirical software

engineering, 10(3):311–341.

Levy, M. and Hazzan, O. (2009). Knowledge management in practice: The case

of agile software development. In 2009 ICSE Workshop on Cooperative and

Human Aspects on Software Engineering, pages 60–65. IEEE.

Licorish, S. A. and MacDonell, S. G. (2014). Understanding the attitudes,

knowledge sharing behaviors and task performance of core developers: A

longitudinal study. Information and Software Technology, 56(12):1578–1596.

Liebowitz, J. (2008). Knowledge retention: strategies and solutions. Auerbach

Publications.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of

psychology.

Lin, B., Robles, G., and Serebrenik, A. (2017). Developer turnover in global,

industrial open source projects: Insights from applying survival analysis. In

2017 IEEE 12th International Conference on Global Software Engineering

(ICGSE), pages 66–75. IEEE.

235

Lincoln, Y. S., Lynham, S. A., and Guba, E. G. (2011). Paradigmatic

controversies, contradictions, and emerging confluences, revisited. The Sage

handbook of qualitative research, 4:97–128.

Lindvall, M. and Rus, I. (2003). Knowledge management for software

organizations. In Managing software engineering knowledge, pages 73–94.

Springer.

Ling, K., Beenen, G., Ludford, P., Wang, X., Chang, K., Li, X., Cosley, D.,

Frankowski, D., Terveen, L., Rashid, A. M., et al. (2005). Using social

psychology to motivate contributions to online communities. Journal of

Computer-Mediated Communication, 10(4).

Liu, W., Chen, C. L., Lakshminarayanan, V., and Perry, D. E. (2005). A design

for evidence-based soft research. In ACM SIGSOFT Software Engineering

Notes, volume 30, pages 1–7. ACM.

Lungu, M. (2008). Towards reverse engineering software ecosystems. In 2008

IEEE International Conference on Software Maintenance, pages 428–431.

IEEE.

Mackenzie, N. and Knipe, S. (2006). Research dilemmas: Paradigms, methods

and methodology. Issues in educational research, 16(2):193–205.

Marks, M. A., Mathieu, J. E., and Zaccaro, S. J. (2001). A temporally based

framework and taxonomy of team processes. Academy of management review,

26(3):356–376.

Menon, T. and Pfeffer, J. (2003). Valuing internal vs. external knowledge:

Explaining the preference for outsiders. Management Science, 49(4):497–513.

Mens, T. (2016). An ecosystemic and socio-technical view on software

maintenance and evolution. In 2016 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 1–8. IEEE.

236

Micciancio, D. and Voulgaris, P. (2011). Knowledge retention: What practitioners

need to know. KM World, 20(2).

Michlmayr, M. (2007a). Quality improvement in volunteer free and open source

software projects. Opensource. MIT.

Michlmayr, M. (2007b). Quality improvement in volunteer free and open source

software projects: exploring the impact of release management. PhD thesis,

University of Cambridge.

Mockus, A. (2010). Organizational volatility and its effects on software defects.

In Proceedings of the eighteenth ACM SIGSOFT international symposium on

Foundations of software engineering, pages 117–126. ACM.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of

open source software development: Apache and mozilla. ACM Transactions on

Software Engineering and Methodology (TOSEM), 11(3):309–346.

Monus, A. (2017). Remote pair programming: How to make

it work for you. URL:https://dzone.com/articles/remote-,

pair-programming-how-to-make-it-work-for-you (visited on 06/02/2019).

Monus, A. (2018). Remote pair programming: Tips, tools, and how

to measure. URL:https://raygun.com/blog/remote-pair-programming/

(visited on 09/02/2019).

Morton, S. M., Bandara, D. K., Robinson, E. M., and Carr, P. E. A. (2012). In

the 21st century, what is an acceptable response rate? Australian and New

Zealand journal of public health, 36(2):106–108.

Nassif, M. and Robillard, M. P. (2017). Revisiting turnover-induced knowledge

loss in software projects. In 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 261–272. IEEE.

237

URL: https://dzone.com/articles/remote-,pair-programming-how-to-make-it-work-for-you
URL: https://dzone.com/articles/remote-,pair-programming-how-to-make-it-work-for-you
URL:https://raygun.com/blog/remote-pair-programming/

Nidhra, S., Yanamadala, M., Afzal, W., and Torkar, R. (2013). Knowledge

transfer challenges and mitigation strategies in global software development—a

systematic literature review and industrial validation. International journal of

information management, 33(2):333–355.

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation.

Organization science, 5(1):14–37.

Nonaka, I. and Takeuchi, H. (1995). The knowledge-creating company: How

Japanese companies create the dynamics of innovation. Oxford university press.

Nonaka, I., Toyama, R., and Konno, N. (2000). Seci, ba and leadership: a unified

model of dynamic knowledge creation. Long range planning, 33(1):5–34.

Oates, B. J. (2006). Researching Information Systems and Computing. SAGE.

Otte, T., Moreton, R., and Knoell, H. D. (2008). Applied quality assurance

methods under the open source development model. In 2008 32nd Annual

IEEE International Computer Software and Applications Conference, pages

1247–1252. IEEE.

Pee, L. G. and Lee, J. (2015). Intrinsically motivating employees’ online

knowledge sharing: Understanding the effects of job design. International

Journal of Information Management, 35(6):679–690.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive psychology, 19(3):295–341.

Petrie, A. and Sabin, C. (2019). Medical statistics at a glance. John Wiley &

Sons.

Petticrew, M. and Roberts, H. (2008). Systematic reviews in the social sciences:

A practical guide. John Wiley & Sons.

238

Pontika, N., Knoth, P., Cancellieri, M., and Pearce, S. (2015). Fostering open

science to research using a taxonomy and an elearning portal. In Proceedings

of the 15th international conference on knowledge technologies and data-driven

business, page 11. ACM.

Qin, X., Salter-Townshend, M., and Cunningham, P. (2014). Exploring

the relationship between membership turnover and productivity in online

communities. In Eighth International AAAI Conference on Weblogs and Social

Media.

Qumer, A. and Henderson-Sellers, B. (2008). A framework to support the

evaluation, adoption and improvement of agile methods in practice. Journal of

Systems and Software, 81(11):1899–1919.

Ramachandran, K. and Tsokos, C. (2009). Mathematical Statistics with

Applications. Academic Press.

Ransbotham, S. and Kane, G. C. (2011). Membership turnover and collaboration

success in online communities: Explaining rises and falls from grace in

wikipedia. Mis Quarterly, pages 613–627.

Rashid, M., Clarke, P. M., and O’Connor, R. V. (2019a). A mechanism to explore

proactive knowledge retention in open source software communities. Journal

of Software: Evolution and Process, pages 636–644.

Rashid, M., Clarke, P. M., and O’Connor, R. V. (2017). Exploring knowledge loss

in open source software (oss) projects. In International conference on software

process improvement and capability determination, pages 481–495. Springer.

Rashid, M., Clarke, P. M., and O’Connor, R. V. (2018). An approach to

investigating proactive knowledge retention in oss communities. In European

Conference on Software Process Improvement, pages 108–119. Springer.

239

Rashid, M., Clarke, P. M., and O’Connor, R. V. (2019b). A systematic

examination of knowledge loss in open source software projects. International

Journal of Information Management, 46:104–123.

Rastogi, A. and Sureka, A. (2014). What community contribution pattern

says about stability of software project? In 2014 21st Asia-Pacific Software

Engineering Conference, volume 2, pages 31–34. IEEE.

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology &

Policy, 12(3):23–49.

Rhem, A. J. (2005). UML for developing knowledge management systems.

Auerbach Publications.

Riessman, C. K. (2008). Narrative methods for the human sciences. Sage.

Rigby, P. C., German, D. M., Cowen, L., and Storey, M.-A. (2014). Peer

review on open-source software projects: Parameters, statistical models,

and theory. ACM Transactions on Software Engineering and Methodology

(TOSEM), 23(4):35.

Rigby, P. C., Zhu, Y. C., Donadelli, S. M., and Mockus, A. (2016). Quantifying

and mitigating turnover-induced knowledge loss: Case studies of chrome and

a project at avaya. In 2016 IEEE/ACM 38th International Conference on

Software Engineering (ICSE), pages 1006–1016. IEEE.

Robles, G. and Gonzalez-Barahona, J. M. (2006). Contributor turnover in libre

software projects. In IFIP International Conference on Open Source Systems,

pages 273–286. Springer.

Robles, G., Gonzalez-Barahona, J. M., and Michlmayr, M. (2005). Evolution of

volunteer participation in libre software projects: evidence from debian. In

Proceedings of the 1st international conference on open source systems, pages

100–107.

240

Ross, S. M. (2014). Introduction to probability and statistics for engineers and

scientists. Academic Press.

Rossman, G. B. and Wilson, B. L. (1985). Numbers and words: Combining

quantitative and qualitative methods in a single large-scale evaluation study.

Evaluation review, 9(5):627–643.

Rubin, H. J. and Rubin, I. S. (2011). Qualitative interviewing: The art of hearing

data. Sage.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering,

14(2):131.

Rus, I., Lindvall, M., and Sinha, S. (2002). Knowledge management in software

engineering. IEEE software, 19(3):26–38.

Ryan, S. and O’Connor, R. V. (2013). Acquiring and sharing tacit knowledge in

software development teams: An empirical study. Information and Software

Technology, 55(9):1614–1624.

Scacchi, W. (2003). Free/open source software development practices in the

computer game community. Institute for Software Research, University of

California, Technical Report.

Scacchi, W. (2007). Free/open source software development: recent research

results and emerging opportunities. In The 6th Joint Meeting on European

software engineering conference and the ACM SIGSOFT symposium on the

foundations of software engineering: companion papers, pages 459–468. ACM.

Schilling, A., Laumer, S., and Weitzel, T. (2011). Is the source strong with you?

a fit perspective to predict sustained participation of floss developers.

Schilling, A., Laumer, S., and Weitzel, T. (2012). Who will remain? an evaluation

of actual person-job and person-team fit to predict developer retention in floss

241

projects. In 2012 45th Hawaii International Conference on System Sciences,

pages 3446–3455. IEEE.

Schubert, P., Lincke, D.-M., and Schmid, B. (1998). A global knowledge medium

as a virtual community: the netacademy concept. AMCIS 1998 Proceedings,

page 207.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in

open source software development. Management science, 52(7):1000–1014.

Sharif, K. Y., English, M., Ali, N., Exton, C., Collins, J., and Buckley, J.

(2015). An empirically-based characterization and quantification of information

seeking through mailing lists during open source developers’ software evolution.

Information and Software Technology, 57:77–94.

Shull, F., Singer, J., and Sjøberg, D. I. (2008). Guide to advanced empirical

software engineering.

Silic, M. and Back, A. (2017). Open source software adoption: lessons from linux

in munich. IT Professional, 19(1):42–47.

Singh, V., Twidale, M. B., and Rathi, D. (2006). Open source technical

support: A look at peer help-giving. In Proceedings of the 39th Annual Hawaii

International Conference on System Sciences (HICSS’06), volume 6, pages

118c–118c. IEEE.

Software, B. D. (2015). It’s an open-source world: 78 percent of companies

run open-source software. URL: https://www.zdnet.com/article/

its-an-open-source-world-78-percent-of-companies-run-open-source-software.

html, (visited on 08/06/2017).

Somekh, B. and Lewin, C. (2005). Research Methods in the Social Sciences. SAGE

Publications.

242

https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software.html
https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software.html
https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software.html

Sowe, S. K., Karoulis, A., and Stamelos, I. (2006). A constructivist view of

knowledge management in open source virtual communities. In Managing

learning in virtual settings: the role of context, pages 290–308. IGI Global.

Sowe, S. K., Stamelos, I., and Angelis, L. (2008). Understanding knowledge

sharing activities in free/open source software projects: An empirical study.

Journal of Systems and Software, 81(3):431–446.

Steinmacher, I., Conte, T., Gerosa, M. A., and Redmiles, D. (2015a). Social

barriers faced by newcomers placing their first contribution in open source

software projects. In Proceedings of the 18th ACM conference on Computer

supported cooperative work & social computing, pages 1379–1392. ACM.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., and Redmiles, D. F. (2015b). A

systematic literature review on the barriers faced by newcomers to open source

software projects. Information and Software Technology, 59:67–85.

Strauss, A. and Corbin, J. M. (1998). Basics of qualitative research: Techniques

and procedures for developing grounded theory. SAGE Publications.

Subramaniam, C., Sen, R., and Nelson, M. L. (2009). Determinants of open source

software project success: A longitudinal study. Decision Support Systems,

46(2):576–585.

Sundaram, K., Dwivedi, S., and Sreenivas, V. (2010). Medical Statistics:

Principles & Methods. Anshan.

Tashakkori, A. and Teddlie, C. (2010). Sage handbook of mixed methods in social

& behavioral research. sage.

Tiwana, A. (2004). An empirical study of the effect of knowledge integration

on software development performance. Information and Software Technology,

46(13):899–906.

243

Urbancová, H. and Linhartová, L. (2011). Staff turnover as a possible threat to

knowledge loss. Journal of competitiveness, 3(3).

Van der Meulen, R. and Rivera, J. (2014). Gartner says worldwide traditional pc,

tablet, ultramobile and mobile phone shipments on pace to grow 7.6 percent

in 2014. Retrieved September, 29:2015.

Vasilescu, B., Serebrenik, A., Devanbu, P., and Filkov, V. (2014). How social q&a

sites are changing knowledge sharing in open source software communities. In

Proceedings of the 17th ACM conference on Computer supported cooperative

work & social computing, pages 342–354. ACM.

Venzin, M., Von Krogh, G., and Roos, J. (1998). Future research into knowledge

management. Knowing in firms: Understanding, managing and measuring

knowledge, pages 26–66.

Viana, D., Conte, T., Marczak, S., Ferreira, R., and de Souza, C. (2015).

Knowledge creation and loss within a software organization: An exploratory

case study. In 2015 48th Hawaii International Conference on System Sciences,

pages 3980–3989. IEEE.

Von Krogh, G., Spaeth, S., and Haefliger, S. (2005). Knowledge reuse in

open source software: An exploratory study of 15 open source projects. In

Proceedings of the 38th Annual Hawaii International Conference on System

Sciences, pages 198b–198b. IEEE.

Von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining,

and specialization in open source software innovation: a case study. Research

policy, 32(7):1217–1241.

Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., and Min Tjoa, A. (2007).

Monitoring the “health” status of open source web-engineering projects.

International Journal of Web Information Systems, 3(1/2):116–139.

244

Wang, X. and Lantzy, S. (2011). A systematic examination of member turnover

and online community health.

Wasko, M. M., Faraj, S., et al. (2005). Why should i share? examining social

capital and knowledge contribution in electronic networks of practice. MIS

quarterly, 29(1):35–57.

Williams, L. and Kessler, R. (2002). Pair programming illuminated. Addison-

Wesley Longman Publishing Co., Inc.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and

a replication in software engineering. In Proceedings of the 18th international

conference on evaluation and assessment in software engineering, page 38.

Citeseer.

Wohlin, C., Höst, M., and Henningsson, K. (2003). Empirical research methods in

software engineering. In Empirical methods and studies in software engineering,

pages 7–23. Springer.

Xu, B. (2006). Volunteers’ participative behaviors in open source software

development: the role of extrinsic incentive, intrinsic motivation and relational

social capital. PhD thesis, Texas Tech University.

Yager, R. R. and Alajlan, N. (2014). A note on mean absolute deviation. Inf.

Sci., 279:632–641.

Ye, Y., Nakakoji, K., Yamamoto, Y., and Kishida, K. (2008). The co-evolution

of systems and communities in free and open source software development.

In Global Information Technologies: Concepts, Methodologies, Tools, and

Applications, pages 3765–3776. Igi Global.

Yilmaz, M., Yilmaz, M., O’Connor, R. V., and Clarke, P. (2016). A gamification

approach to improve the software development process by exploring the

245

personality of software practitioners. In International Conference on Software

Process Improvement and Capability Determination, pages 71–83. Springer.

Yin, R. (2013). Case study research: Design and methods. SAGE Publications.

Yu, Y., Benlian, A., and Hess, T. (2012). An empirical study of volunteer

members’ perceived turnover in open source software projects. In 2012 45th

Hawaii International Conference on System Sciences, pages 3396–3405. IEEE.

Zack, M. H. (1999a). Developing a knowledge strategy. California management

review, 41(3):125–145.

Zack, M. H. (1999b). Managing codified knowledge. Sloan management review,

40(4):45–58.

Zagalsky, A., Teshima, C. G., German, D. M., Storey, M.-A., and Poo-

Caamaño, G. (2016). How the r community creates and curates knowledge:

a comparative study of stack overflow and mailing lists. In Proceedings of the

13th International Conference on Mining Software Repositories, pages 441–451.

ACM.

Zheng, X., Zeng, D., Li, H., and Wang, F. (2008). Analyzing open-source

software systems as complex networks. Physica A: Statistical Mechanics and

its Applications, 387(24):6190–6200.

Zhou, M. and Mockus, A. (2010). Developer fluency: Achieving true mastery

in software projects. In Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engineering, pages 137–

146. ACM.

Zhou, Q. (2009). The impact of job satisfaction affect on turnover intention:

An empirical study based on the circumstances of china. In 2009 Second

International Conference on Education Technology and Training, pages 220–

223. IEEE.

246

Zins, C. (2007). Conceptual approaches for defining data, information, and

knowledge. Journal of the American society for information science and

technology, 58(4):479–493.

247

Appendix A

Literature Review

A.1 List of Primary Studies

• PS1. Wang, X., Lantzy, S.: A systematic examination of member turnover

and online community health. In: ICIS 2011 Proceedings. 25. (2011)

• PS2. Mens, T.: An ecosystemic and socio-technical view on software

maintenance and evolution. In: Software Maintenance and Evolution

(ICSME), 2016 IEEE International Conference on, pp. 1-8. IEEE, (2016)

• PS3. Constantinou, E., Mens, T.: An empirical comparison of developer

retention in the RubyGems and npm software ecosystems. Innovations in

Systems and Software Engineering 13, 101-115 (2017)

• PS4. Fronza, I., Janes, A., Sillitti, A., Succi, G., Trebeschi, S.: Cooperation

wordle using pre-attentive processing techniques. In: 2013 6th International

Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE), pp. 57-64. (2013)

• PS5. Joblin, M., Apel, S., Mauerer, W.: Evolutionary trends of developer

coordination: A network approach. Empir Software Eng 1-45 (2017)

• PS6. Rashid, M., Clarke, P.M. and O’Connor, R.V., 2017, October.

Exploring Knowledge Loss in Open Source Software (OSS) Projects. In

International Conference on Software Process Improvement and

Capability Determination (pp. 481-495). Springer, Cham.

248

• PS7. Lin, B., Robles, G., Serebrenik, A.: Developer turnover in global,

industrial open source projects: insights from applying survival analysis.

In: Proceedings of the 12th International Conference on Global Software

Engineering, pp. 66-75. IEEE Press, (2017)

• PS8. Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.-R.:

Impact of developer turnover on quality in open-source software.

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, pp. 829-841. ACM, Bergamo, Italy (2015)

• PS9. Nidhra, S., Yanamadala, M., Afzal, W., Torkar, R.: Knowledge

transfer challenges and mitigation strategies in global software

development—A systematic literature review and industrial validation.

International Journal of Information Management 33, 333-355 (2013)

• PS10. Huang, P., Zhang, Z.: Participation in Open Knowledge

Communities and Job-Hopping: Evidence from Enterprise Software (2016)

• PS11. Rigby, P.C., Zhu, Y.C., Donadelli, S.M., Mockus, A.: Quantifying

and Mitigating Turnover-Induced Knowledge Loss: Case Studies of

Chrome and a project at Avaya. In: Proceedings of the 2016 International

Conference on Software Engineering. (2016)

• PS12. Britto, R., Smite, D., Damm, L.-O.: Software Architects in Large-

Scale Distributed Projects: An Ericsson Case Study. IEEE Software 33,

48-55 (2016)

• PS13. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona,

J.M.: Using software archaeology to measure knowledge loss in software

projects due to developer turnover. In: System Sciences, 2009. HICSS’09.

42nd Hawaii International Conference on, pp. 1-10. IEEE, (2009)

• PS14. Ayushi, R., Ashish, S.: What Community Contribution Pattern Says

249

about Stability of Software Project? In: Software Engineering Conference

(APSEC), 2014 21st Asia-Pacific, pp. 31-34. (2014)

• PS15. Bao, L., Xing, Z., Xia, X., Lo, D., Li, S.: Who Will Leave the

Company?: A Large-Scale Industry Study of Developer Turnover by Mining

Monthly Work Report. In: 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR), pp. 170-181. (2017)

• PS16. Schilling, A., Laumer, S., Weitzel, T.: Who Will Remain? An

Evaluation of Actual Person-Job and Person-Team Fit to Predict Developer

Retention in FLOSS Projects. In: System Science (HICSS), 2012 45th

Hawaii International Conference on, pp. 3446-3455. (2012)

• PS17. Ransbotham, S., Kane, G.C.: Membership turnover and

collaboration success in online communities: Explaining rises and falls

from grace in Wikipedia. Mis Quarterly 613-627 (2011)

• PS18. Garcia, D., Zanetti, M.S., Schweitzer, F.: The Role of Emotions in

Contributors Activity: A Case Study on the GENTOO Community. In:

Cloud and Green Computing (CGC), 2013 Third International Conference

on, pp. 410-417. (2013)

• PS19. Bosu, A., Carver, J.C.: Impact of developer reputation on code

review outcomes in OSS projects: an empirical investigation. Proceedings

of the 8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, pp. 1-10. ACM, Torino, Italy (2014)

• PS20. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open

source software development: Apache and Mozilla. ACM Transactions on

Software Engineering and Methodology 11, 309-346 (2002)

• PS21. Robles, G., Gonzalez-Barahona, J.M.: Contributor turnover in libre

software projects. IFIP International Federation for Information

Processing, vol. 203, pp. 273-286 (2006)

250

• PS22. Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Min Tjoa, A.:

Monitoring the “health” status of open source web-engineering projects.

International Journal of Web Information Systems 3, 116-139 (2007)

• PS23. Otte, T., Moreton, R., Knoell, H.D.: Applied quality assurance

methods under the open source development model. In: Computer Software

and Applications, 2008. COMPSAC’08. 32nd Annual IEEE International,

pp. 1247-1252. (2008)

• PS24. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre Open-

Source Software Development: What We Know and What We Do Not

Know. Acm Computing Surveys 44, (2012)

• PS25. Capiluppi, A., Gonzalez-Barahona, J.M., Herraiz, I., Robles, G.:

Adapting the "staged model for software evolution" to free/libre/open

source software. Ninth international workshop on Principles of software

evolution: in conjunction with the 6th ESEC/FSE joint meeting, pp.

79-82. ACM, Dubrovnik, Croatia (2007)

• PS26. Vasilescu, B., Serebrenik, A., Devanbu, P., Filkov, V.: How social

Q&A sites are changing knowledge sharing in open source software

communities. Proceedings of the 17th ACM conference on Computer

supported cooperative work & social computing, pp. 342-354. ACM,

Baltimore, Maryland, USA (2014)

• PS27. Nonaka, I., Toyama, R., Konno, N.: SECI, Ba and Leadership: a

Unified Model of Dynamic Knowledge Creation. Long Range Planning 33,

5-34 (2000)

• PS28. Robles, G., Gonzalez-Barahona, J.M., Michlmayr, M.: Evolution of

volunteer participation in libre software projects: evidence from Debian. In:

Proceedings of the 1st International Conference on Open Source Systems,

pp. 100-107. (2005)

251

• PS29. Rigby, P.C., German, D.M., Cowen, L., Storey, M.-A.: Peer Review

on Open-Source Software Projects: Parameters, Statistical Models, and

Theory. ACM Trans. Softw. Eng. Methodol. 23, 1-33 (2014)

• PS30. Herraiz, I., Robles, G., Jose, J., A., Romera, T., Jesus, Gonza

lez.M., Barahona,.: The processes of joining in global distributed software

projects. Proceedings of the 2006 international workshop on Global software

development for the practitioner, pp. 27-33. ACM, Shanghai, China (2006)

• PS31. Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F.: A

systematic literature review on the barriers faced by newcomers to open

source software projects. Information and Software Technology 59, 67-85

(2015)

• PS32. Licorish, S.A., MacDonell, S.G.: Understanding the attitudes,

knowledge sharing behaviors and task performance of core developers: A

longitudinal study. Information and Software Technology 56, 1578-1596

(2014)

• PS33. Lee, G.K., Cole, R.E.: From a Firm-Based to a Community-Based

Model of Knowledge Creation: The Case of the Linux Kernel Development.

Organization Science 14, 633-649 (2003)

• PS34. Qin, X., Salter-Townshend, M., Cunningham, P.: Exploring the

Relationship between Membership Turnover and Productivity in Online

Communities. In: ICWSM. (2014)

• PS35. Zagalsky, A., Teshima, C.G., German, D.M., Storey, M.-A., Poo-

Caamaño, G.: How the R community creates and curates knowledge: a

comparative study of stack overflow and mailing lists. In: Proceedings

of the 13th International Workshop on Mining Software Repositories, pp.

441-451. ACM, (2016)

252

• PS36. Sowe, S.K., Stamelos, I., Angelis, L.: Understanding knowledge

sharing activities in free/open source software projects: An empirical study.

Journal of Systems and Software 81, 431-446 (2008)

• PS37. Kuk, G.: Strategic Interaction and Knowledge Sharing in the KDE

Developer Mailing List. Manage. Sci. 52, 1031-1042 (2006)

• PS38. Chen, X., Li, X., Clark, J.G., Dietrich, G.B.: Knowledge sharing in

open source software project teams: A transactive memory system

perspective. International Journal of Information Management 33,

553-563 (2013)

253

Appendix B

Proactive Knowledge Retention

Canonical Model Development

B.1 Master Table Containing Data Components

Linked to data Sources

254

D
a
ta

 C
o
m

p
o
n

en
t

N
o
.

Data Components

 O
SS L

iterature

 O
rganisations

 O
nline O

pen Source G
uides +

O
thers

1 Visualisation of Resources- A visualization word

cloud has been proposed to show quickly the level of

cooperation of the team in the project [21]. A large

variety of data collection is without human

intervention and rendered as a wordle. Intensity of

colour and size of the letter in a wordle indicate a

need for resources. A Visualization word cloud does

not cause overhead on the productivity of the

contributors.

x

2 A successor is a person who has relevant expertise

and is knowledgeable on the work of other

contributors. Identification of successors and

involving them as co-owners is presented as a method

to reduce the risk associated with developer turnover

[10]. The files with a successor were not at risk of

abandonment even when the owning developer left. A

successor was there to perform maintenance tasks

[10]

x

3 Pair Programming and Shared Code Ownership: In

order to mitigate the effects of turnover on the

ecosystem, the usage of techniques such as pair

programming and shared code ownership are

suggested [95].

x

255

4 Centralisation: Governance structures in Ericsson is

argued to be similar to OSS, and a centralised

approach is implemented to secure quality [128]. The

situation of knowledge loss faced was because of the

recurrent movement of resources in and out of

products and constantly changing business needs. In

such a situation, the adoption of a centralised

approach helped in architectural knowledge stability

and its availability to new developers and teams.

x

5 Removal of Knowledge Barriers: Only a few OSS

contributors transit to a higher learning state, due to

high learning barriers. Consequently, it can take

newcomers up to 60 weeks to become an effective

contributor to a OSS project [129]. Knowledge

retention in OSS projects can also be improved by the

removal of knowledge barriers: namely, lack of

technical experience, lack of domain expertise and

lack of project practices that hinder the contributions

[130, 131].

x

6 An insight into the area of expertise members, a

knowledge map or directory can be used on the

project website internal knowledge portal, serving as

a way to help knowledge workers familiarize

themselves with their colleagues knowledge, K

Portals are rapidly evolving into broad-based

platforms for supporting a wide range of knowledge

x

7 Transactive Memory System- development within the

teams, based on knowledge location, the usage of the

developer mailing list and knowledge credibility

x

256

8 Diversity of Core Contributors: For an OSS project to

survive, a diversity of core developers is required

[132]. When a key contributor abandoned an OSS

project it revealed a very fluctuating proportion of

developer contribution. A significant imbalance

between the contribution and the response from the

developers’ community was noticed. The reason for

the dying project was that a diversity of core

contributors were missing from the project [132].

Diversity of core contributors also relates to the

underlying concept of uniform knowledge

distribution stated next.

x

9 Uniform Knowledge Distribution: The

communication of the OSS project is directed by the

core contributors. Their attitudes and involvement in

knowledge sharing were linked to the demands of

their wider project teams [124]. The core contributors

bring high levels of skills and cognitive

characteristics to their project teams. They start the

project and provide high levels of ideas, suggestions,

information, comments, instructions and answers to

their teams, and are the centre of their project’s

knowledge activities. The more code changes core

developers perform, the more knowledge they

provide [124]. However, their least involvement in

communication and task changes results into some

negative team attitudes.

x

10 This kind of disruption in communication in OSS

projects can hinder knowledge sharing. Another

resolution to the non-uniform distribution of

knowledge may be the proactive assignment of

maintenance tasks on the code written by other

contributors. As indicated that contributors who

modify codes from other contributors stay longer on

the project [28]. This will create a balance of equal

development of skills on the OSS project. For

example, contributors who normally perform

documentation tasks should be assigned some coding

tasks.

x

257

11 Gamification: A gamified environment has important

implications for knowledge management in software

engineering [50] and OSS projects. As observed,

Q&A gamification increased the engagement of

knowledge providers and the quickness of response.

This finding suggests that Q&A site designers should

consider gamification elements to increase

contributor engagement, which indirectly can help to

raise the popularity of their sites. For example,

gamification features in Stack Overflow’s guarantee

that a question will be replied to by enthusiastic

experts within minutes of being posted [133]. On

Stack Overflow, a crowd approach is used where

participants contribute knowledge independently of

each other and gamification qualities are used to

evaluate who provides the best answer is the one that

gains the most points [133]. Knowledge is curated in

gamification other than being developed as is the case

with mailing lists. Curation is a mechanism to provide

a tool for keeping the channel clean of what seems to

be unnecessary information [133].

x

12 Improving Code Review Feedback Time for non-

Cores: Peer reviews are conducted asynchronously in

OSS projects to empower experts who provide

feedback to code contributors [134]. As indicated by

a social network analysis of the code review data

from eight popular OSS projects, core developers as

compared to peripheral contributors have the benefit

of receiving quicker feedback, face shorter review

intervals and have a higher code acceptance rate

[135]. Due to the lack of an established reputation,

peripheral developers wait 2 to 19 times (or 12 to 96

hours) longer than core developers, to complete the

review process. Accordingly, a delay in receiving

feedback on reviews may negatively motivate a

peripheral or new contributor [135]. An improvement

to the timings of the review feedbacks in OSS

projects to peripherals can result in a uniform

distribution of knowledge, reduce the effects of

turnover, and motivate newcomers to stay for a longer

duration.

x

258

13 Code review checklists also provide team members

with clear expectations for each type of review

x

14 Use of a collaborative code review tool that allows

reviewers to log bugs, discuss them with the author,

and approve changes in the code

x

15 Guidelines should at least provide details about the

expected code style, commit format, pull request

process, and available communication options

x

16 Integrators should be proactive by establishing a

professional communication etiquette, and reactive,

by following discussions and intervening in cases

where discussion diverges from the etiquette.

Integrator and contributors should agree on minimal

communication protocols that increase each other’s

awareness and rendezvous points for mandatory

information exchange and use real-time

communication channels (e.g., IRC or its evolved

counterpart GITTER, which is better integrated in

GitHub)

x

17 Projects should provide a policy or comprehensive set

of contribution guidelines

x

18 Good documentation invites people to interact with

project open an issue or pull request. Use these

interactions as opportunities to move them down the

funnel (from users to contributors and to maintainers)

x

19 open-minded about the types of contributions to

accept start with a bug report or small fix make easy

for casual contributors to contribute document your

process with an access to public

x

20 Transparency about project’s roadmap, the types of

contributions you’re looking for, how contributions

are reviewed, or why you made certain decisions

x

259

21 communication is public and accessible, anybody can

read past archives to get up to speed and participate.

Merged with No. 18

x

22 When multiple users running into the same problem,

document the answers in the README

x

23 Write down your project’s vision, a project

roadmap,make those public as well, Add them to your

README, or create a separate file called VISION.

x

24 While working on a substantial update to your

project, put it into a pull request and mark it as a work

in progress (WIP). That way, other people can feel

involved in the process early on.

x

25 to be responsive when someone files an issue,

submits a pull request, or asks a question about your

project. Responding quickly, people will feel they are

part of a dialogue, and they’ll be more enthusiastic

about participating set up notifications in some of

these places (such as Stack Overflow, Twitter, or

Reddit) so you are alerted when someone mentions

your project

x

26 negative people will make other people in your

community uncomfortable, a supportive community

is the key

x

27 label bugs that are suitable for different types of

contributors: for example, “first timers only”, “good

first issue”, or “documentation”. These labels make it

easy for someone new to your project to quickly scan

your issues and get started. Resist fixing easy (non-

critical) bugs. Instead, use them as opportunities to

recruit new contributors

x

260

28 Share ownership of your project, if you need to step

away from your project, either on hiatus or

permanently, there’s no shame in asking someone

else to take over for you. Find support for your users

and community while you’re away from a project. If

you can’t find the support you need, take a break

anyway. Be sure to communicate when you’re not

available, so people aren’t confused by your lack of

responsiveness.

x

29 CONTRIBUTORS or AUTHORS file in your project

that lists everyone who’s contributed to your project.

x

30 Appreciation...newsletter or write a blog post

thanking contributors //

x

31 Non- restrictive commit access-Give every

contributor commit access, this made people more

excited to polish their patches

x

32 Resolving conflicts x

33 Emphasize “consensus seeking” rather than

consensus. community members discuss major

concerns until they feel they have been adequately

heard

x

34 keep your documentation up-to-date x

35 Be proactive to reduce the volume of unwanted

contributions in the first place, explain your project’s

process for submitting and accepting contributions in

your contributing guide. Fill out a issue or PR

template/checklist and open an issue before

submitting a PR

x

36 Someone is enthusiastic about your project, but needs

a bit of polish consider mentoring them through their

first contribution

x x

261

37 Encouraging your community members to work on

their own fork can provide the creative outlet they

need, without conflicting with your project’s vision.

x

38 Require tests and other checks to improve the quality

of your code. If you add tests, make sure to explain

how they work in your CONTRIBUTING file.

x

39 Designating leaders can be as simple as adding their

names to your README or a CONTRIBUTORS text

file.

x

40 Let people self-organize and volunteer for the roles

they’re most excited about, rather than assigning

them.

x

41 Once you’ve established leadership roles, don’t forget

to document how people can attain them! Establish a

clear process for how someone can become a

maintainer or join a subcommittee in your project,

and write it into your GOVERNANCE.md.

x

42 Under a liberal contribution model, the people who

do the most work are recognized as most influential,

but this is based on current contributions. Major

project decisions are made based on a consensus

seeking process work and not historic

x

43 A “core team” of maintainers with specific areas,

subcommittees of people who take ownership of

different issue areas (for example, security, issue

triaging, or community conduct).

x

44 Governance file to established leadership roles and a

clear process for how someone can become a

maintainer or join a subcommittee in project, and

document it into your GOVERNANCE.md.

x

262

45 Post mortem review or after action review to learn

through a collective activity and to build knowledge

based on the experience to improve future practice. In

postmortem, learning takes place through

socialisation, and when individuals share experiences,

tacit knowledge is externalised. Knowledge is shared

from individual level to organisational level.

Postmortems are an attempt to codify knowledge

from projects, where the main output is the report. It

can be seen as a systematic mechanism of capturing,

storing, interpreting and distributing relevant

experience from projects

x

46 A Community of Practice to create a network to

collect and exchange information about the

knowledge-transfer methods to diffuse knowledge

before it is lost

x

47 Written reports to transfer project relevant

knowledge with other contributors

x

48 Job rotation for knowledge exchange and transfer

while people take turn to work in different job roles,

tasks, and domains. Job rotation legitimises

experience that allows people in the organisation to

work in diverse knowledge domains. Some

development practices, such as pair programming,

facilitate knowledge sharing between peers, while job

rotation helps knowledge spread throughout the

project or organisation.

x

49 Using story telling to generating, share, and discuss

stories for quickly integrating new learning

x

263

50 Experience Based Memory: Experience packaged and

stored in an experience base built by contributors

based on their experiences including resources such

as all experience types, lesson learned, project data,

and technology reports. Version control, change

management, documenting design decisions, and

requirements traceability are software engineering

practices that help build project and product

memories as an indirect or direct effect of software

development.

x

51 Training is another knowledge transfer practice found

to include some combination of formal classroom

training, eLearning, video or computer-based training,

on-the-job training, coaching, and shadowing

x

52 Interviews in an organisation is a knowledge transfer

knowledge process used to integrate the knowledge

captured into the organisation

x

Recognition and Reward Structure: In order to

encourage employees to participate in KR activities, a

recognition and reward structure can be incorporated

in the core processes of the organisation.

Furthermore, to encourage contribution of knowledge,

based on codification and personalisation a reward

system is established for people documenting and

sharing knowledge (Hansen et al. 1999). A reward

structure is based on using either intrinsic motivators

or extrinsic motivators. Intrinsic motivator includes

acts that make the job more satisfying such as praise

and recognition. Extrinsic motivation is related to

monetary incentives (Gammelgaard 2007).

Organisations like Xerox, and Hewlett-Packard

reward people for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only associated

with the sharing of existing knowledge but also with

the external knowledge from outsiders.

Managers are rewarded in organisations for learning

from their competitors, which are source

of external knowledge (Menon and Pfeffer 2003).

Using the combination of extrinsic and intrinsic

rewards is better (Gammelgaard 2007). In the two

types of reward structures, the long lasting one is

intrinsic reward structure. As an example of intrinsic

motivation, Google consists of a user community

mainly of software engineers. The knowledge is

shared by answering questions and helping solve

problems that other software engineer post, without

being compensated. Software engineers willingly

share their knowledge. Even though the technology

changes very quickly, capturing the gained

knowledge still is worth the effort (Rus and Lindvall

2002).

x53

264

54 Relevant technical tools allow for the retention of

supporting documents, and competence management

and used by software organisations for supporting

software engineering practices along with knowledge

management. For example, document management

tools frequently employed in organisations are

Hyperwave, Microsoft SharePoint, Lotus Domino,

and Xerox DocuShare.

x

Recognition and Reward Structure: In order to

encourage employees to participate in KR activities, a

recognition and reward structure can be incorporated

in the core processes of the organisation.

Furthermore, to encourage contribution of knowledge,

based on codification and personalisation a reward

system is established for people documenting and

sharing knowledge (Hansen et al. 1999). A reward

structure is based on using either intrinsic motivators

or extrinsic motivators. Intrinsic motivator includes

acts that make the job more satisfying such as praise

and recognition. Extrinsic motivation is related to

monetary incentives (Gammelgaard 2007).

Organisations like Xerox, and Hewlett-Packard

reward people for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only associated

with the sharing of existing knowledge but also with

the external knowledge from outsiders.

Managers are rewarded in organisations for learning

from their competitors, which are source

of external knowledge (Menon and Pfeffer 2003).

Using the combination of extrinsic and intrinsic

rewards is better (Gammelgaard 2007). In the two

types of reward structures, the long lasting one is

intrinsic reward structure. As an example of intrinsic

motivation, Google consists of a user community

mainly of software engineers. The knowledge is

shared by answering questions and helping solve

problems that other software engineer post, without

being compensated. Software engineers willingly

share their knowledge. Even though the technology

changes very quickly, capturing the gained

knowledge still is worth the effort (Rus and Lindvall

2002).

x53

265

B.2 Merging Conceptual Duplicates

266

D
a
ta

C
o
m

p
o
n

en
t

Data Components

* Candidate rows for merging

highlighted in Green M
em

o

Merged Duplicates Highlighted in

Colour

1 Visualisation of Resources- A

visualization word cloud has been

proposed to show quickly the level of

cooperation of the team in the project

[21]. A large variety of data collection

is without human intervention and

rendered as a wordle. Intensity of

colour and size of the letter in a wordle

indicate a need for resources. A

Visualization word cloud does not

cause overhead on the productivity of

the contributors.

Visualisation of Resources tool- A

visualization word cloud has been

proposed to show quickly the level of

cooperation of the team in the project

[21]. A large variety of data collection is

without human intervention and

rendered as a wordle. Intensity of colour

and size of the letter in a wordle indicate

a need for resources. A Visualization

word cloud does not cause overhead on

the productivity of the contributors. //

Technology Oriented Tools

2 A successor is a person who has

relevant expertise and is

knowledgeable on the work of other

contributors. Identification of

successors and involving them as co-

owners is presented as a method to

reduce the risk associated with

developer turnover [10]. The files with

a successor were not at risk of

abandonment even when the owning

developer left. A successor was there

to perform maintenance tasks [10]

Identifying successors with relevant

expertise and are knowledgeable on

the work of other contributors.

Identification of successors and

involving contributors as co-owners with

relevant expertise knowledgeable on the

work of other contributors. is presented

as a method to reduce the risk associated

with developer turnover [10]. The files

with a successor were not at risk of

abandonment even when the owning

developer left. A successor was there to

perform maintenance tasks [10] //

Knowledge transfer and Sharing

267

3 Pair Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem,

the usage of techniques such as pair

programming and shared code

ownership are suggested [95].

Pair Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem, the

usage of techniques such as pair

programming and shared code

ownership are suggested [95]. such as

pair programming, facilitate knowledge

sharing between peers // Shared code

knowledge - pair programming

4 Centralisation: Governance structures

in Ericsson is argued to be similar to

OSS, and a centralised approach is

implemented to secure quality [128].

The situation of knowledge loss faced

was because of the recurrent movement

of resources in and out of products and

constantly changing business needs. In

such a situation, the adoption of a

centralised approach helped in

architectural knowledge stability and

its availability to new developers and

teams.

Centralisation: Governance structures

in Ericsson is argued to be similar to

OSS, and a centralised approach is

implemented to secure quality [128].

The situation of knowledge loss faced

was because of the recurrent movement

of resources in and out of products and

constantly changing business needs. In

such a situation, the adoption of a

centralised approach helped in

architectural knowledge stability and its

availability to new developers and

teams.

5 Removal of Knowledge Barriers: Only

a few OSS contributors transit to a

higher learning state, due to high

learning barriers. Consequently, it can

take newcomers up to 60 weeks to

become an effective contributor to a

OSS project [129]. Knowledge

retention in OSS projects can also be

improved by the removal of knowledge

barriers: namely, lack of technical

experience, lack of domain expertise

and lack of project practices that hinder

the contributions [130, 131].

Removal of Knowledge Barriers: Only

a few OSS contributors transit to a

higher learning state, due to high

learning barriers. Consequently, it can

take newcomers up to 60 weeks to

become an effective contributor to a

OSS project [129]. Knowledge retention

in OSS projects can also be improved by

the removal of knowledge barriers:

namely, lack of technical experience,

lack of domain expertise and lack of

knowledge on project practices that

hinder the contributions [130, 131]. //

Contributions

268

6 An insight into the area of expertise

members, a knowledge map or

directory can be used on the project

website internal knowledge portal,

serving as a way to help knowledge

workers familiarize themselves with

their colleagues knowledge, K Portals

are rapidly evolving into broad-based

platforms for supporting a wide range

of knowledge worker (KW) tasks

An insight into the area of expertise

members, a knowledge map or

directory can be used on the project

website internal knowledge portal,

serving as a way to help knowledge

workers familiarize themselves with

their colleagues knowledge, K Portals

are rapidly evolving into broad-based

platforms for supporting a wide range of

knowledge worker (KW) tasks. //

Technology Oriented toolsAn insight

into the area of expertise members, a

knowledge map or directory can be

used on the project website internal

knowledge portal, serving as a way to

help knowledge workers familiarize

themselves with their colleagues

knowledge, K Portals are rapidly

evolving into broad-based platforms for

supporting a wide range of knowledge

worker (KW) tasks.

7 Transactive Memory System-

development within the teams, based

on knowledge location, the usage of

the developer mailing list and

knowledge credibility

Transactive Memory System-

development within the teams, based on

knowledge location, the usage of the

developer mailing list and knowledge

credibility // Technology Oriented

tools

269

8 Diversity of Core Contributors: For an

OSS project to survive, a diversity of

core developers is required [132].

When a key contributor abandoned an

OSS project it revealed a very

fluctuating proportion of developer

contribution. A significant imbalance

between the contribution and the

response from the developers’

community was noticed. The reason for

the dying project was that a diversity of

core contributors were missing from

the project [132]. Diversity of core

contributors also relates to the

underlying concept of uniform

knowledge distribution stated next.

Diverse specialisations of Core

Contributors: For an OSS project to

survive, a diversity of core developers

is required [132]. When a key

contributor abandoned an OSS project it

revealed a very fluctuating proportion of

developer contribution. A significant

imbalance between the contribution

and the response from the developers’

community was noticed. The reason for

the dying project was that a diversity of

core contributors were missing from the

project [132]. Diversity of core

contributors also relates to the

underlying concept of uniform

knowledge distribution stated next. //

Balance between the contribution

submitted and response from

specialised core developers in

community. A “core team” of

maintainers, or even subcommittees of

people who take ownership of

different issue areas (for example,

security, issue triaging, or community

conduct).

270

10 This kind of disruption in

communication in OSS projects can

hinder knowledge sharing. Another

resolution to the non-uniform

distribution of knowledge may be the

proactive assignment of maintenance

tasks on the code written by other

contributors. As indicated that

contributors who modify codes from

other contributors stay longer on the

project [28]. This will create a balance

of equal development of skills on the

OSS project. For example, contributors

who normally perform documentation

tasks should be assigned some coding

tasks.

This kind of disruption in

communication in OSS projects can

hinder knowledge sharing. Another

resolution to the non-uniform

distribution of knowledge may be the

proactive assignment of maintenance

tasks on the code written by other

contributors. As indicated that

contributors who modify codes from

other contributors stay longer on the

project [28]. This will create a balance of

equal development of skills on the OSS

project. For example, contributors who

normally perform documentation tasks

should be assigned some coding tasks.

Uniform Knowledge Distribution: The

communication of the OSS project is

directed by the core contributors.

Their attitudes and involvement in

knowledge sharing were linked to the

demands of their wider project teams

[124]. The core contributors bring high

levels of skills and cognitive

characteristics to their project teams.

They start the project and provide

high levels of ideas, suggestions,

information, comments, instructions

and answers to their teams, and are

the centre of their project’s knowledge

activities. The more code changes core

developers perform, the more knowledge

they provide [124]. However, their least

involvement in communication and task

changes results into some negative team

attitudes. // Knowledge communication

from cores to non-cores

Uniform Knowledge Distribution: The

communication of the OSS project is

directed by the core contributors. Their

attitudes and involvement in

knowledge sharing were linked to the

demands of their wider project teams

[124]. The core contributors bring high

levels of skills and cognitive

characteristics to their project teams.

They start the project and provide high

levels of ideas, suggestions,

information, comments, instructions

and answers to their teams, and are the

centre of their project’s knowledge

activities. The more code changes core

developers perform, the more

knowledge they provide [124].

However, their least involvement in

communication and task changes

results into some negative team

attitudes.

9

271

11 Gamification: A gamified environment

has important implications for

knowledge management in software

engineering [50] and OSS projects. As

observed, Q&A gamification increased

the engagement of knowledge

providers and the quickness of

response. This finding suggests that

Q&A site designers should consider

gamification elements to increase

contributor engagement, which

indirectly can help to raise the

popularity of their sites. For example,

gamification features in Stack

Overflow’s guarantee that a question

will be replied to by enthusiastic

experts within minutes of being posted

[133]. On Stack Overflow, a crowd

approach is used where participants

contribute knowledge independently of

each other and gamification qualities

are used to evaluate who provides the

best answer is the one that gains the

most points [133]. Knowledge is

curated in gamification other than

being developed as is the case with

mailing lists. Curation is a mechanism

to

provide a tool for keeping the channel

clean of what seems to be unnecessary

information [133].

Gamification: A gamified environment

has important implications for

knowledge management in software

engineering [50] and OSS projects. As

observed, Q&A gamification increased

the engagement of knowledge providers

and the quickness of response. This

finding suggests that Q&A site designers

should consider gamification elements to

increase contributor engagement, which

indirectly can help to raise the popularity

of their sites. For example, gamification

features in Stack Overflow’s guarantee

that a question will be replied to by

enthusiastic experts within minutes of

being posted [133]. On Stack Overflow,

a crowd approach is used where

participants contribute knowledge

independently of each other and

gamification qualities are used to

evaluate who provides the best answer is

the one that gains the most points [133].

Knowledge is curated in gamification

other than being developed as is the case

with mailing lists. Curation is a

mechanism to provide a tool for keeping

the channel clean of what seems to be

unnecessary information [133].

272

13 Code review checklists also provide

team members with clear expectations

for each type of review

Code review checklists also provide

team members with clear expectations

for each type of review

14 Use of a collaborative code review

tool that allows reviewers to log bugs,

discuss them with the author, and

approve changes in the code

Use of a collaborative code review

tool that allows reviewers to log bugs,

discuss them with the author, and

approve changes in the code.

12 Improving Code Review Feedback

Time for non-Cores: Peer reviews are

conducted asynchronously in OSS

projects to empower experts who

provide feedback to code contributors

[134]. As indicated by a social network

analysis of the code review data from

eight popular OSS projects, core

developers as compared to peripheral

contributors have the benefit of

receiving quicker feedback, face

shorter review intervals and have a

higher code acceptance rate [135]. Due

to the lack of an established reputation,

peripheral developers wait 2 to 19

times (or 12 to 96 hours) longer than

core developers, to complete the

review process. Accordingly, a delay in

receiving feedback on reviews may

negatively motivate a peripheral or

new contributor [135]. An

improvement to the timings of the

review feedbacks in OSS projects to

peripherals can result in a uniform

distribution of knowledge, reduce the

effects of turnover, and motivate

newcomers to stay for a longer

duration.

Improving Code Review Feedback

Time for non-Cores: Peer reviews are

conducted asynchronously in OSS

projects to empower experts who

provide feedback to code contributors

[134]. As indicated by a social network

analysis of the code review data from

eight popular OSS projects, core

developers as compared to peripheral

contributors have the benefit of

receiving quicker feedback, face

shorter review intervals and have a

higher code acceptance rate [135]. Due

to the lack of an established

reputation, peripheral developers wait

2 to 19 times (or 12 to 96 hours) longer

than core developers, to complete the

review process. Accordingly, a delay in

receiving feedback on reviews may

negatively motivate a peripheral or

new contributor [135]. An

improvement to the timings of the

review feedbacks in OSS projects to

peripherals can result in a uniform

distribution of knowledge, reduce the

effects of turnover, and motivate

newcomers to stay for a longer duration.

273

15 Guidelines should at least provide

details about the expected code style,

commit format, pull request process,

and available communication options

Merged

with

No. 18

Integrators should be proactive by

establishing a professional

communication etiquette, and

reactive, by following discussions and

intervening in cases where discussion

diverges from the etiquette. Integrator

and contributors should agree on

minimal communication protocols

that increase each other’s awareness

and rendezvous points for mandatory

information exchange and use real-

time communication channels (e.g.,

IRC or its evolved counterpart GITTER,

which is better integrated in GitHub)

16 Integrators should be proactive by

establishing a professional

communication etiquette, and reactive,

by following discussions and

intervening in cases where discussion

diverges from the etiquette. Integrator

and contributors should agree on

minimal communication protocols that

increase each other’s awareness and

rendezvous points for mandatory

information exchange and use real-

time communication channels (e.g.,

IRC or its evolved counterpart

GITTER, which is better integrated in

GitHub)

Good documentation invites people to

interact with project open an issue or

pull request. Use these interactions as

opportunities to move them down the

funnel (from users to contributors and to

maintainers). communication is public

and accessible, anybody can read past

archives to get up to speed and

participate. Guidelines should at least

provide details about the expeced code

style, commit format, pull request

process, and available communication

options. Projects should provide a

policy or comprehensive set of

contribution guidelines. Write down

your project’s vision, a project

roadmap,make those public as well,

Add them to your README, or

create a separate file called VISION.

keep your

documentation up-to-date. Be

proactive to reduce the volume of

unwanted contributions in the first

place, explain your project’s process

for submitting and accepting

contributions in your contributing

guide. Fill out a issue or PR

template/checklist and open an issue

before submitting a PR.

274

17 Projects should provide a policy or

comprehensive set of contribution

guidelines

Merged

with

No. 18

open-minded about the types of

contributions to accept start with a bug

report or small fix make easy for casual

contributors to contribute. document

your process with an access to public

18 Good documentation invites people to

interact with project open an issue or

pull request. Use these interactions as

opportunities to move them down the

funnel (from users to contributors and

to maintainers)

Transparency about project’s

roadmap, the types of contributions

you’re looking for, how contributions

are reviewed, or why you made certain

decisions

19 open-minded about the types of

contributions to accept start with a bug

report or small fix make easy for casual

contributors to contribute document

your process with an access to public

When multiple users running into the

same problem, document the answers in

the README

20 Transparency about project’s roadmap,

the types of contributions you’re

looking for, how contributions are

reviewed, or why you made certain

decisions

While working on a substantial update to

your project, put it into a pull request

and mark it as a work in progress (WIP).

That way, other people can feel involved

in the process early on. //Encouraging

contribution

16 Integrators should be proactive by

establishing a professional

communication etiquette, and reactive,

by following discussions and

intervening in cases where discussion

diverges from the etiquette. Integrator

and contributors should agree on

minimal communication protocols that

increase each other’s awareness and

rendezvous points for mandatory

information exchange and use real-

time communication channels (e.g.,

IRC or its evolved counterpart

GITTER, which is better integrated in

GitHub)

Good documentation invites people to

interact with project open an issue or

pull request. Use these interactions as

opportunities to move them down the

funnel (from users to contributors and to

maintainers). communication is public

and accessible, anybody can read past

archives to get up to speed and

participate. Guidelines should at least

provide details about the expeced code

style, commit format, pull request

process, and available communication

options. Projects should provide a

policy or comprehensive set of

contribution guidelines. Write down

your project’s vision, a project

roadmap,make those public as well,

Add them to your README, or

create a separate file called VISION.

keep your

documentation up-to-date. Be

proactive to reduce the volume of

unwanted contributions in the first

place, explain your project’s process

for submitting and accepting

contributions in your contributing

guide. Fill out a issue or PR

template/checklist and open an issue

before submitting a PR.

275

21 communication is public and

accessible, anybody can read past

archives to get up to speed and

participate. Merged with No. 18

Merged

with

No. 18

to be responsive when someone files an

issue, submits a pull request, or asks a

question about your project.

Responding quickly, people will feel

they are part of a dialogue, and they’ll be

more enthusiastic about participating set

up notifications in some of these places

(such as Stack Overflow, Twitter, or

Reddit) so you are alerted when

someone mentions your project. if you

can’t review the request immediately,

acknowledging it early helps increase

engagement.

22 When multiple users running into the

same problem, document the answers

in the README

negative people will make other people

in your community uncomfortable, a

supportive community is the key,

resolving conflicts //Community

Health

23 Write down your project’s vision, a

project roadmap,make those public as

well, Add them to your README, or

create a separate file called VISION.

Merged

with

No. 18

label bugs that are suitable for different

types of contributors: for example, “first

timers only”, “good first issue”, or

“documentation”. These labels make it

easy for someone new to your project to

quickly scan your issues and get started.

Resist fixing easy (non-critical) bugs.

Instead, use them as opportunities to

recruit new contributors

24 While working on a substantial update

to your project, put it into a pull

request and mark it as a work in

progress (WIP). That way, other people

can feel involved in the process early

on.

Share ownership of your project, if

you need to step away from your project,

either on hiatus or permanently, there’s

no shame in asking someone else to take

over for you. Find support for your

users and community while you’re

away from a project. If you can’t find

the support you need, take a break

anyway. Be sure to communicate when

you’re not available, so people aren’t

confused by your lack of responsiveness.

276

25 to be responsive when someone files an

issue, submits a pull request, or asks a

question about your project.

Responding quickly, people will feel

they are part of a dialogue, and they’ll

be more enthusiastic about

participating set up notifications in

some of these places (such as Stack

Overflow, Twitter, or Reddit) so you

are alerted when someone mentions

your project

newsletter or write a blog post thanking

contributors //Appreciation

26 negative people will make other people

in your community uncomfortable, a

supportive community is the key

Non- restrictive commit access - Give

every contributor commit access, this

made people more excited to polish their

patches

27 label bugs that are suitable for different

types of contributors: for example,

“first timers only”, “good first issue”,

or “documentation”. These labels make

it easy for someone new to your project

to quickly scan your issues and get

started. Resist fixing easy (non-critical)

bugs. Instead, use them as

opportunities to recruit new

contributors

Emphasize “consensus seeking” rather

than consensus. community members

discuss major concerns until they feel

they have been adequately heard//

Governance

28 Share ownership of your project, if you

need to step away from your project,

either on hiatus or permanently, there’s

no shame in asking someone else to

take over for you. Find support for

your users and community while

you’re away from a project. If you

can’t find the support you need, take a

break anyway. Be sure to communicate

when you’re not available, so people

aren’t confused by your lack of

responsiveness.

Someone is enthusiastic about your

project, but needs a bit of polish consider

mentoring them through their first

contribution. mentor someone who’d

like to contribute

277

29 CONTRIBUTORS or AUTHORS file

in your project that lists everyone

who’s contributed to your project.

Merged

with

No. 40

Encouraging your community members

to work on their own fork can provide

the creative outlet they need, without

conflicting with your project’s vision

30 Appreciation...newsletter or write a

blog post thanking contributors //

Require tests and other checks to

improve the quality of your code. If you

add tests, make sure to explain how they

work in your CONTRIBUTING file

31 Non- restrictive commit access-Give

every contributor commit access, this

made people more excited to polish

their patches

Designating leaders can be as simple as

adding their names to your README or

a CONTRIBUTORS text file.

CONTRIBUTORS or AUTHORS file

in your project that lists everyone

who’s contributed to your project //

Documentation

32 Resolving conflicts Merged

with 26

Let people self-organize and volunteer

for the roles they’re most excited about,

rather than assigning them.

33 Emphasize “consensus seeking” rather

than consensus. community members

discuss major concerns until they feel

they have been adequately heard

Once you’ve established leadership

roles, don’t forget to document how

people can attain them! Establish a

clear process for how someone can

become a maintainer or join a

subcommittee in your project, and

write it into your GOVERNANCE.md

34 keep your documentation up-to-date Merged

with

No. 18

Under a liberal contribution model, the

people who do the most workare

recognized as most influential, but this is

based on current contributions. Major

project decisions are made based on a

consensus seeking processwork and not

historic

278

35 Be proactive to reduce the volume of

unwanted contributions in the first

place, explain your project’s process

for submitting and accepting

contributions in your contributing

guide. Fill out a issue or PR

template/checklist and open an issue

before submitting a PR

Merged

with

No. 18

Post mortem review or after action

review to learn through a collective

activity and to build knowledge based

on the experience to improve future

practice. In postmortem, learning takes

place through socialisation, and when

individuals share experiences, tacit

knowledge is externalised. Knowledge is

shared from individual level to

organisational level. Postmortems are an

attempt to codify knowledge from

projects, where the main output is the

report. It can be seen as a systematic

mechanism of capturing, storing,

interpreting and distributing relevant

experience from projects.

36 Someone is enthusiastic about your

project, but needs a bit of polish

consider mentoring them through their

first contribution

A Community of Practice to create a

network to collect and exchange

information about the knowledge-

transfer methods to diffuse knowledge

before it is lost

37 Encouraging your community

members to work on their own fork can

provide the creative outlet they need,

without conflicting with your project’s

vision

Written reports to transfer project

relevant knowledge with other

contributors

38 Require tests and other checks to

improve the quality of your code. If

you add tests, make sure to explain

how they work in your

CONTRIBUTING file

Job rotation for knowledge exchange

and transfer while people take turn to

work in different job roles, tasks, and

domains. Job rotation legitimises

experience that allows people in the

organisation to work in diverse

knowledge domains. Some development

practices,while job rotation helps

knowledge spread throughout the

project or organisation.

39 Designating leaders can be as simple as

adding their names to your README

or a CONTRIBUTORS text file.

Using story telling to generating, share,

and discuss stories for quickly

integrating new learning.

279

41 Once you’ve established leadership

roles, don’t forget to document how

people can attain them! Establish a

clear process for how someone can

become a maintainer or join a

subcommittee in your project, and

write it into your GOVERNANCE.md

Training is another knowledge transfer

practice found to include some

combination of formal classroom

training, eLearning, video or computer-

based training, on-the-job training,

coaching, and shadowing.

42 Under a liberal contribution model, the

people who do the most work are

recognized as most influential, but this

is based on current contributions.

Major project decisions are made based

on a consensus seeking process work

and not historic

Interviews in an organisation is a

knowledge transfer knowledge process

used to integrate the knowledge captured

into the organisation

Experience Based Memory: Experience

packaged and stored in an experience

base built by contributors based on

their experiences including resources

such as all experience types, lesson

learned, project data, and technology

reports. Version control, change

management, documenting design

decisions, and requirements

traceability are software engineering

practices that help build project and

product memories as an indirect or direct

effect of software development.

Relevant technical tools allow for the

retention of supporting documents,

and competence management and

used by software organisations for

supporting software engineering

practices along with knowledge

management. For example, document

management tools frequently

employed in organisations are

Hyperwave, Microsoft SharePoint,

Lotus Domino, and Xerox DocuShare.

Technology based systems//

Technology oriented tools

Let people self-organize and volunteer

for the roles they’re most excited

about, rather than assigning them.

40

280

A “core team” of maintainers with

specific areas, subcommittees of

people who take ownership of different

issue areas (for example, security, issue

triaging, or community conduct).

43 Rewarding contributors for

knowledge sharing and transfer with

recognition and appreciation for best

answer provided. Recognition and

Reward Structure: In order to encourage

employees to participate in KR

activities, a recognition and reward

structure can be incorporated in the core

processes of the organisation.

Furthermore, to encourage contribution

of knowledge, based on codification and

personalisation a reward system is

established for people documenting

and sharing knowledge (Hansen et al.

1999). A reward structure is based on

using either intrinsic motivators or

extrinsic motivators. Intrinsic motivator

includes acts that make the job more

satisfying such as praise and recognition.

Extrinsic motivation is related to

monetary incentives (Gammelgaard

2007). Organisations

like Xerox, and Hewlett-Packard

reward people for sharing their

knowledge (Rus and Lindvall 2002).

Reward system is not only associated

with the sharing of existing knowledge

but also with the external knowledge

from outsiders. Managers are rewarded

in organisations for learning from their

competitors, which are source of

external knowledge (Menon and Pfeffer

2003). Using the combination of

extrinsic and intrinsic rewards is better

(Gammelgaard 2007). In the two types

of reward structures, the long lasting one

is intrinsic reward structure. As an

example of intrinsic motivation, Google

consists of a user community mainly of

software engineers. The knowledge is

shared by answering questions and

helping solve problems that other

software engineer post, without being

compensated. Software engineers

willingly share their knowledge. Even

though the technology changes very

quickly, capturing the gained knowledge

still is worth the effort (Rus and Lindvall

2002).

Merged

with

No 8.

281

44 Governance file to established

leadership roles and a clear process for

how someone can become a maintainer

or join a subcommittee in project, and

document it into your

GOVERNANCE.md.

Merged

with

No. 42

45 Post mortem review or after action

review to learn through a collective

activity and to build knowledge based

on the experience to improve future

practice. In postmortem, learning takes

place through socialisation, and when

individuals share experiences, tacit

knowledge is externalised. Knowledge

is shared from individual level to

organisational level. Postmortems are

an attempt to codify knowledge from

projects, where the main output is the

report. It can be seen as a systematic

mechanism of capturing, storing,

interpreting and distributing relevant

experience from projects.

46 A Community of Practice to create a

network to collect and exchange

information about the knowledge-

transfer methods to diffuse knowledge

before it is lost

47 Written reports to transfer project

relevant knowledge with other

contributors

A “core team” of maintainers with

specific areas, subcommittees of

people who take ownership of different

issue areas (for example, security, issue

triaging, or community conduct).

43 Rewarding contributors for

knowledge sharing and transfer with

recognition and appreciation for best

answer provided. Recognition and

Reward Structure: In order to encourage

employees to participate in KR

activities, a recognition and reward

structure can be incorporated in the core

processes of the organisation.

Furthermore, to encourage contribution

of knowledge, based on codification and

personalisation a reward system is

established for people documenting

and sharing knowledge (Hansen et al.

1999). A reward structure is based on

using either intrinsic motivators or

extrinsic motivators. Intrinsic motivator

includes acts that make the job more

satisfying such as praise and recognition.

Extrinsic motivation is related to

monetary incentives (Gammelgaard

2007). Organisations

like Xerox, and Hewlett-Packard

reward people for sharing their

knowledge (Rus and Lindvall 2002).

Reward system is not only associated

with the sharing of existing knowledge

but also with the external knowledge

from outsiders. Managers are rewarded

in organisations for learning from their

competitors, which are source of

external knowledge (Menon and Pfeffer

2003). Using the combination of

extrinsic and intrinsic rewards is better

(Gammelgaard 2007). In the two types

of reward structures, the long lasting one

is intrinsic reward structure. As an

example of intrinsic motivation, Google

consists of a user community mainly of

software engineers. The knowledge is

shared by answering questions and

helping solve problems that other

software engineer post, without being

compensated. Software engineers

willingly share their knowledge. Even

though the technology changes very

quickly, capturing the gained knowledge

still is worth the effort (Rus and Lindvall

2002).

Merged

with

No 8.

282

48 Job rotation for knowledge exchange

and transfer while people take turn to

work in different job roles, tasks, and

domains. Job rotation legitimises

experience that allows people in the

organisation to work in diverse

knowledge domains. Some

development practices, such as pair

programming, facilitate knowledge

sharing between peers, while job

rotation helps knowledge spread

throughout the project or organisation.

49 Using story telling to generating, share,

and discuss stories for quickly

integrating new learning

50 Experience Based Memory:

Experience packaged and stored in an

experience base built by contributors

based on their experiences including

resources such as all experience types,

lesson learned, project data, and

technology reports. Version control,

change management, documenting

design decisions, and requirements

traceability are software engineering

practices that help build project and

product memories as an indirect or

direct effect of software development.

51 Training is another knowledge transfer

practice found to include some

combination of formal classroom

training, eLearning, video or computer-

based training, on-the-job training,

coaching, and shadowing

52 Interviews in an organisation is a

knowledge transfer knowledge process

used to integrate the knowledge

captured into the organisation

283

Recognition and Reward Structure: In

order to encourage employees to

participate in KR activities, a

recognition and reward structure can

be incorporated in the core processes

of the organisation. Furthermore, to

encourage contribution of knowledge,

based on codification and

personalisation a reward system is

established for people documenting

and sharing knowledge (Hansen et al.

1999). A reward structure is based on

using either intrinsic motivators or

extrinsic motivators. Intrinsic

motivator includes acts that make the

job more satisfying such as praise and

recognition. Extrinsic motivation is

related to monetary incentives

(Gammelgaard 2007). Organisations

like Xerox, and Hewlett-Packard

reward people for sharing their

knowledge (Rus and Lindvall 2002).

Reward system is not only associated

with the sharing of existing knowledge

but also with the external knowledge

from outsiders. Managers are rewarded

in organisations for learning from their

competitors, which are source of

external knowledge (Menon and

Pfeffer 2003). Using the combination

of extrinsic and intrinsic rewards is

better (Gammelgaard 2007). In the two

types of reward structures, the long

lasting one is intrinsic reward structure.

As an example of intrinsic motivation,

Google consists of a user community

mainly of software engineers. The

knowledge is shared by answering

questions and helping solve problems

that other software engineer post,

without being compensated. Software

engineers willingly share their

knowledge. Even though the

technology changes very quickly,

capturing the gained knowledge still is

worth the effort (Rus and Lindvall

2002).

53

284

54 Relevant technical tools allow for the

retention of supporting documents, and

competence management and used by

software organisations for supporting

software engineering practices along

with knowledge management. For

example, document management tools

frequently employed in organisations

are Hyperwave, Microsoft SharePoint,

Lotus Domino, and Xerox DocuShare.

Merged

with

No. 51

Recognition and Reward Structure: In

order to encourage employees to

participate in KR activities, a

recognition and reward structure can

be incorporated in the core processes

of the organisation. Furthermore, to

encourage contribution of knowledge,

based on codification and

personalisation a reward system is

established for people documenting

and sharing knowledge (Hansen et al.

1999). A reward structure is based on

using either intrinsic motivators or

extrinsic motivators. Intrinsic

motivator includes acts that make the

job more satisfying such as praise and

recognition. Extrinsic motivation is

related to monetary incentives

(Gammelgaard 2007). Organisations

like Xerox, and Hewlett-Packard

reward people for sharing their

knowledge (Rus and Lindvall 2002).

Reward system is not only associated

with the sharing of existing knowledge

but also with the external knowledge

from outsiders. Managers are rewarded

in organisations for learning from their

competitors, which are source of

external knowledge (Menon and

Pfeffer 2003). Using the combination

of extrinsic and intrinsic rewards is

better (Gammelgaard 2007). In the two

types of reward structures, the long

lasting one is intrinsic reward structure.

As an example of intrinsic motivation,

Google consists of a user community

mainly of software engineers. The

knowledge is shared by answering

questions and helping solve problems

that other software engineer post,

without being compensated. Software

engineers willingly share their

knowledge. Even though the

technology changes very quickly,

capturing the gained knowledge still is

worth the effort (Rus and Lindvall

2002).

53

285

B.3 Primary Classification of Data Components

286

D
a

ta
 C

o
m

p
o

n
en

t

N
o

.

Data Components

* Two added practices by researcher highlighted in

yellow

Memo

No:

Primary Classification and Memo

Description

1

Visualisation of Resources tool- A visualization word

cloud has been proposed to show quickly the level of

cooperation of the team in the project [21]. A large

variety of data collection is without human intervention

and rendered as a wordle. Intensity of colour and size

of the letter in a wordle indicate a need for resources.

A Visualization word cloud does not cause overhead

on the productivity of the contributors. // Technology

Oriented Tools

1 Solution that invove technology to support

knowledge relavant activites in OSS

projects. All such practices that can be

used as a rsolution to deal with knowledge

loss due to contributor turnover are

gathered under one category "Technology

oriented tools". Practice -> Utilising

Technology Oriented tools

2

Identifying successors with relevant expertise and

are knowledgeable on the work of other

contributors. Identification of successors and

involving contributors as co-owners with relevant

expertise knowledgeable on the work of other

contributors. is presented as a method to reduce the

risk associated with developer turnover [10]. The files

with a successor were not at risk of abandonment even

when the owning developer left. A successor was there

to perform maintenance tasks [10] // Knowledge

transfer and Sharing

2 Category-> Knowledge transfer and

Sharing->

Practice->Identification of successors as

co-owners with relevant knowledge on

the work of others.

3

Pair Programming and Shared Code Ownership: In

order to mitigate the effects of turnover on the

ecosystem, the usage of techniques such as pair

programming and shared code ownership are

suggested [95]. such as pair programming, facilitate

knowledge sharing between peers // Shared code

knowledge - pair programming

3 Category-> Knowledge transfer and

Sharing->

Practice-> Shared code knowledge - pair

programming

4

Stability of architectural knowledge here

means the maintence or updated knowledge

in Ericsson during the recurrent movement

of people in and out of the product with

changing business nees. In survey question

rather than using word stable, word

maintain is used to avoid confusion of the

participants. Because knowledge is always

evloving and is never stable.

Centralisation approach to maintain

architectural knowledge and its

availability to new developers and teams

Stability of architectural knowledge

here means the maintence or updated

knowledge in Ericsson during the

recurrent movement of people in and

out of the product with changing

business nees. In survey question rather

than using word stable, word maintain is

used to avoid confusion of the

participants. Because knowledge is

always evloving and is never stable.

Practice -> Centralisation

Centralisation: Governance structures in Ericsson is

argued to be similar to OSS, and a centralised

approach is implemented to secure quality [128]. The

situation of knowledge loss faced was because of the

recurrent movement of resources in and out of

products and constantly changing business needs. In

such a situation, the adoption of a centralised approach

helped in architectural knowledge stability and its

availability to new developers and teams.

4

287

5

Removal of Knowledge Barriers: Only a few OSS

contributors transit to a higher learning state, due to

high learning barriers. Consequently, it can take

newcomers up to 60 weeks to become an effective

contributor to a OSS project [129]. Knowledge

retention in OSS projects can also be improved by the

removal of knowledge barriers: namely, lack of

technical experience, lack of domain expertise and

lack of knowledge on project practices that hinder

the contributions [130, 131]. // Contributions

5 Removal of knowledge barriers is useful to

new contributors on the project to acquire

knowledge and to improve the productivity

on the project. The knowledge barriers are

lower for people who have more

experience on the project. So this implies

mainly to new commers on the project.

category-> Contributions-> Practice->

removal of knowledge barriers->

Improvement in lack of technical

experience, lack of domain expertise and

lack of knowledge on project practices that

hinder the contributions.

6

An insight into the area of expertise members, a

knowledge map or directory can be used on the

project website internal knowledge portal, serving as

a way to help knowledge workers familiarize

themselves with their colleagues knowledge, K

Portals are rapidly evolving into broad-based platforms

for supporting a wide range of knowledge worker

(KW) tasks. // Technology Oriented toolsAn insight

into the area of expertise members, a knowledge

map or directory can be used on the project website

internal knowledge portal, serving as a way to help

knowledge workers familiarize themselves with

their colleagues knowledge, K Portals are rapidly

evolving into broad-based platforms for supporting a

wide range of knowledge worker (KW) tasks.

6 memo # 1

7

Transactive Memory System- development within

the teams, based on knowledge location, the usage of

the developer mailing list and knowledge credibility

// Technology Oriented tools

7 memo # 1

8

Diverse specialisations of Core Contributors: For an

OSS project to survive, a diversity of core developers

is required [132]. When a key contributor abandoned

an OSS project it revealed a very fluctuating

proportion of developer contribution. A significant

imbalance between the contribution and the

response from the developers’ community was

noticed. The reason for the dying project was that a

diversity of core contributors were missing from the

project [132]. Diversity of core contributors also

relates to the underlying concept of uniform

knowledge distribution stated next. // Balance

between the contribution submitted and response

from specialised core developers in community. a

“core team” of maintainers, or even subcommittees

of people who take ownership of different issue

areas (for example, security, issue triaging, or

community conduct).

8 Diversity of core contributors relate to a set

of contributors with diverse specialisation.

Lack of these contributors delays required

feedback on the submitted contribution by

non-cores. The main category is ->

Uniform knowledge distribution-> Practice-

> diverse specialisation of core

contributors-> details subcategory ->

attaining balance between the contribution

submitted and response from specialised

core contributors in community

288

9

Uniform Knowledge Distribution: The

communication of the OSS project is directed by

the core contributors. Their attitudes and

involvement in knowledge sharing were linked to the

demands of their wider project teams [124]. The core

contributors bring high levels of skills and cognitive

characteristics to their project teams. They start the

project and provide high levels of ideas,

suggestions, information, comments, instructions

and answers to their teams, and are the centre of

their project’s knowledge activities. The more code

changes core developers perform, the more knowledge

they provide [124]. However, their least involvement

9 refer to memo #8, The main category is ->

Uniform knowledge distribution-> Practice-

> Knowledge communication from Cores

to non- cores -> start the project and

provide high levels of ideas, suggestions,

information, comments, instructions and

answers to their teams, and are the centre

of their project’s knowledge activities.

Core control the flow of information and

knowledge to non cores

10

This kind of disruption in communication in OSS

projects can hinder knowledge sharing. Another

resolution to the non-uniform distribution of

knowledge may be the proactive assignment of

maintenance tasks on the code written by other

contributors. As indicated that contributors who

modify codes from other contributors stay longer on

the project [28]. This will create a balance of equal

development of skills on the OSS project. For example,

contributors who normally perform documentation

tasks should be assigned some coding tasks.

10 refer to memo #8, The main category is ->

Uniform knowledge distribution-> Practice-

> proactive assignment of tasks to non-

cores-> proactive assignment of

maintenance tasks on the code written by

other contributors to equally develop skills

of non-cores

11

Gamification: A gamified environment has important

implications for knowledge management in software

engineering [50] and OSS projects. As observed, Q&A

gamification increased the engagement of knowledge

providers and the quickness of response. This finding

suggests that Q&A site designers should consider

gamification elements to increase contributor

engagement, which indirectly can help to raise the

popularity of their sites. For example, gamification

features in Stack Overflow’s guarantee that a question

will be replied to by enthusiastic experts within

minutes of being posted [133]. On Stack Overflow, a

crowd approach is used where participants contribute

knowledge independently of each other and

gamification qualities are used to evaluate who

provides the best answer is the one that gains the most

points [133]. Knowledge is curated in gamification

other than being developed as is the case with mailing

lists. Curation is a mechanism to provide a tool for

keeping the channel clean of what seems to be

unnecessary information [133].

11 refer to memo # 45, Category->Extrinsic

motivation-> Practice->Rewards for

knowledge sharing and transfer category-

>Using gamification qualities to evaluate

who provides the best answer is the one

that gains the most points

12

Assessing contributors on the meritocracy level for

knowledge sharing and transfer similar to the one

followed for code contributions on the project

12 refer to memo # 45, Extrinsic motivation->

Rewards for knowledge sharing and

transfer->Practice-> Assessing meritocracy

level of contributors on knowledge sharing

and transfer similar to the one followed for

code contributions on the project

289

13

Improving Code Review Feedback Time for non-

Cores: Peer reviews are conducted asynchronously in

OSS projects to empower experts who provide

feedback to code contributors [134]. As indicated by a

social network analysis of the code review data from

eight popular OSS projects, core developers as

compared to peripheral contributors have the

benefit of receiving quicker feedback, face shorter

review intervals and have a higher code acceptance

rate [135]. Due to the lack of an established

reputation, peripheral developers wait 2 to 19 times

(or 12 to 96 hours) longer than core developers, to

complete the review process. Accordingly, a delay in

receiving feedback on reviews may negatively

motivate a peripheral or new contributor [135]. An

improvement to the timings of the review feedbacks in

OSS projects to peripherals can result in a uniform

distribution of knowledge, reduce the effects of

turnover, and motivate newcomers to stay for a longer

duration.

13 refer to memo # 5. In addition to be a

source of negative motivation for new

contributors or peripherals, delay in code

feedback time is also a barrier to

knowledge contributions. Category->

contributions-> Practice-> removal of

knowledge sharing barriers->Improving

code feedback time for non-cores

14

Project policy to invite contributors from all roles to

participate in peer reviews to transfer project

relevant knowledge and experience

14 Category-> Uniform Knowledge

Distribution->

Practice-> invite contributors from all

roles to participate in peer reviews

15

Code review checklists also provide team members

with clear expectations for each type of review

15 refer to memo # 5. Category->

contributions-> Practice-> Project rules

and policies-> Code review checklists for

team members with clear expectations

for each type of review

contributions

16

Use of a collaborative code review tool that allows

reviewers to log bugs, discuss them with the author,

and approve changes in the code.

16 refer to memo # 5. Category->

contributions-> Practice-> Project rules

and policies-> use of collaborative

review tool to log bugs, discuss them

with the author, and approve changes in

the code.

17

Integrators should be proactive by establishing a

professional communication etiquette, and reactive,

by following discussions and intervening in cases

where discussion diverges from the etiquette.

Integrator and contributors should agree on minimal

communication protocols that increase each other’s

awareness and rendezvous points for mandatory

information exchange and use real-time

communication channels (e.g., IRC or its evolved

counterpart GITTER, which is better integrated in

GitHub)

17 refer to memo # 5. Category->

contributions-> Practice-> Project rules

and policies-> proactively establishing a

professional communication etiquette

and minimal communication protocols

for mandatory information exchange ->

communication is public and accessible,

past archives can be read to get up to

speed and participate

290

18

Good documentation invites people to interact with

project open an issue or pull request. Use these

interactions as opportunities to move them down the

funnel (from users to contributors and to maintainers).

communication is public and accessible, anybody

can read past archives to get up to speed and

participate. Guidelines should at least provide

details about the expeced code style, commit

format, pull request process, and available

communication options. Projects should provide a

policy or comprehensive set of contribution

guidelines. Write down your project’s vision, a

project roadmap,make those public as well, Add

them to your README, or create a separate file

called VISION. keep your documentation up-to-

date. Be proactive to reduce the volume of

unwanted contributions in the first place, explain

your project’s process for submitting and accepting

contributions in your contributing guide. Fill out a

issue or PR template/checklist and open an issue

before submitting a PR.

18 Category-> contributions-> Practice->

Project rules and policies-> Good

updated documentation for contributors

to interact with project and open pull

request and progress in project

19

open-minded about the types of contributions to

accept start with a bug report or small fix make easy

for casual contributors to contribute. document your

process with an access to public

19 Category-> contributions-> Practice->

Project rules and policies->Open to all

kinds of contributions on the project -

>Public access is provided during the

documentation of project process

20

Transparency about project’s roadmap, the types

of contributions you’re looking for, how

contributions are reviewed, or why you made certain

decisions

20 Category-> contributions-> Practice->

Project rules and policies->

Transparency about project’s roadmap,

the types of contributions required,

review process, and rational on decision

making

21

When multiple users running into the same problem,

document the answers in the README

21 Category-> Knowledge Sharing-

>Practice->Standard Documentation-

>When multiple users run into the same

problem, document the answers in the

README

22

While working on a substantial update to your project,

put it into a pull request and mark it as a work in

progress (WIP). That way, other people can feel

involved in the process early on. //Encouraging

contribution

22 Category-> contributions-> Practice->

removal of knowledge sharing barriers-

> While working on a substantial update

status as work in progress (WIP) for

other people to feel involved in the

process early on.

23

to be responsive when someone files an issue,

submits a pull request, or asks a question about

your project. Responding quickly, people will feel

they are part of a dialogue, and they’ll be more

enthusiastic about participating set up notifications in

some of these places (such as Stack Overflow, Twitter,

or Reddit) so you are alerted when someone mentions

your project. if you can’t review the request

immediately, acknowledging it early helps increase

engagement.

23 Category-> contributions-> Practice->

removal of knowledge sharing barriers-

> Acknowledging or to be responsive

when someone files an issue, submits a

code, asks questions.

291

24

negative people will make other people in your

community uncomfortable, a supportive community is

the key, resolving conflicts //Community Health

24 Category-> Community Health->

supportive community to resolve

conflicts

25

label bugs that are suitable for different types of

contributors: for example, “first timers only”, “good

first issue”, or “documentation”. These labels make it

easy for someone new to your project to quickly scan

your issues and get started. Resist fixing easy (non-

critical) bugs. Instead, use them as opportunities to

recruit new contributors

25 Category-> contributions-> Practice->

removal of knowledge sharing barriers-

> label bugs that are suitable for

different types of contributors as

opportunities to recruit new

contributors

26

Share ownership of your project, if you need to step

away from your project, either on hiatus or

permanently, there’s no shame in asking someone else

to take over for you. Find support for your users and

community while you’re away from a project. If

you can’t find the support you need, take a break

anyway. Be sure to communicate when you’re not

available, so people aren’t confused by your lack of

responsiveness.

26 Governance and Leadership practices to

continue the project evolving through

maintenance when the owner or the main

contributor steps away Sharing ownership

of the project can be considered a Practice

of governance and leadership. Governance

and Leadership -> Practice->Sharing

project ownership to support user

community in absence of project owners.

27

newsletter or write a blog post thanking contributors

//Appreciation

27 Intrinsic motivation->Practice->

appreciation as newsletter or a blog post

thanking contributors

28

Non- restrictive commit access - Give every

contributor commit access, this made people more

excited to polish their patches

28 Governance and Leadership -> Practice-

>Non- restrictive commit access - Give

every contributor commit access to

polish their patches

29

Emphasize “consensus seeking” rather than consensus.

community members discuss major concerns until they

feel they have been adequately heard// Governance

29 Governance and Leadership -> Practice-

> Emphasize “consensus seeking” in

community to discuss major concerns

until adequately heard

30

Someone is enthusiastic about your project, but needs a

bit of polish consider mentoring them through their

first contribution. mentor someone who’d like to

contribute

30 Category-> contributions-> Practice-

>Mentoring

31

Encouraging your community members to work on

their own fork can provide the creative outlet they

need, without conflicting with your project’s vision

31 Category-> contributions-> Practice->

Project rules and policies-> allowing

project forking by community to avoid

conflict with project vision

32

Require tests and other checks to improve the quality

of your code. If you add tests, make sure to explain

how they work in your CONTRIBUTING file

32 Category-> contributions-> Practice->

Project rules and policies-> Add test

files and other checks to improve the

quality of code

33

Designating leaders can be as simple as adding their

names to your README or a CONTRIBUTORS text

file. CONTRIBUTORS or AUTHORS file in your

project that lists everyone who’s contributed to your

project // Documentation

33 Governance and Leadership -> Practice-

> Adding CONTRIBUTORS or

AUTHORS file in project to list all

contributors

292

34

Let people self-organize and volunteer for the roles

they’re most excited about, rather than assigning them.

34 Governance and Leadership -> Practice-

> Self-organization of contributors by

volunteering for the roles they like

35

Once you’ve established leadership roles, don’t forget

to document how people can attain them! Establish a

clear process for how someone can become a

maintainer or join a subcommittee in your project,

and write it into your GOVERNANCE.md

35 Governance and Leadership -> Practice-

> Establish a clear process to become a

maintainer or join a subcommittee in

project, and write it into your

GOVERNANCE.md

36

Under a liberal contribution model, the people who do

the most workare recognized as most influential, but

this is based on current contributions. Major project

decisions are made based on a consensus seeking

processwork and not historic

36 Governance and Leadership -> Practice-

>Governance model-> the initial author

of the project has final say on all major

project decisions-> active project

contributors (those who demonstrate

“merit”) make formal decisions-> Major

project decisions are based on a

consensus seeking process work and not

historic

37

Post mortem review or after action review to learn

through a collective activity and to build knowledge

based on the experience to improve future practice.

In postmortem, learning takes place through

socialisation, and when individuals share experiences,

tacit knowledge is externalised. Knowledge is shared

from individual level to organisational level.

Postmortems are an attempt to codify knowledge from

projects, where the main output is the report. It can be

seen as a systematic mechanism of capturing, storing,

interpreting and distributing relevant experience from

projects

37 Category-> Knowledge transfer and

Sharing->

Practice-> Post mortem review or after

action review to build knowledge based

on the experience to improve future

practice

38

A Community of Practice to create a network to

collect and exchange information about the knowledge-

transfer methods to diffuse knowledge before it is lost

38 Category-> Knowledge transfer and

Sharing-> Practice-> A Community of

Practice to create a network to collect

and exchange information

39

Written reports to transfer project relevant knowledge

with other contributors

39 Category-> Knowledge transfer and

Sharing-> Practice-> Written reports to

transfer project relevant knowledge to

contributors

40

Job rotation for knowledge exchange and transfer

while people take turn to work in different job roles,

tasks, and domains. Job rotation legitimises experience

that allows people in the organisation to work in

diverse knowledge domains. Some development

practices,while job rotation helps knowledge spread

throughout the project or organisation.

40 Category-> Uniform knowledge

distribution-> Practice-> Job rotation

for knowledge exchange and transfer

while people take turn to work in

different job roles, tasks, and domains.

41

Using story telling to generating, share, and discuss

stories for quickly integrating new learning

41 Category-> Knowledge transfer and

Sharing-> Practice-> story telling to

generating, share, and discuss stories to

integrate new learning

293

42

Experience Based Memory: Experience packaged

and stored in an experience base built by

contributors based on their experiences including

resources such as all experience types, lesson

learned, project data, and technology reports.

Version control, change management, documenting

design decisions, and requirements traceability are

software engineering practices that help build project

and product memories as an indirect or direct effect of

software development. Relevant technical tools allow

for the retention of supporting documents, and

competence management and used by software

organisations for supporting software engineering

practices along with knowledge management. For

example, document management tools frequently

employed in organisations are Hyperwave,

Microsoft SharePoint, Lotus Domino, and Xerox

DocuShare. Technology based systems//

Technology oriented tools

42 Refer to memo #1, Technology oriented

tools->Experience Based Memory->

built by contributors on resources such

as all experience types, lesson learned,

project data, and technology reports.

Version control, change management,

documenting design decisions, and

requirements traceability that help build

project and product memories.

43

Training is another knowledge transfer practice found

to include some combination of formal classroom

training, eLearning, video or computer-based training,

on-the-job training, coaching, and shadowing

43 Category-> Knowledge transfer and

Sharing-> Practice-> Training->

include some combination of formal

classroom training, eLearning, video or

computer-based training, on-the-job

training, coaching, and shadowing

45

45 category->intrinsic motivation-

>subcategory->Rewarding contributors

for knowledge sharing and transfer ->

recognition and appreciation for best

answer provided-> subcategory->

creating a culture to willingly share

knowledge with other contributors

Rewarding contributors for knowledge sharing and

transfer with recognition and appreciation for best

answer provided. Recognition and Reward Structure:

In order to encourage employees to participate in KR

activities, a recognition and reward structure can be

incorporated in the core processes of the organisation.

Furthermore, to encourage contribution of knowledge,

based on codification and personalisation a reward

system is established for people documenting and

sharing knowledge (Hansen et al. 1999). A reward

structure is based on using either intrinsic motivators

or extrinsic motivators. Intrinsic motivator includes

acts that make the job more satisfying such as praise

and recognition. Extrinsic motivation is related to

monetary incentives (Gammelgaard 2007).

Organisations like Xerox, and Hewlett-Packard

reward people for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only associated

with the sharing of existing knowledge but also with

the external knowledge from outsiders. Managers are

rewarded in organisations for learning from their

competitors, which are source of external knowledge

(Menon and Pfeffer 2003). Using the combination of

extrinsic and intrinsic rewards is better (Gammelgaard

2007). In the two types of reward structures, the long

lasting one is intrinsic reward structure. As an example

of intrinsic motivation, Google consists of a user

community mainly of software engineers. The

knowledge is shared by answering questions and

helping solve problems that other software engineer

post, without being compensated. Software engineers

willingly share their knowledge. Even though the

technology changes very quickly, capturing the gained

knowledge still is worth the effort (Rus and Lindvall

2002).

294

B.4 Categorisation of Practices

295

D
a

ta
 C

o
m

p
o

n
e
n

t
N

o
.

Data Components (now visible as practices)

Memo

No:

Categorisation of practices

detailed in Memo

1 Visualisation of Resources tool- A

visualization word cloud has been proposed to

show quickly the level of cooperation of the

team in the project [21]. A large variety of

data collection is without human intervention

and rendered as a wordle. Intensity of colour

and size of the letter in a wordle indicate a

need for resources. A Visualization word cloud

does not cause overhead on the productivity of

the contributors. // Technology Oriented

Tools

1 Solution that involve technology to

support knowledge relavant activites

in OSS projects. All such practices

that can be used as a rsolution to

deal with knowledge loss due to

contributor turnover are gathered

under one category "Technology

oriented tools"-> Practice->

Visualisation of Resources tool to

show quickly the level of

cooperation of the team in the

project

2 Identifying successors with relevant

expertise and are knowledgeable on the

work of other contributors. Identification of

successors and involving contributors as co-

owners with relevant expertise knowledgeable

on the work of other contributors. is presented

as a method to reduce the risk associated with

developer turnover [10]. The files with a

successor were not at risk of abandonment

even when the owning developer left. A

successor was there to perform maintenance

tasks [10] // Identification of successors

2 Category-> Knowledge transfer

and Sharing->

Practice->Identification of

successors as co-owners with

relevant knowledge on the work of

others

3 Pair Programming and Shared Code

Ownership: In order to mitigate the effects of

turnover on the ecosystem, the usage of

techniques such as pair programming and

shared code ownership are suggested [95].

such as pair programming, facilitate

knowledge sharing between peers // Shared

code knowledge - pair programming

3 Category-> Knowledge transfer

and Sharing->

Practice-> Shared code knowledge

- pair programming

296

5 Removal of Knowledge Barriers: Only a few

OSS contributors transit to a higher learning

state, due to high learning barriers.

Consequently, it can take newcomers up to 60

weeks to become an effective contributor to a

OSS project [129]. Knowledge retention in

OSS projects can also be improved by the

removal of knowledge barriers: namely, lack of

technical experience, lack of domain

expertise and lack of knowledge on project

practices that hinder the contributions [130,

131]. // Contributions

5 Removal of knowledge barriers is

useful to new contributors on the

project to acquire knowledge and to

improve the productivity on the

project. The knowledge barriers are

lower for people who have more

experience on the project. So this

implies mainly to new commers on

the project. category->

Contributions-> Sub-Category->

removal of knowledge barriers->

Practice -> Improvement in lack

of technical experience, lack of

domain expertise and lack of

knowledge on project practices

that hinder the contributions

Stability of architectural knowledge

here means the maintence or updated

knowledge in Ericsson during the

recurrent movement of people in and

out of the product with changing

business nees. In survey question

rather than using word stable, word

maintain is used to avoid confusion

of the participants. Because

knowledge is always evloving and is

never stable.

Centralisation approach to maintain

architectural knowledge and its

availability to new developers and

teamsStability of architectural

knowledge here means the

maintence or updated knowledge in

Ericsson during the recurrent

movement of people in and out of

the product with changing business

nees. In survey question rather than

using word stable, word maintain is

used to avoid confusion of the

participants. Because knowledge is

always evloving and is never stable.

Category -> Knowledge

Centralisation -> Pratcie ->

Approach to maintain knowledge

centrally and its availability to

new developers and teams

4Centralisation: Governance structures in

Ericsson is argued to be similar to OSS, and a

centralised approach is implemented to secure

quality [128]. The situation of knowledge loss

faced was because of the recurrent movement

of resources in and out of products and

constantly changing business needs. In such a

situation, the adoption of a centralised

approach helped in architectural knowledge

stability and its availability to new developers

and teams. //Centralisation approach to

maintain architectural knowledge and its

availability to new developers and teams

4

297

6 An insight into the area of expertise members,

a knowledge map or directory can be used

on the project website internal knowledge

portal, serving as a way to help knowledge

workers familiarize themselves with their

colleagues knowledge, K Portals are rapidly

evolving into broad-based platforms for

supporting a wide range of knowledge worker

(KW) tasks. // Technology Oriented tools

6 memo # 1

Category -> Adoption os

Technology Oriented Tools ->

Practice-> Knowledge map or

directory on the project website

for knowledge workers to

familiarize with their colleagues

knowledge

7 Transactive Memory System- development

within the teams, based on knowledge

location, the usage of the developer mailing

list and knowledge credibility // Technology

Oriented toolsTransactive Memory System

7 memo # 1

Category -> Adoption os

Technology Oriented Tools ->

Practice-> Transactive Memory

System

Diverse specialisations of Core

Contributors: For an OSS project to survive,

a diversity of core developers is required

[132]. When a key contributor abandoned an

OSS project it revealed a very fluctuating

proportion of developer contribution. A

significant imbalance between the

contribution and the response from the

developers’ community was noticed. The

reason for the dying project was that a

diversity of core contributors were missing

from the project [132]. Diversity of core

contributors also relates to the underlying

concept of uniform knowledge distribution

stated next. // Balance between the

contribution submitted and response from

specialised core developers in community.

form a “core team” of maintainers, or even

subcommittees of people who take

 ownership of different issue areas (for

example, security, issue triaging, or

community conduct).

8 Diversity of core contributors relate

to a set of contributors with diverse

specialisation. Lack of these

contributors delays required

feedback on the submitted

contribution by non-cores. The

main category is -> Uniform

knowledge distribution-> Practice-

> diverse specialisation of core

contributors-> Practice ->

attaining balance between the

contribution submitted and

response from specialised core

contributors in community

8

298

9 Uniform Knowledge Distribution: The

communication of the OSS project is

directed by the core contributors. Their

attitudes and involvement in knowledge

sharing were linked to the demands of their

wider project teams [124]. The core

contributors bring high levels of skills and

cognitive characteristics to their project teams.

They start the project and provide high

levels of ideas, suggestions, information,

comments, instructions and answers to their

teams, and are the centre of their project’s

knowledge activities. The more code changes

core developers perform, the more knowledge

they provide [124]. However, their least

involvement in communication and task

changes results into some negative team

attitudes.

// Knowledge communication from cores to

non-cores

9 refer to memo #8, The main

category is -> Uniform knowledge

distribution-> Practice->

Knowledge communication from

Cores to non- cores.

Cores start the project and

provide high levels of ideas,

suggestions, information,

comments, instructions and

answers to their teams, and are

the centre of their project’s

knowledge activities. Core control

the flow of information and

knowledge to non cores

10 This kind of disruption in communication in

OSS projects can hinder knowledge sharing.

Another resolution to the non-uniform

distribution of knowledge may be the

proactive assignment of maintenance tasks

on the code written by other contributors.

As indicated that contributors who modify

codes from other contributors stay longer on

the project [28]. This will create a balance of

equal development of skills on the OSS

project. For example, contributors who

normally perform documentation tasks should

be assigned some coding tasks.

10 refer to memo #8, The main

category is -> Uniform knowledge

distribution-> Practice->

proactive assignment of tasks to

non-cores-> proactive assignment of

maintenance tasks on the code

written by other contributors to

equally develop skills of non-cores.

299

12 Assessing contributors on the meritocracy level

for knowledge sharing and transfer similar to

the one followed for code contributions on the

project

12 refer to memo # 45, Extrinsic

motivation-> Rewards for

knowledge sharing and transfer->

Practice-> Assessing meritocracy

level of contributors on knowledge

sharing and transfer similar to the

one followed for code

contributions on the project

Gamification: A gamified environment has

important implications for knowledge

management in software engineering [50] and

OSS projects. As observed, Q&A gamification

increased the engagement of knowledge

providers and the quickness of response. This

finding suggests that Q&A site designers

should consider gamification elements to

increase contributor engagement, which

indirectly can help to raise the popularity of

their sites. For example, gamification features

in Stack Overflow’s guarantee that a question

will be replied to by enthusiastic experts within

minutes of being posted [133]. On Stack

Overflow, a crowd approach is used where

participants contribute knowledge

independently of each other and gamification

qualities are used to evaluate who provides the

best answer is the one that gains the most

points [133]. Knowledge is curated in

gamification other than being developed as is

the case with mailing lists. Curation is a

mechanism to provide a tool for keeping the

channel clean of what seems to be unnecessary

information [133].

11 11 refer to memo # 45, Category-

>Extrinsic motivation-> Practice -

>Rewards for knowledge sharing

and transfer

Practice ->Using gamification

qualities to evaluate who provides

the best answer is the one that

gains the most points

300

14 Project policy to invite contributors from all

roles to participate in peer reviews to

transfer project relevant knowledge and

experience

14 Category-> Uniform Knowledge

Distribution->

Practice-> invite contributors

from all roles to participate in

peer reviews

15 Code review checklists also provide team

members with clear expectations for each

type of review

15 refer to memo # 5. Category->

contributions-> sub category->

Project rules and policies->

Practice -> Code review checklists

for team members with clear

expectations for each type of

review contributions

Improving Code Review Feedback Time for

non-Cores: Peer reviews are conducted

asynchronously in OSS projects to empower

experts who provide feedback to code

contributors [134]. As indicated by a social

network analysis of the code review data from

eight popular OSS projects, core developers

as compared to peripheral contributors

have the benefit of receiving quicker

feedback, face shorter review intervals and

have a higher code acceptance rate [135].

Due to the lack of an established reputation,

peripheral developers wait 2 to 19 times (or

12 to 96 hours) longer than core developers,

to complete the review process. Accordingly,

a delay in receiving feedback on reviews

may negatively motivate a peripheral or

new contributor [135]. An improvement to

the timings of the review feedbacks in OSS

projects to peripherals can result in a uniform

distribution of knowledge, reduce the effects

of turnover, and motivate newcomers to stay

for a longer duration.

13 refer to memo # 5. In addition to be

a source of negative motivation for

new contributors or peripherals,

delay in code feedback time is also a

barrier to knowledge contributions.

Category-> contributions-> sub

category-> removal of knowledge

sharing barriers->Practice ->

Improving code feedback time for

non-cores

13

301

16 Use of a collaborative code review tool that

allows reviewers to log bugs, discuss them

with the author, and approve changes in the

code. Guidelines should at least provide details

about the expected code style, commit format,

pull request process, and available

communication options

16 refer to memo # 5. Category->

contributions-> sub category->

Project rules and policies-> use of

collaborative review tool to log

bugs, discuss them with the

author, and approve changes in

the code. Sub category->

Guidelines about project

contribution policy with the

expected code style, commit

format, acceptance and

submission process, and available

communication options

17 Integrators should be proactive by

establishing a professional communication

etiquette, and reactive, by following

discussions and intervening in cases where

discussion diverges from the etiquette.

Integrator and contributors should agree on

minimal communication protocols that

increase each other’s awareness and

rendezvous points for mandatory

information exchange and use real-time

communication channels (e.g., IRC or its

evolved counterpart GITTER, which is better

integrated in GitHub) communication is public

and accessible, anybody can read past archives

to get up to speed and participate

17 refer to memo # 5. Category->

contributions-> sub category->

Project rules and policies->

Practice -> proactively

establishing a professional

communication etiquette and

minimal communication protocols

for mandatory information

exchange -> communication is

public and accessible, past

archives can be read to get up to

speed and participate

18 Good documentation invites people to interact

with project open an issue or pull request. Use

these interactions as opportunities to move

them down the funnel (from users to

contributors and to maintainers)

18 Category-> contributions-> sub

category-> Project rules and

policies->

Practice ->Good updated

documentation for contributors to

interact with project and open

pull request and progress in

project

302

19 open-minded about the types of contributions

to accept start with a bug report or small fix

make easy for casual contributors to

contribute. document your process with an

access to public

19 Category-> contributions-> sub

category-> Project rules and

policies->

Practice ->Open to all kinds of

contributions on the project -

>Public access is provided during

the documentation of project

process

20 Transparency about project’s roadmap, the

types of contributions you’re looking for,

how contributions are reviewed, or why you

made certain decisions

20 Category-> contributions-> sub

category-> Project rules and

policies->

Practice -> Transparency about

project’s roadmap, the types of

contributions required, review

process, and rational on decision

making

21 When multiple users running into the same

problem, document the answers in the

README

21 Category-> Knowledge transfer

Sharing->

Practice->When multiple users

run into the same problem,

document the answers in the

README

22 While working on a substantial update to your

project, put it into a pull request and mark it as

a work in progress (WIP). That way, other

people can feel involved in the process early

on. //Encouraging contribution

22 Category-> contributions-> sub

category-> removal of knowledge

sharing barriers->

Practice -> While working on a

substantial update status as work

in progress (WIP) for other people

to feel involved in the process

early on.

303

23 to be responsive when someone files an

issue, submits a pull request, or asks a

question about your project. Responding

quickly, people will feel they are part of a

dialogue, and they’ll be more enthusiastic

about participating set up notifications in some

of these places (such as Stack Overflow,

Twitter, or Reddit) so you are alerted when

someone mentions your project. if you can’t

review the request immediately,

acknowledging it early helps increase

engagement.

23 Category-> contributions-> sub

category-> removal of knowledge

sharing barriers->

Practice -> Acknowledging or to

be responsive when someone files

an issue, submits a code, asks

questions.

24 negative people will make other people in your

community uncomfortable, a supportive

community is the key, resolving conflicts

//Community Health

24 Category-> Community Health->

Practice -> supportive community

to resolve conflicts

25 label bugs that are suitable for different types

of contributors: for example, “first timers

only”, “good first issue”, or “documentation”.

These labels make it easy for someone new to

your project to quickly scan your issues and

get started. Resist fixing easy (non-critical)

bugs. Instead, use them as opportunities to

recruit new contributors

25 Category-> contributions-> sub

category-> removal of knowledge

sharing barriers->

Practice -> label bugs that are

suitable for different types of

contributors as opportunities to

recruit new contributors

26 Sharing project ownership to support user

community in absence of project owners.

Share ownership of your project, if you need

to step away from your project, either on hiatus

or permanently, there’s no shame in asking

someone else to take over for you. Find

support for your users and community

while you’re away from a project. If you

can’t find the support you need, take a break

anyway. Be sure to communicate when you’re

not available, so people aren’t confused by

your lack of responsiveness.

26 Governance and Leadership

practices to continue the project

evolving through maintenance when

the owner or the main contributor

steps away Sharing ownership of the

project can be considered a sub

category of governance and

leadership. Governance and

Leadership ->

Practice-> Sharing project

ownership to support user

community in absence of project

owners.

304

27 newsletter or write a blog post thanking

contributors //Appreciation

27 Intrinsic motivation->

Practice -> appreciation as

newsletter or a blog post thanking

contributors

28 Non- restrictive commit access - Give every

contributor commit access, this made people

more excited to polish their patches

28 Governance and Leadership ->

Practice->Non- restrictive commit

access - Give every contributor

commit access to polish their

patches

29 Emphasize “consensus seeking” rather than

consensus. community members discuss major

concerns until they feel they have been

adequately heard// Governance

29 Governance and Leadership ->

sub-category-> Emphasize

“consensus seeking” in community

to discuss major concerns until

adequately heard

30 Someone is enthusiastic about your project, but

needs a bit of polish consider mentoring them

through their first contribution. mentor

someone who’d like to contribute

30 Category-> contributions-> sub

category->removal of knowledge

barriers -> Practice->Mentoring

31 Encouraging your community members to

work on their own fork can provide the

creative outlet they need, without conflicting

with your project’s vision

31 Category-> contributions-> sub

category-> Project rules and

policies-> Practice -> allowing

project forking by community to

avoid conflict with project vision

32 Require tests and other checks to improve the

quality of your code. If you add tests, make

sure to explain how they work in your

CONTRIBUTING file

32 Category-> contributions-> sub

category-> Project rules and

policies-> Practice -> Add test

files and other checks to improve

the quality of code

305

33 Designating leaders can be as simple as adding

their names to your README or a

CONTRIBUTORS text file.

CONTRIBUTORS or AUTHORS file in your

project that lists everyone who’s contributed to

your project // Documentation

33 Governance and Leadership ->

Practice-> Adding

CONTRIBUTORS or AUTHORS

file in project to list all

contributors

34 Let people self-organize and volunteer for the

roles they’re most excited about, rather than

assigning them.

34 Governance and Leadership ->

Practice-> Self-organization of

contributors by volunteering for

the roles they like

35 Once you’ve established leadership roles, don’t

forget to document how people can attain

them. Establish a clear process for how

someone can become a maintainer or join a

subcommittee in your project, and write it

into your GOVERNANCE.md

35 Governance and Leadership ->

Practice-> Establish a clear

process to become a maintainer or

join a subcommittee in project,

and write it into your

GOVERNANCE.md

36 Benevolent Dictator for Life”. Under this

structure, one person (usually the initial author

of the project) has final say on all major

project decisions. Under a meritocracy, active

project contributors (those who demonstrate

“merit”) are given a formal decision making

role. Under a liberal contribution model, the

people who do the most workare recognized as

most influential, but this is based on current

contributions. Major project decisions are

made based on a consensus seeking

processwork and not historic

36 Governance and Leadership ->

Practice -> the initial author of the

project has final say on all major

project decisions-> Practice ->

active project contributors (those

who demonstrate “merit”) make

formal decisions

Practice-> Major project decisions

are based on a consensus seeking

process work and not historic

306

37 Post mortem review or after action review

to learn through a collective activity and to

build knowledge based on the experience to

improve future practice. In postmortem,

learning takes place through socialisation, and

when individuals share experiences, tacit

knowledge is externalised. Knowledge is

shared from individual level to organisational

level. Postmortems are an attempt to codify

knowledge from projects, where the main

output is the report. It can be seen as a

systematic mechanism of capturing, storing,

interpreting and distributing relevant

experience from projects

37 Category-> Knowledge transfer

and Sharing->

Practice -> Post mortem review or

after action review to build

knowledge based on the

experience to improve future

practice

38 A Community of Practice to create a network

to collect and exchange information about the

knowledge-transfer methods to diffuse

knowledge before it is lost

38 Category-> Knowledge transfer

and Sharing->

Practice -> A Community of

Practice to create a network to

collect and exchange information

39 Written reports to transfer project relevant

knowledge with other contributors

39 Category-> Knowledge transfer

and Sharing-> sub category->

Written reports to transfer

project relevant knowledge to

contributors

40 Job rotation for knowledge exchange and

transfer while people take turn to work in

different job roles, tasks, and domains. Job

rotation legitimises experience that allows

people in the organisation to work in diverse

knowledge domains. Some development

practices,while job rotation helps knowledge

spread throughout the project or

organisation.

40 Category-> Uniform knowledge

distribution-> Practice-> Job

rotation for knowledge exchange

and transfer while people take

turn to work in different job roles,

tasks, and domains.

307

41 Using story telling to generating, share, and

discuss stories for quickly integrating new

learning

41 Category-> Knowledge transfer

and Sharing->

Practice -> story telling to

generating, share, and discuss

stories to integrate new learning

42 Experience Based Memory: Experience

packaged and stored in an experience base

built by contributors based on their

experiences including resources such as all

experience types, lesson learned, project

data, and technology reports. Version

control, change management, documenting

design decisions, and requirements

traceability are software engineering practices

that help build project and product memories

as an indirect or direct effect of software

development. // Technology oriented tools

42 Refer to memo #1, Category-

>Technology oriented tools

Practice->Experience Based

Memory-> built by contributors

on resources such as all experience

types, lesson learned, project data,

and technology reports. Version

control, change management,

documenting design decisions, and

requirements traceability that

help build project and product

memories

43 Training is another knowledge transfer practice

found to include some combination of formal

classroom training, eLearning, video or

computer-based training, on-the-job training,

coaching, and shadowing

43 Category-> Knowledge transfer

and Sharing->

Practice -> Training-> include

some combination of formal

classroom training, eLearning,

video or computer-based training,

on-the-job training, coaching, and

shadowing

44 Interviews in an organisation is a knowledge

transfer knowledge process used to integrate

the knowledge captured into the organisation

44 Category-> Knowledge transfer

and Sharing->

Practice-> Interviews to integrate

the knowledge captured into the

organisation

Category->Extrinsic motivation->

Practice->Rewarding contributors

for knowledge sharing and

transfer ->

Practice-> recognition and

appreciation for best answer

provided->

Practice-> creating a culture to

willingly share knowledge with

other contributors

45Rewarding contributors for knowledge

sharing and transfer with recognition and

appreciation for best answer provided.

Recognition and Reward Structure: In order to

encourage employees to participate in KR

activities, a recognition and reward structure

can be incorporated in the core processes of the

organisation. Furthermore, to encourage

contribution of knowledge, based on

codification and personalisation a reward

system is established for people

documenting and sharing knowledge

(Hansen et al. 1999). A reward structure is

based on using either intrinsic motivators or

extrinsic motivators. Intrinsic motivator

includes acts that make the job more satisfying

such as praise and recognition. Extrinsic

motivation is related to monetary incentives

(Gammelgaard 2007). Organisations like

Xerox, and Hewlett-Packard reward people

for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only

associated with the sharing of existing

knowledge but also with the external

knowledge from outsiders. Managers are

rewarded in organisations for learning from

their competitors, which are source of external

knowledge (Menon and Pfeffer 2003). Using

the combination of extrinsic and intrinsic

rewards is better (Gammelgaard 2007). In the

two types of reward structures, the long lasting

one is intrinsic reward structure. As an

example of intrinsic motivation, Google

consists of a user community mainly of

software engineers. The knowledge is shared

by answering questions and helping solve

problems that other software engineer post,

without being compensated. Software

engineers willingly share their knowledge.

Even though the technology changes very

quickly, capturing the gained knowledge still is

worth the effort (Rus and Lindvall 2002).

45

308

Category->Extrinsic motivation->

Practice->Rewarding contributors

for knowledge sharing and

transfer ->

Practice-> recognition and

appreciation for best answer

provided->

Practice-> creating a culture to

willingly share knowledge with

other contributors

45Rewarding contributors for knowledge

sharing and transfer with recognition and

appreciation for best answer provided.

Recognition and Reward Structure: In order to

encourage employees to participate in KR

activities, a recognition and reward structure

can be incorporated in the core processes of the

organisation. Furthermore, to encourage

contribution of knowledge, based on

codification and personalisation a reward

system is established for people

documenting and sharing knowledge

(Hansen et al. 1999). A reward structure is

based on using either intrinsic motivators or

extrinsic motivators. Intrinsic motivator

includes acts that make the job more satisfying

such as praise and recognition. Extrinsic

motivation is related to monetary incentives

(Gammelgaard 2007). Organisations like

Xerox, and Hewlett-Packard reward people

for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only

associated with the sharing of existing

knowledge but also with the external

knowledge from outsiders. Managers are

rewarded in organisations for learning from

their competitors, which are source of external

knowledge (Menon and Pfeffer 2003). Using

the combination of extrinsic and intrinsic

rewards is better (Gammelgaard 2007). In the

two types of reward structures, the long lasting

one is intrinsic reward structure. As an

example of intrinsic motivation, Google

consists of a user community mainly of

software engineers. The knowledge is shared

by answering questions and helping solve

problems that other software engineer post,

without being compensated. Software

engineers willingly share their knowledge.

Even though the technology changes very

quickly, capturing the gained knowledge still is

worth the effort (Rus and Lindvall 2002).

45

309

B.5 PKR Practices and Categories - Revisiting

Change and Renaming

310

Proactive Knowledge Retention

Practices Category
Proactive Knowledge Retention Practices

Adoption of Technology

Oriented Tools (5)
Visualisation of Resources tool to show quickly the

level of cooperation of the team in the project

Knowledge map or directory on the project website

for knowledge workers to familiarize with their

colleagues knowledge

Transactive Memory System based on knowledge

location, the usage of the developer mailing list and

knowledge credibility

Experienced based memory: built by contributors on

resources such as all experience types, lesson learned,

project data, and technology reports. Version control,

change management, documenting design decisions,

and requirements traceability, help build project and

product memories

Use of collaborative review tool to log bugs, discuss

them with the author, and approve changes in the

codeUse of collaborative review tool to log bugs,

discuss them with the author, and approve changes in

the code

Identification of successors as co-owners with

relevant knowledge on the work of others

When multiple users run into the same problem,

document the answers in the README

Post mortem review or after action review to build

knowledge based on the experience to improve future

practice

A Community of Practice to create a network to

collect and exchange information

Written reports to transfer project relevant knowledge

to contributors

Story telling to generating, share, and discuss stories to

integrate new learning

Training Include combination of formal classroom

training, eLearning, video or computerbased training,

on the job training, coaching, and shadowing

Shared code knowledge using pair programming

Adoption of Technology

Oriented Tools (5)

Knowledge transfer and Sharing

(9)

311

Interviews to integrate the knowledge captured into

the organisation

Knowledge Centralisation (1) Approach to maintain knowledge centrally and its

availability to new developers and teams

Removal of knowledge sharing barriers:

1. Mentoring

2. Improving code feedback time for non-cores

3. Improvement in lack of technical experience, lack

of domain expertise and lack of knowledge on project

practices that hinder the contributions

4. Updating work status to work in progress

(WIP),while working on a substantial for other people

to feel involved in the process early on.

5. Acknowledging or to be responsive when someone

files an issue, submits a code, asks questions

6. Label bugs that are suitable for different types of

contributors as opportunities to recruit new contributors

Standarising project rules and policy:

1. Code review checklists for team members with clear

expectations for each type of review contributions

2. Guidelines on project contribution policy with the

expected code style, commit format, acceptance and

submission process, and available communication

options

3. Proactively establishing communication etiquette

and minimal communication protocols for mandatory

information exchange

4. Communication is public and accessible, past

archives can be read to get up to speed and participate

Knowledge transfer and Sharing

(9)

Encouraging Knowledge

Contributions (16)

Encouraging Knowledge

Contributions (16)

312

5. Good updated documentation for contributors to

interact with project and open pull request and progress

in project

6. Openness to all kinds of contributions on the project

7. Public access is provided during the documentation

of project process

8. Transparency about project’s roadmap, the types of

contributions required, review process, and rational on

decision making.

9. Add test files and other checks to improve the

quality of code

10. Allowing project forking by community to avoid

conflict with project vision

Diverse specialisation of core contributors

Attaining balance between the contribution submitted

and response from specialised core contributors in

community

Knowledge communication from Cores to noncores

Proactive assignment of tasks to noncores

invite contributors from all roles to participate in

peer reviews

Job rotation for knowledge exchange and transfer

while people take turn to work in different job roles,

tasks, and domains.

Intrinsic Motivation:

Appreciation written as newsletter or a blog post

thanking contributors

Recognition and appreciation for best answer provided

Creating a culture to willingly share knowledge with

other contributors

 Extrinsic motivation:

Rewarding contributor for knowledge sharing and

transfer

Encouraging Knowledge

Contributions (16)

Encouraging Knowledge

Contributions (16)

Uniform knowledge distribution

(6)

 Motivation (6)

313

Using gamification qualities to evaluate who provides

the best answer is the one that gains the most points

Ascending meritocracy level of contributors on

knowledge sharing and transfer activities similar to the

one followed for code contributions on the project

Community health (1) Resolving conflicts with the help of supportive

community

Sharing project ownership to support user community

in absence of project owners

Emphasize “consensus seeking” in community to

discuss major concerns until adequately heard

Non restrictive commit access-Give every contributor

commit access to polish their patches

Adding CONTRIBUTORS or AUTHORS file in

project to list all contributors

Encouraging self-organization of contributors by

volunteering for the roles they like

Establish a clear process to become a maintainer or

join a subcommittee in project, and write it into

GOVERNANCE.md

The initial author of the project has final say on all

major project decisions

Major project decisions are based on a consensus

seeking process work and not historic

Active project contributors (those who demonstrate

“merit”) make formal decisions

 Motivation (6)

Governance and Leadership (8)

314

B.6 PKR Practices - First Review

315

 Practice Outcome Memos / Proactive

Knowledge Retention

Practice Category

Adopting real-time visualisation of

resources

Timely deployment of the resources on

need basis with the help of the

technology. Relocating knowledge

workers based on technology. Timely

deployment of the resources on need

basis with the help of the technology.

Resources are managed

in case of turnover using

visualisation of

resources. Tracking

resources on the project

and on need basis

provide resources.

Knowledge Resource

Management

Keeping track of successor/ co-owner/

knowledgeable person/ with relevant

expertise on the work of others

Reduces the risk of file/ code/ module

abandonment.

Knowledge Resource

Management

Pair programming and shared code

ownership.

Knowledge sharing and transfer among

contributors relating to specific code.

Knowledge Transfer and

Sharing

Centralisation approach to update

architectural knowledge and its

availability to contributors and teams

Instead of maintain using the word

update

Knowledge centralisation ensures

accessibility of updated knowledge to

contributors and teams and secures

quality of the developed system.

Knowledge Maintenance,

ensures updated

knowledge accessible to

all contributors

Training contributors in OSS projects Training can be also given by

mentoring contributors for quality

contributions. Removal of knowledge

barriers: namely, lack of technical

experience, lack of domain expertise

and lack of knowledge on project

practices that hinder the contributions.

Removal of Knowledge

Barriers

Developing Transactive Memory

Systems/Knowledge map/ Knowledge

portals/ based on knowledge location,

using developers mailing lists and

knowledge credibility.

KMS will direct the contributors to the

knowledge location or the

knowledgeable person, their expertise,

and familarise themselves with

member's knowledge.

Knowledge Resource

Management

Diversifying specialisation of core

contributors

Attaining balance between the

contribution submitted and response

from specialised core developers in

community. Form a “core team” of

maintainers, or even subcommittees of

people who take ownership of different

issue areas (for example, security, issue

triaging, or community conduct).

Removal of Knowledge

Barriers

Knowledge communication from

cores to non-cores

This practice leads to uniform

knowledge distribution on the project,

wehre the communication is directed

by the cores. Cores are the initiater of

the project and most knowledgeable

ones. Knowledge sharing, knowledge

transfer and uniform knowledge

distribution.

Removal of Knowledge

Barriers

316

Proactive assignment of varying tasks

to a contributor

Helps in uniform knowledge

distribution, knowledge transfer,

knowledge sharing, equally develop

skills of non-cores.

Knowledge Transfer and

Sharing

Rewarding knowledge provider's by

recognition

Increasing the engagment of

knowledge providers, knowledge

sharing and transfer. Encouragment

and motivation for knowledge sharing

by enthusiastic experts.

Extrinsic Motivation

Progress in meritocracy based on

knowledge sharing and transfer

activities

Encouraging OSS community to share

knowledge with other contributors

Extrinsic Motivation

Improving code review feedback time

for non-cores

Facilitates knowledge exchange and

serves as positive motivation for non-

cores.

Removal of Knowledge

Barriers

Project policy to invite contributors

from all roles for peer reviews

Contributes to uniform knowledge

distribution, tranfers project relevant

knowledge and experiences

Uniform Knowledge

Distribution

Maintaining code review checklist Faciliates in a succesful quality

contribution. Information for

knowledge seekers

Quality Knowledge

Contributions

Adopting use of collaborative tool for

code review

Improves code quality and knowledge

sharing

Quality Knowledge

Contributions

Establishing communication protocol

between integrator and contributors

knowledge exchange and encouraging

contributions from new participants by

following on the communication from

archives

Knowledge Exchange

Frequent updation of project

documents.

improves understandibility of the

project and makes it easier to

contribute to the project

Removal of Knowledge

Barriers

Acceptability to all types of

knowledge contributions

Acceptability to all types of

Allows for casual contributors to

contribute

Allows for casual contributors to

Openness towards

knowledge contributions

Public access during documentation

of project process

provides visibility of project processes

to contributors. Project specific

knowledge

Transparency to project

specific knowledge

Documenting project rules, policies,

contribution review process and

decisions

Transparency to rules and policy gives

an understanding of project and

expectations from the contributors

Project specific

knowledge

Listing solutions to problems faced by

multiple users

Saves time and efforts to resolve an

issue if the solution is already stated.

Helps contributor to resolve issues

faster

Project specific

knowledge

Labeling ongoing work as work in

progress

Improves the involvement of

contributors and creates visibility of an

update ongoing.

Knowledge Exchange

Timely response to issues submitted

or queries on the project

Early acknowledgment helps increase

engagement on the project

Knowledge Sharing

Barriers

Building a supportive community for

conflict resolution

has positive effect on community

health and healthy environment for

knowledge sharing and transfer

Knowledge Transfer and

Sharing

Labeling bugs to suit contributors

with different level of expertise

Acts as an opportunity to recruit

newknowledge contributors

Removal of Knowledge

Barriers

Sharing project ownership Extended support for users and

community in the absence of the main

owners.

Knowledge Maintenance

317

Appreciating contributors more often Intrinsic motivation for contributors

and feel included in the project

Extrinsic Motivation

Non- restrictive commit access Give every contributor commit access,

this made people more excited to

polish their patches

Knowledge Maintenance

Consensus seeking approach Liberal structure for community

involvement and earning their trust that

their concerns are heard. Effective

knowledge sharing because liberty to

share their views.

Knowledge Exchange

Mentoring successful and quality contributions

from contributors. Overcoming

knowledge barriers for new comers

Removal of Knowledge

Barriers

Project Forking avoiding conflicts on the project Project specific

knowledge

Presence of Test Files including

checks to test code

Knowledge artefact improves the

quality of contributor code

Project specific

knowledge

Listing contributors/ authors on

Project

Information for newcomers/ new

contributors who to ask for help on the

project.

Project specific

knowledge

Allowing self-organization on project

roles

Improve the overall productivity and

work environment on the project.

Facilitate knowledge sharing and

transfer

Knowledge Transfer and

Sharing

Eliciting process to become

maintainer

knowledge on the project specific

process. Expected to improve

involvement from contributor on the

project.

Project specific

knowledge

Post-mortem reviews Build a knowledge base consulted by

knowledge seekers to learn from

experience

Knowledge Transfer and

Sharing

Establishing a Community of practice

network to collect and exchange

knowledge

knowledge-transfer methods to diffuse

knowledge before it is lost

Knowledge Transfer and

Sharing

Report writing Written reports to transfer project

relevant knowledge to contributors

Project specific

knowledge

Job rotation knowledge exchange and transfer

while people take turn to work in

different job roles, tasks, and domains.

knowledge Exchange and

transfer

Story telling to share, and discuss stories for

quickly integrating new learning.

Knowledge transfer and sharing

Knowledge Transfer and

Sharing

318

Experience based memory – built by

contributors on resources: lesson

learned/ project data/Version control/

change management/ documenting

design decisions/ and requirements

traceability

Knowledge retention practice to build

project memories

Project specific

knowledge

Training/ e-Learning/ video/ computer-

based training/ on-the-job training/

coaching/ and shadowing

Knowledge transfer, knowledge

sharing

Knowledge Transfer and

Sharing

Interviews interviews to capture knowledge and

then transfer it

Knowledge Transfer and

Sharing

Creating culture to share knowledge

altruistically

Awareness among contributors to share

knowledge. Intrinsic motivation for

altruism

Intrinsic Motivation

319

B.7 PKR Practices - Second Review

320

Proactive Knowledge

Retention Practice

Category

KPR Practice Memos

Knowledge communication from

cores to non-cores

Knowledge communication between

cores and non-cores is an important

factor for knowledge trasnfer and

sharing leading to uniform knowledge

distribution

Improving code review feedback time

for non-cores

Responsivness in communicating code

review feedback for non-cores in OSS

project facilitates knowledge sharing

and transferf rom sores to non-cores.

This practice is included in

communication category.

Establishing communication protocol

between integrator and contributors

Communication protocol elicited is

included under the category

communication. Communication is

important to the progress and success of

the project and contributors need to

understand what the protocol is.

Timely response to submitted project

issues or queries

To encourage engagement on the project

Consensus seeking approach This practice is more related to an

approach adopted to reach out to

contributors to find their views, which is

the mode of communication. This

practice can also be included governance

and leadership category. But is more

appropriate to be considered in

communication category because it

demonstrates a communication mode for

the community to collaborate.

Rewarding knowledge provider's by

recognition

Reward is associated with extrinsic

motivation of a contributor. The

category contributor motivation relates

to encouraging knowledge providers by

rewarding them.

Appreciating contributors more often Appreciating contributors more often by

writing in blogs or newsletters about

their positive efforts to keep the project

on going.

Communication

Contributor

Motivation

321

Pair programming and shared code

ownership.

Pair programming helps to share and

transfer knowledge among contributors.

It can be one of the core fundemental

practice in OSS for knowledge transfer

and sharing and for having a constant

knowledge transfer and sharing

mechanism in place.

Diversifying specialisation of core

contributors

The core contributors should have

diverse specialisation. In order to attain

diverse specialisation in OSS projects,

this should be a core development

practice. Here core means fudemental

not core development team in OSS

projects.

Project policy to invite contributors

from all roles for peer reviews

Peer review is a collaborative activity

and inviting contributors from different

roles can lead to knowledge transfer and

sharing. This is included as the core

devlopment practice since peer review is

one of the key activities in OSS

development.

Labeling bugs for contributors with

varying Skills & Expertise

Labeling a bug to suit the level of

contributor expertise will benfit OSS

project to recruit more contributors and

get them started with simpler tasks

suitable to their knowledge and

experience.

Presence of Test Files and checks to

test code

Test files to test code can be one of the

core deveopment practices and directly

impact the quality of the code. It helps

to test code for any defects and

facilitates the contributor to write quality

code.

Listing solutions to problems faced by

multiple users

During the development, OSS can face

many issue where some are common for

many users. It is a usful practice and

therefore should be placced in core

development practices.

Labeling ongoing work as work in

progress

Labelling on going work as work in

process attracts more contributors

interested in the ongoing updates.

Furthermore, more expertise in the OSS

development is pooled in by such

labelling activity. It can be a piece of

information that is communicated to

contributors.

Core Development

Practice

322

Non- restrictive commit access In OSS project not every contributor has

right to commit the code. The code

review policies describe the process for

commit access. Generally code commit

access is given to only selected

contributors. If contributors are allowed

to commit their code to a repository

where it doesn't effect main branch but

at the same time contributor code is

reviewed by other contributors. This

expedites the learning and correction

process. This practices falls well under

the category of Core Development

Practices.

Building a supportive community for

conflict resolution

A OSS community with an ability to

resolve conflicts will last longer and

with time evolve and more productive.

Building a community that is supportive

is related to Environment/ Ecosystem/

Culture.

Creating culture to share knowledge

altruistically

Creating awareness among contributors

and involving altruistic philosophy that

is the main reason to initiate an OSS

project. Knowledge sharing can be

introduced as a culture in OSS to

stablise ecosystem and selfless genture

of doing good to society.

Public access during project process

 documentation

Public access provides visibility to

ongoing project documentation. This can

be related to the communicating chnages

in the documentation on the fly. But it is

more of an adoption of a culture or

environment where documentation are

given public access to be viewed by the

contributors of the project. it is also

effective practice for the ecosystem in

OSS community.

Acceptability to all types of

knowledge contributions

Acceptability to all types of

knowledge contributions

OSS project governing teams and other

contributors should adopt a culture to be

acceptable to all kinds of contributions

including small ones. This kind of open

culture encourages contributors who are

just casual contributors but their efforts

are recognised and accepted.

Core Development

Practice

Environment/

Ecosystem/ Culture

323

Encourage Project Forking A OSS community with an ability to

resolve conflicts will last longer and

with time evolve and more productive.

A project community and governance

that encourage project forking to avoid

conflict with the project's visions and

goals. this practice should be acceptable

in OS communities and iss related to

Environment/ Ecosystem/ Culture.

Keeping track of successor/ co-owner/

knowledgeable person/ with relevant

expertise on the work of others

The team leaders would be keeping

track and identifying people who are

knowledgeable on the work of others.

It can also be the culture/ Environmet on

the project to keep track on the work of

other contributors.

A teamleader would have more

resources to track people with similar

area of knowledge while for an

individual contributor it will be only

known to him or her that who is working

on code simialr to hers. OSS projects

will benefit more if sucessors/ owners/

based on similar work history are

tracked by the team leaders.

Centralising knowledge from all

sources

Centralising knowledge from all

sources

This can be related to culture of OSS

projects. Having a culture solely would

not fulfill the need of contributors when

it comes to accessibility. The knowledge

centralisation and updation has to be

monitored by team leaders and its

acessibility to contributors and teams.

Also team leads or people governing

OSS project will be more

knowledgeable to update the documents

at the central location.

Developing Transactive Memory

Systems / Knowledge map /

Knowledge portals

KMS system development has to be

directed by the leaders of the projects. It

helps in knowledge transfer and sharing.

Once the KMS are in place, it can be

maintained by the contributors.

Environment/

Ecosystem/ Culture

Governance and

Leadership

324

Proactive assignment of varying tasks

to non-cores

The skill set of core contributors is

better than non-cores. Cores make 80%

of the knowledge contributions in OSS

projects. In order to uniformly distribute

knowledge from cores to non-cores, the

team leads can assign different tasks to

non-cores proactively. This falls under

government and leadership because the

team leads can control the extent of

knowledge that is shared with non-cores.

proactive assignemnt of different tasks

to non-cores can be governed by leaders

in OSS projects.

Maintaining code review checklist This practice is related to Governance

and Leadership since the policy of code

review are given and monitored by the

team leaders

Adopting use of collaborative tool for

code review

Adopting a tool for code review is a

decision to be made by the leadership on

the project.

Sharing project ownership Sharing project ownership is related to

helping community find support in the

absence of the main leader and to keep

the maintenance on the project ongoing.

This practice is categorised under

Governance and Leadership

Eliciting process to become

maintainer

The policy to become a maintainer

should be elicited by the team leaders on

the project. It is engaging for the

contributors to see what can be outcome

of their efforts and their personal

progress on the project. This also serves

as a motivation to do well to escalate to

the highest level of recognition on the

project.

Document project rules,

policies,review process and decisions

All these documents are to be provided

by the project leaders. There can be

changes made later to the rules and

policies but the responsibility of

documenting this rules and policies

mainly lies with the leadership. Also for

a person joining a new project, provision

of these documents enables them to

evaluate on the basis of the elaborated

rules and policies

Governance and

Leadership

325

Adopting real-time visualisation of

resources

Project leaders, owners or team leaders

in OSS may relocate resources on

projects based on the visualisation of

resources when there are less resources

than required. Decisions to use a

technology tool that depicts the real-time

visualisation of resources is mainly upon

the main leaders of the project

Post-mortem reviews for learning Post mortem reviews are conducted in

project at different stages. It is learning

based on the experience and is an

effective way to tansfer and share

knowledge. This practice is categirised

under knowledg transfer and sharing.

Post mortem review can be effective

way for knowledge transfer for OSS

contributors while learning from

experiences discussed on the past

projects.
Establishing Community of practice

network

Community of practices focuses on

learning from experience of others with

a focus on establishing a network. It

helps to transfer and share knowledge.

The practice is categorised under

knowledg transfer and sharing

Written reports for project relevant

knowledge

Reporting writing is considered another

effective way to share and transfer

project relevant knowledge.

Job rotation to acquire different skills Job rotation on a project that allows a

contributor to work under different roles

in a project to acquire different skills. In

OSS project contributors at a time can

working on multiple roles, this practices

ensures that contributors atleast work on

all roles in a Project. Job rotation leads

to effective knowledge transfer and

sharing.

Story telling to integrate learning Contributors in OSS project are

encouraged to share knowledge through

story telling, which invloves sharing and

transfering their learning. The story

telling is a knowledge transfer and

sharing practice.

Governance and

Leadership

Knowledge Transfer

and Sharing

326

Building memories on project

documents and data

Projects memories are made with the

data avilable from the project in the

form of lesson learned, project data,

version control. This practice can be

categorised under knowledge transfer

and sharing.

 e-Learning/ video/ computer-based

training/ on-the-job training/

coaching/ and shadowing

Some more practices related to

knowledge transfer and sharing. Some

are of digital nature, other relate to

knowledge transfer while on job.

Knowledge capture and transfer by

interviews

Interviews with contributors highlight

knowledge specific to the project. This

is knowledge cature and then transfering

it in the form of writing or digitally.

Interviews are categorised under

knowledge transfer and sharing.

Training contributors Training of the contributor is appropriate

to overcome the knowledge barriers in

OSS projects. Removal of knowledge

barriers: namely, lack of technical

experience, lack of domain expertise and

lack of knowledge on project practices

that hinder the contributions.

Mentoring Contributors on Project Mentoring contributors enthusiastic to

work on the project for a head start and

submit quality contributions. This

preactice is more useful to overcome

knowledge barriers face by contributors

mainly who are new to the project.

Frequent updation of project

documents.

This practice is useful for the removal of

knowledge barriers. It is the

responsibility of the contributor working

on the project to ensure that documents

are up to date. In case of problem or

clarification required on the process they

should bring to the attention of team

leaders.

Removal of

Knowledge Barriers

Knowledge Transfer

and Sharing

327

B.8 PKR Practices - Third Review

328

P
r
o

a
c
ti

v
e

K
n

o
w

le
d

g
e

R
e
te

n
ti

o
n

 P
r
a

c
ti

c
e

C
a

te
g

o
r
y

KPR Practice KPR Practice Description

Rev 1

Rev 2

Rev 3

Memos

C
o

m
m

u
n

ic
a

ti
o

n

Responsivness in communicating code

review feedback for non-cores in OSS

project facilitates knowledge sharing and

transfer from cores to non-cores. This

practice is included in communication

category.

This practice can also be categorised as

"Core Development Practices". I kept in

communication responsiveness and

acknowledgement is related to

communication issues rather than

development practice.

Due to the lack of an established

reputation, peripheral developers wait 2

to 19 times (or 12 to 96 hours) longer

than core developers, to complete the

review process. Accordingly, a delay in

receiving feedback on reviews may

negatively motivate a peripheral or new

contributor [135]. An improvement to the

timings of the review feedbacks in OSS

projects to peripherals can result in a

uniform distribution of knowledge,

reduce the effects of turnover, and

motivate newcomers to stay for a longer

duration.

Improving code review feedback time for

non-cores.

Set a maximum time limit to respond to

submitted code review. Both cores and

non-cores should be treated equally and

without any dintinction.Improving code

review feedback time for non-cores.

Advocating

manimum code

review feedback

time for non-

core

contributors

Knowledge communication between

cores and non-cores is an important

factor for knowledge trasnfer and sharing

leading to uniform knowledge

distribution

The communication of the OSS project is

directed by the core contributors. Their

attitudes and involvement in knowledge

sharing were linked to the demands of

their wider project teams [124]. The core

contributors bring high levels of skills

and cognitive characteristics to their

project teams. They start the project and

provide high levels of ideas, suggestions,

information, comments, instructions and

answers to their teams, and are the centre

of their project’s knowledge activities.

The more code changes core developers

perform, the more knowledge they

provide [124]. However, their least

involvement in communication and task

changes results into some negative team

attitudes. Knowledge communication

between cores and non-cores is an

important factor for knowledge trasnfer

and sharing leading to uniform

knowledge distribution

Knowledge communication from cores to

non-cores

Communicate high level ideas,

suggestions, information, comments,

instructions and answers to team

members. Enagage in more code changes

as core developers and through this share

more knowledge with other team

members. Knowledge communication

from cores to non-cores

Establish

communication

mechanisms

from cores to

non-cores

contributors

329

Communication protocol elicited is

included under the category

communication. Communication is

important to the progress and success of

the project and contributors need to

understand what the protocol is.

Integrators should be proactive by

establishing a professional

communication etiquette, and reactive, by

following discussions and intervening in

cases where discussion diverges from the

etiquette. Integrator and contributors

should agree on minimal communication

protocols that increase each other’s

awareness and rendezvous points for

mandatory information exchange and

use real-

time communication channels (e.g., IRC

or its evolved counterpart GITTER,

which is better integrated in GitHub)

communication is public and accessible,

anybody can read past archives to get up

to speed and participateCommunication

protocol elicited is included under the

category communication. Communication

is important to the progress and success

of the project and contributors need to

understand what the protocol is.

Integrators should be proactive by

establishing a professional

communication etiquette, and reactive,

by following discussions and

intervening in cases where discussion

diverges from the etiquette. Integrator

and contributors should agree on

minimal communication protocols that

increase each other’s awareness and

rendezvous points for mandatory

information exchange and use real-

time communication channels (e.g.,

IRC or its evolved counterpart

GITTER, which is better integrated in

GitHub) communication is public and

accessible, anybody can read past

archives to get up to speed and

participate.

Clarification of

communication

protocol/

mechanisms

between

integrator and

contributors

to be responsive when someone files an

issue, submits a pull request, or asks a

question about your project.

Responding quickly, people will feel

they are part of a dialogue, and they’ll

be more enthusiastic about

participating set up notifications in

some of these places (such as Stack

Overflow, Twitter, or Reddit) so you

are alerted when someone mentions

your project. if you can’t review the

request immediately, acknowledging it

early helps increase engagement.

Establishing

response time

parameters for

project queries

or issues

To encourage engagement on the project

Actively

eliciting views

of project

community on

major concerns

Consensus seeking approach.

Emphasize “consensus seeking” rather

than consensus. Community members

discuss major concerns until they feel

they have been adequately heard.

While sensible at first glance, voting

emphasizes getting to an “answer,”

rather than listening to and addressing

each other’s concerns.

As a project maintainer, it’s important

other contributors on the project know

that their opinion is heard and

someone in leading position is listening.

Making other people feel heard, and

committing to resolving their concerns,

goes a long way to diffuse sensitive

situations. Make sure that everybody

feels heard and that all information

has been made public before moving

toward a resolution.

Under a liberal contribution model,

generally people who do the most work

are recognized as most influential, and

it is based on current contributions.

Major project decisions are made

based on a consensus seeking process.

This practice is more related to an

approach adopted to reach out to

contributors to find their views, which is

like initiating the communication. This

practice can also be included governance

and leadership category. But is more

appropriate to be considered in

communication category because it

demonstrates a communication mode for

the community to collaborate.

330

Rewarding knowledge provider's by

recognition

Organisations like Xerox, and Hewlett-

Packard reward people for sharing

their knowledge (Rus and Lindvall

2002). Reward system is not only

associated with the sharing of existing

knowledge but also with the external

knowledge from outsiders. Managers

are rewarded in organisations for

learning from their competitors, which

are source of external knowledge

(Menon and Pfeffer 2003).

To encourage contribution of

knowledge, based on codification

(formally documenting) and

personalisation (sharing knowledge

through socialisation) a reward system

is established for people documenting

and sharing knowledge (Hansen et al.

1999)Rewarding knowledge provider's

by recognition

Establishing a

knowledge

recognition

program

Reward is associated with extrinsic

motivation of a contributor. The category

contributor motivation relates to

encouraging knowledge providers by

rewarding them.

Offering

progress as

motivation to

knowledge

sharing and

transfer

Gamification: A gamified environment

has important implications for

knowledge management in software

engineering [50] and OSS projects. As

observed, Q&A gamification increased

the engagement of knowledge

providers and the quickness of

response. This finding suggests that

Q&A site designers should consider

gamification elements to increase

contributor engagement, which

indirectly can help to raise the

popularity of their sites. For example,

gamification features in Stack

Overflow’s guarantee that a question

will be replied to by enthusiastic

experts within minutes of being posted

[133]. On Stack Overflow, a crowd

approach is used where participants

contribute knowledge independently of

each other and gamification qualities

are used to evaluate who provides the

best answer is the one that gains the

most points [133]. Knowledge is

curated in gamification other than

being developed as is the case with

mailing lists. Curation is a mechanism

to provide a tool for keeping the

channel clean of what seems to be

unnecessary information [133]. Here

the number of points gained by the

contributor can serve as a extrinsic

motivation to gain recognition and

earn a repute in OSS community. At

the same time gamification identifies

people who are more knowledgeable

and active based on the point given to

them. vation to gain recognition and

earn a repute in OSS community.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

Actively

eliciting views

of project

community on

major concerns

Consensus seeking approach.

Emphasize “consensus seeking” rather

than consensus. Community members

discuss major concerns until they feel

they have been adequately heard.

While sensible at first glance, voting

emphasizes getting to an “answer,”

rather than listening to and addressing

each other’s concerns.

As a project maintainer, it’s important

other contributors on the project know

that their opinion is heard and

someone in leading position is listening.

Making other people feel heard, and

committing to resolving their concerns,

goes a long way to diffuse sensitive

situations. Make sure that everybody

feels heard and that all information

has been made public before moving

toward a resolution.

Under a liberal contribution model,

generally people who do the most work

are recognized as most influential, and

it is based on current contributions.

Major project decisions are made

based on a consensus seeking process.

This practice is more related to an

approach adopted to reach out to

contributors to find their views, which is

like initiating the communication. This

practice can also be included governance

and leadership category. But is more

appropriate to be considered in

communication category because it

demonstrates a communication mode for

the community to collaborate.

C
o

n
tr

ib
u

to
r
 M

o
ti

v
a

ti
o

n

331

To engage in

active

appreciation for

contributors

Appreciating contributors more often.

newsletter or write a blog post

thanking contributors

Appreciating contributors more often by

writing in blogs or newsletters about their

positive efforts to keep the project on

going. Appreciation is an extrinsic

motivation.

Pair Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem,

the usage of techniques such as pair

programming and shared code

ownership are suggested [95]. such as

pair programming, facilitate

knowledge sharing between peers.

Remote pair programming is not just

for the corporate sector; it can also be

quite successful in open-source

projects. Remote pair programming

can be as simple and efficient as it is in

person programming. Using a text

editor where a workspace and some

form of video chatting is shared.

Basically one does same things as in

person with a little bit more

articulation of thoughts since your

body language is not visible.

//Expert–novice

Expert–novice pairing creates many

opportunities for the expert to mentor

the novice. This pairing can also

introduce new ideas, as the novice is

more likely to question established

practices. The expert, now required to

explain established practices, is also

more likely to question them. However,

in this pairing, an intimidated novice

may passively "watch the master" and

hesitate to participate meaningfully.

Also, some experts may not have the

patience needed to allow constructive

novice participation. (ref: Williams, L.

& Kessler, R. (2003). Pair

Programming Illuminated. Boston:

Addison-Wesley Professional.)Pair

Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem,

the usage of techniques such as pair

programming and shared code

ownership are suggested [95]. such as

pair programming, facilitate

knowledge sharing between peers.

Pair

programming

and shared code

ownership.

Pair programming helps to share and

transfer knowledge among contributors.

It can be one of the core fundemental

practice in OSS for knowledge transfer

and sharing and for having a constant

knowledge transfer and sharing

mechanism in place.

Offering

progress as

motivation to

knowledge

sharing and

transfer

Gamification: A gamified environment

has important implications for

knowledge management in software

engineering [50] and OSS projects. As

observed, Q&A gamification increased

the engagement of knowledge

providers and the quickness of

response. This finding suggests that

Q&A site designers should consider

gamification elements to increase

contributor engagement, which

indirectly can help to raise the

popularity of their sites. For example,

gamification features in Stack

Overflow’s guarantee that a question

will be replied to by enthusiastic

experts within minutes of being posted

[133]. On Stack Overflow, a crowd

approach is used where participants

contribute knowledge independently of

each other and gamification qualities

are used to evaluate who provides the

best answer is the one that gains the

most points [133]. Knowledge is

curated in gamification other than

being developed as is the case with

mailing lists. Curation is a mechanism

to provide a tool for keeping the

channel clean of what seems to be

unnecessary information [133]. Here

the number of points gained by the

contributor can serve as a extrinsic

motivation to gain recognition and

earn a repute in OSS community. At

the same time gamification identifies

people who are more knowledgeable

and active based on the point given to

them. vation to gain recognition and

earn a repute in OSS community.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

Contributors progress to become a core

contributor in the project based on

meritocracy and mainly on the number of

the code contributions they submit. The

practice suggests to utilise the concept of

extrinsic motivation and have an

additional criteria of assessing a

contributor based on knowledge sharing

and transfer activities on the project.

C
o

n
tr

ib
u

to
r
 M

o
ti

v
a

ti
o

n
C

o
r
e
 D

e
v

e
lo

p
m

e
n

t
P

r
a

c
ti

c
e

332

Pair Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem,

the usage of techniques such as pair

programming and shared code

ownership are suggested [95]. such as

pair programming, facilitate

knowledge sharing between peers.

Remote pair programming is not just

for the corporate sector; it can also be

quite successful in open-source

projects. Remote pair programming

can be as simple and efficient as it is in

person programming. Using a text

editor where a workspace and some

form of video chatting is shared.

Basically one does same things as in

person with a little bit more

articulation of thoughts since your

body language is not visible.

//Expert–novice

Expert–novice pairing creates many

opportunities for the expert to mentor

the novice. This pairing can also

introduce new ideas, as the novice is

more likely to question established

practices. The expert, now required to

explain established practices, is also

more likely to question them. However,

in this pairing, an intimidated novice

may passively "watch the master" and

hesitate to participate meaningfully.

Also, some experts may not have the

patience needed to allow constructive

novice participation. (ref: Williams, L.

& Kessler, R. (2003). Pair

Programming Illuminated. Boston:

Addison-Wesley Professional.)Pair

Programming and Shared Code

Ownership: In order to mitigate the

effects of turnover on the ecosystem,

the usage of techniques such as pair

programming and shared code

ownership are suggested [95]. such as

pair programming, facilitate

knowledge sharing between peers.

Pair

programming

and shared code

ownership.

Pair programming helps to share and

transfer knowledge among contributors.

It can be one of the core fundemental

practice in OSS for knowledge transfer

and sharing and for having a constant

knowledge transfer and sharing

mechanism in place.

Diverse specialisations of Core

Contributors: For an OSS project to

survive, a diversity of core developers

is required [132]. When a key

contributor abandoned an OSS project

it revealed a very fluctuating

proportion of developer contribution.

A significant imbalance between the

contribution and the response from the

developers’ community was noticed.

The reason for the dying project was

that a diversity of core contributors

were missing from the project [132].

Diversity of core contributors also

relates to the underlying concept of

uniform knowledge distribution stated

next. Balance between the contribution

submitted and response from

specialised core developers in

community.

Form a “core team” of maintainers, or

even subcommittees of people who take

ownership of different issue areas (for

example, security, issue triaging, or

community conduct).

The core contributors should have diverse

specialisation. In order to attain diverse

specialisation in OSS projects, this

should be a core development practice.

Here core means fudemental not core

development team in OSS projects.

Diversifying

specialisation of

core

contributors

C
o

r
e
 D

e
v

e
lo

p
m

e
n

t
P

r
a

c
ti

c
e

333

Project policy to

invite

contributors

from all roles

for peer reviews

Core team proactivly invites

contributors irrespective of their role

on the project encourages them to

participate in peer reviews.

Peer review is a collaborative activity and

inviting contributors from different roles

can lead to knowledge transfer and

sharing. This is included as the core

devlopment practice since peer review is

one of the key activities in OSS

development.

Labeling bugs

for contributors

with varying

Skills &

Expertise

label bugs that are suitable for

different types of contributors: for

example, “first timers only”, “good

first issue”, or “documentation”. These

labels make it easy for someone new to

your project to quickly scan your

issues and get started. Resist fixing

easy (non-critical) bugs. Instead, use

them as opportunities to recruit new

contributors

Labeling a bug to suit the level of

contributor expertise will benfit OSS

project to recruit more contributors and

get them started with simpler tasks

suitable to their knowledge and

experience.

Presence of Test

Files and checks

to test code

Require tests and other checks to

improve the quality of the code. If tests

are added, explain how they work in a

file designated for this purpose e.g.

CONTRIBUTING.

Test files to test code can be one of the

core deveopment practices and directly

impact the quality of the code. It helps to

test code for any defects and facilitates

the contributor to write quality code.

Listing solutions

to problems

faced by

multiple users

When multiple users running into the

same problem, document the answers

in the some file such as README.

During the development, OSS can face

many issue where some are common for

many users. It is a usful practice and

therefore should be placced in core

development practices.

Labeling

ongoing work as

work in

progress

While working on a substantial update

to your project, put it into a pull

request and mark it as a work in

progress (WIP). That way, other

people can feel involved in the process

early on. Encouraging contribution

while working on a substantial update

to your project, put it into a pull

request and mark it as a work in

progress (WIP). That way, other

people can feel involved in the process

early on.

Labelling on going work as work in

process attracts more contributors

interested in the ongoing updates.

Furthermore, more expertise in the OSS

development is pooled in by such

labelling activity. It can be a piece of

information that is communicated to

contributors.

C
o

r
e
 D

e
v

e
lo

p
m

e
n

t
P

r
a

c
ti

c
e

334

Non- restrictive

commit access

Give every contributor commit access,

to allow people to be more excited to

polish their patches even can help in

finding new maintainers for projects

that had not been worked on in a while.

Give every contributor commit access,

to allow people to be more excited to

polish their patches even can help in

finding new maintainers for projects

that had not been worked on in a while.

In OSS project not every contributor has

right to commit the code. The code

review policies describe the process for

commit access. Generally code commit

access is given to only selected

contributors. If contributors are allowed

to commit their code to a repository

where it doesn't effect main branch but at

the same time contributor code is

reviewed byy other contributors. This

expedites the learning and correction

process. This practices falls well under

the category of Core Development

Practices.

Listing

contributors/

authors on

Project

Designating leaders can be as simple as

adding their names to README or a

CONTRIBUTORS text file.

CONTRIBUTORS or AUTHORS file

in the project that lists everyone who’s

contributed to the project.

For a bigger project, if there is a

website, create a team page or list

project leaders there. For example,

Postgres has a comprehensive team

page with short profiles for each

contributor.

This practice can be categorised under

governance and leadership, since they are

the leaders of the project. But it is more

suitable to categorise it under

Environment/ Ecosystem/ Culture

because then everyone can add their

name to the list and it is more openly

accessible.

Any popular project will inevitably

attract people who harm, rather than

help, your community. They may start

unnecessary debates, quibble over

trivial features, or bully others.

Negative people will make other people

in community uncomfortable. Project

leaders should adopt a zero-tolerance

policy towards these types of people. If

left unchecked, negative people will

make other people in community

uncomfortable. They may even leave.

Adopting a code of conduct builds a

supportive community is the key to

resolving conflicts. "A code of conduct

is a document that establishes

expectations for behavior for project’s

participants. Adopting, and enforcing,

a code of conduct can help create a

positive social atmosphere for project

community."

A OSS community with an ability to

resolve conflicts will last longer and with

time evolve and more productive.

Building a community that is supportive

is related to Environment/ Ecosystem/

Culture.

Building a

supportive

community for

conflict

resolution

C
o

r
e
 D

e
v

e
lo

p
m

e
n

t
P

r
a

c
ti

c
e

E
n

v
ir

o
n

m
e
n

t/
 E

c
o

sy
st

e
m

/
C

u
lt

u
r
e

335

Allowing self-

organization on

project roles

Let people self-organize and volunteer

for the roles they’re most excited about

and interested in, rather than assigning

them.

self organisation is related to letting

people decide what role they want on the

project. It can be categorised under

governance and leadership. It can also be

categorised under Environment/

Ecosystem due to reason that contributors

interact in OSS ecosystem and decide on

the role they want and communicate it

effectively. Under governance and

leadership the self-organisation is

portrayed as decision making restricted

only to team leaders.

Creating

culture to share

knowledge

altruistically

As an example of intrinsic motivation,

Google consists of a user community

mainly of software engineers. The

knowledge is shared by answering

questions and helping solve problems

that other software engineer post,

without being compensated. Software

engineers willingly share their

knowledge.

Creating awareness among contributors

and involving altruistic philosophy that is

the main reason to initiate an OSS

project. Knowledge sharing can be

introduced as a culture in OSS to stablise

ecosystem and selfless genture of doing

good to society.

Public access

during project

process

documentation

Document process with an access to

public. Communication is public and

accessible, anybody can read past

archives to get up to speed by going

though mailing lists, blogs and

participate.

Public communication can be as simple

as directing people to open an issue

instead of emailing you directly or

commenting on your blog. You could

also set up a mailing list, or create a

Twitter account, Slack, or IRC channel

for people to talk about your project.

Public access provides visibility to

ongoing project documentation. This can

be related to the communicating chnages

in the documentation on the fly. But it is

more of an adoption of a culture or

environment where documentation are

given public access to be viewed by the

contributors of the project. it is also

effective practice for the ecosystem in

OSS community.

Acceptability to

all types of

contributions

Open-minded about the types of

contributions to accept start with a bug

report or small fix making it easier for

casual contributors to contribute

OSS project governing teams and other

contributors should adopt a culture to be

acceptable to all kinds of contributions

including small ones. This kind of open

culture encourages contributors who are

just casual contributors but their efforts

are recognised and accepted.

E
n

v
ir

o
n

m
e
n

t/
 E

c
o

sy
st

e
m

/
C

u
lt

u
r
e

336

Encourage

Project Forking

Encouraging your community

members to work on their own fork

can provide the creative outlet they

need and exyend the current work.

Users can fultill their legitimate needs

as a user of the code by making

changes required without conflicting

with project’s vision. A document can

guide contributors on forking the

project.

A OSS community with an ability to

resolve conflicts will last longer and with

time evolve and be more productive. A

project community and governance that

encourage project forking to avoid

conflict with the project's visions and

goals. this practice should be acceptable

in OS communities and issues related to

Environment/ Ecosystem/ Culture.

Frequent

updation of

project

documents

Centralisation: Governance structures

in Ericsson is argued to be similar to

OSS, and a centralised approach is

implemented to secure quality [128].

The situation of knowledge loss faced

was because of the recurrent

movement of resources in and out of

products and constantly changing

business needs. In such a situation, the

adoption of a centralised approach

helped in architectural knowledge

stability and its availability to new

developers and teams.

This can be related to culture of OSS

projects. Having a culture solely would

not fulfill the need of contributors when

it comes to accessibility. The knowledge

centralisation and updation has to be

monitored by team leaders and its

acessibility to contributors and teams.

Also team leads or people governing OSS

project will be more knowledgeable to

update the documents at the central

location.

Identification of successors and

involving contributors as co-owners

with relevant expertise knowledgeable

on the work of other contributors is

presented as a method to reduce the

risk associated with developer turnover

[10]. The files with a successor were

not at risk of abandonment even when

the owning developer left. A successor

was there to perform maintenance

tasks [10].

Developing Transactive Memory

Systems / Knowledge map / Knowledge

portals (OSS Literature)

The team leaders would be able to keep

the track and

identifying people who are

knowledgeable on the work of others.

Transactive Memory System-

development within the teams, based

on knowledge location, the usage of the

developer mailing list and knowledge

credibility. An insight into the area of

expertise members, a knowledge map

or directory can be used on the project

website internal knowledge portal,

serving as a way to help knowledge

workers familiarize themselves with

their colleagues knowledge, K Portals

are rapidly evolving into broad-based

platforms for supporting a wide range

of knowledge worker (KW) tasks

It can also be the culture/ Environmet on

the project to keep track on the work of

other contributors.

A teamleader would have more resources

to track people with similar area of

knowledge while for an individual

contributor it will be only known to him

or her that who is working on code

simialr to hers. OSS projects will benefit

more if sucessors/ owners/ based on

similar work history are tracked by the

team leaders.

KMS system development has to be

directed by the leaders of the projects. It

helps in knowledge transfer and sharing.

Once the KMS are in place, it can be

maintained by the contributors.

Keeping track

of successor/ co-

owner/

knowledgeable

person/ with

relevant

expertise on the

work of others

E
n

v
ir

o
n

m
e
n

t/
 E

c
o

sy
st

e
m

/
C

u
lt

u
r
e

G
o

v
e
r
n

a
n

c
e
 a

n
d

 L
e
a

d
e
r
sh

ip

337

Proactive

assignment of

varying tasks to

non-cores

As indicated that contributors who

modify codes from other contributors

stay longer on the project [28]. This

will create a balance of equal

development of skills on the OSS

project. For example, contributors who

normally perform documentation tasks

should be assigned some coding tasks.

The skill set of core contributors is better

than non-cores. Cores make 80% of the

knowledge contributions in OSS projects.

In order to uniformly distribute

knowledge from cores to non-cores, the

team leads can assign different tasks to

non-cores proactively. This falls under

government and leadership because the

team leads can control the extent of

knowledge that is shared with non-cores.

proactive assignemnt of different tasks to

non-cores can be governed by leaders in

OSS projects.

Maintaining

code review

checklist

Code review checklists also provide

team members with clear expectations

for each type of review.

This practice is related to Governance

and Leadership since the policy of code

review are given and monitored by the

team leaders

Adopting use of

collaborative

tool for code

review

Use of a collaborative code review

tool that allows reviewers to log bugs,

discuss them with the author, and

approve changes in the code guidelines

should at least provide details about

the expected code style, commit

format, pull request process, and

available communication options

Adopting a tool for code review is a

decision to be made by the leadership on

the project.

Identification of successors and

involving contributors as co-owners

with relevant expertise knowledgeable

on the work of other contributors is

presented as a method to reduce the

risk associated with developer turnover

[10]. The files with a successor were

not at risk of abandonment even when

the owning developer left. A successor

was there to perform maintenance

tasks [10].

Developing Transactive Memory

Systems / Knowledge map / Knowledge

portals (OSS Literature)

The team leaders would be able to keep

the track and

identifying people who are

knowledgeable on the work of others.

Transactive Memory System-

development within the teams, based

on knowledge location, the usage of the

developer mailing list and knowledge

credibility. An insight into the area of

expertise members, a knowledge map

or directory can be used on the project

website internal knowledge portal,

serving as a way to help knowledge

workers familiarize themselves with

their colleagues knowledge, K Portals

are rapidly evolving into broad-based

platforms for supporting a wide range

of knowledge worker (KW) tasks

It can also be the culture/ Environmet on

the project to keep track on the work of

other contributors.

A teamleader would have more resources

to track people with similar area of

knowledge while for an individual

contributor it will be only known to him

or her that who is working on code

simialr to hers. OSS projects will benefit

more if sucessors/ owners/ based on

similar work history are tracked by the

team leaders.

KMS system development has to be

directed by the leaders of the projects. It

helps in knowledge transfer and sharing.

Once the KMS are in place, it can be

maintained by the contributors.

Keeping track

of successor/ co-

owner/

knowledgeable

person/ with

relevant

expertise on the

work of others

G
o

v
e
r
n

a
n

c
e
 a

n
d

 L
e
a

d
e
r
sh

ip

338

Sharing project

ownership

Share ownership of the project, if the

maintainer need to step away from

project, either on hiatus or

permanently, request other

contributors to take over. Find support

for your users and community while

you’re away from a project.Be sure to

communicate you are not available, so

people are not confused by your lack of

responsiveness.

Sharing project ownership is related to

helping community find support in the

absence of the main leader and to keep

the maintenance on the project ongoing.

This practice is categorised under

Governance and Leadership

Eliciting process

to become

maintainer

Document the process on the project to

become maintainer. Use these

interactions happening through

documents as opportunities to help

contributors move down the funnel

(from users to contributors and to

maintainers)

Document the process on the project to

become maintainer.

The policy to become a maintainer

should be elicited by the team leaders on

the project. It is engaging for the

contributors to see what can be outcome

of their efforts and their personal

progress on the project. This also serves

as a motivation to do well to escalate to

the highest level of recognition on the

project.

Document

project rules,

policies,review

process and

decisions

Transparency about project’s

roadmap, the types of contributions

required for the project, how

contributions are reviewed, or why

certain decisions are made on the

project

Transparency about project’s

roadmap, the types of contributions

required for the project, how

contributions are reviewed, or why

certain decisions are made on the

project

All these documents are to be provided

by the project leaders. There can be

changes made later to the rules and

policies but the responsibility of

documenting this rules and policies

mainly lies with the leadership. Also for

a person joining a new project, provision

of these documents enables them to

evaluate on the basis of the elaborated

rules and policies

Adopting real-

time

visualisation of

resources

A visualization word cloud has been

proposed to show quickly the level of

cooperation of the team in the project

[21]. A large variety of data collection

is without human intervention and

rendered as a wordle. Intensity of

colour and size of the letter in a wordle

indicate a need for resources. A

Visualization word cloud does not

cause overhead on the productivity of

the contributors.

Project leaders, owners or team leaders in

OSS may relocate resources on projects

based on the visualisation of resources

when there are less resources than

required. Decisions to use a technology

tool that depicts the real-time

visualisation of resources is mainly upon

the main leaders of the project

G
o

v
e
r
n

a
n

c
e
 a

n
d

 L
e
a

d
e
r
sh

ip

339

Establishing

Community of

practice

network

A Community of Practice to create a

network of experienced contributors

to collect and exchange knowledge.

Siemens and BMW to resolve the

challenges of losing expertise through

retirement and attrition found a cross-

company community network. Intel,

Infineon Technologies, and Winterthur

Insurance Switzerland joined the

“Leaving Experts Community of

Practice”. Members of the community

must be experienced in dealing with

the problem of losing expertise and be

able to contribute valuable lessons to

member companies.

Community of practices focuses on

learning from experience of others with a

focus on establishing a network. It helps

to transfer and share knowledge. The

practice is categorised under knowledg

transfer and sharing

Post mortem review or after action

review to learn through a collective

activity and to build knowledge based

on the experience to improve future

practice. In postmortem, learning

takes place through socialisation, and

when individuals share experiences,

tacit knowledge is externalised.

Knowledge is shared from individual

level to organisational level.

Postmortems are an attempt to codify

knowledge from projects, where the

main output is the report. It can be

seen as a systematic mechanism of

capturing, storing, interpreting and

distributing relevant experience from

projects.

In Apple a similar approach is used

where results are published based on a

project survey, collecting useful

information on project, a debriefing

meeting, and a ‘project history day’.

Microsoft invests considerable efforts

into writing ‘Postmortem reports’. The

reports contain details on what has

worked well for the last project, what

has not worked well and teams that

need improvement for the next project.

Post mortem reviews are conducted in

project at different stages. It is learning

based on the experience and is an

effective way to tansfer and share

knowledge. This practice is categirised

under knowledg transfer and sharing.

Post mortem review can be effective way

for knowledge transfer for OSS

contributors while learning from

experiences discussed on the past

projects.

Post-mortem

reviews for

learning

K
n

o
w

le
d

g
e
 t

r
a

n
sf

e
r
 a

n
d

 s
h

a
r
in

g

340

Job rotation to

acquire

different skills

Job rotation for knowledge exchange

and transfer while people take turn to

work in different job roles, tasks, and

domains. Job rotation legitimises

experience that allows people in the

organisation to work in diverse

knowledge domains. Some

development practices, such as pair

programming, facilitate knowledge

sharing between peers, while job

rotation helps knowledge spread

throughout the project or organisation.

Job rotation on a project that allows a

contributor to work under different roles

in a project to acquire different skills. In

OSS project contributors at a time can

working on multiple roles, this practices

ensures that contributors atleast work on

all roles in a Project. Job rotation leads to

effective knowledge transfer and sharing.

Story telling to

integrate

learning

Using story telling to generating, share,

and discuss stories for quickly

integrating new learning. NASA, the

World Bank, IBM, made productive

use of storytelling

Contributors in OSS project are

encouraged to share knowledge through

story telling, which invloves sharing and

transfering their learning. The story

telling is a knowledge transfer and

sharing practice.

Building

memories on

project

documents and

data

Experience Based Memory:

Experience packaged and stored in an

experience base built by contributors

based on their experiences including

resources such as all experience types,

lesson learned, project data, and

technology reports. Version control,

change management, documenting

design decisions, and requirements

traceability are software engineering

practices that help build project and

product memories as an indirect or

direct effect of software development.

Projects memories are made with the data

avilable from the project in the form of

lesson learned, project data, version

control. This practice can be categorised

under knowledge transfer and sharing.

Training based

on e-Learning/

video/ computer-

based/ on-the-

job/ coaching/

and shadowing

Training is another knowledge transfer

practice found to include some

combination of formal classroom

training, eLearning, video or computer-

based training, on-the-job training,

coaching, and shadowing (De Long and

Davenport 2003).

Some more practices related to

knowledge transfer and sharing. Some

are of digital nature, other relate to

knowledge transfer while on job.

Knowledge

capture and

transfer by

interviews

Interviews in an organisation is a

knowledge transfer knowledge process

used to integrate the knowledge

captured into the organisation

Interviews with contributors highlight

knowledge specific to the project. This is

knowledge cature and then transfering it

in the form of writing or digitally.

Interviews are categorised under

knowledge transfer and sharing.

K
n

o
w

le
d

g
e
 t

r
a

n
sf

e
r
 a

n
d

 s
h

a
r
in

g

341

Training

contributors

Training is another knowledge transfer

practice found to include some

combination of formal classroom

training, eLearning, video or computer-

based training, on-the-job training,

coaching, and shadowing

Training of the contributor is appropriate

to overcome the knowledge barriers in

OSS projects. Removal of knowledge

barriers: namely, lack of technical

experience, lack of domain expertise and

lack of knowledge on project practices

that hinder the contributions.

Mentoring

contributors on

project

Someone is enthusiastic about the

project, but needs a bit of polish

consider mentoring them through their

first contribution.

Resist fixing easy (non-critical) bugs.

Instead, use them as opportunities to

recruit new contributors and mentor

someone who would like to contribute

Mentoring contributors enthusiastic to

work on the project for a head start and

submit quality contributions. This

practice is more useful to overcome

knowledge barriers face by contributors

mainly who are new to the project.

Frequent

updation of

project

documents

keep project documentation up-to-date This practice is useful for the removal of

knowledge barriers. It is the

responsibility of the contributor working

on the project to ensure that documents

are up to date. In case of problem or

clarification required on the process they

should bring to the attention of team

leaders.

R
e
m

o
v

a
l

o
f

K
n

o
w

le
d

g
e
 B

a
r
r
ie

r
s

342

B.9 PKR Practices - Fourth Review

343

P
ro

a
ct

iv
e

K
n

o
w

le
d

g
e

R
et

en
ti

o
n

 P
ra

ct
ic

e

C
a

te
g

o
ry

 (
3

2
)

KPR Practice KPR Practice Description

Rev 1

Rev 2

Rev 3

Rev 4

Memo 4

Advocating maximum

code review feedback

time for all

contributors

Improving code review feedback time for non-

cores.

Set a maximum time limit to respond to

submitted code review by cores and non-

cores alike.Improving code review feedback

time for non-cores.

Rephrased the practice

description

C
o

m
m

u
n

ic
a

ti
o

n
 (

5
)

Establishing

communication

mechanisms from

cores to non-cores

contributors

Advocate active communication on matters

such as high level ideas, suggestions,

information, comments, instructions, answers

to team members and also includes engaging

with software code. The more changes made

to the code, the more knowledge core

contributors share with others specially non-

core contributors.

This practice should result in community of

practice to create a network of experienced

contributors to collect and exchange

knowledge. For example, Siemens and BMW

to resolve the challenges of losing expertise

through retirement and attrition found a

cross-company community network. Intel,

Infineon Technologies, and Winterthur

Insurance Switzerland joined the “Leaving

Experts Community of Practice”. Members

of the community must be experienced in

dealing with the problem of losing expertise

and be able to contribute valuable lessons to

member companies.

Changed the practice name

from "Establishing

Community of practice

network". Rephrased the

practice description. Added

practice "Establishing

Community of practice

network" under knowledge

sharing and transfer under

this practice

as an example.

344

C
o

m
m

u
n

ic
a

ti
o

n
 (

5
)

Clarification of

communication

protocol/ mechanisms

between integrators

and contributors

Integrators should be proactive by

establishing a professional communication

etiquette, and reactive, by following

discussions and intervening in cases where

discussion diverges from the etiquette.

Integrator and contributors should agree on

minimal communication protocols that

increase each other’s awareness and

rendezvous points for mandatory

information exchange and use real-time

communication channels (e.g., IRC or its

evolved counterpart GITTER, which is better

integrated in GitHub) communication is

public and accessible, anybody can read past

archives to get up to speed and participate.

Using story telling to generating, share, and

discuss stories for quickly integrating new

learning. NASA, the World Bank, IBM, made

productive use of storytelling.

Interviews in an organisation is a knowledge

transfer knowledge process used to integrate

the knowledge captured into the organisation.

"Story telling to integrate

learning" from the category

knowledge transfer and

sharing is added as an example

to this practice. Contributors

in OSS project are encouraged

to share knowledge through

story telling, which invloves

sharing and transfering their

learning. The story telling is a

knowledge transfer and

sharing practice.

"Knowledge capture and

transfer by interviews"

practice is removed from

knowledge sharing and

transfer category and moved

under category

communication.

Interviews with contributors

highlight knowledge specific to

the project. This is knowledge

cature and then transfering it

in the form of writing or

digitally. Interviews are

categorised under knowledge

transfer and sharing.

Responding effectively when someone files an

issue, submits a pull request, or asks a

question about the project. Responding

quickly makes project community feel that

they are part of a dialogue, and builds their

enthusiasm to participate. In case, the request

cannot be reviewed immediately,

acknowledging it early helps increase

engagement among project community.

For example, setting up notifications in some

of places like Stack Overflow, Twitter, or

Reddit issue an alert when someone mentions

your project.

Establishing response

time parameters for

project queries or

issues

Changes made to the

descritpion of the practice.

345

Promoting

documentation of

solutions to problems

commonly faced by

multiple users

When multiple users running into the same

problem, document the answers in the some

file such as README. Not a description….

Changed the name of the

practice from "Listing

solutions to problems faced by

multiple users" to the current

name for understanding and

calrification.

Establishing a formal

knowledge contribution

recognition program

C
o

m
m

u
n

ic
a

ti
o

n
 (

5
)

No changes made to this

practice or its description

This practice is more related to

an approach adopted to reach

out to contributors to find

their views, which is like

initiating the communication.

This practice can also be

included governance and

leadership category. But is

more appropriate to be

considered in communication

category because it

demonstrates a communication

mode for the community to

collaborate.No changes made

to this practice or its

description

Rewarding knowledge provider's by recognition

Organisations like Xerox, and Hewlett-Packard

reward people for sharing their knowledge (Rus and

Lindvall 2002). Reward system is not only associated

with the sharing of existing knowledge but also with

the external knowledge from outsiders. Managers are

rewarded in organisations for learning from their

competitors, which are source of external knowledge

(Menon and Pfeffer 2003).

To encourage contribution of knowledge, based on

codification (formally documenting) and

personalisation (sharing knowledge through

socialisation) a reward system is established for

people documenting and sharing knowledge (Hansen

et al. 1999).

No changes made to this practice or

its description

C
o

n
tr

ib
u

to
r

M
o

ti
v
a

ti
o

n
 (

3
)

As a project maintainer, it’s important other

contributors on the project know that their

opinion is heard and someone in leading

position is listening. Making other people feel

heard, and committing to resolving their

concerns, goes a long way to diffuse sensitive

situations. Make sure that everybody feels

heard and that all information has been made

public before moving toward a resolution.

Under a liberal contribution model, generally

people who do the most work are recognized

as most influential, and it is based on current

contributions. Major project decisions are

made based on a consensus seeking process.

Example by elicitng views of project

contributors , one should emphasise

consensus seeking approach. Emphasize

“consensus seeking” rather than consensus.

Community members discuss major concerns

until they feel they have been adequately

heard. While sensible at first glance, voting

emphasizes getting to an “answer,” rather

than listening to and addressing each other’s

concerns.

Actively eliciting views

of project community

on major concerns

346

To promote an active

culture of appreciation for

contributors

Appreciating contributors more often. newsletter or

write a blog post thanking contributors more

frequently Appreciating contributors more often.

newsletter or write a blog post thanking contributors

more frequently Appreciating contributors more

often. newsletter or write a blog post thanking

contributors more frequently

Changed the name of the practice

from "To engage in active

appreciation for contributors" to

the current one for clarity.

Changed the name of the practice

from "Offering progress as

incentives as a motivation to

knowledge sharing and transfer" to

the current one.

To reward active

knowledge contributors

with project seniority

Description.....

Gamification: A gamified environment has

important implications for knowledge management

in software engineering [50] and OSS projects. As

observed, Q&A gamification increased the

engagement of knowledge providers and the

quickness of response. This finding suggests that

Q&A site designers should consider gamification

elements to increase contributor engagement, which

indirectly can help to raise the popularity of their

sites. For example, gamification features in Stack

Overflow’s guarantee that a question will be replied

to by enthusiastic experts within minutes of being

posted [133]. On Stack Overflow, a crowd approach

is used where participants contribute knowledge

independently of each other and gamification

qualities are used to evaluate who provides the best

answer is the one that gains the most points [133].

Knowledge is curated in gamification other than

being developed as is the case with mailing lists.

Curation is a mechanism to provide a tool for

keeping the channel clean of what seems to be

unnecessary information [133].

Here the number of points gained by the contributor

can serve as a extrinsic motivation to gain

recognition and earn a repute in OSS community. At

the same time gamification identifies people who are

more knowledgeable and active based on the point

given to them.

C
o

n
tr

ib
u

to
r

M
o

ti
v
a

ti
o

n
 (

3
)

347

Project policy to invite

contributors from all roles

for peer reviews

Core team proactivly invites contributors

irrespective of their role on the project encourages

them to participate in peer reviews.

No changes made to this practice or

its description.

Labeling bugs for

contributors for different

levels of contributors

label bugs that are suitable for different types of

contributors: for example, “first timers only”, “good

first issue”, or “documentation”. These labels make it

easy for someone new to your project to quickly scan

your issues and get started. Resist fixing easy (non-

critical) bugs. Instead, use them as opportunities to

recruit new contributors

Changed the name of the practice

from "Labeling bugs for

contributors with varying Skills &

Expertise" to the current name for

understanding and calrification.

Some changes to the name of the

practice for clarification

C
o

re
 D

ev
el

o
p

m
en

t
P

ra
ct

ic
e

(8
)

Pair Programming and Shared Code Ownership: In

order to mitigate the effects of turnover on the

ecosystem, the usage of techniques such as pair

programming and shared code ownership are

suggested [95]. such as pair programming, facilitate

knowledge sharing between peers.

// continuity sentence

Remote pair programming is not just for the

corporate sector; it can also be quite successful in

open-source projects. Remote pair programming can

be as simple and efficient as it is in person

programming. Using a text editor where a workspace

and some form of video chatting is shared. Basically

one does same things as in person with a little bit

more articulation of thoughts since you body

language is not visible.

//Expert–novice

Expert–novice pairing creates many opportunities

for the expert to mentor the novice. This pairing can

also introduce new ideas, as the novice is more likely

to question established practices. The expert, now

required to explain established practices, is also more

likely to question them. However, in this pairing, an

intimidated novice may passively "watch the master"

and hesitate to participate meaningfully. Also, some

experts may not have the patience needed to allow

constructive novice participation. (ref: Williams, L.

& Kessler, R. (2003). Pair Programming Illuminated.

Boston: Addison-Wesley Professional.)Pair

Programming and Shared Code Ownership: In order

to mitigate the effects of turnover on the ecosystem,

the usage of techniques such as pair programming

and shared code ownership are suggested [95]. such

as pair programming, facilitate knowledge sharing

between peers.

Encouraging pair

programming and a

culture of shared code

ownership

348

Ensuring the presence of

test files and associated

testing artefacts

Require tests and other checks to improve the quality

of the code. If tests are added, explain how they work

in a file designated for this purpose e.g.

CONTRIBUTING.

Changed the name of the practice

from "Presence of Test Files and

checks to test code" to the current

name for understanding and

calrification.

Substantial new items of

work are labeled as work

in progress

While working on a substantial update to your

project, put it into a pull request and mark it as a

work in progress (WIP). That way, other people can

feel involved in the process early on. Encouraging

contribution while working on a substantial update

to your project, put it into a pull request and mark it

as a work in progress (WIP). That way, other people

can feel involved in the process early on.

Changed the name of the practice

from "Labeling ongoing work as

work in progress" to the current

name for understanding and

calrification.

Introduce non-restrictive

commit access to

contributors where

appropriate

Give every contributor commit access, to allow

people to be more excited to polish their patches even

can help in finding new maintainers for projects that

had not been worked on in a while.

Changed the name of the practice

from "Introduce non-restrictive

commit access to contributors where

appropriate" to the current name

for understanding and calrification.

Establishing explicit code

review guidelines Use of a collaborative code review tool that allows

reviewers to log bugs, discuss them with the author,

and approve changes in the code guidelines should at

least provide details about the expected code style,

commit format, pull request process, and available

communication options.

Code review checklists also provide team members

with clear expectations for each type of review.

The name of the practice is changed

from "Maintaining code review

checklist" to the current name. This

practice is moved to core

development practice from

governance and leadership category.

The practice after the internal

review is thought to be more

suitable under core development

practices because it provides

insights to code review guidelines.

Another practice"Adopting use of

collaborative tool for code review"

under governance and leadership is

merged with this practice. and

details of the included practice are

under the practice descritption.

C
o

re
 D

ev
el

o
p

m
en

t
P

ra
ct

ic
e

(8
)

349

Post mortem review or after action review to learn

through a collective activity and to build knowledge

based on the experience to improve future practice.

In postmortem, learning takes place through

socialisation, and when individuals share

experiences, tacit knowledge is externalised.

Knowledge is shared from individual level to

organisational level. Postmortems are an attempt to

codify knowledge from projects, where the main

output is the report. It can be seen as a systematic

mechanism of capturing, storing, interpreting and

distributing relevant experience from projects.

In Apple a similar approach is used where results are

published based on a project survey, collecting useful

information on project, a debriefing meeting, and a

‘project history day’. Microsoft invests considerable

efforts into writing ‘Postmortem reports’. The

reports contain details on what has worked well for

the last project, what has not worked well and teams

that need improvement for the next project.Post

mortem review or after action review to learn

through a collective activity and to build knowledge

based on the experience to improve future practice.

In postmortem, learning takes place through

socialisation, and when individuals share

experiences, tacit knowledge is externalised.

Knowledge is shared from individual level to

organisational level. Postmortems are an attempt to

codify knowledge from projects, where the main

output is the report. It can be seen as a systematic

mechanism of capturing, storing, interpreting and

distributing relevant experience from projects.

The name of the practice is changed

from "Post-mortem reviews for

learning". The practice of post-

mortem can be more effective in

OSS projects at the time of release.

The practice is also removed from

the knowledge sharing and transfer

category since it is agreed to be

more related to Core dvelopment

practices category. The practice can

help in retaining knowledge from

the experience and lesson learned on

the project.

Release post-mortem

reviews

C
o

re
 D

ev
el

o
p

m
en

t
P

ra
ct

ic
e

(8
)

Any popular project will inevitably attract people

who harm, rather than help, your community. They

may start unnecessary debates, quibble over trivial

features, or bully others. Negative people will make

other people in community uncomfortable. Project

leaders should adopt a zero-tolerance policy towards

these types of people. If left unchecked, negative

people will make other people in community

uncomfortable. They may even leave.

Adopting a code of conduct builds a supportive

community is the key to resolving conflicts. "A code

of conduct is a document that establishes

expectations for behavior for project’s participants.

Adopting, and enforcing, a code of conduct can help

create a positive social atmosphere for project

community."

Any popular project will inevitably attract people

who harm, rather than help, your community. They

may start unnecessary debates, quibble over trivial

features, or bully others. Negative people will make

other people in community uncomfortable. Project

leaders should adopt a zero-tolerance policy towards

these types of people. If left unchecked, negative

people will make other people in community

uncomfortable. They may even leave.

No changes are made to this

practice.

Building a supportive

community for conflict

resolution

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
e
m

 /
 C

u
lt

u
re

 (
7
)

350

Explicity identify

contributors on the project

Designating leaders can be as simple as adding their

names to README or a CONTRIBUTORS text file.

CONTRIBUTORS or AUTHORS file in the project

that lists everyone who’s contributed to the project.

For a bigger project, if there is a website, create a

team page or list project leaders there. For example,

Postgres has a comprehensive team page with short

profiles for each contributor.

Changed the name of the practice

from "Listing contributors/ authors

on Project" to the current name for

understanding and calrification.An

example of how changing names

makes the practice more useful for

the project contributors and how

effectively they can use it to benefit

the project.

Allowing self-organization

of project roles

Let people self-organize and volunteer for the roles

they’re most excited about and interested in, rather

than assigning them.

No changes were made to this

practice and its description.

Creating a culture to share

knowledge altruistically

As an example of intrinsic motivation, Google

consists of a user community mainly of software

engineers. The knowledge is shared by answering

questions and helping solve problems that other

software engineer post, without being compensated.

No changes made to this practice

and its description.

Making project

documentation publically

accessible

Project document should be openly accessible an

access to public. Communication is public and

accessible, anybody can read past archives to get up

to speed by going though mailing lists, blogs and

participate.

Public communication can be as simple as directing

people to open an issue instead of emailing you

directly or commenting on your blog. You could also

set up a mailing list, or create a Twitter account,

Slack, or IRC channel for people to talk about your

project.Project document should be openly accessible

an access to public. Communication is public and

accessible, anybody can read past archives to get up

to speed by going though mailing lists, blogs and

participate.

Changed the name of the practice

from "Public access during project

process documentation" to the

current name for understanding

and calrification.

Any popular project will inevitably attract people

who harm, rather than help, your community. They

may start unnecessary debates, quibble over trivial

features, or bully others. Negative people will make

other people in community uncomfortable. Project

leaders should adopt a zero-tolerance policy towards

these types of people. If left unchecked, negative

people will make other people in community

uncomfortable. They may even leave.

Adopting a code of conduct builds a supportive

community is the key to resolving conflicts. "A code

of conduct is a document that establishes

expectations for behavior for project’s participants.

Adopting, and enforcing, a code of conduct can help

create a positive social atmosphere for project

community."

Any popular project will inevitably attract people

who harm, rather than help, your community. They

may start unnecessary debates, quibble over trivial

features, or bully others. Negative people will make

other people in community uncomfortable. Project

leaders should adopt a zero-tolerance policy towards

these types of people. If left unchecked, negative

people will make other people in community

uncomfortable. They may even leave.

No changes are made to this

practice.

Building a supportive

community for conflict

resolution

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
e
m

 /
 C

u
lt

u
re

 (
7
)

351

Fostering an openminded

culture towards diverse

types of contributions

Open-minded about the types of contributions to

accept start with a bug report or small fix making it

easier for casual contributors to contribute

Changed the name of the practice

from "Acceptability to all types of

contributions" to the current name

for understanding and calrification.

To encourage mentorship

of new comers

Someone is enthusiastic about the project, but needs

a bit of polish consider mentoring them through their

first contribution.

Resist fixing easy (non-critical) bugs. Instead, use

them as opportunities to recruit new contributors

and mentor someone who would like to contribute

Someone is enthusiastic about the project, but needs

a bit of polish consider mentoring them through their

first contribution.

changed the name of the pratice

from "Mentoring contributors on

project" and moved it from the

category "removal of knowledge

barriers" to "culture/ ecosystem/

environment"

Encourage Project Forking Encouraging your community members to work on

their own fork can provide the creative outlet they

need and extend the current work. Users can fultill

their legitimate needs as a user of the code by making

changes required without conflicting with project’s

vision. A document can guide contributors on forking

the project.

After the review it was the decided

to exclude this practice because it

does not benefit the project directly.

It serves as an encouragement for

the contributors to take a different

direction to the project.

Additionally, this practice does not

serve as a candidate effective

knowledge retention practices,

which is the ultimate goal of this

activity.

Frequent updation of

project documents

example of practice

Centralisation: Governance structures in Ericsson is

argued to be similar to OSS, and a centralised

approach is implemented to secure quality [128]. The

situation of knowledge loss faced was because of the

recurrent movement of resources in and out of

products and constantly changing business needs. In

such a situation, the adoption of a centralised

approach helped in architectural knowledge stability

and its availability to new developers and teams.

Actively maintain the document is another example

"actively maintain the documents"

moved from "Removal of

knowledge barrier " category under

"Governance and leadership".

"actively maintain the documents"

moved from "Removal of

knowledge barrier " category under

"Governance and leadership".

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
e
m

 /
 C

u
lt

u
re

 (
7
)

G
o
v
er

n
a
n

ce
 a

n
d

 L
ea

d
er

sh
ip

 (
8
)

352

Proactive assignment of

varying tasks to non-cores

Proactive assignment of

varying tasks to non-cores

As indicated that contributors who modify code from

other contributors stay longer on the project [28].

outcome: This will create a balance of equal

development of skills on the OSS project. For

example, contributors who normally perform

documentation tasks should be assigned some coding

tasks.

No changes were made to this

practice and its description.

The name of the practice is changed

from "Keeping track of successor/

co-owner/ knowledgeable person/

with relevant expertise on the work

of others". The indicated name

provides a better insight into what

exactly this knowledge retention

practice does. Add "Adopting real-

time visualisation of resources" tot

he current as an example rather

than practice listed under from

governance and leadership under

this practice. Project leaders,

owners or team leaders in OSS may

relocate resources on projects based

on the visualisation of resources

when there are less resources than

required. Decisions to use a

technology tool that depicts the real-

time visualisation of resources is

mainly upon the main leaders of the

project

Identification of successors and involving

contributors as co-owners with relevant expertise

knowledgeable on the work of other contributors is

presented as a method to reduce the risk associated

with developer turnover [10]. The files with a

successor were not at risk of abandonment even

when the owning developer left. A successor was

there to perform maintenance tasks [10].

For example, adopting real-time visualisation of

resources: Project leaders, owners or team leaders in

OSS may relocate resources on projects based on the

visualisation of resources when there are less

resources than required. Decisions to use a

technology tool that depicts the real-time

visualisation of resources is mainly upon the main

leaders of the project

Developing Transactive Memory Systems /

Knowledge map / Knowledge portals (OSS

Literature)

The team leaders would be able to keep the track and

identifying people who are knowledgeable on the

work of others.

Transactive Memory System- development within

the teams, based on knowledge location, the usage of

the developer mailing list and knowledge credibility.

An insight into the area of expertise members, a

knowledge map or directory can be used on the

project website internal knowledge portal, serving as

a way to help knowledge workers familiarize

themselves with their colleagues knowledge, K

Portals are rapidly evolving into broad-based

platforms for supporting a wide range of knowledge

worker (KW) tasks

Enabling a strategy of

successor identification

G
o
v
er

n
a
n

ce
 a

n
d

 L
ea

d
er

sh
ip

 (
8
)

353

Distributed project

leadership

Share ownership of the project, if the maintainer

need to step away from project, either on hiatus or

permanently, request other contributors to take over.

Find support for your users and community while

you’re away from a project. Be sure to communicate

you are not available, so people are not confused by

your lack of responsiveness.

The name of the practice is changed

from "sharing project ownership"

to the current name.

Diverse specialisations of Core Contributors: For an

OSS project to survive, a diversity of core developers

is required [132]. When a key contributor abandoned

an OSS project it revealed a very fluctuating

proportion of developer contribution. A significant

imbalance between the contribution and the response

from the developers’ community was noticed. The

reason for the dying project was that a diversity of

core contributors were missing from the project

[132]. Diversity of core contributors also relates to

the underlying concept of uniform knowledge

distribution stated next. Balance between the

contribution submitted and response from specialised

core developers in community. Form a “core team”

of maintainers, or even subcommittees of people who

take ownership of different issue areas (for example,

security, issue triaging, or community conduct).

Job rotation for knowledge exchange and transfer

while people take turn to work in different job roles,

tasks, and domains. Job rotation legitimises

experience that allows people in the organisation to

work in diverse knowledge domains. Some

development practices, such as pair programming,

facilitate knowledge sharing between peers, while job

rotation helps knowledge spread throughout the

project or organisation.

This practice is moved from "Core

Development Practice" category

under "Governance and

Leadership". The practice above

this one also refelcts on the

doversification of contributors

specifically non-cores. While this

practice focus on cores. The main

objective of both practices is same

only targetted to different set of

contributors. Name of the practice is

also changed for a better

understanding.

"Job rotation to acquire different

skills" Is moved from knowledge

sharing and transfer category as as

example to practice "Advocating

diversification of core contributors

specialisation "

This practice is moved from "Core

Development Practice" category

under "Governance and

Leadership". The practice above

this one also refelcts on the

doversification of contributors

specifically non-cores. While this

practice focus on cores. The main

objective of both practices is same

only targetted to different set of

contributors. Name of the practice is

also changed for a better

understanding.

"Job rotation to acquire different

skills" Is moved from knowledge

sharing and transfer category as as

example to practice "Advocating

diversification of core contributors

specialisation "

Advocating diversification

of core contributors

specialisation Advocating

diversification of core

contributors specialisation

G
o
v
er

n
a
n

ce
 a

n
d

 L
ea

d
er

sh
ip

 (
8
)

354

Explicit process for role

progression

Document the process on the project to become a

maintainer. Use these interactions happening

through documents as opportunities to help

contributors move down the funnel (from users to

contributors and to maintainers)

Document the process on the project to become a

maintainer. Use these interactions happening

through documents as opportunities to help

contributors move down the funnel (from users to

contributors and to maintainers)

The name of the practice is changed

from "Eliciting process to become

maintainer" to the current name.

Role progression is an important

incentive for the contributors to

have quality contributions.

Document project rules

and policies

Transparency about project’s roadmap, the types of

contributions required for the project, how

contributions are reviewed, or why certain decisions

are made on the project

changed names of the practice from

"Document project rules,

policies,review process and

decisions".

Training contributors Training is another knowledge transfer practice

found to include some combination of formal

classroom training, eLearning, video or computer-

based training, on-the-job training, coaching, and

shadowing (De Long and Davenport 2003).

Training based on e-Learning/ video/ computer-

based/ on-the-job/ coaching/ and shadowing //

"Establishing mechnisms for training" as new

governance and leadership

Created a new practice here and as

an example moved practice

"Training based on e-Learning/

video/ computer-based/ on-the-job/

coaching/ and shadowing" moved

from category knowledge transfer

and sharing and now placed under

governance and leadership.

G
o
v
er

n
a
n

ce
 a

n
d

 L
ea

d
er

sh
ip

 (
8
)

355

B.10 PKR Practices - Fifth Review

356

P
ro

a
ct

iv
e

K
n

o
w

le
d

g
e

R
et

en
ti

o
n

 P
ra

ct
ic

e

C
a

te
g

o
r
y

 (
3

2
)

K
P

R
 P

r
a

c
ti

c
e

KPR Practice Description

Rev 1

Rev 2

Rev 3

Rev 4

Rev 5

Memo 5

The communication of the OSS project is directed by the

core contributors. Their attitudes and involvement in

knowledge sharing were linked to the demands of their

wider project teams [124]. The core contributors bring high

levels of skills and cognitive characteristics to their project

teams. However, their least involvement in communication

and task changes results into some negative team attitudes.

Knowledge communication between cores and non-cores is

an important factor for knowledge transfer and sharing

leading to uniform knowledge distribution

This practice advocates active communication on matters

such as high level ideas, suggestions, information,

comments, instructions, answers to other contributors and

also includes engaging with software code. The more

changes made to the code, the more knowledge core

contributors share with others specially non-core

contributors.

This practice should result in 'community of practice' to

create a network of experienced contributors to collect and

exchange knowledge with non-cores. For example, Siemens

and BMW to resolve the challenges of losing expertise

through retirement and attrition found a cross-company

community network. Intel, Infineon Technologies, and

Winterthur Insurance Switzerland joined the “Leaving

Experts Community of Practice”. Members of the

community must be experienced in dealing with the

problem of losing expertise and be able to contribute

valuable lessons to member companies. The above practice

can be adapted for OSS project by creating a community of

practice by involving experienced cores, who contribute

towards sharing valuable lessons learned and experience on

the project to non-cores.

Another example of communication mechanism from cores

to non-cores in OSS projects can be of using story telling to

generate, share, and discuss stories for quickly integrating

new learning. NASA, the World Bank, IBM, made

productive use of storytelling. Third example for the said

practice can be of conducting interviews, which is a

knowledge transfer process used to integrate the knowledge

captured into the organisation. In OSS projects, interview

can serve to transfer knowledge from cores to non-cores.

Revised the description of

the practice for readibility

and understanding.

E
st

a
b

li
sh

in
g

 c
o

m
m

u
n

ic
a

ti
o

n
 m

e
c
h

a
n

is
m

s
fr

o
m

 c
o

r
e
s

to
 n

o
n

-c
o

r
e
s

c
o

n
tr

ib
u

to
r
s

C
o

m
m

u
n

ic
a

ti
o

n
 (

6
)

357

A
d

v
o

c
a

ti
n

g
 m

a
x

im
u

m
 l

im
it

 o
f

c
o

d
e
 r

e
v

ie
w

 f
e
e
d

b
a

c
k

 t
im

e
 f

o
r

a
ll

 c
o

n
tr

ib
u

to
r
s

Due to the lack of an established reputation, peripheral

developers or non-cores wait 2 to 19 times (or 12 to 96

hours) longer than core developers, to complete the review

process. Accordingly, a delay in receiving feedback on

reviews may negatively motivate a peripheral or new

contributor [135]. An improvement to the timings of the

review feedbacks in OSS projects of peripherals or non-

cores can result in a uniform distribution of knowledge,

reduce the effects of turnover, and motivate newcomers to

stay for a longer duration.

This practice is included in communication category but

can be categorised under "Core Development Practices" or

under 'Motivation'. In this practice the emphasis is on

providing timely feedback and minimising delay, which is

more related to communication category rather than 'core

development' or 'motivation' category. An example of

overcoming delay to core review feedback time, is to set a

maximum time limit to respond to a submitted code review

by cores and non-cores alike.

Revised the description of

the practice for readability

and understanding.

C
la

r
if

ic
a

ti
o

n
 o

f
c
o

m
m

u
n

ic
a

ti
o

n
 p

r
o

to
c
o

l/

m
e
c
h

a
n

is
m

s
b

e
tw

e
e
n

 i
n

te
g

r
a

to
r
s

a
n

d

c
o

n
tr

ib
u

to
r
s

Integrator is a person who merges a branch (a subset of the

same project) into the main branch of the project.

Integrators should be proactive by establishing a

professional communication etiquette, and reactive by

following discussions and intervening in cases where

discussion diverges from the etiquette.

For instance, integrator and contributors should agree on

minimal communication protocols that increase each

other’s awareness and rendezvous points for mandatory

information exchange and use real-time communication

channels (e.g., IRC or its evolved counterpart GITTER,

which is better integrated in GitHub) communication is

public and accessible, anybody can read past archives to

get up to speed and participate.

Revised the description of

the practice for readability

and understanding.

E
st

a
b

li
sh

in
g

 r
e
sp

o
n

se
 t

im
e
 p

a
r
a

m
e
te

r
s

fo
r
 p

r
o

je
c
t

q
u

e
r
ie

s
o

r

is
su

e
s This practice focuses on the timely response to queries or

issues on the project helps to engage contributors and

makes them feel involved in the project. Furthermore,

interest of contributors looking forward to get involved in

the project will be heightened when they receive timely

response to their queries resulting in new contributors on

the project.

Responding effectively when someone files an issue,

submits a pull request, or asks a question about the project.

Responding quickly makes project community feel that

they are part of a dialogue, and builds their enthusiasm to

participate. In case, the request cannot be reviewed

immediately, acknowledging it early helps increase

engagement among project community.

For example, setting up notifications in some of places like

Stack Overflow, Twitter, or Reddit issue an alert when

someone mentions your project.

Revised the description of

the practice for readability

and understanding.

C
o

m
m

u
n

ic
a

ti
o

n
 (

6
)

358

P
r
o

m
o

ti
n

g
 d

o
c
u

m
e
n

ta
ti

o
n

 o
f

so
lu

ti
o

n
s

to

p
r
o

b
le

m
s

c
o

m
m

o
n

ly
 f

a
c
e
d

 b
y

 m
u

lt
ip

le

u
se

r
s OSS users can face many issues while using the project.

This practice promotes the documentation of solutions to

problems experienced by users. This practice belongs in the

communication category while demonstrating the use of

documentation as an effective mode to communicate

knowledge to the contributors of the project. The issues that

are commonly faced by many users are suggested to be

recorded in writing and document is given access to all

contributors on the project.

Example of implementing this practice can be of when

multiple users run into the same problem, document the

answers in the some file such as README and provide its

access to contributors.

Revised the description of

the practice for readability

and understanding.

A
c
ti

v
e
ly

 e
li

c
it

in
g

 v
ie

w
s

o
f

p
r
o

je
c
t

c
o

m
m

u
n

it
y

 o
n

 m
a

jo
r
 c

o
n

c
e
r
n

s

Maintainer has commit rights on the project specifically the

main branch. Contributor who wants to make a

modification ('contributor') creates a branch and makes the

changes to that branch, then sends a request to the project

'maintainers' (people who have commit rights to the

project). As a project maintainer, it’s important for other

contributors on the project know that their opinion is heard

and someone in leading position is listening. Making other

people feel heard, and committing to resolving their

concerns, goes a long way to diffuse sensitive situations.

Make sure that everybody feels heard and that all

information has been made public before moving toward a

resolution. Under a liberal contribution model, generally

people who do the most work are recognized as most

influential, and it is based on

current contributions. Major project decisions are made

based on a consensus seeking process.

This practice focuses more on approach adopted to reach

out to contributors to find out

 their views on major concerns through open discussion.

This practice can also be included under governance and

leadership category. One of the responsibility of

governance in project is to voice the opinion of people.

This practice adheres more to achieving communication

objectives on the project rather than governing the project.

It is more appropriate to consider this practice under

communication category of proactive knowledge retention

practices.

Example by eliciting views of project contributors, one

should emphasis consensus seeking approach. Emphasize

“consensus seeking” rather than consensus. Community

members discuss major concerns until they feel they have

been adequately heard. While sensible at first glance,

voting emphasizes getting to an “answer,” rather than

listening to and addressing each other’s concerns.

Revised the description of

the practice for readability

and understanding.

359

T
o

 r
e
w

a
r
d

 a
c
ti

v
e
 k

n
o

w
le

d
g

e
 c

o
n

tr
ib

u
to

r
s

w
it

h
 p

r
o

je
c
t

se
n

io
r
it

y

In order to encourage employees to participate in KR

activities, a recognition and reward structure can be

incorporated in the core processes of the organisation. A

reward structure is based on using either intrinsic

motivators or extrinsic motivators. Intrinsic motivator

includes acts that make the job more satisfying such as

praise and recognition. Extrinsic motivation is related to

monetary incentives Reward is associated with extrinsic

motivation of a contributor. The category contributor

motivation relates to encouraging knowledge providers by

rewarding them.

Organisations like Xerox, and Hewlett-Packard reward

people for sharing their knowledge (Rus and Lindvall

2002). Reward system is not only associated with the

sharing of existing knowledge but also with the external

knowledge from outsiders. Managers are rewarded in

organisations for learning from their competitors, which are

source of external

knowledge (Menon and Pfeffer 2003).

To encourage contribution of knowledge, based on

codification (formally documenting) and personalisation

(sharing knowledge through socialisation) a reward system

is established for people documenting and sharing

knowledge (Hansen et al. 1999)Rewarding knowledge

provider's by recognition

Revised the description of

the practice for readability

and understanding.

E
st

a
b

li
sh

in
g

 a
 f

o
r
m

a
l

k
n

o
w

le
d

g
e
 c

o
n

tr
ib

u
ti

o
n

 r
e
c
o

g
n

it
io

n
 p

r
o

g
r
a

m

Contributors progress to become a core contributor in the

project based on meritocracy and mainly on the number of

the code contributions they submit. The practice suggests to

utilise the concept of extrinsic motivation and have an

additional criteria of assessing a contributor based on

knowledge sharing and transfer activities on the project.

Active knowledge sharing can be seen as a mechanism to

contribute towards contributor's seniority.

A gamified environment has important implications for

knowledge management in software engineering [50] and

OSS projects. As observed, Q&A gamification increased

the engagement of knowledge providers and the quickness

of response. This finding suggests that Q&A site designers

should consider gamification elements to increase

contributor engagement, which indirectly can help to raise

the popularity of their sites. For example, gamification

features in Stack Overflow’s guarantee that a question will

be replied to by

enthusiastic experts within minutes of being posted [133].

On Stack Overflow, a crowd approach is used where

participants contribute knowledge independently of each

other and gamification qualities are used to evaluate who

provides the best answer is the one that gains the most

points [133]. Knowledge is curated in gamification other

than being developed as is the case with mailing lists.

Curation is a mechanism to provide a tool for keeping the

channel clean of what seems to be unnecessary information

[133]. Here the number of points gained by the contributor

can serve as a extrinsic motivation to gain recognition and

earn a repute in OSS community. At the same time

gamification identifies people who are more knowledgeable

and active based on the point given to them.

Revised the description of

the practice for readability

and understanding.

C
o

n
tr

ib
u

to
r

M
o

ti
v

a
ti

o
n

 (
3

)

360

T
o

 p
r
o

m
o

te
 a

n
 a

c
ti

v
e

c
u

lt
u

r
e
 o

f
a

p
p

r
e
c
ia

ti
o

n
 f

o
r

c
o

n
tr

ib
u

to
r
s

Appreciation of contributors is an extrinsic type of

motivation. Appreciating contributors more often through

activities such as newsletters and blog posts while

thanking contributors motivates them to stay on the project.

This practice encourages the adoption of such culture

where objective is to motivate contributors by appreciation

of their efforts in the project.

Revised the description of

the practice for readability

and understanding.

P
r
o

je
c
t

p
o

li
c
y

 t
o

 i
n

v
it

e

c
o

n
tr

ib
u

to
r
s

fr
o

m
 a

ll
 r

o
le

s
fo

r
 p

e
e
r

r
e
v

ie
w

s Peer reviews are conducted asynchronously in OSS projects

to empower experts who provide feedback to code

contributors [134]. Peer review is a collaborative activity

and inviting contributors from different roles can lead to

uniform knowledge distribution from cores to non-cores.

This is included as the core development practice since peer

review is one of the key development activity in OSS

development. An example of this practice can be that core

team proactively invites contributors irrespective of their

role on the project and encourage them to participate in

peer reviews.

Revised the description of

the practice for readability

and understanding.

Revised the description of

the practice for readability

and understanding.

C
o

n
tr

ib
u

to
r

M
o

ti
v

a
ti

o
n

 (
3

)

In order to mitigate the effects of turnover on the

ecosystem, the usage of techniques such as pair

programming and shared code ownership are suggested

[95]. Pair programming facilitates knowledge sharing

between peers. This practice is considered under the

category of core development practice represents proactive

approach towards knowledge retention in OSS projects. It

further can facilitate effective knowledge sharing in the

OSS projects.

Examples of pair programming discussed here are remote

pair programming and expert novice pairing.

Remote pair programming is not just for the corporate

sector; it can also be quite successful in open-source

projects. Remote pair programming can be as simple and

efficient as it is in person programming. Using a text editor

where a workspace and some form of video chatting is

shared. Basically one does same things as in person with a

little bit more articulation of thoughts since you body

language is not visible.

Expert–novice pairing creates many opportunities for the

expert to mentor the novice. This pairing can also introduce

new ideas, as the novice is more likely to question

established practices. The expert, now required to explain

established practices, is also more likely to question them.

However, in this pairing, an intimidated novice may

passively "watch the master" and hesitate to participate

meaningfully. Also, some experts may not have the

patience needed to allow constructive novice participation.

(ref: Williams, L. & Kessler, R. (2003). Pair Programming

Illuminated. Boston: Addison-Wesley Professional.)

E
n

c
o

u
r
a

g
in

g
 p

a
ir

 p
r
o

g
r
a

m
m

in
g

 a
n

d
 a

 c
u

lt
u

r
e
 o

f
sh

a
r
e
d

 c
o

d
e
 o

w
n

e
r
sh

ip

C
o

re
 D

ev
e
lo

p
m

e
n

t
P

ra
ct

ic
e
 (

8
)

361

L
a

b
e
ll

in
g

 b
u

g
s

fo
r
 c

o
n

tr
ib

u
to

r
s

fo
r

d
if

fe
r
e
n

t
le

v
e
ls

 o
f

c
o

n
tr

ib
u

to
r
s

Labelling a bug to suit the level of contributor expertise

will benefit OSS project to recruit more contributors and

get them started with tasks according to their knowledge

and expertise. Labelling bugs helps in identifying types of

tasks and facilitate their resolution based on the suitability

of contributor. This practice is included under the 'core

development practice', because it benefits the development

of the OSS project. For example, “first timers only”, “good

first issue”, or “documentation”. These labels make it easy

for someone new on the project to quickly scan issues on

the project and get started. Similarly, resisting to fix easy

(non-critical) bugs provides opportunities to recruit new

contributors

Revised the description of

the practice for readability

and understanding.

E
n

su
r
in

g
 t

h
e
 p

r
e
se

n
c
e
 o

f

te
st

 f
il

e
s

a
n

d
 a

ss
o

c
ia

te
d

te
st

in
g

 a
r
te

fa
c
ts

Test files and testing artefacts help in testing code and can

be one of the core development practices to directly impact

the quality of the code. Test files include tests and other

checks to improve the quality of the code. For example, if

tests are added for the project, explanation should be

provided on how they work in a file specifically designated

for this purpose e.g. CONTRIBUTING.

Revised the description of

the practice for readability

and understanding.

S
u

b
st

a
n

ti
a

l
n

e
w

 i
te

m
s

o
f

w
o

r
k

 a
r
e

la
b

e
ll

e
d

 a
s

w
o

r
k

 i
n

 p
r
o

g
r
e
ss

Labelling on going work as work in progress attracts more

contributors interested in the ongoing updates. Furthermore,

more expertise in the OSS development is pooled in by

such labelling activity. It can be a piece of information on

current work that is communicated to contributors. This

practice encourages and invites more contribution while

working on a substantial update and therefore is included in

'core development practice'. The practice can be applied,

while working on a substantial project update, through a

pull request and marking it as a work in progress (WIP).

That way, other people can feel involved in the process

early on.

Revised the description of

the practice for readability

and understanding.

In
tr

o
d

u
c
e
 n

o
n

-r
e
st

r
ic

ti
v

e
 c

o
m

m
it

 a
c
c
e
ss

 t
o

c
o

n
tr

ib
u

to
r
s

w
h

e
r
e
 a

p
p

r
o

p
r
ia

te In OSS project not every contributor has right to commit

the code. The code review policies describe the process for

commit access. Generally code commit access is given only

to selected contributors. If contributors are allowed to

commit their code to a repository where it doesn't effect

main branch but at the same time contributor code is

reviewed by other contributors. This expedites the learning

and correction process. This practices falls under the

category of Core Development Practices. Practically the

practice can be applied by giving every contributor commit

access, to allow her to be more excited to polish her

patches. Further benefit of applying this practice can be

that it helps in finding new maintainers for projects that had

not been worked on in a while.

Revised the description of

the practice for readability

and understanding.

E
st

a
b

li
sh

in
g

 e
x

p
li

c
it

 c
o

d
e
 r

e
v

ie
w

g
u

id
e
li

n
e
s Code review guidelines are effective for code reviews and

corrections. This practice belongs to 'Core Development

Practice' category. Code review checklists can be a useful

way to provide team members with clear expectations for

each type of review. The use of a collaborative code

review tool is recommended that allows reviewers to log

bugs, discuss them with the author, and approve changes in

the code guidelines should at least provide details about the

expected code style, commit format, pull request process,

and available communication options.

Revised the description of

the practice for readability

and understanding.

C
o

re
 D

ev
e
lo

p
m

e
n

t
P

ra
ct

ic
e
 (

8
)

362

E
x

p
li

c
it

ly
 i

d
e
n

ti
fy

 c
o

n
tr

ib
u

to
r
s

o
n

 t
h

e
 p

r
o

je
c
t

Explicit identification of contributors who are involved

with the project can be helpful for reaching out to them for

queries, solutions, and support. This practice is relevant to

environment/ ecosystem/ culture of the OSS project

community.

Example of identifying the contributors can be that

designating leaders simply as add their names to

README or a CONTRIBUTORS text file.

CONTRIBUTORS or AUTHORS file in the project that

lists everyone who’s contributed to the project. For a bigger

project, if there is a website, creating a team page or list

project leaders would help. For instance, Postgres has a

comprehensive team page with short profiles for each

contributor.

Revised the description of

the practice for readability

and understanding.

Post mortem review or after action review to learn through

a collective activity and to build knowledge based on the

experience to improve future practice. In postmortem,

learning takes place through socialisation, and when

individuals share experiences, tacit knowledge is

externalised. Knowledge is shared from individual level to

organisational level. Postmortems are an attempt to codify

knowledge from projects, where the main output is the

report. It can be seen as a systematic mechanism of

capturing, storing, interpreting and distributing relevant

experience from projects.

In Apple a similar approach is used where results are

published based on a project survey, collecting useful

information on project, a debriefing meeting, and a ‘project

history day’. Microsoft invests considerable efforts into

writing ‘Postmortem reports’. The reports contain details

on what has worked well for the last project, what has not

worked well and teams that need improvement for the next

project.

Revised the description of

the practice for readability

and understanding.

R
e
le

a
se

 p
o

st
-m

o
r
te

m
 r

e
v

ie
w

s

Any popular project will inevitably attract people who

harm, rather than help project's community. They may start

unnecessary debates, quibble over trivial features, or bully

others. Negative people will make other people in

community uncomfortable. Project leaders should adopt a

zero-tolerance policy towards these types of people. If left

unchecked, negative people will make other people in

community uncomfortable. They may even leave. A OSS

community with an ability to resolve conflicts will last

longer and with time evolve and more productive. Building

a community that is supportive is related to Environment/

Ecosystem/ Culture.

For example, adopting a code of conduct builds a

supportive community is the key to resolving conflicts. "A

code of conduct is a document that establishes expectations

for behaviour for project’s participants. Adopting, and

enforcing, a code of conduct can help create a positive

social atmosphere for project community."

Revised the description of

the practice for readability

and understanding.

B
u

il
d

in
g

 a
 s

u
p

p
o

r
ti

v
e
 c

o
m

m
u

n
it

y
 f

o
r
 c

o
n

fl
ic

t
r
e
so

lu
ti

o
n

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
em

/
C

u
lt

u
re

 (
7

)

C
o

re
 D

ev
e
lo

p
m

e
n

t
P

ra
ct

ic
e
 (

8
)

363

A
ll

o
w

in
g

 s
e
lf

-o
r
g

a
n

iz
a

ti
o

n
 o

f
p

r
o

je
c
t

r
o

le
s

Self organisation is related to letting people decide what

role they want on the project. It can be categorised under

governance and leadership. It can also be categorised under

Environment/ Ecosystem due to reason that contributors

interact in OSS ecosystem and decide on the role they want

and communicate it to others effectively. Under governance

and leadership the self-organisation is portrayed as decision

making restricted only to team leaders. Alternatively, this

practice under environment/ ecosystem/ culture category

reflects more freedom to allow self-organisation among

contributors.

For example, letting people self-organize and volunteer for

the roles they’re most excited about and interested in, rather

than assigning them.

Revised the description of

the practice for readability

and understanding.

C
r
e
a

ti
n

g
 a

 c
u

lt
u

r
e
 t

o
 s

h
a

r
e

k
n

o
w

le
d

g
e
 a

lt
r
u

is
ti

c
a

ll
y Creating awareness among contributors and involving

altruistic philosophy is the main reason behind initiating an

OSS project. Knowledge sharing can be introduced as a

culture in OSS to stabilise ecosystem and selfless gesture of

doing good to the society.

As an example of intrinsic motivation, Google consists of a

user community mainly of software engineers. The

knowledge is shared by answering questions and helping

solve problems that other software engineer post, without

being compensated.

Revised the description of

the practice for readability

and understanding.

M
a

k
in

g
 p

r
o

je
c
t

d
o

c
u

m
e
n

ta
ti

o
n

 p
u

b
li

c
ly

 a
c
c
e
ss

ib
le Public access provides visibility to ongoing project

documentation. This can be related to the communicating

changes in the documentation on the fly. But it is more of

an adoption of a culture or environment where

documentation is given public access to be viewed by the

contributors of the project. This practices also enables the

building ans strengthening of the ecosystem.

Project document should have an open access to all project

community. When communication is public and accessible,

anybody can read past archives to get up to speed by going

though mailing lists, blogs and participate. For example,

public communication can be as simple as directing people

to open an issue instead of emailing directly to project

leader or commenting on project's blog. Further, setting up

a mailing list, or creating a Twitter account, Slack, or IRC

channel for people to talk about the project..

Revised the description of

the practice for readability

and understanding.

F
o

st
e
r
in

g
 a

n
 o

p
e
n

-m
in

d
e
d

c
u

lt
u

r
e
 t

o
w

a
r
d

s
d

iv
e
r
se

ty
p

e
s

o
f

c
o

n
tr

ib
u

ti
o

n
s

OSS project governing teams and other contributors should

adopt a culture to be acceptable to all kinds of

contributions including small ones. This kind of open

culture encourages contributors who are just casual

contributors but their efforts are recognised and accepted.

For example, the types of contributions to accept can be a

bug report or a small fix making it easier for casual

contributors to contribute.

Revised the description of

the practice for readability

and understanding.

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
em

/
C

u
lt

u
re

 (
7

)

364

T
o

 e
n

c
o

u
r
a

g
e
 m

e
n

to
r
sh

ip
 o

f
n

e
w

 c
o

m
e
r
s

Mentoring contributors enthusiastic to work on the project

for a head start and submit quality contributions. This

practice is more useful to overcome knowledge barriers

faced by contributors mainly who are new to the project.

Someone is enthusiastic about the project, but needs a bit

of polishing can be considered for mentoring through their

first contribution.

For example, resist fixing easy (non-critical) bugs. Instead,

use them as an opportunity to recruit new contributors and

mentor someone who would like to contribute.

Revised the description of

the practice for readability

and understanding.

Revised the description of

the practice for readability

and understanding.

F
r
e
q

u
e
n

t
u

p
d

a
ti

o
n

 o
f

p
r
o

je
c
t

d
o

c
u

m
e
n

ts

Identification of successors and involving contributors as

co-owners with relevant expertise knowledgeable on the

work of other contributors is presented as a method to

reduce the risk associated with developer turnover [10].

The files with a successor were not at risk of abandonment

even when the owning developer left. A successor was

there to perform maintenance tasks [10].

For example, adopting real-time visualisation of resources

can facilitate in the identification of successors. Project

leaders, owners or team leaders in OSS may relocate

resources on projects based on the visualisation of

resources when there are less resources than required.

Decisions to use a technology tool that depicts the real-time

visualisation of resources is mainly upon the main leaders

of the project

Another example is to develop a Transactive Memory

Systems / Knowledge map / Knowledge portals. The team

leaders would be able to keep the track and identifying

people who are knowledgeable on the work of others.

Transactive Memory System development within the teams

is based on knowledge location, the usage of the developer

mailing list and knowledge credibility. An insight into the

area of expertise members, a knowledge map or directory

can be used on the project website internal knowledge

portal, serving as a way to help knowledge workers

familiarize themselves with their colleagues knowledge, K

Portals are rapidly evolving into broad-based platforms for

supporting a wide range of knowledge worker (KW) tasks

Revised the description of

the practice for readability

and understanding.

E
n

a
b

li
n

g
 a

 s
tr

a
te

g
y

 o
f

su
c
c
e
ss

o
r
 i

d
e
n

ti
fi

c
a

ti
o

n

G
o

v
er

n
a

n
ce

 a
n

d
 L

ea
d

er
sh

ip
 (

8
)

E
n

v
ir

o
n

m
en

t/
 E

co
sy

st
em

/
C

u
lt

u
re

 (
7

)

This practice is useful for the removal of knowledge

barriers. It is the responsibility of the contributor working

on the project to ensure that documents are up to date. In

case of problem or clarification required on the process it

should be brought to the attention of team leaders. This can

be related to culture category of practices but having a

culture solely would not fulfil the need of contributors

when it comes to accessibility and correctness of

knowledge available. The knowledge centralisation and

updation has to be monitored by team leaders and its

accessibility to contributors and teams. Also team leads or

people governing OSS project are generally more

knowledgeable to update the documents at the central

location.

For example centralisation is explained by inspecting the

governance structures in Ericsson, which is argued to be

similar to OSS, and where a centralised approach is

implemented to secure quality [128]. The situation of

knowledge loss faced was because of the recurrent

movement of resources in and out of products and

constantly changing business needs. In such a situation, the

adoption of a centralised approach helped in architectural

knowledge stability and its availability to new developers

and teams. Centralisation also involves actively maintaining

the project documents.

365

P
r
o

a
c
ti

v
e
 a

ss
ig

n
m

e
n

t
o

f
v

a
r
y

in
g

 t
a

sk
s

to
 n

o
n

-c
o

r
e
s

The skill set of core contributors is better than non-cores.

Cores make 80% of the knowledge contributions in OSS

projects. In order to uniformly distribute knowledge from

cores to non-cores, the team leads can assign different tasks

to non-cores proactively. This falls under government and

leadership because the team leads can control the extent of

knowledge that is shared with non-cores. proactive

assignment of different tasks to non-cores can be governed

by leaders in OSS projects.

As indicated that contributors who modify code from other

contributors stay longer on the project [28]. This will create

a balance of equal development of skills on the OSS

project. For example, contributors who normally perform

documentation tasks should be assigned some coding tasks.

Revised the description of

the practice for readability

and understanding.

Identification of successors and involving contributors as

co-owners with relevant expertise knowledgeable on the

work of other contributors is presented as a method to

reduce the risk associated with developer turnover [10].

The files with a successor were not at risk of abandonment

even when the owning developer left. A successor was

there to perform maintenance tasks [10].

For example, adopting real-time visualisation of resources

can facilitate in the identification of successors. Project

leaders, owners or team leaders in OSS may relocate

resources on projects based on the visualisation of

resources when there are less resources than required.

Decisions to use a technology tool that depicts the real-time

visualisation of resources is mainly upon the main leaders

of the project

Another example is to develop a Transactive Memory

Systems / Knowledge map / Knowledge portals. The team

leaders would be able to keep the track and identifying

people who are knowledgeable on the work of others.

Transactive Memory System development within the teams

is based on knowledge location, the usage of the developer

mailing list and knowledge credibility. An insight into the

area of expertise members, a knowledge map or directory

can be used on the project website internal knowledge

portal, serving as a way to help knowledge workers

familiarize themselves with their colleagues knowledge, K

Portals are rapidly evolving into broad-based platforms for

supporting a wide range of knowledge worker (KW) tasks

Revised the description of

the practice for readability

and understanding.

E
n

a
b

li
n

g
 a

 s
tr

a
te

g
y

 o
f

su
c
c
e
ss

o
r
 i

d
e
n

ti
fi

c
a

ti
o

n

For an OSS project to survive, a diversity of core

developers is required [132]. When a key contributor

abandoned an OSS project it revealed a very fluctuating

proportion of developer contribution. A significant

imbalance between the contribution and the response from

the developers’ community was noticed. The reason for the

dying project was that a diversity of core contributors were

missing from the project [132]. Diversity of core

contributors also relates to the underlying concept of

uniform knowledge distribution stated next. Balance

between the contribution submitted and response from

specialised core developers in community. Form a “core

team” of maintainers, or even subcommittees of people who

take ownership of different issue areas (for example,

security, issue triaging, or community conduct).

As an example, job rotation allows for knowledge exchange

and transfer while people take turn to work in different job

roles, tasks, and domains. Job rotation legitimises

experience that allows people in the organisation to work in

diverse knowledge domains. Some development practices,

such as pair programming, facilitate knowledge sharing

between peers, while job rotation helps knowledge spread

throughout the project or organisation.

Revised the description of

the practice for readability

and understanding.

A
d

v
o

c
a

ti
n

g
 d

iv
e
r
si

fi
c
a

ti
o

n
 o

f
c
o

r
e
 c

o
n

tr
ib

u
to

r
s

sp
e
c
ia

li
sa

ti
o

n

G
o

v
er

n
a

n
ce

 a
n

d
 L

ea
d

er
sh

ip
 (

8
)

366

Appendix C

The Survey Instrument and Data

Collection

C.1 Survey Instrument

367

368

369

370

371

372

373

374

375

376

377

378

379

C.2 Data Collected Through Survey Instrument

(Consent, Profile Questions 1-4, and Practice Questions 1-4)

380

Questions on PKR Practices 1-4

P
le

a
se

 t
ic

k
 t

h
is

 b
o

x
 t

o
 i

n
d

ic
a

te
 y

o
u

 c
o

n
se

n
t

to
 y

o
u

r

in
p

u
t

to
 t

h
is

 s
u

rv
ey

 b
ei

n
g

 u
se

d
 a

n
o

n
y

m
o

u
sl

y
 a

n
d

 y
o

u

u
n

d
er

st
a

n
d

 t
h

a
t

y
o

u
r

in
v

o
lv

em
en

t
is

 v
o

lu
n

ta
ry

.

1
.

In
 t

o
ta

l
h

o
w

 m
a

n
y

 O
S

S
 p

ro
je

c
ts

 h
a

v
e

y
o

u
 w

o
rk

ed

o
n

?

2
.

W
h

ic
h

 o
f

th
e

fo
ll

o
w

in
g

 a
ct

iv
it

ie
s

a
p

p
ly

 t
o

 y
o

u
r

O
S

S

w
o

rk
?

3
.

H
o

w
 m

a
n

y
 y

ea
rs

 h
a

v
e

y
o

u
 b

ee
n

 c
o

n
tr

ib
u

ti
n

g
 t

o
 O

S
S

p
ro

je
c
ts

?

4
.

H
o

w
 m

u
ch

 c
o

m
p

u
te

r
p

ro
g

ra
m

m
in

g
 e

x
p

er
ie

n
ce

 d
o

y
o

u
 h

a
v

e?

1
.

E
n

co
u

ra
g

e
p

a
ir

 p
ro

g
ra

m
m

in
g

 a
n

d
 s

h
a

re
d

 c
o

d
e

o
w

n
er

sh
ip

2
.

P
ro

m
o

te
 a

 p
o

li
cy

 t
h

a
t

en
co

u
ra

g
es

 p
ee

r
re

v
ie

w

co
n

tr
ib

u
ti

o
n

s
fr

o
m

 a
ll

 p
ro

je
c
t

ro
le

s
(i

rr
e
sp

ec
ti

v
e

o
f

th
ei

r
ro

le
 o

r
se

n
io

ri
ty

)

3
.

U
se

 b
u

g
 l

a
b

el
in

g
 s

o
 t

h
a

t
co

n
tr

ib
u

to
rs

 c
a

n
 e

ff
ec

ti
v

el
y

se
le

c
t

ta
sk

s
a

n
d

 m
a

k
e

co
n

tr
ib

u
ti

o
n

s
(e

.g
.

"
su

it
ed

 f
o

r

n
ew

co
m

er
s"

,
"

F
e
a

tu
re

 x
y

z"
)

4
.

E
n

su
re

 t
h

e
p

re
se

n
ce

 o
f

te
st

in
g

 a
rt

ef
a

ct
s

(e
.g

.
u

n
it

te
st

s,
 t

es
t

sc
r
ip

ts
,

te
st

 c
a

se
s)

.

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 8 7 10 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester10+ Years 10+ Years 6 10 9 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 3 9 7 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years10+ Years 5 7 7 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years5 to 10 Years 10 10 10 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester1 to 5 Years 5 to 10 Years 8 7 8 8

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer10+ Years 10+ Years 7 10 10 9
I consent 10+ Bugreporte 5 to 10 5 to 10 7 7 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester10+ Years 10+ Years 2 6 2 6

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years10+ Years 7 7 3 2

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years10+ Years 10 10 9 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor10+ Years 10+ Years 2 4 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Tester, Integrator10+ Years 10+ Years 6 9 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor1 to 5 Years 5 to 10 Years 10 8 7 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor10+ Years 10+ Years 10 10 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 7 7 8 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years10+ Years 7 10 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer, Tester1 to 5 Years 2 to 5 Years 8 9 7 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years10+ Years 2 9 5 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator1 to 5 Years 10+ Years 7 5 7 10

I consent 1-5 Bug reporter, Code contributor5 to 10 Years10+ Years 5 5 8 8

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 7 6 8 9

I consent 10+ Bug reporter, Code contributor1 to 5 Years 10+ Years 5 8 10 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester1 to 5 Years 2 to 5 Years 5 5 10 8

I consent 5 -10 Bug reporter, Code contributor1 to 5 Years 5 to 10 Years 9 8 7 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator1 to 5 Years 2 to 5 Years 10 10 8 8

I consent 1-5 Code contributor, Maintainer, Committer10+ Years 10+ Years 0 0 10 10

I consent 1-5 Code contributor, Reviewer, Document writer/ editor1 to 5 Years 5 to 10 Years 8 9 9 7

I consent 1-5 Code contributor1 to 5 Years 5 to 10 Years 8 5 10 8

I consent 1-5 Code contributor, Maintainer, Reviewer, Committer, Integrator1 to 5 Years 2 to 5 Years 7 9 9 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor5 to 10 Years10+ Years 10 10 10 10

I consent 1-5 Bug reporter, Code contributor, Document writer/ editor1 to 5 Years 5 to 10 Years 6 9 6 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years10+ Years 7 10 7 10

Profile Questions 1-4

381

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester1 to 5 Years 5 to 10 Years 7 8 4 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years5 to 10 Years 1 7 5 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Tester5 to 10 Years5 to 10 Years 5 8 7 9

I consent 5 -10 Bug reporter, Code contributor, Tester1 to 5 Years 2 to 5 Years 6 8 10 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Tester1 to 5 Years 2 to 5 Years 0 10 10 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor1 to 5 Years 5 to 10 Years 8 3 5 5

I consent 10+ Bug reporter, Code contributor, Maintainer1 to 5 Years 2 to 5 Years 2 10 8 7

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester5 to 10 Years10+ Years 5 10 9 8

I consent 5 -10 Bug reporter, Code contributor, Committer, Document writer/ editor, Tester5 to 10 Years2 to 5 Years 6 8 10 10

I consent 1-5 Code contributor, Maintainer, Reviewer, Tester1 to 5 Years 5 to 10 Years 1 8 10 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 2 6 4 9

I consent 1-5 Reviewer, Committer, Tester1 to 5 Years 2 to 5 Years 10 10 10 10

I consent 5 -10 Code contributor, Maintainer, Reviewer, Committer, Tester10+ Years 10+ Years 2 8 1 10

I consent 1-5 Bug reporter, Code contributor, Document writer/ editor1 to 5 Years 2 to 5 Years 8 8 8 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer10+ Years 10+ Years 9 2 4 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years10+ Years 5 6 6 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 2 to 5 Years 10 10 10 10

I consent 10+ Bug reporter, Code contributor, Committer, Tester10+ Years 5 to 10 Years 5 8 10 10

I consent 10+ Bug reporter, Code contributor, Committer1 to 5 Years 5 to 10 Years 4 5 7 9

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer, Tester5 to 10 Years10+ Years 8 8 9 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester5 to 10 Years10+ Years 8 9 8 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 5 to 10 Years 8 7 10 6

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer5 to 10 Years5 to 10 Years 4 3 6 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 5 8 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer, Tester1 to 5 Years 5 to 10 Years 5 8 10 10

I consent 1-5 Bug reporter, Code contributor, Committer, Document writer/ editor1 to 5 Years 2 to 5 Years 7 9 8 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester5 to 10 Years5 to 10 Years 7 8 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 8 4 6 7

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 10+ Years 1 5 9 9

I consent 5 -10 Bug reporter, Code contributor, Committer1 to 5 Years 5 to 10 Years 10 8 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years5 to 10 Years 0 10 10 10

I consent 1-5 Bug reporter, Code contributor, Reviewer, Tester1 to 5 Years 2 to 5 Years 9 8 8 8

I consent 10+ Bug reporter, Code contributor, Committer, Document writer/ editor5 to 10 Years10+ Years 8 9 8 10

I consent 5 -10 Code contributor, Maintainer5 to 10 Years10+ Years 5 9 7 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor5 to 10 Years5 to 10 Years 8 10 9 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester5 to 10 Years10+ Years 8 6 10 6

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 5 to 10 Years 10 8 7 8

I consent 10+ Bug reporter, Code contributor, Reviewer, Document writer/ editor5 to 10 Years10+ Years 8 10 8 10

I consent 1-5 Bug reporter, Code contributor1 to 5 Years 5 to 10 Years 8 5 8 8

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Committer, Integrator10+ Years 10+ Years 10 7 5 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years5 to 10 Years 7 9 3 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester10+ Years 10+ Years 2 3 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor10+ Years 10+ Years 7 9 7 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, ideas, feature proposals, RFCs, design, examples1 to 5 Years 5 to 10 Years 0 0 7 6

I consent 1-5 Code contributor, Maintainer, Reviewer1 to 5 Years 10+ Years 8 8 7 9

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Integrator5 to 10 Years5 to 10 Years 8 6 3 5

I consent 5 -10 Bug reporter, Code contributor, Reviewer, Committer5 to 10 Years10+ Years 8 8 6 7

I consent 1-5 Bug reporter, Code contributor1 to 5 Years 5 to 10 Years 8 8 8 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator5 to 10 Years10+ Years 5 4 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 10 10 10 10

382

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor10+ Years 10+ Years 6 7 2 4

I consent 1-5 Bug reporter, Code contributor, Maintainer10+ Years 10+ Years 8 8 5 10

I consent 1-5 Bug reporter, Code contributor1 to 5 Years 10+ Years 6 9 7 7

I consent 1-5 Bug reporter, Code contributor, Maintainer, Document writer/ editor1 to 5 Years 10+ Years 10 10 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester1 to 5 Years 2 to 5 Years 10 10 8 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator, Community engagement 1 to 5 Years 2 to 5 Years 8 8 10 7

I consent 5 -10 Bug reporter, Code contributor, Document writer/ editor1 to 5 Years 2 to 5 Years 5 8 7 8

I consent 5 -10 Code contributor, Maintainer, Committer5 to 10 Years10+ Years 5 8 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester10+ Years 10+ Years 0 8 3 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 2 to 5 Years 10 8 8 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Document writer/ editor1 to 5 Years 2 to 5 Years 7 9 7 4

I consent 1-5 Bug reporter, Code contributor, Document writer/ editor1 to 5 Years 5 to 10 Years 5 6 9 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 7 7 10 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 5 10 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer, Document writer/ editor10+ Years 10+ Years 8 5 7 2

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 5 10 5 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Committer5 to 10 Years10+ Years 8 5 8 7

I consent 1-5 Bug reporter, Code contributor, Document writer/ editor1 to 5 Years 2 to 5 Years 5 7 8 8

I consent 5 -10 Bug reporter, Code contributor5 to 10 Years5 to 10 Years 8 8 10 10

I consent 5 -10 Bug reporter, Code contributor10+ Years 10+ Years 7 10 9 4

I consent 10+ Bug reporter, Code contributor, Committer, Document writer/ editor, community manager10+ Years 10+ Years 10 10 10 7

I consent 1-5 Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 10+ Years 10 10 10 10

I consent 1-5 Code contributor, Reviewer, Document writer/ editor1 to 5 Years 10+ Years 6 8 6 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor1 to 5 Years 10+ Years 5 8 10 10

I consent 1-5 Code contributor, Reviewer1 to 5 Years 10+ Years 8 2 8 10

I consent 5 -10 Bug reporter, Code contributor, Maintainer1 to 5 Years 2 to 5 Years 10 8 10 7

I consent 5 -10 Code contributor, Maintainer, Committer, Document writer/ editor, Tester5 to 10 Years5 to 10 Years 8 6 9 10

I consent 1-5 Code contributor, Document writer/ editor10+ Years 10+ Years 6 7 8 6

I consent 10+ Bug reporter, Code contributor, Reviewer, Document writer/ editor, Tester, Integrator, Community support10+ Years 10+ Years 3 10 8 10

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 3 7 7 8

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Committer1 to 5 Years 2 to 5 Years 5 4 9 8

I consent 10+ Bug reporter, Code contributor, Maintainer, Committer, Document writer/ editor10+ Years 5 to 10 Years 5 5 6 7

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer10+ Years 10+ Years 5 8 8 10

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer5 to 10 Years10+ Years 5 6 10 10

I consent 1-5 Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester1 to 5 Years 1 to 2 Years 3 6 6 6

I consent 1-5 Bug reporter, Code contributor, Maintainer, Committer1 to 5 Years 10+ Years 6 7 8 9

I consent 1-5 Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Document writer/ editor, Tester, Integrator10+ Years 10+ Years 6 2 3 8

I consent 1-5 Bug reporter, Code contributor5 to 10 Years10+ Years 5 8 10 9

I consent 10+ Bug reporter, Code contributor, Integrator10+ Years 10+ Years 9 10 10 10

I consent 10+ Bug reporter, Code contributor, Maintainer, Reviewer, Committer, Tester1 to 5 Years 5 to 10 Years 5 10 10 10

I consent 1-5 Code contributor1 to 5 Years 5 to 10 Years 8 8 8 8

I consent 5 -10 Bug reporter, Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 2 to 5 Years 9 9 7 8

I consent 1-5 Code contributor, Maintainer, Reviewer, Committer1 to 5 Years 1 to 2 Years 5 9 9 4

383

C.3 Data Collected Through Survey Instrument

(Questions 5-13)

384

5
.

L
a

b
el

 s
u

b
st

a
n

ti
a

l
n

ew
 i

te
m

s
o

f
w

o
rk

 a
s

"
w

o
rk

 i
n

 p
ro

g
re

ss
"

 i
n

d
ic

a
ti

n
g

 a
n

 o
p

p
o

rt
u

n
it

y

fo
r

m
o

re
 c

o
n

tr
ib

u
ti

o
n

s

6
.

In
tr

o
d

u
ce

 n
o

n
-r

es
tr

ic
ti

v
e

co
m

m
it

 a
cc

es
s

to

n
o

n
-c

o
re

 c
o

n
tr

ib
u

to
rs

 (
w

h
er

e
 t

h
is

 i
s

a
p

p
ro

p
ri

a
te

)

7
.

E
st

a
b

li
sh

 e
x

p
li

ci
t

co
d

e
re

v
ie

w
 g

u
id

el
in

es

(e
.g

.
a

 m
a

x
im

u
m

 t
im

e
li

m
it

 f
o

r
co

d
e

re
v

ie
w

fe
e
d

b
a

ck
 f

o
r

a
ll

 c
o

n
tr

ib
u

to
rs

)

8
.

P
u

b
li

sh
 f

in
d

in
g

s
o

f
p

o
st

-m
o

rt
em

 r
e
v

ie
w

s

(l
es

so
n

 l
ea

rn
ed

 o
n

 t
h

e
p

ro
je

c
t)

 t
o

 a
ll

co
n

tr
ib

u
to

rs

9
.

B
u

il
d

 a
 s

u
p

p
o

rt
iv

e
co

m
m

u
n

it
y

 f
o

r
co

n
fl

ic
t

re
so

lu
ti

o
n

1
0

.
E

x
p

li
ci

tl
y

 i
d

en
ti

fy
 c

o
n

tr
ib

u
to

rs
 t

o
 r

e
a

ch

o
u

t
fo

r
q

u
er

ie
s,

 s
o

lu
ti

o
n

s,
 a

n
d

 s
u

p
p

o
rt

.

1
1

.
A

ll
o

w
 s

el
f-

o
rg

a
n

iz
a

ti
o

n
 o

f
p

ro
je

c
t

ro
le

s

1
2

.
P

ro
m

o
te

 a
n

 a
lt

ru
is

ti
c

k
n

o
w

le
d

g
e

sh
a

ri
n

g

cu
lt

u
re

1
3

.
M

a
k

e
p

ro
je

c
t

d
o

cu
m

en
ta

ti
o

n
 p

u
b

li
cl

y

a
cc

es
si

b
le

 (
e.

g
.

p
u

b
li

c
a

cc
es

s
to

 a
rc

h
iv

es
,

m
a

il
in

g
 l

is
t,

 a
n

d
 t

o
 o

p
en

 a
n

 i
ss

u
e)

3 8 4 6 7 7 7 6 10

5 10 8 6 10 8 9 10 10

5 10 4 2 9 6 8 10 10

5 2 5 8 6 8 7 10 10

7 4 7 8 8 7 5 7 10

9 10 8 9 9 10 9 8 9

10 1 8 7 10 9 9 9 9

9 5 5 4 10 8 9 9 10

1 0 3 6 6 3 5 7 3

7 2 2 2 6 5 4 6 4

7 6 5 6 8 7 8 9 8

5 8 5 8 5 8 8 8 8

4 2 7 7 10 8 8 9 10

7 6 6 10 8 9 7 8 9

8 7 8 7 5 4 8 10 10

7 6 5 5 10 7 5 10 10

4 1 4 5 3 2 2 6 8

6 4 7 5 9 10 8 9 9

5 4 8 9 4 7 7 7 10

6 8 6 7 7 8 8 10 10

5 8 8 8 9 5 5 7 9

6 5 8 7 9 8 8 9 9

5 2 9 8 7 6 7 5 7

9 8 7 9 7 8 8 8 10

5 7 3 7 6 4 7 8 10

6 9 5 3 4 6 4 10 10

10 5 5 5 5 10 10 5 5

9 9 8 9 9 9 6 10 10

2 6 2 3 0 5 10 4 10

7 7 7 5 9 8 8 9 9

10 6 10 6 10 6 8 10 10

9 8 9 9 9 8 8 9 9

10 3 10 7 7 0 7 10 10

8 7 9 9 9 9 9 10 10

4 6 6 9 8 6 6 6 10

Questions on PKR Practices 5-13

385

5 5 7 8 6 8 8 5 9

8 5 6 10 7 5 9 7 10

10 6 2 2 10 8 10 10 10

7 7 7 7 8 9 4 10 9

5 5 10 9 3 10 5 8 10

8 2 10 2 10 3 8 8 10

10 10 10 6 10 6 7 10 7

3 0 6 8 8 10 10 7 9

3 4 3 4 7 7 6 7 10

10 10 7 8 10 7 8 8 10

1 3 1 1 10 9 10 10 10

8 5 8 8 8 5 5 6 8

5 1 2 9 5 9 8 9 10

6 10 5 5 8 8 8 10 10

10 9 10 10 10 10 10 10 10

8 0 5 8 10 10 6 10 10

3 2 2 3 7 8 7 10 10

6 4 8 5 9 8 9 10 10

8 7 9 6 8 7 7 8 9

10 9 10 7 8 9 7 7 10

4 5 3 4 5 7 6 7 9

5 2 7 8 10 10 5 10 7

8 0 5 8 10 10 5 10 10

8 5 8 9 8 4 5 8 8

3 8 4 5 8 10 6 8 10

5 1 6 10 9 9 5 4 10

6 1 6 3 3 8 8 7 9

10 7 8 10 10 10 7 8 10

7 4 3 6 10 10 6 10 10

7 6 8 7 8 7 6 9 7

7 7 8 10 9 9 9 10 10

5 8 4 5 5 7 5 10 10

4 2 4 7 10 9 7 9 10

3 7 4 7 8 4 7 10 10

3 6 8 7 8 9 9 8 9

2 7 9 8 7 7 2 9 10

8 8 8 8 10 10 10 10 10

9 7 5 10 5 5 8 10 10

5 0 5 8 6 6 5 8 9

3 2 3 8 10 10 8 10 10

7 6 5 9 10 9 7 7 10

6 0 0 0 6 5 0 8 7

7 7 7 7 6 5 7 8 9

3 4 3 8 7 8 6 7 9

7 8 6 6 7 7 7 8 9

8 8 8 8 8 8 8 8 8

6 0 4 7 7 7 7 9 10

5 10 10 10 10 10 10 10 10

2 5 0 3 2 3 0 8 9

5 3 10 10 9 8 10 5 9

386

9 3 7 8 7 5 7 8 8

10 10 10 10 7 10 7 10 10

10 7 0 10 10 10 5 10 10

10 10 5 10 7 10 10 10 10

4 3 7 9 8 10 6 9 10

7 2 5 5 8 5 7 5 10

2 0 0 5 2 5 8 8 10

6 0 10 10 10 10 9 10 10

7 6 3 5 9 9 9 9 9

1 3 3 6 6 9 7 10 10

2 0 5 0 0 7 10 7 10

10 5 10 5 5 10 8 10 10

6 2 7 8 9 10 7 8 10

5 5 5 5 7 5 8 8 10

5 1 9 5 10 8 1 5 10

8 5 6 7 5 3 5 9 9

7 7 6 9 8 6 5 8 10

8 9 7 9 9 7 5 7 10

6 7 8 7 8 10 6 10 10

10 0 10 10 10 10 0 10 10

7 6 8 8 7 7 6 9 8

8 8 2 7 7 7 5 8 8

10 0 8 8 7 5 8 8 8

7 7 7 6 10 6 10 10 8

1 2 9 8 8 6 7 8 9

8 9 8 7 9 8 9 9 9

10 7 0 10 7 5 5 10 10

3 3 3 3 7 7 7 8 9

8 3 2 2 6 8 9 6 9

4 9 7 9 7 9 6 10 10

3 5 8 10 10 10 8 10 10

5 8 9 8 8 5 7 7 10

10 1 4 7 7 7 8 9 10

2 2 3 4 8 7 7 10 9

7 5 3 6 8 9 9 9 10

10 3 8 9 9 10 6 9 10

6 6 9 9 10 10 10 10 10

10 5 10 5 10 10 10 10 10

5 2 7 9 8 2 2 10 9

6 3 6 6 6 7 6 6 9

6 6 9 8 8 8 3 6 6

387

C.4 Data Collected Through Survey Instrument

Questions 13-22

388

1
4

.
F

o
st

er
 a

n
 o

p
en

-m
in

d
ed

 c
u

lt
u

re
 t

o
w

a
rd

s
d

iv
er

se

ty
p

es
 o

f
co

n
tr

ib
u

ti
o

n
s

1
5

.
E

n
co

u
ra

g
e

m
en

to
rs

h
ip

 o
f

n
ew

co
m

er
s

1
6

.
E

st
a

b
li

sh
 c

o
re

 t
o

 n
o

n
-c

o
re

 k
n

o
w

le
d

g
e

sh
a

ri
n

g

p
ra

ct
ic

es
 (

 e
.g

.
in

te
rv

ie
w

s)
.

1
7

.
H

a
v

e
a

n
 e

x
p

li
ci

t
co

m
m

u
n

ic
a

ti
o

n
 p

ro
to

co
l

b
et

w
ee

n

co
n

tr
ib

u
to

rs
 a

n
d

 i
n

te
g

ra
to

rs
 (

re
sp

o
n

si
b

le
 f

o
r

m
er

g
in

g

co
d

e
to

 t
h

e
m

a
in

 b
ra

n
ch

).

1
8

.
L

ea
d

er
s

m
a

n
a

g
in

g
 t

h
e

p
ro

je
c
t

re
sp

o
n

d
 w

it
h

in
 a

 s
et

ti
m

e
li

m
it

 t
o

 q
u

er
ie

s,
 r

e
p

o
rt

ed
 i

ss
u

es
,

a
n

d
 p

u
ll

re
q

u
es

ts
.

1
9

.
E

n
co

u
ra

g
e

o
p

en
 d

is
cu

ss
io

n
 t

o
 r

e
so

lv
e

m
a

tt
er

s

co
n

ce
r
n

in
g

 t
h

e
p

ro
je

c
t

co
m

m
u

n
it

y
.

2
0

.
P

ro
m

o
te

 t
h

e
d

o
cu

m
en

ta
ti

o
n

 o
f

so
lu

ti
o

n
s

to

co
m

m
o

n
ly

 e
x

p
er

ie
n

ce
d

 p
ro

b
le

m
s

2
1

.
U

p
d

a
te

 p
ro

je
c
t

d
o

cu
m

en
ts

 f
re

q
u

en
tl

y
 (

e.
g

.

d
o

cu
m

en
t

ch
a

n
g

es
 o

n
 p

ro
ce

ss
,

a
rc

h
it

ec
tu

re
,

d
o

m
a

in
)

2
2

.
Id

en
ti

fy
 s

u
cc

e
ss

o
rs

 f
o

r
k

ey
 c

o
d

e
co

n
tr

ib
u

to
rs

7 7 7 6 6 8 10 8 3

10 10 3 6 3 8 10 8 2

10 10 6 3 0 8 10 3 7

7 9 8 9 6 7 9 9 5

10 7 5 6 5 8 8 10 6

8 9 6 8 10 8 7 9 7

7 9 7 7 7 10 9 9 8

10 10 3 3 7 7 9 7 8

6 3 7 4 1 2 4 4 3

8 9 2 4 2 4 4 8 6

9 10 6 8 9 6 9 8 7

8 10 5 2 9 8 10 10 8

8 8 8 8 3 8 7 6 6

10 10 7 7 8 10 10 10 7

6 7 2 4 6 8 10 8 2

10 10 7 8 5 10 10 10 7

7 8 3 0 10 3 7 5 6

9 8 6 7 7 8 9 9 8

6 8 4 5 6 6 8 7 8

7 7 8 6 8 6 7 6 8

10 6 5 6 5 7 6 7 6

8 8 8 9 7 9 8 6 6

3 2 2 8 9 7 9 8 10

7 9 8 8 8 10 9 10 8

10 9 8 5 8 7 7 7 6

7 10 3 0 6 10 10 7 4

5 10 5 5 0 5 10 10 10

10 10 9 9 9 8 10 10 10

0 2 2 3 0 8 6 8 8

9 9 7 8 7 7 8 8 7

10 10 10 10 10 10 10 6 10

8 8 9 7 10 7 9 9 8

10 7 0 0 7 3 10 7 0

Questions on PKR Practices 14-22

389

10 7 7 6 3 7 8 8 7

4 8 4 4 4 4 4 0 0

8 7 8 8 9 9 9 9 8

5 7 4 1 4 6 9 9 8

10 10 0 10 7 10 10 10 5

9 2 5 5 8 8 3 4 8

1 10 5 9 10 0 9 5 5

10 8 2 4 6 10 10 10 9

7 8 7 3 7 7 6 6 4

9 6 3 7 5 9 10 10 8

8 6 3 5 5 8 8 10 2

10 10 5 5 5 7 8 6 7

7 6 1 1 2 5 8 6 3

9 8 7 8 8 8 8 8 6

1 7 4 6 3 7 7 3 2

8 5 5 5 5 8 9 10 5

10 10 10 10 10 10 10 10 10

10 10 5 8 8 10 10 8 8

7 9 3 4 8 7 10 7 8

10 10 7 7 8 8 9 10 8

8 7 5 7 6 7 7 8 6

9 5 3 7 6 6 5 7 8

4 3 2 4 5 6 7 6 4

7 7 5 6 8 6 10 10 8

10 10 2 5 2 8 10 8 8

9 8 8 8 8 9 9 9 8

10 8 6 7 5 7 10 8 9

8 9 3 6 2 6 9 6 9

7 6 2 4 4 7 9 7 8

10 10 7 7 8 9 9 9 9

10 10 0 3 10 10 10 10 6

9 9 8 8 9 9 9 8 7

10 10 7 7 8 10 8 9 8

6 6 4 4 7 8 10 5 7

10 8 5 7 8 9 10 7 5

10 10 6 7 3 9 10 9 8

10 7 8 8 8 9 9 6 7

10 10 7 9 10 10 10 8 7

10 10 5 7 8 8 10 10 10

5 7 3 5 8 2 10 10 5

9 5 5 5 6 8 10 9 5

10 10 2 8 3 8 8 8 5

9 10 7 7 5 9 9 9 6

6 6 0 7 0 7 9 6 7

9 7 9 5 6 6 6 5 5

9 9 10 6 7 7 8 7 3

7 8 6 7 7 8 7 7 5

8 8 8 8 8 8 8 8 8

9 5 10 4 9 8 10 10 4

10 10 10 10 10 10 10 10 10

390

0 10 5 3 7 2 7 10 7

9 7 5 8 8 5 9 8 8

6 8 7 6 7 7 7 4 6

10 10 10 10 10 10 10 10 10

10 10 10 10 6 10 10 4 10

7 7 7 10 5 7 10 10 7

9 10 9 9 9 9 10 10 8

9 9 2 6 2 8 8 9 5

3 10 4 5 4 5 10 10 7

10 8 7 10 10 10 10 10 10

9 8 7 5 3 7 10 9 7

10 8 6 9 2 6 2 6 7

5 7 5 5 7 10 10 0 0

10 10 10 10 10 10 10 10 8

7 7 3 5 8 9 9 8 9

8 8 5 10 5 8 10 10 6

10 10 4 8 8 8 10 7 7

8 8 5 7 6 4 7 8 9

9 10 7 9 7 9 10 10 8

10 8 6 6 3 6 8 7 8

10 10 8 8 10 9 7 8 9

10 10 10 10 8 5 10 10 10

8 7 7 7 6 7 9 8 7

5 7 8 9 2 8 7 7 3

8 4 10 8 8 10 8 8 10

6 9 4 6 3 6 4 7 7

9 9 6 9 8 8 9 8 7

9 9 8 7 8 9 8 10 8

8 10 3 10 0 8 10 8 10

7 6 5 5 1 8 8 7 7

5 7 5 6 3 6 9 8 7

4 6 6 5 6 5 9 7 4

10 8 4 5 7 10 10 6 0

4 6 5 5 6 7 9 9 8

9 6 5 4 7 8 9 8 5

9 7 6 5 5 7 8 7 5

8 8 4 3 4 7 5 5 8

9 8 8 10 6 8 10 9 10

10 10 9 10 9 10 9 9 9

10 10 9 8 9 10 10 9 10

10 10 7 10 8 9 9 10 5

4 4 5 6 7 7 8 8 5

5 4 3 4 7 8 7 6 7

391

C.5 Data Collected Through Survey Instrument

(Question 23-32)

392

2
3

.
P

ro
a

ct
iv

e
a

ss
ig

n
m

en
t

o
f

v
a

ry
in

g
 t

a
sk

s
to

 n
o

n
-c

o
re

co
n

tr
ib

u
to

rs

2
4

.
A

d
v

o
ca

te
 d

iv
er

si
fi

ca
ti

o
n

 o
f

co
re

 c
o

n
tr

ib
u

to
r

sp
ec

ia
li

sa
ti

o
n

2
5

.
 D

is
tr

ib
u

te
 p

ro
je

c
t

le
a

d
er

sh
ip

 t
o

 t
h

e
w

id
er

su
p

p
o

rt
 c

o
m

m
u

n
it

y
 w

h
en

 p
ri

m
a

ry
 l

ea
d

er
s

a
re

 a
b

se
n

t.

2
6

.
D

o
cu

m
en

t
ro

le
 p

ro
g

re
ss

io
n

 p
ro

ce
ss

 (
e.

g
.

fr
o

m

co
n

tr
ib

u
to

r
to

 i
n

te
g

ra
to

r
to

 m
a

in
ta

in
er

s)
.

2
7

.
D

o
cu

m
en

t
p

ro
je

c
t

ru
le

s
a

n
d

 p
o

li
ci

es
 (

e.
g

.
th

e
ty

p
e

o
f

co
n

tr
ib

u
ti

o
n

s
re

q
u

ir
ed

,
p

o
li

cy
 t

o
 r

e
v

ie
w

co
n

tr
ib

u
ti

o
n

s)

2
8

.
E

st
a

b
li

sh
 t

ra
in

in
g

 m
ec

h
a

n
is

m
s

(e
.g

.
o

n
-t

h
e-

jo
b

tr
a

in
in

g
 a

n
d

 s
h

a
d

o
w

in
g

)

2
9

.
C

re
a

te
 a

 k
n

o
w

le
d

g
e

co
n

tr
ib

u
ti

o
n

 r
ec

o
g

n
it

io
n

p
ro

g
ra

m
 (

e.
g

.
a

 r
e
w

a
rd

 s
tr

u
ct

u
re

)

3
0

.
R

ew
a

rd
 a

ct
iv

e
k

n
o

w
le

d
g

e
co

n
tr

ib
u

to
rs

 w
it

h

p
ro

je
c
t

se
n

io
ri

ty

3
1

.
P

ro
m

o
te

 a
 c

u
lt

u
re

 o
f

a
p

p
re

ci
a

ti
o

n
 f

o
r

k
n

o
w

le
d

g
e

co
n

tr
ib

u
to

rs
 (

e.
g

.
w

o
rd

s
o

f
a

p
p

re
ci

a
ti

o
n

 t
h

ro
u

g
h

b
lo

g
s

a
n

d
 n

ew
sl

et
te

r
s)

32. Please state any other

knowledge relevant practices

that are not listed above and

in your opinion can benefit

the OSS project(s)?

1 2 7 4 4 6 3 4 6 Corporate sponsorships

2 7 7 6 7 1 2 2 6

2 8 9 2 6 1 0 0 9 ?

2 4 2 3 8 2 1 2 6 N/A

8 5 5 5 8 4 0 5 3 ""

9 7 9 5 7 6 8 10 7 -

6 6 8 9 6 6 8 8 8 -

4 3 7 1 2 2 7 6 9

0 4 4 3 5 1 0 4 3 ...

2 7 3 1 3 4 5 2 7 N/A

10 7 8 6 8 9 7 9 10 Have a CoC

5 5 8 5 8 8 3 8 8 N/A

3 4 3 3 9 3 2 5 7 No opinion.

7 9 6 5 7 3 7 9 10 Make the project more known

to the public
4 0 0 0 2 8 10 3 10 Collaborate with academic

community to involve student
5 7 10 5 7 5 2 5 10 n/a

7 6 7 8 4 0 7 5 6 -

6 6 4 6 9 5 8 9 8 Publish roadmaps and plans

7 6 4 7 8 5 4 9 9 N/A

7 8 7 4 7 3 2 4 5 Staying active until others are

active. Keeping the project alive
7 6 8 6 7 7 6 7 6 Improvement of OSS usability

7 7 7 7 5 8 2 8 5 none

3 5 8 7 4 3 7 7 7 Automated Release generation,

so that a maintainer can click
8 6 8 7 7 6 7 6 7 .

7 7 9 5 5 7 6 7 7 Be kind

0 5 8 0 0 2 4 4 1 Usage statistics can help shift

the focus of contributors
5 0 5 5 10 5 10 10 10 Value autonomy. It leads to

motivation, productivity, and
8 8 8 9 8 9 9 9 9 These are all

8 6 2 4 2 8 8 10 9 Keeping projects free of

political ideologies and focusing
5 7 8 10 8 2 2 8 6

Questions on PKR Practices 23-32

393

6 10 10 10 10 6 8 10 10 N/A

9 7 9 9 7 8 9 8 8 A pattern more common

between diferents projects of
0 5 7 8 10 5 6 0 7

3 3 4 3 3 3 6 5 6

0 0 0 0 0 0 0 0 0

6 7 8 9 8 7 7 6 7

6 7 6 0 6 5 7 10 10

10 10 10 2 10 0 10 8 10

6 5 7 2 3 0 6 6 8 Identify your contributors and

talk them...
5 2 2 0 6 7 0 5 2

5 5 1 10 10 2 5 5 5

6 5 6 6 10 8 8 7 6

4 10 9 0 5 1 0 9 9

2 5 2 2 7 2 2 4 9

6 8 9 7 7 8 10 10 10

5 5 5 0 8 0 3 7 4

6 6 5 6 8 6 8 6 8

3 0 6 0 0 6 0 5 8

5 5 8 5 5 5 5 5 5

5 10 10 10 10 10 10 10 10

8 8 6 8 10 6 5 8 10

6 5 7 3 3 2 2 2 3

8 9 6 7 7 6 8 8 10

7 7 6 7 7 4 8 7 6

8 5 7 7 8 5 5 5 5

3 5 4 6 5 3 3 5 6

9 8 8 10 8 6 3 6 5

2 5 2 2 8 5 2 5 8

8 8 9 8 9 9 10 9 9

8 10 9 10 8 4 7 10 10

1 5 3 6 8 6 5 7 6

3 4 7 1 7 2 1 3 7

6 9 9 5 7 6 6 6 7

4 7 6 5 10 0 0 8 10

7 8 7 7 8 8 8 8 8

8 8 8 8 9 10 10 8 9

6 5 7 7 10 5 4 8 6

6 4 5 5 4 3 4 5 7

6 7 7 8 10 7 7 8 8 Code of conduct enforcement

both online and offline
7 7 8 6 7 7 9 9 8

5 10 9 5 8 5 7 7 9

0 5 5 2 3 10 10 10 10

5 7 8 3 2 4 5 5 3

4 4 4 4 6 5 6 7 7

7 6 8 5 9 3 4 7 9

6 8 8 9 9 6 10 9 8 having code owned neutrally in

a foundation like Apache,

394

0 0 3 0 7 0 7 5 8 Related to some of the ones

here: ensuring all decisions &
6 6 7 7 5 5 5 5 5

2 6 5 7 6 8 6 8 9

7 5 6 4 4 5 4 8 7

8 8 8 8 8 8 8 8 8

8 6 6 7 5 5 3 6 9

10 10 10 10 10 10 10 10 10 Strong community

7 8 4 2 4 6 7 2 5

8 8 5 5 3 3 5 5 5 Actually, I took some ideas to

my job project from this quiz,
4 6 4 7 5 8 7 7 7

10 10 10 10 10 10 10 10 10

10 10 10 0 8 10 10 10 10

7 7 5 5 10 8 10 10 10

7 8 9 9 8 9 9 10 10

6 5 8 5 7 2 5 6 5

6 3 0 4 4 4 4 8 4 authority should be based on

proven competence
10 9 10 8 10 7 8 8 10 Enable the core team to discuss

and collaborate any issues
8 6 8 7 6 8 3 2 6

6 3 7 9 9 7 6 7 9 Adding people to public

changelog to show impact (even
0 0 7 0 7 0 0 0 5

5 2 0 5 10 10 5 5 10 Documentation should be

written with the least technical
7 7 5 6 7 6 8 9 10

5 5 5 7 8 5 5 5 7

8 8 8 6 8 5 8 8 7

6 5 6 4 6 8 6 7 8

8 7 8 7 9 6 7 9 8

8 7 8 4 8 5 0 3 8

7 8 10 7 8 7 10 7 9

10 10 10 10 5 5 10 10 10

7 7 7 6 7 7 6 6 7

4 5 4 5 7 7 6 6 7

5 7 8 4 10 7 7 8 8 Rather exhaustive list, but if I

had not visited your link, might
7 6 6 7 6 5 6 6 6

9 8 4 8 8 7 8 10 8

8 9 9 8 8 8 7 5 8

5 8 8 10 10 5 0 7 10

6 7 5 4 6 6 2 6 7

5 6 5 7 7 6 5 8 8 Reduce unnecessary

bureaucracy
5 5 5 4 6 5 5 6 10

6 3 3 6 7 6 8 10 8

5 5 6 6 6 5 7 6 7

2 6 2 5 6 8 7 7 7

8 8 2 2 5 6 8 7 8 Github Wiki

7 2 2 3 4 9 10 5 8 Delivering criticism via

backchannels matters a lot
9 10 8 10 10 8 5 7 8

8 9 8 7 9 10 9 9 9

395

10 5 5 5 10 5 10 10 10

2 8 5 8 9 8 8 10 10

5 6 6 6 4 4 3 2 7

4 6 7 3 6 3 4 6 7

396

Appendix D

Data Analysis

D.1 Description of Knowledge Retention

Practices

397

Table D.1: Practice description against Practice No.

398

	Abstract
	Related Peer Reviewed Publications
	List of Figures
	List of Tables
	List of Terms and Abbreviations
	The Focus of Research
	Introduction
	Motivation
	Research Objectives
	Research Hypothesis and Research Questions
	Research Process
	Thesis Structure

	Literature Review
	Introduction
	Background
	Open Source Software (OSS)
	Organisational Structure in OSS Projects
	Data, Information, and Knowledge

	Literature Review and Snowballing
	Details on Snowballing Procedure
	Initial Baseline Set of papers
	Inclusion/ Exclusion Criteria for Baseline Set

	Quality Assessment
	Iterations in Snowballing
	Backward Snowballing
	Forward Snowballing

	Application of Snowballing for Literature Review
	Identifying the Baseline Set
	Final Baseline Set

	Iterations
	Iteration 1 - Backward and Forward Snowballing
	Iteration 2 - Backward and Forward Snowballing
	Iteration 3 - Backward and Forward Snowballing

	Data Synthesis
	Discussion
	Examining Knowledge Loss in OSS
	Impact of Knowledge Loss in OSS projects

	Reducing Knowledge Loss in OSS Projects
	Manifestation of Knowledge in OSS Projects
	Knowledge Creation
	Knowledge Sharing

	Knowledge Retention in OSS Projects
	Chapter Summary

	Research Methodology
	Introduction
	OSS Project Structure
	Philosophical Background
	Positivism
	Interpretivism
	Pragmatism
	Research Philosophy Adopted

	Research Methodology and Methods
	Quantitative Research
	 Qualitative Research
	Mixed Methods Research
	Research Design Adopted - Mixed Methods Research
	Data Analysis
	Validity Concerns in Mixed Method Research

	Empirical Research
	Chapter Summary

	Proactive Knowledge Retention Canonical Model
	Introduction
	Canonical Model Development Process
	Selection of Data Components
	Knowledge Retention in Organisations
	Knowledge Retention Practices in Organisations
	Knowledge Retention Mitigation Techniques and OSS Guides Online Resources

	Data Preparation
	Analysis - Principles of Grounded Theory
	Application of Grounded Theory
	Practices by Researcher
	Canonical Model of Proactive Knowledge Retention in OSS projects
	Communication
	Contributor Motivation
	Core Development Practice
	Environment/ Ecosystem/ Culture
	Governance and Leadership

	Chapter Summary

	Survey and Data Collection
	Survey Development Process
	Setting the Objectives
	Survey design
	Defining Target Population and Survey Sample
	Conceptual Model of Survey
	Data Collection Approach
	Survey Instrument Design
	Approaches for Data Analysis
	Validity Considerations

	Survey Instrument Development
	Evaluating the Survey Instrument
	Obtaining Valid Data
	Analysing the Survey Data and Reporting
	Conducting the Survey
	Contributor Selection from GitHub
	Selection of Projects
	Plain Language Statement (PLS)
	Sending Surveys using GMass
	Phase - I: Pilot Survey
	Phase - II: Survey

	Chapter Summary

	Data Analysis
	Data Analysis Overview
	Overview of Survey Participants
	Likert-Type Scale
	Data Summary

	Ranking Technique
	Designing Practice Ranking Scheme

	Categorical Ranking of Practices
	Ranking of Practices Based on the Number of OSS Projects
	Ranking Practices Based on Number of Years in OSS
	Ranking based on the Number of Years in Programming

	Ranking based on role type in OSS
	Bug Reporter
	Code Contributor
	Maintainer
	Reviewer
	Committer
	Document Writer and Editor
	Tester
	Integrator
	Others

	Qualitative Data on PKR Model Completeness
	Chapter Summary

	Evaluation of Practices
	Evaluating Practice Preference – Number of OSS projects
	Evaluating Practice Preference - Number of Years in OSS
	Evaluating Practice Preference - Number of Years in Computer Programming
	Evaluating Practice Preference - Different Roles in OSS projects
	Chapter Summary

	Conclusion
	Research Overview
	Primary Impacts
	Recommendations for OSS projects
	Research Limitations
	Future Work

	Bibliography
	Appendices
	Literature Review
	List of Primary Studies

	Proactive Knowledge Retention Canonical Model Development
	Master Table Containing Data Components Linked to data Sources
	Merging Conceptual Duplicates
	Primary Classification of Data Components
	Categorisation of Practices
	PKR Practices and Categories - Revisiting Change and Renaming
	PKR Practices - First Review
	PKR Practices - Second Review
	PKR Practices - Third Review
	PKR Practices - Fourth Review
	PKR Practices - Fifth Review

	The Survey Instrument and Data Collection
	Survey Instrument
	Data Collected Through Survey Instrument
	Data Collected Through Survey Instrument (Questions 5-13)
	Data Collected Through Survey Instrument Questions 13-22
	Data Collected Through Survey Instrument (Question 23-32)

	Data Analysis
	Description of Knowledge Retention Practices

