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Predictive quality modelling of polymer and metal parts fabricated 

by laser-based manufacturing processes 

Hamed Sohrabpoor 

 

Laser processing techniques are widely used in industrial applications for their 

repeatability and reliability. However, the optimization of a laser process for a specific 

application is challenging and require detailed experimental investigations to 

determine the input processing conditions and parameter values that deliver high 

repeatability and reliability. The objective of this doctoral work was therefore to 

develop prediction models for laser-based processing techniques to understand the 

laser processing parameter relationship with the output properties and to forecast 

events not observed experimentally. The important techniques of Selective Laser 

Sintering (SLS), Laser Surface Texturing (LST),and Selective Laser Melting (SLM) 

were selected for development of the predictive models.  

For SLS of glass filled polyamide parts, an Adaptive Neuro-Fuzzy Inference system 

using Simulated Annealing method (ANFIS-SA) and Grey Relational Analysis (GRA) 

were utilised to determine processing parameters (laser power and scan speed, spacing 

and length) delivering best mechanical properties (tensile strength and elongation). 

ANFIS-SA system outperformed the GRA in finding optimal solutions for the SLS 

process applied for glass fiber reinforced part production. 

For LST study, Artificial Intelligence (AI) models were developed to predict the 

properties (diameter increase, insertion force and pullout force) of laser processed 

stainless steel 316 samples used for interference fit. Artificial Neural Network (ANN) 

and ANFIS were used to predict the characteristics of laser surface texturing. The 

models based on feedforward neural network (FFNN) were used to examine the effect 

of the laser process parameters for surface texturing on 316L cylindrical pins. This 

study demonstrated that ANFIS prediction was 48% more accurate compared to that 

provided by the FFNN model. 
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Stainless steel 316L cylindrical pins with defined surface structures for interference fit 

application were manufactured by the Selective Laser Melting Additive 

Manufacturing technique. The fabricated pins were assessed for resulting bond 

strength within interference fit joints. The effects of texture profile on the insertion and 

removal forces were investigated using Box-Behnken design of Response Surface 

Methodology (RSM) and results are presented and discussed. ANalysis Of VAriance 

(ANOVA) was used to check the adequacy of the developed empirical relationships. 

Two quadratic models were generated. One for correlation between profile geometry 

and insertion force and second for relating the profile geometry to removal force. The 

models were validated using experimental results and demonstrated good agreement 

with less than 10% error.  
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Chapter 1  

Introduction  

 

 

1.1. Introduction of laser and its application in industry 

The term “Laser” is the abbreviation of Light Amplification by Stimulated Emission 

of Radiation. Laser technology is at the centre of the vast area of photonics, due mainly 

from its many specific features including well-guided light emission allowing the 

heating of a targeted area. Unlike most lamps which emit light beams with a wide 

optical spectrum, lasers have narrows optical wavelengths.  

Lasers can be operated as continuous or pulsed beam emission with pulse width 

commonly variable form femtoseconds to microseconds. The intensity of laser beam 

can be controlled more easily compared to other sources of energy. These features 

make the laser vey functional compared to traditional manufacturing process.  

The laser has great variety of applications in manufacturing such as drilling, texturing, 

machining, welding, cladding, cutting and recently in fabrication of sophisticated parts 

via metal Additive Manufacturing.  

 

1.2.Introduction of SLS and SLM 

In the Selective Laser Sintering (SLS) process, the laser employed to melt polymer 

powders. In order to reduce the thermal distortion, the polymer powder bed should be 

heated to below the melting point of the material. After that, each layer is sintered with 

the laser for binding the material. The melted powder shapes the part produced and the 

un-sintered powder can act as a support to the built parts. 
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In Selective Laser Melting (SLM), with the use of a Nd:YAG or fibre laser, metal parts 

are produced. The process is almost same as SLS except instead of polymer, metal 

powder has been used and higher energies are required for melting the metal. SLM can 

be used to manufacture samples with very complex designs. This technology 

represents a realistic alternative to many conventional manufacturing techniques. It 

has been well shown that SLM allows the fabrication of near full-density high-

resistance metallic components via fusion and re-solidification of the fine metallic 

powders.  

 

1.3. Challenges in laser-based additive manufacturing from modelling 

perspective 

Although the laser-based additive manufacturing process is considered as a new 

industrial revolution of fabrication of parts, there are some challenges in regard to 

modelling and optimization. Some common challenges contain inaccuracy in the 

geometry, and undesirable surface texture. All these disadvantages can be significantly 

address by better understanding the limitations of this process.  

In development of SLS and SLM, controlling of output parameters is very challenging. 

Because of the inferencing of many input parameters and process noise, finding the 

most important factors is difficult. Achieving an approximate model/ equation for each 

process can play a significant role in reducing the process cost and in saving time and 

energy. The next challenge is to select the most accurate model for each specific 

process. Hence, in order to determine the laser-based manufacturing process 

parameters which are suitable for specific needs in terms of material, tightness level, 

applied and removal force, and reliability, artificial intelligence approaches can be 

further examined and investigated. 

Also, different types of optimisation need to match with the specificities of laser-based 

manufacturing process. As this process generates a complex network of 3D 

geometries, numerical and intelligent models need to combine the results from 

fabricated parts in the analysis.  
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1.4. Use of predictive modelling techniques in industry  

Artificial intelligence technology is now making its way into manufacturing, and the 

machine-learning technology could hold the key to transform factories in the near 

future. While AI is poised to radically change many industries, the technology is well 

suited to manufacturing. AI will perform manufacturing, quality control, shorten 

design time, and reduce materials waste, improve production reuse, perform predictive 

maintenance, and more 

Approximation methods which are related to artificial intelligence are secondary tools 

which use data generated through experiments for estimation of the manufacturing 

process outputs 

In this thesis work, various type of simulations was employed to generate a mapping 

relationship between the process factors and the experimentally observed responses. 

In order to achieve the best mechanical characteristics, the acquired model was 

developed with the simulated annealing algorithm as an objective function. Grey 

relational analysis (GRA) as a multi-response optimization technique was also applied 

to evaluate which modelling technique could perform best for defining the process 

elements to obtain the highest mechanical properties.  

 

1.5.Motivation  

This doctoral project was focused on the development of predictive models for the 

laser sintering and texturing process. Laser processing is a mature method, developed 

over several decades and used widely in industry due to the reliability and repeatability 

of the process. However, laser mater interaction in the SLS/melting and texturing 

processes is a more complex phenomenon and involves a number of physical and 

chemical processes such as heat transfer, breaking and building of chemical bonding, 

plasma creation, melting and solidification occur. 

In order to predict the behaviour of the laser sintering process for future or unknown 

conditions, the existing laser sintering results must be examined in detail to generate 
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new information. This information can be further processed by different machine 

learning and artificial intelligence techniques.  Predictive modelling techniques can be 

used to understand different patterns available within large sets of data.  

Due to inherent non-linear relationship between the laser sintering/melting processing 

parameters and final part properties, standard empirical functions cannot be used to 

develop predictive models.  

The development of predictive modelling defines the process of developing a model 

in a way that we can understand and quantify the model’s prediction accuracy on 

future, yet-to-be-seen data [1].  

The prime motivation of this doctoral project was to develop accurate predictive 

models for the laser sintering and texturing processes. Beside accurately predicting the 

further results, the developed predictive models should also help to interpret the 

process and behaviour of different output parameters and their dependencies on input 

processing parameters. The developed models should also help to better and further 

understand the overall laser sintering/melting and texturing processes.   

However, in order to develop models with higher accuracies, the models inherently 

became more complex and it becomes more difficult to interpret them. The simulation 

runs of these models then require higher processing capabilities and longer run times. 

[2].  

In the product design phase, the tolerances in the geometry of the produced part are set 

according to manufacturing process capability and final part functionality 

requirements.  

In Additive Manufacturing (AM), the automation and digital control of physical 

processes currently still results in geometrical inaccuracies of the produced parts. This 

problem of geometry control in AM is a significant challenge in designing of AM 

produced products, particularly in setting required and achievable tolerance levels. 

Predictive modelling can be used to address shape deviation problem which is critical 

and challenging in AM. [4]. 
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Unlike other manufacturing processes, AM defects’ analysis and modelling are not 

mature yet [5]. The research field is still in its infancy, but it benefits from the maturing 

age of data mining and analytics and machine learning techniques and their successful 

applications in many engineering domains. With increasing volumes and varieties of 

data, machine learning has gained extraordinary popularity due to its ability to explore 

complex patterns in observed data and make data-driven predictions or decisions on 

new data.  

 

1.6. Research objectives  

The aim of the thesis was achieved through a number of objectives:  

1. The identification of best method for the optimization of the SLS process of glass 

filled polyamide parts.  

2. Finding the best soft computing technique which can predict the results of the laser 

surface texturing process.  

3. Finding the effect of the input parameters on responses of laser surface texturing of 

316L stainless steel press-fits.  

4. Fabrication of press-fit texture with new manufacturing approach with better output 

specification compared to traditional methods.  

5. Finding the highest insertion and removal forces through mathematical modelling 

method.  

 

1.7. Overview of work and thesis structure  

This thesis is comprised of six chapters: chapter 1 introduced this work and provides 

context for the following chapters. Chapter 2 will present an introduction to the theory 

and core-concepts of modelling and optimization techniques, including Design of 

Experiments (DoE). Chapter 2 will present an introduction to theory and basic 

definition of laser surface modification. The reason behind utilising of optimization 
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approaches are also presented. Then, general guidelines for conducting the DoE 

explained. Finally, some approaches related to non-conventional methods are 

presented.  

Chapter 3 is focused on advanced modelling and optimization methods developed for 

obtaining the best mechanical properties of and additive manufacturing process, 

selective laser sintering, which manufactured glass filled polyamide parts. In order to 

achieve best mechanical characteristics, the acquired model was used by simulated 

annealing algorithm as an objective function. Grey relational analysis (GRA) as a 

multi-response optimization technique was also applied to evaluate which modelling 

technique could perform best for defining the process elements to obtain the highest 

mechanical properties.  

In chapter 4, two machining learning approaches, artificial neural network and 

adaptive neuro-fuzzy inference system were used to predict the characteristics of laser 

surface texturing of interference fit joints. The reliability of the aforementioned models 

for the output prediction of the laser surface texturing system were investigated by 

using the data measured from experiments.  

In chapter 5, following up to previous chapter, a new approach for the first time 

introduced for the fabrication of 316L stainless steel press-fit by an additive 

manufacturing technique, selective laser melting. Also, mathematical models derived 

from Box-Behnken designs were extracted in order to model the process and 

investigate the effect of texture geometry on the insertion and removal forces.  
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2.1. Introduction  

Laser light can be monochromatic, focused and coherent. This means photons with 

single wavelength, in a coherent beam shape can be focused (diverge) to a small area. 

These three major properties of laser light make it attractive for material processing 

with high degree of repeatability and reliability. The laser light sources are widely used 

in manufacturing industry for cutting, drilling, welding, cladding, soldering (brazing), 

hardening, ablating, surface treatment, marking, engraving, micromachining, pulsed 

laser deposition, lithography, etc. Very high-powered optical intensity photon beams 

can be applied to a very small spot (few micron diameter). In this way, an intense 

amount of heat can be transferred to the material for melting, evaporation or plasma 

formation. As mentioned above, the process can be controlled by using high spatial 

coherence of laser light. This enables achieving a highly focused process spot. 

Additionally, laser light can be produced in pulsed or continuous mode, allowing for 

different types of laser material interaction. However, the material being processed by 

the laser and environmental conditions influence the laser processed part properties. 

Therefore, detailed investigations are needed to fully characterize and optimize any 

laser process for specific application and material. As laser processing parameters can 

be controlled to a very high degree and material and processing conditions can also be 

changed, both experimental and simulation-based studies can help to optimize the 

process, predict outcome of different conditions and help to understand the underlying 

physical phenomenon.  

This chapter provides a comprehensive overview of design methodologies for laser 

processing experimental work and major modelling techniques used in the literature 

for prediction of outcomes for different processing conditions.  

 

2.2.  Laser material interaction 

For many decades, the surface properties of materials have been enhanced by different 

coatings and surface modification techniques to meet component operational 

environments. This includes requirements for component life times when subjected to 
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for example defined temperature, wearing or fatigue conditions. In order to enhance 

the surface properties over conventional techniques, such as flame hardening and 

carburizing, advanced techniques such as electron, ion, plasma and laser processing 

have been developed. Nowadays lasers with high energy density are commonly used 

in surface modification techniques. 

Laser Surface Modification (LSM) can be defined as any laser material process that 

modifies one or more of the surface properties, with or without adding additional 

material. These processes are employed to modify or introduce certain desired physical 

and chemical properties of a material such as surface chemical composition or the 

surface morphology [1]. Such modifications have been applied for metals, polymers 

and ceramics [2]–[7]. 

Scientists classify LSM either according to the modification type (hardening, glazing, 

texturing, shocking etc.) or according to the processing temperature (heating, melting, 

or plasma). In this chapter a review of methods for the experimental development of 

laser processing is presented. Specific examples are presented for Laser Cladding, 

Laser Surface Melting, and Laser Shock Peening. 

Laser surface heat treatment is a non-melting process, whereas in laser surface melting, 

the melting takes place in a thin layer which therefore solidifies rapidly forming a 

harder structure. During laser shock peening (LSP), surface compressive residual 

stress is imparted to the material via the shock waves from the laser processing. In 

laser cladding, the laser beam melts the metal surface while a second material is 

introduced to the surface. Examples of optimization of each of these types of laser 

processing techniques will be discussed later in this chapter. Before this, in the 

following sections, an introduction is given to experimental design methods for laser 

process optimization. 

 

2.2.1.  Selective Laser Sintering 

Selective Laser Sintering (SLS) is a common Additive Manufacturing (AM) technique 

in which the sintering of polymer powder material is performed using a laser source. 
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This technique utilizes two heating sources to perform 3D printing of the parts. The 

first source is used to preheat the powder close to the melting transition temperature 

of the material. Afterwards, selective (localised) laser sintering of the powder particles 

is performed to fuse powder together. Preheating of the powder helps to reduce the 

large thermal differentials that often result in part distortion and defects. SLS has 

decades long history of development in terms of materials and process development, 

challenges remain in producing parts with high dimensional accuracy that suffer from 

curling, distortion and warpage [8].  

 

2.2.2. Selective Laser Melting  

Selective Laser Melting (SLM) is a metal Additive Manufacturing technique used for 

3D printing of metals for applications in aerospace, automation, medical and other 

high-tech industries. As noted in the literature, SLM is the most versatile technique 

that can process wide range of metallic materials comparing to any other AM technique 

such as Electron Beam Melting, Direct Energy Deposition, Laser Engineered Net 

Shaping (LENS) and Binder Jetting (BJG) [9]. Briefly, a layer of metal powder is 

spread on build plate and laser is focused onto the material according to 3D CAD 

model and laser scan strategy. The heat energy from the laser beam melts the powder 

and fuses the metallic powder together.  

Unlike SLS process, in which powder is sintered, in SLM, the powder is fully melted, 

and a solid three-dimensional part is formed. The nature of SLM process is complex 

and a number of conditions (feedstock properties, processing environment and laser 

processing parameters) influence the outcome of the material. The variations in these 

processing conditions induce different variations and influence the part final geometry. 

Therefore, process optimization studies need to be perform to develop an optimized 

process for specific materials.  
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2.3.  Introduction to process optimization 

2.3.1. Process optimization techniques 

Ever since the advent and availability of lasers, their advancement has heavily relied 

on experimentally examining the effect of different process parameters on the material 

of interest. This has allowed an in-depth understanding of the lasers’ effects and 

interactions with the various materials.  

The ultimate goal of studying the laser processing of materials is to optimise the 

process in terms of single or multiple objectives. Optimization in this context can be 

defined as mathematically or statistically modelling the laser process in order to obtain 

desired/best response based on the process parameters. Therefore, it requires 

identifying the process input (control) parameters and the process output (response) 

parameters. Optimization can be performed for single or multiple response parameters. 

These parameters can be either quantitative or qualitative depending on the research 

objectives. To this end, researchers rely on either experimental or simulation works or 

a combination of both to optimise laser processes.  

 

Experiments are used extensively to optimise the process owing to the high degree of 

complexity in thermal mathematical models attempting to describe such processes and 

the multiple parameters and their possible interactions, governing the laser material 

interaction. Therefore the fundamental physical simulations are often time consuming 

and cost intensive [10], [11]. The exercise of experimental modelling of the laser 

processes is based on statistically studying the effects of varying the process input 

parameters on the process response parameters through conducting specifically 

planned experiments. This method is more commonly known as Design of 

Experiments (DoE). In application of this method, prior understanding of the process 

allows suggestion of the most appropriate process input parameters for investigation. 

The DoE usually starts with screening experiments aimed to identify if a suggested 

process input parameter has a significant effect on the response or not. During this 

stage, varying one parameter at a time or a factorial design of experiments can be used 
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for detecting the potential interactions between the parameters. Important conditions 

should be observed for selection of an input parameter. The input parameter should be 

independent, controllable, and should have a significant effect on the response. The 

response parameters choice also relies on prior knowledge and experiences or on the 

objectives of the study. The main condition of selecting the response parameter is that 

it should be quantitatively or qualitatively measurable [12]. 

 

2.3.2. Design of Experiments (DoE) for Laser Processing Methods 

2.3.2.1. General guidelines for conducting DoE 

Design of Experiments (DoE) is a systematic method for statistically modelling a 

process in order to get a mathematical/empirical relationship between the process 

parameters and the responses [13]. The process of coming up with a finalised DoE is 

an iterative one. It comprises of several decisions, revisions and simplifications. The 

experimenter must keep in mind that study conclusions or models of a process are not 

universal. They are, however, applicable for the investigated range of process 

conditions; such as process setup, parameters, study material, and model type etc. 

Therefore, the investigator should aim, when selecting the study objectives, to simplify 

these conditions as much as possible and select those that are controllable and 

repeatable. The investigator must spend a considerable amount of time and effort in 

planning for the intended DoE to ensure success. The seven stages involved in decision 

making, planning and performing the DoE are as follows [14]–[18]: 

 

1- Define the objectives of the experiment. To simplify the experiments and the 

analysis, this list should only involve precise questions that are to be addressed. An 

example of that would be to determine the correlation (if any) between laser beam 

power and cutting speed as parameters of a laser cutting process, and whether they 

influence the heat affected zone [19]. Furthermore, the objectives may need to be 

refined a number of times as the remaining planning steps are completed. 

 



16 
 

2- Identify all sources of variation, which are basically anything that when changed 

could influence the “observation” or “process response”. Some variation sources have 

a major effect on the process response “treatment factors” or often called “process 

parameters”. As an example, a laser drilling process parameter could be the laser beam 

depth of focus [20]. The process parameters and their levels from minimum to 

maximum should be selected. The levels of a process parameter should be laid out 

equally spaced for easy retrieval of the results and conclusions. Laser processes usually 

involve more than one process parameter. The experiments are called, in this case, a 

factorial design of experiment. This implies that the process responses are measured 

based on some combination of the levels of the various process parameters. 

 

On the other hand, some variation sources have minor effects on the response that are 

called “nuisance factors”. The effects of these factors are of no interest to the 

investigator. As an example, the glass sample thickness in the laser microchannel 

fabrication process [21]. Therefore, it is usually decided to fix the nuisance factors and 

perform the experiments at these fixed values. Alternatively, the nuisance factor is 

fixed, and the experiments are performed and repeated for a second fixed value of the 

nuisance factor, and a third fixed value and so on, which is called “blocking”. This 

could minimise the effect of these factors on the response. A noteworthy point about 

nuisance factors is that they are not always controllable. An example of a controllable 

nuisance factor could be the operator performing the experiments. Even if they are 

following strict procedure, in statistical terms, variability in the results may arise from 

changing the operator. An example of an uncontrollable nuisance factor could be 

variations in properties among batches of the study material. In laser processing, the 

surface finish of a material to be processed is a good example. If blocking is to be used 

in the latter case for minimizing the nuisance factors effects, enough material should 

be at hand for performing each block of experiments. 

 

The third variation factor that can be considered in studying laser processes is the 

“study material”. This is the workpiece treated by the combinations of laser process 
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parameters to induce the measurable process responses. The main consideration with 

the selection of the material is that it should be representative of the process objectives 

to be concluded. This sets a limit on the scope of the study results and objectives, 

which may be revised. 

 

Finally, the decision whether a variation factor is a process parameter, or a nuisance 

factor is made by the investigator and depending on the process under study. It is 

important to note during the decision-making regarding selection of parameters that 

more process parameters involved in the study may complicate the analysis without 

providing any added value or increasing the accuracy of the model. 

 

3- At this stage the type of DoE design is selected. This means that the way and 

combinations of process parameters will be assigned to the selected samples for laser 

processing in order to obtain process responses. This influences the number of 

experiments needed to analyse the process and obtain an understanding of a model. 

The decision here includes whether the design will have the blocking factors or not. 

There are several types of DoE designs, such as the Factorial Design, the Fractional 

Factorial Design, Response Surface Methodology (RSM) such as the Central 

Composite Design (CCD) and Box-Behnken Design (BBD). The reader is advised to 

read the previous studies [14]–[18]  in order to gain knowledge of which DoE design 

suits most of their objectives. However, many investigators start theirs studies with a 

simple general Factorial Design. This is suitable if investigators have a few process 

parameters examined at limited number of levels. At a later stage, when more 

knowledge about the process is acquired, a more focused investigation can be carried 

out. In this case, Fractional Factorial or RSM designs can be used at more parameter 

levels without increasing the number of experiments needed. For a given design, there 

is an important rule, which is to eliminate bias by randomizing the experimental runs. 

Experimental samples of the material should be taken and assigned randomly to each 

combination of the levels of the process parameters. This is required to ensure that the 
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responses are not subject to- or affected by- uncontrollable sources such as the 

experimenter bias. 

 

4- At this stage, decisions associated with the process response parameters have to be 

made. These may include; the units of the response parameters, the measurement 

methods and the equipment, the measurement accuracy, precision and resolution, and 

the procedure for preparing a sample measurement. Process response parameters are 

usually suggested at an earlier stage. However, some difficulties may arise 

prohibiting/restricting the ability of data collection or measurement. This requires 

running a few pilot experiments to investigate some of the difficulties involved in the 

data collection. This may result in the need for modifying or rectifying the selection of 

the response parameters or the procedure of the data collection. The pilot experiments 

will also assist in coming up with a systematic/strict procedure to be followed by the 

experimenters throughout the DoE practice. This systematic procedure can take the 

form of a data collection sheet that shows the conditions and the sequence in which 

the responses are to be recorded. The study objectives may be revised at the end of this 

step to simplify the experimental procedures. 

 

5- As explained in the previous steps, a pilot experiment may need to be performed. A 

few observations can be made without expecting any conclusions. The main idea is to 

practice the experimental procedures and to check for difficulties that may arise during 

carrying out an experiment or in data collection. Revisions and necessary changes of 

the all previous decisions can be made after examination of the pilot experiments 

results. 

 

6- The process model type is selected, with the aim that it will best represent the extent 

of the relationship between the process parameters and the response parameters. The 

selected model should enable the investigator to mathematically define this 

relationship. The analysis techniques employed to derive a model are statistical in 
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nature. These techniques will be applied to the collected data and will depend on the 

selected model type. The most commonly used model is the linear model. This model 

attempts to describe the process response parameter in terms of a linear combination 

of process parameters plus an error resulting from all minor sources of variations. A 

quadratic or curvilinear model is preferred in order to better fit and understand the 

relationship between the process input and output parameters and the results obtained. 

 

7- Finally and before proceeding to perform the full set of experiments, some final 

revisions of the previous decisions can be performed that are necessary to simply and 

increase the accuracy of the model. These revisions might be aimed to reduce the 

number of experiments or to narrow down the ranges of the selected parameters. Once 

the experimental design is ready, experiments and data collection may commence 

which provide the data for analysis and process model derivation. 

 

2.3.2.2. Software used for DoE 

It should be noted that several available software packages are designed to assist 

researchers throughout the DoE exercise including planning, analysing, and 

optimizing the process. These include State-Ease Inc., Design-Expert [22], SAS 

Institute Inc., JMP [23], and Minitab [24]. These software packages provide a user-

friendly interface equipped with 2D and 3D graphical representation of the results. 

Once a process model (mathematical or empirical) is derived, it can be used to draw 

an operational map of the process in terms of its parameters. It can also be employed 

to predict the responses for a given combination of process parameters within the 

investigated range by performing the simulations of the designed model. It is advisable 

that the model is validated by performing some validation experiments and checking 

the accuracy of the model predictions. After the process model is obtained, further 

optimization can be performed by performing a new DoE with more closely defined 

zone of investigation and ranges of process parameters. The aim of optimization 

studies is thus to find the values of the process parameters that produce the optimal 
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process response. In practice, that means; output minimising, maximizing, or 

producing a specific multi-modal optimization of process response. 

 

2.4.  Optimization based on mathematical simulations 

On the other hand, other researchers rely mainly on computerized thermal simulations 

to optimize laser processes and conduct some experiments to iteratively-modify or 

validate their models’ predictions. When the simulation model is ready and validated, 

it provides an inexpensive opportunity for optimizing the process [25], [26]. 

Simulation models can be used to provide analytical and/or numerical solutions. The 

results of these simulation can be used to predict the effects of various forces and 

energy fields induced by the laser irradiation of the materials. These models are 

commonly known as Mathematical Models. These models generally treat laser as a 

heat source. The laser effect on the material is modelled based on a single or a 

combination of different processes.  The energy from the laser source is transferred to 

the workpiece by convection, direct radiation heat transfer, or conduction or 

combination of all of these processes. This allows simulation and prediction of heat 

generation and the progression of energy transfer in the material leading to subsequent 

heating, melting and evaporation [13], [25], [26]. 

 

Despite the two main schools of optimization research, experiment and simulation, 

many researchers find it very efficient and reliable to combine both types of studies. 

Therefore, the experimental studies are performed in order to directly understand 

process parameters effects allowing control of process outcomes. The simulation 

models are used to support knowledge gain and give deeper understanding of the 

physical behaviour leading to the experimental results. These models also allow 

comparing and validating the experimental findings. This type of 

comparative/augmented studies constitutes majority of the reported studies on laser 

process optimization. 
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Response Surface Methodology (RSM) was also used in a study of laser microchannel 

fabrication process in the works of Issa [21], where a pulsed CO2 laser (1.5 kW, 10.6 

µm) was used to fabricate microchannels in soda-lime glass samples of a fixed 2 mm 

thickness. The microchannel dimensions, surface roughness and morphologies were 

studied in terms of the laser processing input parameters (laser beam power, pulse 

repetition frequency, and scanning speed) using RSM. The collected results were also 

used to study the effects of the process parameters on the material’s volumetric and 

mass ablation rates. Results from the RSM model in this study were also compared to 

simulated results from a thermal mathematical model [21]. 

 

2.5.  Experimental and simulation-based methods- A brief comparison  

2.5.1.  Advantages with experimental methods 

- Little prior knowledge regarding laser physical interaction with the material is 

required. 

- Quicker results for analysis. 

- Model is highly relevant to results from the investigated regions of process 

parameters. 

- Experimental results can be used directly to identify possible industrial 

applications. 

 

2.5.2. Challenges with experimental methods 

- Experimental model adequacy depends on the repeatability and reliability of the 

process setup, accuracy of process control, governance of experimental conditions, 

variability in batch-material properties, stability of laser source parameters, 

measurability of parameters and accuracy of measurement methods. 

- They are not always labour- and cost-effective. 

- They do not provide deep insights to the physical phenomena underlying the 

process. 

- They are only suitable for the investigated regions of process parameters. 
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2.5.3. Advantages with simulation methods 

- Less human resource is required, and material consumption is minimal. 

- Provide more understanding of the process physical phenomena. 

- Universality (not restricted to a specific range of input parameters), however, this 

universality is limited by the model assumption and boundary conditions. 

 

2.5.4. Challenges with simulation methods 

- Level of the details of processes and assumptions included in the model define the 

accuracy. Increasing the details and lowering the assumptions can make the model 

complicated. The adequacy of the simulation models depends on how 

comprehensively they account for many process parameters (such as material 

properties, laser temporal mode, model assumptions, boundary conditions, material 

shape/thickness, ambient conditions, etc.). 

- Availability of accurate values of material properties at high temperatures and short 

irradiation periods (materials generally behave non-linearly under these conditions), 

therefore, some material properties (such as thermal conductivity, evaporation 

temperatures, latent heats) may not be available under these conditions. This leads to 

assumptions which may not very accurate. 

- It is still challenging to model some processes that involve complex interactions 

between different materials such as welding and coating processes. 

- Simulation modelling is also challenging for certain processes that involve complex 

underlying physical phenomena. For example, ultra-short laser pulses induce micro 

and Nano-scale modifications in the processed materials. The complexity arises due to 

changes occurring simultaneously in the physical and chemical properties of the 

processed materials.    

 

2.6.   Experimental setup requirements and relation to modelling  

When it comes to conducting experiments with the lasers, accuracy and precision are 

key factors. Therefore, the experimental conditions must be governed and maintained 

throughout the entire experiment. The experimental setup is engineered in this way to 
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ensure the repeatability and reliability of the results. The majority of the researchers 

working with laser processing rely on performing measurements of responses after the 

sample is processed. Many techniques and instruments can be used to fulfil this 

requirement, based on the nature of measurements. These techniques include but not 

limited to Vernier scanner, profilometers, mechanical hardness measurement 

equipment, chemical analyses, optical microscopy, SEM and AFM [27]–[29]. Some 

published research work used in-situ or online setups to measure process responses in 

real-time. These responses can be the physical and chemical modifications in the 

processed material (such as transient temperature distributions, material phase 

transformations, optical properties, and dimensions and topography of structured 

zones) [26], [30]. One major advantage in using in-situ measurement setups is that they 

provide the ability to modify the process parameter in real-time to visualize the exact 

effect of input parameter variations on the obtained results. 

 

2.7.  Modelling and optimization of laser processing with non-conventional 

approaches  

The correct selection of the process parameter values is vital in designing a successful 

manufacturing process. A well calculated decision on selecting the values for the 

processing parameters guarantee the good quality of the manufactured product and 

reduces the manufacturing expenditure and increases the overall productivity of the 

manufacturing system. In order to design a model for the process parameters of a 

manufacturing process and perform optimization on that model, the complete 

understanding of the process is required. This understanding and thorough knowledge 

about the several processes involved in the manufacturing can be obtained by 

experimental equations that are able to identify the practical restrictions, specification 

of machine capacities, development and implementation of an effective optimization 

criterion, and understanding of mathematical and numerical optimization techniques 

[31].  

 



24 
 

Due to the high levels of the complexity involved in the laser surface modification 

techniques and multiple influences of the parameters on the process response, 

traditional methods of designing, manufacturing and testing to control the process are 

generally inefficient and provide unsatisfactory results. The advanced modelling and 

optimization techniques have been developed and frequently used in various industrial 

sectors to control and optimize the manufacturing processes.  

 

In order to design and develop these techniques, the relationship between the response 

of a process and input control factors should be explained objectively and numerically. 

This can be performed by realization of the process through appropriate mathematical 

equations and optimization algorithms. The optimization techniques which have been 

found to be particularly useful for application with laser-based manufacturing 

processes are given below: 

 

2.7.1.  Response Surface Methodology (RSM)/Design of Experiments (DoE)  

Using RSM, the responses of a process can be optimized by understanding and 

calculating the quantitative influence of the control parameters. By introducing 

systematic variations in the input parameters, the response of the process is recorded 

and conclusions are drawn on the basis of the quantitative analysis of the results [32]. 

 

2.7.2.  Artificial Neural Networks (ANN) 

ANNs are efficient systems in data modelling and are capable to represent complex 

input–output relationships [32]. 

 

2.7.3.  Adaptive neuro-fuzzy inference system (ANFIS)  

For creating and testing connections between inputs and outputs of a system or process, 

ANFIS provides an opportunity to integrate both adaptive artificial neural networks 

and fuzzy logic to provide a feedback control system to obtain accurate process 
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response by adaptively changing the input control parameters [32]. The use of ANFIS 

provides adaptive control over the process thus optimization can be performed 

automatically based on the feedback received from the process response.  

 

2.7.4.  Grey Relational Analysis (GRA) 

If a process involves multiple control inputs that provide influence and generate 

complex multiple responses and accurate information regarding the influence of 

control factors is unknown, the GRA can be used as an effective solution. In such 

cases, the multiple process response system is simplified by introducing a single grey, 

hazy or fuzzy relational grade output response to provide a variety of possible solutions 

[32]. 

 

2.7.5.  Technique for order preference by similarity to ideal solution (TOPSIS) 

The TOPSIS provides a rather simple but unique solution to model the relationship 

between input, control and output response of a process or a system by selecting 

different criteria to reach a decision. The approach used in this method is based on 

iterations in criteria on the basis of compensation in the aggregation. The accuracy of 

results (poor or good) suggests which criteria suits best of the process under 

consideration [32]. 

 

2.7.6.  Meta-Heuristic optimization 

Metaheuristics algorithms do not ensure a globally optimal solution however provide 

a sufficient solution for immediate goals with limited and incomplete data availability. 

The solutions produced by such algorithms are generally dependent on the set of 

random variables generated during a stochastic process. In combinatorial optimization, 

by searching over a finite set of optimal solutions, metaheuristics can often discover 

decent solutions with less calculation tasks than other optimization algorithms, 

iterative methods, or simple heuristics. For example, imperialist competitive algorithm 

(ICA) is a meta-heuristic optimization method. The ICA algorithm consists of eight 
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main steps (generating initial empires, assimilation, revolution, total power of an 

empire, imperialistic competition, elimination of powerless empires and stopping 

condition) exchanging positions of the imperialists of colony to detect best solutions 

[32]. 

 

2.8.  Investigations on laser-based surface modifications and processing 

techniques  

2.8.1. Laser Cladding 

Sohrabpoor in 2016 presented an analysis of powder deposition factors for the laser 

cladding process, with ANFIS modelling and optimization [33]. In this work, an 

adaptive neuro-fuzzy inference system, ANFIS, was implemented to model the 

response of the deposition parameters based on collected experimental data for the 

iron-based alloy powder deposition onto mild steel substrate. It was concluded that for 

multi-response optimization problems of a manufacturing process where the outputs 

are well correlated to each other, the ANFIS-ICA method can be utilized. The structure 

of the ANFIS model for predicting outputs parameters is shown by Fig 2.1.  
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Fig 2.1. Structure of developed ANFIS model for predicting of catchment efficiency, clad 

height and clad width [33]. 

 

Mondal et al. in 2014 used Artificial Neural Network (ANN) for prediction of the laser 

cladding procedure characteristics with input date defined according to Taguchi-based 

design condition [34]. In this work, nickel, chromium and molybdenum mixture 

powder was used for laser cladding of AISI 1040 steel by CO2 laser. Input factors 

examined including laser power, scan speed and powder feed rate to reach to maximum 

level of clad width and minimizing the clad depth. The correlation between the inputs 

and the outputs was implemented via the back-propagation method of ANN. It was 

found that the optimum condition of the cladding factors for multi-performance 

characteristics varied with the various combinations of weighting factors. The 

structure of 4-layered ANN model utilized is shown in Fig 2.2. 
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Fig 2.2. Structure of 4-layered ANN model used for prediction of  the laser cladding process 

outputs [34]. 

 

Guo et al. [35] in 2012 studied the effects of process parameters on the quality of a 

laser cladding layer of Co-based alloy on 304 stainless steel with a high power diode 

laser (HPDL). For exploring the optimum process parameters and reducing the times 

of procedure experiments in practical engineering application, a back propagation (BP) 

neural network model was established. The calculation and predication results reveal 

an appropriate agreement with the experimental results. The research results have both 

significant reference value and provide guidance in the selection of process parameters 

of Co-based alloy cladding by HPDL. The structure of BP-NN model for laser cladding 

of Co-based alloy is shown on Fig. 2.3. The results showed that the laser scanning 

speed has the most significant effect on the width, height and depth of laser cladding 

layer, and the powder feeding rate has the most major impact on the hardness of laser 

cladding layer.  
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Fig 2.3. Structure of BP-NN model for laser cladding Co-based alloy by a HPDL [35]. 

 

Marzban et al. [36] in 2014 investigated optimal process parameters to increase the 

laser cladding process performance. The design of experiments based on L9 

orthogonal array used to investigate the effects of input factors (laser power, scan 

speed and powder feed rate) on output factors (clad height, width and depth). As three 

response factors were selected, in order to investigate the multi-response optimization 

of the process, the Principal Component Analysis (PCA) was used in combination with 

TOPSIS.  

The weight factors associated with the characteristics of the quality were determined 

by the PCA. The study found that by increasing the laser power during the processing, 

a positive effect on the clad width can be achieved. Concurrently a negative effect on 

the clad height and depth was observed. Increasing scan speed was found to have a 

positive effect on the clad height, width, and depth. Fig 2.4 shows the main effects of 

the input parameters on output response, implemented in Minitab 16 software.  
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Fig 2.4. Response of process factors to relative closeness of a particular alternative to ideal 

solution [36]. 

 

Mondal et al [37] in 2013 used Taguchi and grey relational analysis in order to 

investigate optimal process parameters for the laser cladding of AIS1040 steel plane 

surface. The impact of different laser deposition factors on the clad bead geometry 

were investigated. The laser power was selected as source parameter and the scan 

speed and powder feed rate were selected as process condition parameters. The GRA 

was for the process modelling and optimization to examine the grey relation grade for 

each experiment. The best response of the laser cladding of AISI 1040 after 

optimization was obtained with the laser power of 1.25 KW, at scanning speed of 0.8 

m/min while keeping the powder feed rate at 11 gm/min.  Fig. 2.5 shows the grey 

relational grade. Also, it is concluded that for a complex multi response process such 

as laser cladding, the optimization problem can be converted in to single objective 

optimization problem with GRA.  
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Fig. 2.5. Graph of grey relational grades determined for the laser power, scan speed and 

powder feed rate [37]. 

 

2.8.2. Laser Melting  

During Laser Melting, a thin material surface layer melts and solidifies rapidly due to 

self-quenching. This results in modification of the surface microstructure. For higher 

solidification rates, the melting should be limited to only thin layer substrate. Therefore 

this technique requires lower power densities at high transverse speeds [1]. 

In 2013 Sun et al. [38] produced highly dense samples with Ti6Al4V alloy powders 

using selective laser melting (SLM) technique. Taguchi method was used to optimize 

the selected parameters of LSM. These selected laser parameters were laser power, 

scanning speed, powder thickness, hatching space and scanning strategy. The optimal 

parameters and a regression model were developed with design-expert software and 

the analysis on the results obtained was performed using analyses of variance 

(ANOVA) methods and the signal-to-noise (S/N) ratios. Based on the figure, higher 

value is better. The results indicated that powder layer thickness provides a major 

influence over resulting part density. The lowest powder thickness (0.02 mm) provides 

high density (~95%). Comparing to casting method, higher surface micro hardness was 

achieved by keeping the laser power at 80 W.  
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Calignano [39] studied the manufacturability of overhanging structures using 

optimized support parts. SLM technique was carried out for Al and Ti alloys 

overhanging structures. Taguchi L36 design was used for the experimental study to 

identify the optimal design of the self-supporting overhanging structures. Several 

process parameters including hatching space, teeth height and teeth base interval were 

optimized using Taguchi method to obtain highly accurate geometry of the build 

material by reducing the deformations of the overhanging surfaces.   

 

In 2015 Read et al. [40] investigated the influence of SLM on AlSi10Mg alloy porosity 

development. They correlate the statistical design of experimental approach with the 

energy density model to study the influence of laser power, scan speed, scan spacing, 

and island size using a Concept Laser M2 system on the SLM process. It was reported 

that for AlSi10Mg alloy, by keeping the critical energy density at about 60 J/m3, a 

minimum pore fraction can be achieved.   

 

The surface modification of biomaterials is often desirable to improve the degree of 

biocompatibility of the implants [6]. The laser surface structuring of biomaterials has 

been reported extensively [7], [27], [28], [41], [42]. Chikarakara et al. [2] investigated 

the effect of 1.5 kW CO2 high speed laser processing on Ti-6Al-4V surface 

modification for biomedical implant application. During the laser processing, argon 

(being an inert) gas was used to minimize any unwanted chemical modifications 

induced on the workpiece surface. The processing parameters studied in this work were 

irradiance, pulse width, residence time and sample pre-treatments. SEM was used to 

characterize surface topology, microstructure and melt pool depth. From this study, a 

32 factorial design as presented below was used to provide a new understanding from 

the use of DoE in the laser processing of this material.  

 

The two parameters (irradiance and residence time) were selected to make a three-

level factorial design of experiment to investigate laser surface processing of Ti-6Al-
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4V alloy. Continuous Wave (CW) mode laser was used to irradiate the workpiece at 

three levels of irradiance: 15.72, 20.43 and 26.72 kW/mm2 and three levels of 

residence time: 1.08, 1.44 and 2.16 ms, see Table 2.1.  

 

Table 2.1 Design of Experiments parameters for Ti-6Al-4V alloy laser surface processing [2]. 

ID 
Irradiance 

(kW/mm2) 

Residence 

Time (ms) 

LSM 1 15.72 

2.16 LSM 2 20.44 

LSM 3 26.72 

LSM 4 15.72 

1.44 LSM 5 20.44 

LSM 6 26.72 

LSM 7 15.72 

1.08 LSM 8 20.44 

 LSM 9 26.72 

 

For surface laser processing, a laser beam with 90-micron diameter was focused on the 

titanium alloy samples. In order to provide microstructural and compositional 

homogeneity to the surface, the irradiation of the samples was carried out using a raster 

scan with a partial overlap of 30%. The pressure of the argon gas was kept at 200 kPa. 

Inert gas was used to prevent metal oxidation. To ensure uniform processing conditions 

and maximum absorbance during laser irradiation, the laser beam was kept 

perpendicular to the sample. 

 

Fig. 2.6 highlights the modifications in the microstructure, roughness and melt pool 

depth of the laser irradiated areas of the sample. It can be observed from the BSE 

images that increase in the irradiance of the laser on the sample surfaces results in 

modifications in the uniformity of the thickness of the irradiated area. The melt pool 
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depth introduced in the laser processed surface can be modelled by the equation given 

in Table 2.2. 

 

 

Fig. 2.6: Back scatter detector (BSE) surface morphology images of laser surface modified 

Ti-6Al-4V at a constant level of irradiance 26.72 kW/mm2 and three levels of irradiance of 

residence time of (a) 1.08 (b) 1.44 and (c) 2.16 ms [2]. 

Table 2.2 Analysis for variance (ANOVA) table for melt pool depth – 2FI model. 

Source 
Sum of 

Squares 

Mean 

Square 

F 

Value 
p-value 

Model 502.786 167.595 23.268 0.0023 

A-Irradiance 135.375 135.375 18.795 0.0075 

B-Residence 

Time 
366.601 366.601 50.898 0.0008 

AB 0.81 0.81 0.112 0.7510 

Residual 36.013 7.202   

Cor Total 538.8  

  Final equation obtained from the model 

R-Squared 0.933 Meltpool depth = 

-3.93448 

+0.61818 × Irradiance 

+11.26016 × Residence Time 

+0.15152 × Irradiance × Residence Time 

Adj R-Squared 0.893 

Pred R-Squared 0.879 

Adeq Precision 14.047 
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The statistical findings from the ANOVA demonstrated that both input laser process 

parameters influence the melt pool depth of the irradiated surface. It was further 

observed that comparatively, the residence time effect more strongly on the melt pool 

depth of the processed material with respect to irradiance as the F-values obtained by 

ANOVA were 50.898 and 18.795 respectively.  

 

By considering the interaction of both selected input factors, the statistical analysis 

showed low significance for influence on melt pool depth. This result from the 2FI 

model was further confirmed by the coded factor model equation given below. The 

coded factors model equation was derived from the experimental design’s low and 

high coded levels (-1 and 1). 

 

Melt pool Depth (µm) = 32.63 + 4.75A + 7.82B + 0.45AB 

Which A refers to the irradiance and B is Residence time. 

The predicted values of melt pool depth from the model were plotted against the 

experimental values in Fig. 2.7. The model was able to predict the output response 

parameter (the melt pool depth) very close to the experimental values. The signal to 

noise ratio was also calculated to find the adequate precision of the model which was 

14.047 in the study. The ratio higher than 4 confirms that the developed model can be 

used to optimize the process parameters for desired output response.  
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Figure 2.7. A graph of the actual melt pool depth versus the predicted values [2]. 

 

2.8.3. Laser Shock Peening 

Laser Shock Peening (LSP) is an efficient surface treatment technique used to improve 

the fatigue performance of metals. In 2013, Sathyajith et al. [43] investigated the effect 

of laser shock peening without any coating on aluminium alloy Al-6061-T6 with a 

300mJ infrared laser. It was shown that micro hardness and surface compressive stress 

were significantly improved using laser shock peening technique without additional 

coatings. However trivial increase in surface roughness was observed, as shown in 

Fig.2.8. 
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Figure 2.8. Surface SEM micrograph: (a) pristine and (b) laser shock peened surface [43]. 

 

Through this technique pulsed laser fired at the material surface, the rapid expansion 

of the resultant formed plasma will generate a high amplitude and short duration shock 

wave. The plasma by laser irradiation on the material is formed due to vaporization of 

an ablated layer placed on the surface of the material surface confined by water [44]. 

The shock wave generates stresses on the specimen surface causing a compressive 

residual stress field which increases the surface hardness and the fatigue life. From that 

we can understand that LSP is a mechanical process unlike other laser processing 

techniques based on thermal processing of the materials [45]. 

 

Sibalija et al. [46] varied three Nd:YAG laser parameters in laser shock peening (LSP) 

to find the optimum parameters. The experiment was conducted on nickel-based 

superalloy Nimonic 263 sheets, and the selected LSP parameters for optimization 

included source voltage, focus position and pulse duration. The group performed 

modelling and optimization using the advanced problem-independent method. 

Taguchi quality loss function was used first to express the responses, then uncorrelated 

and synthesized into a single performance measure using the application of 

multivariate statistical analysis. Finally, the process model was built using an artificial 

neural network, and simulated annealing was utilized to find the optimal process 

parameters setting in a global continual space of solutions. The obtained global 

optimum for the process parameters provided improved micro hardness along with 



38 
 

very fine grains and the overall surface roughness was reduced after LSP at these 

values. Therefore, making the surface smoother with clean microstructure as well as 

improved fatigue life.   

 

2.9.  Conclusion  

Laser processing has a wide application range from micro/Nano fabrication techniques 

to surface treatment, structuring, modification, and controlled surface plastic 

deformation. As the laser matter interaction is a complex phenomenon, the 

advancements in laser processing applications require accurate mathematical models 

to describe the various processes that occur during the laser interaction with different 

materials. The models can be developed to predict the response of the laser processing 

for a specific application by establishing relationship between the process input 

parameters (laser parameters and working conditions) and output response (resulting 

property of the processed material). A systematic approach is required to generate data 

that is required for modelling and simulation of laser processing. Design of 

Experiments (DoE) has been extensively used to describe how the materials properties 

can be controlled as a result of control of processing conditions. In particular, the DoE 

approach has been successfully used in laser processing to establish and validate the 

relationship between the laser process parameters, working conditions and output 

responses. This allows the definition of accuracy, repeatability, and reliability from the 

laser process enabling the use of these techniques to be taken up and employed more 

widely by industries which are adopting new laser-based technologies for both material 

modification and fabrication. 
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Abstract 

Selective laser sintering (SLS) is a novel fabrication technique with multiple industrial 

applications in different industrial sectors. Choosing optimum combination of 

elements which lead to the best component properties and lower process cost are 

required in the SLS process. In this study, we focused on advanced modelling and 

optimization method developed for obtaining the best mechanical properties of SLS 

produced glass filled polyamide parts. The key processing parameters examined were 

part bed temperature, laser power, scan speed, scan spacing, and scan length. Response 

output properties measured were elongation and ultimate tensile strength. Five factors 

with three levels according to the central composite design were trailed. Adaptive 

neuro-fuzzy inference system (ANFIS) was employed to generate a mapping 

relationship between the process factors and the experimentally observed responses. 

In order to achieve best mechanical characteristics, the acquired model was used by 

simulated annealing algorithm as an objective function. Grey relational analysis 

(GRA) as a multi-response optimization technique was also applied to evaluate which 

modelling technique could perform best for defining the process elements to obtain the 

highest mechanical properties. In comparing the two optimization methods, the results 

indicated that the ANFIS-SA system outperformed the GRA in finding optimal 

solutions for the SLS process applied for glass fibre reinforced part production.  

 

Keywords: Selective laser sintering; Adaptive neuro-fuzzy inference system; 

simulated annealing algorithm; grey relational analysis 
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3.1.  Introduction 

The selective laser sintering (SLS) was invented in 1989 [1]. In this process, laser 

employed to melt polymer powders. In order to reduce the thermal distortion, metal 

powder bed should be melted to below the melting point of the material and at the 

same time assist melted fusion to the prior layer. After that, each layer is fused by laser 

for sintering the material. The melted powder shapes the parts and the section which 

is un-sintered, makes main structure of the parts. The SLS can be classified as a 

complicated process, as many fabricated elements must be controlled, see process 

schematic in Fig 3.1. 

  

 

Fig 3.1. A structure of SLS process 

  

In the case of development of empirical models, some statistical techniques and 

mathematical modelling such as Response Surface Methodology (RSM) has been used 

to correlate relationship between SLS process inputs and its main outputs. Bacchewar 

et al. [2] developed a new mathematical model to determine the effect of input factors 

on the polymer product made by SLS. They used a CCD (central composite design) as 

the strategy of experimental work. They found within their design of experiments that 

hatch distance was the most important parameter in terms of resulting mechanical 

properties. Sharma et al. [3] with using of dynamic mechanical analyzer, investigated 

the of laser sintered produced samples. They found that with increasing some input 
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elements like scan length, part bed temperature and laser power the storage modulus 

also increased; and that it was decreased with increasing scan spacing. Furthermore, 

they found that scan spacing was the most prominent factor amongst all parameters 

investigated. Design of experimental methodology is a popular method for 

optimization of process parameters, particularly for complex laser-based processes for 

which it is difficult to develop fundamental model for [4,5].   

Dingal et al. [6] used a design of experiment strategy with seven elements including 

laser pulse on-time, laser peak power, and interval-between pulses, and responses 

including density, porosity and hardness. The results show that the laser peak power 

density had the highest impact on the laser sintering process. Design of experiments 

methodology has also been applied for metal Selective Laser Melting (SLM) in 

addition to Selective Laser Sintering [7]. Negi et al. in order to improve service life in 

glass-filled polyamide in SLS process, studied the impact of process factors including 

part bed temperature and beam speed on the dynamic mechanical properties [8]. The 

CCD of experiments was applied for their systematic experiment methodology. From 

the results, it was observed that with reducing bed temperature, dynamic mechanical 

characteristics were reduced [9]. The ANOVA results from this work indicated that 

the scan spacing, and laser power had a high level of impact on the surface roughness 

and that for minimizing of surface roughness, the bed temperature should be set to the 

lower level. The influence of some input parameters on the tensile strength, elongation 

and yield strength of glass filled polyamide parts produced by the SLS process was 

examined [10]. A CCD was implemented in this work as the design of experiments 

with the response equations derived from the experimental results. The results from 

this work indicate that the scan spacing, and scan speed were the most important 

parameters in terms of effecting the mechanical property outputs. The effect of same 

input parameters on the flexural strength of the samples was also examined.  

Negi et al. [11] applied both RSM and ANN for the prediction of shrinkage in laser 

SLS sintered glass fiber reinforced polymer (PA 3200GF) samples. The RSM and 

ANN models were compared for their ability to predict shrinkage. Results indicated 

that ANN was better than RSM in both data fitting and estimation abilities. Munguia 
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et al. [12] in order to pedict build time in SLS process used an ANN with part height, 

volume, and bounding box considered for input parameters. The results from this work 

indicated good potential for the ANN-based approach to be employed for the SLS 

process. Boillat et al. [13] used ANN in order to optimize the SLS process for a 

component of circular geometry and also applied an ANFIS model which typically has 

lower error levels in compression ANN. Shen et al. [14] applied ANN to predict the 

density of SLS samples. The inputs of this ANN were laser power, scan speed and scan 

spacing, and an orthogonal experimental approach was applied for training and testing 

of the system. Verification experiments were utilized to assess the quality of the model 

and the results showed the high accuracy of ANN for prediction. Vijayaraghavan et al. 

[15] used a combination of FEM and evolutionary algorithm simulation in order to 

determine the relationship between inputs (laser power, scan velocity and scan 

spacing) and the output (density). The results from this work indicated that scan 

spacing, and velocity had the highest impact while scan spacing had the least effect on 

the density of SLS-fabricated samples. SA algorithm which is part of metaheuristic 

algorithm is one of the most important and prominent optimizer algorithms which is 

used frequently in some manufacturing process [16, 13, 17, 18, 19, 20], however there 

are no previous publications concerning the usage of SA algorithm for the SLS 

process.  

There have been very few publications in regard to usage of GRA for prediction or 

optimization of laser processes. GRA has however been applied as an optimization 

technique for many other manufacturing processes [21, 22, 23, 24, 25]. The 

experimental results achieved from the optimal settings predicted from the GRA 

algorithm show that there is a significant improvement in the related manufacturing 

process. The benefit of this approach is that the changes in multiple output response 

can be linked to various input settings which hence streamlines the optimization 

procedure. 

 

 

 



48 
 

3.2.  Methodology and experimental tools  

3.2.1.  Description of ANFIS  

For making relationship between input and response parameters adaptive neuro-fuzzy 

inference system is utilized which is mixture of neural network and fuzzy logic. In this 

study, the model consists of five layers and each layer includes several nudes. There 

were fifty sets of parameters studied in the experimental work including forty data 

points as a training for ANFIS model ten of data points for the model evaluation. For 

further information about implementation of the ANFIS, interested reader is referred 

to the following references [15,26].   

In this work, in order to make a connection between input parameters and outputs, the 

ANFIS model was employed. After that, for each output, a specific ANFIS model was 

chosen based on RMSE. For example, because of five inputs, first layer of ANFIS 

includes five nudes and the last layer has one nude which represent of tensile strength.  

 

3.2.2.  Optimization with SA algorithm   

One of the most significant algorithms which is broadly utilized for optimization of 

manufacturing processes is the SA algorithm which is a metaheuristic algorithm and 

is derived from modelling of thermal annealing. When a metal heated in a high 

temperature, it will reach to molten point. In this level of temperature, as a result of 

energy which is given by heating, all of atoms can move easily.  When the temperature 

drops, the atoms will be arranged in the crystalized solid which have low level of 

energy. Based on the annealing process explanation, SA is an algorithm which is based 

on accidental exploration which naturally will not be trapped in a specific area, as a 

result of using the probability distribution function. For further information about 

implementation of SA, interested reader is referred to the following reference [23].  
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3.2.3.  Multi response optimization with GRA  

GRA is a popular type of optimization method which is used for solving of multi-

criteria problems. According to the experimental data, in order to find best optimal 

condition, tensile strength and elongation should convert to one output. In this analysis, 

Firstly, data need to be normalized from to zero to one. After that, grey relational 

coefficient is computed in order to generate a relationship between inputs and 

responses. Next, in order to find Grey Relational Grade (GRG), the mean of grey 

relational coefficient needs to be calculated in relation to outputs. Finally, the result of 

multiple output process is structured on GRG which is calculated in previous section. 

This optimization method has been presented in detail previously [23]. 

 

3.3.  Material and test specimen  

The data examined was recorded in experimental work was performed by Negi et al. 

[8] and is summarized here for clarity. The materials which are utilized for making 

parts in SLS process was glass filled polyamide produced by EOS GmbH. This 

material is including polyamide glass beads and powder. The detailed experimental 

methodology implemented is indicated in Fig 3.2. 
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Fig 3.2. Flow chart of the implemented experimental and modelling methodology. 

 

3.4.  Selective laser sintering (SLS) parameters definition  

For producing parts in SLS process several input elements are important and if they 

control sufficiently by the operator, parts will produce better in terms of strength.  In 

this work, the process parameters to fabricate the test specimens are as shown in Table 

3.1. Fig 3.3 presents the experimentally recorded values of tensile strength and 

elongation.  
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Table 3.1. Process variables and their levels (Negi et al., 2015) 

Process 

parameters 

Unit Symbol Code levels 

   0 0.5 1 

Part bed 

temperature  

oC T 176 179 192 

Laser power W LP 28 32 36 

Scan velocity mm/s SE 2500 3500 4500 

Scan spacing  mm SA 0.25 0.35 0.45 

Scan length  mm SL 100 120 140 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3. Measured ultimate tensile strength and elongation of the test specimens [9] 

 

3.5. Results and discussion  

Process optimization by ANFIS-SA has two major stages. The initial stage is to 

determine objective function, and next stage is to mix the objective function and SA 

for choosing best step setting. The implementation of each step is presented below.  
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3.5.1. Development of ANFIS model 

For developing the ANFIS model the model needs to be trained. This involves Root 

Mean Square Error (RMSE) assessment between predicted and actual values after each 

iteration. Each combination of backward and forward propagations in ANFIS is called 

an epoch. The model was stopped after the RMSE fell below 0.01 or the number of 

epoch iteration reached 200. Next, a comparison was conducted on trial and error 

results and the model was selected according to precision which is estimated in related 

to new values in the testing section when they were checked with empirical data. By 

examining of different structures, ANFIS model for each of two outputs, were selected 

which was 32 MFs for each input data, which has the minimum of RMSE (Table 2). 

The basic structure of this model is indicated in Fig 3.4. 

 

 

Fig 3.4. Structure of obtained ANFIS for estimation of ultimate tensile strength and 

elongation. 
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Choosing a structure of ANFIS with so many membership functions cause an overfitting and 

also type of MFs is considered as an essential element for accuracy of the model. In this 

study, different types of MFs namely generalized bell, trapezoid, triangular, 

Psigmoidal and Gaussian were examined. Table 3.2 indicates the RMSE of the 

implemented ANFIS models for tensile strength and elongation.  

Eight types of membership function were examined and lowest RMSE was selected 

for each structure model. According to the result of ANFIS model, 2-2-2-2-2 structure 

with P sigmoidal function had the minimum values of RMSE based on the other MFs 

and other models for all two outputs. As shown in table 2, P sigmoidal is chosen for 

both outputs tensile strength and elongation regarding to other types of membership 

function. Also, Fig 3.5 and 3.6 indicates the comparison of measured values through 

experiments and estimated values with ANFIS for elongation and ultimate tensile 

strength in 10 experiments out of 50 experiments which are chosen randomly by 5 

folds. It can be observed from the figures that there is good confirmation between data 

which measured experimentally and data which is estimated by ANFIS.  

 

 

Table 3.2.  Values of RMSE for tensile strength and elongation for various MFs structures. 

Membership function 
Tensile strength 

(N/mm2) 

Elongation 

(%) 

Triangular 19.8556 6.9848 

Trapezoid 13.3039 7.0094 

Generalized bell 14.2695 6.8417 

Gaussian 13.2800 6.8756 

Gaussian2 13.2688 9.9613 

Pi shaped 13.2834 6.9666 

D sigmoidal 13.2480 6.9632 

P sigmoidal 13.2391 6.9630 
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Fig 3.5. Comparison between measured and estimated data for tensile strength. 

 

 

Fig 3.6. Comparison between measured and estimated data for elongation. 

 

3.5.2. Analysis of responses: ultimate tensile strength and elongation 

Figure 3.7 depicts the ANFIS response surface for tensile strength. According to RSM 

model, all of input factors had a significant impact on responses Fig 3.7(a-c). In 

particular, tensile strength and elongation were seen to increase with higher laser 

power (LP), and lower levels of scan speed (SE), and scan length (SL). It would be 

expected that with these settings, more material will be more melted and therefore 

greater bonding between the powder materials.  
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Figs. 3.7a and 3.7b show that there is an interaction between the part bed temperature 

and laser power for ultimate tensile strength and elongation. From the plots, it is 

evident that the tensile strength and elongation attained maximum values at a high 

level of part bed temperature (182°C) and at a correspondingly high level of laser 

power (36 W). These parameters would be expected to result in a higher degree of 

melting of the polyamide allowing it to flow and adhere better with the glass bead 

particles and surrounding material. This is beneficial to the densification of the glass-

filled polyamide, causing increased relative density of the laser sintered parts. When 

the density of the part increases, tensile properties will be enhanced. When sintering 

takes place at a higher level of laser power and part bed temperature, the bond between 

the powder particles becomes stronger due to better fusion, resulting in increased 

ductility and strength. On the other hand, when laser power and bed temperature are 

on lower stage, melting the powder will be impossible due to lower temperature which 

is transferred to the powder, therefore, resulting lower tensile properties of sintered 

parts. According to the figure 3.7(a and d), temperature of part bed has a limitation, 

but if the temperature is increased distortion in parts will be accrued, resulting in 

reduced part properties.  
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Fig 3.7. 3D response surface plots of tensile strength and elongation against (a and d) laser 

power (LP) and part bed temperature (T); (b and e) scan speed (SE) and scan spacing (SA);  

(c and f) laser power (LP) and scan length (SL). 

 

Figs 3.7b and 3.7e demonstrate the interaction effect of scan speed and scan spacing 

on tensile strength and elongation. From the plots, it can be seen that the tensile 

strength and elongation attained a maximum value at a low level of scan speed (2500 

mm/s) and scan spacing (0.25 mm). This can be described by the phenomenon that all 

of specimens which are made by SLS process at lower energy density phase (i.e. higher 

values of scan speed and scan spacing) were less well sintered.      
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However, very low values of scan speed and scan spacing (which means higher values 

of energy density) may cause over sintering of powder particles and will result in an 

unwanted increase in processing time.  

 

Figure 3.7c and 3.7f show the interaction effect of laser power and scan length on 

tensile strength and elongation from which it is observed that the tensile strength and 

elongation are lowest at the lower value of laser power (28 W) and at the high value 

of scan length (140 mm). This was due to the lower laser power and longer scan lengths 

resulting in a lower level of local thermal energy input which was insufficient to 

completely sinter the powder particles.  

 

 

3.6. Optimization of SLS process  

3.6.1. Optimization of tensile strength and elongation by simulated annealing 

algorithm  

Because of complexity of SLS against variation of input data, choosing of a value in 

which the procedure maximize tensile strength and elongation is a complex problem. 

The optimization algorithm techniques can therefore be well applied to provide 

solutions which can better maximize the mechanical property values from in this 

process.  

The simulated annealing method is based on the simulation of thermal annealing of 

critically heated solids. When a solid (metal) is brought into a molten state by heating 

it to a high temperature, the atoms in the molten metal move freely with respect to each 

other [28]. As the temperature reduces, the atoms tend to get ordered and finally form 

crystals having the minimum possible internal energy. Based on the annealing 

description simulated annealing is a random search method which it can't trap in local 

minimum due to using of probability function as follow: 

)exp()(
TK

E
EP

B

−=                                                                                                               (1) 
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where T is temperature, kB is the Boltzmann constant and E is the value of energy 

(value of objective function) at a given annealing step.  

The simulated annealing algorithm is a random optimization technique which it starts 

minimization of annealing energy (objective function) from a single stochastic point, 

then the algorithm looks for minimal solutions by attempting of all points in search 

spaces with respect to their value of energy. In this method by selection of high cooling 

rate the probability of trapping in local minima is very high, so in order to escaping 

from local minima, choosing of appropriate slower cooling rate is recommended. The 

pseudo program for step by step implementation of simulated annealing procedure is 

expressed as follow: 

Step 1: (initializing): Generate a randomly initial point x0, setting the initial 

temperature T=Tinit and iteration number k=0 

Step 2: (calculation of annealing energy): Evaluate the value of objective function 

at xk, E1=F(xk) 

Step 3: (generation randomly neighbor point): Create a stochastically point xk+1, 

near to pervious one and calculate the energy at this point E2=F(xk+1) and determine 

ΔE=E2-E1  

Step 4: (inspection of first condition): If ΔE<0, current point is acceptable and go to 

step 6. Otherwise generate a random number (α) belongs to [0,1] and calculate the 

probability P=exp(-ΔE/KBT)  

Step 5: (inspection of second condition): If P<α, then current point is acceptable and 

go to step 6. Otherwise return to step 3. 

Step 6: (inspection of iteration condition): If k<N (N is the maximum number of 

tries within one iteration) then set k=k+1 and go to step 3. Otherwise go to step 7. 

Step 7: (stop condition): If T<ST, (ST is stop temperature) stop the algorithm. 

Otherwise set k=1, reduce the temperature T=CT (C is cooling rate) and go to step 3.  

Table 3.3 represents all set up factors and objective function of SA.  
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Table 3.3. Table 6 setup parameters for implementation of SA 

Parameter Value/function Remark 

X0 [0 0 0 0] Initial point 

Tinit 500 Initial temperature 

H(X) - evalfis(X,net) Objective function which uses “evalfis” function for 

Simulation the ANFIS net 

R X=rand (5,1) Random vector X in the range of [0,1] 

kB 1 Boltzmann constant 

ST 10e-8 Stop temperature 

C 0.9 Cooling rate 

N 300 Maximum number of tries within one temperature 

 

In this part, 2-2-2-2-2 ANFIS structure which calculated from last section, will be used 

as an objective function in order to make maximum values of ultimate tensile strength 

and elongation. For the optimization algorithm, a MATLAB code was generated with 

Rastrigin error checking function included. In optimization of the process by ANFIS-

SA, the part bed temperature of 180 °C, laser power of 28.92 W, scan speed 3410 

mm/s, scan spacing 0.375 m and scan length 133.564 mm resultant in optimal solution 

with tensile strength of 42.883 N/mm2 and elongation of 17.383%. Table 3.4 shows 

optimal results derived from simulated annealing (SA). According to the optimization 

these inputs would lead to maximum tensile strength and elongation. For confirmation 

of the obtained solution from the model, a verification experiment with values from 

table 3.4 will be performed. If the acquired values of tensile strength and elongation 

would be seen to be close to those derived from the verification experiment, the 

modelling and optimization would be considered implemented successfully. Table 3.5 

presents a comparison between the optimal tensile strength experimental results and 

elongation and the ANFIS model predicted results. It is seen that percentage error is 

below 5% and 10% for the tensile and elongation values respectively. 

 

Table 3.4. Optimal proposed parameters and corresponding results obtained through SA. 

 

 

 

Process factors Responses 

Part bed 

temperature (oC) 

Laser 

power 

(W) 

Scan 

speed 

(mm/s) 

Scan 

spacing 

(mm) 

Scan 

length 

(mm) 

Tensile strength 

(N/mm2) 
Elongation 

(%) 

180.19 28.92 3410 0.375 133.564 42.8883 17.383 
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Table 3.5. Comparison of tensile strength and elongation of confirmatory experiments with 

those derived from the developed ANFIS-SA model. 

 

 

 

3.6.2. Optimization of process by GRA 

As explained in section 3.2.3 in order to optimize the process by GRA, firstly the 

experimental results should be normalized. For this purpose, higher-the-better strategy 

was used for normalizing of material removal rate and lower-the-better strategy is used 

for normalizing of both tensile strength and elongation. Then the grey relational 

coefficients were calculated based on values of normalized data for each response. The 

coefficients of outputs have been collected to assess GRG that is the overall 

representative of tensile strength and elongation. In the present work the same weight 

factors (W1=W2=W3=0.333) are considered to construction grey relational grade.  

Hence, the hybrid optimization of SLS process has been converted to one equivalent 

objective function of the process. Figure 3.8 presents the grey value against the number 

of experiments for each experimental set of parameters examined. 

 
Fig 3.8. Grey relational value for each experiment run. 
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Fig.3.9 presents the main effect plots for the selected processing conditions such as 

part bed temperature, laser power, scan speed, scan spacing and scan length. The main 

effect plot provides a representation of the importance of each process elements on the 

output parameters. In the main effects chart, if the line for a specific process parameter 

has the biggest slop, then the parameter has the most significant effect, whereas, if the 

line for a specific element is closest to horizontal line, then that parameter has no 

significance. Therefore, from the main effects plot scan length and scan speed have 

slightly more significance than the other inputs on the tensile properties of the glass 

filled polyamide specimens. From Fig. 3.9. the optimal parametric combination can be 

determined. The optimal process parameter setting is 182 ºC (max.), part bed 

temperature, 28 W laser power (lowest), 2500 mm/s scan speed (lowest), 0.45 mm 

scan spacing (max.) and 140 mm scan length (max.). Furthermore, the effect of 

interaction between the two process parameters is shown in Fig. 3.10. From these plots, 

it is observed that almost all lines are intersecting with each other; that is, all process 

parameters have considerable interaction between each other.  

 

Fig 3.9. Main effects plot of the grey values for the effects of the input parameters. 

 



62 
 

 

  
Fig 3.10. Interaction plot of the determined grey grade values for each of the input 

parameters. 

 

 

From Table 3.6 it is seen that applying a combination of normalized grey relation 

coefficient of 0.2237 for temperature, 0.2217 for power, 0.2322 for scan speed, 0.2322 

for scan spacing, and 0.2338 for scan length resulted in the highest value of GRA and 

maximum combination of tensile strength and elongation. The levels of the results 

which result in the maximum tensile strength and elongation correspond exactly with 

those found from response surface methodology. 

 

Table 3.6. Response surface for the mean grey relational grade values. 

Symbol Sintering parameters Level 1 Level 2 Level 3 Max-Min 

PB Part bed temperature 0.2181 0.1961 0.2237 0.0056 

LP Laser power 0.2217 0.1949 0.2212 0.0276 

SE Scan speed 0.2322 0.191 0.2144 0.0412 

SA Scan spacing  0.2152 0.1958 0.2263 0.0305 

SL Scan length 0.2059 0.1979 0.2338 0.0359 

Average grey relational grade=0.2125 
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The following step is the verification and prediction of quality characteristics based on 

the new condition of inputs and outputs which is achieved by GRA. Because of that, 

experimental verification was performed with the achieved selected input parameters, 

and tensile strength and elongation. If the GRG results is acquired from the experiment 

was close to results from predication, the presented method can be said to be efficient 

in prediction of optimization process. Table 3.7 shows the difference between the 

predicted GRG with the actually acquired from experiments in the selected factor.  It 

can be concluded that there is an acceptable agreement between the results from 

experiments and GRA. This confirms the function of the suggested method based on 

the multi objective optimization in manufacturing process needs to optimize the 

responses as the same time.   

Table 3.7. Results of confirmatory test of the effects of the input factors on the output. 

 

 

 

 

 

 

 

Table 3.8. Optimal proposed parameters and corresponding results obtained through SA 

an GRA 

 

 

 

 

 

 

 

 

 Initial sintering 

parameters 
Optimal sintering parameters 

 Experiment Prediction 

Setting level T1, LP1, SE1, 

SA1, SL1 

T3, LP1, SE1, 

SA3, SL3 

T3, LP1, SE1, 

SA3, SL3 

Tensile 

strength 

20.14 31.04 - 

Elongation 7.4 9.42 - 

Grey 

relational grey 

0.2369 0.2583 0.2765 

Improvement of grey relational grade=9.033% 

 
Process factors Responses 

ANFIS-SA Part bed 

temperature 

(oC) 

Laser 

power 

(W) 

Scan 

speed 

(mm/s) 

Scan 

spacing 

(mm) 

Scan 

length 

(mm) 

Tensile 

strength 

(N/mm2) 

Elongation 
(%) 

 
180.19 28.92 3410 0.375 

133.56

4 
42.8883 17.383 

GRA 182 28 2500 0.45 140 28.1083 10.983 
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3.7. Conclusion 

This work was focused on the multi-objective optimization of process elements for the 

SLS process of glass filled polyamide parts. The main factors examined in this process 

were part bed temperature, laser power, scan spacing, scan speed and scan length. The 

main responses were ultimate tensile strength and elongation. For performing of multi-

objective optimization two methodologies have been used. The first methodology was 

based on modelling of tensile strength and elongation by ANFIS and optimization by 

SA algorithm. The second methodology was based on GRA. After performing 

optimization of process by these methods, the obtained results were compared 

together. A summary of achieved results is presented as follows: 

An ANFIS based on 2-2-2-2-2 structure with Psigmoidal type of MFs led to maximum 

precision of modelling for tensile strength and elongation by making the minimum 

values of prediction error. In optimization of the procedure by ANFIS-SA, the part bed 

temperature of 180 °C, laser power of 29 W, scan speed 30 mm/s, scan spacing 0.37 

m and scan length 133 mm resultant in optimal solution with tensile strength of 

42.8883 N/mm2 and elongation of 17.383%. 

The verification experiments were also used to confirm optimal results. The results of 

validation experiment with GRA and ANFIS-SA approaches are Closely consistent. 

Due to the ability of ANFIS-SA to search the entire solution space within the process 

parameter settings examined, ANFIS-SA was seen to outperform the GRA model. This 

resulted in an increase of the overall tensile strength and elongation results obtained 

by 14.78 N/mm2 and 6.4 % respectively for the output of ANFIS-SA compared to 

GRA. Based on our experiences, we can suggest that ANFIS-SA be an effective 

approach to solving a multi-objective optimization problem in manufacturing 

processes which responses related in a complex manner to the input parameters.  

The main reason for the ANFIS-SA model’s better result is the searching nature of 

both ANFIS and SA. With ANFIS and SA, these models consider a continues range 

for each parameter which leads to an extension of the search space and finding new 

solutions. While in optimization by GRA, only values which contribute to conducting 

experiments are considered. Hence, for GRA the searching space is just within the 
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design matrix and it is very small. The ANFIS-SA can be seen in this case to 

outperform on the basis that it solves the optimization as a continuous problem, and it 

can search all points within the solutions space. 
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Abstract  

Laser based surface texturing provides highly controlled interference fit between two 

parts. In this work, artificial intelligence-based models were used to predict the surface 

properties of laser processed stainless steel 316 samples. Artificial neural network 

(ANN) and adaptive neuro-fuzzy inference system (ANFIS) were used to predict the 

characteristics of laser surface texturing. The models based on feedforward neural 

network (FFNN) were developed to examine the effect of the laser process parameters 

for surface texturing on 316L cylindrical pins. The accuracy of the models was 

measured by calculating the root mean square error and mean absolute error. The 

reliability of the ANFIS and FFNN models for the output prediction of the laser surface 

texturing (LST) system were investigated by using the data measured from 

experiments based on a 3^3 factorial design, with main processing parameters set as 

laser power, pulse repetition frequency, and percentage of laser spot overlap. The 

relative assessment of the models was performed by comparing percentage error 

prediction. Finally, the impact of input data was examined using predicted response 

surface plots. Results showed that ANFIS prediction was 48% more accurate 

compared to that provided by the FFNN model.  

 

Keywords: Laser texturing; artificial neural network; adaptive neuro-fuzzy inference 

system.  
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4.1.  Introduction  

Joining plays a significant role in manufacturing such as in automotive engineering for 

the assembly of parts and devices [1]. Mechanical joints for bonding parts in assembly 

lines can be joined via many different gluing options [2]. Press fit or interference fit 

are commonly used such as in clinching joints, hinge joints, and for bonding shafts and 

bearings. Interference fits joints bond two components together by friction, often with 

a single quick stroke [3]. The creation of patterned surface microstructures on 

interference fit joints can be achieved in many ways, for example abrasive blasting, 

reactive-ion etching, and ultrasonic machining [2]. However, laser technology offers 

more control and precision over the produced geometry [3]. Laser Surface Texturing 

(LST) has been used for three decades in manufacturing industry for improvement and 

control of tribological characteristics of materials. However, the use of this process for 

press fit joints is has recently been developed [2]. LST on interference joint surfaces 

is a complex, stochastic process and a number of variables play a significant role in 

the process. Therefore, the development of an appropriate model which can 

approximate the effects of the most important features on the resulting geometry is of 

significant importance.  

Several studies have been reported on the application of supervised machine learning 

methods on predicting the output of the laser process [4,5]. Artificial Neural Network 

(ANN) and fuzzy logic have been applied successfully previously for prediction of 

some laser processes [4,6]. Approximation methods which are related to artificial 

intelligence are secondary tools which use data generated through experiments for the 

estimation manufacturing process outputs [4]. Aminian et al. investigated the 

performance of ANN and applied adaptive neuro fuzzy system (ANFIS) on the laser 

machining and welding processes [5]. In their work these authors noted that ANFIS 

was a better predictor compared to Response Surface Methodology (RSM) and ANN. 

Biswas et al. used feed forward neural network (FFNN) for estimation of 

characterization of micro drilling on titanium nitride-alumina composite [6]. It was 

observed that an ANN node structure of 5-11-3 with 11 neurons in the hidden layer 

provided the least model error. Sohrabpoor et al. used ANFIS to predict laser powder 

deposition process outputs such as catchment efficiency and height [7]. Additionally, 
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ANFIS was employed in selective laser sintering to correlate relationship between 

input parameters such as laser power and scan speed, and output factors including 

tensile strength and elongation [8]. The authors have also reported previously the use 

of ANFIS for laser processing and demonstrated the high capability and reliability of 

this model [9-13]. J. Pandremenos et al. used a mixture of neural network and design 

structure matrices for the link between clustering efficiency and interactions of 

products components [14]. They found that their especial algorithm is more efficient 

with the empirical one [14]. Karagiannis et al. applied feed forward back-propagation 

for approximation of yield surface magnitude in milling process [15]. They concluded 

that the model had a acceptable performance for correlation of inputs and results [15]. 

Also, some other studies have been carried out for the practicality of ANFIS and FFNN 

in the manufacturing process [16-19].  

The experimental values are used to train a feed forward back-propagation artificial 

neural network for the prediction of the yield surface roughness magnitude. Laser 

surface texturing of stainless-steel for interference fit is a novel technique developed 

by the co-authors. Interference fit is no more compliant pins focused joining technique, 

rather it has become an enabling technique for innovations in high-tech industries, such 

as safety critical fueling applications. In the developed LST technique, the control of 

diameter increase is crucial to achieve different levels of fastening between the joining 

parts and this control also determines the insertion and pull out forces. Therefore, in 

order to provide design flexibility, increasing strength and reliability of LST for 

interference fits, it is desirable to fully model the laser processing input parameters and 

use artificial intelligence techniques to predict the results.  

In this study, investigations were performed for the first time, the selection of best 

approach for the estimation the characteristics of LST on 316L cylindrical pins for the 

interference fit joint. Although there are many factors which are related to the strength 

of the bonding, the most important parameters of diameter increase (DI), insertion 

force (IF) and removal force (RF) were studied. To achieve this goal, the actual data 

sets were extracted from the response surface methodology equations [3]. For the LST 

process FFNN and ANFIS were applied separately. The validity of the developed 
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models was measured based on percentage error prediction (PEP). The effect of input 

parameters on each process outputs are analysed.  

The interference fit has innovative applications in security critical components in 

automobile and aerospace industry where a secure joint with high level of security and 

reliability is required. Therefore, in order to determine the laser processing parameters 

tailored for specific needs in terms of material, tightness level, applied and removal 

force, and reliability, artificial intelligence approaches can be further examined and 

investigated. The development of reliable and accurate artificial intelligent solutions 

is required that can predict most influencing processing parameters and provide 

solution to approximate the resulting properties as demonstrated previously using 

unsupervised and supervised learning methods.  

Based on the literate review, there is no study has been carried out to demonstrate 

difference between ANFIS and FFNN on LST. This comparison can be useful not only 

in modelling terms but also on practical perspective and manufacturing industries can 

refer to this evaluation for the prediction of results which ensure quality of product, to 

reduce the manufacturing cost and to increase the quality of cold joints.  

 

 

4.2. Methodology   

4.2.1. Development of FFNN model  

Neural network (NN) is a logical structure, in which multiple processing elements 

communicates with each other through the interconnections between the processors. 

The knowledge is presented by the interconnection weight, which is adjusted during 

the learning stage [14]. Backpropagation (BP) learning algorithm uses a gradient 

search technique to minimize the mean square between the actual output pattern of the 

network and the desired output pattern.  

 In FFNN, weights were fixed, and the activation function were examined and selected 

based on mean absolute error (MAE). More details were reported previously [4]. Like 

other approximation methods, FFNN was implemented including testing (20%) and 
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training (80%) and MAE was utilized as the criteria of error in FFNN. The equation 

used for calculation of MAE is:   

MAE= 
1

𝑇
∑ |𝑡𝑖 −  𝑎𝑖 |𝑇

𝑖=1                                                                                                         

[5] 

where T is the number of test data, ti is the tested value and ai is predicted value from 

FFNN.  

 

 

4.2.2.  Description of ANFIS 

ANFIS is a machine learning method with the mixture of NN and fuzzy logic for 

deriving the connections between the input and response elements [17]. The ANFIS 

model for this study was made of five layers each of which consist of some nodes. 

Like NN, in ANFIS, nodes transform from each layer to next layer. The accuracy of 

trained data was examined by root mean square error (RMSE), the formula for which 

is:   


=

−=

M

z

zz )YS(
M

RMSE

1

21
                                                                                                  [17] 

where M is the training value, Sz is actual response value, and Yz is the model response 

value in training.  

 

4.3. Materials  

The data used for validation of the designed models was obtained from Design of 

Experiment (DoE) study on laser surface texturing for interference fit technique. This 

study was performed by the co-authors and reported previously [2,20]. Briefly, 

cylindrical 316L stainless steel pins of 10 mm in diameter and 60 mm length were laser 

textured. The laser process as shown in Fig. 4.1 was carried out using a computerized 

numerical control (CNC) CO2 laser, Rofin DC- 015, with 1.5 kW maximum average 

power. The focal position was set at a distance of 1 mm below the sample surface to 

achieve 0.2 mm diameter focal spot size over the sample surface. Hub flanges of the 



74 
 

same material were machined to 30 mm external diameter, and centre drilled and 

reamed to give the final hole diameter of 10.05 ± 0.003 mm. Table 4.1 shows the input 

parameters including Laser Power (LP), Pulse Repetition Frequency (PRF) and 

Overlap (OL) between each laser scan and their levels which were used for 

experimental sample preparation. Laser power is the most important input parameter 

which determines the amount of thermal energy delivered to the sample being laser 

treated. The laser power was varied from 300 W to 400 W and 500 W. In pulsed laser 

surface processing, the pulse repetition frequency determines the heat build-up 

between the pulses. The time interval between the laser pulses should be shorter than 

the thermal diffusivity of the material in order to build up amount of heat required for 

melting of the upper layer surface. Therefore, PRF was set at 100 Hz, 200 Hz and 300 

Hz and the pulse width was set at 1.6 ms to examine the effect of PRF on the resulting 

surface properties of the laser processed samples. For interference fit application, 

precise control over micro-texture longitudinal and circumferential dimensions is 

required. To control the laser texture geometry, the laser scan overlap over the sample 

surface must be accurately controlled as multiple scanning of the same area will result 

in different surface texture. Three different overlap scenarios were studied including 

negative, positive and zero overlap to examine the effect on microstructure. The 

overlap was controlled by controlling the rotational and translational speeds of the 

sample such that the laser spots were overlapped to the same extent in the 

circumferential and longitudinal directions. Detailed mathematical relationships used 

to calculate overlap percentage for all three scenarios according to sample geometry, 

laser processing parameter (PRF), and rotational and longitudinal speeds have been 

reported previously [20].  
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Fig. 4.1. Schematic of scanning process on an interference fit sample with CO2 laser. 

 

Table. 4.1. Laser surface texturing set DoE process factors and their levels. 

Process factors Units Symbols  Levels  

   -1 0 1 

Laser Power W LP 300 400 500 

Pulse Reputation 

Frequency 
Hz PRF 100 200 300 

Overlap % OV -20 0 20 

 

For the current study, Diameter Increase (DI), Insertion Force (IF) and Removal Force 

(RF) were selected as output parameters from the previous study [2]. Details on 

methods used to obtain these results have been reported [2]. Details on selection of 

these parameters for the current study and methodologies used to measure these 

parameters previously are as follows. The creation of microstructures on the surface 

of the laser processed stainless steel pins resulted in the increased diameter. The 

change in the microstructure from austenite to large volume martensite phase also 

contributed to increased pin diameters [2,1]. Diameter of the pin is directly related to 

amount of interference. The control over diameter increase provides control over 

tightness of the fit. Therefore, DI was selected as output parameter in this study. 

Diameters of the laser processed pins were measured by 0.05 mm resolution Vernier. 

Each measurement was taken 10 times and average values were obtained. The ratio of 

insertion and pull out forces determines the efficiency of the interference fit. The 

reduction in insertion force makes the process economical and the removal force 

determines the tightness of the interference. Being the crucial factors determining the 
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interference fit, IF and RF were selected as output parameters in the current study. The 

insertion and pull-out forces were measured using a Zwick Z-50 testing machine with 

the Zwick TestXpert simulation software. The insertion and pull-out tests were 

performed at speed of 5 mm/min (for further details, see [2]).  

 

4.4. Results and discussion  

The approximation methods including FFNN and ANFIS were used to approximate 

the output of the laser surface texturing of stainless-steel pins for interference fit 

application. In FFNN and ANFIS models in order to increase the reliability and 

validity of the data, each run repeated three times and average of them are reported.  

4.4.1. Development of FFNN model 

As the measured values of the three selected output parameters were largely different, 

the models were divided into 4 networks to achieve maximum efficiency separately 

for each parameter.  

 

4.4.1.1 k-Fold Cross-Validation 

In order to avoid overfitting and having lower bias, 4-fold Cross-Validation approach 

applied. Cross-validation is a resampling procedure used to evaluate machine learning 

models on a limited data sample [21]. In K-Folds Cross Validation we split our data 

into k different subsets (or folds). We use k-1 subsets to train our data and leave the 

last subset (or the last fold) as test data. We then average the model against each of the 

folds and then finalize our model. After that we test it against the test set. The 

procedure has a single parameter called k that refers to the number of groups that a 

given data sample is to be split into. As such, the procedure is often called k-fold cross-

validation. When a specific value for k is chosen, it may be used in place of k in the 

reference to the model, which in this case data is divided to 4 folds (Fig 4.2). For the 

cross-validation process, first we picked 4 separate learning experiments which 

included one testing test and remaining for training sets. This process is repeated 4 

times and finally we got the average test results from those experiments.  
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Fig. 4.2. Structure of cross validation for 4 folds. 

 

Table. 4.2. Obtained MAE for various FFNN topographies under various training function. 

Outputs Structure 
Mean absolute error (MAE) 

Fold #1 Fold #2 Fold #3 Fold #4 Average 

DI 

3-4-1 0.1214 0.1303 0.286 0.1709 0.1771 

3-5-1 0.102 0.1254 0.1903 0.1363 0.1391 

3-6-1 0.1768 0.1227 0.2207 0.2762 0.1991 

3-7-1 0.1359 0.259 0.2031 0.1053 0.1758 

3-8-1 0.245 0.2772 0.1729 0.1605 0.2139 

3-9-1 0.1446 0.2636 0.2039 0.1336 0.1864 

IF 

3-4-1 9.5422 7.681 11.8953 10.9615 10.02 

3-5-1 9.6862 6.4945 6.3013 14.3468 9.2072 

3-6-1 12.2945 6.3225 9.5408 10.4056 9.6408 

3-7-1 8.761 8.3664 12.3194 9.5307 9.7218 

3-8-1 9.5366 10.9437 13.0343 10.094 10.9021 

3-9-1 13.6917 9.2882 12.7691 10.2411 9.2475 

RF 

3-4-1 1.5413 1.4407 3.6875 3.3059 2.4935 

3-5-1 4.2451 2.541 2.6988 3.2035 3.1721 

3-6-1 2.5167 2.5392 2.7247 3.847 2.9069 

3-7-1 1.4931 2.8258 2.2417 3.9129 2.6183 

3-8-1 2.3913 2.325 3.28 3.0497 2.7615 

3-9-1 2.8758 2.6281 2.2546 3.1993 2.73945 

 

For developing the FFNN model, the initial step was training. Out of 27 datapoints 

available from the experiments performed previously [2], 21 datasets were selected 

arbitrary for training and the remaining (6 datasets) were kept for testing the FFNN 

Cross validation: 

Divided 27 data 

sets in 4 parts 

and use 3 parts 

for training and a 

part for testing  
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model (i.e. fold #1). In order to select the FFNN model which provides most accurate 

approximation, 9 training functions and 6 structures were tested. In hidden layers, the 

number of neurons should be higher than inputs [22]. Therefore, the examination 

should be started from 4 neurons were selected for the first hidden. Minimum MAE 

was selected for each output. From the table 4.2, a network with 3-5-1 structure, for 

DI and IF, and 3-7-1 structure for RF are the modest accurate model due to lowest 

values of MAE. Figs. 3, 4 and 5 present the comparison between the actual datasets 

and predicted datasets from the FFNN and ANFIS models fold #4 (i.e. fold with 

highest MAEs). As can be seen from these figures, the optimized models predicted 

well with the actual experimental recoded data.  

 

Table. 4.3. Obtained RMSE for various ANFIS topographies under various training function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output  Structure 
Root mean square error (RMSE) 

Fold #1 Fold #2 Fold #3 Fold #4 Average 

DI  

  

Triangular 0.12436 0.11419 0.10628 0.112 0.1142 

Trapezoid 0.18483 0.4081 0.1834 0.1598 0.2325 

Generalized bell 0.14131 0.3682 0.2551 0.2551 0.2549 

Gaussian 0.14004 0.3845 0.2528 0.5851 0.3407 

Pi shaped 0.1732 0.4866 0.2722 0.2972 0.2972 

Di sigmoidal 0.25378 0.5035 0.2972 0.2597 0.3285 

IF  

  

Triangular 6.9956 5.05 6.469 11.3502 7.4662 

Trapezoid 25.2873 5.9037 7.469 13.2208 12.9702 

Generalized bell 13.7131 5.7618 13.64 13.5973 11.6780 

Gaussian 13.0184 12.1689 7.66 14.237 11.71 

Pi shaped 25.2873 5.7916 7.466 13.745 13.72 

Di sigmoidal 25.1845 5.7454 7.469 14.1162 13.1287 

RF  

  

Triangular 7.788 4.701 4.701 4.8747 5.5391 

Trapezoid 3.8171 2.6461 1.6461 2.2684 2.59322 

Generalized bell 7.7969 4.831 4.8431 5.3683 4.9598 

Gaussian 7.7831 4.7128 4.7128 4.2635 5.518 

Pi shaped 7.8219 4.8796 4.8796 5.0876 5.6637 

Di sigmoidal 7.8141 4.9152 4.9151 5.4665 5.7777 
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4.4.2.  Development of ANFIS model 

For approximation of the results with ANFIS for the LST process, like FFNN, testing 

and training datasets need to be selected and. Testing and training datasets from the 

FFNN model were selected for ANFIS model. In this way, a direct comparison 

between the models could be performed. To implement cross-validation on modelling 

of DI, IF and RF, four data sets were identified (based on fig. 4.2). For choosing the 

best and most accurate model, the structure of ANFIS was varied and different 

structures such as 3-3-3-3, 4-4-4-4 etc were examined. It was observed that a 2-2-2 

model with 200 epochs and Sugeno type of Fuzzy-based rule had the lowest RMSE. 

Also, 8 Membership Functions (MF) in the ANFIS model were examined for finding 

the most appropriate model. It was found that Triangular type of MF for Diameter 

Increase and Insertion Force, and for Removal, Force trapezoid type of MF were the 

most accurate MF. Figs. 4.6, 4.7 and 4.8 present comparison of the predicted values 

from the ANFIS and FFNN models with the actual data. It can be observed from the 

figures that the predicted data extremely well fitted with the measured data recoded 

from the experiments.  

 

 

Fig. 4.3. Comparison of measured, 3-5-1 FFNN and ANFIS values of testing data for DI for 

fold #4. 
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Fig. 4.4 Comparison of measured, 3-5-1 FFNN and ANFIS values of testing data for IF for 

fold #4. 

 

 

Fig. 4.5. Comparison of measured, 3-7-1 FFNN and ANFIS values of testing data for RF for 

fold #4. 

 

4.4.3.  Calculation of correlation coefficient percentage 

Correlation Coefficient is a vital aspect used in statistics to calculate the strength and 

direction of the linear relationship or the statistical relationship (correlation) between 

the two population data sets [22]. This coefficient calculated based on relation of 
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FFNN and ANFIS test data to measured data in figures 4, 5 and 6 separately. This 

formula of is defined as: 

Rx,y = 
∑ (𝑥𝑖−𝑥̅)

𝑛

𝑖=1
(𝑦𝑖−𝑦̅)

∑ √(𝑥𝑖−𝑥̅)2
𝑛

𝑖=1
√(𝑦𝑖−𝑦̅)2  

           [22]                                                               

where n is sample size (here is 7), xi and yi are measured data points and predicted by 

ANFIS or FFNN and 𝑥̅ is 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  and analogously for 𝑦̅. Table 4.4 shows the result 

of calculation of correlation coefficient. As the table 4.4 shows, ANFIS predicted 

significantly better compared to FFNN.  

 

Table 4.4 Correlation coefficient for outputs 

Outputs   FFNN ANFIS 

DI  62.12% 88.62% 

IF 72.5% 89.7% 

RF 75.2% 90.56% 

 

 

4.4.4. Comparison accuracies of developed models ANFIS and ANN  

To compare the prediction accuracies of the developed model, the prediction error 

percentage (PEP) was measured, defined as follows: 

 

PEP= 
1

27
 ∑

│ai−yi│

ai

𝑛
𝑖=1                                                                                               (3) 

 

where ai is the actual data and yi is the approximated data by the developed FFNN and 

ANFIS models. Figs. 4.6, 4.7 and 4.8 show the PEP values from ANFIS and FFNN 

which were calculated for DI, IF and RF, respectively. It can be observed that ANFIS 

predicted more accurately the results compared to FFNN. These results are 

summarised in Table 4.3. Table 4.3 shows the overall comparison of PEP between the 

two models. As can be seen from the Table 4.3, ANFIS improved the PEP more than 

45%. These results show that the ANFIS model was more reliable and resilient to noise 

compared to FFNN. Hence, it can be suggested that ANFIS can predict the LST 
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process more accurately and could serve as a precise Machine Learning method for the 

LST process.  

 

 

 
Fig. 4.6. PEP modelling of diameter increases by ANFIS and FFNN. 

 

 

 
Fig. 4.7. PEP modelling of insertion force by ANFIS and FFNN. 
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Fig. 4.8. PEP modelling of removal force by ANFIS and FFNN. 

 

 

 

Table. 4.5. Comparison between ANFIS and FFNN for all outputs. 

Modelling type DI IF RF Overall PEP 

FFNN 0.097139 0.146085 0.152609 0.395833 

ANFIS 0.063594 0.065152 0.068435 0.203181 

 

 

 

4.4.5. Analysis of responses: diameter increase, insertion force and removal force 

As observed from the results, ANFIS proved to be a more accurate model for 

prediction of DI, IF and RF. Hence, the developed ANFIS model was used for 

analysing in more detail the effects of laser surface texturing process parameters on 

the responses. The 3D plots of ANFIS prediction surfaces were constructed and the 

parameter effects analysed, see Fig. 4.9.  
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Fig. 4.9. Surface plots of diameter increase versus process inputs (a and b), insertion force 

versus process inputs (c and d), and removal force versus process inputs (e and f).  

 

 

From figure Fig. 4.9a, the highest values of DI were obtained when the PRF was low. 

Due to an increased heating time (from lower PRF), a larger amount of energy was 

input to the surface and consequently a larger melt pool was produced, in turn resulting 

in a higher DI. On the other hand, by increasing the laser power from 300 to 400 W, 

sufficient melting should occur. However, a further increase of the power from 400 to 

500 W could cause over-melting due to lower solidification time leads to reduction in 

diameter of texture.   
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Based on the results shown in Fig. 4.9b, for positive values of OV% the DI will be 

considerably lowered due to over-melting. By comparing Fig. 4.9a and 4.9b, it seems 

that when the power and OV% were minimum and negative, respectively, and over-

melting occurs, then a higher value of DI can be obtained and there is an optimum 

range of PRF between 140-220 Hz.  

Figs. 4.9c and 4.9d show the response plots of IF values obtained at various ranges of 

power, PRF, and OV%. Both of the plots indicated that enhancing the amount of PRF 

will lead a sharp decrease in IF. In fact, when the PRF is increased, due to the fast 

heating and cooling steps, the amount of residual stresses can be increased that may 

cause the formation of a brittle surface, lowering the resistance of the material under 

the insertion force. On the other hand, when the PRF is low, then the possibility of 

austenite-martensitic phase transformation occurrence will be increased, resulting in a 

surface hardening of the material and a higher insertion force. Therefore, by a suitable 

heat-treatment process during laser movement, a higher bond strength, gripping, 

insertion and removal force can be provided. Fig. 9d demonstrates that positive values 

of OV% could sharply reduce the bond strength. This could be due to the re-melting 

and overheating that could deteriorate the formation of martensitic phase. Also, these 

phase transformations are known to be sensitive to the heating/cooling cycle time and 

temperature.  

Fig. 4.9e and 9f demonstrate the variation of RF for tested input PRF, power, and 

OV%. Almost, the same trend for the IF was obtained for the RF in case of power and 

overlap. From the bond strength point of view for having a suitable cold joint, it can 

be concluded that at high laser powers which brings a high thermal energy, a strong 

bond can be obtained if the OV% is negative and the PRF value is lower than 220 Hz, 

where suitable conditions for martensitic phase formation would be obtained.  

 

4.5. Conclusion and Future Perspectives 

This research dealt with the simulation and approximation of diameter increase, 

insertion force and removal force for Laser Surface Textured 316L interference fit 

joints with two supervised learning approaches. For finding the effect of a mixture of 
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inputs on the responses, two models FFNN and ANFIS were used. However, to 

determine the accuracy of the developed models, different error parameters were 

examined for a variety of model structures. By testing and training of various FFNN, 

3-5-1 structure for DI and IF and 3-7-1 structure for RF are selected. The selection of 

the structures was made on the basis of the lowest value of MAE. ANFIS 2-2-2 

structure with Gaussian2 MF and backpropagation optimization, D sigmoidal MF and 

hybrid, and Pi shaped MF showed the lowest RMSEs for DI, IF and RF, respectively. 

The ANFIS model produce lower values of PEP compared to FFNN. Hence, it was 

selected as the most powerful simulation for approximation and analysis of the 

responses. The effect of each processing parameters (based on interaction terms) was 

investigated by using response surfaces which were plotted based on the ANFIS 

model. With suitable laser processing parameters, higher gripping insertion and 

removal forces can be provided and at higher laser powers, where the OV% is negative, 

and for PRF values lower than 220 Hz. The ANFIS has some advantages over FFNN, 

including the ability to capture the nonlinear structure of a process, adaptation 

capability, and rapid learning capacity.  ANFIS uses either backpropagation or a 

combination of least squares estimation and backpropagation for membership function 

parameter estimation. ANFIS algorithm has a hybrid learning approaches in its 

structure. Thus, ANFIS has the advantage to combine both ANN and Fuzzy 

knowledge. So ANFIS is more precise in term of prediction. Due to the fact that the 

laser surface texturing processing technologies are really high-cost process, the 

developing model can give a vision regarding to the selecting of best process 

parameters without needing to a high number of experiments. Otherwise stated, to 

reach desirable performance in each process, the developed model is beneficial to 

select optimal parameters without conducting extensive experiments and it has a strong 

economic justification.  

Since ANFIS has proven a good tool for approximation of results, ANFIS model can 

be applied as objective function to select optimal parameters of manufacturing process, 

in which the process reaches to its desirable mechanical properties by using the 

metaheuristic algorithms such as simulated annealing algorithm, bee colony and etc. 
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Abstract  

In this study, selective laser melting (SLM) as a novel approach was utilized for 

manufacturing of 316L stainless steel press-fit insertions by concentrating on the effect 

of texture profile geometry specifications including shape, pitch, and height on the 

insertion and removal forces of high-strength cold formed joints for high-end fixation 

application. For these purposes, the correlation between the micro-surface texture size 

and shape and aforementioned outputs were studied utilising a Box-Behnken of 

response surface methodology (RSM). The experimental results showed that the teeth 

height has a predominant effect. It was also found that the pitch shape of texture can 

effectively be set to provide enhanced control over the bonding strength of the press 

fit joints. The results showed that a larger pitch had a slightly positive effect on joint 

bond strength possibly due to higher degree of interface between the pin surface profile 

and the internal surface of the hub. The shape of the texture us also important. In fact, 

trapezoid and triangular shapes of the teeth lead to stronger bonding compared with 

oval texture profiles, and the traces of adhesive and abrasive wear respectively were 

detected on the inner surface of the hub. It is important to note that due to a limitation 

in the SLM process for making precise edges and the formation a rough surface, 

abrasive wear was also detected for the trapezoid shape. This chapter shows that the 

additive manufacturing (AM) process can open up a new window of opportunity for 

the development of metallic knurled press fit applications. 

 

Keywords: Selective laser melting; interference fit joints; metal surface texturing; 

knurled pins; Response surface methodology; Box-Behnken design. 
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5.1.  Introduction 

 

Joining is a processing technique which is employed to assemble individual 

components or structures to ultimately build a larger assembly. Press-fit is a joining 

method which provides a relatively easy method for the joining of materials while 

bonding them very securely together [1,2]. It is commonly used therefore for assembly 

during production as well as in repair applications. In recent years, press fits have been 

used in many sectors including transportation, agricultural machineries and automotive 

industries. In many of these applications it is used for increasing the capability of the 

joints, including the transmission of axial force from the shaft to inner surface of hub 

which is assisted through the design definition of the generated plastic and friction 

forces [3,4]. Knurled press fits traditionally consist of two main type of pins including 

those of straight and helical shape of texture. With straight press fit pins, adhesion 

occurs as a result of the uniform shape of the interference pin and hub surfaces. In 

knurled fit joints the pin textured surface can be designed to cut into the hub hole 

surface [4]. With a single helical direction of the surface profile texture, such as a 

single 45° knurl, the pin is guided to turn into the hub as it enters through the hole 

making even tighter contact with the inner surface of the hole. Therefore, radial forces 

resulting from helical textures effects more the interior surface of a press fit joint 

compared with straight grooved pins [4]. During the creation of a press fit, both elastic 

and plastic deformation occurs. The extent of deformation is directly related to the 

texture shape and the interfering volume of material [2]. In a press-fit, the pin’s texture 

is an important factor in bonding and adhesion of the pin to the hole in the hub region 

and it is crucial to know how this texture relates to the joint properties [1].  

The dimensions of the texture and selection of an appropriate manufacturing technique 

that can provide these are therefore important considerations [5,6]. In fact, the 

qualification of connection insertion force (IF) and removal force (RF) are highly 

sensitive to the quality of the surface texture. For lower cost applications, the expense 

of labour and the operating process to achieve high quality interference fit components 

may not be economical using traditional fabrication processes [7,8].  

Obeidi et al. used a CO2 laser to produce surface textures on stainless steel pin 

insertions and measured the resulting insertion and pull-out forces [9]. Although, this 
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technique was successfully applied to manufacture pins with defined texture, the range 

of texture profiles could be increased using metal Additive Manufacturing (AM) [9]. 

Recently, additive manufacturing (AM) techniques including selective laser melting 

(SLM) have been used to fabricate metal parts with defined surface textures for various 

applications [10,11,12]. SLM can be used to fabricate samples with very complex 

surface textures [11,12]. This technology represents a realistic alternative to many 

conventional manufacturing techniques. It has been well shown that SLM allows the 

fabrication of near full-density high-resistance metallic components via fusion and re-

solidification of the fine metallic powders [13-16].  

316L stainless steel is part of the austenitic family of steels which have been used from 

the 19th century for interference fit joint applications [7,9].  These alloys have desirable 

mechanical characteristics including good corrosion resistance, elastic distortion and 

high ductility [17-19]. Due to the good properties, relatively low cost, and ease of use 

within both powder bed fusion and electron beam melting, stainless steels are 

commonly used in metal AM [20,21]. Based on these characteristics, SS316L steel 

was selected to fabricate the knurled joints and one of the aims of this study was to 

confirm the usability of this steel for generating textures on interference fit pins to 

enable interference press fit joints.  

In press fit technology, the strength of joining relies on different process parameters 

including the size of joint hub and pin, the surface profile dimensions and the tolerance 

between the joining surfaces [7,9]. Some studies have been conducted to investigate 

the effect of different input parameters on the load bearing ability of knurled pins [22]. 

Investigation of process parameters and identifying the most significant factor that can 

be perform with different ways including machine learning and response surface 

methodology [23]. The limitation of modelling data with artificial intelligence model 

is number of experiments which is noted as requiring at least 300 data sets [24]. This 

other noted solution to correlate relationship between inputs and responses is response 

surface methodology (RSM) which for smaller data sets can result in better 

understanding of the impact of active factors and their interaction on the process [24]. 

Multiple independent variables can be examined through the RSM method which 
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consists of a statistical and mathematical modelling of the relationship between the 

inputs and outputs [26]. Box Behnken design is a great tool for investigation of the 

process parameters which included three levels of inputs and compared to other design 

matrices, requires a relatively smaller number of experiments [26].  Fig. 5.1 reveals 

the basic schematic of SLM process.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Schematic of SLM process 

 

To the best knowledge of the authors, no attempt has been made to manufacture 

knurled pins via the SLM process. In this study, the interference fit joint surfaces are 

accurately designed with a focus on the parameters of achievable surface profile 

height, pitch size, and the shape. The outputs measures including the achieved profile 

dimensions as well as the insertion force (IF) and removal force (RF) were assessed 

with RSM.  
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5.2.  Experimental procedure 

 

5.2.1. Material  

The AM pin insertion material used was gas atomized spherical SS316L powder 

granules with a Gaussian size distribution sizes ranging from 15-50 µm (supplied by 

LPW Technology Ltd, UK) and had an average particle size of 27 µm (see Fig. 5.2). 

The chemical composition of the stainless-steel powders as supplied is listed in Table 

5.1. The powder grains were mostly spherical in shape while a very small number of 

irregular shaped particles were revealed.  

 

Table 5.1 

Chemical composite of as supplied 316L stainless steel powder. 

Chemical compositions C MN N P S Cr Mo O Ni Si Cu 

Mass fraction (%) 0.023 0.9 0.09 0.01 0.005 17.7 2.32 0.03 12.7 0.7 0.01 

 

 

 

 
Fig. 5.2. 316L stainless steel powder. (a) SEM image and (b) particle size distribution. 

 

 

 

5.2.2.  Equipment 

The laser power, scan speed, hatch space and focused spot size uses in the SLM process 

were 195 W, 1083 mm/s, 90 μm and 70μm respectively based on default EOS 

parameters for 316L. An EOS 280M AM metal printer which was used to fabricate the 

knurled pins.  The CAD files for the pins was set as 30 mm in length and 10 mm in 

diameter. Various textures were added on these pin surfaces as described below. The 

resulting diameters which is height of texture plus diameter on the pin for the SLM 

a 
b 
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process are slightly larger than the reamed hub internal diameter. The build volume of 

the EOS printer was 250×250×325 mm and the layer thickness for processing was set 

at 20 μm. The build plate was pre-heated and maintained at a temperature of 80°C 

during the building process. The laser wavelength operated within the range of 1060 

to 1100 nm. The inner core of the part was scanned first, followed by the outer contour. 

For cutting the prepared samples off from the plate, a wire EDM was used. In order to 

perform the insertion and removal test, the hubs were manufactured with a 30 mm 

outer diameter and 10.050 ± 0.003 mm internal diameter by means of a CNC lathe 

machine. The inner diameter of the hubs hole was reamed to the final dimension after 

initial rough machining in order to achieve the tolerance in diameter and eliminate 

non-roundness. The dimension of textures and surfaces were measured using a digital 

Vernier and optic microscopy. The measured accuracy of the texture printed by this 

SLM process was within ±50 μm in both height and pitch dimensions.     

A Carl-Zeiss scanning electron microscope EVO-LS15 SEM was used to visualise the 

morphology of the surfaces before and after the insertion-removal testing. The 

experimental measurement of the texture before after the removal tests was performed 

via a 3D optical profiler Keyence 3D digital microscopy. The insertion and removal 

tests were performed at a constant speed of 5 mm/min relative to axial displacement 

between the hub and shaft.  Fig. 5.3 reveals how strategy of the fibre laser scanning 

with EOS software in SLM device is. After defining all of strategy and location on the 

plate, 316L stainless steel samples adjusted in the powder supply chamber. Fig. 4 

shows the fabricated interference fit joints samples while they are sintered on the plate. 

Then, a wire EDM utilized for ultra-precise cutting samples from the plate (Fig. 5.5). 

Fig. 5.6 represents the full instruments which was used to measure the accuracy of 

manufactured specimen via EOSINT M 280. Fig. 5.7 shows the insertion and removal 

test being performed with a Zwick Z-50 universal tensile and compression testing 

machine. 
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Fig. 5.3. Scanning strategy for (a) trapezoidal, (b) oval, and (c) triangular textures; and 

schematic of (d) pins placement as built, top view, and (e) isometric view of sample layout 

on build plate 

a b 

c d 

e 
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Fig. 5.4. SLM device, (a) EOS SLM machine, (b) sample location in the build plate, (c) 

fabricated pins in used powder, (e) samples after evacuation of powder 

 

 

 

  

 

 

 

 

Fig. 5.5. Wire EDM for ultra-precise cutting samples from the plate, (a) V 650 G device, (b) 

close view of cutting samples from the plate and sink in the water 

a b 

c e 

b 

a 
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Fig. 5.6. (a) Keyenece 3D digital microscope, (b) Bruker Hysitron TI premier, (c) Bruker 

Dektak XT Stylus profiler, (d) Bruker contour GT 3D optical microscope, (e) EVO-LS15 

SEM 

 

   

 

a b 

c d 

d 
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Fig. 5.7. Insertion and removal load-displacement testing showing (a) the testing machine 

and (b) a magnified view of pin, hub and sample clamping measurement. 

 

5.3. Modelling Procedure  

To find response of process factors with respect to process quality characteristics, 

second order mathematical models of the process were developed through response 

surface methodology. According to following equation. 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
2 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑘

𝑗=𝑖+1

+ 𝜀

𝑘−1

𝑖=1

𝑘

𝑖=1

𝑘

𝑖=1

 (1) 

where Y represents the predicted response, 𝑋𝑖 and 𝑋𝑗 are the independent factors, 

𝛽0, 𝛽𝑖 and 𝛽𝑖𝑖 are the intercept, the first-order constant coefficient, and the quadratic 

constant coefficient, respectively, 𝛽𝑖𝑗 is the linear constant coefficient for the 

interaction between factors, k is the number of factors, and 𝜀 is the error. To develop 

these models, a commercial statistical package Design Expert V9 was utilized and the 

validity of the quadratic models were evaluated by analysis of variances and 

coefficient of determination i.e. R2. 

In the present work study, the three predominate factors of surface texture chosen for 

analysis were profile shape of the texture, the pitch of the texture, and the height of the 

texture. Table 5.2 summarizes the process factors and the corresponding experimental 

deign set levels. Based on a Box-Behnken design, for three independent parameters at 

b a 
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three levels, 17 set of parameters were investigated, see Table 5.3. A step-wise 

regression method was used to fit the second-order polynomial Eq. (1) to the 

experimental data and to find the significant model terms [15,16]. Fig. 5.8 reveals the 

three-dimensional (3D) microscopy image of textured sample. The same statistical software 

was used to generate the statistical and response plots. Fig. 5.9 shows the CAD designs 

developed using Solid-works software version 2018 SP5 as well as SEM morphologies 

of the corresponding shapes. It can be observed that in trapezoid shape, due to 

limitation of AM process, a rough surface was formed on the smooth external surface 

of texture that should be exposed to a contact with the hub surface. It can be seen that 

triangular shape has a relatively sharp edge compared with the oval shape.  

 

Table 5.2 

Process variables and their levels. 

Process 

parameters 
Unit Symbol 

Code levels 

-1 0 1 

Shape of texture   - A Oval Triangular Trapezoid 

Pitch of texture µm B 400 600 800 

Height of texture µm C 300 500 700 
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Table 5.3 

Experimental set parameters and resulting insertion and removal forces.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. Three-dimensional (3D) surface texture of sample 3 with contour GT 3D optical 

microscopy.  

 

Std Shape 
Pitch 

(µm) 

Height 

(µm) 

Insertion 

force 

(kN) 

Removal 

force 

(kN) 

Volume 

(mm2) 

Overall 

diameter 

(mm2) 

1 Oval 400 500 39.5 6.5 125.8 10.89 

2 Trapezoid 400 500 43.8 8.92 108.2 10.91 

3 Oval 800 500 42.4 7.64 121.99 10.92 

4 Trapezoid 800 500 48.1 10.2 113.27 10.93 

5 Oval 600 300 16.48 0.91 72.59 10.49 

6 Trapezoid 600 300 17.4 1.8 67.87 10.48 

7 Oval 600 700 42.4 8.1 177.63 11.30 

8 Trapezoid 600 700 49.23 10.4 157.29 11.33 

9 Triangular 400 300 14.8 0.73 48.4 10.46 

10 Triangular 800 300 21.7 3.8 49.7 10.49 

11 Triangular 400 700 45.12 9.6 110.06 11.29 

12 Triangular 800 700 54.9 10.83 115.34 11.29 

13 Triangular 600 500 44.2 9.3 78.87 10.89 

14 Triangular 600 500 43.2 8.8 78.87 10.89 

15 Triangular 600 500 41.1 6.95 78.87 10.90 

16 Triangular 600 500 44 9.12 78.87 10.90 

17 Triangular 600 500 40.3 7.03 78.87 10.89 
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Fig. 5.9. Schematics of the CAD designs with (a) triangular, (b) trapezoid, (c) oval; and SEM 

images of as metal AM produced (b) triangular, (d) trapezoid, and oval textures.  

 

5.6. Results and discussion  
 

5.6.1. Microstructure and mechanical properties of samples 

 

SLM samples were polished first and etched for 12 seconds with dilute aqua regia 

(H2O: HNO3: HCl=6: 1: 3), and then rinsed with alcohol and dried. The interfacial 

microstructure and fracture surface were respectively observed with the EVO-LS15 

SEM at Dublin City University laboratory. The SEM microstructures revealed a 

martensitic and a cellular microstructure. The austenitic martensitic transformation can 

(a) (b) 

(c) (d) 

(e) (f) 

A large spatter with 

spherical shape  
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be attributed to the rapid solidification rate inside the melting pool when the laser 

moves from one spot to another. Fig. 5.10a shows the optical microscopy images 

parallel to the (building direction) BD, showing the melt pool boundaries after 

eteching. Fig. 5.10b shows the optical microscopy images of the sample in the 

transvere directin to the BD, showing the solidifed melt pool boundaries with good 

metallurgical bonding. No evidance of a lack of fussion, unmelted powders, or porosity 

can be observed. Fig. 5.10c shows a high-magnification OM image of the sample 

transverse  to the BD, showing the the different small grains with different orientation 

in the vicinity of (melt pool boundry) MPBs.  

 

 

 

Fig. 5.10. Optical microscopy images, showing (a) melt pool parallel to building direction, 

(b) melt pool transverse to the build direction, and (c) a higher magnification of a gain 

boundary with smaller grains transverse to the build direction. 

 

Fig. 5.11 shows two types of cellular structure from the metal AM samples. Such structures 

with an average size around 300nm were reported previosuly by researchers [12]. Also, 

nanoparticles can be observed around the cells. Based on the literature, they are rich in Cr, Mo, 
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and Si due to micro-segragation during fast cooling. Figure 5.12 shows diffenet types of pores 

in eteched sample.  

 

 

Fig. 5.11. Microstructure observation of  the as built sample, (a) melt pool grain structure, (b) 

elongated grains 

 

 

 

 

Fig. 5.12.SEM image of the as-built sample, in which some defects such as un-melted 

particles, small spherical pores, and irregular pores can be observed. 
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Fig. 5.13 shows the Nano-hardness indentation transverse to the BD. Almost, similar 

results were obtained after multiple indentations in a square area of 16µm×16µm.  An 

average Youngs modulus of 195 GPa and hardness of 5.9 GPa were obtained. These 

results compare well with the literature, showing that regardless of the small number 

of defects that were observed by SEM analysis, suitable mechanical properties were 

observed.  

 

 

Fig. 5.13.  Hardness properties of SLM samples.  

 

Table 5.4 shows the average results of tensile test (n=3). Compared with the literature 

[19], it seems that such samples have a considerable ductility, while a higher UTS 

around 700 MPa has also been reported in the literature [20]. The break strain on 

average was 80% which is interesting as it is much higher than as-cast 316L and even 

wrought 316L alloy.  
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Table 5.4  

The mechanical properties of the samples after the SLM process. 

Sample UTS (MPa) 
Break strain 

(%) 
YS (MPa) 

Hardness 

(GPa) 

0.001 S-1 607±8 80±4 569±6 5.9±0.4 

 

Fig. 5.14 reveals the SEM image of the surface specimen, showing two spherical pores 

around 5 and 3 µm that possibly caused the breaking of the sample. Fig. 15 shows 

extensive abrasion of sample after insertion and removal. In fact, severe plastic 

deformation in company with abrasion occurred which shows that such pins in press-

fit application cannot be re-used. It is worth mentioning to the suitable bonding of un-

melted particle that after deformation, no detachment occurred. Also, balling 

phenomenon was observed on the surface of the pins which is as a result of instability 

of melt pool (MP) attributed to the Marangoni effect which causes the higher surface 

tension gradients [20]. This phenomenon can increase the surface roughness. Fig. 5.16. 

shows some un-melted particles on the pin surfaces. Fig. 5.17 shows the surface texture 

of sample 4, the pin produced trapezoid shape, height of 800 µm and pitch of 500 µm.  

The inset shows a spherical un-melted particle in the micro groove section which is 

thought to be as a result of spattering and the high solidification rate. Fig. 5.18 shows 

a SEM image from a surface of the texture. It can be extracted from this image, as a 

result of friction between surfaces, some scratched materials from inner surface of hub 

got trapped inside the open pores which are in texture of the pins.  
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Fig. 5.14. SEM fracture surface of tensile specimen (a) fisheye, (b) high magnification of 

dimples 

 

 

   

Fig. 5.15. (a) Balling effect, (b) a huge partially melted powder 

 

 

 

Fig. 5.16. SEM images of some un-melted particles on the surface of the texture.  
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Fig. 5.17. SEM image from the texture of the pin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18. SEM image of trapped hub materials after the insertion tests. 
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5.6.2. Development of mathematical models 

In this work, analysis of variance (ANOVA) was used to check the adequacy of the 

developed empirical relationships. Two quadratic models were generated, one relating 

the profile geometry to the insertion and another relating them to the removal force. 

ANOVA test results of the responses, insertion and removal forces are presented in 

Tables 5.5 and 5.6. In this study, the model F value and the associated probability 

values P value were checked to confirm the significance of the empirical relationships. 

In general, if P value is below 0.05, it means that the related model is significant. From 

the F-value assessment, it was found that the predominant factors which have direct 

influence on the responses are the height and pitch of texture, followed by the shape 

of texture. Also, form Tables 5.4 and 5.5, the p values were less than 0.05 for the 

parameters and models indicating that the models are statistically significant and can 

be used for output prediction and that the parameters have a statistically significant 

effect on the output responses.  

The predicted R-squared indicates how well a regression model predicts responses for 

new observations and the higher the R-squared, the better the model fits the data. These 

are presented in the Table 5.7. In all the cases, the value of the determination 

coefficient is close to 1 indicating that the predicted data have good agreement with 

the actual data. Fig. 19 shows the normal probability of the studentized residuals which 

prove graphically how well the predicted data are fitted to the actual data for both 

outputs. Although the R-squared results shows a high accuracy of the model, the other 

criteria are important for finding out the precision of the RSM model. The adjusted R-

squared (Table 5.7) compares the explanatory power of regression models that contain 

different numbers of predictors. The value of the adjusted determination coefficient is 

also high, which indicates the high significance of the empirical relationships. The 

predicted R2 values also show good agreement with the adjusted R2 values. In addition 

to that, adequate precision compares the range of the predicted values at the design 

points with the average prediction error. Also, the values of adequacy precision for 

each response was calculated and presented in Table 5.7. It is seen from this table that 

these values for IF and RF are 25.5119 and 17.0717, respectively. In general, if the 

ratio is greater than 4, the equation is desirable [22]. Hence, precision of the developed 
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models indicates adequacy and that they can be used to navigate the design space. The 

mathematical relationships for correlating the mentioned responses are presented in 

Table 5.8. 

 

Table 5.5 

ANOVA results of insertion force. 

 

 

 

 

 

 

 

 

 

 

 

Table 5.6 

ANOVA results of removal force. 

Source Sum of Squares DOF Mean Square F-value P-value Importance 

Model 164.77 5 32.95 33.08 < 0.0001 Sign. 

A-Shape 8.87 2 4.43 4.45 0.0383  

B-Pitch 5.61 1 5.61 5.63 0.0369  

C-Height 125.53 1 125.53 126.02 < 0.0001  

C² 24.30 1 24.30 24.39 0.0004  

Lack of Fit 3.58 7 0.5111 0.2770 0.9332 Not Sign. 

 

 

 

Table 5.7  

Fit statistical measures of insertion and removal force. 

Responses R² Adjusted R² Predicted R² Adequate Precision 

Insertion force 0.974 0.9622 0.9373 25.5119 

Removal force 0.9376 0.9093 0.88 17.0717 

 

 

 

 

 

 

Source 
Sum of 

Squares 
DOF 

Mean 

Square 
F-value P-value Importance 

Model 2299.5631 5 459.9126 82.4320 

< 

0.0001 Sign. 

A-Shape 49.5740 2 24.7870 4.4427 0.0385  
B-Pitch 71.4013 1 71.4013 12.7975 0.0043  

C-Height  1779.0613 1 1779.0613 318.8685 

< 

0.0001  

CA² 396.6225 1 396.6225 71.0883 

< 

0.0001  
Lack of Fit 38.7322 7 5.5332 0.9776 0.5425 Not Sign. 
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Table 5.8 

Predictive equations for the force responses in terms of actual input factors (Shape: S, Pitch: 

P and Height: H). 

Output Oval Triangular Trapezoid 

IF 

-

66.7983+0.0149×P+0.3

168 ×H-0.0002×H² 

-

63.9562+0.0149*Pitch

+0.3168 ×H-0.0002×H² 

-61.8483+0.0149×P+ 

0.3168×H-0.0002×H² 

R

F 

-

20.4313+0.0041×P+0.0

797×H-0.00005×H² 

-

19.0687+0.0041×P+0.0

797×H-0.00005×H² 

-

18.3838+0.0041×P+0.

0797×H-0.00005×H² 

 

Furthermore, the adequacy of the models can be evaluated using diagnostic diagrams 

including normal probability distribution diagram of residuals and the diagram of 

predicted values versus real values, shown in Figs. 5.19a and b, and Figs. 5.19c and d, 

respectively. As can be seen in these diagrams, the points lie on a relatively straight 

line, suggesting the constancy of the variance and normal distribution. In the normal 

probability distribution diagram of residuals, the points are aligned along an almost 

straight line. Also, good correlations between predicted values and real values 

regarding IF and RF confirm the adequacy of the models in predicting the forces 

generated in the press fit technique using SLM fabricated pins within the investigated 

parameter levels. Fig. 5.20 illustrated studentized residuals vs. predicted values which 

revealed that all colour points representing mean If and RF had been scattered 

randomly and uniformly close to zero-axis and had constant range of residual across 

the graph which illustrated absence of constant variance. The graph in Fig. 5.21 shows 

a guideline for choosing the correct model. Based on the best lambda value, which is 

found at the minimum point of the curve generated by the auto selected. If the 95% 

Confidence Interval around this lambda shows one, then the software does not 

recommend a specific transformation.  
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Fig. 5.19. Normal probability plots of the studentized residuals for IF and RF (a, b), 

predicted versus actual for IF and RF (c, d). 

 

Fig. 5.20. Studentized residuals vs. predicted values plot, (a) for IF and (b) for RF 

(a) (a) 
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Fig. 21. Box-cox plots, (a) insertion force, (b) removal force 

 

 

5.6.2. Validation of the developed models 

In order to verify the adequacy of the developed models, four confirmation 

experiments for each texture were carried out, these experiments were randomly 

selected from the investigated range. Using the point prediction option in the software, 

all the response values can be predicted by substituting these conditions into the 

previous developed models. Table 5.9 presents the experiments condition, the actual 

experimental values, the predicted values and the percentages of error for all responses. 

It is clear that all the values of the percentage of the error for all the two responses are 

within good agreement (all errors are below 10%), indicating the validity of the 

models.  

 

 

 

 

 

 

(a) (b) 
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Table 5.9 

Confirmation for randomly chose parameters within the investigated experimental range. 
Exp no. Factors Values Responses 

 
Shape 

Pitch 

(µm) 

Height 

(µm) 
 IF (KN) RF (KN) 

1 Oval 800 500 Actual 39.745 7.6 

    Predicted 43.0085 8.16375 

    Error (%) 8.2112 6.9 

2 Oval 600 700 Actual 43.82 8.1 

    Predicted 43.0085 8.16375 

    Error (%) 3.2438 6.386 

3 Trapezoid 600 700 Actual 49.239 10.441 

    Predicted 50.1914 9.9125 

    Error (%) 1.9343 5.06 

4 Triangular 800 700 Actual 47.931 10.83 

    Predicted 51.071 11.8037 

    Error (%) 6.5511 8.991 

 

 

5.6.4. Effects of inputs on insertion and removal force  

Due to the unique specifications of the AM process, stainless steel 316L pins were 

fabricated and characterized. In order to find the effect of shape, pitch size and height, 

various types of pins were prepared and tested by inserting them into hubs of defined 

size. The IF and RF were reported and then using RSM, the best conditions and effect 

of process parameters on responses for obtaining strong joints were evaluated. Fig. 

5.19 shows contour plots of the effects of pitch, height and shape on the insertion and 

removal forces. Some important points can be drawn from this figure. First of all, as 

expected by increasing the height of texture IF and RF were dramatically increased. It 

is very important to note that before the final design of the presented texture 

geometries, different heights were evaluated in a set of screening experiments and it 

was found that a height in the range of 300-700 µm was suitable for this application. 

It can also be observed that when the maximum possible height is used, then there is 

less local response effect from the other input parameters on IF and RF.  
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Fig. 5.22. Colour map contour plots of insertion and removal forces for the pitch, shape, and 

at the three different levels of height.  
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Secondly, from the Fig. 5.22 it is seen that that the highest values of IF and RF were 

obtained when the shape of texture is trapezoid, and the oval shape led to slight lower 

levels of joint strength. Fig. 5.23 shows the surface response morphology of some 

samples after insertion and removal, it can be expected that triangular shape could 

cause abrasive wear (see Fig. 5.23), while trapezoid shape generated more adhesion 

with the hub surface, while due to the limitations of AM process (see red-colored circle 

in Fig. 5.24b), the surface is rough and traces of abrasive wear as well was detected 

and shown in Fig. 5.24. Third, it was found that a higher pitch size where the height is 

high lead to maximum value of IF and RF.  

In Figs. 5.23a and c, no considerable surface abrasion (elastic and plastic deformation) 

was detected for the samples 9 (triangular, pitch: 400 µm, and height: 300 µm) and 6 

(trapezoid, pitch: 600 µm, and height: 300 µm). It was revealed that with the triangular 

texture (for example sample 10), IF and RF were at maximum values and related 

sample presented in Fig. 5.24b showed considerable abrasion (plastic deformation) of 

the surface after insertion and removal. It is interesting from the higher magnification 

SEM morphology of sample 6 (Fig. 5.7d) that the un-melted powders at the surface 

were smoothened due to the severe abrasion between the pin and hub surfaces during 

insertion and removal.  

It can be observed that by altering the texture parameters, strong bonds can be formed 

in press-fit applications. Also, AM technology can be highly recommended for such 

applications after a suitable surface finish process. This study opens a new window for 

development of metal additive manufacturing for interference fit joining applications. 

In future, the effect of surface finishing processes after SLM also needs to be 

examined.  
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Fig. 5.23. SEM of the samples surface morphologies, after insertion and removal, of (a) 

sample 9, (b) sample 10, (c and d) low and high magnification of sample 6, and (d) high 

magnification of sample 12.   

  

 

 

 

a b 

c d 
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Fig. 5.24. Mechanisms of (a) abrasive wear and inner surface of pins after insertion force  
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5.7. Conclusion  

A new approach for the manufacturing of metallic knurled press fit pins was developed 

in this study using the SLM process. The selective laser melted specimens with 

different types of texture specifications were evaluated by insertion/removal tests. A 

statistical and mathematical model was used to investigate the impact of input 

parameters on the bonding strength of press-fit joints. From the experimental and 

simulation results the following conclusions were drawn: 

1- It was found that the texture height is the most significant impactful factor for 

resulting bond strength. The weakest bond strengths were obtained for the lowest 

profile heights of 300 µm. Insertion of pins into the hub was not possible for profile 

heights above 700 µm.  

2- The shape of textures affects the joint bonding. The trapezoid profile had the highest 

positive impact on bond strength due to a large interaction area between the pin surface 

and the internal surface of the hub and a mixture of adhesive and abrasive wear.  

3- The pitch dimension also effected the bond strength but to a much lower extent than 

the texture height.  Larger values of pitch resulted in higher IF and RF values.  

4- The RSM is an excellent technique for prediction of IF and RF from the produced 

texture specifications. The developed process models can be reliably used to predict 

the resulting insertion and removal bond strengths.  

5- ANOVA analysis indicated that all inputs and their interaction terms including the 

shape, pitch size, height of the texture have significant effects on aforementioned 

outputs.  

6- According to the results, the SLM process is a precise one-step method for 

manufacturing of such customized helical knurl metallic pins with a complex shape, 

although it has some limitations on the formation of smooth edges at the micrometre 

scale.  
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Chapter 6 

Conclusions and Future Work 
 

This work presented in this thesis was focused on the development of predictive 

models for the laser sintering and texturing process. In Chapter 3, the optimisation of 

the SLS process with glass fibre reinforced polyamide was presented. ANFIS, SA, and 

Grey relational analysis was used for this work.  In Chapter 4, the prediction of laser 

generated surface textures was implemented using neural network and neuro-fuzzy 

inference models. In Chapter 5, SLM produced interference fit pins were generated 

and tested according to a DoE and response surface methodology, for interference fit 

bond strength. 

Laser processing is a mature method, developed over several decades and used widely 

in industry due to the reliability and repeatability of the process. However, laser mater 

interaction in the SLS and texturing processes is a more complex phenomenon and 

involves a number of physical and chemical processes such as heat transfer, breaking 

and building of chemical bonding, plasma creation, melting and solidification occur. 

In order to predict the behaviour of the laser sintering process for future or unknown 

conditions, the existing laser sintering results must be examined in detail to generate 

new information. This information can be further processed by different machine 

learning and artificial intelligence techniques.  Predictive modelling techniques can be 

used to understand different patterns available within large sets of data.  

In this thesis, in terms of simulation, the latest AI and mathematical types of modelling 

and multi objective optimization methods were applied and their performances 

examined in the newly developed laser-based manufacturing process. In addition, for 

the first time, SLM was utilized as a new way of fabrication method in knurled pins 

with 316L stainless steel material and optimised for interference fit pin strength. An 

overview of the main findings from this work is presented at the end of each chapter; 

a summary of these are presented below.  
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6.1. Conclusions from chapter 3 

1. An ANFIS based on 2-2-2-2-2-2 structure with Psigmoidal type of MFs led to 

maximum precision of modelling for tensile strength and elongation by making the 

minimum values of prediction error in SLS process.  

2. In optimization of the SLS procedure by ANFIS-SA, the part bed temperature of 

180 °C, laser power of 29 W, scan speed 30 mm/s, scan spacing 0.37 m and scan 

length 133 mm resultant in optimal solution with tensile strength of 34 N/mm2 and 

elongation of 11%.  

3. The results of validation experiment with GRA and ANFIS-SA approaches are 

Closely consistent and can be used for further research.  

4. Due to the ability of ANFIS-SA to search the entire solution space within the 

process. This resulted in an increase of the overall tensile strength and elongation 

results obtained by 14.78 N/mm2 and 6.4 % respectively for the output of ANFIS-

SA compared to GRA in SLS process. 

5. Based on our experiences, we can suggest that ANFIS-SA be an effective approach 

to solving a multi-objective optimization problem in manufacturing processes 

which responses related in a complex manner to the input parameters. 

 

6.2. Conclusions from chapter 4 

1. By testing and training of various FFNN, in LST process, 3-5-1 structure for DI 

and IF and 3-7-1 structure for RF were selected as a lowest MAE. ANFIS 2-2-2 

structure with Gaussian2 MF and backpropagation optimization, D sigmoidal MF and 

hybrid, and Pi shaped MF showed the lowest RMSEs for DI, IF and RF, respectively.  

2. Similar to SLS process, the ANFIS model produce lower values of PEP compared 

to FFNN in LST procedure. ANFIS is the most powerful simulation for approximation 

and analysis of the responses. The ANFIS has some advantages over FFNN, including 

the ability to capture the nonlinear structure of a process, adaptation capability, and 

rapid learning capacity. ANFIS has the advantage to combine both ANN and Fuzzy 

knowledge. So ANFIS is more precise in term of prediction. 
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3. The fact that the laser surface texturing processing technologies are really high-cost 

process, the developing model can give a vision regarding to the selecting of best 

process parameters without needing to a high number of experiments. Otherwise 

stated, to reach desirable performance in each process, the developed model is 

beneficial to select optimal parameters without conducting extensive experiments and 

it has a strong economic justification.  

4. Since ANFIS has proven a good tool for approximation of results, ANFIS model 

can be applied as objective function to select optimal parameters of manufacturing 

process, in which the process reaches to its desirable mechanical properties by using 

metaheuristic algorithms such as simulated annealing algorithm, bee colony and etc. 

 

6.3. Conclusions from chapter 5 

1. It was found that the texture height is the most significant impactful factor for 

resulting bond strength. The weakest bond strengths were obtained for the lowest 

profile heights of 300 µm. Insertion of pins into the hub was not possible for profile 

heights above 700 µm.  

2. The shape of textures affects the joint bonding. The trapezoid profile had the 

highest impact on the bonding due to a large interaction area between the pin surface 

and the internal surface of the hub and a mixture of adhesive and abrasive wear.  

3. The pitch dimension also effected the bond strength but to a much lower extend 

than the texture height.  Larger values of pitch resulted in higher IF and RF values.  

4. The RSM is an excellent technique for prediction of IF and RF from the produced 

texture specifications. The developed process models can be reliably used to predict 

the resulting insertion and removal bond strengths.  

5. ANOVA analysis indicated that all inputs and their interaction terms including the 

shape, pitch size, height of the texture have significant effects on aforementioned 

outputs.  

6. According to the results, SLM process is a precise one-step method for 

manufacturing of such customized helical knurl metallic pins with a complex shape, 

although it has some limitations on the formation of smooth edges at the micrometre 

scale.  



125 
 

6.4. Future Work 

In selective laser sintering, the proposed model from ANFIS-SA can be examined to 

the different material and the results can be compared with the obtained simulation. 

Since ANFIS has proven a good tool for approximation of results, ANFIS model can 

be applied as objective function to select optimal parameters of manufacturing process, 

in which the process reaches to its desirable mechanical properties by using the 

metaheuristic algorithms such as simulated annealing algorithm, bee colony and etc. 

In the fabrication of 316l interference fit joins, pre-heating can be taken into the 

account and compare to the insertion and pull-out force of cold joints. In addition to 

that, in order to study the effect of adhesive and abrasive wears, different types of 

material can be examined. Also, various post-processing techniques can be applied to 

improve the mechanical properties, accuracy, and appearance of the press fit joints 

printed parts including annealing and sandblasting and etc.  

 

 


