ORGANIC COMPOUNDS

O—H···π(arene) Intermolecular Hydrogen Bonding in the Structure of 1,1,2-Triphenylethanol

GEORGE FERGUSON† and JOHN F. GALLAGHER‡

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

CHRISTOPHER GLIDEWELL AND CHOUDHURY M. ZAKARIA

School of Chemistry, The University, St Andrews, Fife KY16 9ST, Scotland

(Received 3 February 1993; accepted 6 July 1993)

Abstract

The 1,1,2-triphenylethanol molecule, Ph₂(PhCH₂)COH (I), forms centrosymmetric dimers in the solid state. The shortest O···O separation, 3.837 (3) Å, is too long for any O—H···O hydrogen-bond formation. Instead, there are O—H···π(arene) interactions between the hydroxyl group of one molecule and a phenyl group of a centrosymmetrically related molecule. The O···C and H···C distances between the hydroxyl group and the closest phenyl-ring C atom are 3.525 (4) and 2.73 (4) Å, respectively. These intermolecular contacts are the only driving force towards dimer formation in the solid state.

Comment

Hydrogen bonds often provide the strongest intermolecular forces between molecules in organic molecular crystals and hence often dictate the preferred packing arrangement. The general principles underlying hydrogen-bond formation are reasonably well understood and the structures of hydrogen-bonded crystals can often be rationalized in preferred combinations of hydrogen-bond donors and acceptors (Etter, 1990; Etter, McDonald & Bernstein, 1990; Etter & Reutzel, 1991). In general, the strongest hydrogen-bond donors pair off with the strongest hydrogen-bond acceptors. Similar pairing processes are repeated until all the hydrogen-bond donors and acceptors have been utilized. However, when a system contains excess donors or acceptors, at least two hydrogen-bonding strategies are available to accommodate the mismatch (Hanton, Hunter & Purvis, 1992): (i) change in hybridization or (ii) the formation of hydrogen bonds involving the π system of an aromatic group as the acceptor. Several examples of the formation of intermolecular X—H···π(arene) bonds for X = O or N have been observed where there is a deficiency of sterically accessible acceptor sites of the conventional type (Atwood, Hamada, Robinson, Orr & Vincent, 1991; Hanton, Hunter & Purvis, 1992; Rzepa, Webb, Slawin & Williams, 1991).

Herein we report the formation of intermolecular O—H···π(arene) bonds in a system, Ph₂RCOH [R = CH₂Ph, (I)], having no deficiency of hydrogen-bond acceptors and whose closest analogues, (II) (R = ferrocenyl, Fc) (Ferguson, Gallagher, Glidewell & Zakaria, 1993a) and (III) (R = Ph) (Ferguson, Gallagher, Glidewell, Low, & Scrimgeour, 1992), both exhibit O—H···O hydrogen bonds, albeit of a markedly different pattern.

The 1,1,2-triphenylethanol molecule (I) forms centrosymmetric dimeric aggregates in the solid state (Fig. 1). The O···C distance is 1.445 (3) Å, the Csp³···Csp³ bond is 1.536 (4) Å and the range and mean of the three Csp³···
C$_{sp^2}$ bond lengths are 1.507 (4)-1.535 (3) and 1.521 (4) Å, respectively. The C$_{ar}$—C$_{ar}$ bond lengths are in the range 1.364 (6)-1.391 (4) with the mean 1.377 (4) Å. The bond angles in (I) are unexceptional. The shortest O···O separation, 5.837 (4) Å, is too long for any O—H···O hydrogen bonding to arise in (I). Examination of the three-dimensional packing shows that O—H···π(arene) interactions exist between the hydroxyl group of one molecule and a phenyl group of a centrosymmetrically related molecule (Fig. 2). The O···C(13) and H···C(13) distances between the hydroxyl group and the closest phenyl-ring C atom are 3.525 (4) and 2.73 (4) Å, respectively.

Fig. 2. A stereoview of the dimeric aggregate of (I) showing the hydroxyl moiety of one molecule engaged in O—H···π(arene) hydrogen bonding with a phenyl ring of a centrosymmetrically related molecule; all atoms are drawn as their van der Waals spheres.

In contrast to 1,1,2-triphenylethanol (I), the analogue (II), FcPh$_2$COH, which also forms centrosymmetric dimers (Ferguson, Gallagher, Glidewell & Zakaria, 1993a), has an O—H···O—H hydrogen-bond motif, graph set $R_2^2(4)$ (Etter, 1990; Etter, McDonald & Bernstein, 1990; Etter & Reutzel, 1991), with an O···O distance of 2.876 (2) Å. (III), Ph$_3$COH (Ferguson, Gallagher, Glidewell, Low, & Scrimgeour, 1992), crystallizes as distorted tetrahedral tetramers with crystallographic 3m (C$_{3v}$) symmetry [O···O distances 2.88 (1) and 2.90 (1) Å], in which the H atoms are disordered over the four-O-atom framework. In each of the closely related compounds (I)–(III), the ratio of conventional hydrogen-bond acceptor to donor sites is constant, yet three entirely different hydrogen-bond patterns are observed.

Previously, we have also examined the structures of the 1,2,3-triphenyl-2-propanol (IV) and tribenzylmethanol (V) molecules (Ferguson, Gallagher, Glidewell & Zakaria, 1993b), where no intermolecular O—H···O hydrogen bonding is present. This arises presumably because of the steric bulk of the molecules and their packing, which prevents the close approach of the O atoms of adjacent molecules. Thus, molecule (I) represents an intermediate case in the series Ph$_2$COH (III), Ph$_2$(PhCH$_2$)COH (I), Ph(PhCH$_2$)$_2$COH (IV), and (PhCH$_2$)$_3$COH (V), where the tendency to form O—H···O hydrogen bonds is balanced by steric effects (no hydrogen bonding) resulting in the observed O—H···π(arene) hydrogen bonding. In the present example (I), the O—H···π(arene) interaction, using a single O—H bond per molecule, is the only driving force towards dimer formation in the solid state.

There are numerous other examples of O—H···π(arene) interactions. Intramolecular O—H···π(phenyl) hydrogen bonding occurs in the structure of (6,6′-di-tert-butyl-4,4′-dimethyl)-2,2′-isopropylidenediphenol (Hardy & MacNicol, 1976), where the two hydroxyl H···C$_{ar}$ distances are 2.13 (3) and 2.19 (3) Å (C$_{ar}$ is the closest phenyl C atom to the H atom). Intermolecular O—H···π(phenyl) hydrogen bonding between H$_2$O and the aromatic rings of BP$_2$– has been reported in the structure of tributylammonium tetraphenylborate monohydrate (Aubry, Protas, Moreno-Gonzalez & Marraud, 1977), where the water H···C$_{ar}$ distances are 2.55 (3) and 2.49 (3) Å. It is noteworthy that most previous examples of intermolecular X—H···π(arene) hydrogen bonding (X = O or N) are accompanied by other forms of intermolecular interactions, such as conventional O—H···O hydrogen bonding, as in HO(SiPh$_2$)$_2$OH (Ovchinnikov, Shklover, Struchkov, Dement’ev, Fronze & Antipova, 1987), or π···π facial interactions, as in (9-anthyl)CHC(CF$_3$)$_2$OH (Rzepa, Webb, Slawin & Williams, 1991), or both (Hanton, Hunter & Purvis, 1992). However, X—H···π(arene) interactions (X = O or C) appear to be the sole form of intermolecular interaction in three calix[4]arene guest–host complexes, where H$_2$O (Atwood, Hamada, Robinson, Ott & Vincent, 1991) or CH$_2$Cl$_2$ (Atwood, Bott, Jones & Raston, 1992; Böhmer, Ferguson, Gallagher, Lough, McKervey, Madigan, Moran, Phillips & Williams, 1993) each use both X—H bonds to bind to two different arene rings.

Toda, Tanaka, Nagamatsu & Mak (1985) have commented previously on the lack of hydrogen bonding in trans-9,10-diphenyl-9,10-dihydroanthracen-9,10-diol. A re-examination of the three-dimensional packing of this structure shows that there are O—H···π(arene) interactions exactly analogous to those in (I), with a hydroxyl H···C$_{arene}$ intermolecular distance 2.80 Å.

Experimental

Crystal data

C$_{20}$H$_{18}$O
$M_r = 274.36$
Monoclinic
$P2_1/c$
$a = 16.2124$ (13) Å
$b = 5.9458$ (6) Å
$c = 17.2602$ (17) Å
$\beta = 115.965$ (7)°

Mo Kα radiation
$\lambda = 0.71073$ Å
Cell parameters from 25 reflections
$\theta = 12.0-17.0^\circ$
$\mu = 0.07$ mm$^{-1}$
$T = 293$ K
Block
\[V = 1495.9 \text{ (2) Å}^3 \]
\[Z = 4 \]
\[D_t = 1.22 \text{ Mg m}^{-3} \]

Data collection

Nonius CAD-4 diffractometer

\[\omega/2\theta \text{ scans} \]

Absorption correction: none

2710 measured reflections

2624 independent reflections

1298 observed reflections

\[\left| I_{\text{net}} \right| > 3.0\sigma(I_{\text{net}}) \]

Refinement

Refinement on \(F \)

\[R = 0.037 \]

\[wR = 0.042 \]

\[S = 1.29 \]

2624 independent reflections

72 \(C_2 H_{18}O \)

Selected geometric parameters

- \(C_3 - C_4 - C_5 - C_6 \)
- \(C_1 - C_2 - C_3 - C_4 \)
- \(C_2 - C_3 - C_4 - C_5 \)
- \(C_1 - C_2 - C_3 - C_4 \)
- \(C_1 - C_2 - C_3 - C_4 \)
- \(C_1 - C_2 - C_3 - C_4 \)

\[\Delta \rho_{\text{max}} = 0.13 \text{ e Å}^{-3} \]

\[\Delta \rho_{\text{min}} = -0.12 \text{ e Å}^{-3} \]

Extinction correction:

Larson (1970)

\[V = 1495.9 \text{ (2) Å}^3 \]

References

GF thanks NSERC Canada and CG thanks SERC for Grants in Aid of Research; CMZ thanks the Committee of Vice-Chancellors and Principals (UK) for support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry and contact distances have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71476 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU1055]
The aromatic rings are tilted back from the calixarene cavity producing a pentagonal-shaped cavity in which the tert-butyl group of a neighboring calix[5]arene related by a c-glide is enclathrated. This self-inclusion process extends through the lattice as a one-dimensional molecular ‘zipper’.

Comment

The structural chemistry of calixarenes continues to be of immense interest primarily because of their recognized practical use as organic guest-host systems (Gutsche, 1989; Vicens & Böhmer, 1991). This is of fundamental importance in the quest for a better understanding of natural molecular-recognition processes.

We are currently studying the molecular structures of calix[4]arenes and calix[6]arenes, and their metal complexes. Several of these have been shown to enclathrate small organic molecules within the molecular cavity, *e.g.* dichloromethane (Böhmer *et al.*, 1993), ethanol (Ferguson, Gallagher & Pappalardo, 1993) and acetonitrile (McKervey, Seward, Ferguson & Ruhl, 1986). Until recently, there have been few structural studies reported for calix[5]arenes, mainly because of difficulties with synthesis and purification. Herein we report the structure of (I).0.3(n-hexane).

Abstract

The pentahydroxy-p-tert-butylcalix[5]arene, \(5,11,17,-23,29\text{-penta-tert-butylhexacyclo}[25.3.1.1^{3,7}.1^{9,13}.1^{15,19}.1^{21,25}]\text{pentatriaconta}-1(31),5,7(35),9,11,13(34),15,17,-19(33),21,23,25(32),27,29\text{-pentadecaene}-31,32,33,34,-35\text{-pentaol}-n\text{-hexane} \ (I)

Our X-ray analysis of (I) shows that it adopts a distorted chalice-shaped conformation in the solid state (Figs. 1 and 2); the tert-butyl group on ring C is disordered over two orientations. The major conformation-determining feature in this molecule is the presence of O—H...O intramolecular hydrogen bonding involving all five aromatic hydroxyl groups; the O...O separations are in the range 2.735(7)-2.880(8) Å [mean 2.793 (8) Å]. Difference maps show that all five hydroxyl H atoms are disordered equally over two orientations; a similar situation was observed with the hydroxyl H atoms in pentahydroxycalix[5]arene acetone solvate, (II) (Coruzzi, Andreetti, Bocchi, Pochini & Ungaro, 1982).

The conformation of (I) is defined by the angles which the aromatic rings make with the plane of the five methylene C atoms which link them, *viz.* 149.7 (3) (A), 136.0 (3) (A)

**John F. Gallagher† and George Ferguson* **

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Volker Böhmer and Dagmar Kraft

Institut für Organische Chemie, Becher Weg 34 SB1, Johannes Gutenberg Universität, 6500 Mainz, Germany

(Received 22 February 1993; accepted 6 July 1993)