Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review

Burcu Gunesa, Joseph Stokesb, Paul Davisc, Cathal Connollyd, Jenny Lawlera,

a School of Biotechnology and DCU Water Institute, Dublin City University, Glasmann, Dublin 9, Ireland
b School of Mechanical & Manufacturing Engineering, Dublin City University, Glasmann, Dublin 9, Ireland
c School of Business and DCU Water Institute, Dublin City University, Glasmann, Dublin 9, Ireland
d Alltech European Bioscience Centre, Summerhill Road, Dunboyne, Co. Meath, Ireland

ARTICLE INFO

Keywords:
Bioenergy
Anaerobic digestion
Distillery/brewery wastes
Pre-treatment

ABSTRACT

In order to encourage industrial growth based on sustainability, the replacement of fossil fuels with renewable sources has gained global importance. Anaerobic digestion (AD) fulfills the requirements for a sustainable alternative fuel, and is also an environmentally friendly waste treatment method. It requires less energy than other methods such as gasification or pyrolysis due to its low operating temperature. Whiskey distillery and brewery waste streams are classified as high strength organic wastes due to their high BOD/COD content, thus rendering them a suitable feedstock for anaerobic digestion. Due to large global alcohol production, millions of tonnes of solid and liquid waste is discharged annually, so the potential for waste-to-energy conversion can make anaerobic digestion an attractive treatment option for the waste streams of distilleries and breweries rather than diversion to landfill or incineration. However, these waste streams are lignocellulosic, containing high fractions of lignin and crystalline cellulose, meaning pre-treatments prior to anaerobic digestion can significantly enhance the biogas yield and organic matter degradation. Acid pre-treatment and enzymatic pre-treatment are particularly promising, with improvement in quality up to 74% CH4 for AD of spent grain, with 16% increase in biogas yield, and up to 87% reduction in COD. However, industrial application of pre-treatments prior to anaerobic digestion remains limited. This review collates the literature to date on pre-treatments applied prior to anaerobic digestion of whiskey distillery/brewery wastes as well as current industrial practices and different reactor configurations. A particular focus is placed on the impact of pre-treatments on biogas yield in order to highlight potential enhancements in biogas yields for industrial implications.

1. Introduction

Widespread usage of non-renewable fuels (in particular fossil fuels) for energy production has been implicated as the cause of many ecological and environmental concerns which impact on human migration and climate conditions. This is due primarily to the continuous emission of greenhouse gases such as CO2 [1] from such usage. In order to address this problem, The European Union aims to reduce the total greenhouse gas emissions in developed countries to 80%–95% of 1990 levels by 2050 [2]. Exploration of alternative energy sources has arisen as a result of increasing energy demand as well as economic and environmental reasons. Biogas (a methane rich gas produced by biological means) is considered to be one of the most environmental friendly fuels owing to its non-toxic characteristics and potential for ease of use as an alternative to traditional fossil fuels [3].

Whiskey and beer manufacturing processes generate large amounts of high strength co-products which contain high levels of chemical oxygen demand (COD), biological oxygen demand (BOD), phosphorus, ammonia, metal ions like copper and iron, as well as complex organic materials such as lignin, yeast cells, protein [4]. Due to the characteristics of these waste streams, the alcoholic beverage industry is a highly polluting industry [5]. Approximately 3.4 million tonnes of solid wastes, including spent yeast and spent grain, is produced per year in the EU, which is directed to animal feed ingredients. In addition, approximately 8–15 L aqueous waste generated per litre of malt whiskey and 3–10 L/L of beer [4–8]. Disposal of brewery and distillery wastes has been legislated for in most countries for more than 20 years [9]. In countries such as Ireland and the UK there has been a massive increase in the occurrence of small “craft” breweries and distilleries. These small or micro-breweries/distilleries, defined as such based on volume of production which is less than 1760 m3 annually, would in particular benefit from potential methods for reducing costs associated with waste
treatment [10]. Fig. 1 for example provides the number of micro scale breweries in Ireland since 2012, with data referring to the number of breweries in production at approximately mid-year [11,12].

Furthermore according to Irish Whiskey Association data, the number of whiskey distilleries in operation increased from 4 to 18 between 2013 to August 2017, with 16 further planned [13].

AD is becoming more widely accepted as an efficient method to convert organic matter, in particular highly recalcitrant waste streams of distilleries/breweries, into biogas, which can significantly improve the energy balance and economics of the industry [14,15]. Anaerobic Digestion has proven to be more efficient than conventional methods as the existing waste management method for distilleries and breweries is mainly landfill applications and animal nutrition [16,17]. The establishment of anaerobic digestion plants for the treatment of high organic content wastes has undergone a major development amongst wastewater treatment facilities in Europe [15] and the application of AD in the treatment of distillery/brewery wastes is increasing.

Spent grain and yeast are the solid phase co-products of mashing and fermenting processes, which are initial and essential operations in distilleries and breweries [6], while pot ale is the main liquid phase by-product of the distillation process in whiskey production [18]. These waste streams are highly lignocellulosic, making them resistant to degradation by biological means [19]. Distillery/brewery wastes have a complex heterogeneous structure. Primarily due to the high lignin content, implementation of pre-treatments is necessary in order to obtain a higher biogas yield from AD [20]. Pre-treatments play a significant role in modifying the structure of the substrates to make them more easily degradable. Different types of pre-treatments are discussed in detail in Section 5.

The whisky manufacturing process, outlined in Table 1 and Fig. 2, can be divided into six main steps: milling, malting, mashing, fermentation, distillation and maturation [18,21].

The manufacture of craft beer has many similarities with the initial stages of the whisky production process. It also starts with malting and mashing steps of barley or other grains. Hops are also added to give the characteristic bitterness flavour of beer and avoid bacterial spoilage. The product of the fermentation step is then subjected to filtration and stabilization, maturated, and bottled/kegged [22].

Due to the similarities of these two processes, solid waste fractions, spent barley and spent yeast, are not much different; however, distilleries also generate massive amounts of pot ale (8.5–11.5 L per litre of malt whiskey) as a co-product of the distillation steps. Spent wash from the fermenter is also a significant liquid waste (e.g. 16–21 L per litre of grain whiskey [23]).

In a typical whiskey distillery, liquid residues left in the wash and spirit still after the distillation steps comprise the majority of the waste stream, known as pot ale and spent lees, respectively. In terms of solid waste, spent grain (also called draft) arise from the mash tun and fermenter of both distilleries and breweries [18].

Pot ale is a highly turbid, concentrated, caramelised and cumber-some liquid effluent [21]; with large discharge volumes [24]. As such, disposing of this liquid waste is a major concern for distilleries; the characteristics of which are summarized in Table 2. Pot ale has high COD and BOD contents, and contains significant levels of phosphorus and ammonia [9,18,23,24]. As copper stills are typically used in the distillation step, copper, which is toxic to micro and macroorganisms, is commonly seen in pot ale due to mass transfer between refluxing liquid and hot stills [4,21]. Pot ale is harmful especially for aquatic life because of the high level of COD/BOD leading to decreases in the level of solubilised oxygen and eutrophication [25], and due to its dark coloured nature it can block the penetration of sunlight into the receiving water, reducing the level of dissolved oxygen by restricting photosynthesis [26]. Spent lees have lower COD/BOD and contain volatile organic acids such as formic, acetic, propionic, butyric and pentanoic, which are also the intermediate products of AD [18,27].

The polluting strength of these liquid waste streams is significantly high, due to the large amounts of biodegradable organic material (sugars, lignins, hemicelluloses, dextrans, resins and organic acids) and fertilizers such as potassium, phosphorus and nitrogen [9,23,28]. The by-products/waste streams produce undesirable odours as a result of the presence of skatole, indole and other sulphur compounds [9]. Furthermore, uncontrolled land discharge of distillery and brewery waste water causes high levels of acidification. It has been shown that land discharge of distillery liquid wastes can impair seed germination [29]; potentially due to a decline in soil pH, leading to inhibition of agricultural crops. It also potentially causes leaching of protein and carbohydrates from the seeds along with a decrease in the activity level of crucial enzymes for crops growth such as alkaline phosphatase and ATPase [30].

Due to the potential hazards of the land spreading applications, environmental regulations are forcing distilleries to enhance existing treatment technologies as well as adopt new and more efficient methods for waste management. Thus, recovery of organic waste streams has become a major focus of waste management policies, with
biological processes, predominantly anaerobic digestion, being seen as the main solution for high organic content wastes [15].

Major solid waste streams of distilleries and breweries consist of spent yeast and spent grain, typically termed draff when combined. Yeast cells are covered by a thick cell wall, which is formed of a complex matrix of phosphomannans, glucans, chitin and protein, and as such are not readily biodegradable [23]. Spent grain, draff, such as spent barley, spent yeast and spent hops, in breweries only, is generated in relatively large amounts [6,33]. Spent grain basically consists of kernel husk, pericarp and seed coat, which have high levels of cellulose (16.8–25.4%), hemicellulose (mostly arabinoxylans) (21.8–28.4%), lignin (11.9–27.8%), proteins and fibres. Hence, it is considered a lignocellulosic material [34,35].

In the first step of AD (hydrolysis), cellulose and hemicellulose are broken down to their monomers, however lignin limits the degradation of lignocellulosic material due to its high level of recalcitrance [36]. Spent grain is often used for animal feed (mainly for cattle) due to its both highly nutritious content and low/no cost. It is used either in wet form or as dried conventionally [37]. However, when pot ale and spent grain mixture are used, this might lead to a high level of toxicity depending upon copper level (from the distillation in copper stills) as some animals (particularly sheep) cannot metabolise copper [21]. Although cattle are tolerant of high level of copper, digesting pot ale syrup is not suitable for their diet. Pot ale can only be used as a blending material to mix with hay, straw or molasses without exceeding 10% of the total amount, thus limiting the usage of pot ale in comparison to the discharge amount [38]. As such, treatment technologies focusing on treatment of pot ale are of high importance.

Table 1

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malting</td>
<td>The grain is steeped in water and dried to give characteristic malt flavour to the grain</td>
</tr>
<tr>
<td>Milling</td>
<td>Reduction of barley grain size; removal of husks</td>
</tr>
<tr>
<td>Mashing</td>
<td>Long chain starch molecules broken down to soluble sugars by enzymatic action at high temperature; Wort</td>
</tr>
<tr>
<td>Fermentation</td>
<td>Wort is fermented using yeast to obtain 6–7% ethanol by v/v</td>
</tr>
<tr>
<td>Distillation</td>
<td>Alcohol is separated in batch (still) distillation as a top product with 20% ethanol concentration; Pot Ale produced as bottoms</td>
</tr>
<tr>
<td>Maturation; Bottling</td>
<td>Flavour establishment typically in wooden casks for 10–25 years</td>
</tr>
</tbody>
</table>

This review paper presents a comprehensive investigation of whiskey and beer manufacturing processes, anaerobic digestion technology including the thermodynamics of the biochemical reactions, as well as presenting the details of the pre-treatment strategies applied to whiskey distillery and brewery wastes. The challenges to full-scale implementation of pre-treatments prior to AD as a more efficient waste management method are discussed. Research gaps and areas for future research are highlighted. Future prospects are also outlined to highlight the importance of pre-treatments in an anaerobic digestion context. This review is timely due to the proliferation in small-scale breweries and distilleries at European level currently, who could benefit greatly from improvement in facility energy management from the application of appropriate pre-treatment prior to anaerobic digestion of their wastes. The anaerobic digestion of distillery and brewery wastes has not been dealt with comprehensively in the literature to date.

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pot ale</th>
<th>Spent lees</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total solids</td>
<td>23</td>
<td>17</td>
<td>[23]</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>9.6</td>
<td>4.5–7</td>
<td>[33]</td>
</tr>
<tr>
<td>Volatile suspended solids</td>
<td>9.4</td>
<td>8.1</td>
<td>[23]</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>37</td>
<td>5–7</td>
<td>[7,23]</td>
</tr>
<tr>
<td>COD</td>
<td>30–50</td>
<td>85–110</td>
<td>[18,31]</td>
</tr>
<tr>
<td>BOD</td>
<td>25–35</td>
<td>25–35</td>
<td>[24,32]</td>
</tr>
<tr>
<td>pH</td>
<td>3.5–4.5</td>
<td>4.0–4.2</td>
<td>[23]</td>
</tr>
</tbody>
</table>

*Units are in g/L except pH.

Fig. 2. Main steps of whiskey distillery process (adapted from Ref. [21]).
2. General process description of anaerobic digestion

AD is considered as a widely accepted and well-studied technology for the treatment of organic wastes [39], appropriate for stabilizing high organic content wastes with limited environmental impact and high energy recovery potential [40,41]. It can be possible to convert a significant amount of COD (> 50%) to biogas which might be used as an in-plant fuel (self-energy efficient distilleries/breweries) depending on the further purification due to the existence of impurities such as hydrogen sulphide, nitrogen and most importantly carbon dioxide [23,42]. Digestate is a co-product of AD process which contains undigested materials as well as produced microbial biomass. The digestate is typically high in nitrogen, phosphorus and potassium, it therefore has potential for use as both an organic fertiliser and soil amendment [27] (Fig. 3).

AD has some advantages over conventional aerobic wastewater treatment technologies, for instance less sludge production, low energy consumption, destruction of the pathogens in the sludge, limitation of odour problem arising from existence of putrescible matter as well as higher ability to cope with the recalcitrant distillery and brewery wastes [43,44].

2.1. Biochemical reactions in anaerobic digestion

The kinetics of the rate limiting step (generally considered the initial step of hydrolysis) affect the overall performance of AD. Hydrolytic enzymatic activity shows variability with environmental factors such as pH and temperature as well as the chemical composition of the substrate, i.e. biodegradability, availability of enzymatic attack [45]. AD is a complex and sequential process, which provides the degradation of organic materials by microorganisms’ activity in the oxygen depleted environment (oxidation reduction potential (ORP) < -200 mV), resulting in production of biogas rich in methane [46,47]. The type of bacteria involved in the sequential steps are known as acidogenic (or fermentative) bacteria, acetogenic (or syntrophic) bacteria, and methanogenic archaea [48]. Presence of sulphate, sulfite, or thiosulfate in the reaction mixture results in reduction of oxidized sulphur matter to different forms of dissolved sulphide (HS⁻, S²⁻, H₂S) in the digestate and to hydrogen sulphide (H₂S) in the generated biogas [49]. Fig. 4 illustrates the process of AD of complex organic materials with the group of bacterial activity in each step.

Complex organic materials like carbohydrates, lipids and proteins are first decomposed to their component monomers as a result of the hydrolytic enzymatic attack. Degradation of complex molecules into their monomers has a significant importance prior to the acidogenesis step, as acidogens cannot absorb complex organic compounds directly into their cells [41]. Acidogenic fermentative bacteria convert the end product of the hydrolysis stage (soluble monomers of complex feedstock) into simple organic compounds, predominantly short-chain volatile organic acids such as formic, acetic, propionic, butyric, pentanoic acids; alcohols, for example methanol, ethanol; and aldehydes, carbon dioxide and hydrogen. Acetate is the most important organic acid as it can be directly used as substrate for methanogenic bacteria [50]. Acetogenesis reactions are thermodynamically unfavourable; nevertheless, they occur naturally during AD as a result of interaction of the activity of methanogenetic and acetogenetic bacteria [48], while all other reactions are thermodynamically favourable (Table 3). On the other hand, the sulfidogenesis stage also limits AD of distillery/brewery wastes due to favourable bacterial competition to sulphate reducing bacteria based upon the thermodynamics of the reactions [51]. To prevent thermodynamic impediments, H₂ produced by acetogenic bacteria should be continuously purged to ensure production of acetate is not blocked as it is the key intermediate product. Such biological reactions are favourable under low hydrogen partial pressure [49,52-54].

Macronutrients, for instance carbon (C), nitrogen (N), phosphorous (P), and sulphur (S), are essential for the growth of anaerobic microorganisms. An imbalance in the nutrients available is considered a critical limiting factor on AD [56]. The C:N ratio is generally subcategorised within AD nutrients as the relative amount of carbon and nitrogen that has a direct effect on the methane production due to its direct relation to potential inhibitions [57]. The known optimum C:N ratio is between 20:1–30:1 for any type anaerobic digester to supply adequate amount of N for bacterial growth as well as prevent excess nitorgen. A high C:N (> 35:1) ratio [59] is not suitable for bacterial growth, in particular methane forming bacteria, because of the inadequate level of nitrogen. It can thus result in lower methane production; as can substrates with low C:N ratio (15:1 or lower) [60]. On the other hand, the same process can lead to ammonia accumulation by means of methanogenic activity, resulting in pH increase up to 8 which is toxic for acidogens [61,62].

Temperature is one of the major parameters of the process of AD [63]. Anaerobic digesters can be operated over three different nominal temperature ranges; 10–20 °C (psychrophilic); 30–40 °C (mesophilic) or 50–60 °C (thermophilic) [64]. Optimum temperatures are defined according to different methane-forming bacterial strains [65]. It has traditionally been thought that higher methane yield is achieved under thermophilic conditions, however, it has recently been shown that
psychrophilic conditions increase the energy output of bioreactor per unit volume [66]. Moreover, psychrophilic and mesophilic digesters have some advantages in comparison to thermophilic digesters such as less energy demand for heating, and ease of control, as cold adapted bacteria are not as sensitive to unexpected temperature fluctuations as mesophilic and thermophilic bacteria [27]. A small temperature change (± 1 °C) has a negative impact on biogas production under thermophilic conditions while mesophilic bacteria can tolerate fluctuations up to ± 3 °C without a significant reduction of biogas generation [67]. Thus, reactors under psychrophilic and mesophilic conditions have higher process stability [68]. Furthermore, thermophilic conditions show a suppressive effect on methanogens which results in a lower biogas yield due to the formation of volatile gases such as ammonia [69].

AD performance is strongly dependent on pH as the group of bacteria involved at each stage requires specific pH; for hydrolysis and acidogenesis these are 5.5 and 6.5 [70] respectively, while methanogenesis (which is the most sensitive to pH) has an optimum range of 7.0 ± 0.2 [48]. Key intermediate products such as volatile fatty acids and acetate are produced by acidogens, potentially leading to a significant pH drop (to 5) in the reactor which can be fatal for methanogens. Alkalinity is also increased in AD as a result of degradation of proteins due to the ammonia release [62]. In order to balance the fluctuation in pH, it has been suggested that the initial pH for the AD process should be adjusted to 7 [71]. Where this has been done there has been a corresponding higher biogas yield in AD of potable [23].

Besides principle knowledge of AD, processing parameters such as the organic loading rate (OLR) and the hydraulic residence time (HRT) are considered the most important operational parameters of AD since they both affect biogas yields and plant efficiency for both batch and continuous operations [72].

In theory, maximal methane yield is achieved when reactor is operated at low OLR and long HRT because higher OLR causes inhibition.

Table 3

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Reaction</th>
<th>(\Delta G^\circ) (kJ/reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidogenesis</td>
<td>(C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COO^- + 2CO_2 + 2H^+ + 4H_2)</td>
<td>-206</td>
</tr>
<tr>
<td>Acetogenesis</td>
<td>(C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COO^- + 2H_2O + 2H^+)</td>
<td>-358</td>
</tr>
<tr>
<td>Methanogenesis</td>
<td>(CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3^- + H^+ + 2H_2)</td>
<td>-255</td>
</tr>
</tbody>
</table>

Fig. 4. Stages of anaerobic digestion process with the involved bacteria (adapted from Ref. [48]).

Table 3

Common reactions in an anaerobic digestion with Gibbs free energy in standard conditions [48,51,55].

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Reaction</th>
<th>(\Delta G^\circ) (kJ/reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidogenesis</td>
<td>(C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COO^- + 2CO_2 + 2H^+ + 4H_2)</td>
<td>-206</td>
</tr>
<tr>
<td>Acetogenesis</td>
<td>(C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COO^- + 2H_2O + 2H^+)</td>
<td>-358</td>
</tr>
<tr>
<td>Methanogenesis</td>
<td>(CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3^- + H^+ + 2H_2)</td>
<td>-255</td>
</tr>
<tr>
<td>Sulfidogenesis</td>
<td>(CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3^- + H^+ + 2H_2)</td>
<td>-31.0</td>
</tr>
</tbody>
</table>

Table 4
Studies of anaerobic digestion for whiskey distillery/brewery wastes.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Temperature</th>
<th>Reactor Configuration, operation volume</th>
<th>Pre-treatment</th>
<th>1COD (feedstock) (mg L$^{-1}$)</th>
<th>HRT (d)</th>
<th>2OLR</th>
<th>3ηCH$_4$</th>
<th>4εCOD (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pot ale</td>
<td>Mesophilic 35 °C</td>
<td>UASB two stages, 113 ml</td>
<td>NaHCO$_3$ addition</td>
<td>37 060–50 700</td>
<td>29</td>
<td>30</td>
<td>0.019</td>
<td>55</td>
<td>[90]</td>
</tr>
<tr>
<td>Pot ale</td>
<td>Mesophilic 35 °C</td>
<td>UASB, 1050 ml</td>
<td>Alkaline (NaHCO$_3$ addition)</td>
<td>21 050</td>
<td>2.1</td>
<td>10.2</td>
<td>N/A</td>
<td>93</td>
<td>[10]</td>
</tr>
<tr>
<td>Pot ale</td>
<td>Mesophilic 37 °C</td>
<td>Batch, 1000 ml</td>
<td>Enzymatic</td>
<td>61 500</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>87</td>
<td>[20]</td>
</tr>
<tr>
<td>Spent wash</td>
<td>Mesophilic 37 °C</td>
<td>Batch, 100 ml</td>
<td>Enzymatic</td>
<td>46 300</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>45</td>
<td>[23]</td>
</tr>
<tr>
<td>Spent wash</td>
<td>Mesophilic 37 °C</td>
<td>Full scale UASB, 143 000 L</td>
<td>–</td>
<td>25 000–33 000</td>
<td>N/A</td>
<td>6-11</td>
<td>0.25</td>
<td>90</td>
<td>[103]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 35 °C</td>
<td>EGSB, 3800 ml</td>
<td>Enzymatic</td>
<td>800–4000</td>
<td>45</td>
<td>1-10</td>
<td>0.7</td>
<td>90</td>
<td>[114]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>UASB, 8180 ml</td>
<td>–</td>
<td>16 500–22 520</td>
<td>3.4-0.4</td>
<td>33.3</td>
<td>0.318</td>
<td>80-97.3</td>
<td>[105]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>Batch, 250 ml</td>
<td>Glucose addition</td>
<td>76 14</td>
<td>28–30</td>
<td>N/A</td>
<td>0.516</td>
<td>90</td>
<td>[115]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>Batch, 250 ml</td>
<td>Glucose addition</td>
<td>72 99</td>
<td>28–30</td>
<td>N/A</td>
<td>0.373</td>
<td>44</td>
<td>[115]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>CSTR, 3800 ml</td>
<td>Alkaline</td>
<td>102 100</td>
<td>33.7</td>
<td>2.51</td>
<td>N/A</td>
<td>69.6</td>
<td>[36]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>CSTR, 30 000 ml</td>
<td>High shear homogeniser</td>
<td>101 400</td>
<td>39.5</td>
<td>2.07</td>
<td>N/A</td>
<td>73.1</td>
<td>[36]</td>
</tr>
<tr>
<td>Spent grain</td>
<td>Mesophilic 37 °C</td>
<td>CSTR, 30 000 ml</td>
<td>Thermo- chemical</td>
<td>101 000</td>
<td>35.1</td>
<td>1.85</td>
<td>N/A</td>
<td>70.4</td>
<td>[36]</td>
</tr>
<tr>
<td>Excess yeast (2.8%) + spent wash</td>
<td>Mesophilic 32–35 °C</td>
<td>UASB, 12 000 ml</td>
<td>Alkaline addition for pH (6.5) adjustment</td>
<td>22 400</td>
<td>N/A</td>
<td>12.6 ± 3.48 0.290 N/A</td>
<td>85.7–95.8</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>Excess yeast (0.7%) + spent wash</td>
<td>Mesophilic 32–35 °C</td>
<td>EGSB, 4 000 000 ml</td>
<td>Alkaline addition for pH (6.5) full scale adjustment</td>
<td>35 22</td>
<td>0.6</td>
<td>5.15 ± 2.18 N/A</td>
<td>82.1 ± 3.9</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>Spent yeast</td>
<td>Mesophilic 37 °C</td>
<td>Batch, 180 ml</td>
<td>NH$_4$Cl addition</td>
<td>3800</td>
<td>45</td>
<td>N/A</td>
<td>0.0422</td>
<td>24.2</td>
<td>[116]</td>
</tr>
<tr>
<td>Distillery wastewater</td>
<td>Mesophilic 37 °C</td>
<td>GRABBR, lab scale</td>
<td>Alkali, NaOH</td>
<td>16 600–58 000</td>
<td>4</td>
<td>4.75</td>
<td>N/A</td>
<td>80-92</td>
<td>[111]</td>
</tr>
<tr>
<td>Mix of distillery waste</td>
<td>Mesophilic 36 °C</td>
<td>Two-Stages AF + UASB, 1500 ml</td>
<td>–</td>
<td>49 000–53 000</td>
<td>8-10-19</td>
<td>2.5-5.1</td>
<td>N/A</td>
<td>154</td>
<td>[55]</td>
</tr>
<tr>
<td>Brewery wastewater</td>
<td>Mesophilic 35 °C</td>
<td>AnMBR, 15 000 ml</td>
<td>–</td>
<td>10 200</td>
<td>1.8</td>
<td>3.5-11.5</td>
<td>0.53 ± 0.015</td>
<td>98</td>
<td>[8]</td>
</tr>
<tr>
<td>Brewery wastewater</td>
<td>Mesophilic 35 °C</td>
<td>Two-Stage UASB, 3000 ml</td>
<td>Acetic</td>
<td>1910</td>
<td>0.1-1.9</td>
<td>25</td>
<td>0.27-0.30 80</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Brewery wastewater</td>
<td>Mesophilic 34-39 °C</td>
<td>AF, 5,843000 ml</td>
<td>–</td>
<td>2832</td>
<td>0.4</td>
<td>8</td>
<td>0.15</td>
<td>96</td>
<td>[96]</td>
</tr>
<tr>
<td>Pot ale</td>
<td>Mesophilic 37 °C</td>
<td>UAFP, 780 ml</td>
<td>Enzymatic</td>
<td>57 100</td>
<td>40</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>[24]</td>
</tr>
</tbody>
</table>

- a Influent chemical oxygen demand.
- b Organic loading rate in kg COD/m3day.
- c Methane yield coefficient in m3 CH$_4$/kg COD$^{\text{removed}}$.
- d COD removal efficiency.
- e Unit in gCOD$_{\text{meth}}$/g COD$^{\text{ad}}$ (The amount of methanised COD relative to the amount of COD fed to the reactor).
- f % of biomethane potential.
- g In the 1st stage.
- h In the 2nd stage.
- i Upflow anaerobic filter process.
- j Unit in kg TOC/L day.
due to accumulated volatile fatty acids. However, it results in low treatment efficiency per unit time. Therefore operation at high ORL requires larger reactor size in order to achieve a complete digestion which might make the process unfeasible at industrial scale [73,74]. In order to address this problem, hydrogenotrophic methanogens can be mainly selected for methanogenesis step, which is the most sensitive to variations in pH [75], as they are capable of tolerating lower pH (< 6) in comparison with acetoclastic methanogens.

3. Reactor configurations applied to distillery/brewery waste streams

A variety of reactor configurations have been used for anaerobic digestion of whiskey distillery/brewery wastes at industrial scale (Table 4). Reactors can be categorized based on the design (vertical, horizontal, inclined), feedstock (single, co-digestion), mode of operation (batch, continuous, semi-continuous) and operating temperature (psychrophilic, mesophilic, thermophilic). Batch reactors provide better process control than continuous mode reactors [46,76]. Reactors for AD can also be run as single, two stage or multi stage, which can be advantageous due to the different pH requirements of microbes involved in the different stages of the process [77–79]. In single stage systems all biochemical reactions occur simultaneously in one reactor whereas in a two/multi stage AD system the hydrolytic-acidogenic stage is separated from the methanogenic stage; in this way acidogenic microbes could be stimulated to produce more enzymes, so resulting in more expanded degradation [40,80]. Both single and multi-stage reactors have advantages and drawbacks. For example, single stage digesters are required to operate under the same system conditions despite different microbial growth rates and optimal pH for each step of AD. This results in sudden pH changes within the reactor and consequently inhibits methanogenic activity. In order to overcome this problem in multi stage digesters, first reactor parameters are designed to maximise breaking down biopolymers and releasing fatty acids (hydrolysis/acidogenesis). Methanogenesis then occurs in the second reaction stage with the product of the first reactor; however a decline in biogas potential is sometimes observed due to the loss of solid particles from the feedstock to the further stage(s) where distinct reactor vessels are employed rather than sequencing batch reactors [46].

3.1. Conventional anaerobic reactor configurations for whiskey distillery/brewery waste treatment

3.1.1. Anaerobic batch reactor

Batch reactors are loaded with fresh feedstock with inoculum and sealed for the retention time. This ensures completion of biochemical reactions within the reactor which can be established by monitoring biogas production rate. Once a batch reactor is opened, the residual is removed. Batch reactors are generally considered as accelerated landfill boxes even though they show much higher biogas production rate than typical landfill areas [46]. Integration of a recirculating liquid phase (leachate), which requires little investment and maintenance, into traditional batch reactors enhances the AD yield; this process is termed a leaching batch reactor [81]. Leachate has a key role on the biogas production rate as it is not only provides a better dispersion of microorganisms and feedstock, but also guarantees better mixing conditions [81]. Therefore, leaching batch reactors, (also known as leaching bed reactors) do not require complicated mixing or agitation equipment, or expensive high pressure vessels, which correspondingly reduces the capital costs [46]. Advantages and drawbacks of batch reactors with and without leachate recirculation has been reviewed comprehensively in previous publications [81,82].

Typically, fundamental knowledge of new generation anaerobic digesters comes from batch operation. Usage examples of the batch reactors for all whiskey distillery/brewery waste streams from lab to full scale are given in Table 4.

3.1.2. Solid state anaerobic reactor (SS-AD)

The SS-AD has been gaining popularity with a sharp increase in Europe since the early 1990s for treatment of lignocellulosic biomass [83,84]. The SS-AD is capable of digesting high solid content feedstock, typically operating at 15–40% total solid content. Single stage SS-AD as well as the combination of SS-AD and granular bed reactor (GBR) for the treatment of brewery spent yeast has been employed previously [34]. The working principle of GBR is very similar to the upflow anaerobic sludge blanket (UASB) [76], which is discussed in detail in Section 3.2.3.

The main advantages of SS-AD over liquid anaerobic digesters include; an ability to treat more material in the same size, lower energy demand for heating and process operation and less effluent production. Furthermore, it has 2–7 times greater methane production capacity than liquid digestion [85]. It is therefore considered as a more suitable configuration for lignocellulosic matter like whiskey distillery/brewery wastes [34,63]. Potential operational problems such as longer retention time requirement, relatively slower mass transfer rate in comparison with liquid digesters [57] and the potential inhibitions arising from those problems along with potential solutions have also been reported [57,63,83]. SS-AD has received scant attention in the literature for AD of whiskey distillery/brewery wastes, although bench scale application on spent grain resulted in 74% methane yield under psychrophilic conditions [34].

3.1.3. Anaerobic sequential batch reactor (ASBR)

Although it was first conceived over 90 years ago, the ASBR has received increased attention in the literature recently due to operational simplicity, efficient quality control of the effluent, flexibility of use as well as better process control advantage [76,86,87]. ASBR works under a fill-and-draw treatment cycle which includes feed, reaction, settling and discharge stages. Once the tank is filled, it operates as a batch reactor for a certain period of time, and after reaching the desired level of treatment, it is allowed to settle, and the clarified supernatant is taken out of the reactor. There is a requirement for good mixing as the biomass settling determines the system performance. This mixing can be performed by an agitator or a recycling stream, to ensure sufficient mass transfer is seen during the reaction time [59,76,88,89]. Usage of inert supports such as polyurethane foam has been recommended to ensure high organic compound removal efficiency and high solids retention [88]. ASBR has received scant attention in the literature to date for whiskey distillery/brewery wastes; however a high quality gas with 77 ± 5% of biomethane has been achieved for AD of malt whisky pot ale using ASBR [90].

3.1.4. Continuously stirred batch reactor (CSTR)

The 1950s saw the introduction of intense mechanical mixing within anaerobic reactors. This is considered as a first-generation high rate anaerobic digestion. A suspended growth bacteria system is evidenced within the CSTR with intermittent or continuous agitation, facilitated by good contact between bacteria and substrate. However, slight mass transfer resistance is also seen. CSTRs have been shown to be suitable for treating high levels of suspended solids, with 2-3-fold improvement in performance over low rate digesters; unstirred or intermittently stirred reactors. Along with effluents, the microbial population is washed out of the reactor in low-rate digesters. Prevention of microbial washout is thought to lead to microorganisms having a greater concentration in the reactor, therefore improving the efficiency of the digestor [59,76,91]. Rapid acidification takes place due to mixing and continuous stirring as a result of large VFA production. To overcome this problem, the feedstock is diluted with recirculated digestate. The CSTR can be operated as either single and two stage as well as in plug flow or semi continuous mode [59,92], and has been shown to be effective at 30 L scale for AD of whiskey distillery/brewery waste with spent grain and different applied pre-treatments [35].
3.2. Second generation anaerobic reactor configurations for whiskey distillery/brewery waste treatment

The concept of second generation anaerobic digesters is based on the ability of retaining high viable biomass via a method of bacterial sludge immobilisation.

3.2.1. Anaerobic filter reactor (AFR)

An AFR has a packed bed biofilm configuration, which offers intimate interaction between substrate and bacterial mass by attached support media. As a characteristic of this configuration, a supporting biofilm is generated on the packing media that supports the biomass separation from the effluent [76,93].

AF can be run either on an upflow or downflow pathway. Recycling and upflow operation is more common for treating highly recalcitrant wastes because it leads to the formation of a high concentration of suspended biomass in the structure of the fixed bed [59,93,94]. On the other hand, the possibility of clogging of filter media during the treatment of high suspended solids containing waste can lead to the potential risk of failure of the system [59]. Nonetheless, the success of AF reactors creates the fundamentals of novel high-rate anaerobic digesters [76,95]. The Single AF reactor has been used for AD of pot ale [24] and brewery wastewater [96] as well as in combination with UASB for anaerobic digestion of mix distillery waste [98]. The AD of brewery wastewater showed the highest methane yield with the value of 0.15 m³ CH₄/kg COD removal along with 96% CH₄ (Table 4).

3.2.2. Anaerobic membrane bioreactor (AnMBR)

The AnMBR combines membrane filtration with an AD reactor, allowing removal of treated effluent with the retention of sludge, thus offering high biomass operations [97,98]. Better retention of microorganisms eventually leads to a greater hydrolysis and decomposition as only a small amount of particulate matter is expelled from the system. Thus, AnMBR reactors are expected to be operated efficiently with short HRT and high solids retention time (SRT) at low temperatures, as nearly absolute biomass retention is obtained within the reactor in comparison to conventional digesters [99,100]. The AnMBR can be subcategorised based on the location of the membrane as external cross-flow, internal submersed, or external submerged. Fouling of the membrane, mainly as a result of organic matter adsorption, organic matter precipitation and microbial cells adhesion to the membrane surface, is considered as the common challenge for all configurations. Reactor subcategories, effects of HRT and SRT as well as fouling control has been thoroughly reviewed [98]. Although the AnMBR is capable of both high and low strength waste treatment, high strength wastes have received scant attention in the literature, with little application to whiskey distillery/brewery waste. It has however been shown that 0.53 m³ CH₂O/kg COD removal biogas yield is achievable under mesophilic conditions for AnMBR AD of brewery wastewater [8].

3.2.3. Upflow anaerobic sludge blanket reactor

UASB reactors, which are considered high rate anaerobic digesters, were invented in the 1970s by observing development of sludge into granules which causes self-separation of active sludge from feedstock [76]. As a result, a sludge bed and overlying granules, called a ‘sludge blanket’ is developed within the reactor, which can support active biofilms, while feed enters through the bottom of the reactor and flows upward. A gas-liquid-solid separator is necessary to ensure that solid granular sludge is retained in the system while gas and liquid effluent are removed [101,102].

UASBs are one of the most popular high rate anaerobic digester configurations with many examples of full scale and lab scale operation for treatment of highly recalcitrant brewery and whiskey distillery pot ale [8,23,103-105]. The efficiency of the reactor mainly relies on existence of settleable active granules which consist of aggregated self-immobilised anaerobic bacteria into compact form. Satisfactory level of methanogen retention in the system provides high digestion potential in terms of COD removal and methane yield as well as a better quality of effluent [23,30,76,105]. OLR is another major parameter which impairs microbial ecology within the UASB and, correspondingly, the performance of the reactor. Accumulation of VFAs and insufficient (too short) HRT for giving enough time to the microbes to degrade the substrate are considered the main reasons of this limitation [74]. For instance, UASB has been operated at varied OLRs (HRT was fixed to 2.1) for 250 days by Ref. [18].

Proximity of the syntrophic microorganisms, for instance hydrogen producing microorganisms (acidojenes and acetogens) and hydrogen utilization (methanogens) has a significant role on both overall reactor performance and degree of granulation [94,95,106]. The Investigation of the AD process has been separated into two stages; first where hydrolysis, acidification, and liquefaction takes place and next, where acetate, hydrogen, and carbon dioxide are converted into methane [74,95,101]. The main advantages of UASB are good removal efficiency at low temperatures, low energy consumption, low sludge production, ability of long term preservation of inoculum, good mixing. In terms of disadvantages strict temperature control is required, partial removal of pathogens, and working with relatively low OLR [107].

3.2.4. Expanded granular sludge blanket (EGSB)

The UASB reactor was upgraded in terms of hydrodynamics by increasing (i) capacity of accommodating high organic and hydraulic loadings, (ii) treating wastewaters containing lipids and toxic/inhibitory compounds and (iii) feasibility of acidifying wastewaters under psychrophilic conditions [76]. This new variation of UASB, called expanded granular sludge blanket (EGSB), provides more advantages over a conventional UASB via special use of granular sludge, greater mixing and slight bed expansion due to the higher up-flow velocities and improved mass transfer between substrate and sludge aggregates due to increased stability of granular biofilms [59,108].

A relatively higher upflow superficial velocity (4–10 m/h versus 0.6–1.79 m/h) is a distinctive feature for EGSB. This is obtained by a height/diameter ratio of the reactor or/and by the recycling of the effluent, thus preventing the failure of the reactor because of accumulation of inhibitory compounds at the influent portion of the reactor [76,109]. Operation at high upflow velocity provides a better hydraulic mixing than the levels that can be achieved by UASB, it also minimises the blind areas within the reactor. Therefore it enhances the diffusion of substrate from the bulk to the granule biofilms and results in improved biodegradation of substrate [110]. Application of EGSB is commonly seen on large scale (bench and full scales) treatments of wide range of strength (low strength as well as medium and high) feedstock [59,76,102,110]. However, the removal of suspended solids may not be performed very well [59]. Operation of full scale EGSB at 5.15 ± 2.18 kg COD/m³/day OLR for AD of brewery waste water and spent yeast mix resulted in a biogas generation rate of 2.59 ± 1.12 m³/m³ day and 82.1 ± 3.9% methane conversion [102]. However, EGSB has received a scant attention in the literature to the date.

3.3. Anaerobic reactors with phase separation

3.3.1. Granular bed anaerobic baffled reactor (GRABBR)

The GRABBR is a hybrid reactor, which combines the advantages of anaerobic baffled reactor (ABR) and the UASB by using anaerobic phase separation and granular biomass characteristics. It is therefore considered an upgraded version of UASB empowered with the ability of phase separation of ABR due to the existence of compartmentalization [16,30]. The GRABBR has shown a superior process stability compared to the UASB at high OLR in a comparative studies [111]. The UASB has already been discussed, but the ABR has not been applied for whiskey distillery/brewery wastes so there is no section for it specifically. However [112], summarized it from different aspects.
In the structure of GRABBR wastewater is forced up through the sludge blanket and this flow characteristic results in a horizontal movement (gentle rising and settling with a slower rate) of the bacteria within the reactor. This movement enhances the phase separation within the GRABBR and allows bacteria to develop under the most favourable conditions by separating acidogenesis and methanogenesis longitudinally down the reactor [59,76,113]. The division of different microbial communities is also seen by Ref. [16] where front compartments are occupied by acidogens, whereas methanogens are dominant in the rear compartments. In the poor settling of GRABBR, acidogenic sludge occurs upstream of the granular methanogenic sludge zone, eventually, preventing the wash out of the former with the influent from the reactor and so enhances process stability [76]. Accordingly, GRABBR is considered as a solution to two stage anaerobic reactor expenses [113]. It has been operated for AD of high strength distillery wastewater (with a COD range of 16 600–58000 mg/L) and 80–92% CH4 conversion was achieved, with an OLR rate of kg 4.75 COD/m3day [111]. Despite the advantages of GRABBR over conventional high rate digesters, it has again received scant attention to the date for AD of whiskey distillery/brewery wastes.

4. Current application of AD technology at industrial scale for distillery wastes

Although anaerobic digestion technology is commonplace e.g. for municipal wastewater, industrial scale implementation for whiskey distilleries or breweries has not been widely utilised. Scotland is the most progressive, with several companies applying anaerobic digestion as a waste and energy management method. The Scottish Whiskey Association targets to deliver 20% of the primary energy requirements from sustainable energy sources by 2020, with a further aim of 80% by 2050 [118].

Diageo is the largest UK whiskey distiller with 28 malt distilleries and 1 grain distillery in Scotland. Diageo’s Dailuaine Distillery uses pot ale to generate biogas then used in a Combined Heat & Power (CHP) to produce electricity and steam for use in their on-site distillery dark grains plant since 2010. The AD plant produces 0.5 MW of biogas, providing 40% of electrical demand for the site as well as reducing CO2 emissions by 250 tonnes. The solid fraction of the digestate is used as biofertiliser whereas the liquid part can be discharged to river, meeting the regulatory requirements for discharge [119]. Diageo’s Roseisle Distillery also recovers 8.6 MW of energy, which is equivalent to about 84% of its total steam load requirement, by a combination of biomass combustion and anaerobic digestion as well as reducing the potential CO2 emission by approximately 13 000 tonnes [120,121]. Meanwhile Cameronbridge Distillery in Fife is estimated to produce 30 MW of energy recovers 95% of site electricity and 98% of the total steam demand through an anaerobic digestion and a combined heat and power plant [121,122]. Glendullan Distillery at Duffton treats approximately 1000 m3 malt whiskey by-products per day with the capacity of producing 8000 MWh of thermal energy for the distillery, which allows about 1 million m3 biogas generation annually [122,123]. William Grant & Sons Distillery has a capacity of producing renewable energy in the form of 25 MWh of heat and 60 MWh of electricity on a daily basis by burning the produced biogas in the turbines. A reduction in the level of COD in the plant effluent was achieved as a result of the implementation of anaerobic digestion [120]. The North British Distillery also aims to generate up to 1 MW of renewable electrical energy and reduce CO emissions by 9000 tonnes per year which is equivalent of removing 3000 cars from street. Glenmorangie Tain distillery performed onsite feasibility studies to construct a membrane based AD plant in 2016 [124]. Since then, 95% COD was removed from the aqueous waste stream. Over a 10 year period, it is predicted that 12 million tonnes of water will be treated to remove 45 000 tonnes of COD from the discharge. Utilising the generated biogas will reduce the CO2 emissions by 2.7 million kg CO2 annually [124]. Slane Distillery, established in 2017, is the only distillery in Ireland utilising AD (an EGSB reactor) for biogas generation and sludge biofertilizer production [125]. Introducing a pre-treatment step prior to AD could provide a further enhancement in both biogas and waste treatment yields based on significantly higher biogas production and organic matter removal levels in previously published studies.

5. Co-digestion strategy and pre-treatments for AD of distillery/brewery waste

Co-digestion (simultaneous digestion of two or more organic matters simultaneously) has some advantages over mono digestion such as mitigation of the inhibitory effects by dilution, enhancement of the C:N ratio and the balance of nutrients and improvement of methane production kinetics, operating at a higher OLR [126]. It has been recently reported that the brewery wastes, in particular, are considered as an attractive feedstock for anaerobic co-digestion [127]. Composition and properties of the substrates are the critical factors directly affecting anaerobic co-digestion (AcoD). Readily degradable materials can be selected as co-substrate as well as the materials which have slower biodegradation [126].

AcoD not only results in a greater CH4 yield per unit COD input than the mono-digestion due to the synergistic effect of the different substrates, but it can also enhance the biogas generation kinetics by changing final biodegradability as a result of weakening the effect of intermediate inhibitory compounds [128,129]. Consequently, scientific and commercial interest in AcoD has risen significantly. Available co-substrates, digester capacity, process parameters and performance in full scale AcoD studies have recently been reviewed by Ref. [127].

Research into AD pre-treatments over the past 30 years has focused on chemical, biological, mechanical and thermal processes; with the aim of enhancing organic compound solubilisation and biodegradability of the feed stream, in order to obtain a higher methane yield and improve the rate of hydrolysis. Those pre-treatments offer a deep modification, weakening the molecular bonds between lignin and carbohydrates by reducing the degree of polymerisation. Thus, an increased surface area is obtained for bacterial attack [15,45,46,130,131].

To investigate the influence of pre-treatments, the biomethane potential test (BMP test), which is a standard method developed based upon DIN 2006; ISO 1995, is commonly used. This method provides information about the cumulative amount of biogas generated as well as rate of its production [132,133]. It can be seen from Fig. 5 that a pre-treatment method can increase the rate of anaerobic digestion (case b) or can increase the methane yield (case c) in comparison to the non-treated substrate (case a).

![Fig. 5. Effects of pre-treatments on rate of anaerobic digestion and total methane production (Adapted from Ref. [134]).](image)
As has been seen in previous sections whiskey distillery and brewery waste streams are mainly composed of cellulose, hemicelluloses and lignin. Three different phenylpropanoid units are seen in the amorphous structure of lignin due to the fact that cellulose and hemicellulose are physically protected from degradation which render lignin resistant to hydrolysis stage of AD process. Furthermore, the crystalline complex structure of cellulose is highly recalcitrant. Pre-treatments are therefore needed to modify or remove structural obstacles prior to hydrolysis stage [6,19,135–138]. Fig. 6 illustrates the structure of the lignocellulosic materials before and after pre-treatment.

Cellulose is inaccessible to enzymes in the structure of lignocellulosic materials, such as spent grain of whiskey distillery/brewery wastes. This results in the decrease of the rate of hydrolysis step of AD as has already discussed. During the pre-treatment of the feedstock, reduction in the crystalline structure of cellulose molecules and degree of polymerisation is achieved in addition to removal of lignin and hemicellulose [139].

5.1. Chemical pre-treatment

Chemical pre-treatment, which is considered a cost effective method for maximising biodegradation of complex materials, is used to degrade organic compounds by means of strong acids, alkalis, bicarbonates or peroxide [27,140]. Based upon the kinetics of the reactions, the acidogenesis step takes place at higher rate than acetogenesis and methanogenesis. Therefore, the accumulation of excess production of volatile fatty acids, especially acetate, potentially impairs the balance of re-actors [95,141]. This occurs as a result of the lack of capability of methanogens of removing hydrogen and volatile organic acids rapidly enough [142]. In order to overcome the sharp drop of pH, the alkalinity of sodium/potassium bicarbonates or carbonate salts (sodium, potassium) are commonly used as those chemicals are capable to release bicarbonate directly or produced hydrogen can be bound to carbonates, respectively [46,47,95]. Furthermore an increase of over two fold in the removal percentages of total solids (from 31 to 37%) and VS (from 40 to 84%) of AD of barley was achieved due to the implementation of NaOH pre-treatment as well as reaching full methanation potential [143]. The necessity of adding alkali supplements, such as NaHCO₃ and NH₄Cl, is seen in the literature of anaerobic digestion of whiskey distillery/brewery wastes in order to overcome unbalanced operational pH as well as to modify the acidic nature of pot ale. Alkali pre-treatment appears to be the most commonly applied pre-treatment method for whiskey distillery/brewery waste streams since it provides a rapid increase in saccharification even at ambient temperature. Moreover, it is a more effective method in breaking the ester bonds between lignin and cellulose along with preventing hemicellulose fragmentation than acid pre-treatment and usage of oxidative reagents [144].

Acid pre-treatments of lignocellulosic materials, on the other hand, is generally achieved by using H₂SO₄, HCl, HNO₃, providing high hemicellulose and cellulose solubilisation; however acid pre-treatment is typically not seen to be effective in dissolving lignin except in the cases of high concentrations (30–70%) [145]. Moreover it enhances hydrolysis of cellulose and hemicellulose into monosaccharides, while the lignin condenses and precipitates [34,40]. Around 20% and 70% protein and fibre respectively are seen in the structure of brewery spent grain [146] and lignin hinders the hydrolysis of fibre. Acids may also be effective at preventing potential ammonia inhibition as a result of digestion of protein content. Acid pre-treatment is therefore considered a suitable method for brewery spent grain [15,34,147]. However not many examples of acid pre-treatment have been seen for whiskey distillery by-products in particular. It can be associated with the high risks of corrosion problems in industrial applications as well as formation of several types of inhibitors such as carboxylic acids, furans and phenolic compounds which inhibit the microbial growth and fermentation [147].

5.2. Mechanical pre-treatment

Mechanical pre-treatments are generally achieved by special devices such as grinder, mill, high shear homogeniser or screw press, and result in increasing the surface area of the lignocellulosic matter. By increasing the surface area, this allows better interaction between the anaerobic bacteria and the substrate which enhances the hydrolysis yield by 5–25% for lignocellulosic materials [40], and subsequently the overall anaerobic digestion yield [148]. Mechanical pre-treatment methods are preferred as they are promising for maximising degradation of total suspended solids by up to 90% [40]. The high shear homogeniser is the only mechanical pre-treatment applied on brewery spent grain in the literature. This fragmented the substrate by recirculating it through high shear field, resulting in particle size smaller than 0.5 mm. Mechanically pre-treated brewery spent grain achieved 69.6% average COD removal with an average biogas production rate of 1.10 m³/m³ day, although it was inhibited with the phenolic compounds mainly p-cresol [35].

Moreover, as no odour is generated, it has an easy application and typically leads to greater dewaterability of the final anaerobic residue [149]. However, it has been shown that excessively small particle size, which occurs as a result of mechanical pre-treatments, might accelerate production of volatile fatty acids which might possibly cause process imbalance [150].

5.3. Biological pre-treatment

Biological pre-treatment methods include both aerobic and anaerobic methods, besides the addition of specific enzymes such as peptidase, carboxydrase, lipase or a certain type of bacteria such as hydrolytic bacteria to the AD system [40]. Among known biological pre-treatments methods, addition of enzyme is the only one that has been applied in the literature to whiskey distillery/brewery waste streams. Enzymatic hydrolysis as a biological pre-treatment technique can accelerate the degradation of complex organic matter. Commercial enzymes such as lyticase, alpha amylase, cellulase, beta-glucosidase, beta-glucanase, lipase, protease, enzyme complex and papain have been used for AD of pot ale in order to support microorganisms. This results in higher yields of monosaccharides, and correspondingly better yields of biochemical reactions in subsequent steps of AD [23,48,82]. Moreover, a significant (> 87%) COD reduction has been achieved by implementation of enzymatic pre-treatment prior to AD [23].

Enzymatic pre-treatment is considered an efficient method for
breaking the lignocellulosic materials into their component monomers in an environmental friendly way [151]. In addition, it provides solubilisation of phenolic compounds so avoiding their potential inhibitory effect on biogas yield [152]. Therefore, enzymatic pre-treatment overcomes the drawbacks of chemical pre-treatments such as side product formation (furfurals, levulinic acid or formic acid) [147]. On the other hand, it requires a much longer treatment time and a higher operation cost for maintaining constant temperature during the treatment [153].

5.4. Thermal pre-treatment

Thermal pre-treatment is one of the most studied pre-treatment methods, and has been successfully applied as a conditioning process for the sludge at industrial scale as it improves the pathogen elimination, the dewaterability of the wastes and reduces the viscosity of the sludge at industrial scale as it improves the pathogen elimination, dewaterability of the wastes and reduces the viscosity of the sludge at industrial scale. The major challenge is considered to be the predominance of empirical methodologies that challenge scaling up to industrial level. The major challenge is considered to be the predominance of empirical methodologies in the fundamental studies of AD of whiskey distillery wastes. Moreover, the pre-treatment aspect of the process has received a very scant attention in literature to date. The link between applicability of the pre-treatment at micro and macro scale is non-existent with respect to its impacts on the whole system. Although commonly used batch tests establish the methane production under specific pre-treatment and digestion conditions, it may fail to give accurate predictions for full scale AD performance due its dependency on inoculum type, the ratio of inoculum to substrate used, and the different reactor configurations [45]. For the full-scale application, it can be challenging to maintain long term operation with microbiological stability during biogas production as well as during subsequent re-use of inoculum [92], whereas it is replaced with a fresh supply for lab/bench scale applications. In order to increase the accuracy of the prediction for scaling up purposes, enhanced experimental methodologies should be followed evaluating mass transfer fluxes, actual kinetics involved in microbial growth and organic material conversion, the hydrodynamic behaviour of the selected reactor configuration as well as a deep investigation into the biochemistry and microbiology of the AD process [48]. A progressive scale-up of the process could be achieved with the aid of computer simulation tools. A well-established simulation process can enable the investigation of various scenarios in a short period of time. The state of art model for AD is considered to be the ADM1 model which takes into account carbon, nitrogen balance of the substrate, reaction kinetic for bacterial decay and organic matter degradation, reactor hydrodynamic as well as several potential inhibition factors such as volatile fatty acids, dissolved hydrogen and ammonia [159]. The technology-integrated experimental approach could increase the accuracy of biogas yield predictions for full scale applications to obtain a more reliable design. It is therefore advised as the next step to take for the industrial modelling of various types of pre-treatments prior to anaerobic digestion.

6. Research gaps, future prospects and practical implications

Although anaerobic digestion is a promising sustainable technology for whiskey distillery and brewery waste management, there are several obstacles that challenge scaling up to industrial level. The major challenge is considered to be the predominance of empirical methodologies in the fundamental studies of AD of whiskey distillery wastes. Moreover, the pre-treatment aspect of the process has received a very scant attention in literature to date. The link between applicability of the pre-treatment at micro and macro scale is non-existent with respect to its impacts on the whole system. Although commonly used batch tests establish the methane production under specific pre-treatment and digestion conditions, it may fail to give accurate predictions for full scale AD performance due its dependency on inoculum type, the ratio of inoculum to substrate used, and the different reactor configurations [45]. For the full-scale application, it can be challenging to maintain long term operation with microbiological stability during biogas production as well as during subsequent re-use of inoculum [92], whereas it is replaced with a fresh supply for lab/bench scale applications. In order to increase the accuracy of the prediction for scaling up purposes, enhanced experimental methodologies should be followed evaluating mass transfer fluxes, actual kinetics involved in microbial growth and organic material conversion, the hydrodynamic behaviour of the selected reactor configuration as well as a deep investigation into the biochemistry and microbiology of the AD process [48]. A progressive scale-up of the process could be achieved with the aid of computer simulation tools. A well-established simulation process can enable the investigation of various scenarios in a short period of time. The state of art model for AD is considered to be the ADM1 model which takes into account carbon, nitrogen balance of the substrate, reaction kinetic for bacterial decay and organic matter degradation, reactor hydrodynamic as well as several potential inhibition factors such as volatile fatty acids, dissolved hydrogen and ammonia [159]. The technology-integrated experimental approach could increase the accuracy of biogas yield predictions for full scale applications to obtain a more reliable design. It is therefore advised as the next step to take for the industrial modelling of various types of pre-treatments prior to anaerobic digestion.

Table 5
Advantages and disadvantages of applied pre-treatment method onto distillery/brewery waste.

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td>Alkali</td>
<td>Reduction in degree of polymerisation crystallinity of cellulose</td>
<td>Long interaction time required</td>
<td>[155]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partial hydrolysis and solubilisation of hemicellulose and lignin</td>
<td>Formation of irrecoverable salts</td>
<td>[138]</td>
</tr>
<tr>
<td>Acid</td>
<td></td>
<td>High hemicellulose solubilisation, condensation and precipitation lignin</td>
<td>Might cause production of inhibitory by-products, such as furfural, hydroxymethylfurfural</td>
<td>[148,156]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increases surface area</td>
<td>High operation expense for large scale</td>
<td>[157]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low capital cost</td>
<td>High start-up cost</td>
<td>[147]</td>
</tr>
<tr>
<td>Mechanical</td>
<td>High shear homogeniser</td>
<td>Increases accessible surface area</td>
<td>High demand on electricity</td>
<td>[15,40,138]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No requirement for organic solvent</td>
<td>No significant pathogen removal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides implementation on large scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>Enzymatic</td>
<td>Better dewaterability of final anaerobic residue</td>
<td>Slow processing</td>
<td>[147]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No harsh chemicals required</td>
<td>High cost of enzymes</td>
<td>[138]</td>
</tr>
<tr>
<td>Thermal</td>
<td>High temperature (> 110)</td>
<td>Gel structure degradation and cell wall lysis</td>
<td>Continuous addition demand</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Most likely ensure process stability</td>
<td>Generating inhibitory intermediates through Maillard reaction</td>
<td>[47,148,158]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase specific surface area</td>
<td>High energy demand</td>
<td>[15]</td>
</tr>
</tbody>
</table>

7. Conclusions

As outlined in this review, whiskey and beer manufacturing processes generate large amounts of organic waste. AD appears to be a sustainable treatment alternative method over conventional aerobic wastewater treatment processes and land spreading by means of converting the organic matter into methane. This can further be converted to an energy source and eventually be utilised in alcohol production. Different reactor configurations from lab scale to full scale which have been utilised for AD of whiskey distillery/brewery wastes are critically reviewed in order to define the required operation parameters to
achieve a balanced digestion of these lignocellulosic streams. The major focus of all pre-treatments is to render lignocellulosic structures accessible to enzymatic attack by means of reducing the cellulose crystallinity, the lignin protection and increasing its surface area in order to achieve sufficient hydrolysis. Examples of successful industrial applications of anaerobic digestion particularly for treatment of whisky distillery waste streams are seen in Scotland which provides a significant reduction in CO₂ emission as well as sustainable waste management for distilleries. Despite the structural difficulties of AD, the literature analysis indicates that there is a great potential for the use of whisky distillery/brewery wastes as feedstock for anaerobic digestion in respect of both environmental and energy recovery considerations. The recalcitrant nature of lignocellulosic structure can be addressed by application of appropriate pre-treatment methods prior to anaerobic digestion as well as adopting ideal operation parameters for the reactor. The current research stage of AD technology as a sustainable waste/energy management method for whisky distilleries and breweries including different reactor configurations and most importantly the effects of applied pre-treatment on substrate structure were discussed, however there is a significant lack of research in this area which needs to be addressed. Despite promising results at bench scale, no examples of pre-treatment technologies at industrial scale were seen. Techno-economic and logistics assessments for scale-up are vital for implementation, however the lack of scaleable data from published studies remains a barrier to widespread adoption of this potentially energy-efficient waste management approach.

Acknowledgements

The authors gratefully acknowledge Alltech Ireland Ltd. for the financial support for this research, Project ID 15-S-ST-10568.

References

