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A B S T R A C T   

Unlike land, the oceans, although covering more than 70% of the planet, are largely unexplored. Global fisheries 
resources are central to the sustainability and quality of life on earth but are under threat from climate change, 
ocean acidification and over consumption. One way to analyze these marine resource is through remote un-
derwater surveying. However, the sheer volume of recorded data often make classification and analyses difficult, 
time consuming and resource intensive. Recent developments in machine learning (ML) have shown promising 
application in extracting high level context with near human performance on image classification tasks. The 
application of ML in remote underwater surveying can drastically reduce the processing time of these datasets. In 
order to train these deep neural networks used in ML, it is necessary to create a series of large-scale benchmark 
datasets to test any proposed algorithm for this kind of specific imaging classification. Currently, none of the 
publicly available datasets in the marine vision research domain have sufficiently large data volumes to reliably 
train a deep model. In this work, a publicly available large-scale benchmark underwater video dataset is created 
and used to retrain a state-of-the-art machine vision deep model (MaskRCNN). This model is in turn applied into 
detecting and classifying underwater marine lives through random under-sampling (RUS), and achieves a 
reasonably high average precision (0.628 mAP), indicating great applicability of this dataset in training instance 
segmentation deep neural network for detecting underwater marine species.   

1. Introduction 

Arguably, the most important ecosystem on earth, the ocean is cen-
tral to multiple geophysical processes such as regulating global tem-
perature, driving weather patterns, and sustaining a wealth of both 
living and nonliving resources. Due to the tremendous difficulties and 
costs of exploring the ocean, more than 80% of the oceanic area, ac-
cording to the National Oceanic and Atmospheric Administration 
(NOAA), remains under-surveyed or unmonitored. (Kim and Mau-
borgne, 2005). Owing to the increasing pressure of climate change 
(Rahmstorf, 2002), overfishing (Jackson et al., 2001) as well as the 
overpopulation of human society (Samir and Lutz, 2017), effective 
management of the remaining oceanic resources (e.g. fishery, 

underwater mining) become quintessential to a sustainable future. In 
order to achieve this goal, it is necessary to firstly develop surveying 
capabilities to evaluate and monitor these local underwater resources. 
For example, real-time local monitoring could be provide a much needed 
tool on which to dynamic modify fishing quotas during a season. 

Over recent years, underwater video monitoring systems, have 
gained significant attention and been deployed for coastal/marine 
ecological studies. With the rapid developments in technology such as 
high resolution digital cameras, high volume data storage and long 
range data transmission, the long term deployment of remote under-
water video (RUV) sensing systems has been realized. Since the early 
introduction of RUV systems by H. Barnes around 1950 to survey marine 
activity along the Scottish coastline (Barnes, 1952), these underwater 
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monitoring networks have been frequently used in marine and coastal 
ecosystem studies (Condal et al., 2012; Fedra and Machan, 1979; Fisher 
et al., 2016; Jan et al., 2007; Miller et al., 2019). Among them, the 
SmartBay pilot infrastructure in Ireland is particular famous for its 
sub-sea cabled long time observatory (Fig. 1) equipped with multiple 
underwater sensors and probes (Gaughan et al., 2019). 

The development in hardware has led to the exponential growth in 
the overall volume of recorded data, which subsequently swamps the 
capability of current data processing and analysis. This is particularly 
problematic in the field of marine ecology, where most research is based 
on data-derived statistical analyses. As a result of both spatial and 
temporal complexity of natural environment over various scales, a 
reliable ecological monitoring program would require widespread and 
continuous monitoring which generates an enormous amount of data to 
be evaluated (Kelling et al., 2009). Hence, it is necessary to utilize 
advanced data-processing technique to handle the sheer volume of 
ecological data produced. 

With the introduction of deep learning algorithms, significant 
development has been made in the application of machine learning in 
scientific research. Several deep neural network models have achieved 
considerable improvement in various fields, such as computer vision 
(Krizhevsky et al., 2017) and language processing (Graves et al., 2013). 
As for marine ecology, Olsvik et al. proposed a Convolutional Neural 
Network (CNN) with Squeeze-and-Excitation architecture for classifying 
fish images, and achieved very high accuracy for fish classification 
(Olsvik et al., 2019). Mahmood et al. trained a VGGNet based deep 
model to detect the appearance of coral in images collected by an AUV 
near the Abrolhos Islands(Mahmood et al., 2016). Other than the 
significantly increased computational resources (e.g. the use of GPU), 
the key factor for these successful application of deep neural network lie 
in the publicly available, large-scale, benchmark datasets.(Cui et al., 
2016). 

SmartBay Facility carries out an all-day non-interruptive continuous 
underwater survey using a high resolution video camera (1280 × 720 
pixels and 30 fps frame rate), while its anti-fouling and anti-reflection 
lens coating significantly reduces the occurrence of image deteriora-
tion, providing an ideal resource for oceanic ecology studies (Gaughan 
et al., 2019). In order to build a benchmark dataset from these high 
resolution videos, all the videos captured must be processed and anno-
tated. It has been widely accepted in the research community that a 
supervised deep learning algorithm will generally achieve acceptable 
performance with 5000 labelled examples per category and will match 
or exceed human performance when trained with a dataset containing at 
least 10 million labelled examples.(Goodfellow et al., 2016). Unfortu-
nately, only a few existing datasets are publicly available in the marine 
vision research domain, particularly, large-scale datasets that can be 
used to train a deep model are missing. 

In this work, a realistic, large-scale, fine-grained, underwater 

benchmark video dataset utilizing the SmartBay underwater marine 
observatory is create. This dataset containing 13,946 frames with 
118,830 fish objects were annotated from a subset of the videos captured 
by the SmartBay Facility. A deep neural network Mask R–CNN model 
(He et al., 2017), was re-trained using this dataset and the re-trained 
model achieved relatively high fish detection and segmentation accu-
racy, suggesting great potential for trained deep neural network models 
to extract high level information from raw underwater videos auto-
matically. Artificial intelligent algorithms can assist marine biologists in 
better understanding our ocean environment at a much higher spatial 
and temperate scale than possible using manual methods. To support 
open research and continued development, the dataset and trained 
model is publicly available at https://github.com/DianZhang/missfish. 
We hope the dataset created and the results obtained in this work can 
inspire researchers in relevant research domains to propose and evaluate 
novel algorithms, to drive underwater marine research in a collaborative 
fashion. 

2. Methods and experimental 

2.1. Methods 

Deep networks have been shown to be successful for computer vision 
tasks because they can extract appropriate features while jointly per-
forming discrimination (Deng, 2014). In this study, a state-of-the-art 
object segmentation deep neural network, Mask R–CNN (Mask Region 
based Convolutional Neural Network), was implemented based on a 
publicly available git repository (He et al., 2017). Mask R–CNN is a 
conceptually simple, flexible and general framework for object instance 
segmentation. The network can efficiently detect objects in an image 
while simultaneously generating a high-quality segmentation mask for 
each instance. This network has won several computer vision chal-
lenges, including classification tasks in ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) and Microsoft Common Objects in 
Context (COCO) competitions. Extending its predecessor Faster R–CNN 
(Ren et al., 2017), Mask R–CNN added a branch for predicting seg-
mentation masks on each region of interest, in parallel with the existing 
branch for object classification and bounding box regression. The ar-
chitecture diagram of Mask R–CNN is shown in Fig. 2. It has been suc-
cessfully used for human pose estimation (Guler et al., 2018), cell 
tracking (Tsai et al., 2019), face detection (Lin et al., 2020) amongst 
others. However, existing models were trained using the generic 
ImageNet and COCO datasets and, thus, it cannot be used directly to 
detect and segment underwater objects. Hence, a Mask R–CNN model is 
re-trained using the benchmark data created to evaluate the applica-
bility of this dataset as well as the model itself. 

To evaluate the performance, mean Average Precision (mAP) over all 
frames is used. It is widely used for evaluating and comparing object 

Fig. 1. Illustration of the SmartBay sub-sea observatory. A high definition Kongsberg pan-tilt-zoom camera system is installed (left bottom) and connected to the data 
and power hub (center). 
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detection and segmentation algorithms in computer vision communities. 
AP summarizes a precision-recall curve as the weighted mean of pre-
cisions achieved at each threshold. Here the threshold is defined as the 
intersection over the union (IoU), which measures the area of the 
model’s output with the ground truth region divided by the total area of 
both. Following the common standard, the IoU threshold is set to 0.5 
(AP@IoU=0.5) in this work. For Mask R–CNN and many other object 
localization methods, a proposed Region of Interest (RoI) is considered 
positive if it has IoU with a ground-truth region of at least 0.5. The mask 
loss, a binary cross-entropy loss that penalizes wrong per-pixel binary 
classifications, is defined only on positive RoIs. The mask target is the 
intersection between an RoI and its associated ground-truth mask. The 
range of average precision is between 0 and 1, where 1 means a perfect 
detection (alignment of the segmented regions). 

2.2. Experimental 

2.2.1. Dataset creation 
Although over 400,000 video clips (each 2 min long) have been 

recorded at SmartBay facility so far, for the purpose of this study, a small 
portion of the available videos was selected by a half normal distribution 
method in a reverse chronological order to have a better representation 
of recent data. These videos were then manually filtered to exclude 
annulled videos (video without objects) that left only 45 videos in this 
dataset. The remaining videos were subsequently classified based on the 
capturing time of the video. In order to create a training dataset, every 
frames of the selected sample video were manually applied with two 
sample mask annotations (Fig. 3). It is worth noting that the sheer 
number of the moving subjects often complicates the annotations, while 
some variable environmental conditions like lighting conditions, also 
make this manual process challenging. Furthermore, the benchmark 
dataset was purposely constructed containing low, relatively low, 

Fig. 2. The illustration of Mask R–CNN deep learning model.  

Fig. 3. The example of recorded video frame (a) and annotated video frame (b).  
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normal, and high visibility data. The authors have tried their best to 
build a benchmark data with as much variation as possible to reflect the 
true nature environment. 

Furthermore, though various forms of marine life were present, the 
majority of these sea creatures captured in the these videos appeared to 
be fish. The occurrences of other types, such as crabs, are too sporadic to 
be used for any type of analysis. To create the ground truth, several 
annotation tools, including LabelMe, CVAT, LabelImg and VGG Image 
Annotator, were evaluated. However, the open source Microsoft VoTT 
were found to be most suitable for this task. The tool supports annotating 
both images and video frames with bounding box and polygon masks. 
For each video, three frames per second were annotated. This is due to 
the fact that fish movement can be very fast, especially when a fish is 
close to the camera lens. Three frames per second can provide fine- 
grained information for more sophisticated analysis, such as fish tra-
jectory analysis. 

As shown in Table 1, 13,946 frames from 45 videos and 118,830 
objects (118,659 fish and 171 crab) were annotated in total. Due to the 
lack of specialist marine biology knowledge, labelling of fish species 
were not performed in this dataset, but could certainly be incorporated 
in future work. To comply with the machine learning data requirements, 
the annotated data is split into training, validation and test datasets. The 
first 30 videos recorded earlier in the chronological order were set as the 
training set, the following 10 videos were set as the validation set and 
the last 5 videos are used as test sets. 

2.2.2. Deep neural network training 
Initial experiments showed that existing pre-trained Mask R–CNN 

models do not perform well on underwater dataset. This is primarily 
because the datasets used to train existing Mask R–CNN models do not 
contain underwater images and underwater fauna. Thus, models need to 
be re-trained to detect fish. Utilizing existing models, the weights of the 
pre-trained model using the COCO dataset (Lin et al., 2014) is set as the 
initial network weights. Some parameters were adjusted to fit our 
dataset and hardware platform (see below). For comparison, a Mask 
R–CNN model was also trained from scratch. A script was implemented 
to convert VOTT annotation output to the input format that Mask 
R–CNN requires. 

There are a number of hardware and data dependent parameters in 
Mask R–CNN that need to be set manually (detailed definitions of these 
parameters is described in previous work (He et al., 2017)). Since many 
of the fish in the dataset appear small, the RPN_ANCHOR_SCALES is set 
to (16, 32, 64, 128, 256). According to the frame size of the data, 
IMAGE_MIN_DIM and IMAGE_MAX_DIM are set to 512 (shorter edge is 
512 pixels) and TRAIN_ROIS_PER_IMAGE is set to 64. The values of 
IMAGES_PER_GPU, STEPS_PER_EPOCH, GPU_COUNT and VALI-
DATION_STEPS are hardware dependent. Based on our experiment ma-
chine (Intel Core i7-4930K CPU with 32G DDR3 RAM) equipped with an 
NVidia TITAN X GPU card (3584 CUDA cores and 12G GPU memory), 
the following values are used IMAGES_PER_GPU = 1, STEPS_PER_EPOCH 
= 200, GPU_COUNT = 1. Though some hyper-parameters in Mask 
R–CNN should also be tuned, it was found that most of the default values 
are robust enough for segmentation tasks. Several initial learning rates 
were chosen empirically but 10− 5 was found to achieve the best per-
formance. All the remaining parameters are set to default values. 

3. Results 

As described previously, in order to avoid overfitting, the dataset is 
split into training, validation and test sets. The corresponding number of 
frames and the number of fish in each set is listed in Table 2. A default 
resnet 101 model was used as the backbone of the network as the 
graphics card has sufficient RAM to support this model. For the purpose 
of comparison, two Mask R–CNN models were trained, one from scratch 
(model-scratch) using randomly assigned weights and the other was re- 
trained (model-retrain) using weights that were trained on MS COCO 
dataset. Both models were trained for 120 epochs with learning rate 
decay by a factor of 10 at the 50th and 80th epoch. Running on our 
machine, it takes approximately 50 min to finish an epoch. Initial ex-
periments showed that any fine-tuning of the last few layers of model- 
retrain did not provide sufficient accuracy, thus, all layers of model- 
retrain model were systematically trained again with MS COO dataset. 

The training and validation losses from both models have a similar 
trend. As shown in Fig. 4a, the training losses decreases rapidly at the 
beginning of the training until c. 40 epochs, from which the improve-
ment slows down and the changing curve becomes smooth. In the case of 
validation dataset, the loss fluctuated throughout the whole training for 
both models as a result of the reduced frame number and object number. 
However, the overall decreasing trends of the loss in the training of 
validation dataset can be found in both models. 

The accuracy curves of these models trained with validation and test 
datasets are shown in Fig. 4b. Though the performance of both models 
are improving over time, the accuracy of model retrain has a more rapid 
increase at the beginning of the training, and the improvements grad-
ually fade away and finally keep at 0.6 mAP after 50 epochs. On the 
other hand, the improvement in the training accuracy of model scratch is 
significantly smaller regardless of the dataset used. It is worth noting 
that the loss and accuracy are not linearly correlated. The loss takes both 
the classification error and the disparity between the segmentation mask 
and the ground truth into account (per-pixel softmax), while the accu-
racy is calculated based on the target object detection rate only (with 
50% overlap threshold in this work). Based on the above results, the 
model retrain achieved a far better performance than the model scratch. 
A more detailed comparison is shown in Table 3 (data in the table is 
calculated based on the results obtained from epoch 100 to 120). It can 
be found that the model retrain obtained much higher mAP scores (over 
6.5 times) on both validation and test dataset. 

Once a model is fully trained, it can be used for detecting fish in the 
surveyed raw video dataset. Two output sample videos are publicly 
available online. The trained models are publicly available as well, more 
info can be found at https://github.com/DianZhang/missfish. Fig. 5 
shows a comparison between the number of detected fish by the model 
retrain and the ground truth (10 validation videos and 5 test videos). 

4. Discussion 

As mentioned before, preliminary experiments shows that pre- 
trained machine vision models, such as YOLOv2(Redmon and Farhadi, 
2017), as well as Mask R–CNN, cannot be applied directly to underwater 
videos. This is because these models were trained with very different 
datasets (ImageNet, MS COCO or Open Images Dataset) that do not 
contain underwater images. 

All these pre-trained models cannot detect or segment any fish in-
stances in any of datasets in this study. Though FgSegNet, a foreground Table 1 

Statistics of the annotated dataset.  

Total no. of videos 45 

Total no. of frames 13946 
Total no. of objects 118830 
Fish instances 118659 
Other instances (crab) 171 
Ave. no. of instances per video 2637 
Ave. no. of frames containing instances per video 310  

Table 2 
Details of the training, validation and test dataset.   

Number of Frames Number of Objects Ave. No. Obj. per Fra. 

Training 8985 79896 8.89 
Validation 3409 29525 8.66 
Test 1552 9238 5.95  
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segmentation model, did extract a few fish as foregrounds(Lim and 
Keles, 2018). However, it only achieved 0.0689 mAP for the validation 
datesets and 0.0419 mAP for the test dataset, which does not provide 
sufficient accuracy for underwater ecosystem analysis. Improvement has 
been observed from a re-trained FgSegNet model, however, improve-
ments were very small (0.0719 validation mAP and 0.0637 test mAP). 

Since the performed task is an instance segmentation from videos, 
the architecture of the network as well as the trained weights can be 
utilized. To retrain an existing model, a benchmark dataset needs to be 

first created based on the underwater videos captured by the SmartBay 
Observatory. Hence, the created dataset is the most refined (mask an-
notations compare to bounding boxes in other datasets) and one of the 
largest publicly available underwater computer vision training datasets. 
The subsequent evaluation of this dataset by the instance segmentation 
based Mask R–CNN model shows retrained model achieved a signifi-
cantly higher detection accuracy compared to the model without re- 
training, suggesting a good applicability of this dataset in training 
deep neural network in classifying marine objects. 

Furthermore, after visual inspection of all outputs, the majority of 
the errors were found to be either missed-labeling due to the severe 
object overlapping, or mis-labelled fish parts (Fig. 6). While the former is 
due to the limitation of the model, the latter type of error is caused by 
the annotation of partial fish in the benchmark dataset created, which is 
unavoidable for annotating fishes appearing at the edge of the camera. 
However, the classification scores of such partial sightings are typically 
low and may be filtered out in future work. Unlike other datasets (e.g. 
Fish4Knowledge (Fisher et al., 2016)) which only denotate fish when 
they fully appeared in the field of view, the benchmark dataset created 
in this work is trying to provide as much information as possible. Thus, 
all these partially appeared fish were annotated that results in this type 
of error. However, this dataset is designed for developing systems that 
can be deployed in real world scenarios in which many fish would 
appear partially at the edge of the camera view. Furthermore, it is also 
found that the trained model can effectively be used to estimate fish 
density levels. Compared to a human analyst, which may take days to 
analyze a short video, the trained model in this work can process the raw 
video data in minutes. This may provide a much higher temporal sam-
pling information to assist marine biologists in better understanding the 
biodiversity of the environment. 

5. Conclusions 

In this study, a publicly available large-scale benchmark underwater 
video dataset was created, and used to retrain a state-of-the-art machine 
vision deep model (MaskRCNN). This model is in turn applied into 
detecting and classifying underwater marine lives through random 
under-sampling (RUS) and achieves a reasonably high average precision 
(0.628 mAP). Furthermore, results obtained in this work clearly shows 
that state-of-the-art computer vision deep neural network can be effec-
tively applied to any underwater datasets through a retraining with the 

Fig. 4. The performance comparison between Model Retrain and Model 
Scratch in Loss (a) and Accuracy (b). 

Table 3 
Detailed comparison (between epoch 100 and 120) of training from model 
scratch and model retrained.  

Epoch 100-120 Retrain Scratch Ratio 

Mean Training Loss 0.73 1.75 2.41 
Mean Validation Loss 1.03 2.28 2.22 
Best Training Loss 0.61 1.72 2.80 
Best Validation loss 0.41 1.63 3.99 
Mean Validation mAP 0.617 0.090 6.88 
Mean Test mAP 0.598 0.083 7.20 
Best Validation mAP 0.623 0.095 6.56 
Best Test mAP 0.603 0.092 6.58  

Fig. 5. The comparison between the number of fish detected by trained Mask 
R–CNN model and ground truth. (Test number 1–10 are validation datasets, 
11–15 are test datasets). 
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created benchmark dataset. In recent years, although machine learning 
techniques for computer vision processing have been improved signifi-
cantly in both accuracy and diversity, the lack of a good benchmark 
underwater dataset hindered its application in marine ecological study. 
The creation of this public dataset in the underwater marine research 
domain would hopefully inspire more and more computer science 
researcher to develop new deep neural models to help marine scientists 
to better survey the marine resources. We hope with our initiation in 
creating a benchmark dataset, more similar datasets with higher accu-
racy can be created in the future, which in turn can drive computer 
science researchers around the world to develop, evaluate and test their 
new algorithms for studying marine environment. 
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