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We present a new mode-sum regularization prescription for computing the vacuum polarization of a
scalar field in static spherically symmetric black hole spacetimes in odd dimensions. This is the first general
and systematic approach to regularized vacuum polarization in higher dimensions. Remarkably, the
regularization parameters can be computed in closed form in arbitrary dimensions and for arbitrary metric
function fðrÞ. In fact, we show that in spite of the increasing severity and number of the divergences to be
regularized, the method presented is mostly agnostic to the number of dimensions. Finally, as an explicit
example of our method, we show plots for vacuum polarization in the Schwarzschild-Tangherlini spacetime
for odd d ¼ 5;…; 11.
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I. INTRODUCTION

Quantum gravity remains one of the most important
outstanding problems in physics. In the absence of a full
theory, one must rely on approximations. One particularly
important approximation is semiclassical gravity, which is
the treatment of quantum fields interacting with a classical
spacetime metric via the semiclassical Einstein equations,

Gab ¼ 8πhTabi: ð1Þ

The source term in these equations is the expectation
value of the stress tensor of the quantum fields being
considered.
Solving the semiclassical Einstein equations is notori-

ously difficult. The first major obstacle one encounters is
that the source term is in fact divergent, being quadratic in
an operator-valued distribution. A formal prescription to
regularize the stress-energy tensor, the point-splitting
scheme, dates back to DeWitt and Christensen [1,2].
Effectively, the prescription amounts to considering the
stress-tensor evaluated at two nearby spacetime points and
then subtracting a parametrix that encodes all the geomet-
rical divergences in the coincident limit. Applying the
point-splitting scheme in a way that is amenable to
numerical evaluation still remained a challenge, the first
work in this direction was the seminal work of Candelas
and Howard [3]. Notwithstanding the ingenuity of their
method, this approach has some serious drawbacks,

including its crucial dependence on WKB methods, which
are problematic in the Lorentzian sector, and its lack of
numerical efficiency. It has also proved difficult to
generalize to spacetimes that are not highly symmetric.
Nevertheless, the Candelas-Howard approach has remained
more or less the standard prescription for several decades.
Departures from the Candelas-Howard method are

sparse in the literature. We mention a couple of examples.
Ottewill and Taylor [4] devised a regularization scheme on
the Schwarzschild spacetime threaded by a cosmic string.
The method involves generating a mode-sum expression
for the Hadamard parametrix by a clever matching to the
flat spacetime Green function. A more recent endeavor by
Levi and Ori [5] has resulted in pragmatic methods that are
applicable to more general spacetimes with relaxed sym-
metry assumptions, including that of a spinning black hole
[6]. Here we present a new systematic scheme for higher
dimensions. We restrict our attention to vacuum polariza-
tion for a scalar field on static, spherically symmetric black
hole spacetimes in arbitrary odd dimensions. We present
the even-dimensional case in a separate article [7]; it is
more complicated because of the presence of log terms in
the singular two-point function. We note also that the
methods developed in this series of papers should readily
extend to the more technically challenging computation of
the regularized stress-energy tensor.
While the regularized vacuum polarization has been

computed for a variety of black hole spacetimes in four
dimensions, see for example [3,4,8–15], there has been
comparatively little work carried out in higher dimensional
black hole spacetimes. Some general properties of the
regularized stress-energy tensor in higher dimensions are
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derived in [16] while Decanini and Folacci [17] developed
a formalism for its computation based on Hadamard
regularization. Another general formalism for computing
the regularized vacuum polarization in higher-dimensional
spacetimes based on DeWitt-Schwinger regularization was
developed in [18]. Large mass approximations based on the
DeWitt-Schwinger expansion have also been computed and
used to study backreaction effects in higher-dimensional
black hole spacetimes [19,20]. For exact regularized
quantities, Ref. [21] presents the regularized vacuum
polarization on the event horizon of a five-dimensional
Schwarzschild-Tangherlini black hole. Very recently,
Flachi et al. [22] have presented a numerical calculation
of the vacuum polarization on the exterior of the five-
dimensional Schwarzschild-Tangherlini spacetime; the cal-
culation is based on the Candelas-Howard method which is
cumbersome and inefficient to generalize to higher dimen-
sions. As far as we are aware, the only other computations
of the regularized vacuum polarization in the exterior
region of higher-dimensional black holes is in the context
of braneworld models where one considers quantum effects
on the four-dimensional brane of a higher-dimensional bulk
spacetime (see, e.g., [23,24]).
Our approach is in a sense the most natural and direct

approach to the problem: a full multipole and Fourier
decomposition of the Hadamard parametrix. For a
judicious choice of separation variables in which to
expand the Hadamard parametrix, the coefficients in this
decomposition—which we call regularization parameters
—can be computed once and for all in arbitrary dimen-
sions, providing an out-of-the-box solution for regulariza-
tion in static, spherically symmetric spacetimes. This
results in a complete mode-by-mode sum for the regular-
ized vacuum polarization. Moreover, the regularization
parameters to any desired order—corresponding to any
order in the Hadamard parametrix—can be computed. This
is extremely useful since inclusion of higher order terms in
the parametrix speeds the convergence of what is typically
a very slowly convergent mode sum. Here, we include all
terms up OðϵÞ in our decomposition of the singular para-
metrix, where ϵ scales like the distance between two nearby
points. So efficient is the resultant mode sum, that its
numerical evaluation is completely straightforward, requir-
ing only a few tens of modes to attain accuracies of
approximately ten decimal places. We demonstrate the
utility and efficiency of the method by giving explicit plots
for vacuum polarization in the Schwarzschild-Tangherlini
spacetime for odd dimensions between d ¼ 5;…; 11.

II. THE EUCLIDEAN GREEN FUNCTION

We consider a quantum scalar field on a static, spheri-
cally symmetric black hole spacetime of the form

ds2 ¼ −fðrÞdt2 þ dr2=fðrÞ þ r2dΩ2
d−2; ð2Þ

where dΩ2
d−2 is the metric on Sd−2. Assuming the field is in

a Hartle-Hawking state, we can adopt Euclidean techniques
to simplify the problem. In particular, performing a Wick
rotation t → −iτ results in the Euclidean metric,

ds2 ¼ fðrÞdτ2 þ dr2=fðrÞ þ r2dΩ2
d−2: ð3Þ

It can be shown that this metric would possess a conical
singularity unless we enforce the periodicity τ ¼ τ þ 2π=κ
where κ is the surface gravity. This discretizes the fre-
quency spectrum of the field modes which now satisfy an
elliptic wave equation,

ð□ −m2 − ξRÞϕ ¼ 0; ð4Þ

where here and throughout□ is the d’Alembertian operator
with respect to the Euclidean metric, m is the scalar field
mass and ξ is the constant that couples the scalar to the
gravitational field. The corresponding Euclidean Green
function has the following mode-sum representation:

Gðx; x0Þ ¼ κ

2π

X∞
n¼−∞

einκΔτ
X∞
l¼0

ðlþ μÞ
μΩd−2

Cμ
l ðcos γÞgnlðr; r0Þ;

ð5Þ

where μ ¼ ðd − 3Þ=2 and Ωd−2 ¼ 2πμþ1=Γðμþ 1Þ, Cμ
l ðxÞ

is the Gegenbauer polynomial and γ is the geodesic
distance on the (d − 2)-sphere. The radial Green function
satisfies

�
d
dr

�
rd−2fðrÞ d

dr

�
− rd−2

�
n2κ2

fðrÞ þm2 þ ξRðrÞ
�

− rd−4lðlþ d − 3Þ
�
gnlðr; r0Þ ¼ −δðr − r0Þ: ð6Þ

The solution can be expressed as a normalized product of
homogeneous solutions,

gnlðr; r0Þ ¼ Nnlpnlðr<Þqnlðr>Þ; ð7Þ

where pnlðrÞ and qnlðrÞ are homogeneous solutions which
are regular on the horizon and the outer boundary (usually
spatial infinity), respectively. We have adopted the notation
r< ≡minfr; r0g, r> ≡maxfr; r0g. The normalization con-
stant is given by

NnlWfpnlðrÞ; qnlðrÞg ¼ −
1

rd−2fðrÞ ; ð8Þ

where Wfp; qg denotes the Wronskian of the two
solutions.
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III. THE SINGULAR PROPAGATOR

The point-splitting approach to computing the vacuum
polarization in the Hartle-Hawking state involves taking the
coincidence limit of the regularized Euclidean Green
function. The Green function is regularized by subtracting
an appropriate parametrix. The prescription is known to be
ambiguous [25], and different singular parametrices will
lead to different expressions for the vacuum polarization.
However, provided the parametrix is symmetric and
depends only on the local geometry, then the difference
between two regularization prescriptions is a regular scalar
that depends only on the metric and its derivatives.
Moreover, this ambiguity is degenerate with ambiguities
in the renormalizations of coefficients of higher curvature
terms in the semiclassical Einstein equations. This guar-
antees that the semiclassical equations are invariant under
the choice of regularization prescription. Similarly, for any
reasonable physical quantity that depends on the vacuum
polarization, the ambiguity in the choice of regularization
must be degenerate with some other parameters in the
theory, otherwise the “physical” quantity depends on this
choice. For example, in Ref. [26], a local temperature as
measured by an Unruh-DeWitt detector is defined and
involves the sum of contributions from the detector’s
acceleration, local curvature terms and the regularized
vacuum polarization. One might label these terms the
acceleration temperature, the curvature temperature and
the field temperature, respectively. A different choice of
regularization changes what we might like to label as the
field temperature but in such a way that the sum of
temperatures remains invariant. Otherwise the definition
of local temperature would be regularization-dependent and
its physical meaning dubious.
Here, we adopt the Hadamard regularization prescription

(see, e.g., [17]), i.e., we define our singular propagator to be
a Hadamard parametrix. In odd dimensions, we choose

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
Uðx; x0Þ
σðx; x0Þd2−1 : ð9Þ

The biscalar σðx; x0Þ is the world function with respect to
the Euclideanized metric. The biscalar Uðx; x0Þ is smooth
and symmetric in its arguments. For a scalar field, Uðx; x0Þ
satisfies the wave equation

σð□ −m2 − ξRÞU ¼ ðd − 2Þσa∇aU

− ðd − 2ÞUΔ−1=2σa∇aΔ1=2; ð10Þ

where σa ≡∇aσ and Δðx; x0Þ is the Van Vleck Morrette
determinant. Assuming the Hadamard ansatz for a series
solution

Uðx; x0Þ ¼
X∞
p¼0

Upðx; x0Þσp; ð11Þ

it can be shown that each coefficient Upðx; x0Þ satisfies

ðpþ 1Þð2pþ 4 − dÞUpþ1 þ ð2pþ 4 − dÞσa∇aUpþ1

− ð2pþ 4 − dÞUpΔ−1=2σa∇aΔ1=2

þ ð□ −m2 − ξRÞUp ¼ 0; ð12Þ

with boundary condition U0 ¼ Δ1=2.
The world function possesses a standard coordinate

expansion which to lowest order is simply σ ¼
1
2
gabΔxaΔxb þ OðΔx3Þ. In our first departure from the

standard approach, we shall eschew the usual coordinate
expansions and instead assume an expansion of the
form

σ ¼
X
ijk

σijkðrÞwiΔrjsk; ð13Þ

where

w2 ¼ 2

κ2
ð1 − cos κΔτÞ;

s2 ¼ fðrÞw2 þ 2r2ð1 − cos γÞ: ð14Þ
We will formally treat w and s as OðϵÞ ∼ OðΔxÞ quantities.
Substituting this into the defining equation σaσ

a ¼ 2σ and
equating order by order uniquely determines the coeffi-
cients σijkðrÞ. To leading order, we simply have
σ ¼ 1

2
ϵ2ðs2 þ Δr2=fÞ þ Oðϵ3Þ, where we insert explicit

powers of ϵ as a book-keeping mechanism for tracking
the order of each term. An analogous expansion may be
assumed for Upðx; x0Þ,

Upðx; x0Þ ¼
X
ijk

uðpÞijk ðrÞϵiþjþkwiΔrjsk; ð15Þ

and substituting this into (12) determines the coefficients

uðpÞijk ðrÞ.
Combining (13) and (15) gives a series expansion for the

Hadamard parametrix in terms of the expansion parameters
w, s and Δr. This type of computation is ideally suited to a
symbolic computer package such as MATHEMATICA. Since
we are ultimately interested in the coincidence limit, let us
simplify by taking the partial coincidence limit Δr ¼ 0,
then it can be shown that U=σd=2−1 possesses an expansion
of the form

U

σ
d
2
−1

¼
Xμþm

i¼0

Xi

j¼−i
DijðrÞϵ2i−2μ−1

w2iþ2j

s2μþ2jþ1
þ Oðϵ2mþ1Þ: ð16Þ
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The coefficients DijðrÞ for the d ¼ 5 Schwarzschild-
Tangherlini spacetime are given in Table I. For higher
odd dimensions, the expressions are too large to be useful
in print form, however, a MATHEMATICA NOTEBOOK

containing the expressions is available online [27]. We
could truncate this sum at i ¼ μ since higher-order terms
vanish in the coincidence limit. However, it will be useful
later to keep terms at least up to OðϵÞ, the higher-order
terms will speed the convergence of the mode-sum expres-
sion for the regularized Green function. Let us take m ¼ 1
and separate out the negative j terms to get

U

σ
d
2
−1

¼
Xμþ1

i¼0

Xi

j¼0

DijðrÞϵ2i−2μ−1
w2iþ2j

s2μþ2jþ1

þ
Xμþ1

i¼1

Xi

j¼1

Di;−jðrÞϵ2i−2μ−1
w2i−2j

s2μ−2jþ1

þ Oðϵ3Þ: ð17Þ

This is our second major departure from the usual treat-
ment; we have point split in multiple directions. It seems
natural to avail of our freedom to point split in any direction
to choose a splitting only in one direction, and choosing
that direction to be along a Killing vector seems to greatly
simplify the expressions for the parametrix. However,
employing this freedom too early is actually a hindrance
since what is actually needed is a mode-sum expression for
the parametrix, not a closed-form expression. A mode-sum
expression is most naturally obtained by a simultaneous
Fourier and multipole decomposition of the parametrix,
which requires splitting in both the temporal and angular
directions. The mode-sum decomposition is explicitly
derived in the next section.

IV. MODE-SUM REPRESENTATION
OF THE HADAMARD PARAMETRIX

We wish to decompose the terms of the form
w2i�2j=s2μ�2jþ1 in terms of Fourier frequency modes and
multipole moments. If this can be achieved then a mode-by-
mode subtraction for the regularized Green function is
feasible. Start by writing

w2i�2j

s2μ�2jþ1
¼

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

×Ψ
½d�

nlði;�jjrÞ: ð18Þ

The task is to determine the regularization parameters

Ψ
½d�

nlði;�jjrÞ. With x ¼ cos γ, multiplying both sides by
e−in

0Δτð1 − x2Þμ−1
2Cμ

l0 ðxÞ and integrating gives

Ψ
½d�

nlði;�jjrÞ ¼ κ

ð2πÞ2
22μ−1ΓðμÞ2l!
Γðlþ 2μÞ

Z
2π=κ

0

Z
1

−1

w2i�2j

s2μ�2jþ1

× e−inκΔτð1 − x2Þμ−1
2Cμ

l ðxÞdxdΔτ; ð19Þ

where we have used the completeness relations

Z
2π=κ

0

e−iðn−n0ÞΔτdΔτ ¼ 2π

κ
δnn0 ;

Z
1

−1
ð1 − x2Þμ−1

2Cμ
l ðxÞCμ

l0 ðxÞdx ¼ 21−2μπΓðnþ 2μÞ
ðlþ μÞl!ΓðμÞ2 δll0 :

ð20Þ

We perform the x integration above by employing the
identity [28]

Z
1

−1

ð1 − x2Þμ−1=2Cμ
l ðxÞ

ðz − xÞμ�jþ1=2 dx

¼ ð−1Þj ffiffiffi
π

p
Γðlþ 2μÞðz2 − 1Þ∓j=2

2μ−3=2l!ΓðμÞΓðμ� jþ 1=2Þ Q�j
lþμ−1=2ðzÞ; ð21Þ

to obtain

Ψ
½d�

nlði;�jjrÞ ¼ κ

ð2πÞ2
2i

ffiffiffi
π

p ð−1ÞjΓðμÞ
κ2i�2jr2μ�2jþ1Γðμþ 1

2
� jÞ

×
Z

2π=κ

0

ð1 − cos κtÞi�je−inκt

× ðz2 − 1Þ∓j=2Q�j
lþμ−1

2

ðzÞdt; ð22Þ

with

TABLE I. We list the coefficientsDijðrÞ for the d ¼ 5 Schwarzschild-Tangherlini spacetime. The horizon radius has been set to unity.
These coefficients arise in the decomposition of the Hadamard parametrix in our variables s and w defined in Eq. (14).

DijðrÞ coefficients for 5D Schwarzschild-Tangherlini

D00 2
ffiffiffi
2

p
D1j for j ¼ −1;…; 1 − 1

2
ffiffi
2

p
r4

ffiffi
2

p ðr2−1Þ
r6

− ðr2−1Þ2ðr4þr2þ4Þ
2
ffiffi
2

p
r8

D2j for j ¼ −2;…; 2 − 16r2þ29

160
ffiffi
2

p
r8

2r4−5r2þ3

4
ffiffi
2

p
r10

ðr2−1Þ2ð15r4−41r2þ196Þ
80

ffiffi
2

p
r12

− ðr2−1Þ3ð4r8þ8r6þ42r4þ23r2þ148Þ
60

ffiffi
2

p
r14

5ðr2−1Þ4ðr4þr2þ4Þ2
96

ffiffi
2

p
r16
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z ¼ 1þ f2

κ2r2
ð1 − cos κtÞ: ð23Þ

We note that in odd d > 3, the parameter μ ¼ ðd − 3Þ=2 is
always a positive integer. In particular, we note that since
lþ μ� j − 1=2 is not a negative integer, the associated
Legendre function of the second kind appearing in the
integral representation of the regularization parameters
above is always well defined.

We will compute the Ψ
½d�

nlði; jjrÞ terms first. Using the
fact that

ðz2 − 1Þ−j=2Qj
νðzÞ ¼ ð−1Þj

2jð1 − cos κtÞj
�
1

η

∂
∂η

�
j
QνðzÞ; ð24Þ

where

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðrÞ

κ2r2

r
; ð25Þ

we arrive at

Ψ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2
2i−j

ffiffiffi
π

p
ΓðμÞ

κ2i�2jr2μþ2jþ1Γðμþ 1
2
þ jÞ

�
1

η

∂
∂η

�
j

×
Z

2π=κ

0

ð1 − cos κtÞie−inκtQlþμ−1
2
ðzÞdt: ð26Þ

In order to perform the integral we must factor out the time
dependence from the Legendre function, which may be
achieved by employing the addition theorem [29],

QνðzÞ ¼ PνðηÞQνðηÞ þ 2
X∞
p¼1

ð−1ÞpP−p
ν ðηÞQp

ν ðηÞ cospκt;

ð27Þ

whence the time integral reduces to

Z
2π=κ

0

ð1 − cos κtÞie−inκt cospκtdt ¼
ffiffiffi
π

p
κ

�
2ii!Γðiþ 1

2
Þð−1Þn−p

ðiþ p − nÞ!ði − pþ nÞ!þ
2ii!Γðiþ 1

2
Þð−1Þpþn

ði − p − nÞ!ðiþ pþ nÞ!
�
: ð28Þ

The factorials in the denominator imply that there is a finite number of integer p for which the integral is nonzero. In
particular, the first term on the right-hand side of (28) is nonzero only for jp − nj ≤ i while the second term is nonzero for
jpþ nj ≤ i. The range is further restricted in our case since p ≥ 1 and hence the sets of integers p for which the first and
second terms are nonzero are p ∈ fmaxð1; n − iÞ; nþ ig and p ∈ fmaxð1;−n − iÞ; i − ng, respectively. An equivalent
expression for (28) in terms of a sum of Kronecker deltas is easily derived. Putting these together, we obtain

Ψ
½d�

nlði; jjrÞ ¼
22i−j−1ð−1Þni!Γðiþ 1

2
ÞΓðμÞ

πκ2iþ2jr2μþ2jþ1Γðjþ μþ 1
2
Þ
�
1

η

d
dη

�
j
�Plþμ−1

2
ðηÞQlþμ−1

2
ðηÞ

ði − nÞ!ðiþ nÞ! þ
Xiþn

p¼maxf1;n−ig

P−p
lþμ−1

2

ðηÞQp
lþμ−1

2

ðηÞ
ðiþ p − nÞ!ði − pþ nÞ!

þ
Xi−n

p¼maxf1;−n−ig

P−p
lþμ−1

2

ðηÞQp
lþμ−1

2

ðηÞ
ðiþ pþ nÞ!ði − p − nÞ!

�
: ð29Þ

To derive the Ψ
½d�

nlði;−jjrÞ terms, we make use of the following result (this result may be new, we did not find it in any of
the standard references on Legendre functions; it is straightforward to prove by induction):

ðz2 − 1Þj=2Q−j
ν ðzÞ ¼

Xj

k¼0

ð−1Þk
2jþ1

j
k

ð2νþ 2j − 4kþ 1ÞQj
q¼0ðν − kþ 1

2
þ qÞQνþj−2kðzÞ: ð30Þ

When ν − kþ 1
2
> 0, we can simplify by replacing the product with its Pocchammer representationQj

q¼0ðν − kþ 1
2
þ qÞ ¼ ðν − kþ 1

2
Þjþ1. Employing this identity in (22) gives

Ψ
½d�

nlði;−jjrÞ ¼
κ

ð2πÞ2
2i−j

ffiffiffi
π

p ð−1ÞjΓðμÞ
κ2i−2jr2μ−2jþ1Γðμþ 1

2
− jÞ

Xj

k¼0

ð−1Þk
�
j
k

� ðlþ μþ j − 2kÞQj
p¼0ðlþ μþ p − kÞ

×
Z

2π=κ

0

ð1 − cos κtÞi−je−inκtQlþμ−1
2
þj−2kðzÞdt: ð31Þ
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We now proceed as above: we apply the addition theorem (27) to isolate the time dependence, and integrate using (28). The
result is

Ψ
½d�

nlði;−jjrÞ ¼
22i−2j−1ð−1Þnþjði − jÞ!Γði − jþ 1

2
ÞΓðμÞ

πκ2i−2jr2μ−2jþ1Γðμþ 1
2
− jÞ

Xj

k¼0

ð−1Þk
�
j
k

� ðlþ μþ j − 2kÞQj
q¼0ðlþ μþ q − kÞ

×

�Plþμ−1
2
þj−2kðηÞQlþμ−1

2
þj−2kðηÞ

ði − j − nÞ!ði − jþ nÞ! þ
Xi−jþn

p¼maxf1;n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ p − nÞ!ði − j − pþ nÞ!

þ
Xi−j−n

p¼maxf1;−n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ pþ nÞ!ði − j − p − nÞ!
�
: ð32Þ

Equations (29) and (32) are the regularization parameters for a scalar field in a static spherically symmetric spacetime in
arbitrary dimensions. On the one hand, these expressions look complicated, however, it is remarkably elegant that all the
regularization parameters in a static, spherically symmetric spacetime in arbitrary odd dimensions can be written as a finite
sum of products of associated Legendre functions. In terms of these regularization parameters, the mode-sum representation
of the singular field is

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

X∞
n¼−∞

einκΔτ
�Xμþ1

i¼0

Xi

j¼0

DijðrÞΨ
½d�

nlði; jjrÞ þ
Xμþ1

i¼1

Xi

j¼1

Di;−jðrÞΨ
½d�

nlði;−jjrÞ
�

þ Oðϵ3Þ; ð33Þ

where we have set the fictitious book-keeping parameter ϵ
to be unity in the mode sum. This is the main result. It
allows one to numerically compute the regularized vacuum
polarization in arbitrary odd dimensions in an extremely
efficient way. We describe this calculation for a massless
scalar field in the Schwarzschild-Tangherlini spacetimes in
the following section.

V. VACUUM POLARIZATION
IN SCHWARZSCHILD-TANGHERLINI

SPACETIME

In this section we outline the numerical implementation
of the regularization scheme described above, applied to a
massless scalar field in the higher-dimensional generaliza-
tions of the Schwarzschild black hole: the Schwarzschild-
Tangherlini spacetimes. We note that the restriction to
massless fields is a minor convenience, it is completely
straightforward to generalize this computation to massive
fields. In particular, the regularization parameters

Ψ
½d�

nlði; jjrÞ derived above do not depend on the mass,
but only on the local geometry of the spacetime. The mass
enters into the calculation through the coefficients DijðrÞ.
We also point out that in the computation of the regulari-
zation parameters, we made no assumption on the metric
function fðrÞ. In particular, we could apply the scheme
developed above to compute the regularized vacuum
polarization for spacetimes with degenerate horizons or

cosmological horizons, though we do not pursue these
directions here.
Now in the usual Schwarzschild coordinates, the

Schwarzschild-Tangherlini metric takes the form (2) with

fðrÞ ¼ 1 −
�
rh
r

�
d−3

: ð34Þ

These coordinates are singular at r ¼ rh which corresponds
to the black hole horizon. For simplicity, throughout the
remainder of this section, we work in units where rh ¼ 1.
That implies that the surface gravity κ ¼ 1

2
f0ðrhÞ ¼

1
2
ðd − 3Þ.

A. Calculation of radial modes

We briefly describe our numerical computation of the
radial modes pnlðrÞ and qnlðrÞ, the homogeneous solutions
to (6) which are regular on the horizon and at ∞
respectively. For fðrÞ given by (34), solutions cannot in
general be given in terms of known functions and must be
solved numerically. However, for n ¼ 0 this equation
reduces to�

d
dr

ðrd−2 − rÞ d
dr

− rd−4lðlþ d − 3Þ
�
S ¼ 0 ð35Þ

which possesses solutions in terms of Legendre functions.
To see this, we introduce a new independent variable
x ¼ 2rd−3 − 1. Then Eq. (35) takes the form
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�
d
dx

ðx2 − 1Þ d
dx

− LðLþ 1Þ
�
SðxÞ ¼ 0;

where L ¼ l=ðd − 3Þ. This is now in the form of
Legendre’s differential equation which possesses the fol-
lowing pair of independent solutions:

p0lðrÞ ¼ Pl=ðd−3Þð2rd−3 − 1Þ; ð36Þ

q0lðrÞ ¼ Ql=ðd−3Þð2rd−3 − 1Þ; ð37Þ

where PνðzÞ and QνðzÞ are Legendre functions of the first
and second kind, respectively. The Wronskian of the n ¼ 0
modes is

Wfp0lðrÞ; q0lðrÞg ¼ −
d − 3

2ðrd−2 − rÞ :

Comparing this with (8) we see that

N0l ¼
2

d − 3
¼ 1

κ
:

To calculate pnlðrÞ for n ≠ 0, we first note that the
solutions are invariant under n → −n. Hence, we need only
consider positive frequency modes. To compute pnlðrÞ for
n > 1, we integrate the homogeneous version of (6) from
an initial point near the horizon outwards. Employing a
standard Frobenius analysis, a series solution about the
regular singular point at r ¼ rh ¼ 1 is obtained and used as
a starting value for the integration of Eq. (6). We begin our
numerical integration at a distance of 1=1000 from the
horizon and the upper limit of integration is set at a distance
of r ¼ 21. Given that we expect the majority of the
interesting features in our results to be in the vicinity of
the black hole horizon, we choose to calculate on a “tortoise
coordinate”-like grid, where the sampling points are more
dense in the near-horizon region. We chose to perform the
numerical integration using the NDSOLVE package in
MATHEMATICA, which calculates pnlðrÞ on a grid and
interpolates between each grid point.
Once we have calculated pnlðrÞ, we may then obtain the

other solution qnlðrÞ by integrating the Wronskian relation
(8) between r and∞. This leads to the following expression
for qnlðrÞ:

qnlðrÞ ¼
pnlðrÞ
Nnl

Z
∞

r

dr0

r0d−2fðr0Þðpnlðr0ÞÞ2
: ð38Þ

In practice we must set the upper limit of integration to be at
a finite large value, we set this to be the end point of our
integration for pnlðrÞ. Since pnlðrÞ is growing exponen-
tially with r, the errors incurred by truncating the integral
at this point will be negligible. It is worth noting here that
we could also have obtained qnlðrÞ by integrating the

homogeneous version of (6) inwards from some large r-
value. In this case an initial value would be calculated by
constructing an asymptotic series about r ¼ ∞, which is an
irregular singular point of the equation. However integrat-
ing the Wronskian condition appears to lead to more
accurate results than integrating the differential equation.
Finally in the numerical calculation of both pnlðrÞ and
qnlðrÞ the internal working precision of each calculation is
set to 50 digits while the accuracy and precision goals (i.e.
the effective number of digits of precision and accuracy
sought in the final result) were both set to 35 digits.

B. Mode-sum calculation

Armed with an accurate numerical evaluation of the
radial Green function and explicit closed-form expressions
for the regularization parameters, we are now in a position
to calculate the vacuum polarization hϕ2iren for d ¼ 5, 7, 9
and 11. Let us simplify the notation by writing

GSðx; x0Þ ¼
κ

2π

X∞
l¼0

ðlþ μÞ
μΩd−2

Cμ
l ðcos γÞ

�
gS0lðrÞ

þ 2
X∞
n¼1

cos κΔτgSnlðrÞ
�
; ð39Þ

where

gSnlðrÞ ¼
μΩd−2

κ

Γðd
2
− 1Þ

ð2πÞd2−1
�Xμþ1

i¼0

Xi

j¼0

DijðrÞΨ
½d�

nlði; jjrÞ

þ
Xμþ1

i¼1

Xi

j¼1

Di;−jðrÞΨ
½d�

nlði;−jjrÞ
�
: ð40Þ

The Gegenbauer polynomial evaluated at coincidence is

Cμ
l ð1Þ ¼

�
2μþ l − 1

l

�
; ð41Þ

and hence the vacuum polarization is given by

hϕ2iren ¼ lim
x0→x

fGðx; x0Þ −GSðx; x0Þg

¼ κ

2π

X∞
l¼0

ðlþ μÞ
μΩd−2

�
2μþ l − 1

l

��
g0lðrÞ − gS0lðrÞ

þ 2
X∞
n¼1

ðgnlðrÞ − gSnlðrÞÞ
�
: ð42Þ

The order in which the sums are performed here is
dictated by the order in which the limits were taken (see [4]
for a discussion of this point). In our case, the temporal
points were necessarily taken to coincidence before the
angular points—this is simply a consequence of our
definitions for expansion variables s and w—and this

MODE-SUM PRESCRIPTION FOR THE VACUUM … PHYSICAL REVIEW D 94, 125024 (2016)

125024-7



implies that the n-sum must be performed first. The
convergence of the inner sum over n can be shown
numerically to be Oðn−d−2Þ for each value of d under
consideration in this paper (see Fig. 1 for plots of
convergence for d ¼ 5).
We present plots of hϕ2iren in the exterior region of a

Schwarzschild-Tangherlini black hole spacetime for d ¼ 5,
7, 9, 11. In units where the black hole event horizon has
been set to unity, the near-horizon vacuum polarization
increases rapidly with number of dimensions. Hence, in
Fig. 2 we present on the same graph the results for d ¼ 5, 7,
9; we exclude d ¼ 11 as its features dominate over the
results from the other dimensions. This is followed by a
series of individual plots for each dimension, in Fig. 3.
From the plots, we might conjecture that for d ¼ 7; 11;…,
the vacuum polarization is rapidly increasing from the
horizon out to some turning point, before decreasing and
eventually approaching its value at infinity. For the alter-
nate odd dimensions 9; 13;…, the vacuum polarization
decreases rapidly from the horizon to some turning point,
before slowly increasing and eventually asymptoting to its
value at infinity. Moreover, the rate of change seems to be
greater and the turning point closer to the horizon as the
number of dimensions is increased, though these may be
artifacts of the units in which we are working.
As the Schwarzchild-Tangherlini spacetime is asymp-

totically flat wewould expect that, as r → ∞, hϕ2iren would
approach the value of the regularized vacuum polarization
for a scalar field at the Hawking temperature in flat
spacetime. In addition, given the form of the metric

function Eq. (34) we would also expect the rate at which
this occurs to increase with the number of spacetime
dimensions.
The vacuum polarization for a massless thermal field at

temperature T propagating in a d-dimensional Minkowski
spacetime can be computed in closed form (see, e.g., [30]),

hϕ2iMren ¼
Γðd

2
− 1ÞTd−2

2πd=2
ζðd − 2Þ; ð43Þ

where ζðxÞ is the Riemann zeta function. By setting T equal
to the Hawking temperature T ¼ κ=2π we can explicitly
show in Fig. 3 that the renormalized vacuum polarization
for a massless field in the Schwarzchild-Tangherlini space-
time with odd d ¼ 5;…; 11 does indeed approach the flat
spacetime value given by (43) and moreover we see that the
rate at which this occurs increases with d.
It should be noted here that for the calculation of hϕ2iren,

the first grid point is taken to be the value of hϕ2iren on the
black hole horizon, calculated by extending the work of
[21]. The relevant horizon values for this paper are given in
the table below. While the result for d ¼ 5 was derived in
[21], to the best of the authors’ knowledge this is the first

d hϕ2iren at r ¼ rh ¼ 1

5 1
24π3

7 − 11
60π4

− 1
16π3

9 0.02639370185
11 −0.40082310320

instance where analytical results for d ¼ 7 are given. The
results for d ¼ 9 and d ¼ 11 were calculated numerically.
It is worth noting here that in each of the below plots the
value of hϕ2iren at the last numerically calculated grid point
matches up smoothly with the horizon value. This dem-
onstrates that the method developed in this paper is at least
approximately uniform across the entire exterior region,
i.e., the large-mode behavior is the same for points near the

FIG. 2. Plot of the renormalized vacuum polarization in the
exterior region of a Schwarzschild-Tangherlini black hole as a
function of the radial coordinate r for spacetime dimensions
d ¼ 5, 7 and d ¼ 9. The event horizon is located at r ¼ rh ¼ 1.

FIG. 1. Log plots showing convergence over n in the mode
sums expression. The red line represents logðn5jgnlðrÞ − gSnlðrÞjÞ
where we do not include the OðϵÞ terms in gSnlðrÞ. The plot shows
that the difference gnlðrÞ − gSnlðrÞ scales like n−5 for large n. The
green line represents logðn7jgnlðrÞ − gSnlðrÞjÞ where we have
included OðϵÞ terms in the singular summand. The plot shows
that the difference scales like n−7 for large n.
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horizon as for those elsewhere. One does require some
more l-modes very close to the horizon compared to points
further out but no more than a factor of 2. Moreover, the
large l behavior of the regularized modes falls off just as
rapidly both near and far from the horizon and the
convergence is extremely fast on the entire exterior.
While previous uniform methods of calculating hϕ2iren
using extended Green-Liouville asymptotics [13] have
been developed for d ¼ 4, the majority of previous calcu-
lations have relied on the WKB approximation, which
breaks down near the horizon. We feel that this uniformity
is a major advantage of the method presented in this paper.

VI. CONCLUSIONS

We have presented a new and systematic method for
computing vacuum polarization in odd dimensions in static,
spherically symmetric spacetimes. The method departs
from the usual approach in two significant ways: First,
we expand the Hadamard parametrix in a judicious choice
of variables, not in the usual coordinate separations.
Second, we point split in multiple directions. These two

combined allow us to do a simultaneous decomposition of
the Hadamard parametrix in Fourier frequency modes and
multipole moments. In fact, the coefficients of this decom-
position—which we call the regularization parameters—
can be determined in closed form in arbitrary dimensions.
Our approach results in a mode-by-mode subtraction for the
vacuum polarization that is rapidly converging—because
higher-order terms in the singular parametrix are easy to
include within this prescription—and hence straightfor-
ward to numerically evaluate to high accuracy. Moreover,
the resultant mode sum enjoys a convergence that is
approximately uniform in the distance from the horizon,
a property that is not shared by methods based on the WKB
approximation.
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FIG. 3. Plot of the regularized vacuum polarization in the exterior region of a Schwarzschild-Tangherlini black hole as a function of the
radial coordinate r in various odd dimensions, from d ¼ 5;…; 11. The event horizon is located at r ¼ rh ¼ 1. The dashed line is the
asymptotic value given by Eq. (43).
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