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We consider the problem of quantum field theory on the Bertotti-Robinson space-time, which arises

naturally as the near-horizon geometry of an extremal Reissner-Nordström black hole, but can also arise

in certain near-horizon limits of nonextremal Reissner-Nordström space-time. The various vacuum

states have been considered in the context of AdS2 black holes [M. Spradlin and A. Strominger, J. High

Energy Phys. 11 (1999) 021] where it was shown that the Poincaré vacuum, the global vacuum and the

Hartle-Hawking vacuum are all equivalent, while the Boulware vacuum and the Schwarzschild vacuum

are equivalent. We verify this by explicitly computing the Green’s functions in closed form for a

massless scalar field corresponding to each of these vacua. Obtaining a closed form for the Green’s

function corresponding to the Boulware vacuum is nontrivial, and the novel computational technique

employed may well be useful in deriving closed form Green’s functions in other space-times. Having

obtained the propagator for the Boulware vacuum, which is a zero-temperature Green’s function, we can

then consider the case of a scalar field at an arbitrary temperature by an infinite image imaginary-time

sum, which yields the Hartle-Hawking propagator upon setting the temperature to the Hawking

temperature. Finally, we compute the renormalized stress-energy tensor for a massless scalar field in

the various quantum vacua.

DOI: 10.1103/PhysRevD.86.104067 PACS numbers: 04.60.�m, 03.70.+k

I. INTRODUCTION

Thenear-horizon limit of an extremalReissner-Nordström
black hole is described by the direct product space-time
AdS2 � S2 [1] known as the Bertotti-Robinson space-time
[2,3]. The AdS2 � S2 geometry also arises in various
other inequivalent near-horizon limits of the nonextremal
Reissner-Nordström black hole [4]. Quantum effects in the
Bertotti-Robinson space-time have been previously consid-
ered [5–7] in the context of particle production in a
Bertotti-Robinson universe. In recent decades, interest in
the Bertotti-Robinson space-time has gained impetus from
a string theory perspective [4,8,9], where anti-de Sitter black
holes have played a crucial part in the AdS/CFT correspon-
dence, particularly in the two-dimensional case [10–18]. Of
particular relevance to this paper is the work of Spradlin and
Strominger [8] who derive the two-dimensional propagators
for various quantumstates on theAdS2 blackhole space-time
and use these results to compute the renormalized stress-
energy tensor for massive and massless scalar fields. When
discussing vacuum states on the Bertotti-Robinson space-
time, one can ignore the angular degrees of freedom since the
vacuum state is determined by requiringmodes to be positive
frequency with respect to a particular time coordinate.
Hence, the quantum states will be equivalent to those on
AdS2. However, the physical quantities of interest on the

Bertotti-Robinson space-time, such as the renormalized
stress-energy tensor, involve the Green’s function for the

wave equation whose structure is very different in the two-

dimensional and four-dimensional cases. We shall consider

only the massless scalar field; the massive field propagator

cannot be obtained in closed form but one can employ a

large-mass approximation for the stress-energy tensor which

does not depend on the global properties such as the quantum

state. Such large-mass approximations have been adopted

in the study of the quantum-corrected Bertotti-Robinson

space-time (see, for example, [19] and references therein).
TheGreen’s function on the Bertotti-Robinson space-time

was derived in closed form in Poincaré coordinates by

Kofman and Sahni [20], which corresponds to the field in

the Poincaré vacuum defined by choosing modes to be posi-

tive frequency with respect to Poincaré time. Spradlin and

Strominger [8] show that this vacuum is equivalent to the

global vacuum and the Hartle-Hawking vacuum and, hence,

theGreen’s functions for these states are equal. By definition,

the Hartle-Hawking vacuum respects the isometries of the

space-time and, hence, the corresponding propagator has a

very simple structure, factorizing into a part that depends on

the geodesic distance onAdS2 and a part that depends on the
geodesic distance on S2. The Green’s function in the

Boulware or Schwarzschild vacuum is more complicated

than the Hartle-Hawking Green’s function and to the best

of our knowledge has not been obtained in closed form.

We present a closed form representation here, verifying our
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result by reproducing the known Hartle-Hawking Green’s
function by an infinite image imaginary-time sum.

The mode-sum representation of the Green’s function in
the Boulware vacuum involves a sum over associated
Legendre functions of noninteger order. Performing this
sum is crucial in arriving at the closed form Green’s func-
tion. The method employed is to associate the sum with a
three-dimensional Green’s function on a dimensionally
reduced space-time which satisfies a Helmholtz equation
whose zero-potential solution is known in closed form. We
then expand about the zero-potential solution which yields a
closed form. This expansion is similar in spirit to Copson’s
method [21] for obtaining the electrostatic potential in
Schwarzschild space-time. Although this computational
method and associated closed form Green’s function are
important results in this paper, we defer the calculation to
the Appendix rather than disrupt the continuity of the dis-
cussion of quantum fields on Bertotti-Robinson space-time.

The layout of this paper is as follows: In Sec. II, we
review the various limits of Reissner-Nordström space-
time that result in the Bertotti-Robinson geometry. We
also discuss the many coordinate systems that define the
vacuum states. In Sec. III, we derive the Feynman Green’s
function for several quantum states. There are essentially
three distinct cases: the zero-temperature Boulware vac-
uum which we denote by jBi, the mixed state for a field at
arbitrary temperature T ¼ 1=� which we denote by j�i,
and the mixed state for the field at the Hawking tempera-
ture, which is analogous to the Hartle-Hawking state in
Schwarzschild space-time [22] and which we denote by
jHi. Finally, in Sec. IV, we obtain analytic expressions for
the renormalized stress-energy tensor for a massless field
in each of these states.

II. THE BERTOTTI-ROBINSON SPACE-TIME
AS A LIMIT OF THE REISSNER-NORDSTRÖM

SOLUTION

In this section, we show how the Bertotti-Robinson
geometry emerges as the near-horizon limit of the extreme
Reissner-Nordström black hole and also in certain near-
horizon limits of nonextremal Reissner-Nordström black
holes.

The Reissner-Nordström solution is the unique static,
spherically symmetric solution of the Einstein-Maxwell
equations. In units where the speed of light, Planck’s con-
stant, the Boltzmann constant and the Coulomb constant are
set to unity, the metric is given by

ds2 ¼ ��

r2
dt2s þ r2

�
dr2 þ r2d�2

2; (2.1)

where � ¼ ðr� r�Þðr� rþÞ and d�2
2 is the metric on the

two-sphere. We choose to denote the usual Schwarzschild
time coordinate here by ts. The Cauchy horizon r� and the
black hole horizon rþ are

r� ¼ L2
pM� Lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
pM

2 �Q2
q

; (2.2)

where Lp ¼ ffiffiffiffi
G

p
is the Planck length in these units. The

Hawking temperature and entropy of the black hole are
functions of the location of the inner and outer horizons

TH ¼ rþ � r�
4�r2þ

; SBH ¼ �r2þ
L2
p

: (2.3)

Very near extremality (M ¼ Q=Lp), the usual semiclassical

analysis of the thermodynamic properties of the black hole
breaks down [23]. To see this, we define

E ¼ M� Q

Lp

; (2.4)

the excitation energy above extremality. The horizons may
then be written in terms of E, yielding

r� ¼ QLp þ EL2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QEL3

p þ E2L4
p

q
: (2.5)

For the near-extremal solution we have E � 1; hence,
substituting (2.5) into the expression for the Hawking tem-
perature (2.3) for small E gives the energy-temperature
relationship

E� 2�2LpQ
3T2

H: (2.6)

When the energy of a typical quantum of Hawking radia-
tion, which is of the order of the Hawking temperature TH, is
of the order of the excitation energy above extremality, the
semiclassical analysis breaks down. This occurs at

TH � Egap � 1

Q3Lp

; (2.7)

where in stringy black holes, the black holes have a mass
gap and this energy represents the energy of the lowest-lying
excitation [24].
In the extreme case, E ¼ 0, the horizons coincide, rh ¼

r� ¼ QLp and TH ¼ 0. The line element for extreme

Reissner-Nordström is

ds2 ¼ �ðr� rhÞ2
r2

dt2s þ r2

ðr� rhÞ2
dr2 þ r2d�2

2: (2.8)

The near-horizon limit is obtained by defining

y ¼ r� rh
L2
p

(2.9)

and then considering the limit

Lp ! 0; y; Q fixed: (2.10)

The metric becomes

ds2

L2
p

¼ � y2

Q2
dt2s þQ2

y2
dy2 þQ2d�2

2; (2.11)

which is the Bertotti-Robinson space-time with geometry
AdS2 � S2, or more accurately, CAdS2 � S2, where
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CAdS2 is the universal covering of anti-de Sitter space
obtained by unwrapping the closed timelike curves. The
form of this metric that we will find particularly useful is
obtained by the transformation

ts �Q2

y
¼ tanh

�
1

2

�
t� 1

2
ln

�
�� 1

�þ 1

���
; (2.12)

yielding

ds2

L2
pQ

2
¼ �ð�2 � 1Þdt2 þ ð�2 � 1Þ�1d�2 þ d�2

2: (2.13)

We may also consider various inequivalent near-horizon
limits for nonzero temperatures. For example, in terms of
the coordinate

U ¼ r� rþ
L2
p

; (2.14)

one can fix the geometry as the near-horizon limit is taken
by keeping TH fixed, since the temperature is related to the
periodicity of the time coordinate. We consider the limit

Lp ! 0 Q; TH fixed; (2.15)

and the metric in this limit reads

ds2

Q2L2
p

¼�UðUþ4�Q2THÞ
Q4

dt2sþ dU2

UðUþ4�Q2THÞ
þd�2

2:

(2.16)

This may be recast in precisely the form of metric (2.13) by
the coordinate transformation

U ¼ 2�Q2THð�� 1Þ; ts ¼ 1

2�TH

t: (2.17)

Yet another near-horizon limit of the Reissner-
Nordström black hole reduces to the metric of Eq. (2.13);
if we define

V ¼ r� rþ
Q2L2

p

(2.18)

and now hold E and TH fixed, a near-horizon limit again
emerges as Lp ! 0. In this case, the chargeQmust diverge

according to the scaling in Eq. (2.6); i.e., we take the limit

Lp ! 0; E; TH fixed; Q� L�1=2
p ! 1: (2.19)

The metric reduces to�
E2=3
gap

L4=3
p

�
ds2¼�VðVþ4�THÞdt2sþ dV2

VðVþ4�THÞþd�2
2:

(2.20)

With the coordinate transformation

V ¼ 2�THð�� 1Þ; ts ¼ 1

2�TH

t; (2.21)

we again obtain the right-hand side of Eq. (2.13).

So it is clear that the Bertotti-Robinson metric (2.13)
appears in a number of near-horizon limits of the Reissner-
Nordström space-time. This form of the metric has a
natural AdS2 black hole interpretation even though the
Bertotti-Robinson geometry is itself an electrovac solution
to Einstein’s field equation, not necessarily containing any
horizons. This is due to the fact that we have inherited the
time coordinate from the Reissner-Nordström solution
which, as we can see from the Penrose diagram in Fig. 1,
only covers part of the timelike boundary, which we call
spatial infinity, of the covering space of AdS2. The future
‘‘black hole’’ horizon is then the boundary of the region
from which nothing can escape to spatial infinity, while the
past horizon is the boundary of the region which cannot be
accessed from spatial infinity.
This is analogous to the BTZ black hole [25] in three

dimensions, where, despite the fact that all negative curva-
ture spaces are locally equivalent to AdS3, for certain
global identifications there exists a black hole solution.
That we have a black hole solution only for this pre-

ferred choice of time can be seen by transforming to global
coordinates; for example, if we make the coordinate trans-
formation

U ¼ 2�Q2TH

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
cos�

�
;

ts ¼ 1

2�TH

tanh�1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x
sin�

!
(2.22)

in the line element (2.16), we obtain

FIG. 1. Penrose diagram showing the various coordinate
patches on the Bertotti-Robinson space-time. It is clear from
the diagram that the time, t, only covers the part of the timelike
boundary from ��=2< �< �=2 leading to a black hole inter-
pretation in ðt; �Þ coordinates.
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ds2

Q2L2
p

¼�ð1þx2Þd�2þð1þx2Þ�1dx2þd�2
2 (2.23)

which covers all of CAdS2 for x 2 ð�1;1Þ, � 2
ð�1;1Þ. On the other hand, only the part of the timelike
boundary from ��=2< �< �=2 is covered by the coor-
dinates ðt; �Þ which is easily seen from their coordinate
relations

x ¼ ð�2 � 1Þ1=2 cosht;

� ¼ sin�1

� ð�2 � 1Þ1=2 sinht
ð1þ ð�2 � 1Þcosh2tÞ1=2

�
:

(2.24)

Each new coordinate system defines a new vacuum, by
choosing normalized modes to be positive frequency with
respect to a particular time coordinate. For example, taking
modes to be positive frequency with respect to t in the
metric (2.13) defines the Boulware vacuum, while taking
modes to be positive frequency with respect to the global
coordinates (2.23) defines the global vacuum. Other
common choices are the Poincaré vacuum and the
Schwarzschild vacuum. The Poincaré vacuum is defined
by choosing positive frequency modes with respect to
Poincaré coordinates for which the metric is conformally
flat. Making the coordinate transformations

~t ¼ ð�2 � 1Þ1=2 sinht
�þ ð�2 � 1Þ1=2 cosht ;

~r ¼ 1

�þ ð�2 � 1Þ1=2 cosht ;
(2.25)

in Eq. (2.13), we arrive at the Poincaré form of the metric,

ds2

Q2L2
p

¼ ~r�2ð�d~t2 þ d~r2 þ ~r2d�2
2Þ: (2.26)

Finally, the Schwarzschild coordinates are defined by

�� ¼ 1

4�TH

ln
�� 1

�þ 1
; (2.27)

which yields

ds2

Q2L2
p

¼
�

2�TH

sinhð2�TH�
�Þ
�
2ð�dt2 þ d��2Þ þ d�2

2: (2.28)

Since the transformation (2.27) is independent of the time
coordinates, the Schwarzschild vacuum is equivalent to the
Boulware vacuum.

III. VACUUM STATES AND PROPAGATORS
ON BERTOTTI-ROBINSON

In this section, we derive the Feynman Green’s function
for massless scalars for the various quantum states. Of the
vacua alreadymentioned, only two are distinct, theBoulware
and Hartle-Hawking states [8]. We will also consider the
case of a field at an arbitrary temperature, not necessarily

equal to the Hawking temperature. For the remainder of this
paper, we set L2

pQ
2 ¼ 1 which may be restored by dimen-

sional analysis.
The physical quantity of interest in the semiclassical

theory is the renormalized expectation value of the stress-
energy tensor in a unit-norm quantum state jAi. This is
closely related to the Feynman Green’s function which is
defined by

GAðx; x0Þ ¼ ihAjTf’̂ðxÞ; ’̂ðx0ÞgjAi; (3.1)

where T denotes the time-ordered product of the quantum
field operators such that

Tf’̂ðt;xÞ; ’̂ðt0;x0Þg ¼
(
’̂ðt;xÞ’̂ðt0;x0Þ if t > t0

’̂ðt0;x0Þ’̂ðt;xÞ if t0 > t:
(3.2)

The field operator ’̂ðxÞ is expanded in terms of normalized
mode functions which satisfy the homogeneous wave
equation whereby the choice of boundary conditions on
these mode functions determines the quantum state. It is
straightforward to show that the canonical commutation
relations satisfied by ’̂ðxÞ imply that the Feynman Green’s
function satisfies the inhomogeneous wave equation [26]

hGAðx; x0Þ ¼ �g�1=2�ðx� x0Þ; (3.3)

where h ¼ g��r�r� is the d’Alembertian operator and

g ¼ j detg��j is the metric determinant. Since the Bertotti-

Robinson metric has vanishing scalar curvature, the
Green’s function does not depend on the field’s coupling
to the curvature, though the stress-energy tensor will. We
will find it convenient to express the Feynman Green’s
function in terms of the Wightman function and its com-
plex conjugate

GAðx; x0Þ ¼ i�ð�tÞGþ
A ðx; x0Þ þ i�ð��tÞG�

A ðx; x0Þ; (3.4)

where �t ¼ t� t0 and

Gþ
A ðx; x0Þ ¼ hAj’̂ðxÞ’̂ðx0ÞjAi (3.5)

is the Wightman function with G�
A ðx; x0Þ as its complex

conjugate.
We now consider the pure, zero-temperature vacuum

states and the mixed thermal states separately.

A. Boulware vacuum

The Boulware vacuum, which we denote by jBi, is
defined by requiring that the normal modes are positive
frequency with respect to the timelike Killing vector @=@t.
The homogeneous wave equation is"
� 1

ð�2�1Þ
@2

@t2
þ @

@�

�
ð�2�1Þ @

@�

�
þ 1

sin�

@

@�

�
sin�

@

@�

�

þ 1

sin2�

@2

@	2

#
’ðxÞ¼0: (3.6)
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A complete set of mode functions may be obtained by a
separation of variables:

u!lmðxÞ ¼ N!e
�i!tYlmð�;	ÞR!lð�Þ; (3.7)

where Ylmð�;	Þ are the spherical harmonics normalized
such that

Xl
m¼�l

Ylmð�;	ÞY�
lmð�;	Þ ¼ 2lþ 1

4�
; (3.8)

and R!lðrÞ satisfies�
d

d�

�
ð�2 � 1Þ d

d�

�
þ !2

ð�2 � 1Þ � lðlþ 1Þ
�
R!lð�Þ ¼ 0:

(3.9)

Solutions of this equation are the associated Legendre
functions of pure imaginary order, P�i!

l ð�Þ and Q�i!
l ð�Þ,

where the specific combination of these solutions is deter-
mined by the boundary conditions on the field. Much like
in AdS space-time, the Bertotti-Robinson space-time is not
globally hyperbolic and it possesses a timelike boundary at
spatial infinity through which information can propagate.
We impose vanishing boundary conditions at spatial infin-
ity since this timelike surface is an infinite proper distance
from any finite radius. This condition rules out the asso-
ciated Legendre functions P�i!

l ð�Þ in our mode function

expansion of the field operator since these functions di-
verge as � ! 1. Choosing R!lð�Þ ¼ Qi!

l ð�Þ, then the

normalization condition

hu!lm; u!0l0m0 i ¼ �ð!�!0Þ�ll0�mm0 (3.10)

fixes the normalization constant to be

N! ¼ 1

�
e!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð!�Þ

p
; (3.11)

where

h’1; ’2i ¼ i
Z
�
ð’�

1@�’2 � ’2@�’
�
1Þn�d� (3.12)

is the Klein-Gordon inner product.
The field operator expanded in terms of normalized

mode functions is therefore

’̂ðxÞ ¼
Z 1

0
d!

X1
l¼0

Xl
m¼�l

u!lmðxÞâ!lm þ u�!lmðxÞây!lm;

(3.13)

where u!lm is given by Eqs. (3.7) and (3.11). It is straight-
forward to show that the commutation relations satisfied by
the field operator and its conjugate momentum are equiva-
lent to the commutation relations

½â!lm; â
y
!0l0m0 � ¼ �ð!�!0Þ�ll0�mm0 ;

½â!lm; â!0l0m0 � ¼ ½ây!lm; â
y
!0l0m0 � ¼ 0:

(3.14)

To obtain the Feynman Green’s function, we compute
the Wightman function defined by Eq. (3.5). In terms of the
mode functions, this is given by

Gþ
B ðx; x0Þ ¼

Z 1

0
d!

X1
l¼0

Xl
m¼�l

u!lmðxÞu�!lmðx0Þ

¼ 1

4�3

Z 1

0
d!e�i!�te2!� sinhð�!Þ

�X1
l¼0

ð2lþ 1ÞPlðcos
ÞQi!
l ð�Þ½Qi!

l ð�0Þ��;

(3.15)

where cos
 ¼ cos� cos�0 þ sin� sin�0 cosð	�	0Þ. Using
standard results relating associated Legendre functions
[27], theWightman function may be recast in the following
form,

Gþ
B ðx; x0Þ

¼ i

8�2

Z 1

0
d!e�i!�t

X1
l¼0

ð2lþ 1ÞPlðcos
Þ

� ½e!�P�i!
l ð�0ÞQi!

l ð�Þ � e�!�Pi!
l ð�0ÞQ�i!

l ð�Þ�:
(3.16)

The particular combination of associated Legendre func-
tions appearing in square brackets above is invariant under
the interchange of the radial coordinates and hence we
have

Gþ
B ðx; x0Þ

¼ i

8�2

Z 1

0
d!e�i!�t

X1
l¼0

ð2lþ 1ÞPlðcos
Þ

� ½e!�P�i!
l ð�<ÞQi!

l ð�>Þ � e�!�Pi!
l ð�<ÞQ�i!

l ð�>Þ�;
(3.17)

where �< ¼ minf�; �0g and �>¼maxf�;�0g. Performing
the l sum in this expression is crucial if we are to obtain a
closed form representation of the Green’s function for the
Boulware vacuum. This is a nonstandard summation for-
mula and to the best of our knowledge has never been
published, except for the case of associated Legendre
functions of real integer order [28]. Rather than include
the derivation here, we defer it to the Appendix. The
result is

X1
l¼0

ð2lþ 1ÞPlðcos
Þe�i��P
��
l ð�<ÞQ�

l ð�>Þ ¼ e���

R1=2
;

(3.18)

where � is an arbitrary complex constant and
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cosh� ¼ ��0 � cos


ð�2 � 1Þ1=2ð�02 � 1Þ1=2 ;

R ¼ �2 þ �02 � 2��0 cos
� sin2


¼ ð�2 � 1Þð�02 � 1Þsinh2�: (3.19)

Using the result (3.18) for � ¼ �i! in Eq. (3.17), we
obtain

Gþ
B ðx; x0Þ ¼

1

4�2R1=2

Z 1

0
d!e�i!�t sinð!�Þ: (3.20)

The ! integral is not immediately convergent which is a
consequence of the fact that the Green’s function is a
distributional quantity, being the solution of a wave equa-
tion with a delta distribution source. We can obtain a closed
form representation by the usual ‘i�’ prescription [29] by
adding a small negative imaginary part to the time coor-
dinate so that the integral converges and then taking the
� ! 0þ,

Gþ
B ðx; x0Þ ¼

1

4�2R1=2
lim
�!0þ

Z 1

0
d!e�i!ð�t�i�Þ sinð!�Þ:

(3.21)

The integral is now trivial, yielding

Gþ
B ðx; x0Þ ¼

1

4�2R1=2
lim
�!0þ

�

ð�ð�t� i�Þ2 þ �2Þ : (3.22)

From the definition (3.4), the Feynman Green’s function
for the Boulware vacuum is

GBðx; x0Þ ¼ i

4�2R1=2
lim
�!0þ

�

ð�ðj�tj � i�Þ2 þ �2Þ : (3.23)

For small �, we can rewrite this as

GBðx; x0Þ ¼ i

4�2R1=2
lim
�!0þ

�

ð��t2 þ �2 þ i�Þ ; (3.24)

where we have absorbed the 2j�tj into the definition of �
and we have ignoredOð�2Þ terms. We now make use of the
distributional identity

1

z2 þ i�
¼ P

1

z2
� �i�ðz2Þ; � ! 0þ; (3.25)

where P denotes the principal part, to obtain

GBðx;x0Þ¼ i

4�2R1=2
P

�

ð��t2þ�2Þ
þ �

4�R1=2
�ð��t2þ�2Þ: (3.26)

B. Thermal states

The Boulware Green’s function is a zero-temperature
propagator since it is the expectation value of a product of
field operators in a pure state, namely the Boulware vacuum.
We can also consider mixed thermal states where the field is

at some arbitrary temperature. Moreover, if we consider the
Bertotti-Robinson geometry arising as the near-extremal
Reissner-Nordström black hole, then we can define the
Schwarzschild analog of the Hartle-Hawking ‘‘vacuum’’
[22] which corresponds to the field in thermal equilibrium
with the black hole horizon, and its defining feature is
regularity on the past and future horizon.
We will make use of the following relation between the

Feynman Green’s function, the symmetric Green’s func-
tion, �Gðx; x0Þ, which is the average of the advanced and
retarded Green’s functions, and the Hadamard two point

function, Gð1Þðx; x0Þ,

GAðx; x0Þ ¼ �Gðx; x0Þ þ 1

2
iGð1Þ

A ðx; x0Þ: (3.27)

The retarded and advanced Green’s functions, and hence
�Gðx; x0Þ, are expectation values of ‘‘c-number’’ operators
(multiples of the identity) and hence do not depend on the
vacuum state. On the other hand, the definition of the
Hadamard function hinges on the decomposition of mode
solutions into positive and negative frequency parts and,
therefore, depends on the vacuum. The thermal Hadamard
function is given as an infinite imaginary-time image sum of
the corresponding zero-temperature Hadamard function [29],

Gð1Þ
� ðx; x0Þ ¼ X1

k¼�1
Gð1Þ

B ðtþ ik�;x; t0;x0Þ; (3.28)

where � ¼ 1=T is the inverse temperature of the field. It
follows that the Feynman Green’s function for a mixed ther-
mal state is

G�ðx; x0Þ ¼ i

4�2R1=2
P

X1
k¼�1

�

ð�ð�tþ ik�Þ2 þ �2Þ
þ �

4�R1=2
�ð��t2 þ �2Þ: (3.29)

The k sum may be performed yielding a closed form propa-
gator for a massless field at temperature T,

G�ðx; x0Þ ¼ iT

4�R1=2
P

sinhð2�T�Þ
ðcoshð2�T�Þ � coshð2�T�tÞÞ

þ �

4�R1=2
�ð��t2 þ �2Þ: (3.30)

To the best of our knowledge, this result has not previously
been given in the literature.
For the near-extremal Reissner-Nordström limit, we can

define the Hartle-Hawking state whereby the field is in
thermal equilibrium with the black hole at the Hawking
temperature TH ¼ =2�, where  is the surface gravity
given by

2 ¼ r�ðk�k�Þr�ðk�k�Þ
4k�k�

���������!1
¼ 1; (3.31)

where k� ¼ ð1; 0; 0; 0Þ is a Killing vector normal to the
horizon. The Green’s function now simplifies considerably,
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GHðx;x0Þ¼ i

8�2ð�2�1Þ1=2ð�02�1Þ1=2P
1

ðcosh��cosh�tÞ
þ �

4�R1=2
�ð��t2þ�2Þ; (3.32)

where � and R are given by Eq. (3.19). This can be recast
into the succinct form

GHðx; x0Þ ¼ i

8�2
P

1

cosh�� cos

þ 1

8�
�ðcosh�� cos
Þ;

(3.33)

where � is the geodesic distance on AdS2 satisfying

cosh� ¼ ��0 � ð�2 � 1Þ1=2ð�02 � 1Þ1=2 cosh�t (3.34)

and 
 is the geodesic distance on the two-sphere satisfying

cos
 ¼ cos� cos�0 þ sin� sin�0 cosð	�	0Þ: (3.35)

One can verify that the Hartle-Hawking state is equivalent
to the global and Poincaré states by explicitly constructing
the Green’s functions. For example, the normalized modes
in Poincaré coordinates are

u!lm ¼ 1ffiffiffi
2

p e�i!~tYlmð�;	Þ~r1=2Jlþ1=2ð!~rÞ: (3.36)

Following a similar procedure to the previous section,
we obtain the following mode-sum expression for the
Wightman function:

Gþ
P ðx; x0Þ
¼ 1

8�

Z 1

0
e�i!�~td!

�X1
l¼0

ð2lþ 1ÞPlðcos
Þ~r1=2~r01=2Jlþ1=2ð!~rÞJlþ1=2ð!~r0Þ:

(3.37)

The l sum may be performed using standard summation
formulas for Bessel functions [27], yielding

Gþ
P ðx; x0Þ ¼

~r~r0

4�2�

Z 1

0
e�i!�~t sin!�d!; (3.38)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ ~r02 � 2~r~r0 cos


q
: (3.39)

As before, the integral here does not converge and we follow
the distributional treatment of the previous subsection to
obtain the following representation of the Feynman Green’s
function in the Poincaré vacuum (which could have been
directly inferred by the conformal flatness of the metric and
massless field equations in Poincaré coordinates),

GPðx; x0Þ ¼ i

4�2
lim
�!0þ

~r~r0

ð��~t2 þ �2 þ i�Þ : (3.40)

Employing the identity (3.25) again gives

GPðx; x0Þ ¼ i

8�2
P

1

cosh�� cos

þ 1

8�
�ðcosh�� cos
Þ

(3.41)

where, in Poincaré coordinates, the geodesic distance on
AdS2 is defined by

cosh� ¼ ��~t2 þ ~r2 þ ~r02

2~r~r0
: (3.42)

This form of the Green’s function has been previously given
by Kofman and Sahni [20]. It is clearly identical to the
Hartle-Hawking propagator (3.33). A similar calculation
reveals that it is also identical to the Green’s function in
the global vacuum.

IV. THE RENORMALIZED
STRESS-ENERGY TENSOR

The stress-energy tensor operator ought to provide an
absolute measure of the energy-momentum density for the
fields in the state jAi, as well as governing the backreaction
on the classical gravitational background via the semiclas-
sical Einstein equations

Rab � 1

2
gabR ¼ 8�hAjT̂abjAi; (4.1)

where classically the stress-energy tensor for a massless
field ’ in a space-time with vanishing scalar curvature is
given by

Tab ¼ ð1� 2�Þ’;a’;b þ
�
2�� 1

2

�
gab’;c’

;c � 2�’’;ab

þ 2�gab’h’þ �Rab’2; (4.2)

where � is the field’s coupling to the scalar curvature in the
action. The right-hand side of Eq. (4.1) is clearly divergent,
reflecting the fact that it involves products of operator-
valued distributions evaluated at the same space-time point
and, therefore, requires renormalization. It proves useful to
write it as a coincidence limit of a ‘‘point-split’’ stress-
energy tensor operator

hAjT̂abjAi��i½�̂abGAðx;x0Þ�¼�i lim
x!x0

�̂abGAðx;x0Þ; (4.3)

where GAðx; x0Þ is the Feynman Green’s function for the
quantum state jAi and �̂ab is a differential operator defined
so that �̂ab’ðxÞ’ðx0Þ yields (4.2) in the coincidence limit.
For example, we take

�̂ab ¼ ð1� 2�Þgb0brarb0 þ
�
2�� 1

2

�
gabgc0

crcrc0

� 2�rarb þ 2�gabrcrc þ �Rab; (4.4)

where ga0
b denotes the bivector of parallel transport sat-

isfying the differential equation �;cga0
b
;c ¼ 0 subject to

the boundary condition ½ga0b� ¼ �a
b, so that ga0

bua
0
is the
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result of parallel transporting ua
0
along the geodesic from

x0 to x.
We shall employ the Hadamard renormalization pre-

scription [30,31] which relies on the Hadamard represen-
tation [32] of the Feynman Green’s function corresponding
to a unit-norm state jAi,

GAðx; x0Þ ¼ i

8�2

�
�1=2ðx; x0Þ
�ðx; x0Þ þ i�

þ Vðx; x0Þ lnð�ðx; x0Þ þ i�Þ

þWAðx; x0Þ
�
; (4.5)

where �ðx; x0Þ is Synge’s world function,�ðx; x0Þ is the Van
Vleck-Morette determinant, and Vðx; x0Þ and WAðx; x0Þ are
symmetric, regular biscalars. Global information such as the
boundary conditions and information about the quantum
state is encoded in WA. We have added the usual i� pre-
scription to indicate that GA is really the boundary value of
a function which is analytic in the lower-half � plane. The
geometrical nature of the divergences inflicting the expec-
tation value of the stress-energy tensor operator is explicit
in the Hadamard representation of the Feynman Green’s
function, where � vanishes in the coincidence limit.

Substituting the Hadamard representation of the Green’s
function into the wave equation and equating logarithmic
and power terms separately yields

hV ¼ 0; (4.6)

�hWA¼�2V�2�;aðV;a�V��1=2ð�1=2Þ;aÞ�hð�1=2Þ:
(4.7)

Moreover, V and WA can be expanded in powers of �,

Vðx; x0Þ ¼ X1
n¼0

Vnðx; x0Þ�n;

WAðx; x0Þ ¼
X1
n¼0

WAnðx; x0Þ�n;

(4.8)

which when substituted into Eqs. (4.6) and (4.7) gives a
set of recursion relations that completely determine the Vn

(for n 	 0) and also determine the WAn (for n 	 1) once
WA0 is given.

The spirit of the point-splitting renormalization scheme
is to subtract from the Green’s function an appropriate
parametrix that results in a finite quantity in the coinci-
dence limit. The obvious candidate parametrix is the direct
part of the Hadamard representation of the Green’s func-
tion, which upon subtraction gives

hAjT̂abjAifinite � 1

8�2
½�̂abWAðx; x0Þ�: (4.9)

Although this is finite, in general it is not conserved, a
property satisfied by the classical stress-energy tensor and
required for consistency of the semiclassical Einstein equa-
tions. The classical conservation equations are

Tab
;b ¼ ’;ah’ ¼ 0; (4.10)

which implies the following point-split quantity,

½�̂ab;bWAðx; x0Þ� ¼ ½gaa0ra0hWAðx; x0Þ�: (4.11)

The recursion relations for Vn may be used in Eq. (4.7) to
show that

hWAðx; x0Þ ¼ �6v1ðxÞ þ 2v1ðxÞ;a�;a þOð�Þ; (4.12)

where we have used the covariant Taylor expansion
V1ðx; x0Þ ¼ v1ðxÞ � 1

2v1ðxÞ;a�;a þ 
 
 
 where v1ðxÞ ¼
½V1ðx; x0Þ�. It follows that

½�̂ab;bWAðx; x0Þ� ¼ �2v1ðxÞ;a; (4.13)

so that the conserved, renormalized stress-energy tensor
operator is

hAjT̂abjAiren � 1

8�2
ð½�̂abWAðx; x0Þ� þ 2v1ðxÞgabÞ: (4.14)

The biscalar WAðx; x0Þ may be covariantly Taylor
expanded as

WAðx; x0Þ ¼ wAðxÞ � 1

2
wAðxÞ;a�;a

þ 1

2
$AabðxÞ�;a�;b þOð�3=2Þ; (4.15)

where wAðxÞ ¼ ½WAðx; x0Þ� and $AabðxÞ is a second-rank
tensor at x. The odd-order coefficients may be determined
recursively by using the fact that WAðx; x0Þ is symmetric in
its arguments [31]. Note that, as a consequence of the
defining equation for �, 2� ¼ �;a�;a, we must have

Oð�;aÞ �Oð�1=2Þ. Substituting the Taylor expansion into
Eq. (4.14) and taking coincidence limits [33] yields

hAjT̂a
bjAiren¼

1

8�2

�
1

2
ð1�2�ÞwA

;a
bþ

1

2

�
2��1

2

�
�a

bhwA

�$a
Abþ

1

2
�a

b$
c
Acþ�Ra

bwAþ2�a
bv1

�
:

(4.16)

Similarly, substituting the Taylor expansion into Eq. (4.12)
and taking coincidence limits gives the constraint

$AðxÞaa ¼ �6v1ðxÞ; (4.17)

which may be employed in obtaining the trace of the stress-
energy tensor,

hAjT̂a
ajAiren ¼ 1

8�2

�
2v1ðxÞ þ 3

�
�� 1

6

�
hwAðxÞ

�
: (4.18)

Hence, we reproduce the standard trace anomaly for a
conformally coupled scalar field. For massless scalar
fields, we have
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v1ðxÞ ¼ 1

720
RabcdR

abcd � 1

720
RabR

ab þ 1

8

�
�� 1

6

�
2
R2

� 1

24

�
�� 1

5

�
hR: (4.19)

In Bertotti-Robinson space-time in our conventions

RabcdR
abcd¼8; RabR

ab¼4; R¼0 (4.20)

so

v1 ¼ 1

180
: (4.21)

Note that, in this particular case, the finite stress-energy
tensor in Eq. (4.9) is already conserved and one need
not add the geometrical term involving v1ðxÞ in
Eq. (4.14); however, its inclusion is necessary if we are
to obtain the standard trace anomaly, so we prefer the latter
definition.

To obtain explicit expressions for the components of
the renormalized stress-energy tensor in Eq. (4.16),
we require the global terms wAðxÞ and $AðxÞab which
cannot be obtained directly from the quasilocal
Hadamard expansion, but by subtracting the Hadamard
parametrix from the globally defined closed form expres-
sions derived in Sec. III. This is a particularly neat method

in the present case where �1=2 and � can be calculated
in closed form and V � 0 for conformally flat space-times.
Note that Bertotti-Robinson space-time falls into the class
of space-times where Vðx; x0Þ ¼ 0, but v1ðxÞ � 0 so that
the choiceWðx; x0Þ ¼ 0 does not define a Green’s function.

For direct product space-times, � factorizes as a sum of
the square of the geodesic distances on the two parts of the
space-time. For the Bertotti-Robinson space-time, we have

� ¼ �AdS þ �S2 ¼
1

2
�2 þ 1

2

2; (4.22)

where � is the geodesic distance on the AdS2 part of the
metric which in ðt; �Þ coordinates is given by Eq. (3.34),
while 
 is the geodesic distance on S2 given by Eq. (3.35).
The Van Vleck-Morette determinant correspondingly fac-
torizes as the product of determinants on the two parts of
the space-time,

� ¼ �AdS�S2 ; (4.23)

where

�AdS ¼ �

sinh�
; �S2 ¼




sin

: (4.24)

Hence, the direct part of the Hadamard form is

Gdivðx; x0Þ ¼ i

4�2

�
�

sinh�

�
1=2
�




sin


�
1=2 1

�2 þ 
2
; (4.25)

where we have suppressed the ‘i�’ for compactness.
From Eqs. (4.25) and (3.33), it is straightforward to

calculate that

WH ¼ �8�2iðGH �GdivÞ (4.26)

¼ � 1

240
ð�2 þ 
2Þ þOð�3=2Þ (4.27)

¼ � 1

240
�;a�;a þOð�3=2Þ: (4.28)

Comparing with the Taylor expansion (4.15), we can
read off

wHðxÞ ¼ 0; $HðxÞab ¼ � 1

120
�a

b; (4.29)

and hence the renormalized stress-energy tensor for the
field in the Hartle-Hawking state is

hHjT̂a
bjHiren ¼ 1

2880�2
�a

b: (4.30)

To compute W for the Boulware vacuum, we note that

WH �WB ¼ �8�2iðGH �GBÞ (4.31)

¼ 1

6ð�2�1Þ1=2ð�02�1Þ1=2

�
�
1� 1

60
ð3�t2þ11�2ÞþOð�3=2Þ

�
; (4.32)

which implies

WB ¼ � 1

6ð�2 � 1Þ �
���

6ð�2 � 1Þ2 �
60�2 þ 19

360ð�2 � 1Þ3 ��
2

þ 1

120ð�2 � 1Þ�t
2 � 3�4 � 6�2 � 19

720ð�2 � 1Þ2 
2

� 1

240
�2 þOð�3=2Þ: (4.33)

Now noting that

�;t ¼ �t� �

�2 � 1
�t��þOð�x3Þ; (4.34)

�;�¼���1

2
�ð�2�1Þ�t2þ �

2ð�2�1Þ��
2þOð�x3Þ;

(4.35)

which may be inverted to give

��¼�;�þ1

2
�ð�2�1Þð�;tÞ2� �

2ð�2�1Þð�
;�Þ2þOð�3=2Þ;

(4.36)

we find

WB ¼ � 1

6ð�2 � 1Þ �
�

6ð�2 � 1Þ2 �
;� þ �4 � 22�2 þ 3

240ð�2 � 1Þ
� ð�;tÞ2 � 3�4 þ 54�2 þ 41

720ð�2 � 1Þ3 ð�;�Þ2

� 3�4 � 6�2 � 19

720ð�2 � 1Þ2 g���
;��;� þOð�3=2Þ; (4.37)
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where �, � range over the angular coordinates. We can
now read off

wB ¼ � 1

6ð�2 � 1Þ ; (4.38)

$B
t
t ¼ ��4 � 22�2 þ 3

120ð�2 � 1Þ2 ; (4.39)

$B
�
� ¼ � 3�4 þ 54�2 þ 41

360ð�2 � 1Þ2 ; (4.40)

$B
�
� ¼ $B

	
	 ¼ � 3�4 � 6�2 � 19

360ð�2 � 1Þ2 ; (4.41)

which can be seen to satisfy the constraint Eq. (4.17).
Applying the above results in Eq. (4.16), we find that the

renormalized stress-energy tensor for the field in the
Boulware vacuum is

hBjT̂t
tjBiren ¼ 1

2880�2
� ð�� 1

6Þ
16�2ð�2 � 1Þ �

ð�� 11
60Þ

8�2ð�2 � 1Þ2 ;

(4.42)

hBjT̂�
�jBiren¼ 1

2880�2
þ ð��1

6Þ
16�2ð�2�1Þþ

ð��11
60Þ

24�2ð�2�1Þ2 ;

(4.43)

hBjT̂�
�jBiren ¼ hBjT̂	

	jBiren ¼
1

2880�2
� ð�� 1

6Þ
16�2ð�2 � 1Þ

� ð�� 19
120Þ

12�2ð�2 � 1Þ2 : (4.44)

A similar analysis for the Green’s function for the field
at an arbitrary temperature T ¼ 1=� ¼ k=2� reveals

w� ¼ wB þ k2

6ð�2 � 1Þ ; (4.45)

$�
t
t ¼ $B

t
t � k2ð10�2 � k2Þ

60ð�2 � 1Þ2 ; (4.46)

$�
�
� ¼ $B

�
� þ k2ð30�2 þ 20� k2Þ

180ð�2 � 1Þ2 ; (4.47)

$�
�
� ¼ $�

	
	 ¼ $B

�
� �

k2ð10þ k2Þ
180ð�2 � 1Þ2 ; (4.48)

so that

lim
T!0

W�ðx; x0Þ ¼ WBðx; x0Þ; (4.49)

as expected. Finally, from Eq. (4.16), we obtain the follow-
ing expressions for the renormalized stress-energy tensor
for the field at an arbitrary temperature T,

h�jT̂t
tj�iren ¼ hBjT̂t

tjBiren þ
k2ð�� 1

6Þð�2 þ 1Þ
16�2ð�2 � 1Þ2

� k4

480�2ð�2 � 1Þ2 ; (4.50)

h�jT̂�
�j�iren ¼ hBjT̂�

�jBiren �
k2ð�� 1

6Þð3�2 � 1Þ
48�2ð�2 � 1Þ2

þ k4

1440�2ð�2 � 1Þ2 ; (4.51)

h�jT̂�
�j�iren¼hBjT̂�

�jBirenþ
k2ð��1

6Þð3�2þ1Þ
48�2ð�2�1Þ2

þ k4

1440�2ð�2�1Þ2¼h�jT̂	
	j�iren: (4.52)

In Fig. 2, we have plotted the renormalized stress-
energy tensor for the conformally coupled field for the
three distinct quantum states, where for the thermal state
we include a graph for the field with a temperature greater
than the Hawking temperature and a graph where the field
is less than the Hawking temperature. The temperature
T ¼ k=2� can be increased continuously from zero,
which corresponds to the Boulware state. We see that

for T < TH (k<1), we have h�jT̂t
tj�i � hHjT̂t

tjHi> 0,
while for T > TH, this difference becomes positive,
reflecting the fact that the black hole is a more efficient
attractor of a particle with a temperature greater than the
Hawking temperature. From the expressions (4.50), we
see that the contribution from the temperature is OðT4Þ,
which dominates for k > 1, but which is suppressed for
k � 1. The components for the Boulware and thermal
states are asymptotically equal to the Hartle-Hawking
state so that all observers at fixed large radius will mea-
sure a thermal spectrum at the Hawking temperature,
regardless of the quantum state. As expected, with the
exception of the Hartle-Hawking state, the stress-energy
tensor is singular at the horizon.
In Fig. 3, we plot the renormalized stress-energy tensor

for the minimally coupled field. We have most of the
same qualitative features as in the conformally coupled
case, with a few minor exceptions. The temperature de-
pendence of the stress-energy tensor components is now
stronger for the field at a temperature less than the Hartle-
Hawking temperature, compared with the conformally
coupled case. This arises as a result of the OðT2Þ terms in
(4.50). For T > TH (k > 1), the OðT4Þ will still dominate,
yielding a behavior qualitatively similar to the confor-
mally coupled case. The angular components of the
stress-energy tensor exhibit very different behavior for
the conformally and minimally coupled cases; the sign
of the angular components for the conformally coupled
field in the Boulware or thermal states relative to the
Hartle-Hawking state is different from that of the
minimally coupled field. For example, the angular
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stress-energy tensor components of the conformally
coupled field in the Boulware vacuum are negative rela-
tive to the components in the Hartle-Hawking state,
whereas the angular components of the minimally
coupled field in the Boulware vacuum are positive relative
to the components in the Hartle-Hawking state.

ACKNOWLEDGMENTS

We are most grateful to Marc Casals for numerous
enlightening conversations.

APPENDIX: GREEN’S FUNCTION ON THE
DIMENSIONALLY REDUCED BERTOTTI-

ROBINSON SPACE-TIME

In this appendix, we derive a closed-form expression for
the three-dimensional Green’s function on the dimensionally
reducedBertotti-Robinson space-time, obtained by factoring
out the temporal dependence by a Fourier transform.

The method employed is a novel expansion about the zero
frequency solution, similar in spirit to themethod adopted by
Copson [21] to derive the electrostatic potential in the
Schwarzschild space-time. It may seem surprising that such
an expansion truly captures the global properties of the
solution since it is well known that a Hadamard expansion
in the geodesic distance cannot capture the global properties
but only captures the singular behavior of the Green’s func-
tion [32]. However, the crucial point is that our method is not
an expansion about a purely geometrical quantity such as the
geodesic distance, but rather it is an expansion in the zero-
frequency solution, which already encodes the boundary
condition of the problem. Hence, the expansion need only
capture the ‘‘potentialness’’ of the problem. This method
might prove useful in obtaining closed form Green’s func-
tions in other space-times of interest.
We work with the metric of Eq. (2.13) with L2

pQ
2 ¼ 1.

The Green’s function for a massless scalar field on this
space-time satisfies
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FIG. 2 (color online). Plots of the renormalized stress-energy tensor components for the conformally coupled field for the various
quantum states.

1.5 2.0 2.5 3.0

0.001

0.001

0.002

0.003

0.004

1.5 2.0 2.5 3.0

0.0020

0.0015

0.0010

0.0005

0.0005

1.5 2.0 2.5 3.0

0.001

0.001

0.002

0.003

0.004

0.005

FIG. 3 (color online). Plots of the renormalized stress-energy tensor components for the minimally coupled field for the various
quantum states.
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þ @
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�
þ 1
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@
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�
�
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@

@�

�
þ 1

sin2�

@2

@	2

�
Gðx; x0Þ ¼ 1

sin�
�ðx� x0Þ:

(A1)

To obtain a unique solution to the wave equation for a
specific set of boundary conditions, we Euclideanize the
metric by analytically continuing the temporal coordinate
t ¼ �i�. Then the relationship between the Euclidean and
Feynman Green’s functions is given by [29]

GFðt;x; t0;x0Þ ¼ �iGEði�;x; i�;x0Þ: (A2)

It is straightforward to show that by a separation of vari-
ables, the Euclidean Green’s function may be written in the
following form:

GEðx; x0Þ ¼ 1

4�2

Z 1

0
d! cos!ð�� �0Þ

�X1
l¼0

ð2lþ 1ÞPlðcos
Þ�!lð�; �0Þ; (A3)

where cos
 ¼ cos� cos�0 þ sin� sin�0 cosð	�	0Þ, and
�!l satisfies the inhomogeneous equation

�
d

d�

�
ð�2 � 1Þ d

d�

�
� !2

ð�2 � 1Þ � lðlþ 1Þ
�
�!lð�; �0Þ

¼ ��ð�� �0Þ: (A4)

The solutions of the corresponding homogeneous equation
are the associated Legendre functions [27] of noninteger
order where the particular choice depends on the boundary
conditions or the quantum state for the problem under
consideration. Requiring regularity at the horizon � ¼ 1
and vanishing at infinity corresponds to taking the associ-

ated Legendre function of the first kind, P�j!j
l ð�Þ, to be

the inner solution, and the associated Legendre function

of the second kind, Q�j!j
l ð�Þ, to be the outer solution,

where the product of homogeneous solutions is normalized
by the Wronskian. The Wronskian takes a particularly

simple form for the set of solutions fP�j!j
l ; Qj!j

l g,

W½P�j!j
l ; Qj!j

l � ¼ P�j!j
l ð�Þ dQ

j!j
l ð�Þ
d�

� dP�j!j
l ð�Þ
d�

Qj!j
l ð�Þ

¼ � eij!j�

ð�2 � 1Þ : (A5)

The Green’s function then takes the form

GEðx;x0Þ¼ 1

4�2

Z 1

0
d! cos!ð���0Þ

�X1
l¼0

ð2lþ1ÞPlðcos
Þe�i!�P�!
l ð�<ÞQ!

l ð�>Þ;

(A6)

where we can drop the absolute value since ! only runs
over non-negative values.
We will now show that the l-sum in this mode sum is

itself a three-dimensional Green’s function on a dimen-
sionally reduced Bertotti-Robinson space-time. Writing
the four-dimensional Green’s function as

GEðx; x0Þ ¼ 1

4�2

Z 1

0
d! cos!ð�� �0ÞG!ðx;x0Þ (A7)

and substituting into our wave equation, it is easy to see
that G!ðx;x0Þ satisfies�
@

@�

�
ð�2 � 1Þ @

@�

�
þ 1

sin�

@

@�

�
sin�

@

@�

�
þ 1

sin2�

@2

@	2

� !2

ð�2 � 1Þ
�
G!ðx;x0Þ ¼ � 1

sin�
�ðx� x0Þ: (A8)

Dividing across by (�2 � 1) gives the Helmholtz equation�
r2 � !2

ð�2 � 1Þ2
�
G!ðx;x0Þ ¼ �~g�1=2�ðx� x0Þ; (A9)

where r2 and ~g are the Laplacian and metric determinant,
respectively, on the three-metric

ds23 ¼ ~g��dx
�dx� ¼ d�2 þ ð�2 � 1Þd�2

þ ð�2 � 1Þsin2�d	2: (A10)

Comparing the mode-sum expression Eq. (A6) with
Eq. (A7) yields

G!ðx;x0Þ ¼ X1
l¼0

ð2lþ 1ÞPlðcos
Þe�i!�P�!
l ð�<ÞQ!

l ð�>Þ:

(A11)

We wish to obtain a closed form solution for G!ðx;x0Þ.
Since the sum on the right-hand side of Eq. (A11) is not
known, except for integer values of ! [34], we must
employ an alternative method for obtaining the closed
form solution. Moreover, if such a closed form representa-
tion can be obtained, we have derived a new summation
formula for the product of associated Legendre functions
of arbitrary order appearing in Eq. (A11).
Another way of writing the Green’s function of a wave

equation in arbitrary dimensions is in Hadamard form [35],
which is an expansion in Synge’s world function �ðx; x0Þ
which is half the square of the geodesic distance between x
and x0. This expansion is purely geometrical and, therefore,
fails to capture the boundary conditions. Rather than
expanding about �, we could try an expansion about the
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zero-potential solution in Eq. (A11) since, for ! ¼ 0, a
closed form solution is known [34],

G0ðx;x0Þ ¼ 1

R1=2
; (A12)

where

R ¼ �2 þ �02 � 2��0 cos
� sin2
: (A13)

We shall show that this approach does give the globally
valid closed form solution.

The problem may be simplified by assuming the Ansatz

G!ðx;x0Þ ¼ e�!Uðx;x0Þ

R1=2
(A14)

and substituting into the Helmholtz equation to get

�!r2Uþ!2~g��
@U

@x�
@U

@x�
þ!

~g��

R

@U

@x�
@R

@x�
� !2

ð�2�1Þ2
¼0: (A15)

Equating powers of!, we arrive at the following equations
which must be simultaneously satisfied

~g��
@U

@x�
@U

@x�
� 1

ð�2 � 1Þ2 ¼ 0; (A16)

r2U� ~g��

R

@U

@x�
@R

@x�
¼ 0: (A17)

The first of these equations, though nonlinear, turns out to
be easier to solve. We look for a series solution of the
form

Uðx;x0Þ ¼ X1
k¼0

akð�; RÞRkþ1=2; (A18)

where the dependence of the ak coefficients as functions
of � and R only is a consequence of the spherical sym-
metry. Substituting this series solution into Eq. (A16) and
eliminating any cos
 dependence in favor of � and R
using

cos
 ¼ ��0 � ðRþ ð�2 � 1Þð�02 � 1ÞÞ1=2

¼ ��0 � X1
m¼0

1
2

m

 !
Rm

ð�2 � 1Þm�1=2ð�02 � 1Þm�1=2
;

(A19)

we obtain

~g��
@U

@x�
@U

@x�
� 1

ð�2�1Þ2¼
X1
k¼0

X1
s¼0

�
@ak
@�

@as
@�

Rkþsþ1��ð�02�1Þð2sþ1Þas@ak@�
Rkþs��ð�02�1Þð2kþ1Þak@as@�

Rkþs

�ð2kþ1Þð2sþ1Þasak R
kþsþ1

ð�2�1Þþð2kþ1Þð2sþ1Þasakð1�2�2Þð�
02�1Þ

ð�2�1ÞR
kþs

þð2sþ1Þas@ak@�
�0 X1

m¼0

1
2

m

 !
Rkþsþm

ð�2�1Þm�1=2ð�02�1Þm�1=2

þð2kþ1Þak@as@�
�0 X1

m¼0

1
2

m

 !
Rkþsþm

ð�2�1Þm�1=2ð�02�1Þmþ1=2

þð2kþ1Þð2sþ1Þasak2��0 X1
m¼0

1
2

m

 !
Rkþsþm

ð�2�1Þmþ1=2ð�02�1Þm�1=2

�
� 1

ð�2�1Þ2¼0: (A20)

Equating terms proportional to R0, we get

da20
d�

ð�02�1Þ1=2ð�0ð�2�1Þ1=2��ð�02�1Þ1=2Þ

þa20
ð�02�1Þ
ð�2�1Þ

�
ð1�2�2Þþ2��0 ð�2�1Þ1=2

ð�02�1Þ1=2
�

� 1

ð�2�1Þ2¼0: (A21)

This is a simple first order differential equation which may
be solved using an integrating factor. Dividing across by
the coefficient of a20, then the integrating factor is given by

Ið�Þ ¼ exp

�Z
Pð�Þd�

�
; (A22)

where

Pð�Þ ¼ 2��0ð�2 � 1Þ1=2 þ ð1� 2�2Þð�02 � 1Þ1=2
ð�2 � 1Þ1=2ð�0ð�2 � 1Þ1=2 � �ð�02 � 1Þ1=2Þ :

(A23)

The integral here may be performed to give

Ið�Þ¼ð�2�1Þ1=2ð�0ð�2�1Þ1=2��ð�02�1Þ1=2Þ: (A24)

Multiplying across by the integration factor we may rewrite
the equation in the succinct form,
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d

d�
ða20Ið�ÞÞ ¼

1

ð�2 � 1Þ3=2ð�02 � 1Þ1=2 : (A25)

Integrating both sides and dividing across by Ið�Þ, we get

a20 ¼
��ð�02 � 1Þ1=2 þ fð�0Þð�2 � 1Þ1=2ð�02 � 1Þ

ð�2 � 1Þð�02 � 1Þ½�0ð�2 � 1Þ1=2 � �ð�02 � 1Þ1=2� ;

(A26)

where fð�0Þ is a function of �0 only (arising as the integra-
tion ‘‘constant’’ in the integral with respect to �) and is
chosen in such a way that a0 is symmetric in � and �0. This
condition fixes fð�0Þ to be

fð�0Þ ¼ �0

ð�02 � 1Þ (A27)

so that

a0 ¼ 1

ð�2 � 1Þ1=2ð�02 � 1Þ1=2 : (A28)

Similarly, equating terms that are linear in R, we obtain

f2ð�02�1Þ1=2ð�0ð�2�1Þ1=2��ð�02�1Þ1=2Þgda1
d�

þ6ð�02�1Þ1=2
ð�2�1Þ ½��0ð�2�1Þ1=2þð1��2Þð�02�1Þ1=2�a1

þ a0
ð�2�1Þ2¼0; (A29)

where we have used the fact that

da0
d�

¼ � �

ð�2 � 1Þa0: (A30)

Dividing across by the coefficient of the first term, we may
rewrite as

0¼da1
d�

þ 3a1½��0�ð�2�1Þ1=2ð�02�1Þ1=2�
ð�2�1Þ1=2½�0ð�2�1Þ1=2��ð�02�1Þ1=2�

þ a0

2ð�02�1Þ1=2ð�2�1Þ2½�0ð�2�1Þ1=2��ð�02�1Þ1=2�:
(A31)

With an integrating factor

Ið�Þ ¼ 1

�03 ½�0ð�2 � 1Þ1=2 � �ð�02 � 1Þ1=2�3 (A32)

the equation for a1 may be solved in an analogous way to
give

a1 ¼ � 1

6

1

ð�2 � 1Þ3=2ð�02 � 1Þ3=2 : (A33)

In fact, all of the ak’s may be obtained in this way
(though the algebra becomes increasingly cumbersome).
The first few terms are

a0 ¼ 1

ð�2 � 1Þ1=2ð�02 � 1Þ1=2 ;

a1 ¼ � 1

6

1

ð�2 � 1Þ3=2ð�02 � 1Þ3=2 ;

a2 ¼ 3

40

1

ð�2 � 1Þ5=2ð�02 � 1Þ5=2 ;

a3 ¼ � 5

112

1

ð�2 � 1Þ7=2ð�02 � 1Þ7=2 ;

a4 ¼ 35

1152

1

ð�2 � 1Þ9=2ð�02 � 1Þ9=2 ; etc:

(A34)

The coefficients here may be shown by induction to cor-
respond to the series

cosh�1ððxþ 1Þ1=2Þ ¼ x1=2 � 1

6
x3=2 þ 3

40
x5=2

� 5

112
x7=2 þ 
 
 
 (A35)

Therefore, we have that Uðx;x0Þ is given by

Uðx;x0Þ ¼ cosh�1

��
R

ð�2 � 1Þð�02 � 1Þ þ 1

�
1=2
�

¼ cosh�1

�
��0 � cos


ð�2 � 1Þ1=2ð�02 � 1Þ1=2
�
: (A36)

The closed form expression for the Green’s function on the
dimensionally reduced Bertotti-Robinson space-time is,
therefore, given by

G!ðx;x0Þ ¼ e�!�

R1=2
(A37)

where

cosh� ¼ ��0 � cos


ð�2 � 1Þ1=2ð�02 � 1Þ1=2 : (A38)

Equating Eq. (A37) with its equivalent mode-sum
expression yields the following new summation formula
for associated Legendre functions of arbitrary order:

X1
l¼0

ð2lþ 1ÞPlðcos
Þe�i!�P�!
l ð�<ÞQ!

l ð�>Þ

¼ e�!�

ð�2 þ �02 � 2��0 cos
� sin2
Þ1=2 : (A39)

It is worth noting that, since the derivation of the closed
form expression did not impose any restrictions on !, this
result is valid for arbitrary complex !. In the case where
! ¼ n, an integer, then the left-hand side is invariant under
n ! �n and so we must choose! ¼ jnj on the right-hand
side to reflect this. This summation formula was crucial in
obtaining the closed form representation of the Green’s
function in the Boulware vacuum and for a field at an
arbitrary temperature in Sec. III.
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There are also contexts in which it is useful to be able to
write a product of associated Legendre functions as an
integral whereby all of the dependence on the order of
the Legendre functions is contained in an exponential
function. For example, multiplying on both sides by
Pl0 ðcos
Þ and integrating with respect to cos
, we arrive at
e�i!�P�!

l ð�<ÞQ!
l ð�>Þ

¼ 1

2

Z 1

�1
dðcos
Þ e�!�Plðcos
Þ

ð�2 þ �02 � 2��0 cos
� sin2
Þ1=2
(A40)

where we used the standard normalization for the Legendre
functions [27]Z 1

�1
PlðxÞPl0 ðxÞdx ¼ 2

ð2lþ 1Þ�ll0 : (A41)

Such integral representations are useful since the only
dependence on the noninteger order is in the argument of
the exponential, which is typically easier to sum or inte-
grate in a mode-sum expression. In Ref. [36], we have used
result (A40) to obtain a closed form solution for the
retarded Green’s function for a static scalar particle in
the Kerr space-time and, hence, obtain the self-force for
such a particle.

A similar but more succinct form may be obtained by
changing the integration variable to �,

e�i!�P�!
l ð�<ÞQ!

l ð�>Þ
¼1

2

Z �þ

��
d�e�!�Plð��0�ð�2�1Þ1=2ð�02�1Þ1=2cosh�Þ;

(A42)

where

�� ¼ cosh�1

�
��0 � 1

ð�2 � 1Þ1=2ð�02 � 1Þ1=2
�
: (A43)

Yet another form may be obtained by further changing
the radial variable � ¼ cosh� which decouples the
‘‘primed’’ coordinates from the ‘‘unprimed’’ coordinates
in the integration limits, yielding

e�i!�P�!
l ð�<ÞQ!

l ð�>Þ
¼ 1

2

Z �þ

��
d�e�!�Plðcosh� cosh�0 � sinh� sinh�0 cosh�Þ;

(A44)

where now the limits of integration are given by

�� ¼ � log

�
tanh

�
�<

2

��
� log

�
tanh

�
�>

2

��
: (A45)
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