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Topics in Deep Learning and Optimization Algorithms for

IoT Applications in Smart Transportation

Hongde Wu

Abstract

Nowadays, the Internet of Things (IoT) has become one of the most important
technologies which enables a variety of connected and intelligent applications in
smart cities. The smart decision making process of IoT devices not only relies on
the large volume of data collected from their sensors, but also depends on advanced
optimization theories and novel machine learning technologies which can process
and analyse the collected data in specific network structure. Therefore, it becomes
practically important to investigate how different optimization algorithms and ma-
chine learning techniques can be leveraged to improve system performance for real
world IoT applications in a graph-based environment.

As one of the most important vertical domains for IoT applications, smart trans-
portation system has played a key role for providing real-world information and ser-
vices to citizens by making their access to transport facilities easier and thus it is
one of the key application areas to be explored in this thesis.

In a nutshell, this thesis covers three key topics related to applying mathematical
optimization and deep learning methods to IoT networks. In the first topic, we
propose an optimal transmission frequency management scheme using decentralized
ADMM-based method in a IoT network and introduce a mechanism to identify
anomalies in data transmission frequency using an LSTM-based architecture. In
the second topic, we leverage graph neural network (GNN) for demand prediction
for shared bikes. In particular, we introduce a novel architecture, i.e., attention-
based spatial temporal graph convolutional network (AST-GCN), to improve the
prediction accuracy in real world datasets. In the last topic, we consider a highway
traffic network scenario where frequent lane changing behaviors may occur with
probability. A specific GNN based anomaly detector is devised to reveal such a
probability driven by data collected in a dedicated mobility simulator.
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Chapter 1

Introduction

Abstract: In this chapter, we present an overview knowledge of the Internet of

things and smart transportation as our research background. With these back-

ground, we highlight the research objective and key contributions. We organise this

chapter as follows: in section 1.1 we introduce the Internet of things and smart

transportation to readers as our work is based on this context; in section 1.2 we dis-

cuss the research problems and objectives and highlight the research contributions

in section 1.3; in section 1.4 we describe the thesis structure which matches with

our research contributions in specific chapters.

1.1 Overview

Internet of Things (IoT) has played a key role in our daily life as it enables various

intelligent applications in our cities. As one of the applications of IoT, which is

most related to our daily travelling, smart transportation has served our citizens

by offering real-world information and making transport facilities more convenient.

Here we give a short background of IoT and smart transportation to provide a better

scope that this thesis will cover.
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1.1.1 Internet of things

The Internet of Things (IoT) is a paradigm which is increasingly getting attention

in modern wireless telecommunications. The basic concept of IoT is that ubiquitous

objects around us, such as sensors and mobile phones, are able to communicate

and cooperate with each other to solve a common problem [3]. Specifically, the

IoT network includes a variety of smart devices with the functions of connecting,

exchanging and sharing data with each other over the Internet [4]. In order to

enable these functions in IoT networks, one of the key technologies is the Radio-

Frequency IDentification (RFID) technology, which allows smart devices to exchange

the information of device identification to the target receivers (e.g., Cloud facilities)

by using RFID identifier [5]. Another foundational technique is the wireless network

used for connecting intelligent devices to monitor the environment. With these two

techniques, an IoT system can capture real-time environmental data through sensors

embedded in IoT devices. The data emitted from the system can be transmitted

to the Cloud via gateways for further storage, process and analysis [6]. Typically,

in a cloud-dominant centralised architecture, Artificial Intelligence (AI) enabled

computing nodes are often integrated and implemented at the cloud side, with an

intention to collect the useful information from the transmitted data centrally and

provide better insight for users to make decisions. Some recent IoT applications

relying on this architecture are described in the following works, such as in the field

of healthcare monitoring, traffic monitoring and environmental resource monitoring

[7–11].

In a word, with the advances in wireless communication and sensor networks, IoT

has been gaining attention in the area related to our daily life and more and more

’things’ or smart objects are being involved in IoT networks. As a result, these

IoT-related technologies have also made a large impact on new information and

communications technology (ICT). However, the advanced IoT networks also come

with inevitable shortcomings, especially those usually require the decision-making

process to be conducted at the device side or edge side for better security [12] and
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privacy protection [13]. Specifically, in a typical IoT scenario where data streams

from various IoT devices can be transmitted to the Cloud and stored on a cloud

database. Our initial observation is that most IoT devices start to transmit data

at a fixed transmission frequency, and such a transmission frequency is typically

set by default or pre-defined by the device manufacturer with limited options made

available to users. However, some advanced IoT devices with edge intelligence, e.g.

Raspberry Pis and the Jetson series toolkit from Nvidia, can now be programmed

to promptly respond to changes in the external environment [14,15], and can also be

deployed with deep learning algorithms to satisfy stringent low-latency transmission

requirements for time-sensitive IoT applications [16, 17]. This approach does not

sufficiently cater for a practical situation where groups of IoT devices may work

collaboratively with limited system resources restricted by the operational environ-

ment. In fact, implementing IoT devices in a resource-constrained environment may

impose two interesting problems in the design of IoT networks: 1) how to determine

an adaptive transmission frequency for each IoT device so that an overall utility

of the group of devices can be maximised in response to the dynamic changes of

the environment; 2) how to ensure that different kinds of network resources can be

better managed in a way that heterogeneous IoT devices can be engaged with the

network in a secure, privacy-aware and plug-and-play manner. In order to address

the mentioned problems, the first topic of this thesis is to propose a transmission fre-

quency system for edge devices in an IoT network with a robust anomaly detection

mechanism.

1.1.2 Smart transportation

On the one hand, IoT has played a key role in enabling the smart city, which com-

bines data collection, analysis and decision making [18]. On the other hand, the

smart city has become a terminology along with IoT, a novel city management ap-

proach to establish a collaborative society, where the data from daily life is leveraged

to provide decisions for city management [19].
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Obviously, as the population is growing, the need for transportation increase dra-

matically and therefore smart transportation becomes the most challenging part of a

smart city. To enable smart applications in modern transportation, advanced tech-

nologies, e.g. intelligent transportation system (ITS), have been proposed to provide

creative insight for traffic management and improve user experience by providing

proper information about the traffic network [20]. For instance, a smart parking

system can save time for drivers, by informing drivers of the availability of parking

spaces [21]; carbon emissions and pollutants may also be minimised by recommend-

ing a shortest path to drivers for their parking search process [22]. To sum up,

smart transportation has shed a light on modern traffic management and satisfied

the need of citizens in daily commuting. However, there are still open problems in

smart transportation, such as traffic demand prediction, accident prevention, traffic

flow prediction; cloud-based multi-agents planning; energy consumption [23], which

are more challenging to deal with using conventional means of traffic management.

Bike availability prediction

As one of the common modes of transportation, bikes provide a healthy and conve-

nient way for short-distance travel and sharing bikes have become prevalent in our

cities. Also, an efficient bike-sharing system can not only reduce cost and commute

time for urban commuters but also effectively mitigate the level of air pollution

emissions generated in cities [24]. However, bike availability prediction is one of

the challenging problems in traffic demand prediction because the available number

of bikes tends to be unbalanced, particularly at peak demand dates and hours [25].

Therefore, an important consideration to make the bike-sharing system efficient is to

balance supply and demand in the bike-sharing network [26]. To do this, traditional

management methods such as manual monitoring systems, have been deployed to en-

able the relocation of bikes across different stations using other means of transporta-

tion, e.g. trucks [27, 28]. However, this approach can easily lead to supply-demand

imbalance due to estimation errors of system operators and unexpected traffic delays
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during the bike transition. Thus, due to the uncertainty of departure and arrival

of bikes at any bike station, it is important to take a more proactive approach by

accurately predicting the number of bikes that will be available for users to access

at any given time and location. However, on the topic of traffic demand prediction,

most of the work focus on taxi demand/availability prediction [29, 30] and limited

work discusses the topic of availability prediction for sharing bike. Meanwhile, the

current approaches are not able to forecast the availability precisely because of the

weakness in traffic feature extraction and modelling. Therefore, in this thesis, the

problem of sharing-bike availability prediction using graph neural network (GNN)

is our second topic to discuss.

Lane change detection

As another challenge of smart transportation, accident prevention ensures driving

safety and deserves more attention. Even if the traffic suggestions and regulations

have been authorized to ensure a safe driving environment and minimise the chances

of a traffic accident as much as possible, malicious driving intentions (e.g., acute ac-

celeration; frequent lane changing) still play a threat to traffic safety and disturb the

normal traffic flow. For instance, a speed advisory system (SAS) offers speed guid-

ance for ensuring driving safety, but the vehicles tend to be driven with unexpected

acceleration and lane changing behaviours [31], once they leave the road segment

with SAS. Therefore, detection of driving intentions has been involved in traffic man-

agement, alarming for intervention when the driving safety may be under threat,

such as traffic incidents [32] [33], traffic congestion [34] and malicious driving [35].

It is worth paying attention to frequent lane changing, which may easily result in

severe traffic accidents on highway networks. Existing approaches, such as hidden

Markov model (HMM) [36] and LSTM-based methods [37,38], have been found less

capable in dealing with the lane changing detection problems as they can not model

the traffic data with natural geographical information (e.g, the connection between

lanes) sufficiently. Therefore, the last topic in this thesis concerns the detection for
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lane changing intention using GNN to leverage the geographical information on the

highway network, to improve the detection performance.

1.2 Research objectives

Research objectives 1: Optimise transmission frequencies for edge devices in IoT

network with robust anomaly detection mechanism.

We consider the two problems of the design of IoT networks, as discussed in

section 1.1.1. Our key assumption is that different IoT devices may have different

priority levels when transmitting data in a resource-constrained environment and

that those priority levels may only be locally defined and accessible by edge devices

for privacy concerns. With these in mind, the research objective is to optimise the

transmission frequencies for a group of IoT edge devices under practical constraints.

We aim at establishing a transmission frequency management system which can

allocate optimal transmission frequencies to IoT devices and maximise the overall

utility of the edge devices in the IoT network in a decentralised manner. In order

to ensure the security of the system, we shall also devise an anomaly detector, on

top of the designed optimal transmission management system, which can effectively

identify abnormal transmission frequencies in different settings. The anomaly de-

tector is expected to only leverage limited information from the IoT system. We

will investigate both mathematical rule-based and deep learning based approaches,

and examine their efficacy in tackling such challenges.

Research objectives 2: Availability prediction for the sharing-bike scheme using

spatial-temporal graph convolutional network.

As to a research topic related to smart transportation, we first consider the prob-

lem of availability prediction for sharing bikes. The research objective is to present

a availability prediction system which can forecast the available number of sharing

bikes among different bike stations accurately and promptly using models trained

on realistic data. In particular, spatial-temporal graph convolutional network (ST-

GCN), as a powerful variant of graph convolutional networks (GCN) which aims
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to capture the relationship of data contained in the graphical nodes across both

spatial and temporal dimensions, is applied for improving the prediction accuracy.

Recently, graph based solutions have caught much attention in the literature as

they have shown efficacy in improving traffic management. We shall apply spatial-

temporal graph convolutional network (ST-GCN) to capture the relationship of data

between graph nodes and compare its performance with other schemes to illustrate

its efficacy in chapter 3. Moreover, the impacts of different modelling methods of

adjacency matrices shall be investigated.

Research objectives 3: Detecting lane changing intention on highway network

scenario using graph neural network.

The last research objective is related to driving safety. As mentioned previously

in section 1.1.2, frequent lane changing intention threatens driving safety on the

highway network. The objective of this part is to develop an algorithm which is

able to detect the frequent lane changing behaviour on highway network using graph-

based deep learning methods. As we shall see, the proposed algorithm will be able

to forecast the lane changing probability of vehicles on a segment of the highway

network in real-time.

1.3 Thesis contributions

The thesis discusses three topics related to IoT and smart transportation. The

contributions of the thesis can be summarised as followed:

� In chapter 2, we propose a transmission frequency management system which

is able to find the optimal transmission frequency for each IoT device, in order

to maximise the overall utility in a resource-constrained, privacy-aware envi-

ronment. Design an anomaly detector to ensure the transmission frequencies

of the proposed IoT transmission frequency management system are in good

order.

� In chapter 3, we design a deep learning architecture by combining attention
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mechanism with the spatial-temporal graph neural network, to better predict

the sharing-bike availability based on realistic datasets. Furthermore, we also

discuss the impacts of different modelling methods of adjacency matrices on

the proposed architecture.

� In chapter 4, we apply a refined version of a graph neural network, to predict

the lane changing intention and analysis the pattern of driving data for the

purpose of model interpretability.

1.4 Thesis structure

The thesis is organised as follows:

� Chapter 1 introduces the background, our research objectives, thesis contri-

bution and structure.

� Chapter 2 approaches the first research objective by applying optimisation and

deep learning method to IoT systems.

� Chapter 3 achieves the second research objective by leveraging graph neural

networks to forecast the sharing-bike availability, based on the data collected

by IoT devices embedded in bike stations.

� Chapter 4 tackles the third research problem by using graph neural network

to analyse the driving patterns and predict the lane changing intention, based

on the data generated from a novel mobility simulator.

� Chapter 5 summarises the thesis and highlights the potential directions for

future work.
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Chapter 2

Transmission frequency

management system in IoT

network

Abstract: In this chapter, we propose a transmission frequency management sys-

tem with anomaly detector in the context of the Internet of Things. The anomaly

detector is able to enhance the system security by detecting different types of manip-

ulations, which lead the IoT devices to transmit data violating the desired transmis-

sion frequencies. The work presented in this chapter has been published in [39,40].

2.1 Introduction

In a cloud-based IoT solution, data from various IoT devices need to be pushed

to cloud-based database instances in real-time. However, the capacity of storage

space is limited. For instance, an IBM Cloudant database instance allows 1 GB of

data storage with 10 writes/sec for its Lite Plan users, and 20 GB of data storage

with 50 writes/sec for its Standard Plan users [41]. Given this scenario with the

limited storage resource, if the Maximum Writing Frequency (MWF) of the data

is not managed properly, it can be envisioned that a writing congestion event, e.g.

a REST-API writing failure, can be triggered for a group of IoT devices. Also,

23



another concern is on privacy, which, in our context, refers to the fact that the

mapping between the utility and the transmission dynamics of a given IoT device

should not be revealed to any unrelated devices, third-party gateways and untrusted

cloud units or instances. If this mapping information is revealed publicly it may be

possible for an attacker to identify which IoT device is more vulnerable in a given

system [42].

To solve this challenge, in this chapter we propose a transmission frequency man-

agement system for IoT edge devices in a decentralized architecture with anomaly

detection mechanisms. Thus the MWF can be managed optimally by a group of

IoT devices and any abnormal writing frequency occurrences can be detected by the

gateway. To carry out optimisation, we assume that each IoT device is associated

with a utility function with some concavity [43, 44], in a way that only the user of

the device can specify. Here, the utility refers to how a user can practically benefit

from a given Data Flow Writing Frequency (DFWF). For instance, a utility function

can easily describe the accuracy of a trained model with respect to DFWF of a given

IoT device for an Edge AI type of IoT application [45]. Furthermore, as previously

mentioned, such a utility function may also potentially reflect the significance or

vulnerability of an IoT device in a specific scenario. For instance, a faster trans-

mission frequency of a webcam in a bank system may be more desirable, i.e., have

higher utility, especially in an emergency, than that of a CO2 detector.

With this idea in mind, our main objective in our system is to maximise the over-

all utility of the group of IoT devices given the predefined and limited MWF and

storage capacity of the database. We will show that the presented challenge can be

formulated as a concave optimisation problem with constraints. This problem will

then be solved using the well-known Alternating Direction Method of Multipliers

(ADMM) algorithm [46] in a decentralised optimisation framework where each utility

function is locally defined on the edge device and will not be revealed to any unre-

lated devices and untrusted management platforms, such as other smart gateways

and cloud units/instances. The proposed solution aims to provide flexibility in data
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transmission for IoT systems and applications, especially in resource-constrained

environments. As we shall see, the designed system is fully autonomous and can

be easily deployed to optimally manage various IoT transmission frequencies with

anomaly detection capabilities.

We note that significant work on anomaly detection has been undertaken in IoT

context: for instance, Liu et al. [47] proposed a detector for on and off attack by

a malicious network node in an industrial IoT site; Anthi et al. [48] represented

an intrusion detection system for an IoT system to identify the Denial of Service

(DoS) attacks; Ukil et al. [49] discussed the detection of anomalies in healthcare an-

alytics based on IoT by analysing the cardiac signal; and Hu et al. [50] proposed a

Context-augmented Graph Auto-encoder (Con-GAE) for anomaly detection in traf-

fic monitoring. However, the anomalies defined in these works are largely based on

tempering with contents in data packets transmitted by IoT devices (e.g., changing

a data value from “A” to “B” in the transmitted file [51]) and no approach has been

found on anomaly detection for an IoT data transmission frequency system involved

with an optimal iterative scheme. Therefore, in this thesis, we are interested in de-

tecting the malicious manipulations leading to a change of transmission frequency

as a result of the anomalies happening on the edge devices.

The contributions of this chapter can be summarised as follows:

1. We propose an optimisation framework for an IoT network so that the trans-

mission frequency of the connected IoT devices can be dynamically adjusted

to their optimal values in a low latency through an ADMM-based iterative

optimisation method.

2. We design an anomaly detector on top of the frequency management system,

which is able to infer anomalies that may occur in the underlying transmission

management system in real-time.

3. We propose both mathematical rule-based and deep-learning-based approaches

for detecting anomalies in the IoT transmission frequency management system.
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In particular, the rule-based approach is designed to reveal anomalies in the

system based on fundamental optimisation theory, and the deep-learning ap-

proach aims to establish a prediction model based on sequential data analysis

in system implementations.

4. We conduct a comprehensive comparative study using both anomaly detector

strategies and demonstrate the strengths and weaknesses of the two approaches

in both simulated and practical working environments.

The remainder of this chapter is organised as follows. In section 2.2, the architec-

ture of the proposed system is presented. The optimisation problem is formulated

in section 2.3 and its implementation is discussed in section 2.4. The experiments

of transmission frequency management and results are discussed in section 2.5. The

anomaly detection mechanisms are demonstrated in section 2.6. The real-world ex-

periment for anomaly detection is presented in section 2.7 and the corresponding

results are discussed in section 2.8. Finally, a conclusion for this chapter is provided

in section 2.10.

2.2 System Architecture

Our proposed system architecture is illustrated in Fig. 2.1. The system consists of

four main components, including IoT edge devices, gateways, a cloud platform and

users. The main functionalities of each component are described as follows:

1. IoT devices: sensors/devices connected to a gateway, having the capabili-

ties of defining utility functions and the ability to solve a local optimisation

problem in a decentralised manner.

2. Gateway: collects data from IoT devices/sensors, passes data to the Cloud,

and conducts basic data processing tasks including anomaly detection to pro-

tect and inform users.

3. Cloud platform: a central hub for data analysis, monitoring and storage.
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4. Users: the owner of the IoT devices who wishes to use the IoT devices in

some collaborative application scenarios.

In the proposed system, a gateway starts by waiting for a connection from IoT

devices. When an IoT device initially connects to the gateway, the decentralised

optimisation algorithm is activated to calculate the optimal transmission frequencies

for all connected devices whilst taking account of the resource constraints of the

system. After that, the gateway starts to collect data streams from all IoT devices

after the transmission frequencies are established. Finally, data collected by the

gateway is transmitted to the cloud platform for data storage and further analysis

of the IoT devices if specifically requested by the users.

Figure 2.1: Schematic diagram of the system architecture.
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2.3 Problem Statement

We now present the specific problem statement to be solved in this chapter. A

user wishes to determine the optimal DFWF of every IoT edge device so that the

overall utility of the whole group can be maximised, given N , the number of devices

connected to the gateway, the utility fi(xi) of the i
th device with current DFWF xi,

MWF c, total data storage (e.g., in unit MB) available per received data packet,

d, and ai the data size (e.g., in unit MB) required for the i’th device per writing

request.

Mathematically, this problem can be formulated as follows:

max
x1,x2,...,xN

N∑
i=1

fi (xi) ,

such that
N∑
i=1

xi ≤ c,
N∑
i=1

aixi ≤ d, xi ≥ 0

(2.1)

We shall only require that each utility function fi(xi) can be modelled as a contin-

uously differentiable, non-decreasing, strictly concave function, which is a common

assumption for modelling the utility of internet data traffic [52]. For example, utility

functions may be modelled as a cluster of negative quadratic functions.

2.4 System Implementation

The classic ADMM algorithm proposed in [46] is particularly suited to solving the

formulated optimisation problem (2.1) as the problem can be converted to a convex

optimisation problem with convex constraints. Here we briefly recall the ADMM

algorithm for solving (2.1), which is shown in Algorithm 1, where x and z are

updated in an alternating fashion and u is a dual update variable.

Algorithm 1 ADMM Algorithm

1: xk+1 := argmaxx(
N∑
i=1

fi(xi) + (ρ/2)||x− zk + uk||22)

2: zk+1 := ΠC(x
k+1 + uk)

3: uk+1 := uk + xk+1 − zk+1
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Note that the above ADMM algorithm can be implemented in a decentralised

manner as our objective function is separable which implies that both x and u

vector updates in the algorithm can be implemented in parallel. Finally, the z

update depends on inputs from both x and u. Given these inputs, the projection

operator ΠC projects the resulting vector to the constrained convex space C. Thus,

the z update needs to be implemented on gateway. Note that ρ is the augmented

Lagrangian parameter and we take ρ = 1.0, being equivalent to a ρ/2 step size in x

update. The ADMM algorithm in its decentralised format is shown in Algorithm 2.

Algorithm 2 Decentralised ADMM Algorithm

1: xi
k+1 := argmaxxi

(fi(xi) + (ρ/2)||xi
k − zi

k + ui
k||22)

2: zk+1 := ΠC(x
k+1 + uk)

3: ui
k+1 := ui

k + xi
k+1 − zi

k+1

With this algorithm in mind, the proposed system can be implemented in the

following steps, which are illustrated in Fig. 2.2.

S1: During the initialisation stage, a user needs to specify some parameters before

running the algorithm. This includes N , c, d, ai and the utility function fi(xi)

of each device.

S2: When the initialisation step finishes, the ADMM algorithm will be imple-

mented in an iterative manner on the edge IoT devices to determine the opti-

mal DFWF by computing the optimal xi
k+1 as per Algorithm 2.

S3: During each iteration, the gateway gathers all the optimal xi
k+1 from all de-

vices, calculates and broadcasts the updated z value to local edge devices.

Upon receiving the z value, each edge device updates ui
k+1 correspondingly.

S4: If there are any resource changes during runtime, the algorithm can dynam-

ically capture the changes to recalculate the optimal solution given the new

context.

S5: When the algorithm converges, the optimal DFWF will be set by each device,

and these devices can then start pushing data to the cloud accordingly.
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S6: The gateway keeps monitoring the data injection and detects if an anomaly

happens on any of the transmission frequencies. If so, the user will be alerted

and the optimal solution will be recalculated and reset after the anomaly has

been remedied. We note that the legitimate reconfigurations of the system

should not be identified as anomalies. Instead, the devices notify the gateway

when legitimate changes happen, and the system executes step S4.

S7: Finally, all transmitted data streams will be stored on the cloud and an au-

thorised user can leverage the stored data for visualisation and analysis by

making a request.

2.5 Experiment results on optimal transmission

frequency allocation

This section presents simulation results to evaluate the performance of the proposed

system. As shown in Fig. 2.3, the system consists of a laptop as the central node (i.e.,

as a smart gateway in this work), three IoT devices (Raspberry Pi), and a router for

the communication between the gateway and the IoT devices. Typically, IoT devices

connect to the router in a wireless manner. However, in our setup, since the IoT

devices do not have the capability of wireless transmission, they transmit data to the

router via cables, and the laptop communicates with router wirelessly. Decentralised

ADMM optimisation and data transmission are implemented on both the gateway

and devices via socket programming. System parameters for the simulations are set

as N = 3, c = 10, d = 15, a1 = 2, a2 = 3, and a3 = 5. The utility functions in this

simulation are presented in Table 2.1 and have the characteristics previously specified

to successfully apply the ADMM algorithm. We note that the utility functions are

required to be concave based on optimisation problem 2.1 and the utility functions

in Table 2.1 are selected as our examples. We simulate the system in two scenarios:

a) resources are sufficient for the data transmission request, and b) resources are
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Figure 2.2: System implementation flowchart.

insufficient for the data transmission request from all devices. For each device i, its

transmission frequency xi is defined as data is transmitted xi times per second. In

particular, xi = 0 implies that the ith device is not transmitting data. Thus, for each

device, an extra constraint, xi >= γi applies to indicate the minimum transmission

frequency. For simplicity, we set γ1 = γ2 = γ3 = 1 in our simulation.

It is worth noting that the gateway is not able to access the utility function

of each device in order to cater for privacy concerns, and also that the transmis-

sion frequency of each device is calculated locally and not explicitly exposed to the

gateway. However, a DFWF may be estimated by the gateway by evaluating the
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Figure 2.3: System simulation device setup.

time intervals of the consecutively received data packets and an averaged DFWF is

calculated over 300 data packets after the optimal DFWF is assigned.

Table 2.1: Utility Functions for transmission frequency allocation experiment

Device index Utility Functions

1 f1(x1) = −(x1 + 9)2 − x3
1 + 900

2 f2(x2) = −(x2 − 4)2 + 500

3 f3(x3) = −(2x3 + 3)2 − x3
3 + 110

2.5.1 Allocation with sufficient resources

In this scenario, only device 1 and device 2 are connected to the gateway (i.e.,

parameter N = 2) and all other system parameters are kept as c = 10, d = 15,

a1 = 2, a2 = 3 with the associated utility functions f1(x1) and f2(x2) shown in

Table 2.1. With these parameters, the theoretical optimal results of the ADMM

implementation are x∗
1 = 1 and x∗

2 = 4 for the optimisation problem 2.1. This result

implies that the gateway expects to receive 1 and 4 data packet(s) per second from

device 1 and 2 on average. In this setup, the capacity provided by the system is

sufficient since x∗
1+x∗

2 < c and a1 ∗x∗
1+ a2 ∗x∗

2 < d. With the decentralised ADMM

implemented using the simulation setup, the optimisation results and resource con-

sumption of the system are illustrated in Fig. 2.4 and Fig. 2.5, respectively. In
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particular, Fig. 2.4 shows the evolution of the calculated DFWF for both devices

as estimated by the gateway. The DFWFs are estimated along with the number of

received data packets, indicated by the red and green lines for device 1 and device 2,

respectively. Concretely, our results show that the estimated DFWFs are 0.9984 Hz

and 3.9318 Hz for device 1 and 2, respectively, as shown in Table 2.2, which result

in a 1.6 ms delay for device 1 (i.e., calculated by 1
ActualDFWF

− 1
TheoreticalDFWF

) and

a 4.3 ms delay for device 2. The estimated DFWFs are just slightly below the the-

oretical optimal DFWFs, indicated by the dotted line in Fig. 2.4. The decrease of

the DFWF may be accounted for by the internet speed, while the communication

between the gateway and the devices is based on a router. Meanwhile, we find that

the fluctuation of the estimated DFWFs is caused by the data jamming when the

gateway is receiving data packets from IoT devices with high writing frequency. Fig.

2.5 shows the sum of DFWFs as well as the size of total data packets of all connected

devices per second transmitted to the gateway. The dotted line indicates the max-

imum total DFWF (in red) and received data size (in green) for each data packet.

Since the system can provide sufficient resources, the total DFWF and the writing

data size have not reached the resource boundary after the transmission frequencies

are optimised, indicating that the proposed system is robust as long as the system

resources are sufficient for this specific data transmission task.

Table 2.2: Simulation results (average) with sufficient system resource

DFWF (Hz) DFWF (Hz)

Device 1 Device 2

Theoretical 1.0000 4.0000

Actual 0.9984 3.9318

Absolute Error 0.0016 0.0682

2.5.2 Allocation with insufficient resources

In this scenario, after device 1 and device 2 have connected to the gateway and

the optimised transmission frequencies have been calculated, a new device, device
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Figure 2.4: Decentralised optimisation process of transmission frequencies for Device
1 and Device 2.

3, connects to the gateway and the timing of connection is recorded. Given N = 3,

c = 10, d = 15, a1 = 2, a2 = 3, a3 = 5 and the corresponding utility functions

f1(x1), f2(x2), f3(x3) reported in Table 2.1, the theoretical optimal results of the

ADMM implementation are calculated as x∗
1 = 1.00, x∗

2 = 2.66 and x∗
3 = 1.00

for optimisation problem 2.1. This result implies that, on average, the gateway

expects to receive 1, 2.66 and 1 data packet(s) per second from devices 1, 2, and 3

respectively.

Based on the simulation platform, the decentralised optimisation process and

system resource usage are shown in Fig. 2.6 and Fig. 2.7 in the scenario of in-

sufficient resources. We note that before the connection of device 3, device 1 and

device 2 transmit their data packets under the corresponding optimised transmis-

sion frequencies exactly as described in the first scenario with sufficient resources.

As shown in Fig. 2.6, after the device 3 connects to the system (indicated by the

red arrow), the DFWF of device 2 is readjusted and converges to a new optimal

value. The DFWF of device 1 remains unchanged since the recalculated optimal re-

sult equals the previously assigned DFWF before the connection of device 3. After

the decentralised ADMM solution is found for device 3 (indicated by the magenta
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Figure 2.5: System resources consumption.

circle), device 3 pushes data packets to the gateway using its optimal DFWF. After

all three devices are transmitting data steadily (i.e., after the magenta circle), our

results show that the estimated DFWFs are 0.9984 Hz, 2.6410 Hz and 0.9984 Hz

for device 1, 2, and 3, respectively, which are reported in Table 2.3. Again, these

estimated DFWFs are slightly below the theoretical optimal DFWFs, indicated by

dotted lines, reflecting time delays of 1.6 ms, 3.7 ms and 1.6 ms (i.e., calculated by

1
ActualDFWF

− 1
TheoreticalDFWF

) for devices 1, 2, 3, respectively during their transmis-

sions.

After the optimal transmission frequencies are established, as shown in Fig. 2.7,

device 3 starts to push data (marked by the magenta circle) and the total writing

data size reaches the level of the system resource boundary immediately. This indi-

cates that the proposed system is able to reallocate the system resources to finish the

data transmission task effectively using the ADMM approach. Finally, for compar-

ison purposes, we evaluate the overall utility under the ADMM-optimised DFWFs,

with non-optimised average distributed DFWFs (i.e., xi = c/N), and non-optimised

proportionally distributed DFWFs (i.e., xi = (ai ∗ c)/
∑

ai) as two baselines given

the same MWF c. The results shown in Table 2.4 find that the utility under ADMM-
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optimised DFWFs achieves the largest value, which demonstrates that the proposed

system obtains the best result compared to other trivial system setups that have

not undergone any optimisation process.

Figure 2.6: Decentralised optimisation process of transmission frequencies for Device
1, Device 2 and Device 3.

Table 2.3: Simulation results (average) with insufficient system resource

DFWF (Hz) DFWF (Hz) DFWF (Hz)

Device 1 Device 2 Device 3

Theoretical 1.0000 2.6667 1.0000

Actual 0.9984 2.6410 0.9984

Absolute Error 0.0016 0.0257 0.0016

Table 2.4: Utility Evaluation

DFWFs Utility Value

ADMM optimised 1381.22

Average distributed 1190.35

Proportionably distributed 1086.00
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Figure 2.7: System resource consumption in boundary conditions. The magenta
cycle shows the connection point of device 3.

2.6 Anomaly detection for changes of transmis-

sion frequency

While the transmission frequencies are determined and allocated by the system, all

the devices push data steadily with their specified DFWF. However, the transmission

frequencies can be tampered with both explicitly and implicitly. In other words, a

malicious attack to the device can not only manipulate the DFWF explicitly, but

also can modify the utility function (i.e., the input or function type), the system

transmission data size and the system resource, which leads to a change of DFWF

implicitly. In this section, the above manipulations are discussed for the examination

of abnormal transmission frequency detection at the gateway side.

We first consider the scenario of manipulating the DFWF explicitly. According

to the fundamental mechanism of the ADMM algorithm, the gateway only has access

to z. Since x achieves convergence to z eventually, as a specific example (i.e., z2 and

x2) shown in Fig. 2.8, we argue that the gateway is able to detect the anomaly of x

during the whole transmission process based on its knowledge of the latest value of

z. Specifically, this detection process can be described in the following three steps:
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Figure 2.8: Monitoring of z2 and x2 during the decentralised optimisation process
for Device 2.

S1: Gateway accesses the value of zi for each device.

S2: Gateway estimates the DFWF (i.e., the converged value of xi) for each device

according to the received time-stamped data flow.

S3: If the estimated DFWF is significantly different to the reference value of zi

(i.e., |zi − xi| ≥ δ, where δ is a threshold depending on the network delay),

the optimal transmission frequency can regard as anomalous and as being

manipulated.

However, the above detection process is not able to apply in some scenarios.

Given the transmission frequency management system described in Fig. 2.1 and

problem (2.1), there are other types of manipulations on the edge (i.e. including edge

devices and gateway) that can also lead to the changes in transmission frequencies.

Specifically, these manipulations can happen by changing the utility function input,

function type, data size requested per writing request (i.e. defined on edge devices),

maximum writing frequency and data storage (i.e. system resource allocated to the

gateway), leading to a new ADMM optimisation process with x value converging on
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z value. In general, when manipulations happen on the device j in the network, a

new optimisation process needs to be reactivated by solving the following problem:

max
x1,x2,...,xN

N∑
i=1,i ̸=j

hi (xi) + h∗
j (xj) ,

subject to
N∑
i=1

xi ≤ c,

N∑
i=1,i ̸=j

aixi + a∗jxj ≤ d, xi ≥ 0

(2.2)

where h∗
j and a∗j denote the new utility function and new data packet size after

tampering, respectively.

Clearly, there are many ways that an optimal transmission frequency xj can be

implicitly tampered. In our context, we consider the following specific definitions:

1. Manipulation on utility function input only: The independent variable

of the utility function is manipulated by adding an input factor with a small

given range, hj(xj) ⇒ hj(xj + input factor).

2. Manipulation on utility function type and input: The utility function

can be totally changed to anther type of concave function specified by the

utility function set of the system, i.e., hj(xj) ⇒ h∗
j(xj + input factor).

3. Manipulation on transmission data size: The data size aj required for

the j’th device per writing request is manipulated by adding a size factor with

a small given range, aj ⇒ aj + size factor.

Comment: It is also possible to affect the optimal transmission frequency xj and

xi, i ̸= j by manipulating system resource in a small given range, such as c ⇒

c +MWF factor and d ⇒ d + storage factor. In our definition, such manipulations

are regarded as a systematic adjustment as it is not directly related to any user-

specific property, e.g., hj, and thus it will be regarded as normal scenarios in our

anomaly detection analysis.

In addition, we also have the following assumptions in our problem 2.2.

1. We assume that at every given time only one edge device is manipulated, which
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is the fundamental basis for detecting an anomaly when multiple devices are

manipulated in our system.

2. We assume that the anomaly detector is a separate process running on the

gateway, and it can only access limited information on the gateway but not

all. More specifically, we assume that the anomaly detector can only access the

value of z and the sum of x and u , denoted by v , from the ADMM iterative

process at the gateway. It will never access the exact transmission frequency x

directly from the local devices and other resources/parameters shared between

devices and the gateway.

3. We assume that the anomaly detector starts to monitor anomalies in real-time

once the ADMM algorithm converges and local devices start pushing data to

the gateway. The device setting will be reset when any anomalies are detected,

and the optimisation process will be reactivated to reset the optimal solutions

for fair resource allocation as per the normal situation. To further illustrate

this point, the process of anomaly detection is shown in Fig. 2.9.

Figure 2.9: Anomaly detection and response process.
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We now introduce two approaches to address the anomaly detection problem,

namely a rule-based approach and a deep learning approach. The rule-based ap-

proach detects system anomalies based on the mathematical deduction, and the

deep learning approach solves the detection problem using collected experimental

datasets of the system. The rule-based approach is proposed as a baseline method

as we shall see it has some drawbacks in detecting system anomalies in detail.

2.6.1 Rule-based anomaly detection

Our objective is to investigate the behaviour of the optimised system before and

after manipulation. To this end, we borrow some fundamental concepts from the

optimisation theory, i.e. the Karush-Kuhn-Tucker (KKT) conditions [53] for the

optimisation problem (2.1) under study. For mathematical conventions, we now

rewrite the original optimisation problem (2.1) in the following format:

min
x1,x2,...,xN

N∑
i=1

fi(xi),

s.t.
N∑
i=1

xi ≤ c,
N∑
i=1

aixi ≤ d, xi ≥ 0

(2.3)

where fi (xi) := −hi (xi) is a convex function. The Lagrange equation of (2.3) is

presented as follows:

L(x , λ1, λ2) =
N∑
i=1

fi(xi) + λ1g1(x ) + λ2g2(x ) (2.4)

and the KKT conditions require the following to be held for optimality:

∂L

∂xi

=
∂fi(xi)

∂xi

+ λ1
∂g1(x )

∂xi

+ λ2
∂g2(x )

∂xi

= 0,

λ1, λ2 ≥ 0,

λ1g1(x ), λ2g2(x ) = 0

(2.5)

where ∂ is the operation of partial derivative (i.e., gradient), λ1, λ2 are Lagrange

coefficients for g1(x ), g2(x ) and x = (x1, x2, · · · , xN).
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Specifically, g1(x ) =
N∑
i=1

xi − c and g2(x ) =
N∑
i=1

aixi − d, which represents the

constraints in problem (2.3) with:

∂g1(x )

∂xi

= 1,

∂g2(x )

∂xi

= ai.

(2.6)

Clearly, the converged optimal solution will fall into one of the following situa-

tions with reference to system constraints.

Situation g1(x) = 0, g2(x) < 0

Given g2(x ) < 0, we have λ2 = 0 according to equation (2.5). The system is running

under
N∑
i=1

xi = c. Thus, for each device i, we have

∂L

∂xi

=
∂fi(xi)

∂xi

+ λ1
∂g1(x )

∂xi

=
∂fi(xi)

∂xi

+ λ1 = 0,

(2.7)

That is

∂f1(x1)

∂x1

=
∂f2(x2)

∂x2

= · · · = ∂fN(xN)

∂xN

(2.8)

for problem (2.3).

Considering the constraint
N∑
i=1

xi = c, when a manipulation results in an increase

of DFWF for device j (i.e. xj), at least one of xi (i ̸= j) decreases. Considering that

∂fi(xi)
∂xi

is monotonously increasing with respect to an increased xi (i.e. with convex-

ity), the decrease of xi will also decrease ∂fi(xi)
∂xi

. Consequently, ∂fi(xi)
∂xi

,∀i ̸= j, will

decrease as per (2.8), which indicates decrease of xi,∀i ̸= j. Therefore, an increase

of xj results in the decrease of transmission frequencies of all other devices xi,∀i ̸= j.
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Situation g1(x) < 0, g2(x) = 0

Given g1(x ) < 0, we have λ1 = 0 according to equation (2.5). The system is running

under
N∑
i=1

aixi = d. For each i, we have

∂L

∂xi

=
∂fi(xi)

∂xi

+ λ2
∂g2(x )

∂xi

=
∂fi(xi)

∂xi

+ λ2ai = 0,

(2.9)

where ai ≥ 0 since ai is the required data size. This implies

∂f1(x1)

∂x1

=
a1
a2

∂f2(x2)

∂x2

= · · · = a1
aN

∂fN(xN)

∂xN

(2.10)

for problem (2.3).

Similar to the first situation, without loss of generality, an increase of DFWF

for device j, xj, after a manipulation will lead to a decrease of at least one xi, i ̸= j

due to the equality constraint g2(x ) = 0. Since fi(xi) is convex, the decreases of

xi indicates a decrease of ∂fi(xi)
∂xi

. Given formula (2.10), we have that ∂fi(xi)
∂xi

,∀i ̸= j

decreases proportionally followed by the increase of xj, resulting a reduced xi,∀i ̸= j.

Situation g1(x) < 0, g2(x) < 0

Given g1(x ) < 0 and g2(x ) < 0, we have λ1 = 0 and λ2 = 0 according to equation

(2.5). Thus, the system is running within the boundary of system resources. For

each device i, we have

∂L

∂xi

=
∂fi(xi)

∂xi

, (2.11)

Considering that the system is running within the boundary of system resources,

manipulation on any device will not affect other devices. That is, for instance, when

a manipulation results in an increase of DFWF for device j (i.e. xj), other xi,∀i ̸= j,

remain unchanged since they were already optimised and the system resource is

sufficient to cover the extra needs for device j.
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Given the above discussion, we have observed that once the manipulation ac-

counts for a change of DFWF on a given device, DFWF of other devices will either

change oppositely or remain unchanged. Accordingly, we can devise a simple rule-

based mechanism for anomaly detection, and the flow chart is shown in Fig. 2.10. It

operates as follows. When the system starts to operate and converges to optimality

normally, the anomaly detector keeps a record of the normal z value while keeping

monitoring the z value from the algorithm iteration in real-time. Once the absolute

difference between the observed z value and the normal z value becomes greater

than a preset threshold (component-wise), the anomaly for the corresponding device

is recorded. In this work, the thresholds are defined as 1%, 5%, 10%, 15%, 30%,

50% to the change of the recorded normal z value so that the performance of the

approach can be evaluated comprehensively.

Figure 2.10: The proposed rule-based anomaly detection process.

To further demonstrate how we can apply the rule-based approach for anomaly

detection, a simple simulation is conducted on the IoT system consisting of three

devices. The utility functions for all three devices are reported in Table 2.5, where

we assumed that the first device, i.e., device 1 was manipulated by only adding an
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input factor = −2 at a given point during our experiment. Our results are shown

in Fig. 2.11. It can be seen that device 1 was manipulated at the 100th iteration,

indicated by different cycles highlighted in Fig. 2.11, leading to an increase by

94% (i.e., from 2.02 to 3.93) in DFWF, while device 2 and device 3 reduced their

transmission frequencies by 35% and 12% correspondingly. Therefore, by applying

a threshold less than 12% to the change of recorded normal z values, the rule-

based detector can detect the increase of transmission frequency in device 1 and the

decrease of transmission frequencies in device 2 and device 3 successfully. Given

this, an anomaly will be spotted in this case.

Table 2.5: Utility Functions for anomaly detection experiment

Index Utility Functions

1 f1(x1) = (x1 − 9)2 + x3
1

2 f2(x2) = (x2 − 4)2

3 f3(x3) = (2x3 − 6)2 + x3
3

Figure 2.11: An example to illustrate the change of transmission pattern due to the
manipulation of device 1.
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2.6.2 Limitations of the Rule-based Anomaly Detection

Our results in Section 2.6.1 show that a rule-based approach has potential for

anomaly detection as long as the manipulation leads to a change of transmission

frequency. However, such an approach also has certain limitations when deployed

in the real world, which is summarised as follows:

A. The rule-based approach mainly relies on the optimality criteria without fully

leveraging information from the iterative process, and as a result it cannot

further distinguish different types of anomalies when a manipulation happens

on the edge device.

B. As we shall see, system parameters, i.e., z , may fluctuate during the opti-

misation process and that can easily result in misjudgements when using the

rule-based approach.

C. Furthermore, when there are network delays in the IoT network, transmission

frequencies of the devices may not change simultaneously, which can also lead

to misjudgements when using the rule-based approach.

Due to the uncertainty of a practical running IoT environment as well as the

depth of information that can be leveraged from the collected data for anomaly

detection, we are also interested in exploring a data-driven based solution to ad-

dress the limitations exposed by the rule-based approach which is introduced in the

following section.

2.6.3 IoT anomaly detection with LSTM-based approaches

In this section, deep learning-based approaches are proposed for anomaly detection

on the gateway, covering all categories of the anomalies defined in Section 2.6. Our

starting point is the observation that an anomaly detector can only access the value

of z and the sum of x and u , i.e., v at every given time point of interest, i.e., a

sequential data. Inspired by this, we aim to leverage a prevalent sequence-based
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model, long short-term memory (LSTM) [54] in our work,which becomes one of the

popular architectures in anomaly detection [55, 56] and can leverage the collected

information during the optimisation process.

Specifically, we apply a basic one-layer LSTM architecture in our model design

and compare the detection performance with different complicated variants which

have been applied in anomaly detection, e.g., bidirectional LSTM (bi-LSTM) [57],

stacked-LSTM [58], LSTM with attention mechanism [59] (LSTM-attention) and

LSTM with encoder techniques [60] (LSTM-encoder), considering that the extra

deep learning architectures may improve the detection performance. Let Xt denote

the input feature at step t (i.e., the tth iteration of the ADMM algorithm), then the

LSTM network essentially extracts hidden information at each step, t, and feeds

this in as the input of the next step, t+1. A standard LSTM unit includes a cell, a

forget gate, an input gate and an output gate to jointly manage the information flow

from input to output. The input feature Xt can be either a scalar, vector or matrix.

In our case, the input feature Xt is represented as a matrix consisting of system

parameters of each device, i, from iteration t to t + n. Here, the input features

contain [vti , · · · , vt+n
i ], [zti , · · · , zt+n

i ] where vi := xi + ui. The output of the LSTM

model is the categorical label for the anomaly corresponding to the manipulation

types as per our definition.

2.7 Experimental setup for anomaly detection

In this section, we first introduce several different types of manipulations, then

we discuss the IoT system setup and data generation process. Finally, we present

the LSTM network for anomaly detection. The IoT system is setup to transmit

the data stream, under the circumstance where the transmission frequency may be

manipulated implicitly. During the process of data stream transmission, the ADMM

parameters which are able to reflect the system behaviours are recorded, to generate

a dataset for LSTM model training for detecting the manipulations.
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2.7.1 Setup for manipulations

Utility functions defined on IoT devices may indicate user’s preference in real-world

IoT application. It is worth noting that how to define a user’s preference using a

utility function is an open issue [61] as different users may end up having totally

different utility values with respect to a given source, i.e., DFWF in our case. How-

ever, in our context, we shall make the assumption that such a function is concave

as it generally reflects the fact that a user’s satisfaction level is increased when the

allocated DFWF is also increased. With this in mind, we have the following settings:

� Manipulation on utility function type and input: The utility function is

changed from fj(xj) to f ∗
j (xj) (i.e., see Table 2.6) with input factor, resulting

in manipulation fj(xj) ⇒ f ∗
j (xj + input factor), labelled as type 1.

Table 2.6: Utility Functions set

Utility Functions

fj(xj) = (xj − 9)2 + x3
j

f ∗
j (xj) = exp(xj − 9)

f ∗
j (xj) = 1/(xj − 9)

f ∗
j (xj) = log(1 + exp(xj − 9))

� Manipulation on transmission data size: The data size factor is set as

a random value from the set of [−1, 1] and the aj is manipulated as aj ⇒

aj + size factor, labelled as type 2.

� Manipulation on utility function input only: In this case the input factor

is set as a random value from the set of [−3, 3] for the manipulation fj(xj) ⇒

fj(xj + input factor), which is labelled as type 3.

Comment: As mentioned in Section 2.6, manipulating system resources can also

affect the optimal transmission frequencies for edge devices, but it will be treated as

a normal systematic adjustment. Regarding manipulation of system resources, the

MWF, c, and data storage amount, d, are manipulated by adding an MWF factor
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and storage factor. The factors c and d are attributed a value from the set of [−3, 3]

and [−5, 5] respectively, ensuring that the manipulated c and d are positive. Here

we have manipulation c ⇒ c + MWF factor and d ⇒ d + storage factor which are

labelled as normal (type 0).

2.7.2 System setup

In general, we consider two different system setups in experiments. One simulates

the ideal IoT scenario including an arbitrary number of devices, without considering

the effects of network delay. The second simulates a practical IoT environment

involving real IoT devices with network delay. In order to compare the performance

of the two setups, we manually trigger manipulations and record the manipulation

count/type for both systems. However, considering that in a real-world environment

it is impossible for a gateway to know the ground truth, thus we deploy the pre-

trained model based on the ideal scenario and evaluate the performance of the model

in the practical IoT environment.

More specifically, the simulation system (SS) and real world system (RS) are

introduced to validate the performance of the anomaly detector. The SS simulates

the ideal scenario that all devices transmit data to the gateway without network

delay. In our experiment, SS includes the virtual edge devices and gateway on a

local computer where the data streams can be exchanged even if there is no net-

work environment. The RS simulates the practical IoT application that all devices

transmitting data to the gateway with network delay effect being considered. In our

real-world implementation, this consists of three edge devices (i.e. Raspberry Pis)

and a laptop acting as the gateway. Edge devices communicate with the gateway

through a wireless router as shown in Fig. 2.3. The key system properties for this

practical system are set as N = 3, c = 10, d = 20, a1 = 2, a2 = 3, and a3 = 5.

It is worth noting that in SS we simulate the ideal scenario and generate data

for the purpose of training the anomaly detector. Therefore the data is labelled

corresponding to anomalies when devices are manipulated. In RS, we simulate the

49



scenario that edge devices are implemented in a real-world IoT network for daily

service. In this context, the data collected from RS is without labels and is used for

anomaly detection in real-world applications.

2.7.3 Data generation

The process of data generation can be summarised as follows: during the daily

service of the IoT network, the system suffers attacks and transmits a data flow

containing unexpected transmission frequencies, the system returns to its normal

state after the end of the attack. Specifically, at the beginning, SS and RS are

running under the normal state. After the ADMM algorithm has converged for

the duration of several ADMM iterations, a type of manipulation happens on the

IoT devices and the system reacts, calculating new transmission frequency values.

After the anomaly happens and the ADMM algorithm converges under the anomaly,

the edge devices return to the normal state and the system repeats the process.

The duration of normal states varies between 100 and 120 iterations, while the

anomalies last for duration between 50 and 70 iterations. During this cycle, the

normal situation is labelled as type 0 and anomalies are labelled as different numeric

types. Data (i.e. ADMM parameter) z and v generated from the ADMM algorithm

are recorded along with each iteration during the interaction between the gateway

and the edge devices. Data is fully labelled as either normal (type 0) or anomalous

(type 1, 2, 3) and attributed to either SS or RS. Data generated from SS is called

simulation set while that generated from RS is called practical set.

Note that anomalies can happen on any device and in this section, we evaluate

the anomaly detection based on anomalies occurring on device number one. This

considers a reasonable scenario in a real-world IoT network, where a small number

of devices (i.e. one device in our system) are attacked while the majority of devices

(i.e. the other two devices) are maintained as normal. Fig. 2.12 demonstrates the

real-time change of parameter z when anomalies happen on device one. A decrease

in the z of device one (z1) is accompanied by an increase in the z of device two and
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three (z2 and z3) when the function type and function input are manipulated in SS.

Figure 2.12: z values of device 1, 2 and 3 under different anomalies in the SS.

2.7.4 Setup for LSTM-based networks

For the one-layer LSTM architecture, the settings include an input feature length

of 10, resulting in an input size of 6×10, which consists of [v1i , · · · , v10i ; z1i , · · · , z10i ],

where i = 1, 2, 3 indicates the IoT device number. The step size is set as 5 and

the hidden size of LSTM is set as 100. The bi-LSTM model is established based

on this one-layer LSTM architecture with bidirectional mechanism. The stacked-

LSTM is composed by stacking two one-layer LSTM architectures. For LSTM-

attention, a multi-head attention mechanism with two heads follows the one-layer

LSTM architecture. The number of input units of attention is set as 100, as the

same as the hidden size of LSTM. For LSTM-encoder, an encoder-decoder based on

the one-layer LSTM is established and trained at the first stage. Then the encoder

part is used for extracting the hidden feature for detection. The simulation data

set is split as follows: 60% for training, 20% for model validation and 20% for

simulation testing. Finally, the LSTM-based models are tested using the practical

51



data set. Experiments are repeated ten times for each anomaly type and the mean

and standard deviation of prediction accuracy are presented in Table 2.7 for the

simulation test and practical prediction.

For the purpose of clear observation, we first investigate the performance of one-

layer LSTM separately for each anomaly type then combine all anomaly types to

assess general detection ability. Finally, we compare the performances of different

variants of LSTM in detecting all anomaly types.

2.8 Detection results and discussion

2.8.1 Anomaly detection on SS

In this section, different anomaly types are detected on SS and the model perfor-

mance is evaluated. Firstly, when generating data (i.e. ADMM parameters z and

v) from the SS, we investigate the scenario that only one specific type of anomaly

(manipulation of function input alone) happens repeatedly. Here we should note

that different one-layer LSTM models are trained for different scenarios that only

consist of a specific type of anomaly, with 60% of the data specified as the training

set, 20% of the data for validation and 20% of the data for testing.

As shown in Table 2.7, anomalies caused by manipulating the utility function

input only are detected with an accuracy of 98.14%. Similarly, we investigated

the detection performances for the other two anomaly types “Function Type and

Input” and “Data size”. Our results show that both anomalies can be detected with

relatively high accuracy (99.82% and 93.91%) for manipulations of utility function

type & input and transmission data size respectively. These separated detection

accuracies for specific manipulations reveal that the deep learning based approach

is able to extract the individual pattern of each type of manipulation with very high

accuracy. We note that the detection accuracy for “Data size” is slightly lower than

the detection accuracy for other types. The reason might be that the chosen data

size factor (in section 2.7.1) leads the manipulated data size close to the correct data
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size and the change harder to detect.

Table 2.7: Accuracy of LSTM-based anomaly detection

Anomaly types Simulation Real world system

Function input only 98.14% ± 0.52% 82.84% ± 3.81%

Function type and input 99.82% ± 0.01% 93.90% ± 1.52%

Data size 93.91% ± 1.00% 92.65% ± 0.85%

General (two-class) 98.81% ± 0.38% 96.28% ± 0.89%

General (four-class) 92.35% ± 0.84% 78.88% ± 3.80%

Furthermore, when generating data (z and v) from the SS, we also investigated

the scenario that three types of anomalies appear randomly (only one anomaly

happens each time but can be any one of the different anomaly types). Here, only

one LSTM model is trained for detecting different anomalies using data from the

SS, with 60% of the data used as the training set, 20% of the data for validation

and 20% of the data for testing, which is consistent with the previous setups.

Both four-class detection (with labels 0, 1, 2, 3 for situations including normality

and the different anomalies, respectively) and two-class detection (here, normality

and manipulation of system resources are labelled as 0, and other manipulations are

labelled as 1) are investigated. The prediction accuracy was found as 92.35% for

four-class anomaly detection and 98.81% for two-class anomaly detection.

The rule-based detection in the SS is based on thresholds by identifying to which

extent the z value is changed. Here, the threshold was assumed to be 1% of the

optimal transmission frequencies of the IoT devices. Given this setting, Table 2.8

demonstrates the detection results obtained using this approach. Specifically, com-

paring with Table 2.7, the general (two-class) results show that the LSTM-based

detection can easily outperform the rule-based detection method.
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Table 2.8: Accuracy of rule-based anomaly detection

Anomaly types Simulation Real world system

Function input only 97.48% 86.53%

Function type and input 99.65% 80.21%

Data size 65.26% 66.59%

General (two-class) 91.78% 83.34%

2.8.2 Anomaly detection on RS

In order to better represent detection of anomalies in a real-world IoT environment,

different types of anomalies are detected using the RS in this section. We recall that

the LSTM model is trained based on the simulated data from the SS and will be

tested using the data from the RS in this setup.

Figure 2.13: z values of device 1, 2 and 3 in the RS, including both normal and
abnormal situations. General two-class detection results from the rule-based method
(turquoise dotted-line) and LSTM (red dotted-line) are compared with the ground
truth (black line).

Our results in Fig. 2.13 indicate the value of parameter z for devices 1, 2 and

3 (green, magenta and blue lines, respectively) when the RS system is running
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normally, and in scenarios when three types of anomalies occur. In comparison to

Fig. 2.12, in this case, when an anomaly occurs, the value of parameter z for devices

1, 2 and 3 do not change at the same time, which causes the observed misalignments

with respect to iterations of the ADMM algorithm. Fig. 2.14 shows the variation of

parameter z for device 1, 2 and 3 on RS on a long-time scale with misalignments,

fluctuations and jumps.

Comparing these results to those obtained for the SS experiments (Table 2.7), it

is evident that the accuracy of anomaly detection for “Function Input Only” from the

RS (82.84%) is lower than that from the SS (98.14%) because of the misalignments

between the z values of different devices. Similarly, detection of “Function Type and

Input” and “Data Size” anomalies in the RS (93.90% and 92.65%) had accuracies

slightly lower than those presented in the SS simulation results. In addition, four-

class detection and two-class detection were also investigated in the RS. As shown in

Table 2.7, the general two-class detection achieved the highest accuracy of 96.28%

in the RS, which indicates that the proposed LSTM-based method is promising

for real-world IoT networks. However, with misalignments between parameter z

for different devices, performances from the RS for four-class detection (i.e. an

accuracy of 78.88%) and for two-class detection (i.e. an accuracy of 96.28%) are

reduced compared to the performances from the SS (i.e., accuracies of 92.35% and

98.81% for four-class and two-class prediction respectively).

Performance on the RS was poorer for the rule-based anomaly detection ap-

proach (Table 2.8), which may be due to the misalignments between parameter z

between different devices. Since the rule-based approach leverages the simultaneous

relationship between different transmission frequencies, it can be expected that a

larger misalignment leads to poorer performance for the rule-based approach. The

general two-class detection results from rule-based and LSTM methods are com-

pared against ground truth in Fig. 2.13 in the RS. The detection results from the

LSTM method better match the ground truth, while the rule-based method claims

the anomalies incorrectly when there are misalignments and fluctuations in the data
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flow.

Figure 2.14: z values of device 1, 2 and 3 during the update process in the PS. The
misalignments, fluctuations and jumps can affect the performance of detection when
detecting anomalies in real-world applications.

In order to provide more details for comparing the performance of rule-based and

LSTM methods, precision, specificity and recall metrics are calculated and shown in

Table. 2.9. Note that we calculate the metrics for LSTM every 10 time steps as the

input length of the LSTM model is taken as 10 in the model settings presented in

Section 2.7, while the metrics for the rule-based method are computed in each time

step. When the system is running normally, both methods have a high specificity

value (0.98 for the LSTM method and 0.95 for the rule-based method), which means

that most of the time both anomaly detectors will not alarm when the RS is running

normally. However, the LSTM method obtains a higher recall value than the rule-

based method for anomaly detection (0.93 for the LSTM method and 0.45 for the

rule-based method), indicating that the LSTM method can alarm promptly when

most malicious manipulations occur, but the rule-based method fails to detect most

anomalies. Given the precision values (0.95 for the LSTM method and 0.76 for

the rule-based method), the majority of anomalies identified by the LSTM method

are real anomalies and therefore the LSTM method is more acceptable for use in

real-world applications.
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Table 2.9: Confusion matrix on general two-class detection in the RS

2.9 Discussion

The results presented in Table 2.7 indicates that the one-layer LSTM detects anoma-

lies more effectively in both the SS and the RS. In Table 2.7, the standard deviations

of the detection results reveal that LSTM-based anomaly detection is robust, includ-

ing the real-world system (RS). Although the accuracy decreases to 78.88% with

some uncertainty (standard deviation of 3.80%) for four-class anomaly detection in

the RS, the LSTM method can still obtain stable high performance (accuracy of

96.28% with standard deviation of 0.89%) for two-class anomaly detection. How-

ever, when detecting the “Function Input Only” anomaly, the LSTM method has

worse performance than the rule-based method. One possible reason for this is that

the fluctuations and jumps in data flow shown in Fig. 2.14 cause uncertainty during

the training process of LSTM models.

As applying the extra deep learning architecture may enhance the detection in
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complicated environment, the one-layer LSTM, bi-LSTM, stacked-LSTM, LSTM-

attention and LSTM-encoder architecture are compared in four-class anomaly de-

tection. Fig. 2.15 demonstrates the four-class detection accuracy from one-layer

LSTM, bi-LSTM, stacked-LSTM, LSTM-attention and LSTM-encoder. Each model

is trained 10 times with different parameter initializations and the average detection

accuracy and standard deviation are calculated. For the detection in real world

environment, applying the extra deep learning techniques is not able to improve the

detection accuracy apparently. By contrary, the encoder-decoder mechanism degen-

erates the anomaly detector in simulation environment. Table 2.10 shows that the

complexity of different architectures. With the comparable inference time consump-

tion, one-layer LSTM has the minimum number of parameters which means that

one-layer LSTM can detect anomalies effectively with less computational resource.

Figure 2.15: Four-class anomaly detection results from different deep learning ar-
chitectures.

Table 2.8 indicates the detection results from rule-based model. Detection of
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Table 2.10: The complexity comparison of different architectures

Complexity LSTM bi-LSTM stacked-LSTM LSTM-att. LSTM-en.

No. of model parameters 43204 86404 123604 73204 124210

Simulation inference time (s) 0.66 1.05 0.93 0.56 0.36

Real world inference time (s) 0.60 1.13 0.93 0.52 0.33

anomaly “Data Size” using the rule-based method has the lowest accuracy when

compared to the other types of anomalies. The reason is that a change of trans-

mission frequency for the manipulated device may lead to identical-trend changes of

transmission frequencies for other devices, which prevents the rule-based detection

working effectively. Interestingly, the detection accuracy for “Data Size” in the RS

is very comparable to that in the SS which may be largely caused by the misalign-

ments and fluctuations in the RS data flow. However, as expected, the detection

accuracies for other types of anomalies in the SS are greater than those in the RS.

Finally, we also investigated the impact of thresholds in rule-based anomaly detec-

tion (Table 2.11). The threshold plays an important role in anomaly detection, but

simply increasing or decreasing the threshold can not obtain a better performance

on anomaly detection. One the one hand, a small network disturbance will trigger

the anomaly alarming incorrectly if a small threshold applies. On the other hand,

anomaly will be ignored because the change of transmission frequency can not trig-

ger the detector if the threshold is too high. Therefore, a problem arises on how

to select an optimal threshold for anomaly detection in a practical IoT application

(i.e., trial & error), which is another drawback of rule-based method compared to

the LSTM-based approach.

2.10 Conclusion

In this chapter, we propose a novel transmission frequency management system for

IoT edge devices. This innovative system is able to assign the optimal transmission
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Table 2.11: Accuracy of rule-based anomaly detection for utility function input
under different thresholds.

Thresholds Real world system

1% optimal frequency 86.53%

5% optimal frequency 87.90%

10% optimal frequency 87.02%

15% optimal frequency 86.62%

30% optimal frequency 83.23%

50% optimal frequency 77.10%

frequency for each IoT device in the network dynamically and recalculate the new

optimal transmission frequencies adaptively, when there is a new connection of a

new device. Furthermore, we also devise mechanisms for anomaly detection of the

system when transmission frequencies may be manipulated in different settings.

Our simulation results show that the proposed system is effective in real-world

scenarios, with high accuracy for estimation of transmission frequency in a low-

latency (5 ms) router-based experimental IoT network. Considering that IoT edge

devices may suffer attacks which manipulate their transmission frequency and trans-

mit data streams with an incorrect cadence, we use both a mathematical rule-

based and LSTM-based approach to detect the potential anomalies in transmission

frequency. The rule-based approach demonstrates the internal process during an

anomaly event but can not reliably detect the anomaly in a practical environment.

In contrast, the LSTM-based approach indicates greater potential for implementa-

tion in both simulations and real-world environments for the detection of abnormal

transmission frequency.
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Chapter 3

Sharing-bike availability prediction

Abstract: In this chapter, we propose novel graph neural network for sharing-bike

availability prediction and discussed the impacts of different modelling methods of

adjacency matrices on the proposed architecture. The work presented in this chapter

has been published in [62].

3.1 Introduction

Most recently, there has been an increasing interest in adopting sharing bike schemes

globally as these schemes can be seen as effective tools in combating global challenges

such as improving sustainability (e.g., reduce the commuting cost and air pollution

[24]) in transportation. One of the key requirements to facilitate the bike-sharing

system is whether the supply and demand can have a good balance in a bike-sharing

network [26]. In general, the relocation of bikes ensures the balance between supply

and demand, but the uncertainty of departure and arrival among different bike

stations has been making the bike relocation harder to execute precisely. Therefore,

accurately forecasting the availability of bike at a given time and station becomes

increasingly important.

Recently, convolutional neural networks (CNN) have been applied to extract the

relationship between adjacent traffic networks whilst the recurrent neural networks

(RNN) were used to arrest the temporal information. For short-term traffic predic-
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tion, fully connected long short-term memory (LSTM) [63] and CLTFP [64], two

architectures mixed the long short-term memory networks with convolutional oper-

ation, were proposed in order to catch both temporal and spatial cues. However,

LSTM or other networks with recurrent architecture are computationally intensive.

Also, it is harder for the network parameters to converge to global optimal values,

since the recursive training process accumulates the error. On the other hand, CNN-

based methods also have their limitation since the convolution process the data in

2-D form restrictively, which may not be the natural structure of traffic data.

These above issues of CNN and RNN-based methods were investigated and ad-

dressed by the spatial-temporal graph convolutional networks (ST-GCN) [1], a vari-

ant of a graph neural network (GNN) for utilizing spatial information. Spatial-

temporal convolutional blocks were introduced and applied repeatedly in this ar-

chitecture, combining several graph convolutional layers [65] with sequential con-

volution in order to represent the spatial-temporal relations. Subsequent to this

approach, STG2Seq [66], a sequence-to-sequence variant of STGCN, is proposed

with more reference on historical data and an attention module, for multi-step pas-

senger demand forecasting. However, there are still some important issues to be

solved in the ST-GCN architecture. For instance, how effective a specific adjacency

matrix scheme can contribute to traffic demand prediction. Also, to what extent

an attention-based mechanism can be applied to further improve the accuracy for a

given demand prediction model.

To answer these questions, our key objective in this chapter is to investigate how

ST-GCN, supplemented with an attention-based mechanism, can further enhance

the performance of bike availability prediction across different bike stations in cities.

From an application/service perspective, we believe the proposed method can help

cyclists make their personalised travel plan more appropriately by finding the best

bike station nearby with high confidence in availability. Thus, the contribution of

this chapter can be summarised as follows:

1. We combine an attention mechanism with the ST-GCN, namely AST-GCN, to
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improve the ability of extracting spatial-temporal features for the prediction

task. In comparison with the existing methods, our model shows a promising

performance.

2. We review related works in the recent literature and summarise four cate-

gories for modelling adjacency matrices, namely spatial based, temporal based,

spatial-temporal based and adaptive based adjacency matrix.

3. Given our findings in 1 and 2, we evaluate our proposed AST-GCN model

with the adjacency matrices of interest using a real-world dataset, Dublinbike,

for bike sharing availability prediction. Our results show that: (a) adap-

tive spatial-temporal adjacency matrix can achieve the best performance; (b)

spatial-temporal based adjacency matrix can achieve better results than that

only using spatial-based or temporal-based adjacency matrix; (c) spatial-based

adjacency matrix achieves similar performance as the temporal-based one.

The rest of the chapter is organised as follows. We introduce some previous re-

search related to traffic demand prediction in section 3.2 and formulate our problem

in section 3.3. Experimental setups are demonstrated in section 3.4 and the results

are discussed in section 3.5. Finally, we summarise our work in section 3.6.

3.2 Related Work

3.2.1 Existing Methods

In general, forecasting traffic demand is difficult, when a traffic demand depends not

only on the historical demand pattern of the target area (e.g., suburb) but also on

the pattern of other areas (e.g., urban). To meet this challenge, many studies using

deep learning such as CNN, RNN, and GNN have been proposed.

As the traditional convolutional operation in CNN process the data with a 2D

approach, the layout of a city is geographically divided into square blocks in order to

extract spatial relationships from all regions [67], nearest regions [29] or in other 2D
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forms [68]. RNN based methods and their variants [30] are applied to catch temporal

correlation, for instance, structuring the historical traffic demand sequence for each

region [63] and presented as a 1D feature-level fused architecture [64]. GNN based

methods, with natural advantages in utilizing spatial information, model the traffic

network by a general graph instead of treating the traffic data arbitrarily (e.g., grids

and segments) in CNN and RNN methods. GCN, as a variant of GNN, which is

able to combine spatial and temporal information, is widely used in the scenario of

traffic demand prediction as seen in many recent works [65] [66] [1].

Attention is a popular technique in deep learning that mimics physiological cog-

nitive attention. The effect enhances the importance of small parts of the input

data and de-emphasising the rest. This technique has been used to enhance the pre-

diction performance for many sequence-based tasks of GNNs, i.e. Graph attention

networks [69]. In traffic demand prediction, the importance of each previous step

to target demand is different, and this influence changes with time. For instance, a

temporal attention mechanism [66] is able to add an importance score for each his-

torical time step to measure the influence and this strategy can effectively improve

the prediction accuracy.

3.2.2 Adjacency Matrices

An adjacency matrix is used to indicate whether a pair of vertices is connected by

edge or not in graph data. For a traffic network, it is important to understand

how an adjacency matrix can be used to best capture the interconnectivity between

different nodes in the graph. To the best of our knowledge, four types of adjacency

matrices have been investigated in previous research works, namely spatial (S), tem-

poral (T), spatial-temporal (ST) and adaptive (A). A spatial adjacency matrix is

usually distance-based. Euclidean distances between different stations (i.e., nodes in

graph) [1] [70] or the natural geographical distance [71] are usually used as weights

for its entries. For instance, a shorter geographical distance between two stations

may indicate a stronger connection in the graph. A temporal adjacency matrix can
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be defined based on the similarity score [66] (i.e., Pearson correlation coefficient)

between the temporal information (i.e., historical traffic demand sequence) of each

pair of nodes/stations. For example, a larger value of Pearson coefficient calculated

from the time sequential data for the number of available bikes between two stations,

may indicate a stronger connection in graph between these two stations compared

to other pairs. To combine the benefits of both spatial and temporal features, an

spatial-temporal embedding (ST embedding) can be generated for each node in a

graph [2]. However, in such a scenario, it can be hard to describe the adjacency

matrix intuitively with the high dimension embedding features and thus the ad-

jacency matrix needs to be adaptively defined along with the training process of

GCN [72] [73].

3.3 Methodology

3.3.1 Notations and Problem Statement

We consider a scenario where N bikes stations are included as part of a bike-sharing

system. Let N := {1, 2, . . . , N} be the set for indexing the bike stations in the

system. For a given bike station i ∈ N, let Ai
t ∈ R be the number of available bikes

at the station i at time t. We denote At ∈ RN the vector consisting of the number

of available bikes across all stations N at time t. In addition, each bike station i is

associated with a set of features for model training, e.g. weather condition, day of

week, etc, and let F i
t ∈ Rd represent the values of its features at time t, where d is

the number of features used. Similarly, we let Ft ∈ RN×d be the feature set values

of all bike stations at time t. Given the notation above, our learning objective is to

find a function H(.) which is able to address the following problem:

At+1:t+n = H(At−m+1:t;Ft−m+1:t)

where m,n denotes the input and output length for the model respectively. Also,
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the notation t+ 1 : t+ n presents the output as a sequence of vectors from steps

t+ 1 to t+ n.

3.3.2 Attention-based ST-GCN

In this section, we introduce the attention-based ST-GCN architecture that used for

solving our bike sharing availability prediction problem. We note that the ST-GCN

architecture has been presented in [1], and the architecture consists of two identical

ST-Conv-Blocks and a fully connected output layer. Specifically, an ST-Conv-Block

consists of two temporal gated convolutional (TGC) layers and one spatial graph

convolutional (SGC) layer, which are the essential modules of ST-GCN. In general,

TGC is in charge of extracting temporal features and SGC is able to extract spatial

features from the data. However, since there is no attention on the temporal chan-

nel of ST-GCN, this significantly degrades the performance for sequence to sequence

based learning tasks. As such, the model’s learning capability may be significantly

reduced due to “lost of focus”. To deal with this issue, we introduce a temporal-

attention module (TAM) in each ST-Conv-Block, as shown in Fig. 3.1 where the

temporal-attention module is depicted in green.

Remark: An attention mechanism was introduced in [74] and [75] to extract both

spatial and temporal information from ST-GCN networks. The architectures pro-

posed in both works applied attention operation to extract spatial and temporal

information separately. In particular, the model in [74] consisted of 15 ST-Conv

blocks in total with two attentions matrices calculated from them, while the model

in [75] was stacked by 10 ST-Conv blocks with two attention matrices computed

from each ST-Conv block. With increased model complexity and computation cost,

stacking multiple ST-Conv blocks with attention matrices calculated separately may

be of less interest since the spatial and temporal information may not be combined

towards an effective spatial-temporal embedding in such a case. Instead, our model

only consists of 2 ST-Conv blocks and the proposed AST-GCN architecture lightly
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merges spatial-temporal information with attention by calculating the attention ma-

trix only once in each ST-Conv Block, which reduces the computation costs during

the model training process. Specifically, the first TGC module generates original

temporal information and the last TGC module generates spatial-temporal infor-

mation (as it takes account of the output of the preceding SGC layer as its input).

Passing through two average 3D pooling layers, both temporal and spatial-temporal

information are combined before a Relu activation function is applied. A sigmoid

function is connected here to generate probabilistic weights (attention matrix) with

values between 0 and 1. With this matrix in place, the attention-based temporal

information is generated by using a dot product with the output of the first TGC

layer and then concatenated as input to the subsequent ST-Conv Block. Both spa-

tial and temporal information in the data flow are fully captured before passing to

the dense layer for sequential output prediction.

Figure 3.1: The proposed ST-GCN with a temporal-attention module (TAM).

3.4 Algorithms and Experiments

In this section, we discuss the different configurations investigated for comparative

studies.
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3.4.1 Experimental Datasets

� Dublinbike: DublinBikes is a bike-sharing scheme in operation in Dublin City,

Ireland. The system is illustrated in Fig. 3.2, where each node is a bike station

and each blue number in the circle indicates the number of available bikes in

real-time. Real-time data is accessible using an API and we also have access to

historic data, recorded every five minutes, which includes timestamps, station

states, number of available bikes and station locations, etc. We choose the

data1 from 01/07/2020 to 01/10/2020 for our studies.

� NYC-Bikes [76]: This dataset includes the NYC Citi daily bike orders of people

using the bike sharing scheme. We choose the transaction records from April

1st, 2016 to June 30th, 2016 (91 days). This contains the following information:

bike pickup station, bike drop-off station, bike pick-up time, bike drop-off time

and trip duration.

� Visualcrossing Weather Data2: This dataset provides weather conditions at

different locations at different historical time points, including temperature,

humidity and wind speed, etc. This weather dataset has been integrated for

experiments that use the Dublinbikes dataset.

Figure 3.2: A subset of bike stations of the Dublin bike sharing system operates in
real-time. The edges are added for the illustration of the inherent graph signals.

1https://data.smartdublin.ie/dataset/analyze/33ec9fe2-4957-4e9a-ab55-c5e917c7a9ab
2https://www.visualcrossing.com/weather-data
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3.4.2 Experimental Setup

� Dublinbike: For this scenario, we use the number of available bikes at each

bike station in the first 3 hours to predict the number of available bikes at

each bicycle station 45 minutes later, where each data point is the averaged

number of available bikes in 15 minutes. This implies that we take the past 12

consecutive observation points to predict the following 3 points of our interest.

The dataset consists of 110 bike stations in total. The data is then separated

into a training set (60%), a validation set (20%) and a testing set (20%) in a

sequential manner.

� NYC-Bikes: NYC Citi Bike is dock-based and every depot of bikes is con-

sidered as a station. Following the same experiment setup as in CCRCN [2],

we filter out the stations with fewer orders and keep the 250 stations with

the most orders. The time step is set to half an hour. Among the last four

weeks considered, the first two are used for validation, and the last two are for

testing.

To evaluate the performance across different models, Mean Absolute Error (MAE)

has been selected as the performance metric, indicating an intuitive margin between

the predicted and the true amount of available bikes at each station.

3.4.3 Baseline Algorithms

� Dublinbike: To the best of our knowledge, there has been no GNN based

methods implemented for the Dublinbike dataset. In particular, there has

also been no ST-GCN based methods applied for solving the prediction for

this dataset. For comparative studies, we conduct the experiments and use

ST-GCN [1] as our baseline.

� NYC-Bikes: A lot of methods have been reported using this dataset to pre-

dict traffic demand. The state of the art work is presented in CCRCN [2].

Based on this, we compare the performance of different methods, including
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our proposed model, in a similar experimental setting. Specifically, the follow-

ing methods are compared: (a) HA 3; (b) XGBoost [77]; (c) FC-LSTM [78];

(d) DCRNN [79]; (e) ST-GCN [1]; (f) STG2Seq [66]; (g) GraphWaveNet [72]

and (h) CCRNN [2].

3.4.4 Network Setup

The historical data length used for both the Dublinbikes dataset and the NYC-citi

dataset is set to 12, the prediction length is set to 3 in Dublinbikes and 12 in NYC-citi

respectively. The feature dimension used in NYC-citi is 2 representing the pick-up

and drop-off demand. The feature dimension used for the Dublinbikes dataset is 8,

details of the feature selection will be discussed in the results section. All models are

optimised by the Adam algorithm [80]. Other setting of parameters are presented

in Table 3.1. The dimensions of the data flow during the training process of the

proposed model are overlapped in Fig. 3.1 for illustration purposes. It is worth

noting that the input of the first temporal gated-Conv is strictly the same as the

input of the corresponding ST-Conv block while the input of the second temporal

gated-Conv is the output of previous spatial gated-Conv block. The concatenate

operation concatenates the output of the first and the second temporal gated-Conv

block.

3.4.5 Adjacency Matrix Setup

The adjacency matrix in the original ST-GCN architecture is not adjustable/trainable.

As a result, this fixed adjacency matrix may not fully capture the spatial relationship

between nodes in the graph. To improve it, we adapt the fixed adjacency matrix to

a trainable adjacency matrix and then initialise the matrix using meaningful contex-

tual information, e.g. distance between nodes, similarity between stations’ historical

time-series data. Further, an adaptive adjacency matrix (AAM) is able to extract

spatial attention information from the graph adaptively, and thus it makes the AST-

3The average of historical values at previous time steps of a fixed length.
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Table 3.1: Experiment settings for two datasets

Setup Dublinbikes NYC-citi

Station amount 110 250

Historical data length 12 12

Prediction length 3 12

Feature dimension 8 2

Batch size 32 32

Initial learning rates 0.001 0.0001

Optimiser Adam algorithm Adam algorithm

Weight decay 0.001 N/A

LR adjustment strategy cosine annealing adjust at equal intervals

GCN effective in capturing both spatial and temporal attention information. For

our comparative studies, different setups of adjacency matrices are investigated as

follows:

� For the implementation of the adjacency matrix proposed in ST-GCN [1], the

sigma is set to 0.2 and the epsilon is set to 0.368;

� For the implementation of the adjacency matrix proposed in STG2Seq [66],

the sigma is set to 0.05;

� For the implementation of the adjacency matrix proposed in CCRCN [2], the

dimension of station feature is set to 20 and the sigma is set to 1.

� Other adjacency matrices do not need parameters to be set. In other words,

these adjacency matrices are calculated directly without parameters or are

purely adaptive.
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3.5 Results and Discussion

3.5.1 Feature Selection for Dublinbikes Dataset

In order to select the best features for our experiments, an ablation study has been

carried out for a set of features which model temporal, spatial as well as weather

characteristics. Specifically, we adopt ST-GCN as our basic setting for evaluation

of different feature combinations. Our full feature sets are as follows: (1) number

of available bikes (AB); (2) time of day (TD); (3) day of week (WD); (4) weather

condition description (WCD); (5) temperature (T); (6) wind speed (WS); (7) cloud

coverage (CC) and (8) Humidity (H).

Results of the ablation study are reported in the Table 3.2, from which we easily

conclude that the following feature combination gives the best performance: number

of available bikes (AB), time of day (TD), day of week (WD) and weather conditions

description (WCD).

Table 3.2: Results of the ablation study of feature combinations

Feature combination MAE

AB 3.24

AB+TD 3.19

AB+TD+WD 3.21

AB+TD+WD+WCD 3.16

AB+TD+WD+WCD+T 3.36

AB+TD+WD+WCD+WS 3.40

AB+TD+WD+WCD+CC 3.30

AB+TD+WD+WCD+H 3.40

All Together 3.56
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3.5.2 Results Discussion

� NYC-Bikes: The results on the NYC dataset are compared between the pro-

posed AST-GCN and the existing algorithms reported in [2] as shown in Table

3.3. It is shown that the AST-GCN algorithm outperforms the existing graph

based architectures (i.e., ST-GCN and STG2Seq) with 24.67% improvement

in MAE, from 2.4976 to 1.8815. Also, although CCRNN beats all of its com-

petitors, the AST-GCN shows minor difference in performance, and it still

demonstrates comparable metrics compared to other sequence based models

including Graph WaveNet, DCRNN.

Table 3.3: Experiment result of AST-GCN on NYC-citi [2]

Model MAE

HA 3.4617

ST-GCN 2.7605

STG2Seq 2.4976

XGBoost 2.4690

FC-LSTM 2.3026

Graph WaveNet 1.9911

DCRNN 1.8954

AST-GCN + EAAM 1.8815

CCRNN 1.7404

� Dublinbikes: As shown in Table 3.4, after applying distance initialised AAM

(DIAAM) on ST-GCN, the prediction achieve better results with MAE equals

1.27. By replacing ST-GCN with AST-GCN, the MAE result has been sig-

nificantly improved from 1.27 to 1.04. Among others, the embedding AAM

(EAAM) makes the best performance which leads to the MAE equals 1. Re-

sults in Fig. 3.3 further highlight this key finding. Specifically, the biases

between the ground truth and the first timestamp (i.e. NAB prediction for

the first 15 minutes) as well as the third timestamp (i.e. NAB prediction
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for the 45 minutes) are both negligible showing that our proposed model can

achieve impressive prediction performance for both short-term (15 mins) and

long-term (45 mins) for the best case scenario.

Table 3.4: Experiment result of AST-GCN on Dublinbikes

Model Categories 1 MAE (%)

ST-GCN + Euclidean distance S 1.36 (0%)

ST-GCN + DIAAM S + A 1.27 (-6.67%)

AST-GCN + DIAAM S + A 1.04 (-23.5%)

AST-GCN + EAAM [72] ST + A 1.00 (-26.5%)

AST-GCN + Euclidean distance [1] S 1.06 (-22.0%)

AST-GCN + Geographical distance [71] S 1.09 (-19.8%)

AST-GCN + Temporal correlation [66] T 1.07 (-21.3%)

AST-GCN + ST embedding [2] ST 1.01 (-25.7%)

Figure 3.3: Comparison between ground truth and prediction.

1The abbreviations in this column have been presented in Section 3.2.2.
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3.5.3 Performance Evaluation w.r.t. Adjacency Matrices

In this section, we discuss how different adjacency matrices can affect the learning

performance for our proposed AST-GCN architecture. Our results are illustrated in

Table 3.4 where the percentage in parenthesis shows the difference of the achieved

MAE in comparison to the basic setting: ST-GCN + Euclidean distance. Unsurpris-

ingly, our results show that those fixed adjacency matrices, including both spatial

based and temporal based, achieve the worst results among all other settings. In

contrast, the adaptive-based settings can generally achieve better results compared

to the fixed types, but with one exception for the spatial-temporal based setting,

i.e. AST-GCN + ST embedding, which also shows a competitive result. For the

adaptive-based settings, the embedding AAM, i.e. AST-GCN + EAAM, achieves

the best result compared to the other AAM setting initialised by distance, i.e. AST-

GCN + DIAAM.

3.5.4 Performance Evaluation w.r.t. Different Bike Stations

In this section, we present the prediction results for each bike station in the Dublin-

bike dataset using the best trained model (AST-GCN + EAAM). Our objective

here is to illustrate the confidence with which a user can rely on our proposed pre-

diction model to make a decision when he/she decides to get access to a bike from

his/her nearby area. Our station-wise results are illustrated in Fig. 3.4 and Fig.

3.5. Specifically, Fig. 3.4 shows the heat-map of station-wise MAE over the geo-

graphical map of Dublin city where the bike stations are facilitated. The red marks

indicate a higher MAE and blue-green marks indicate a lower MAE in the corre-

sponding area. Generally speaking, the results demonstrate that the prediction is

more accurate (low-MAE values) outside of the city center showing that users can

collect bikes with high confidence in the availability of bikes. The highest prediction

error occurs in the heart of city centre, i.e. the bike station located at the “Princes

Street/O’Connell Street”, with the MAE equalling to 2.4. This may be caused by a

frequent access and return of bikes by users in this central commuting area, leading
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to a relatively higher uncertainty in bike availability. The second highest prediction

error appears in the western part of the city, i.e. the green-blue region indicated in

the rectangular box in Fig. 3.4. However, this is mainly due to the aggregated effect

where a few bike stations are very close to each other in the “Benburb Street” area.

An in-depth view of the region, shown in the upper left corner of the rectangular box

in Fig. 3.4, further validates that the prediction error of each bike station therein is

low. Another reason causing the relative high prediction error in “Benburb Street”

area may be the train arrivals in Heuston Station. The frequent access and return of

the sharing bikes by travellers travelling by train may be challenging for the model to

predict the availability of bikes. Finally, the statistical histogram of the station-wise

MAE is illustrated in Fig. 3.5 showing that most bike stations have an MAE-based

prediction error less than 1.5 bikes, which indicates that our proposed forecasting

system is very robust and accurate for a number of bike stations in the Dublin city.

Figure 3.4: Heat-map of the station-wise MAE-based prediction error in Dublin city.
A warm-toned color (red) indicates a higher MAE and a cool tone color (green-blue)
indicates a lower MAE.
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Figure 3.5: Histogram of station-wise MAE.

3.6 Conclusion

In this chapter, we propose a spatial-temporal graph convolutional network archi-

tecture embedded with a temporal-attention module (AST-GCN) to predict the

number of available bikes in bike-sharing systems using realistic datasets. The tem-

poral attention module is able to extract temporal attention information which aims

to enhance the prediction accuracy compared to that of the original ST-GCN archi-

tecture reported in [1]. Our experimental results show that the proposed AST-GCN

can perform better than most of existing methods in the NYC-Citi dataset. As

for the Dublinbikes dataset, our proposed model has demonstrated a very promis-

ing result of 1.00 MAE as the selected performance metric. In addition, we have

thoroughly investigated how different modelling of the adjacency matrices can affect

the overall model performance through a comprehensive comparative study on the

DublinBikes dataset. Current results have shown that embedding AAM can achieve
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the best results compared to many other settings.

To conclude, we believe that the work presented in this chapter is an impor-

tant step towards making bike sharing systems more efficient thanks to the ST-

GCN enabled techniques. A deep exploration on different adjaceny matrices reveals

that embedding adaptive adjacency matrix can achieve the best performance in this

work.
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Chapter 4

Lane changing intention detection

Abstract: In this chapter, we detect traffic flow caused by lane changing intentions

on the highway traffic networks, with graph modelling on the data generated by a

popular mobility simulator. This chapter is related to the work [81], which has been

accepted by the 25th IEEE International Conference on Intelligent Transportation

Systems (IEEE ITSC 2022) and will be published.

4.1 Introduction

With the growing population in modern cities, traffic and transportation systems

are becoming the most important infrastructure, supporting citizens for their daily

commuting and travelling. Among the components of the traffic system, highway

traffic networks provide the most efficient way to commute between different parts

of cities, with a lower chance of traffic jams. The expanding use of highway traf-

fic networks inevitably introduces new challenging problems of traffic management,

such as the concern of safe driving, to avoid severe collisions by sudden unexpected

accelerations, braking and lane change when the surrounding vehicles can not react

promptly. Given this background, Intelligent Transportation Systems (ITS) play

an important role in solving traffic problems and ensuring traffic safety with fewer

fatal traffic accidents [82]. For instance, with the successful application of computer

vision and network communication, such as a camera monitoring system, it is easy

79



to track the moving vehicles with the image processing techniques and then vari-

ous information (e.g., speed, number of vehicles on the road) are accessible via the

appropriate application programming interface (APIs) [83] [84]. With such informa-

tion, variable speed limits and real-time speed advisory systems have been proposed

to alleviate traffic congestion and maximise the utility of highway traffic networks

in various aspects [85–87]. For instance, Fig 4.1 demonstrates the speed advisory

system (SAS) with variable speed limits deployed in Dublin city which is able to

recommend optimal speeds for each lane on the M50 highway traffic network in

Dublin city1.

Figure 4.1: Speed advisory system on M50 highway traffic network in Dublin city.
Optimal speeds are advised and shown on the screen for each lane on the highway
traffic network1.

However, even if the SAS system has been applied to govern driving speed and

reduce the chances of traffic accidents [88], drivers may drive with different driving

intentions (i.e., acceleration; lane changing) unconsciously if they drive freely with-

out traffic restriction [31]. For instance, Fig. 4.2 illustrates the framework of the

M50 highway traffic network, where the SAS is implemented on the segment marked

in green. Once vehicles leave the segment with SAS system (in green), it is more

likely that vehicles may change lane freely and accidents may happen (in red).

Although current work has shown the effectiveness of detecting the lane change

in transportation systems using HMM [36] and LSTM based methods [37,38], these

methods can not leverage the natural geographical information (e.g, the connec-

1https://www.rod.ie/projects/enhancing-motorway-operation-services
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Figure 4.2: The simulated framework of the M50 highway network in Dublin city
using SUMO. In the real world, The segment in green is implemented with a speed
advisory system and the segment in red indicates where frequent lane changing
behaviours may happen.

tion between lanes) sufficiently. The key difference between our work and theirs is

that we detect the intention of lane changing based on GNN, in which the graph

modelling can extract the spatial information between lanes and boost the detection

performance. Existing works related to detecting the lane changing behaviours focus

on vehicle-level detection [89] [90]. These works forecast whether a specific vehicle

has an intention to change the lane while driving on the road, in order to avoid

potential collisions. In this work, given the background that vehicles are driving

at recommended speed on the highway traffic network, we detect the lane changing

intentions using information collected from road-level rather than from individual

vehicles, to indicate the chaotic level of the current road network such that different

levels of traffic intervention may need to be applied. Regarding traffic network mod-

elling, the previous works model the highway traffic network as a graph with the

junctions as nodes and the roads as edges. We model the highway traffic network as

a graph with the lanes as nodes and connectivity between lanes as edges, to extract
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the graph features with lane changing information, which will be discussed in section

4.3.3. The main contributions of this chapter include:

1. We evaluate the performance of lane changing detection against different tem-

poral segments, to investigate the efficiency of the detection algorithm. Results

show that our method can detect lane changing intention in 90 seconds with

higher accuracy comparing to HMM-based [36] and LSTM-based method [37],

which can raise an alarm promptly in real-world applications.

2. We apply temporal graph convolutional network with attention mechanism, to

leverage the temporal information for accurate detection. In comparison with

temporal convolutional neural network (TCNN), attention temporal graph

convolutional network (ATGCN) shows the advantages in real-world appli-

cation.

3. Finally, for the purpose of interpreting our trained model, we calculate the

standard deviation and spectral information divergence for the input features,

to evaluate the contributions that the features make to the model.

The remaining parts of the chapter are organised as follows. We introduce speed

advisory system (SAS) on highway traffic networks as the background of this work

and review some deep learning based detection for traffic flow in section 4.2. The ex-

periment design, data processing and neural network architecture are demonstrated

in section 4.3. Experimental results and further details regarding the results are

discussed in section 4.4. Finally, we summarise this work in section 4.5.

4.2 Related works

4.2.1 Speed advisory system

With the development of ITS and vehicle-to-vehicle/infrastructure (V2X) technolo-

gies, Intelligent Speed Advisory (ISA) systems have shown the capability in improv-

ing driving safety in various traffic scenarios [91–95]. In highway traffic networks, in
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addition to driving safety, driving vehicles at the suggested speed has the benefits

such as minimizing the emission, energy consumption and health risks [86,93]. With

this in mind, road operators and transportation departments can always monitor

the speed of vehicles with the help of an intelligent camera-based platform [83] to

ensure that drivers follow the recommendation of the speed advisory system.

4.2.2 Deep learning based traffic flow analysis

A large body of work in the literature has been found using deep learning methods

for traffic flow analysis. Most recently, deep belief networks [96], autoencoder [97]

and recurrent neural network (RNN) based approaches [98] have been implemented

to analyse the sequential traffic flow data leveraging the long term temporal de-

pendencies. Jointly working with sequential deep learning models, by segmenting

the city into multiple areas and grids, CNN architectures with temporal units have

been devised to access both spatial and temporal information where the traffic flow

is processed into sequential 2-D data [99] [100]. However, the above methods meet

with common limitations for traffic flow analysis since they neglect the natural non-

Euclidean property (e.g., graph) in road networks.

In general, traffic networks are naturally represented in graph format, where the

roads are natural edges and connections between roads act as nodes. In order to

overcome the significant limitation of the previous mentioned deep learning meth-

ods in traffic flow analysis, graph neural networks (GNNs) are applied as an ideal

approach to data analysis on traffic networks since spatial dependencies between

different nodes have been represented in graph structure. With the input of graph

features, variants of GNN architectures have been proposed as the state-of-the-art

approaches and obtained promising performances in various scenarios [101] for de-

tection problem. For instance, Diffusion Convolutional Recurrent Neural Network

(DCRNN) [102], Graph Wavenet [72] and spatial-temporal Graph convolutional net-

work (STGCN) [1] have been designed to leverage the spatial-temporal information

and improve the traditional GNN architecture, which can boost the performance of
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data analysis in highway traffic networks. Tanwi et al. [103] refined the DCRNN to

transfer the common spatial-temporal information between cities with similar ge-

ographical structure to improve the detection performance. Yu et al. [1] proposed

STGCN to leverage the spatial and temporal dependencies between different areas

of a city, to improve the performance of traffic demand forecasting.

4.3 Methodology

4.3.1 Simulation & Experiment Design

In this section, the traffic flow influenced by different driving intentions is simulated

using SUMO [104]. SUMO is open-source software for the simulation of urban

mobility, which is prevalent for the purposes of proposing and validating research

ideas related to the intelligent transportation. In this work, we select a segment

of highway traffic networks in Dublin city (i.e., the M50 highway network) as the

scenario where different driving intentions may happen in the real world. As shown

in red in Fig. 4.2, as the vehicles leave the green segment where the driving speed

is guided by SAS, the drivers may drive with frequent lane changing intentions (in

red segment) which endanger the traffic safety. There are four lanes in this segment

of the M50 highway network and the data on traffic flow is collected while vehicles

are running on this highway traffic network segment.

In this experiment, a new vehicle is generated per simulation step (i.e., 1 second)

on the lane recommended by SUMO. In a normal situation, all vehicles are driving at

SAS speed without frequent lane changes on the highway traffic network, where the

SAS speed is set as 80 km/h. However, considering that different driving intentions

could happen in the real world, we consider the possibility of violating SAS speed

and frequent lane changing, when generating the traffic flow data. Violating SAS

speed is defined as driving at a speed that is different from SAS speed in a given

range (e.g, 5%, 10%, 20% of SAS speed) and lane changing means that the vehicle

randomly switches to any lane (i.e., four lanes including the current lane where the

84



vehicle is currently driving on) of the highway traffic network. With this in mind,

each vehicle has the possibility (i.e., SAS probability 0.1, 0.5 and 0.9) driving at

SAS speed and the possibility (i.e., lane probability 0.1, 0.5 and 0.9) driving at the

same lane at each simulation step while staying in the highway traffic network. The

higher probability indicates that the vehicle has a higher chance to follow SAS speed

and drive in the same lane. For instance, SAS probability = 1.0 and lane probability

= 1.0 mean that the vehicle will drive at the SAS-recommended speed and will not

change lane for the whole journey. Fig. 4.3 demonstrates an example with setting

SAS probability = 0.1, lane probability = 0.9 and 20% of SAS speed. It indicates

that each vehicle conducts uniform motion for the whole journey where the speed

has 0.1 probability to set as SAS speed (i.e., 80 km/h) or has 0.9 probability to set

as the speed from 64 km/h to 96 km/h (i.e., violating 20% of SAS speed). Once

the speeds are set, the vehicles are not able to change the speed. Each vehicle has

0.9 probability to drive at the current lane (i.e., 0.1 probability change the lane).

In a real-world application, multiple cameras can be set to monitor the vehicles in

each lane respectively. Since the driving speed of vehicles and the possibility that

vehicles driving at SAS speed can be estimated, we detect the different lane changing

intentions (i.e., different lane changing possibilities) in this chapter.

Figure 4.3: An example of the setting of driving intention, with setting SAS proba-
bility = 0.1, lane probability = 0.9 and 20% of SAS speed.
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4.3.2 Feature selection and model training

For feature selection, while vehicles are driving with intentions of speed and lane

changing, the average driving speed and vehicle number on each lane are collected

and estimated by the camera. With this information, the road sector management

unit can estimate not only the possibility that vehicles driving at SAS speed, but

also the range of speed changes (e.g, 5%, 10%, 20% of SAS speed) for the vehicles

that do not follow the SAS speed. Therefore, the different models for lane changing

detection will be trained on different SAS probability and range of speed changes.

We label the traffic flow based on different probabilities of lane changing (i.e., lane

probability). The traffic flow data used for model training, validation and testing

are generated for 3600, 1800 and 3600 simulation steps, corresponding to monitoring

the traffic flow for a period of one hour, half-an-hour and one hour respectively in

real world.

4.3.3 Traffic Flow on Graph

In this section, we introduce the processing of highway traffic flow with graph mod-

elling. In previous works, the traffic flow data is collected at the junctions between

different roads. However, there are multiple lanes on each road and we collect the

lane-wise traffic flow data. With this setting, we treat the highway network as a

graph G = (V,E), where V denotes the nodes which is the set of lane segments

V = {li|i = 1, 2, . . . , N}, E denotes the edges which is the connections between

nodes. The adjacency matrix derived from a graph is denoted by A. The connec-

tivity of the graph is set as fully connected as the vehicle may change lanes from

one to any other while driving with lane changing intentions, indicating Ai,j = 1 for

i, j = 1, 2, . . . , N . Specifically, as shown in Fig.4.4, the highway network is divided

into two segments therefore we have 8 lane segments (i.e., N = 8) and graph signal

X(t) = (S(t), D(t)) is collected at each simulation step t among different nodes,

where S denotes the averaged vehicle speed and D the number vehicle (i.e., density)

on the lane. Finally, X(t) for t = 1, 2, . . . , T is processed as a sample of graph data,
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where T indicates the length of the temporal segment when processing the graph

data.

Figure 4.4: Directed graph modelling of a segment of the M50 highway network.
Each node (red point) denotes a lane segment and the edges (blue lines) between
nodes indicate adjacent lane segment. The vehicles can change to an adjacent lane
segment or remain in the current lane segment.

4.3.4 Network architecture

� Temporal convolutional networks (TCNN). With the graph modelling in high-

way traffic networks, TCNN is designed as a baseline, to evaluate the ability

of CNN in detecting the intentions given graph-traffic data flow. As simple

as possible, the architecture of TCNN is refined from [1] and demonstrated in

Fig. 4.5. Graph features extracted from each temporal segment are conveyed

to three identical 2-D convolutional layers. The output from the first con-

volutional layer is activated by a sigmoid function to have normalised values

between 0 and 1. Output from the other two convolutional layers is added with

normalised values and then activated by a Relu function, followed by a fully-

connection layer. This setting considers that two convolutional layers without

sigmoid activation tune the model parameters in general, converging to the op-

timal values faster, while normalised values from the first convolutional layer
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with sigmoid activation can help to adjust the parameters precisely.

� Temporal graph convolutional networks with attention mechanism (ATGCN).

Based on the temporal convolutional networks proposed above, we extend the

network architecture to graph convolutional networks with an attention com-

ponent. Referring to the work presenting the ST-GCN architecture [1], we

introduce TGCN with attention mechanism, consisting of two attention tem-

poral convolution blocks (ATCs) and a fully-connected output layer. Each

ATC consists of two temporal convolution blocks used in TCNN, with atten-

tion mechanism applied to process temporal information, as demonstrated in

Fig. 4.6. Note that ATGCN has the latent static spatial information since the

nodes are fully connected to each other as discussed in section 4.3.3.

Figure 4.5: An architecture of a temporal convolutional networks based on [1].
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Figure 4.6: Architecture of attention temporal graph convolutional networks.

4.3.5 Network setup

Referring to the processing traffic flow into graph format in section 4.3.3, the number

of nodes is set as 8, indicating 8 lane segments in highway traffic network. The

number of features is set as 2, corresponding to the average speed and number of

vehicles on each lane segment collected as the graph features. The length of temporal

segment T is set to 30, 60 and 90 respectively, which will be examined later by our

algorithm.

For TCNN architecture, each convolution layer has 2 input channels (e.g., cor-

responding to the number of features) and 64 output channels, with the kernel size

set to 3. In each input channel, a 2-D traffic data slice with a dimension of [T , 8],

indicating the specific feature from the 8 lanes in a given temporal segment, is used

for the model training. Therefore, the fully-connected layer receives the input size as

[T x 8 x 64] and the output size as 3, corresponding to the 3 categories of anomalies

that will be discussed in section 4.4.1. We set the batch size as 32 indicating there

are 32 2-D traffic data slices for each training iteration.

The ATGCN architecture shares the same setting with TCNN architecture re-

lated to the part of the temporal convolution layer and fully-connected layer. The

averaged 3-D pooling operator processes the data along with the dimension of T ,
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with the output vector with a size of [1,T ]. This vector conducts dot product oper-

ation with the output of the temporal convolution module, realizing the attention

effect on temporal information. Table 4.1 lists the common settings when training

the ATGCN and TCNN architecture.

Table 4.1: Network settings for ATGCN and TCNN

Parameters Values

Nodes 8 (only for ATGCN)

Length of temporal segment 30, 60, 90

Intention categories 3

Feature dimension 2

Batch size 32

Initial learning rates 0.001

Optimiser Adam algorithm

Weight decay 0.001

4.4 Experimental Results and Discussion

In this section, we analyse and discuss the results of detection for lane changing

intention when the vehicles were driven under irregular speeds.

4.4.1 Lane changing detection

Here we evaluate the deep learning algorithms for detecting lane changing intentions.

In order to exclude the effect of speed violation when detecting the traffic flow caused

by lane changing, the data is divided under three conditions, that is data generated

under possibilities (i.e., 0.1, 0.5 and 0.9) of speed violation. Detection for intentions

of lane changing is investigated in these conditions separately.

The detection also considers the effect of temporal segments when processing

the graph data. We select three temporal segments with different lengths (i.e.,
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Table 4.2: Accuracy of detection for lane changing intention from ATGCN

Speed change Conditions T=30 T=60 T=90

5% of SAS speed SAS prob = 0.1 90.85% 96.00% 97.39%

SAS prob = 0.5 86.62% 90.57% 94.78%

SAS prob = 0.9 98.17% 98.86% 100.00%

Average 91.88% 95.14% 97.39%

10% of SAS speed SAS prob = 0.1 91.69% 95.71% 97.39%

SAS prob = 0.5 90.42% 97.14% 98.26%

SAS prob = 0.9 97.61% 98.86% 97.83%

Average 93.24% 97.24% 97.83%

20% of SAS speed SAS prob = 0.1 96.06% 98.00% 99.13%

SAS prob = 0.5 95.07% 98.29% 100.00%

SAS prob = 0.9 96.20% 98.86% 99.13%

Average 95.78% 98.38% 99.42%

T = 30, 60, 90) when generating the sample of graph data. With these settings, the

algorithm detects the lane changing intention every 30, 60 and 90 seconds respec-

tively in a real-world application. Every two contiguous samples have an overlap

time of T/2 given the specific length of temporal segment T .

Table 4.2 and Table 4.3 demonstrate the results of lane changing detection using

ATGCN and TCNN respectively. On the one hand, the averaged accuracies based on

ATGCN are better than that based on TCNN for different ranges of speed change.

For each category of speed change, the detection based on ATGCN obtains the

highest averaged accuracy given the length of temporal segment T = 90, which

outperforms the performances of TCNN. For instance, ATGCN achieves the highest

accuracy 99.42% and TCNN obtains accuracy 98.12% given T = 90. On the other

hand, the length of a temporal segment when processing the graph data has an

important impact on detecting the traffic flow caused by lane changing. For ATGCN,

as the length of temporal segments become longer, the performance of detecting
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Table 4.3: Accuracy of detection for lane changing intention from TCNN

Speed change Conditions T=30 T=60 T=90

5% of SAS speed SAS prob = 0.1 91.27% 96.29% 90.43%

SAS prob = 0.5 86.06% 91.71% 89.57%

SAS prob = 0.9 98.59% 98.86% 97.83%

Average 91.97% 95.62% 92.61%

10% of SAS speed SAS prob = 0.1 92.54% 97.14% 94.35%

SAS prob = 0.5 93.52% 96.86% 97.39%

SAS prob = 0.9 97.75% 98.00% 96.96%

Average 94.60% 97.33% 96.23%

20% of SAS speed SAS prob = 0.1 96.48% 98.00% 98.26%

SAS prob = 0.5 95.49% 98.00% 96.96%

SAS prob = 0.9 96.76% 96.29% 99.13%

Average 96.24% 97.43% 98.12%

traffic flow caused by lane-changing behaviours gets better for most conditions when

the speed is changed in different ranges. For instance, when most vehicles violate

the SAS speed (i.e., when vehicles have only a 0.1 probability to follow SAS speed),

expanding the length of the temporal segment from T = 30 to T = 90 increases

the averaged detection accuracy from 96.06% to 99.13% when the speed is changed

within the range of 20% of SAS speed. The averaged accuracy among all conditions

also increase in line with the increase of the length of temporal segments. For

TCNN, extending the length of the temporal segment can enhance the algorithm’s

chances of detecting the lane-changing behaviour. The performances under T = 60

and T = 90 are better than that of under T = 30 and the detection obtains the

best performance (i.e., accuracy 98.12%) under T = 90 when the speed is changed

within the range of 20% of SAS speed.

The average accuracies from Table 4.2 and Table 4.3 also indicate that the de-

tection is getting more accurate as the range of speed change gets larger for both
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ATGCN and TCNN. When the vehicles are driving at large different speeds, the lane

changing behaviours can cause a disturbance in traffic flow and lead to higher risks

of traffic accidents. Therefore, given the larger range of speed change, the detection

algorithm can catch the information representing the lane changing intentions eas-

ier. Even if the vehicles are driving at the most similar speed (i.e., only violate SAS

speed within a range of 5%) where the chance of traffic accident is smaller, the AT-

GCN can also detect the corresponding lane changing behaviour with an accuracy

of 97.39%.

Figure 4.7: The average speed and vehicle number in lane 4 (node l4) among different
lane changing probabilities under conditions SAS prob = 0.1 and 10% of SAS speed
change. The legends indicate the mean and standard deviation for the corresponding
feature.

4.4.2 Feature visualisation and analysis

In this section, the features (i.e., average speed and vehicle number on the lane)

are visualised and the importance of these features are discussed for lane changing

detection.
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Figure 4.8: The average speed and vehicle number in lane 4 (node l4) among different
lane changing probabilities under conditions SAS prob = 0.9 and 10% of SAS speed
change. The legends indicate the mean and standard deviation for the corresponding
feature.

Fig. 4.7 and Fig. 4.8 demonstrate the average speed and vehicle number in

lane 4 for an hour, among different lane changing intention, where the vehicles

have the probability of 0.1 and 0.9 to follow the SAS speed respectively. Table 4.4

shows the statistical mean and standard deviation of the corresponding features.

For both situations where SAS prob = 0.1 and SAS prob = 0.9, as vehicles tend

to drive without lane change intentions (i.e., the lane probability increases), the

standard deviations of vehicle number get smaller, which indicates the sequential

feature of vehicle number tend to be more stable and this pattern can be caught by

the prediction models. As for the average speed on the lane, the standard deviation

changes slightly without a clear trend and the values of standard deviations are close

to each other, while the lane probability increases. This pattern indicates that the

vehicle number plays a dominant role in lane change detection even if the average

speed has reflections to lane changing intentions.

For the purpose of comparing the similarity of the features between different

lane probabilities in the frequency domain, the spectral information divergence (SID)

measurements [105] are calculated between average speeds and between vehicle num-
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bers. A higher value of SID indicates the two signals are more different with respect

to the spectrum pattern. Table 4.5 shows the SID measurements for average speeds

and vehicle numbers between different lane probabilities under conditions SAS prob

= 0.9 and 10% of SAS speed change. The SID values for the feature of vehicle

numbers are tremendously larger than that for average speeds, indicating that the

patterns shown in vehicle numbers are more specific given the corresponding lane

probability and provide crucial information for lane changing detection.

Table 4.4: Standard deviation for features in different lane probability (LP)

Conditions Features LP = 0.1 LP = 0.5 LP = 0.9

SAS prob = 0.1 Avg. Speed 1.04 1.14 1.05

Vehicle Num. 2.35 2.00 1.76

SAS prob = 0.9 Avg. Speed 0.49 0.43 0.37

Vehicle Num. 2.71 2.21 1.67

Table 4.5: Spectral information divergence for features between different lane prob-
ability (LP)

Features LP=0.1 vs. LP=0.5 LP=0.1 vs. LP=0.9 LP=0.5 vs. LP=0.9

Avg. Speed 46.35 49.31 43.97

Vehicle Num. 217.79 224.72 284.41

4.5 Conclusions

In this chapter, we model the traffic flow data on highway traffic networks using

graph and leverage temporal graph convolutional network architecture embedded

with attention mechanism to detect vehicles lane changing intentions. The experi-

ments compare the detection performance of ATGCN with that of TCNN. Compar-

ison results indicate that the attention mechanism enhances the ability in capturing
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the key temporal information and improves the detection accuracy. With ATGCN,

anomalies can be detected within 90 seconds with the highest accuracy and this

prompt detection is important for traffic condition monitoring. In addition, with

graph data modelling for highway traffic networks, a simpler TCNN architecture

can also detect vehicles lane changing intentions accurately if sufficient information

is provided by a larger temporal segment. In fact, TCNN is also a promising alter-

native with shorter time window (e.g., 30- and 60-second window) calculation, but

a longer time window with ATGCN can achieve better performance/accuracy.

To conclude, we believe that the chapter releases implications for intelligent

transportation: 1) Graph modelling on traffic flow suits the nature of highway net-

works and helps to enhance the knowledge representation. 2) The length of the

temporal segment affects the performance of anomaly detection. When anomalies

are required to be detected accurately and rapidly in important segments of highway

traffic networks, delicate models (e.g., ATGCN) deserve more consideration. On the

contrary, if anomalies will not cause severe threats to the driving safety (e.g., the

driving speed varies within a small range) and can be monitored infrequently, the

simpler model (TCNN) can be applied to reduce the computation cost.
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Chapter 5

Conclusion

In this chapter, we conclude the thesis by highlighting our contributions, noting any

limitations of the work and suggesting areas for future investigation. The chapter

is organised as follows: section 5.1 summarises the key findings of the thesis with

respect to each technical chapter; section 5.2 points out limitations and potential

future work.

5.1 Thesis summary

In this thesis, we discuss three topics related to IoT and smart transportation. In

chapter 2, we investigate the problem on maximising the overall utility of IoT net-

works in a secure, privacy-aware and plug-and-play manner. For achieving this

objective, we assume that there are different priority levels when different IoT de-

vices transmit data to the central node in a decentralised setup with limited system

resources. We propose a transmission frequency management system with anomaly

detection mechanisms to better manage the IoT networks. Also, we introduce the

system architecture including four key components: IoT devices, Gateway, Cloud

platform and Users. Each IoT device is associated with a utility function with cer-

tain assumptions, and our objective is maximise the overall utility for the group

of devices in the network by solving a mathematical optimization problem. Apply-

ing decentralised ADMM optimisation, the transmission frequency management is
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able to allocate the optimal transmission frequency to each IoT device in a privacy-

protected manner. We also discuss anomaly detection in different scenarios using

both mathematical rule-based and an LSTM-based approaches. In real-world ex-

periments, the optimal transmission frequencies are calculated and set locally on

each IoT device, without the allocation from central node. Meanwhile, manipu-

lations that lead the IoT devices to transmit data deviating the set transmission

frequencies can be detected by the proposed anomaly detector with high accuracy.

In chapter 3, we investigate the problem of sharing bike availability. Based on

the current research related to traffic demand prediction, we leverage the state-of-

the-art spatial-temporal graph convolutional network (ST-GCN) as the foundation

to approach the research objective, to predict the number of available sharing bikes

using realistic datasets. To enhance the prediction accuracy, we embed ST-GCN

architecture with an attention module (AST-GCN) to leverage spatial and tempo-

ral information with different focuses. Furthermore, we also discuss the impacts

of different modelling methods of adjacency matrices on the proposed architecture.

Experimental results show that our proposed method using AST-GCN with the em-

bedded adaptive adjacency matrix outperforms the majority of existing approaches

in two real-world datasets.

In chapter 4, we consider the problem of detecting the lane changing intention

on highway traffic networks for improving driving safety. We define the lane chang-

ing intention as lane changing probability and then simulate the traffic flow with a

group of vehicles drive at different lane changing probabilities using a popular mo-

bility simulator (i.e., SUMO). Given the simulation scenario, we leverage temporal

graph convolutional network with attention module (ATGCN) to detect the lane

changing intentions and compare the performance with another concise algorithm,

i.e., temporal convolutional neural network (TCNN). Experiment results show that

ATGCN can detect the lane changing intentions within 90 seconds with higher accu-

racy, while the TCNN can also detect the lane changing intentions quite accurately

with just 1.3% lower accuracy compared to ATGCN. In a word, there is a trade-off
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between detection performance and the computation resources. If the computational

resource is limited in the IoT network, TCNN can play as a computation-economic

role to ensure the driving safety; While there is enough resource for computation,

ATGCN is the better option for detecting the lane changing intention.

In general, the thesis investigates how the advanced optimisation theories and

novel machine learning methods can be applied to deal with real-world challenges

arising in several research areas of IoT and smart transportation.

5.2 Limitations and Future works

The thesis discusses different topics related to the deep learning and optimisation

algorithm applied in IoT and smart transportation. During the research carried out

in this thesis, some limitations which merit further improvement arise and we now

revisit these in our future work.

In chapter 2, the transmission frequency management system allocates the op-

timal transmission frequencies in order to maximise the overall utility of a group

of IoT devices. The utility functions defined on IoT devices are strictly concave

and smooth. However, in some scenarios where the utility functions are non-smooth

and non-concave, the system behaviours become different and we will investigate

the dynamics of system behaviours given the non-smooth and non-concave utility

functions defined on IoT devices. Regarding the anomaly detection in transmission

frequency management system, we only employ the LSTM architecture and there is

a lack of investigations using other deep learning methods. The future work will ex-

periment with other deep learning algorithms (e.g., graph neural network [106,107]

and Transformer based architecture [108]). We will also experiment with different

topologies (e.g., partially connected topology [109]) that will be applied to the IoT

network to model the connection relationship between devices and the gateway. As

for anomaly detection, we only simulate the scenario when only one device suffers

one type of malicious manipulation at the same time. In future work, we will in-

vestigate cases when a device suffers attacks by multiple manipulations at the same
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time and we will also consider the scenario where there are new devices connecting

to or disconnecting from the gateway.

In chapter 3, although the overall accuracy of bike availability prediction is low

for all stations, the prediction errors are relatively higher for the stations in the

city centre area. In order to improve the prediction performance in the city centre,

the network structure, adjacency matrices and advanced feature selection will be

investigated as part of our future work.

In chapter 4, lane changing intention is predicted when the vehicles are guided by

only a specific SAS speed (e.g., SAS speed = 80 km/h). In future work, it is worth

investigating the prediction performance when the vehicles are driving at different

SAS-recommended speeds. The lane changing intention is described as different

static probabilities (e.g., probability 0.1, 0.5, 0.9). However, in the real world, it is

more complicated to describe the intention, since the probability of lane changing

can be varied depending on drivers’ characteristics. In future work, we shall factor

in such complexity in modeling drivers for a more accurate analysis for real world

scenarios. Also, the real driver behaviours (e.g., the lane changing behaviours in

real world) would be investigated, in order to figure out what level of detection

accuracy would be enough for real-world applications. Finally, we wish to note that

the SAS system will cover all parts of M50 highway network in the near future. In

this context, different attributes of the road segments, e.g., length of lanes, number

of lanes, are required to be redesigned for a better modelling of the graph, which

forms another part of our future work.
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