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Abstract

Few shot classification aims to learn to recognize novel categories using only lim-
ited samples per category. Most current few shot methods use a base dataset rich in
labeled examples to train an encoder that is used for obtaining representations of support
instances for novel classes. Since the test instances are from a distribution different to
the base distribution, their feature representations are of poor quality, degrading perfor-
mance. In this paper we propose to make use of the well-trained feature representations
of the base dataset that are closest to each support instance to improve its representation
during meta-test time. To this end, we propose BaseTransformers, that attends to the
most relevant regions of the base dataset feature space and improves support instance
representations. Experiments on three benchmark data sets show that our method works
well for several backbones and achieves state-of-the-art results in the inductive one shot
setting. Code is available at github.com/mayug/BaseTransformers .

1 Introduction
The development of few shot learning models is important for real world deployment of
artificial vision systems outside of controlled scenarios. Most previous works focus on de-
veloping stronger models, while scant attention has been paid to the properties of the data
itself and the fact that as the number of data points increase, the ground truth distribution
can be better uncovered. Estimating the prototype for a novel class using a single instance
is fundamentally ill posed, resulting in poor one shot performance. [39] has shown that this
can be alleviated by modeling the class conditional distribution as a Gaussian and sampling a
large number of features from this distribution to train a classifier or estimate the prototype.
They show that distributions of semantically similar classes in the base dataset have similar
mean and variance to the distributions of the novel class. Therefore, the statistics of the class
conditional distributions of novel classes are transferred from those of base classes which
have been estimated with several examples (over 600) per class. This method assumes that
the class conditional feature distributions are uni-modal Gaussian and that the transferable
statistics are only global and not local to each base instance or its spatial locations.
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Figure 1: BaseTransformers construct robust novel class prototypes by attending to and ag-
gregating semantically similar regions of the well supported base data feature space instead
of using the noisy novel prototype as in Prototypical Networks [28].

We propose a novel method for estimating prototypes of unseen classes using the base
dataset without making any assumptions on the distribution of the base data feature space or
the transferability of the instance level or spatial level information. Our proposed method,
BaseTransformers, is an end-to-end learnable cross attention mechanism that estimates a
robust, base aligned prototype for novel categories by learning local part based correspon-
dences between the support instance and semantically similar base instances. This is based
on two key ideas: (i) the base dataset images are composed of semantically meaningful parts
that could be reused during the classification of novel images; and (ii) since the base data
features are estimated using many shots, the features corresponding to these parts are less
noisy representations, closer to the ground truth distribution. The concept is illustrated in Fig
1, where a novel ‘centaur’ class has an undersupported prototype in the feature space of an
encoder pretrained on base-data. However a robust prototype of a centaur can be constructed
by taking the head, torso of a human and the body and legs of horse base classes which are
individually well supported in the feature space.

We hypothesize that semantically similar parts of a well represented base data feature
space can be used to estimate a novel prototype that is effectively a part based composition
of the well estimated base data regions. To enable this BaseTransformers allow for: (i) spatial
part based comparison between the support instance and similar base instances to select the
semantically meaningful regions of the robust base data feature space; and (ii) aggregation
of the semantically similar parts of the base instances to estimate a novel prototype that is a
composition of robust meaningful base regions. Taking inspiration from [6] we instantiate a
cross attention mechanism on the feature space of the pretrained encoder to enable this. We
perform this adaptation of the support instance using the base instances in the feature space
and not the original pixel space, as the feature space has lower dimensions and semantically
meaningful structures that are more easily transferable between the base and novel domains.

For each episode, the BaseTransformer takes the 2D feature spaces of the support in-
stance as query and the closest base instances as the key and value. The BaseTransformer
is trained end-to-end using the meta learning paradigm to identify the most relevant regions
in the base data feature space and use them to compose a more robust novel class prototype.
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Our approach starts with a pretraining stage using cross entropy and contrastive losses on the
base dataset to produce a robust encoder bypassing supervision collapse [6, 19]. This is fol-
lowed by a meta training stage, in which the encoder and BaseTransformer are jointly trained
to adapt the support instances using instances from the closest base classes. To identify the
closest base classes we propose using the class label information of the support instances,
and making queries on the base dataset based on semantic similarity. We show that the
proposed method beats the current state-of-the-art in 3 different datasets (70.88%, 72.46%,
82.27% on mini-ImageNet, tiered-ImageNet and CUB respectively) in the inductive one shot
setting.

Our novel contributions are: i) We identify that robust novel prototypes in one shot
learning can be obtained by part based composition of semantically similar base features;
ii) We design BaseTransformer that improves the 1-shot prototypes by learning to attend
to the robust 2D feature space of base instances and aggregate these to compose the novel
prototype; iii) We evaluate our method on two backbones and three benchmarks to show its
effectiveness in the one shot inductive setting of few shot learning.

2 Related Work
Meta Learning aims to extract common useful knowledge for classifying novel classes by
emulating few shot tasks during training time, and are usually optimization based or met-
ric learning based. In optimization based methods, the objective is to meta-learn a good
initialization of weights [8, 24, 26, 45] or the optimization process [16, 21, 25, 38] or a
combination of both [2, 23]. In metric learning methods [28, 30, 33, 41] the objective is to
develop an embedding space where similar instances are close to each other in some distance
sense so that a simple nearest neighbour classifier can be used during meta test time. Our
method is similar to metric learning, specifically prototypical networks, as we only have an
extra transformer stage to adapt the support instances to form more robust prototypes.

Transfer Learning methods train a network to classify base classes, followed by finetun-
ing the classifier on the novel instances whilst keeping the encoder fixed. [4, 34] has shown
that this simple strategy performs surprisingly well, beating/matching several complex meta
learning algorithms. We follow works such as [40] and have a pretraining stage in which
the encoder is trained on a combination of cross entropy and self supervised loss. Other
works [9, 17, 19, 29] have shown that addition of self supervision losses in the pretraining
stage provides more robust features, resulting in improved few shot performance. We use
the InfoNCE loss [3] as an auxiliary loss during the pretraining stage.

A Base Dataset has been used explicitly during meta test time in previous works, such
as in [1, 39]. The approach of [39] models the feature space of each class as a Gaussian and
transfers statistics from well estimated base class distributions to novel class distributions,
and sample from this to train a classifier. In our approach, we do not assume that the class
feature space follows a Gaussian distribution, but use a parametric function- a transformer
to improve the prototype representation by means of attention over the feature space of base
examples. The approach reported in [1] aligns the feature space of the novel instances to that
of the closest base instances by reducing an adversarial alignment loss during the test time,
while we do not tune any parameters of the transformer network during meta test time. Both
methods make use of cosine similarity in the feature space to query the closest base classes.
While this works well for us for shallow encoders, we find that making use of semantic
information from the class labels results in semantically closer base classes.
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Transformershave also been investigated in a similar context. Previous works like [11,
40] make use of transformer based adaptation on the feature space to improve few shot
performance. The approach in [40] uses self attention over the prototypes to adapt them in a
task speci�c manner, while the approach of [6] builds a classi�er that aligns the prototypes
and the queries spatially. Similarly [10, 12, 15, 36] use different forms of self-correlation and
cross-correlation mechanisms to improve the relational comparison between the prototypes
and the query instances. We differ from these methods, in that we explicitly attend over
all spatial locations of a base data subset to improve the support instance features. To our
knowledge, our work is the �rst to apply attention over the base data points for few shot
learning.

3 Method

In this section we �rst introduce the setup of few shot classi�cation in section 3.1 followed
by description of our proposed method in sections 3.2 through 3.4.

3.1 Preliminaries

We follow the inductive setting for few shot learning. A few shot task is anN way M
shot classi�cation problem, withN classes sampled from novel classesCn with M examples
per class.Ds = f xi ;yig

M� N
i= 1 refers to the support set sampled from novel classesCn. Test

instancesxq are sampled from a a query setDq = f xi ;yig
Q
i= 1 and the goal is to �nd a function

f that classi�esxq via ŷ = f (xq j Ds). In the few shot learning literatureM is usually 1 or 5
referring to the 1-shot or 5-shot task.

Finding f from the very few examples in the support set is very dif�cult, so a base
dataset is provided consisting of base classesCb such thatCb \ Cn = /0. In the meta-learning
paradigm,f is learnt by sampling severalN-way M-shot tasksDb

s and corresponding query
setsDb

q from the base dataset to emulate the test time scenario. In each sampled task,f is
learnt to minimize the average error onDb

q:

f � = argmin
f

å
(xb

q;yb
q)2Db

q

`
�

f (xb
q j Db

s); yb
q

�
; (1)

where` can be any loss that measures the discrepancy between prediction and true label.
During meta test time the optimalf � is applied on tasks sampled fromCn. The per-

formance of the model is evaluated on multiple tasks sampled from the novel classesCn.
For example, in prototypical networks,f consists of an embedding networkE and a nearest
neighbour classi�er:

f x = E(x) 2 Rd; ŷq = f (f xq; f f c
xs

g); (2)

wheref f c
xs

g is the set of prototypes. Here, each prototype is given by:

f c
xs

= å
yi2c

E(xi); (xi ;yi) 2 Ds: (3)
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Figure 2: Support instance featuref (xi) is reshaped and projected by query head Q to obtain
queriesqi

m where m corresponds to spatial locations in the support instance.qi
m is then

compared with the keysk j
n from all spatial locationsn of base instances to get attention

scoresattni
m jn, which are used to aggregate the valuesv j

n and summed with original support
featuref (xi) to obtain the base adapted prototype.

3.2 BaseTransformer

Given a support instancexi and its closest base instances
�

xbase
i

	 k
i= 1 the BaseTransformer

aims to learn a representation that enables part-based adaptation ofxi by attending over all
the spatial locations of all base instances in

�
xbase

i

	 k
i= 1 :

First, an image representation of support instancef (xi) is obtained using the encoder
f , while the class name corresponding to the support instance is used to get thek closest
instances in the base dataset. The topk function is described in detail in Section 3.3. The
features of the closest base instances are passed through a �xed encoderf 0 whose weights are
the weights obtained after the pre-training stage on the base dataset. These representations
are then used by the Transformer to establish correspondences between support instances and
base instances to produce the adapted prototype. Finally, similar to prototypical networks,
the Euclidean distance is used to classify the query featuref (xtest) by making use of adapted
prototypesf Pig

N
i= 1. Prototypical networks use 1D feature embedding while, BaseTransform-

ers use 2D embeddings as input to allow the model to make part based soft correspondences
between support and base instances, and use these to weigh the most relevant regions of base
instances to estimate the prototype of a support instance as a composition of robust base
parts.

More concretely, we consider a CNN without the �nal fully connected or pooling layers,
such thatf (xi) 2 RC� H0� W0

. Top k function uses the pre-trained encoderphi0 to provide
the closest base instances features set

�
f 0

�
xbase

i

�	 k
i= 1 wheref 0

�
xbase

i

�
2 RC� H0� W0

. During
meta training care is taken so as to exclude the class of the support feature itself from this set
of base features so as to force the BaseTransformer to learn to compose novel prototypes us-
ing only instances from different classes. These features are reshaped such that the attention
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would be between spatial locations off (xi) and spatial locations of thef 0
�
xbase

i

�
. Key-value

pairs of base instance featuresKf 0
�
xbase

i

�
, Vf 0

�
xbase

i

�
are obtained using two independent

linear layersK, V while the transformer's queriesQf (xi) are obtained by using linear map-
ping Q on the support instance features. Here, we distinguish between a query (or test) set
sample and the query of the transformer by explicitly referring to the latter as transformer's
query. The dot product between transformer's query and key features results in an attention
map between support features and base features. This is followed by a softmax over all
spatial locations andk base instances. The computed attention is then used to aggregate the
values and a residual connection from the transformer's query features is added to obtain the
adapted prototype. Figure 2 illustrates this process.

We follow the mathematical notation outlined in [6]. Letqi
m = Qf (xim) be the trans-

former queries i.e., the support features projected byQ, wherei is the index of the support
instance andm is the spatial location andk j

n = Kf 0(xbase
jn ) are the key features, i.e., the base

features projected byK wherej is the index of the base instance andn is the index of the spa-
tial location. An attention mapgattn between support features and base features is calculated
as:

gattn
i
m jn =

exp(attni
m jn)

å m jnexp(attni
m jn)

; where attnim jn = hk j
n;qi

mi : (4)

Next the base adapted prototypePi
m at spatial locationm is obtained as follows:

Pi
m = qi

m+ å
jn

hgattn
i
m jn;v

j
ni : (5)

For a test instancextest
tm , logits are obtained by calculating the similarity and averaging over

the spatial and channel locations as,

sim(f (xtest
t ); pi) = �

1
H0W0å

m




 f (xtest

tm ) � Pi
m




 2

2 : (6)

Here we do not update the features of the base instances during training so as to not corrupt
the base data features that have been learnt using several examples per class. The features of
a random subset of base instances are computed using the pretrained encoderf0 and stored
in a memory bank, which is then queried by the top-k querying function described in Section
3.3.

3.3 Querying function

We use a semantic similarity based querying function, which uses the label name of the
support instance and �nds the 5 closest base classes in a semantic space that varies according
the dataset. Then base instances are sampled randomly from these classes such that they sum
up tok. For mini-Imagenet dataset the semantic similarity is equal to the LCH-similarity[13]
of the labels in the WordNet graph[20]. LCH similarity between class labels do not work well
for tiered-ImageNet because the class splits were made using higher up nodes in the WordNet
hierarchy resulting in very similar LCH similarity scores between a test class label and many
base class labels. Hence, we use BERT[5] embeddings of the word labels concatenated
with their hypernyms from WordNet to �nd more semantically similar base classes. For
CUB, category-level attributes describing the visual features of each bird species are already
available. Similar to [27], we use the cosine similarity between normalized category attribute
vectors to query the closest base classes.
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3.4 Training

Following [6, 17, 19] we note that we require base embeddings that contain more information
than just information regarding base classes to be effective for adapting novel classes. To
restrict supervision collapse, we train our encoder with an auxiliary contrastive loss in the
pretraining stage. We follow a version of InfoNCE loss from [4], where the distance measure
is Euclidean instead of cosine distance.

l (i; j) = � log

 
exp(si; j )

å 2N
k= 11k!= i exp(si;k)))

!

; (7)

LinfoNCE =
1

2N

N

å
k= 1

[l (2k� 1;2k)+ l (2k;2k� 1)] ; (8)

wheresi; j = �



 fi � f j




 2

2 and fi , f j are features of SimCLR [3] style augmented images in a
minibatch. Concretely, the pretraining is aNb way classi�cation task whereNb is the number
of classes in the base dataset. It is evaluated on a 16-way 1-shot classi�cation task on the
validation set. The complete pretraining objective is:

Lpretraining= Lclassi�cation+ b� LInfoNCE; (9)

whereb is a hyperparameter balancing the auxiliary loss andLclassi�cation is aNb way cross-
entropy loss.

After pretraining, we train the transformer and the encoder end to end in a meta-learning
fashion similar to [40]. Because the feature encoder is pretrained on base dataset, a lower
learning rate(factor of 10) is used for the feature encoder to ensure convergence. Similar to
the pretraining stage we use unsupervised InfoNCE loss as an auxiliary loss along with the
cross entropy loss during meta training stage to restrict supervision collapse.

4 Experiments

We evaluate our method on three different datasets, namely mini-Imagenet, tiered-Imagenet
and CUB [35]. Mini-Imagenet and tiered-Imagenet are subsets of the Imagenet dataset de-
signed speci�cally for few shot learning. Mini-Imagenet dataset consists of 60,000 images
across 100 classes of which train, validation, and test have 64, 16, and 20 classes respectively.
We follow the split speci�ed in [25] with 64 classes in the base dataset. Tiered-Imagenet is
a larger dataset consisting of 351, 97, and 160 categories for model training, validation, and
evaluation, respectively. We follow the split speci�ed in [40]. In addition to this, we also
look at a more �ne grained few shot classi�cation task using the CUB dataset that consists
of images of various species of birds. CUB dataset contains 11,788 images split into 100,
50, and 50 classes for train, validation, and test. For all images in CUB dataset, we use the
provided bounding box to crop all the images as a preprocessing step [31]. We follow the
split speci�ed in [40]. Similar to [26, 40], we use 10,000 randomly sampled few shot tasks
for testing as well as report the average accuracy and 95% con�dence intervals.

5 Implementation details

We test our method with two networks popularly used in the few shot learning literature,
namely Conv4-64 – a 4 layer convolution network [28, 31, 33, 40] and ResNet-12 – a 12-
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Table 1: 5-way 1-shot and 5-way 5-shot classi�cation accuracy (%) on miniImageNet dataset
using ResNet-12 and Conv4-64 backbones. 95% con�dence intervals reported. The numbers
in bold are the best performing methods for the corresponding setting.

Setups 1-shot 5-shot
Backbone Conv4-64 Res12 Conv4-64 Res12

ProtoNets[28] 49.42� 0:78 60.37� 0:83 68.20� 0:66 78.02� 0:57
SimpleShot[34] 49.69� 0:19 62.85� 0:20 66.92� 0:17 80.02� 0:14
CAN[11] - 63.85� 0:48 - 79.44� 0:34
FEAT[40] 55.15� 0:20 66.78� 0:20 71.61� 0:16 82.05� 0:14
DeepEMD[42] - 65.91� 0:82 82.41� 0:56
IEPT[43] 56.26� 0:45 67.05� 0:44 73.91� 0:34 82.90� 0:30
MELR[7] 55.35� 0:43 67.40� 0:43 72.27� 0:35 83.40� 0:28
InfoPatch[17] - 67.67� 0:45 - 82.44� 0:31
DMF[37] - 67.76� 0:46 - 82.71� 0:31
META-QDA[44] 56.41� 0:80 65.12� 0:66 72.64� 0:62 80.98� 0:75
PAL[18] - 69.37� 0:64 - 84.40� 0:44

BaseTransformer 59.37� 0:19 70.88� 0:17 73.40� 0:18 82.37� 0:19

layer residual network [14, 40]. As mentioned above we have an additional pretraining
stage over the base dataset before the meta training stage. We use images resized to input
resolution of 84� 84 for both networks.

In pretraining stage, we use SGD with momentum with an initial learning rate of 0.1
which is decayed by 0.1 using a custom schedule for both networks, similar to [40]. For
weighing the auxiliary contrastive loss, we use balanceb = 0:1.

In the meta learning stage, we use SGD with momentum with an initial learning rate of
0.002 andg = 20 for Conv4-64 and an initial learning rate of 0.0002 andg = 40 for ResNet-
12. We follow the standard implementation of multi-headed self attention as presented in
[32]. In meta training stage, the temperature hyperparameter used for softening the logits is
critical for convergence to a good solution. We set the temperature as 0.1 for both networks.
The optimal value for k is set to 30 after a hyperparameter search.

The memory bank consists of features of 200 randomly sampled instances per base class
computed using the trained encoderf0. The value ofk was �xed to be 20 after trying out
values ofk from 2 to 30 and choosing the best performing value on 1-shot classi�cation on
mini-ImageNet.

5.1 Results

We report the results of BaseTransformer and other methods for mini-ImageNet in Table
1 and tiered-ImageNet and CUB in Table 2 and 4 respectively. We can see that one shot
performance of BaseTransformers is better than all competing methods. For fairness, we
have excluded comparisons with works that use larger encoders or extra image data [39].
We make the following observations: 1) BaseTransformers are effective in improving 1 shot
performance on all considered backbones and benchmarks; 2) In comparison to other works
[11, 40] that use transformers for prototype adaptation, we show improvements of 4.1%,
1.66%, and 3.28% on mini-ImageNet, tiered-ImageNet, and CUB dataset in the 1-shot set-
ting; 3) We do not see the strong improvements in 1-shot re�ected in the 5-shot setting. We
hypothesize that this could be because the prototypes in 5-shot setting are already a good es-
timate of the true prototype. We investigate this phenomenon in 5.3. Results with the oracle
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Table 2: 5-way 1-shot and 5-way 5-
shot classi�cation accuracy (%) on
tieredImageNet dataset for ResNet-
12. The numbers in bold are the
best performing methods for the cor-
responding setting.

Setups 1-shot 5-shot

ProtoNets[28] 65.65 83.40
SimpleShot[34] 69.75 85.31
FEAT[40] 70.80 84.79
CAN[11] 69.89 84.23
DeepEMD[42] 71.16 86.03
IEPT[43] 72.24 86.73
MELR[7] 72.14 87.01
InfoPatch[17] 71.51 85.44
DMF[37] 71.89 85.96
META-QDA[44] 69.97 85.51
PAL[18] 72.25 86.95

BaseTransformer 72.46 84.96

Table 3: Test accuracy over number of shots for Base-
Transformer and SupportTransformer

shot 1 2 3 4 5

BT 70.8 74.61 78.1 80.23 82.37
ST 66.34 73.12 77.33 79.8 82.01

Table 4: 5-way 1-shot and 5 way 5-shot classi�cation
accuracy (%) on CUB dataset. The numbers in bold
are the best performing methods for the corresponding
setting.

Setups 1-shot 5-shot
Backbone Conv4-64 Res12 Conv4-64 Res12

ProtoNets[28] 64.42 - 81.82 -
FEAT[40] 68.87 - 82.90 -
DeepEMD[42] - 75.65 - 88.69
IEPT[43] 69.97 - 84.33 -
MELR[7] 70.26 - 85.01 -

BaseTransformer 72.15 82.27 82.12 90.64

top-k querying function are reported in 5.4. See supplementary for comparison with other
baselines that use semantic knowledge and detailed results with 95% con�dence intervals.

5.2 Ablation studies

Table 6 provides detailed ablation study of the various parts of our method for the Conv4-64
encoder. We can see that performance without BaseTransformer and SimCLR-pretraining
is similar to that of Prototypical Networks. Including just InfoNCE as the auxiliary loss
in the pretraining stage improves performance by 1.3%. Applying BaseTransformers with
visual querying on Prototypical Networks further improves one shot accuracy to 54.46%.
Using SimCLR in the pretraining stage with BaseTransformers improves accuracy further to
57.38%. This shows that the SimCLR loss in the pretraining stage is necessary to prevent
supervision collapse and provide the BaseTransformer with robust base features. Finally,
applying semantic querying gives a further improvement of� 2%.

5.3 5-shot results

We believe that the performance improvements from using base dataset is only signi�cant
in the 1-shot to 3-shot domain. We ran experiments comparing BaseTransformer (BT) with
semantic querying to SupportTransformer (ST), a variant of BT where theQ = å yi2c f (xi)
and K = V = f f (xi)g whereyi 2 c, keeping all other hyperparameters same. HereQ is
the prototype of classc andK = V are the support instances of classc. Test accuracy of ST
approaches that of BT as the number of shots approaches 5, showing that the prototypes from
5 different support instances of the novel class become as good as the prototype computed
using base instances queried via a semantic query (Table 3).




