Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368 Intermolecular hydrogen bonding in (2*S*)-2-(1-oxo-1*H*-2,3-dihydroisoindol-2-yl)propanoic acid John F. Gallagher and Carol Murphy Copyright © International Union of Crystallography Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Intermolecular hydrogen bonding in (2S)-2-(1-oxo-1*H*-2,3-dihydroisoindol-2-yl)propanoic acid

John F. Gallagher* and Carol Murphy

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

Correspondence e-mail: john.gallagher@dcu.ie

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.087Data-to-parameter ratio = 7.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{11}H_{11}NO_3$, a condensation product of L-alanine and *ortho*-phthalaldehyde, crystallizes in space group $P2_12_12_1$. Intermolecular $O-H\cdots O=C$ and $C-H\cdots O$ hydrogen bonds are present with $O\cdots O$ and $C\cdots O$ distances of 2.623 (3) and 3.338 (4) Å, respectively.

Received 9 November 2001 Accepted 16 November 2001 Online 24 November 2001

Comment

The study of biologically active molecules is of primary importance in medicinal chemistry. Processes such as hormone processing, viral replication and cancer cell invasion are critically dependent on protease enzymes which have recently become attractive target molecules in drug design (Testa et al., 1993). Many inhibitors are based on modified amino acids which incorporate the basic structural features determining normal enzyme-substrate interactions. Phthalimidine (isoindolin-1-one) derivatives often display biological activity as potential anti-inflammatory agents and antipsychotics (Allin et al., 1996). The majority of structurally determined phthalimidine systems are either N-substituted or have a hydroxy substituent at the 3-position (McNab et al., 1997). The title compound (I), synthesized from L-alanine, is part of an ongoing study of hydrogen-bonding interactions in phthalimidine derivatives (Dalton et al., 1999; Gallagher et al., 2000; Gallagher & Murphy, 1999; Gallagher & Brady, 2000; Brady & Gallagher, 2001).

A view of the molecule of (I) (S configuration) with the atomic numbering scheme is given in Fig. 1 and selected dimensions are in Table 1. The bond lengths and angles in the heterocyclic ring are similar to those reported previously (McNab *et al.*, 1997) and are in agreement with expected values (Orpen *et al.*, 1994). The angle between the five- and six-membered rings of the isoindole system is 1.21 (18)° and the maximum deviation from planarity for an atom in either ring plane is 0.0125 (16) Å for N1, while the carbonyl atom O3 is 0.066 (4) Å from the C_4N ring plane. The five-membered ring is oriented at an angle of 71.72 (9)° to the CCO₂ carboxylic acid plane. Examination of (I) with *PLATON* (Spek, 1998) revealed no voids in the crystal lattice.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The hydrogen-bonding in (I) is dominated by an $O-H\cdots O$ and a $C-H\cdots O$ interaction in a two-dimensional network (Table 2). Conventional carboxylic acid $O-H\cdots O$ hydrogen bonding between pairs of carboxylic acid groups with graph set $R^2_2(8)$ (Ferguson *et al.*, 1995) is not observed in (I), mainly due to symmetry constraints; instead, the (acid) $O-H\cdots O=C(phth)$ interaction generates a one-dimensional zigzag chain of molecules along the *b* axis, and these chains are further linked by the $C-H\cdots O=C(acid)$ interactions along the *a* axis.

The crystal structure of (I) contrasts with that of compound (II), (2R/2S)-2-(1-oxo-1,3-dihydro-2H-isoindol-2-yl)-3-phenylpropanoic acid (Brady $et\ al.$, 1998), in which the extra phenyl group facilitates two $C-H\cdots\pi$ (arene) interactions. Molecule (I) is similar, however, to a valine derivative, (2S)-3-methyl-2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)butanoic acid, in which the five-membered isoindolyl ring carbonyl C—O is oriented transoid to the H at the chiral centre C2 (Gallagher & Brady, 2000).

The presence of $C-H\cdots O$ interactions together with stronger hydrogen bonds, *e.g.* $O-H\cdots O$, has been commented on previously (Steiner, 1997). Further studies are in progress on interactions in related phthalimidine derivatives for application as medicinal drugs.

Experimental

The title compound was prepared by the overnight reaction of L-alanine and o-phthalaldehyde in refluxing CH₃CN under N₂ (Allin *et al.*, 1996). Filtration of the hot solution and subsequent slow cooling of the filtrate allowed the isolation of needle-like colourless crystals. IR, (ν_{C} cm⁻¹), 1730, 1644 (KBr). Melting point 485–487 K (uncorrected).

Crystal data

•	
$C_{11}H_{11}NO_3$	Mo $K\alpha$ radiation
$M_r = 205.21$	Cell parameters from 25
Orthorhombic, $P2_12_12_1$	reflections
$a = 5.1787 (5) \text{ Å}_{\circ}$	$\theta = 9.018.9^{\circ}$
b = 9.9128 (18) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 18.918 (5) Å	T = 294 (1) K
$V = 971.2 (3) \text{ Å}^3$	Plate, colourless
Z = 4	$0.42 \times 0.21 \times 0.04 \text{ mm}$
$D_x = 1.403 \text{ Mg m}^{-3}$	

Figure 2
A view of the interactions in the crystal structure.

Data collection

Enraf-Nonius CAD-4	$\theta_{\rm max} = 25.4^{\circ}$
diffractometer	$h = -6 \rightarrow 6$
ω –2 θ scans	$k = -11 \rightarrow 11$
Absorption correction: none	$l = -22 \rightarrow 22$
1803 measured reflections	3 standard reflections
1086 independent reflections	frequency: 240 min
866 reflections with $I > 2\sigma(I)$	intensity decay: 0.5%
$R_{\rm int} = 0.024$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.087$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.02	$\Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$
1086 reflections	$\Delta \rho_{\min} = -0.14 \text{ e Å}^{-3}$
139 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.012 (3)

lable 1 Selected geometric parameters (Å, °).

O1-C1	1.324(3)	C1-C2	1.528 (4)
O2-C1	1.197(3)	C2-C11	1.512 (4)
O3-C3	1.235 (3)	C3-C4	1.479 (4)
N1-C2	1.453 (3)	C4-C9	1.385 (4)
N1-C3	1.342 (3)	C9-C10	1.493 (4)
N1-C10	1.455 (3)		
C2-N1-C3	122.6 (2)	N1-C2-C11	113.1 (2)
C2-N1-C3 C2-N1-C10	123.1 (2)	C1-C2-C11	115.1 (2)
C3-N1-C10	112.9 (2)	O3-C3-N1	124.7 (2)
O1-C1-O2	123.9 (3)	O3-C3-C4	128.0 (2)
O1-C1-C2	112.5 (2)	N1-C3-C4	107.3 (2)
O2-C1-C2	123.5 (2)	C3-C4-C5	130.0 (3)
N1-C2-C1	107.8 (2)	C8-C9-C10	130.9 (3)
C3-N1-C2-C1	58.3 (3)	O2-C1-C2-C11	152.4 (3)
O2-C1-C2-N1	25.0 (4)	C2-N1-C3-O3	9.6 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$O1-H1\cdots O3^{i}$ $C2-H2\cdots O2^{ii}$	0.82 0.98	1.80 2.51	2.623 (3) 3.338 (4)	178 142
$C2-H2\cdots O2$ $C11-H11C\cdots O3$	0.96	2.58	3.135 (4)	117

Symmetry codes: (i) $-x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) 1 + x, y, z.

Compound (I) crystallized in the orthorhombic system, space group $P2_12_12_1$ from the systematic absences. A full Friedel dataset was collected for this structure although the anomalous dispersion terms for O, N and C are small. The absolute configuration was not determined [Flack (1983) parameter = 1 (2)] by our X-ray analysis, but can be inferred from the known absolute configuration of the L-alanine starting material used in the synthesis. Friedel pairs were averaged in the final stages of refinement. H atoms were treated as riding atoms using the SHELXL97 defaults with C-H0.93 to 0.98 Å, O-H0.82 Å.

Data collection: *CAD4* (Enraf–Nonius, 1992); cell refinement: *SET4* and *CELDIM* (Enraf–Nonius, 1992); data reduction: *DATRD2* in *NRCVAX*96 (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *NRCVAX*96 and *SHELXL*97 (Sheldrick, 1997); molecular graphics: *NRCVAX*96, *ORTEP*II (Johnson, 1976), *PLATON* (Spek, 1998); software used to prepare material for publication: *NRCVAX*96, *SHELXL*97 and *WordPerfect* macro *PREP*8 (Ferguson, 1998).

JFG thanks Dublin City University and Enterprise Ireland for funding of a research visit to the University of Guelph, Canada (July–August, 1998) and especially Professor George Ferguson for use of his diffractometer and computer system for the collection of the compound (I) dataset.

References

Allin, S. M., Hodkinson, C. C. & Taj, N. (1996). *Synlett.* pp. 781–782. Brady, F., Gallagher, J. F. & Kenny, P. T. M. (1998). *Acta Cryst.* C**54**, 1523–1525. Brady, F. & Gallagher, J. F. (2001). *Acta Cryst.* C**56**, 1407–1410.

Dalton, J. P., Gallagher, J. F., Kenny, P. T. M. & O'Donohue, M. (1999). Acta Cryst. C55, 126–129.

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.

Ferguson, G. (1998). PREP8. University of Guelph, Canada.

Ferguson, G., Gallagher, J. F. & McAlees, A. J. (1995). Acta Cryst. C51, 454–458.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.

Gallagher, J. F. & Brady, F. (2000). Acta Cryst. C56, 619-622.

Gallagher, J. F., Brady, F. & Murphy C. (2000). Acta Cryst. C56, 365-368.

Gallagher, J. F. & Murphy C. (1999). Acta Cryst. C55, 2167–2169.

Johnson, C. K. (1976). ORTEPII. Technical Report ORNL-5138, Oak Ridge National Laboratory, USA.

McNab, H., Parsons, S. & Shannon, D. A. (1997). Acta Cryst. C53, 1098–1099.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure Correlation, Vol.2, edited by H.-B. Bürgi & J. D. Dunitz, Weinheim: VCH.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1998). *PLATON*. University of Utrecht, The Netherlands. Steiner, T. (1997). *J. Chem. Soc. Chem. Commun.* pp. 727–734.

Testa, B., Kyburz, E., Fuhrer W. & Giger, R. (1993). Editors. *Perspectives in Medicinal Chemistry*. Basel: Verlag Helv. Chim Acta.