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Abstract 24 

Background Automatic text localization and segmentation in a normal environment with vertical 25 

or curved texts are core elements of numerous tasks comprising the identification of vehicles and 26 

self-driving cars, and preparing significant information from real scenes to visually impaired 27 

people. Nevertheless, texts in the real environment can be discovered with a high level of angles, 28 

profiles, dimensions, and colors which is an arduous process to detect. 29 

Methods In this paper, a new framework based on a convolutional neural network (CNN) is 30 

introduced to obtain high efficiency in detecting text even in the presence of a complex 31 

background. Due to using a new inception layer and an improved ReLU layer, an excellent result 32 

is gained to detect text even in the presence of complex backgrounds. At first, four new m.ReLU 33 

layers are employed to explore low-level visual features. The new m.ReLU building block and 34 

Inception layer are optimized to detect vital information maximally. 35 

Results The effect of stacking up inception layers (kernels with the dimension of 3 × 3 or bigger) 36 

is explored and it is demonstrated that this strategy is capable of obtaining mostly varying-sized 37 

texts further successfully than a linear chain of Convolution Layers (Conv layers). The suggested 38 

text detection algorithm is conducted in four well-known databases, namely ICDAR 2013, ICDAR 39 
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2015, ICDAR 2017, and ICDAR 2019. 40 

Conclusions Text detection results on all mentioned databases with the highest Recall of 94.2%, 41 

Precision of 95.6%, and F-score of 94.8% illustrate that the developed strategy outperforms the 42 

state-of-the-art frameworks. 43 

Keywords: Deep learning, Text detection, Curved texts, Convolutional neural networks, Text 44 

segmentation. 45 

 46 
 47 

1. Introduction 48 

Automatically understanding of scene text with edges and corner-point information in a real 49 

environment represent a significant influence in a diverse set of intelligent system applications in 50 

visual assistance, intelligent traffic systems, automatic driving car, and so on [1]. In contrast to 51 

algorithms based on the character or text applied to document images, which is sufficiently well 52 

addressed by Optical Character Recognition (OCR) system, text classification and localization in 53 

natural images are still an open complex problem [2]. Since text obtained from natural images 54 

typically include a wide variety of useful text contents surrounded by objects in comparison to 55 

graphics text, detecting target text in the real scene is a challenging task [3]. This is due to the fact 56 

that the system needs to reject irrelevant objects and finds the location of the texts. 57 

There are a number of weaknesses in a text localization system that work in only one direction 58 

(horizontal), as a sizeable part of the texts achieved from natural images in the real world has a 59 

wide range of orientations, sizes, and fonts [4]. Such restriction would make it fail to extract the 60 

useful features contained in non-horizontal texts and thus seriously limits the efficiency and the 61 

scalability of these strategies [5].   62 

Usually, text detection strategies are based on two major algorithms: (i) approaches based on 63 

the texture, and (ii) approaches based on the region [6]. The texture-based methods are based on 64 

exploring significant features in the whole image, while the region-based techniques only work on 65 

a part of the image to ease the problem of execution time [7]. The features in the region-based 66 

techniques are permanently distinctive in real scene text regions [8]. The two main strategies for 67 

doing this, are techniques based on the connected components and strategies based on the sliding 68 

windows [5]. The CC strategies mostly emphasize significant information such as edges that can 69 

be detected using an edge extracting algorithm or color-thresholding techniques and then 70 
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combining the sub-Maximally Stable Extremal Regions (MSER) parts into a text-line or word area 71 

[9]. The mentioned strategies are capable to work in some hard detect scenarios including varying 72 

brightness or contrast, light flickering, recognized stroke characters, display reflections, and 73 

several joined characters. In the texture-based methods, by exploring the spreading of the textural 74 

features in a local or global area, a surrounding window related to the text area can be easily chosen 75 

and attached to text lines [10]. However, the significant disadvantages of strategies based on only 76 

textures can be described by a simple feature extraction method. Techniques employing sliding 77 

windows for feature extraction examine the image contents and try to extract numerous image 78 

rectangles. Nevertheless, these methods lead to an increase in complexity and computational cost 79 

[11].  80 

The purpose of recognition of a wide range of texts is to identify and describe a sequence of 81 

characters and content details from a selected region inside the text images for recognizing 82 

signboards, license plates, and so on [12]. For recognizing the words, there is a need to detect them 83 

first [1]. Due to the wide disparity in languages used in different areas and in dissimilar language 84 

texts, significant parts of present scene text recognition approaches emphasize merely analyzing 85 

the obtained image from the most applicable language texts (limited characters) [6]. To this end, 86 

most of the text analyzing frameworks are widely investigated based on the English text and are 87 

assorted into two key classes: the word-based and the character-based approaches [13]. Directly, 88 

the word-based approach recognizes a similar pattern of the potential word inside the obtained 89 

image from the real scene [14]. As countless English words are presented in the obtained real scene 90 

images, common strategies cannot be able to determine a word or sentence directly without 91 

needing to consider any extra information [15]. Basically, the character-based approach determines 92 

all predefined characters inside a Region of Interest (ROI) by a character classifier. All extracted 93 

characters make one or more words that can be recognized by a combination of individual 94 

outcomes [16].  95 

Recently, many Machine Learning (ML) methods are applied to various fields including 96 

social sciences [17], optimization [18], regulatory systems [19], data augmentation [20], stochastic 97 

systems [21], Internet of Medical Things [22], Internet of Things [23], Time series [24], medical 98 

data analysis [25], degenerative disorder [26], and recommendation systems [27]. 99 

In recent years, to solve the problem and difficulty of text localization and detection in a real 100 

scene due to the fuzzy boundary between text components and background, irregular shape, low 101 
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contrast, and low intensity numerous ML-based complex strategies have been implemented [28]. 102 

All segmentation and recognition algorithms are classified into two main groups based on 103 

their characteristics, including semi-automatic techniques (interactive approaches) and automatic 104 

frameworks [29]. The interactive or semi-automatic frameworks normally can be employed by 105 

various Human-Machine Interactions (HMI) or user directions [30]. This kind of text detection is 106 

somehow impossible to use in an environment that needs a real-time response [31]. So, automatic 107 

frameworks have been employed in a number of applications to diminish the costs and time of 108 

analyzing and steadily develop accuracy [32]. 109 

Current automatic models mainly can be explored inside the two wide-ranging classes, 110 

including anti-learning and learning techniques [33]. The anti-learning frameworks regularly 111 

comprise the active contour, clustering, region-growing, graph cut, and level set methods [34]. 112 

Region-growing approaches are pixel-based image segmentation strategies that select the touching 113 

pixels iteratively with many similarities (homogeneities) in intensity, direction, color, or variance 114 

(adding the neighboring pixels) [35]. The efficiency of region-growing algorithms can be 115 

influenced by selecting the seed points, and they benefit from small calculation complexity and 116 

high speed [36]. Graph cut methods are powerful energy minimization (optimization) strategies 117 

that characterize the image to an undirected weighted graph. It means each input image can be 118 

represented as a graph of nodes. Due to the use of both boundaries and regional information, it has 119 

obtained a lot of attention [37]. In these approaches, there is a need to have prior information about 120 

the shape and size of the target object, and every location (pixel) 𝑝 ∈  𝐼 inside the image is implied 121 

as a node in the graph. Furthermore, every edge connects two adjacent nodes, therefore the weight 122 

of each edge defines the rate of the similarities among each pair [38].  123 

In recent years, employing a neuron-based model as an automatic learning approach such as 124 

the Convolutional Neural Network (CNN/ConvNet) has been a surge of interest in text detection 125 

in the real scene [39]. There are different kinds of neural networks (NNs) in deep learning, such 126 

as artificial neural networks (ANN) [40], radial basis function (RBF) [41], convolutional neural 127 

networks (CNN) [42], recurrent neural networks (RNN) [43], etc. Unlike hand-crafted feature 128 

extraction models [44], these deep learning-based models are able to explore more informative 129 

information and hidden pattern inside the input data automatically [34].  130 

To overcome the problem of text instances with arbitrary shapes, Liu et al [16] proposed a 131 

novel BezierAlign layer. The Bezier curve detection layer was employed to adaptively fit the 132 
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oriented or curved text. Ma et al. [45] proposed a combination of the Rotated Bounding Box 133 

Representation method and Rotation Anchors technique to overcome the issues of text angle 134 

information. They used the convolutional layers of VGG-16 as sharable layers for extracting the 135 

low-level features, and the last convolutional layer is responsible for proposing the horizontal 136 

region. Moreover, a multi-modal algorithm has been proposed by [46] for Bib text/number 137 

recognition that is printed on cardboard tags or papers in Marathon natural images. This strategy 138 

combines text detection and torso detection to obtain an acceptable result. As torso detection focus 139 

on detecting the body parts such as the backside, stomach, and chest, there is no need to extract 140 

features related to the face. By integrating the binarization process at the post-processing step for 141 

segmenting texts, a Differentiable Binarization (DB) module is introduced in Liao et al. [47]. 142 

Moreover, they employed an efficient Adaptive Scale Fusion (ASF) module for improving the 143 

robustness of scale variation by fusing features of diverse scales adaptively.  144 

To address the issue of the complex background, a Scale-based Region Proposal Network has 145 

been proposed by [48]. They investigated a two-stage pipeline to gain more accurate outcomes 146 

along with faster detection speed to understand the content of the image rather than analyzing the 147 

entire image. In the first stage, using a Scale-based Region Proposal Network, the location of the 148 

text is estimated. Next, a Fully Convolutional Network (FCN) is implemented to attain an accurate 149 

localization result. The described strategies suffer from intolerable outcomes in recognizing the 150 

vertical text in the real scene, especially in the images with low illumination and low contrast 151 

scenes. Also, these state-of-the-art techniques cannot properly identify the orientation and location 152 

of the text efficiently. These problems lead to uncertainty in some applications such as blind 153 

assistance systems and driver assistance systems. Therefore, to overcome these problems in this 154 

study, a deep learning strategy is proposed to reduce the bad influence of the complex background 155 

that is robust to variations in color, scale, and rotation. To address the problem of lacking color 156 

information like Red, Green, and Blue (RGB), a multi-channel MSER technique was introduced 157 

by [49]. Their model combined the enhanced multi-channel MSER focusing on the region and 158 

Canny edge detector concentrating on the edge, where the channels employed in MSER consist of 159 

B, G, and R channels of the RGB color space and the S channel of the Hue, Saturation, and 160 

Intensity (HSI) color space. 161 

This study is structured as follows. In Section 2, the proposed methodology is described in 162 

detail. In Section 3, the experiment results and comparison with some recently published pipelines 163 
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are investigated. Section 4 concludes the study and gives an outlook for future studies. 164 

2. Methodology 165 

In this study, a lightweight CNN architecture for text localization and detection is proposed 166 

that aims to detect texts in the real scene, even if the text rotation is 90°. This contribution aims to 167 

employ a convolutional neural network for localizing text more precisely. Moreover, some 168 

intermediate time-consuming phases including word partitioning, finding the most possible region 169 

of occurring, and text region formation are eliminated [50]. The proposed structure is demonstrated 170 

in Fig. 1. The developed methodology in this research is capable to detect both the location and 171 

rotation of the text and works well for the complex background. The structure of the combination 172 

of the 3 × 3  𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 block and the MaxPooling layer at the beginning of the network is used 173 

for low-level visual feature extraction and plays a key role in the final results [50]. This network 174 

for extracting mid-level and high-level features employs 5 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 blocks followed by 10 175 

inception blocks. As shown in Fig. 2, the output of the final inception and 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 blocks are 176 

considered as the input of the four 1 × 1  Convolution Layers (Conv layers). These four 177 

convolution layers and the next 5 × 5  convolution and negative layers aim to recognize the 178 

vertical text. 179 

Furthermore, an additional layer is applied to increase the efficiency of the feature extraction. 180 

Moreover, at the beginning of the proposed structure a new m.ReLU is utilized [51]. The 181 

implemented 3 × 3  𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 block is illustrated in Fig. 2. The intermediate activation 182 

patterns in the CNNs are the main motivation for applying this module inside the proposed model 183 

[52]. In this part, the production results obtained from the Negation and Conv layers need to be 184 

concatenated [53]. Additionally, to ease the computational burden, a separated bias layer is applied 185 

which causes the correlated kernels capable of having dissimilar bias weights.  186 
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 187 

Fig. 1. Proposed pipeline. 188 
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 189 

Fig. 2. Proposed 3 × 3  𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 building block. 190 

In the 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 block, to overcome the limitation of the low contrast, the convolution 191 

output simply multiplies -1 by Negation. This Negation layer decreases the search space, 192 

compared to the recently published papers which predict four coordinates of an object [54]. Also, 193 

the trainable weights and biases can be applied to the next layer by Scale/Shift [55]. As the goal 194 

is to find a unique characteristic of text that can be determined for each text component at all levels, 195 

a Scale/Shift layer plays a key role in this purpose. It is also more dependable to estimate the rate 196 

of the text curvature to extract each character based on a distance ratio than identifying only a 197 

predefined distance between each character. To end this, the Scale/Shift layer needs to be after the 198 

concatenation layer. Using the 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 layer allows us to extract some low-level features 199 

suitably and causes robustness to font distortion and variation. Moreover, to address the issue of 200 

the complex background, three sequences of this layer at the beginning of the network have 201 

been employed [56]. 202 

A crucial step for achieving significant text detection results is exploring all potential areas 203 

inside the image including different scales, colors, and sizes [57]. It should be mentioned that 204 

extracted information from the different colorful textures plays a core role in improving the feature 205 

extraction procedure. This is because of intense color similarity in the most of characters and texts 206 

in the natural scene text (like warning traffic sign boards). Consequently, the proposed inception 207 
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block is represented for improving the localization of the multi-scale and multi-orientation texts 208 

and preventing the production of more false-positive rates [55]. The proposed inception pipeline 209 

can be observed in Fig. 3.  210 

Our new inception block is inspired by some of the suggestions implemented in Szegedy et 211 

al. [58] and comprises three parallel convolutional networks at the first, and one sequential 212 

concatenation and convolutional layers at the end of the block [59]. The core idea applied by the 213 

inception pipeline is eliminating the Conv layer and employing various parallel architectures to 214 

cover a larger region whereas a fine resolution can be obtained [60]. This approach forces 215 

multiplicity on the obtained features from each layer by merging feature maps at the end of the 216 

inception block and indicating a diminishing rate in the number of parameters. By overcoming the 217 

problems of changing the size of the text font employing this block, the accuracy of the final system 218 

output has successfully been improved. Here, it is realized that to attain an improvement in 219 

detecting largely varying-sized text, using stacking up inception layers is further useful than a 220 

simple linear chain of Conv layers [61]. Besides, to make the system more powerful to explore the 221 

location of the text with the minimum number of parameters the size of receptive fields is altered. 222 

Additionally, to ease the computational burden, two concatenation steps after extracting features 223 

in 3 × 3 Conv layers were employed.  224 

 225 

Fig. 3. Suggested inception building block. 226 

As indicated in Fig. 1, stacking up inception layers are able to detect more varying-sized texts 227 

in an effective way compared to a chain of Conv layers. Owing to the use of the suggested 228 
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inception building block, the output feature maps are produced with the same dimension of 229 

receptive fields. The output of the proposed structure can be implied as four detached vectors of 230 

features (both 1D and 2D vectors). The first feature vector is a 2D binary matrix (binary image) 231 

that is generated by considering the value of one for pixels inside the text window whereas others 232 

are represented by zero values. The next output vector is defined as the rotation of the text. The 233 

third output feature maps naming R matrices are represented by four axis-aligned bounding boxes 234 

(AABB). These output feature maps (2D vectors) can be considered as the distance of pixels to 235 

four corners of the obtained window that is fitted to the outer profile of the text [14]. Lastly, eight 236 

1D vectors are generated to imply the corners of the text box’s location (four corners) in the y and 237 

x directions. It means each corner can be defined by two distance variables: dx and dy. Then, the 238 

rotation map of text (rotation of each character) is calculated inside the described box with 239 

acceptable accuracy and demonstrated in a grayscale image. In order to attain the corners of the 240 

text box’s location (eight channels), 𝐿𝑂𝐶 = {𝑝𝑖|𝑖 ∈ {1,2,3,4}} is taken into account, where these 241 

vertices are defined by  𝑝𝑖 = {𝑥𝑖, 𝑦𝑗}. Besides, the reference length 𝑟𝑒𝑓𝑖 can be calculated for each 242 

vertex 𝑝𝑖 as: 243 

𝑟𝑒𝑓𝑖 = min (𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝(𝑖 𝑚𝑜𝑑 4)+1), 𝑑𝑖𝑠𝑡 (𝑝𝑖, 𝑝((𝑖+3)𝑚𝑜𝑑 4)+1)), 
(1) 

where 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗) represents the Euclidean distance between 𝑝𝑗 and 𝑝𝑖. 244 

This binary mask (score map) can be produced by applying shrinking on each edge of the box 245 

by 0.38 × 𝑟𝑒𝑓𝑖 and 0.38 × 𝑟𝑒𝑓(𝑖 𝑚𝑜𝑑 4)+1. In other words, to fit the obtained window around the 246 

text, the distances between these obtained 8 indices (or 8 channels) and 8 corners of the text inside 247 

the scene should be minimized. Hence, the value of 0.4 was chosen based on many experiments. 248 

The loss function for text detection can be formulated as: 249 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑙𝑜𝑠𝑠𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑝 + 𝜆𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐿𝑜𝑠𝑠𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, (2) 

where 𝑙𝑜𝑠𝑠𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑝 (oriented class-balanced cross-entropy) indicates the losses for the score map 250 

and 𝐿𝑜𝑠𝑠𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦  indicates the losses geometry. Moreover, 𝜆𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦  implies the balancing 251 

weights t between two losses for achieving more robustness and accuracy.  252 

The oriented class-balanced cross-entropy for minimizing the loss of score map is calculated 253 

using Equation (3): 254 
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𝑙𝑜𝑠𝑠𝑆𝑐𝑜𝑟𝑒 𝑚𝑎𝑝 = 𝜍 𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 log 𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − (1 − 𝜍)(1 − 𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) log(1 −

𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑), 

(3) 

where 𝜍 indicates the oriented text balancing factor between negative and positive samples, given 255 

by Equation (4): 256 

𝜍 = (
∑ 𝑐𝑜𝑟𝑛𝑒𝑟𝑠𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ∈ 𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑖)

− ∑ 𝑐𝑜𝑟𝑛𝑒𝑟𝑠𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ∈ 𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖+1)

∑ 𝐶𝑐𝑜𝑟𝑛𝑒𝑟𝑠𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ∈ 𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑖)
− ∑ 𝑐𝑜𝑟𝑛𝑒𝑟𝑠𝑐𝑜𝑟𝑛𝑒𝑟𝑠 ∈ 𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖+1)

) × (1 −
∑ 𝑇𝑇 ∈ 𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

|𝑜𝑢𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|
) 

(4) 

where 𝑖 represents the current detected text and 𝑖 + 1 demonstrates the adjacent detected text as 257 

shown in Fig. 4.  258 

By considering the effect of distances between the current detected text and the adjacent 259 

detected text, the suggested network is able to predict the rotation of the text more efficiently. In 260 

this study, 𝜆𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦  is set to 0.83 and the proposed structure was learned in 1,000 epochs with a 261 

batch size of 128, a learning rate of 0.01, and a weight decay of 0.0001. Furthermore, 𝐿𝑜𝑠𝑠𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 262 

can be described as: 263 

𝐿𝑜𝑠𝑠𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 = 𝛼𝜃𝑙𝑜𝑠𝑠𝜃 + 𝐿𝑜𝑠𝑠𝐴𝐴𝐵𝐵, (5) 

𝐿𝑜𝑠𝑠𝐴𝐴𝐵𝐵 = − log (
|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|
),            

(6) 

where 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 shows the calculated AABB geometry and 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the related Ground 264 

Truth (GT). Furthermore, by defining 𝑑𝑖𝑠1, 𝑑𝑖𝑠2, 𝑑𝑖𝑠3, and 𝑑𝑖𝑠4 as the distance from a pixel to the 265 

bottom, left, top, and right boundary of its corresponding window, the height and width of the 266 

intersected rectangle |𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| are calculated using Equations (7) and (8): 267 

width =  min(𝑑𝑖𝑠2(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), 𝑑𝑖𝑠2(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)) + 𝑚𝑖𝑛(𝑑𝑖𝑠4(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), 𝑑𝑖𝑠4(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)), (7) 

height =  min(𝑑𝑖𝑠1(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), 𝑑𝑖𝑠1(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)) + 𝑚𝑖𝑛(𝑑𝑖𝑠3(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), 𝑑𝑖𝑠3(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)).  (8) 

Moreover, the union region can be calculated by Equation (9): 268 

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| = |𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒| + |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| − |𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|.  (9) 

Then, the loss function of rotation angle is given by Equation (10): 269 

𝐿𝜃(𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝜃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = 1 − cos(𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝜃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒).  (10) 

Furthermore, it is identified that using only a 3 × 3 convolution layer after up-sampling and 270 

concatenation layers (see Fig. 1) causes a difficulty to precisely recognize the horizontal sides of 271 

words in the case of observing text on a curve. This is due to the fact that the distance of each 272 
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character to the adjacent character is uneven for the upper and bottom parts of it which changes 273 

the shape of the components. In other words, as it is illustrated in Fig. 4, within a word in a curved 274 

line, it is a confusing task to find the exact distance between each character. Moreover, whatever 275 

the two borders of the text are closer together (see Fig. 4 (B)) the distance between the upper parts 276 

of the words or characters is bigger and vice versa. To overcome this problem, two 3 × 3  277 

convolution layers have been utilized after the up-pooling and concatenation layers. Furthermore, 278 

as mentioned before, the first 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 layers are crucial for obtaining acceptable results. 279 

Hence, the impacts of the number of this layer are demonstrated in Fig. 5. 280 

 281 

Fig. 4. Two examples of observing text in the real scene. (A) A sample text with a small curvature. (B) A 282 

sample text with high curvature. The red arrows indicate a bigger distance than the blue arrows. As it is 283 

clearly demonstrated the red arrows inside the (B) are bigger than the blue arrows, whilst these arrows are 284 

small differences in (A). 285 
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 286 

Fig. 5. Impacts of the number of the 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 blocks on all tested datasets. 287 

3. Experiments 288 

3.1 Datasets 289 

In order to assess the proposed method, the datasets of ICDAR 2013 [62], ICDAR 2015 [63], 290 

ICDAR 2017 [64], and ICDAR 2019 [65]  are utilized. They have been cited and used by several 291 

recent scene text research works. The ICDAR 2013 is based on the horizontal text which includes 292 

229 and 223 images for training and testing, respectively. Also, the ICDAR 2015 is based on multi-293 

oriented text with 1000 and 500 images for training and testing, respectively [56]. Moreover, the 294 

ICDAR 2017 consists of 1555 images with various text orientations. Finally, the ICDAR 2019 295 

consists of 10,000 images for robust text locating [66]. Text detection results are illustrated in Figs. 296 

6, 7, 8, and 9. It has been illustrated that text orientation and location can be successfully detected 297 

by the suggested algorithm.  298 

3.2 Evaluation metrics 299 

In this study, the following three measures, namely f-measure (F), recall (R), and 300 

precision (P), have been used to evaluate the developed model and compare the text detection 301 

results with some state-of-the-art approaches. These metrics can be defined as follows [67]: 302 
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Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ,  

(11) 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 

(12) 

𝐹 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 , 

(13) 

where the FN, FP, and TP respectively represent the false negative, false positive, and true positive 303 

[68]. The outstanding results and experiments were accomplished utilizing Python on an Intel 3.2 304 

GHz-Core I7 computer with a 64-bit operating system. 305 

3.3 Experimental Results 306 

In order to verify the performance and robustness of the suggested approach, it is compared 307 

with 10 state-of-the-art text localization pipelines. For a more clear understanding, vertical text 308 

localization is depicted in Fig. 8. Due to the trade-off between recall and precision result rate, the 309 

f-score is the best evaluation for analyzing the results of a text detection system. The outcomes are 310 

described and compared with the other pipelines in Tables 1-4. For each index in all tables, the 311 

highest values are highlighted in bold. By analyzing the indicated outcomes in Tables 1-4, it is 312 

obvious that the proposed pipeline has gained the best outcomes in comparison with all mentioned 313 

detection architectures. The notable obtained outcomes prove that the given strategy meaningfully 314 

improves the accuracy of the model even with the presence of texts with 90° orientation in the 315 

scene. Furthermore, to exemplify the importance of implementing the proposed network to 316 

accurately estimate the text location, Figs. 6-9 demonstrate the outcomes of the offered structure. 317 

The effectiveness and accuracy of the proposed strategy are first investigated on a popular 318 

horizontal text dataset, namely the ICDAR 2013 dataset. As clearly shown in Table 1, the proposed 319 

pipeline obtains competitive performance both in terms of efficiency and accuracy. Although the 320 

CRAFT [15] and achieves the highest precision, the highest Recall and F-measure are obtained by 321 

the proposed methods. The Recall of TextBox MS [69] is only next to LocNet [57] and SRPN 322 

[48]. Moreover, Fast TextBox [69] obtains the worst results in all three measures. Examples of 323 

text detection on the ICDAR 2013 dataset are illustrated in Fig. 6. 324 

 325 

 326 

 327 
 328 

https://www.sciencedirect.com/science/article/pii/S0031320319300664#fig0007
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Table 1. Results on ICDAR 2013. 329 

Method Recall Precision F-score 

AF-RPN [70] 0.900 0.934 0.916 

FTPN [5] 0.919 0.932 0.925 

TextBox MS [69] 0.830 0.880 0.850 

Fast TextBox [69] 0.740 0.860 0.800 

Pyramid Context Network [28] 0.905 0.938 0.921 

DeRPN [71] 0.774 0.867 0.818 

LocNet [57] 0.875 0.940 0.906 

CRAFT [15] 0.931 0.974 0.952 

Delaunay Triangulation (DT) [72] 0.904 0.88 0.891 

SRPN [48] 0.842 0.925 0.882 

Multi-channel MSER [49] 0.937 0.894 0.915 

The proposed approach 0.942 0.956 0.948 
 330 

 331 

Fig. 6. Example of four text localization by the proposed method on ICDAR 2013. It is shown that the 332 

proposed method is capable of localizing the oriented text successfully. 333 

By analyzing the outcomes achieved on ICDAR 2015 in Table 2, it is found out that there is 334 

not much difference between the minimum and maximum values based on the Recall criteria. 335 

Accordingly, it can noticeably be seen that the worst scores for Precision and Recall were obtained 336 

using EAST+VGG16 [14] and SegLink [73], respectively. Results obtained using 337 

PixelLink+VGG16 4s [12] and PixelLink+VGG16 2s [12] are very close to the proposed network 338 
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regarding the Recall; however, it still failed to detect words as the Precision score 339 

demonstrates.  Deep Direct Regression [4] and SegLink [73] methods cannot gain acceptable 340 

results, especially in the presence of a complex background. PixelLink+VGG16 2s [12], Multi-341 

channel MSER [49], PixelLink+VGG16 4s [12], and Mask R-CNN [74] approaches are good to 342 

extract the oriented text when there is much similarity between two completely separated words, 343 

whilst they perform so poorly when encountering two close words. Moreover, EAST+PVANET2x 344 

MS [14] and EAST+PVANET2x [14] models are more prone to fail, especially when there are 345 

fuzzy boundaries. Finally, the developed approach reaches the best performance with the ICDAR 346 

2015 dataset, followed by Mask R-CNN [74] which has a small difference in Precision score. Fig. 347 

7 depicts that the suggested model has a powerful ability to detect curved texts. It is even able to 348 

read words within a short distance. 349 

 350 

Table 2. Results on ICDAR 2015. 351 

Method Recall Precision F-score 

EAST+VGG16 [14] 0.727 0.804 0.764 

EAST+PVANET2x [14] 0.734 0.835 0.782 

EAST+PVANET2x MS [14] 0.7563 0.7712 0.7516 

SegLink [73]  0.768 0.731 0.750 

Mask R-CNN [74] 0.815 0.908 0.859 

Deep Direct Regression [4] 0.800 0.820 0.810 

PixelLink+VGG16 4s [12] 0.817 0.829 0.823 

PixelLink+VGG16 2s [12] 0.820 0.855 0.837 

Direct Regression [2] 0.800 0.850 0.820 

SRPN [48] 0.796 0.920 0.853 

Adaptive scale fusion [47] 0.839 0.909 0.873 

Kernel Proposal Network [75] 0.869 0.878 0.873 

Multi-channel MSER [49] 0.922 0.894 0.903 

The proposed approach 0.931 0.924 0.927 

 352 
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 353 

Fig. 7. Example of four text localization by the suggested method on ICDAR 2015. It is shown that the 354 

proposed method is capable of localizing the oriented text successfully. 355 

As indicated in Table 3, text detection and segmentation by employing AF-RPN [70] and 356 

CLRS [76] imply the fewest match with the ground truth, especially when there are vertical texts. 357 

This is due to the fact that the vertical and horizontal texts exhibit different characteristics. 358 

Moreover, PSENet [77] obtains the worst Precision score amongst all evaluated approaches. 359 

Compared with previous state-of-the-art pipelines in the field of text localization, the developed 360 

pipeline in this work demonstrates the advantage in terms of Recall, Precision, and F-score. 361 

Delaunay Triangulation outperformed Mask R-CNN [74] and reached competitive outcomes 362 

against state-of-the-art algorithms (AF-RPN, PSENet, TSL, and ISNet). AF-RPN [70] and ISNet 363 

[78] models had issues identifying vertical word cases and when it does, they were detected with 364 

a very low confidence value. Delaunay Triangulation method [72] was very close to the developed 365 

approach regarding the Recall; however, it still failed to detect words as the Precision score 366 

demonstrates. Fig. 8 depicts that the suggested model has a powerful ability to detect curved texts. 367 

It is even able to read words within a short distance. 368 

 369 

 370 

 371 

 372 

 373 
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Table 3. Results on ICDAR 2017. 374 

Method Recall Precision F-score 

AF-RPN [70] 0.667 0.794 0.725 

PSENet [77] 0.753 0.691 0.721 

TSL [79] 0.674 0.776 0.722 

Delaunay Triangulation (DT) [72] 0.83 0.72 0.771 

ISNet [78] 0.674 0.78 0.723 

CLRS [76] 0.556 0.838 0.668 

Mask R-CNN [74] 0.698 0.8 0.743 

Multi-channel MSER [49] 0.806 0.764 0.784 

The proposed approach 0.874 0.867 0.870 

 375 

 376 

 377 

Fig. 8. Example of four text localization by the suggested method on ICDAR 2017. It is shown that the 378 

proposed method is capable of localizing the vertical and curved texts magnificently. 379 

 380 

Experimental outcomes on the ICDAR 2019 illustrate that the developed pipeline 381 

outperformed well-known techniques, such as LOMO [80], Pyramid Context Network [28], and 382 

PixelLink+VGG16 2s [14] not only in effectiveness and accuracy but also in terms of the size of 383 

the network. As indicated in Table 4, text identification by applying Fast TextBox [69], 384 

EAST+PVANET2x [14], and TextBox MS [69] entails the fewest match with the ground truth, 385 
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especially when there are vertical texts. From the obtained outcomes and Fig. 9, it can be observed 386 

that the identification is able to automatically be adapted to any kind of text, even with the different 387 

distances between characters. Concerning the best structures for detecting a text and their networks 388 

dimension, PixelLink+VGG16 2s [12], PixelLink+VGG16 4s [12], and Pyramid Context Network 389 

[28] achieved better results than Fast TextBox [69] and EAST+PVANET2x [14]; nevertheless, 390 

their models were larger than the proposed network. On the whole, the experimental outcomes 391 

imply the superiority of the developed approach. 392 

 393 

Table 4. Results on ICDAR 2019. 394 

Method Recall Precision F-score 

LOMO [80] 0.798 0.878 0.836 

EAST+PVANET2x [14] 0.751 0.816 0.782 

TextBox MS [69] 0.775 0.884 0.825 

Fast TextBox [69] 0.753 0.845 0.796 

Pyramid Context Network [28] 0.815 0.846 0.830 

PixelLink+VGG16 4s [12] 0.823 0.821 0.821 

PixelLink+VGG16 2s [12] 0.820 0.855 0.837 

The proposed approach 0.842 0.891 0.865 
 395 

 396 

 397 

Fig. 9. Example of four text localization by the suggested method on ICDAR 2019. It is shown that the 398 

proposed method is capable of localizing the oriented texts magnificently. 399 

 400 

DL-based techniques have a key drawback that it is challenging for determining the basis of 401 

the proposed network judgment. The common technique to clarify the reason for the model 402 

prediction is visual description. The visual description technique illustrates an attention map that 403 

pictures an area in which the model concentrated as a heat map [81]. According to an achieved 404 
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attention map, the reason for the segmentation or classification results can be understood and 405 

analyzed. In order to gain a clearer and more explainable attention map for a well-organized visual 406 

description, a number of techniques such as Class Activation Mapping (CAM) and Gradient-407 

weighted Class Activation Mapping (Grad-CAM) have been suggested in the field of computer 408 

vision [82].  409 

In this study, the Grad-CAM method produces an attention map by utilizing gradient values 410 

computed at the backpropagation process. Fig. 10 illustrates example attention maps of Grad-411 

CAM. 412 

 413 

 414 

Fig. 10. Two examples of Grad-CAM of the suggested network. The first row and the second row indicate 415 

the original and Grad-CAM images, respectively. Color denotes the degree of activation: very low (blue), 416 

low (green), high (yellow) and very high (red).  417 

 418 

https://www.sciencedirect.com/science/article/pii/S0386111219301566#f0050
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4. Conclusion 419 

In this research, a new real scene text detection pipeline was implemented based on an 420 

inception structure that can produce a location binary mask along with its rotation. The proposed 421 

structure overcame some problems such as local and global illumination variations, occlusion, a 422 

wide range of styles and colors, unpredictable orientations, and various sizes. This strategy was 423 

also capable of discovering even vertical texts in a real scene. By incorporating an extra layer for 424 

feature extraction and an optimized inception layer, the detector can find the text location more 425 

accurately. 426 

Our structure was based on the combination of the 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 and inception structure. 427 

Because of utilizing 𝑛𝑒𝑤. 𝑚𝑅𝑒𝐿𝑈 and inception blocks, text recognition also can be implemented 428 

more precisely and efficiently. Experimental comparisons with the state-of-the-art structures on 429 

four datasets; ICDAR2013, ICDAR2015, ICDAR2017, and ICDAR2019 depicted the efficiency 430 

and effectiveness of the developed approach for the text localization and recognition task. Each of 431 

these datasets is recorded in different environments with various image resolutions and light 432 

conditions. As there are some restrictions for detecting text in the presence of a complex 433 

background, the most important idea to extend this study is to use a transform learning approach 434 

for increasing the accuracy of the developed approach.  435 
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