
199

Generative Adversarial Networks in Time Series:

A Systematic Literature Review

EOIN BROPHY, Dublin City University

ZHENGWEI WANG, Trinity College Dublin

QI SHE, ByteDance AI Lab

TOMÁS WARD, Dublin City University

Generative adversarial network (GAN) studies have grown exponentially in the past few years. Their impact

has been seen mainly in the computer vision field with realistic image and video manipulation, especially

generation, making significant advancements. Although these computer vision advances have garnered much

attention, GAN applications have diversified across disciplines such as time series and sequence generation.

As a relatively new niche for GANs, fieldwork is ongoing to develop high-quality, diverse, and private time

series data. In this article, we review GAN variants designed for time series related applications. We propose a

classification of discrete-variant GANs and continuous-variant GANs, in which GANs deal with discrete time

series and continuous time series data. Here we showcase the latest and most popular literature in this field—

their architectures, results, and applications. We also provide a list of the most popular evaluation metrics

and their suitability across applications. Also presented is a discussion of privacy measures for these GANs

and further protections and directions for dealing with sensitive data. We aim to frame clearly and concisely

the latest and state-of-the-art research in this area and their applications to real-world technologies.
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1 INTRODUCTION

This review article is designed for those interested in generative adversarial networks (GANs)

applied to time series data generation. We provide a review of current state-of-the-art and novel
time series GANs and their solutions to real-world problems with time series data. GANs have
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been gaining a lot of traction within the deep learning research community since their inception
in 2014 [38]. Their ability to generate and manipulate high-quality data across multiple domains
has contributed to their success. The main focus of GANs to date has been in the computer vision
domain; however, they have also been successfully applied to others, such as natural language

processing (NLP) and now time series.
A GAN is a generative model consisting of a generator and discriminator, typically two neural

network (NN) models. In recent years GANs have demonstrated their ability to produce high-
quality image and video generation, style transfer, and image completion. They have also been
successfully used for audio generation, sequence forecasting, and imputation, with a movement
toward using GANs for time series and sequential data generation and forecasting.

We define a time series as a sequence of vectors dependent on time (t ) and can be represented
as xt = x1, . . . ,xn for continuous/real time and discrete time. The time series’ values can either be
defined as continuous or discrete and, depending on the number of values recorded, are univariate
or multivariate. In most cases, the time series will take either an integer value or a real value. As
Dorffner [25] states, a time series can be viewed, from a practical perspective, as a value sampled at
discrete steps in time. This timestep can be as long as years to as short as milliseconds, for example.
We define a continuous time series as a signal sampled from a continuous process—that is, the
function’s domain is from an uncountable set. In contrast, a discrete time series has a countable
domain.

The applicability of GANs to time series data can solve many issues that current dataset holders
face that cannot or have not been addressed by other machine learning or regressive techniques.
Data shortage is often an issue that many practitioners face, and GANs can augment smaller
datasets by generating new, previously unseen data. Data can be missing or corrupted in cases;
GANs can impute data, such as replace the artifacts with information representative of clean data.
GANs are also capable of denoising signals in the case of corrupted data. Data protection, privacy,
and sharing have become heavily regulated with the introduction of data protection measures;
GANs can ensure an extra layer of data protection by generating differentially private datasets
containing no risk of linkage from source to generated datasets.

Time series data generation is not a novel concept in that it has long roots seeded in regression.
Furthermore, it initially began as forecasting of timesteps rather than whole sequence generation.
One of the most used time series forecasting methods was autoregressive (AR) models. Aside
from forecasting data points, AR models focus on preserving the temporal dynamics of a sequence.
However, they are inherently deterministic in that no randomness is involved in the calculation of
future states of the system. This means that AR models are not genuinely generative or probabilis-
tic. For an AR model, the goal is to produce the next timestep (xt+1) in a sequence as a function of
the previous n timesteps, where n is the order of the model. The formula for a classic AR model is
given in Equation (1).

xt+1 = c + θ1xt + θ2xt−1 + ϵ (1)

Here, xt is the value of the sequence at time t , θ is the model parameters, c is a constant, and ϵ is
the error term usually chosen as normally distributed noise.

Autoregression was a step shy of time series synthesis. That ultimately came in the form of
directed generative networks. When using the term directed, we mean a model where the edges are
directed and thus indicates which variable’s probability distribution is defined in terms of another.
In other words, this is a structured probabilistic model with conditional probability distributions.
These data-driven generative models offered researchers the option of generating full-length data
sequences versus forecasting singular values in the case of the regressive models. It also required
little domain knowledge of the time series signal morphology, which was often a necessity for
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Fig. 1. AE model.

other statistical modeling techniques. This propelled generative modeling forward in the machine
learning community for data synthesis techniques.

Several generative methods have been used in the past to generate synthetic data. One such
method is the autoencoder (AE), which is designed to efficiently learn an informative represen-
tation of an input in a small dimensional space and reconstruct the encoded data back such that
the reconstructed input is similar as possible to the original one. The AE model is made of an en-
coder and decoder NN, as shown in Figure 1. However, other generative models have emerged as
front-runners due to the quality of the generated data and inherent privacy protection measures.

Generative models come in many shapes, from variational autoencoders (VAEs) and recur-

rent neural network (RNN) variants to GANs, all of which have their pros and cons. For exam-
ple, VAEs use learned approximate inference to produce synthetic samples efficiently. An inference
problem is simply using the value of some variables or probability distributions to predict other
values or probability distributions. Approximate inference is when we seek to approximate a true
distribution, say p(y |x ), by seeking an approximate distribution q(y |x ). However, this network ap-
proximation conducted by VAEs means that their generated data quality can be degraded compared
to samples generated by GANs. However, for all of the benefits that come with GANs, they are
not without their own downsides. They are a very useful technology that allows us to reproduce
amazingly insightful and powerful datasets, but only if we can address their following challenges.

One of the significant challenges of GANs lies in their inherent instability, which makes them
difficult to train. GAN models suffer from issues such as non-convergence, diminishing/vanishing
gradients, and mode collapse. A non-converging model does not stabilize and continuously oscil-
lates, causing it to diverge. Diminishing gradients prevent the generator from learning anything,
as the discriminator becomes too successful. Mode collapse is when the generator collapses, pro-
ducing only uniform samples with little to no variety.

The second challenge of GANs lies in its evaluation process. With image-based GANs, re-
searchers have reached a loose consensus [8] surrounding the evaluation of the generated dis-
tribution estimated from the training data distribution. Unfortunately for time series GANs, due
to the comparatively low numbers of papers published, there has not been an agreement reached
on the generated data’s evaluation metrics. There have been different approaches put forward, but
none established as a front-runner in the metrics space as of yet.

In this review, we present the first complete review and categorization of time series GANs,
namely discrete and continuous variants, their applications, architecture, loss functions and how
they have improved on their predecessors in terms of variety and quality of their generated data.
We also contribute by including experiments for the majority of time series GAN architectures
applied to time series synthesis.

2 RELATED WORK

There has been a handful of high-quality GAN review papers published in the past few years. For
example, Wang et al. [100] take a taxonomic approach to GANs in computer vision. The authors
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split GANs into architecture variants and loss variants. Although they include applications of
GANs and mention their applicability to sequential data generation, the work is heavily focused
on media manipulation and generation. Gui et al. [40] break down GANs into their constituent
parts. They begin by discussing the algorithms and architecture of various GANs and their
evaluation metrics, then list their surrounding theory and problems such as mode collapse, among
others. Finally, they discuss the applications of GANs and provide a very brief account of GANs
used for sequential data. Gonog and Zhou [36] provide a short introduction to GANs, their theory,
and explore the variety of plausible models, again listing their applications in image and video
manipulation with a mention of sequential data (NLP). In another review, Alqahtani et al. [3] give
an overview of GAN fundamentals, variants, and applications. Sequential data applications are
mentioned in the form of music and speech synthesis.

As with most review papers, Yinka-Banjo and Ugot [106] give an introduction and overview
of GANs. However, they also review GANs as adversarial detectors and discuss their limitations
applied to cybersecurity. Yi et al. [105] give a review of GANs and their applications in medical
imaging, and explain how they can be used in clinical research and potentially deployed to help
practicing clinicians. There is no mention of time series data use cases.

A recurring theme in these works focuses on GAN variants that have mostly been applied to
the computer vision domain. To the best of our knowledge, no review paper has been conducted
with the main focus on time series GANs. Although these reviews have mentioned the application
of these GANs in generating sequential data, they have scratched the surface of what is becoming
a growing body of research.

We contribute to lessening this gap by presenting our work, which seeks to provide the latest
up-to-date research around time series GANs, their architecture, loss functions, evaluation metrics,
trade-offs, and approaches to privacy preservation of their datasets.

3 GENERATIVE ADVERSARIAL NETWORKS

3.1 Background

The introduction of GANs facilitated a significant breakthrough in the generation of synthetic
data. These deep learning models typically consist of two NNs: a generator and a discriminator.
The generator G takes in random noise z ∈ Rr and attempts generates synthetic data that is similar
to the training data distribution. The discriminator D attempts to determine if the generated data
is real or fake. The generator aims to maximize the failure rate of the discriminator, whereas the
discriminator aims to minimize it. Figure 2 shows a simple example of the GAN architecture and
the game that the NN models play. The two networks are locked in a two-player minimax game
defined by the value function V(G,D) (2), where D(x) is the probability that x comes from the real
data rather than the generated data [38].

min
G

max
D

V (G,D) = Ex∼pdat a (x )[loдD(x)] + Ez∼pz(z)[loд(1 − D(G(z)))] (2)

GANs belong to the family of generative models and are an alternative method of generating
synthetic data that do not require domain expertise. They were conceived in the work by Good-
fellow et al. [38] in 2014, where a multi-layer perceptron was used for both the discriminator and
the generator. In 2015, Radford et al. [85] subsequently developed the deep convolutional gen-

erative adversarial network (DCGAN) to generate synthetic images. Since then, researchers
have continuously improved on the early GAN architectures, loss functions, and evaluation met-
rics while innovating on their potential contributions to real-world applications. To appreciate
why there has been such concerted activity in the further development of GAN technologies, it is
important to understand the limitations of early architectures and the challenges these presented.
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Fig. 2. Generative adversarial network.

We describe these next, and in so doing, we prepare the reader for the particular manifestation of
these challenges in the more specific context of time series.

3.2 Challenges

There are three main challenges in the area of time series GANs: training stability, evaluation, and
privacy risk associated with synthetic data created by GANs. We explain these three challenges
next.

Training stability. The original GAN work has already proved the global optimality and the
convergence of GANs during training [38]. However, it still highlights the instability problem
that can arise when training a GAN. Two problems are well studied in the literature: vanishing
gradients and mode collapse. The vanishing gradient is caused by directly optimizing the loss
presented in Equation (2). When D reaches the optimality, optimizing Equation (2) for G can be
converted to minimizing the Jensen-Shannon (JS) divergence (details of the derivation can be found
in Section 5 of the work of Wang et al. [100]) between the real data distribution (pdata ) and the
generator’s distribution (pд):

LG = 2 · JS(pdata ‖pд) − 2 · log2. (3)

LG stays constant (loд2 = 0.693) when there is no overlap between pdata and pд , which indicates
that the gradient for G using this loss is near 0 in this situation. A non-zero gradient for G only
exists when pdata and pд have substantial overlap. In practice, the possibility that pdata and pд are
not intersected or have negligible overlap is quite high [4]. To get rid of the vanishing gradient
problem for G, the original GAN work [38] highlights the minimization of

LG = −Ex∼pд
log[D(x)] (4)

for updating G. This strategy is able to avoid the vanishing gradient problem but leads to the
mode collapse issue. Optimizing Equation (4) can be converted to optimizing the reverse Kullback-

Leibler (KL) divergence—that is, KL(pд | |pdata ) (details can be found in the work of Wang et al.
[100]). When pdata contains multiple modes, pд chooses to recover a single mode and ignores
other modes when optimizing the reverse KL divergence. Considering this case, G trained using
Equation (4) might be only able to generate few modes from real data. These problems can be
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amended by changing the architecture or the loss function, which are reviewed by Wang et al. [100]
in detail.

Evaluation. A wide range of evaluation metrics has been proposed to evaluate the performance
of GANs [9, 10, 98, 99]. Current evaluations of GANs in computer vision are normally designed
to consider two perspectives: quality and quantity of generated data. The most representative
qualitative metric is to use human annotation to determine the visual quality of the generated
images. Quantitative metrics compare statistical properties between generated and real images:
two-sample tests such as maximum mean discrepancy (MMD) [93], inception score (IS) [88], and
Fréchet inception distance (FID) [51]. Contrary to evaluating image-based GANs, it is difficult to
evaluate time series data from human psycho-perceptual sense qualitatively. In terms of qualita-
tively evaluating time series based GANs, it normally conducts t-SNE [95] and PCA [13] analyses
to visualize how well the generated distributions resemble the original distributions [107]. Quan-
titative evaluation for time series based GANs can be done by deploying two-sample tests similar
to image-based GANs.

Privacy risk. Apart from evaluating the performance of GANs, a wide range of methods have
been used to assess the privacy risk associated with synthetic data created by GANs. Choi et al.
[17] performed tests for presence disclosure and attribute disclosure. In contrast, others utilized a
three-sample test on the training, test, and synthetic data to identify if the synthetic data has over-
fitted to the training data [17, 31]. It has been shown that common methods of de-identifying data
do not prevent attackers from re-identifying individuals using additional data [29, 72]. Sensitive
data is usually de-identified by removing personally identifiable information. However, work is
ongoing to create frameworks to link different sources of publicly available information together
using alternative information to personally identifiable information. Malin and Sweeney [72] de-
veloped a software program, REID, to connect individuals contained in publicly available hospital
discharge data with their unique DNA records. Culnane et al. [19] re-identified individuals in a
de-identified open dataset of Australian medical billing records using unencrypted parts of the
records and known information about individuals from other sources. Hejblum et al. [50] devel-
oped a probabilistic method to link de-identified electronic health record (EHR) data of patients
with rheumatoid arthritis. The re-identification of individuals in publicly available datasets can
lead to the exposure of their sensitive health information. Health data has been categorized as spe-
cial personal data by General Data Protection Regulation (GDPR) and is subject to a higher level
of protection under the Data Protection Act of 2018 (Section 36(2)) [32]. Consequently, concerned
researchers must find alternative methods of protecting sensitive health data to minimize the risk
of re-identification. This will be addressed in Section 7.

3.3 Popular Datasets

Unlike image-based datasets (CIFAR, MNIST, ImageNet [22, 61, 64]), there are no standardized or
commonly used benchmarking datasets for time series generation. However, we have compiled a
list of some of the more popular datasets implemented in the reviewed works, and they are listed in
Table 1 along with their year of release/update, data type, and how many instances and attributes
they contain. What makes these datasets interesting/applicable to time series GANs is that they
are signals made up of highly complex waveforms (physiological and audio) and contain important
temporal dynamics crucial to preserve when generating new samples. Furthermore, these signals
are the exact data type that are highly regulated and can stand to benefit from being leveraged by
GANs to generate further volumes of this kind of data.

There exist two repositories; the UCR Time Series Classification/Clustering database [20]
and the UCI Machine Learning Repository [26] that make available several time series datasets.
Despite this, there remains no consensus on a standardized dataset used for benchmarking time
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Table 1. Popular Datasets Used in the Reviewed Works

Name (Year) Data Type Instances Attributes
Oxford-Man Institute “realized library” (updated
daily)

Real multivariate
time series

>2,689,487 5

EEG Motor Movement/Imagery Dataset (2004) Real multivariate
time series

1,500 64

ECG 200 (2001) Real univariate time
series

200 1

Epileptic Seizure Recognition Dataset (2001) Real multivariate
time series

11,500 179

TwoLeadECG (2015) Real multivariate
time series

1,162 2

MIMIC-III (2016) Real, integer, and
categorical
multivariate time
series

– –

EPILEPSIAE project database (2012) Real multivariate
time series

30 –

PhysioNet/CinC (2015) Real multivariate
time series

750 4

Wrist PPG During Exercise (2017) Real multivariate
time series

19 14

MIT-BIH Arrhythmia Database (2001) Real multivariate
time series

201 2

PhysioNet/CinC (2012) Real, integer, and
categorical
multivariate time
series

12,000 43

KDD Cup Dataset (2018) Real, integer, and
categorical
multivariate time
series

282 3

PeMS Database (updated daily) Integer and
categorical
multivariate time
series

– 8

Nottingham Music Database (2003) Special text format
time series

1,000 –

series GANs, which may be due to the “continuous” nature of the architecture dimensions. GANs
designed for continuous time series generation often differ in the length of their input sequence
due to either author preference or the constraints placed on their architecture for the generated
data’s downstream tasks.

4 CLASSIFICATION OF TIME SERIES BASED GANS

We propose a categorization of the following time series based GANs based on two distinct vari-
ant types: discrete variants (discrete time series) and continuous variants (continuous time series). A
discrete time series consists of data points separated by time intervals. This type of data might have
a data-reporting interval that is infrequent (e.g., 1 point per minute) or irregular (e.g., whenever a
user logs in), and gaps where values are missing due to reporting interruptions (e.g., intermittent
server or network downtime in a network traffic application). Discrete time series generation in-
volves generating sequences that may have a temporal dependency but contain discrete tokens;
these can be commonly found in EHRs (International Classification of Diseases 9 codes) and text
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Fig. 3. Example plots of discrete (left) and continuous time series (right).

generation. A continuous time series has a data value corresponding to every moment in time.
Continuous data generation is concerned with generating a real-valued signal x with temporal de-
pendencies where x ∈ R. Figure 3 presents examples of discrete and continuous time series signals.

Challenges with discrete time series generation. GANs struggle with discrete data generation due
to the zero gradient nearly everywhere—that is, the distribution on discrete objects are not differen-
tiable with respect to their parameters [52, 108]. This limitation makes the generator untrainable
using backpropagation alone. The generator starts with a random sampling and a deterministic
transform guided via the gradient of the loss from the discriminator with respect to the output
produced by G and the training dataset. This loss leads to a slight change in G’s output, push-
ing it closer to the desired output. Making slight changes to continuous numbers makes sense;
adding 0.001 to a value of 10 in financial time series data will bring it to 10.001. However, a dis-
crete token such as the word “penguin”cannot simply undergo the addition of 0.001, as the sum
“penguin+0.001” makes no sense. What is important here is the impossibility for the generator to
jump from one discrete token to the next because the small change gives the token a new value
that does not correspond to any other token over that limited discrete space [37]. This is because
there exists zero probability in the space between these tokens, unlike with continuous data.

Challenges with continuous time series generation. Modeling continuous time series data
presents a different problem for GANs, which are inherently designed to model continuous data,
albeit most commonly in the form of images. The temporal nature of continuous data in time se-
ries presents an extra layer of difficulty. Complex correlations exist between the temporal features
and their attributes—for example, if using multichannel biometric/physiological data, the electro-
cardiogram (ECG) characteristics will depend on the individual’s age and/or health. In addition,
long-term correlations exist in the data, which are not necessarily fixed in dimension compared to
image-based data under a fixed dimension. Transforming image dimensions may lead to a degra-
dation in image quality, but it is a recognized practice. This operation becomes more difficult with
continuous time series data, as there is no standardized dimension used across time series GAN
architectures, which means that benchmarking their performances becomes difficult.

Since their inception in 2014, GANs have shown great success in generating high-quality syn-
thetic images indistinguishable from real images [41, 65, 87]. Although the focus to date has been
on developing GANs for improved media generation, there is a growing consensus that GANs can
be used for more than image generation and manipulation, which has led to a movement toward
generating time series data with GANs.

RNNs (Figure 4, left), due to their loop-like structure, are perfect for sequential data applications
but by themselves lack the ability to learn long-term dependencies that might be crucial in fore-
casting future values based on the past. Long short-term memory (LSTM) networks (Figure 4,
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Fig. 4. Block diagram of a standard RNN (left) and an LSTM cell (right).

right) are a specific kind of RNN that have the ability to remember information for long periods
of time and, in turn, learn these long-term dependencies that the standard RNN is not capable
of doing. In most work reviewed in this article, the majority of the RNN-based architectures are
utilizing the LSTM cell.

RNNs can model sequential data such as financial data, medical data, text, and speech, and they
have been the foundational architecture for time series GANs. A recurrent generative adversar-

ial network (RGAN) was first proposed in 2016. The generator contained a recurrent feedback
loop that used both the input and hidden states at each timestep to generate the final output [54].
RGANs often utilize LSTM NNs in their generative models to avoid the vanishing gradient
problem associated with more traditional recurrent networks [53]. In the section that follows, we
present time series GANs that have either contributed significantly to this space or have made
some of the most recent novel advancements in addressing the challenges mentioned previously.

4.1 Discrete-Variant GANs

4.1.1 Sequence GAN (SeqGAN) (Sept. 2016). Yu et al. [108] proposed a sequential data gener-
ation framework [108] that could address the issues with generating discrete data as mentioned
previously in Section 4. This approach outperformed previous methods for generative modeling
on real-world tasks, including a maximum likelihood estimation (MLE)-trained LSTM, scheduled
sampling [6], and policy gradient with bilingual evaluation understudy (PG-BLEU) [79]. SeqGAN’s
generative model comprises RNNs with LSTM cells, and its discriminative model is a convolu-

tional neural network (CNN). Given a dataset of structured sequences, the authors train G to
produce a synthetic sequence Y1:T = (y1 . . . ,yt . . . ,yT ),yt ∈ Y where Y is defined as the vocab-
ulary of candidate tokens. G is updated by a policy gradient and Monte Carlo (MC) search on
the expected reward from D (Figure 5). The authors used two datasets for their experiments. A
Chinese poem dataset [62] and a Barack Obama Speech dataset [102] with Adam optimizers and
a batch size of 64. Their experiments are available online.1

Although the purpose of SeqGAN is to generate discrete sequential data, it opened the door
to other GANs in generating continuous sequential and time series data. The authors use a
synthetic dataset whose distribution is generated from a randomly initialized LSTM following
a normal distribution. They also compare the generated data to real-world examples of poems,

1SeqGAN GitHub: https://github.com/LantaoYu/SeqGAN/.
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Fig. 5. SeqGAN: D is trained over real and generated data (left), whereas G is trained by policy gradient
where the final reward signal is provided by D and is passed back to the intermediate action value via MC
search (right).

Fig. 6. Dilated causal convolutional layer.

speech-language, and music. SeqGAN showed competitive performance in generating the
sequences and contributed heavily toward the further development of the continuous sequential
GANs.

4.1.2 Quant GAN (July 2019). Quant GAN is a data-driven model that aims to capture long-
range dependencies in financial time series data such as volatility clusters. Both the generator
and discriminator use temporal convolutional networks (TCNs) with skip connections [101],
which are essentially dilated causal convolutional networks. They have the advantage of being
suited to model long-range dependencies in continuous sequential data. The generator function is
a novel stochastic volatility neural network that consists of a volatility and drift TCN. Temporal
blocks are the modules used in the TCN that consist of two dilated causal convolutions layers
(Figure 6) and two parametric rectified linear units (PReLU) as activation functions. Data generated
byG is passed to D to produce outputs, which can then be averaged to give an MC estimate of D’s
loss function. The authors used a dataset of daily spot prices of the S&P 500 from May 2009 until
December 2018.

The authors aim to capture long-range dependencies in financial time series; however, mod-
eling the series in continuous time over these long time frames would blow up the models’
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Fig. 7. Structure of C-RNN-GAN’s generator and discriminator.

computational complexity. Therefore, this method models the time series in discrete time. The
authors report that this approach is capable of outperforming more conventional models from
mathematical finance (constrained stochastic volatility NN and generalized AR conditional
heteroskedasticity (GARCH) [7]) but state that there remain issues that need to be resolved for
this approach to become widely adopted. One such issue concerns the need for a unified metric
for quantifying the performance of these GANs, which is a point we discuss further in Section 6.

4.2 Continuous-Variant GANs

Training Stability Developments

4.2.1 Continuous RNN-GAN (C-RNN-GAN) (Nov. 2016). In previous works, RNNs have been ap-
plied to modeling music but have generally used a symbolic representation to model this type of
sequential data. Mogren [74] proposed the C-RNN-GAN (Figure 7), one of the first examples of us-
ing GANs to generate continuous sequential data. The generator is an RNN, and the discriminator a
bidirectional RNN, which allows the discriminator to take the sequence context in both directions.
The RNNs used in this work were two stacked LSTM layers, with each cell containing 350 hidden

units. The loss functions can be seen in Equations (5) and (6), where z(i ) is a sequence of uniform

random vectors in [0, 1]k , and x (i ) is a sequence from the training data. k is the dimensionality of
the data in the random sequence.

LG =
1

m

m∑
i=1

loд(1 − D(G(z(i )))) (5)

LD =
1

m

m∑
i=1

[−loдD(x (i )) − loд(1 − D(G(z(i ))))] (6)
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The C-RNN-GAN is trained with backpropagation through time (BPTT) and mini-batch stochas-
tic gradient descent with L2 regularization on the weights of both G and D. Freezing was applied
to both G and D when one network becomes too strong relative to the other. The dataset used
was 3,697 midi files from 160 different composers of classical music with a batch size of 20. Adam
and gradient descent optimizers were used during training; full implementation details are avail-
able online.2 Overall, the C-RNN-GAN was capable of learning the characteristics of continuous
sequential data and, in turn, generate music. However, the author stated that their approach still
needs work, particularly in rigorous evaluation of the generated data quality.

4.2.2 Noise Reduction GAN (NR-GAN) (Oct. 2019). NR-GAN is designed for noise reduction in
continuous time series signals but more specifically has been implemented for noise reduction
in mice electroencephalogram (EEG) signals [90]. This dataset was provided by the International
Institute for Integrative Sleep Medicine (IIIS). EEG is the measure of the brain’s electrical activity,
and it commonly contains significant noise artifact. NR-GAN’s core idea is to reduce or remove
the noise present in the frequency domain representation of an EEG signal. The architecture of G
is a two-layer 1D CNN with a fully connected layer at the output. D contains almost the same two-
layer 1D CNN structure with the fully connected layer replaced by a softmax layer to calculate the
probability that the input belongs to the training set. The loss functions are defined in Equations (7)
and (8) as

Gloss =
∑

x ∈Sns

[loд(1 − D(G(x ))) + α ‖x −G(x )‖2], (7)

Dloss =
∑

x ∈Sns

[loд(D(G(x )))] +
∑

y∈Scs

[loд(1 − D(y))], (8)

where Sns and Scs are the noisy and clear EEG signals, respectively. α is a hyperparameter that
essentially controls the aggressiveness of noise reduction; the authors chose a value of α = 0.0001.

For this work, the generator does not sample from a latent space; rather, it attempts to generate
the clear signal from the noisy EEG signal input (Figure 8). The authors found that the NR-GAN
is competitive with classical frequency filters in terms of noise reduction. They also state that the
experimental conditions may favor the NR-GAN and list some limitations in terms of the amount
of noise NR-GAN can handle and the influence of α . However, this is a novel method for noise
reduction in continuous sequential data using GANs.

4.2.3 TimeGAN (Dec. 2019). TimeGAN provides a framework that utilizes both the conven-
tional unsupervised GAN training method and the more controllable supervised learning ap-
proach [107]. By combining an unsupervised GAN network with a supervised AR model, the
network aims to generate time series with preserved temporal dynamics. The architecture of the
TimeGAN framework is illustrated in Figure 9. The input to the framework is considered to consist
of two elements: a static feature and a temporal feature. s represents a vector of static features and
x of temporal features at the input to the encoder. The generator takes a tuple of static and tempo-
ral random feature vectors drawn from a known distribution. The real and synthetic latent codes h

and ĥ are used to calculate the supervised loss element of this network. The discriminator receives
the tuple of real and synthetic latent codes and classifies them as either real (y) or synthetic (ŷ),
and the˜operator denotes the sample as either real or fake.

The three losses used in TimeGAN are calculated as follows.

Lr econstruction = Es,x1:T ∼p

⎡⎢⎢⎢⎢⎣
‖s − s̃‖2+

∑
t

‖xt − x̃t ‖2
⎤⎥⎥⎥⎥⎦

(9)

2C-RNN-GAN GitHub: https://github.com/olofmogren/c-rnn-gan/.
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Fig. 8. NR-GAN architecture with noisy EEG input Sns and clean input data Scs .

Fig. 9. TimeGAN architecture.

Lunsupervised = Es,x1:T ∼p

⎡⎢⎢⎢⎢⎣
loд(yS ) +

∑
t

loд(yt )

⎤⎥⎥⎥⎥⎦
+ Es,x1:T ∼p̂

⎡⎢⎢⎢⎢⎣
loд(1 − ŷS ) +

∑
t

loд(1 − ŷt )

⎤⎥⎥⎥⎥⎦
(10)

Lsupervised = Es,x1:T ∼p

⎡⎢⎢⎢⎢⎣
∑

t

‖ht − дX (hS ,ht−1, zt )‖2
⎤⎥⎥⎥⎥⎦

(11)

The creators of TimeGAN conducted experiments on generating sine waves, stocks (daily histor-
ical Google stocks data from 2004 to 2019), energy (UCI Appliances energy prediction dataset) [26],
and event (private lung cancer pathways dataset) datasets. A batch size of 128 and Adam optimizer
were used for training, and implementation details are available online.3 The authors demonstrated

3TimeGAN GitHub: https://github.com/jsyoon0823/TimeGAN.
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improvements over other state-of-the-art time series GANs such as RCGAN, C-RNN-GAN, and
WaveGAN.

4.2.4 Conditional Sig-Wasserstein GAN (SigCWGAN) (June 2020) . A problem addressed by Ni
et al. [76] is that long time series data streams can greatly increase the dimensionality requirements
of generative modeling, which may render such approaches infeasible. To counter this problem, the
authors develop a metric named Signature Wasserstein-1 (Sig-W1) that captures time series models’
temporal dependency and uses it as a discriminator in a time series GAN. It provides an abstract
and universal description of complex data streams and does not require costly computation like the
Wasserstein metric. A novel generator is also presented that is named conditional autoregressive

feed-forward neural network (AR-FNN), which captures the AR nature of the time series. The gen-
erator is capable of mapping past series and noise into future series. For a rigorous mathematical
description of their method, the interested reader should consult the work of Ni et al. [76].

For the AR-FNN generator, the idea is to obtain the step-q estimator X̂ (t )
t+1:t+q . The loss function

for D is defined as

L(θ ) =
∑

t

���Eμ

[
SM (Xt+1:t+q )|Xt−p+1:t

]
− Ev

[
SM (X̂ (t )

t+1:t+q )|Xt−p+1:t

] ��� , (12)

where v and μ are the conditional distributions induced by the real data and synthetic generator,

respectively. Xt−p+1:t is the true past path, X̂ (t )
t+1:t+q is the forecasted next path, and Xt+1:t+q is the

true forecast value. SM is the truncated signature of path X of degree M . Further details of the Ni’s
algorithm can be found in the appendix of their original paper [76]. SigCWGAN eliminates the
problem of approximating a costly D and simplifies training. It is reported to achieve state-of-the-
art results on synthetic and empirical datasets compared to TimeGAN, RCGAN, and generative
moment matching networks (GMMNs) [68]. The empirical dataset consists of the S&P 500 index
(SPX) and Dow Jones index (DJI) and their realized volatility, which is retrieved from the Oxford-
Man Institute’s “realized library” [55]. A batch size of 200 with the Adam optimizer was used for
training.4

4.2.5 Decision-Aware Time Series Conditional GAN (DAT-CGAN) (Sept. 2020). This framework
is designed to provide support for end users’ decision processes, specifically in financial portfolio
choices. It uses a multi-Wasserstein loss on structured decision-related quantities [91]. The dis-
criminator loss and generator loss are defined in Equations (13) and (14), respectively. For further
details on the loss functions, see Section 3 of the original paper [91] and Equations (15) through (18).

in f
η

sup
γk ,θ j,k

K∑
k=1

ωk

(
E

r
k − E

Gη

k

)
+

K∑
k=1

J∑
j=1

λj,k

(
E

f ,R

j,k
− Ef ,Gη

j,k

)
(13)

in f
η
−

∑
k

ωkE
Gη

k
−

∑
k, j

λj,kE
f ,Gη

j,k
(14)

E
r
k = Ert +k∼P (rt +k |xt )[Dγ k (rt+k ,xt )] (15)

E
Gη

k
= Ezt,k∼P (zt,k )[Dγ k (r ′t,k ,xt )] (16)

E
f ,R

j,k
= ERt,k∼P (Rt,k |xt )[Dθ j,k

(fj,k (Rt,k ,xt ),xt )] (17)

E
f ,Gη

j,k
= EZt,k∼P (Zt,k )[Dθ j,k

(fj,k (R′t,k ,xt ),xt )] (18)

4SigCWGAN GitHub: https://github.com/SigCGANs/Conditional-Sig-Wasserstein-GANs/.
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We offer a full description of all terms used in Equations (13) and (14).Dγ k is the discriminator for
the data at look ahead period k with respect to parameters γ .Gη is the generator with parameters
η. As this is the conditional case, xt is the conditioning variable containing relevant information
up to time t . r ′

t,k
= Gη (zt,k ,xt ) is defined as the synthetic data at look ahead point k where the

noise is zt,k . The discriminator for decision-related quantity j at look ahead period k with respect
to parameters θ j,k is defined as Dθ j,k

. These decision-related quantities may include mean and

covariance, for example. fj,k (Rt,k ,xt ) represents the decision-related quantity. Finally, ωk and λj,k

are weights and in f and sup are the infimum and supremum or greatest lower bound and least
upper bound of a non-empty subset, respectively.

The generator is a two-layer feed-forward NN for each input—assets in this case. G outputs
asset returns that are used to compute decision-related quantities. These quantities are fed into D,
which is also a two-layer feed-forward NN. Further details about the architecture can be found in
the appendix of the work of Sun et al. [91]. The dataset used is daily price data for each of four
U.S. Exchange-traded funds (ETFs): Material (XLB), Energy (XLE), Financial (XLF), and Industrial
(XLI) ETFs, from 1999 to 2016. The authors found this model capable of high-fidelity time series
generation that supports decision processes by end users due to incorporating a decision-aware
loss function. However, this approach’s limitation is that the computational complexity of this
model is vast and requires 1 month of training time for a single generative model.

Privacy Developments

4.2.6 Recurrent Conditional GAN (RCGAN) (2017). RCGAN for continuous data generation [31]
differs architecturally from the C-RNN-GAN. Although the RNN LSTM is used, the discriminator
is unidirectional, and the outputs ofG are not fed back as inputs at the next timestep. There is also
additional information that the model is conditioned on, which makes for a conditional RGAN;
see the layout of the model in Figure 10. The purpose of the RCGAN and RGAN in this work is
to generate continuous time series with a focus on medical data intended for use in downstream
tasks, and this was one of the first works in this area. The loss functions can be seen in Equations
(19) and (20), where CE is the average cross-entropy between two sequences.Xn are samples drawn
from the training dataset. yn is the adversarial ground truth; for real sequences, it is a vector of 1s,
and conversely, for generated or synthetic sequences, it is a vector of 0s. Zn is a sequence of points
sampled from the latent space, and the valid adversarial ground truth is written here as 1.

Dloss (Xn ,yn ) = −CE(D(Xn ),yn) (19)

Gloss (Zn ) = Dloss (G(Zn), 1) = −CE(D(G(Zn)), 1) (20)

In the conditional case, the inputs to D and G are concatenated with some conditional informa-
tion cn . This variant of an RNN-GAN facilitates the generation of a synthetic continuous time se-
ries dataset with associated labels. Experiments were carried out on generated sine waves, smooth
functions sampled from a Gaussian process with a zero-valued mean function, the MNIST dataset
as a sequence, and the Philips eICU database [83]. A batch size of 28 with Adam and gradient de-
scent optimizers was used for training. The authors propose a novel method for evaluating their
model, which is discussed further in Section 6. Full experimental details can be found online.5

4.2.7 Sequentially Coupled GAN (SC-GAN) (April 2019). SC-GAN aims to generate patient-
centric medical data to inform of a patient’s current state and generate a recommended medication
dosage based on the state [97]. It consists of two coupled generators tasked with producing two

5RCGAN GitHub: https://github.com/ratschlab/RGAN/.
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Fig. 10. RCGAN architecture with conditional input c, input data x, and latent variable z.

Fig. 11. SC-GAN architecture.

outcomes: one for the current state of an individual and the other for a recommended medication
dosage based on the individual’s state. The discriminator is a two-layer bidirectional LSTM, and
the coupled generators are both two-layer unidirectional LSTMs. Figure 11 presents further details
of the architecture.
G1 generates the recommended medication dosage data (a1, a2, . . . , aT ) with a combined input

of the sequential continuous patient state data (s0, s1, . . . , sT−1) and a random noise sequence
(ẑa

0 , ẑ
a
1 , . . . , ẑ

a
T−1) sampled from a uniform distribution. At each timestep t , the input za

t of G1 is
the concatenation of st and ẑa

t .
Conversely,G2 is tasked with generating the patient state data st and at each timestep the input

zs
t is the concatenation of st−1, at−1 and ẑs

t . This means that the outputs from G1 and G2 are the
inputs to one another. Combining the generators together leads to the following loss function:

LG =
1

N

1

T

N∑
i=1

T∑
t=1

loд(1 − D(G(zi,t ))), (21)

G(zi,t ) =
[
G1(za

i,t );G2(zs
i,t )

]
, (22)
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where N is the number of patients andT is the time length of the patient record. The SC-GAN has
a supervised pre-training step for the generators to avoid an excessively strong D that uses the
least-squares loss.

The discriminator is tasked with classifying the sequential patient-centric records as real or
synthetic, and the loss function is defined as

LD = − 1

N

1

T

N∑
i=1

T∑
t=1

(loдD(xi,t ) + loд(1 − D(G(zi,t )))), (23)

where xi,t = [st ; at ]. This model contains novel coupled generators that coordinate to generate
patient state and medication dosage data. It has performance close to real data for the treatment
recommendation task. The dataset used in this experiment is MIMIC-III [56]. The authors bench-
mark their SC-GAN against variants of SeqGAN, C-RNN-GAN, and RCGAN and observe their
model to be the best performing for this specific use case.

4.2.8 Synthetic Biomedical Signals GAN (SynSigGAN) (Dec. 2020). SynSigGAN is designed to
generate different kinds of continuous physiological/biomedical signal data [49]. It is capable of
generating ECG, EEG, electromyography (EMG), and photoplethysmography (PPG) from the MIT-
BIH Arrhythmia database [75], Siena Scalp EEG database [23], and BIDMC PPG and Respiration
dataset [82]. A novel GAN architecture is proposed here that uses a bidirectional grid long short-

term memory (BiGridLSTM) for the generator (Figure 12) and a CNN for the discriminator. The
BiGridLSTM is a combination of a double GridLSTM (a version of LSTM that can represent the
LSTMs in a multidimensional grid) with two directions that can combat the gradient phenomenon
from two dimensions and are found to work well in time sequence problems. The authors used the
value function defined previously in Equation (2).

SynSigGAN is capable of capturing the different physiological characteristics associated with
each of these signal types and has demonstrated an ability to generate biomedical time series data
with a max sequence length of 191 data points. The authors also present a preprocessing stage to
clean and refine the biomedical signals in this work. They compare their architecture to several
variants (BiLSTM-GRU, BiLSTM-CNN GAN, RNN-AE GAN, Bi-RNN, LSTM-AE, BiLSTM-MLP,
LSTM-VAE GAN, and RNN-VAE GAN) and found the BiGrid-LSTM as the best-performing model.

Evaluation Developments

As evaluating GANs has been identified as one of their major challenges, we discuss standard
evaluation metrics and novel developments formally in Section 6.

5 APPLICATIONS

We have discussed the two classes of time series GANs and their contribution to solving the chal-
lenges presented in Section 3.2. Now we will list the wide-ranging applications of time series GANs
and the benefits of such to both research and industry.

5.1 Data Augmentation

It is common knowledge in the deep learning community that GANs are among the methods
of choice when discussing data augmentation. Reasons for augmenting datasets range from in-
creasing the size/variety of small and imbalanced datasets [2, 44, 59, 77] to reproducing restricted
datasets for dissemination.

A well-defined solution to the data shortage problem is transfer learning, and it works well in
domain adaptation, which has led to advancements in classification and recognition problems [78].
However, it has been found that augmenting datasets with GANs can lead to further improvements
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Fig. 12. Architecture of BiGridLSTM with LSTM blocks for the time and depth dimension. The prime (′)
symbol indicates reverse in the figure as in the work of Fei and Tan [34].

in certain classification and recognition tasks [110]. Data synthesized by a GAN can adhere to
stricter privacy measures discussed in Section 7. This further demonstrates the advantages of aug-
menting your training dataset with GANs over implementing transfer learning with a pre-trained
model from a different domain on a smaller dataset.

Many researchers find that accessing datasets for their deep learning research and models to
be time-consuming, laborious work, particularly when the research is concerned with personal
sensitive data. Often medical and clinical data are presented as continuous sequential data that
can only be accessed by a small contingent of researchers who are not at liberty to disseminate
their research openly. This, in turn, may lead to stagnation in the research progress in these
domains.

Fortunately, we are beginning to see the uptake of GANs applied to time series with these types
of medical and physiological data [12, 21, 31, 49, 111]. Brophy [11] shows that dependent multivari-
ate continuous high-fidelity physiological signal generation is capable via GANs, demonstrating
the impressive capability of these networks. Figure 13 presents an example of the real input and
synthetic generated data.
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Fig. 13. An example of dependent multichannel ECG data (left) and generated ECG from a multivariate
GAN (right) [11]. NSR indicates the training dataset, which is the normal sinus rhythm. The generated data
is produced by a GAN named by the authors as LSGAN-DTW.

Of course, this is not comprehensive coverage of the research using time series GANs for data
synthesis and augmentation. GANs have been applied to time series data for a plethora of use
cases.

Audio generation (both music and speech) and text-to-speech (TTS) [57] have been popular
areas for researchers to explore with GANs. The C-RNN-GAN described in Section 4.2.1 was one
of the seminal works to apply GANs to generating continuous sequential data in the form of music.

In the financial sector, GANs have been implemented to generate data and predict/forecast val-
ues. Wiese et al. [101] implemented a GAN to approximate financial time series in discrete time.
Ni et al. [76] designed a decision-aware GAN that generates synthetic data and supports decision
processes to financial portfolio selection of end users.

Other time series generation/prediction methods range from estimating soil temperature [67]
to predicting medicine expenditure based on the current state of patients [58].

5.2 Imputation

In real-world datasets, missing or corrupt data is an all too common problem that leads to down-
stream problems. These issues manifest themselves in further analytics of the dataset and can
induce biases in the data. Common methods of dealing with missing or corrupted data in the past
have been the deletion of data streams containing the missing segments, statistical modeling of
the data, or machine learning imputation approaches. Looking at the latter, we review the work in
imputing these data using GANs. Guo et al. [42] designed a GAN-based approach for multivariate
time series imputation. Figure 14 presents an example of imputed data from a toy experiment [12].

5.3 Denoising

Artifacts induced in time series data often manifest themselves as noise in the signals. This has
become an ever-present challenge in further processing and analytical applications. Corrupted
data can cause biases in the datasets or lead to degradation in the performance of critical systems
such as those used for health applications. Common methods for dealing with noise include
the use of adaptive linear filtering. Another approach recently explored in the work of Sumiya
et al. [90] used GANs as a noise-reduction technique in EEG data. Their experiments showed that
their proposed NR-GAN (Section 4.2.2) was capable of competitive noise reduction performance
compared to more traditional frequency filters.

5.4 Anomaly Detection

Detecting outliers or anomalies in time series data is an important part of many real-world systems
and sectors. Whether it is detecting unusual patterns in physiological data that may be a precursor
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Fig. 14. An example of the incomplete corrupted time series (top) and imputed signal (bottom).

to some more malicious condition or detecting irregular trading patterns on the stock exchange,
anomaly detecting can be vital to keeping us informed on important information. Statistical mea-
sures of non-stationary time series signals may achieve good performance on the surface, but they
might also miss some important outliers present in deeper features. They may also struggle in
exploiting large unlabeled datasets; this is where the unsupervised deep learning approaches can
outperform the conventional methods. Zhu et al. designed a GAN algorithm for anomaly detec-
tion in time series data (ECG and taxi dataset) with LSTMs and GANs, which achieved superior
performance compared to conventional, more shallow approaches [112]. Similar approaches have
been applied to detect cardiovascular diseases [69], in cyber-physical systems to detect nefarious
players [66], and even irregular behaviors such as stock manipulation on the stock markets [63].

5.5 Other Applications

Some works have utilized image-based GANs for time series and sequential data generation by first
converting their sequences to images via some transformation function and training the GAN on
these images. Once the GAN converges, similar images can be generated; then, a sequence can be
retrieved using the inverse of the original transformation function. For example, this approach has
been implemented in audio generation with waveforms [16, 24, 60], anomaly detection [18], and
physiological time series generation [12].

6 EVALUATION METRICS

As mentioned in Section 3, GANs can be difficult to evaluate, and researchers are yet to agree on
what metrics reflect GAN performance best. There have been plenty of metrics proposed in the
literature [8], with most of them suited to the computer vision domain. Work is still ongoing to
suitably evaluate time series GANs. We can break down evaluation metrics into two categories:
qualitative and quantitative. Qualitative evaluation is another term for human visual assessment
via the inspection of generated samples from the GAN. However, this cannot be deemed a full
evaluation of GAN performance due to the lack of a suitable objective evaluation metric. The quan-
titative evaluation includes the use of metrics associated with statistical measures used for time
series analytics and similarity measures such as the Pearson correlation coefficient (PCC), per-
cent root mean square difference (PRD), root mean squared error (RMSE) and mean squared error
(MSE), mean relative error (MRE), and mean absolute error (MAE). These metrics are among the
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most commonly used for time series evaluation and, as such, are used as a suitable GAN perfor-
mance metric, as they can reflect the stability between the training data and synthetic generated
data, and we show some of these common formulas in Equations (24) through (27).

PCC =

∑N
i=1(xi − x̃ )(yi − ỹ)√∑N

i=1(xi − x̃ )2
∑N

i=1(yi − ỹ)2

(24)

PRD =

√∑N
i=1(xi − yi )2∑N

i=1(xi )2
(25)

RMSE =

√√√
1

N

N∑
i=1

(xi − yi )2 (26)

MRAE =
1

N

N∑
i=1

�����
xi − yi

xi − fi

����� (27)

Across these formulas, xi is the actual value of the time series x at time/sample i , and yi is the
generated value of the time series y at time/sample i . x̃ and ỹ represents the mean values of x
and y, respectively. fi is used in the MRAE calculation for the forecast value at time i of a chosen
benchmark model. In general, fi can be chosen to be yi−1 for non-seasonal time series and yi−M

for seasonal time series, where M is the seasonal period of x .
Several metrics have become well-established choices in evaluating image-based GANs, and

some of these have permeated through to the sequential and time series GANs such as IS [88],
Fréchet distance, and FID [51]. The structural similarity index (SSIM) is a measure of similarity
between two images. However, Parthasarathy et al. [80] use this with time series data, as SSIM
does not exclude itself from comparing aligned sequences of fixed length.

Of course, some of these metrics are measures of similarities/dissimilarities between two prob-
ability distributions, suitable for many types of data, particularly MMD [39]. In the real world, we
do not have access to the underlying distributions of data, and therefore we show an empirical
estimate of MMD in Equation (28), which is a quite suitable metric for this task across domains:

MMD[F ,X ,Y ] =

⎡⎢⎢⎢⎢⎢⎣
1

m2

m∑
i, j=1

k(xi ,x j ) −
2

mn

m,n∑
i, j=1

k(xi ,yi ) +
1

n2

n∑
i, j=1

k(yi ,yj )

⎤⎥⎥⎥⎥⎥⎦

1
2

, (28)

where F is a class F of smooth functions f : X → R. Two observations X := {x1,x2, . . . ,xn } and
Y := {y1,y2, . . . ,yn } are drawn from two distributions p and q with m points sampled from p and
n from q. Last, k is the kernel function chosen by the user.

Another metric that generalizes well to the sequential data case is the Wasserstein distance.
The Wassterstein-1, or Earth Mover distance, shown in Equation (29), describes the cost it takes to
move one cumulative distribution function to another while preserving the shape of the functions,
which is done by optimizing the transport plan:

Wp (μ,ν ) =

(
inf

γ ∈`(μ,ν )

∫
X xY

dp (x ,y)dγ (x ,y)

) 1
p

, (29)

where `(μ,ν ) is the set of all transport plans, dp (x ,y) is the distance function, and dγ (x ,y) is the
amount of “mass” to be moved.

The data generated from GANs have been used in downstream classification tasks. Using
the generated data together with the training data has led to the Train on Synthetic, Test on
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Real (TSTR) and Train on Real, Test on Synthetic (TRTS) evaluation methods, first proposed
by Esteban et al. [31]. In scoring downstream classification applications that use both real
and generated data, studies have adopted the precision, recall, and F1 scores to determine the
classifier’s quality and, in turn, the quality of the generated data. Other accuracy measures of
classifier performance include the weighted accuracy (WA) and unweighted average recall (UAR).

Often used distance and similarity measures in time series data are the Euclidean distance (ED)
and dynamic time warping (DTW) algorithms. Multivariate (in)dependent dynamic time warp-
ing (MVDTW), implemented in the work of Brophy [11], can determine similarity measures across
both dependent and independent multichannel time series signals. The idea behind DTW is to find
the minimum cost, or optimal alignment of the warping path via the cumulative distance function.
The MVDTW cumulative distance function is given in Equation (30), which is used to find the path
that minimizes the warping cost of multivariate time series signals.

D(i, j) =

M∑
m=1

(qi,m − c j,m )2 +min{D(i − 1, j − 1),D(i − 1, j),D(i, j − 1)} (30)

Other metrics used across different applications include:

• Financial sector : Autocorrelation function (ACF) score and DY metric.
• Temperature estimation: Nash-Sutcliffe model efficiency coefficient (NS), Willmott index of

agreement (WI), and the Legates and McCabe index (LMI).
• Audio generation: Normalized source-to-distortion ratio (NSDR), source-to interference ratio

(SIR), source-to-artifact ratio (SAR), and t-SNE [95].

For a full list of GAN architectures reviewed in this work, their applications, evaluation metrics,
and datasets used in their respective experiments, see Table 2. Results for the sine wave and ECG
generation using variants of GAN architectures can be found in Tables 3 and 4, respectively.

7 PRIVACY

As well as evaluating the quality of the data, a wide range of methods have been used to evaluate
and mitigate the privacy risk associated with synthetic data created by GANs.

7.1 Differential Privacy

The goal of differential privacy is to preserve the underlying privacy of a database. An algorithm or,
more specifically, a GAN achieves differential privacy if, by looking at the generated samples, we
cannot identify whether the samples were included in the training set. As GANs attempt to model
the training dataset, the problem of privacy lies in capturing and generating useful information
about the training set population without the possibility of linkage from generated sample to an
individual’s data [27].

As we have addressed previously, one of the main goals of GANs is to augment existing under-
resourced datasets for use in further downstream applications such as upskilling of clinicians
where healthcare data is involved. These personal sensitive data must contain privacy guarantees,
and the rigorous mathematical definition of differential privacy [28] offers this assurance.

Work is ongoing to develop machine learning methods with privacy-preserving mechanisms
such as differential privacy. Abadi et al. [1] demonstrated the ability to train deep NNs with differ-
ential privacy and implemented a mechanism for tracking privacy loss. Xie et al. Xie2018 proposed
a differentially private GAN (DPGAN) that achieved DP by adding noise gradients to the optimizer
during the training phase [103].
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Table 2. List of GAN Architectures, Their Applications, and Datasets Used in Their Experiments and
Evaluation Metrics Used to Judge the Quality of the Respective GANs

Application GAN Architecture(s) Dataset(s) Evaluation Metrics
Medical/physiological
generation

LSTM-LSTM [2, 31, 44, 45,
77, 97]
LSTM-CNN [11, 21]
BiLSTM-CNN [111]
BiGridLSTM-CNN [49]
CNN-CNN [33, 47]
AE-CNN [81]
FCNN [104]

EEG, ECG, EHRs,
PPG, EMG, speech,
NAF, MNIST,
synthetic sets

TSTR, MMD,
reconstruction error,
DTW, PCC, IS, FID,
ED, S-WD, RMSE,
MAE, FD, PRD,
averaging samples,
WA, UAR, MV-DTW

Financial time series
generation/prediction

TimeGAN [107]
SigCWGAN [76]
DAT-GAN [91]
QuantGAN [101]

S&P 500 index (SPX),
Dow Jones index
(DJI), ETFs

Marginal
distributions,
dependencies, TSTR,
Wasserstein distance,
EM distance, DY
metric, ACF score,
leverage effect score,
discriminative score,
predictive score

Time series
estimation/prediction

LSTM-NN [67]
LSTM-CNN [58]
LSTM-MLP [58]

Meteorological data,
Truven MarketScan
dataset

RMSE, MAE, NS, WI,
LMI

Audio generation C-RNN-GAN [74]
TGAN (variant) [16]
RNN-FCN [109]
DCGAN (variant) [60]
CNN-CNN [57]

Nottingham dataset,
midi music files,
MIR-1K, TheSession,
speech

Human perception,
polyphony, scale
consistency, tone
span, repetitions,
NSDR, SIR, SAR, FD,
t-SNE, distribution of
notes

Time series
imputation/repairing

MTS-GAN [42]
CNN-CNN [84]
DCGAN (variant) [43]
AE-GRUI [71]
RGAN [92]
FCN-FCN [15]
GRUI-GRUI [70]

TEP, point machine,
wind turbine data,
PeMS, PhysioNet
Challenge 2012, KDD
CUP 2018, parking
lot data,

Visually, MMD, MAE,
MSE, RMSE, MRE,
spatial similarity,
AUC score

Anomaly detection LSTM-LSTM [63]
LSTM-(LSTM&CNN) [112]
LSTM-LSTM (MAD-GAN)
[66]

SET50, NYC taxi data,
ECG, SWaT, WADI

Manipulated data
used as a test set,
ROC curve, precision,
recall, F1, accuracy

Other time series
generation

VAE-CNN [80] Fixed length time
series “vehicle and
engine speed”

DTW, SSIM

For novel approaches, the GAN name is given as they have been covered already in Section 4.

7.2 Decentralized/Federated Learning

Distributed or decentralized learning is another method for limiting the privacy risk associated
with personal and personal sensitive data in machine learning. Standard approaches to machine
learning require that all training data be kept on one server. Decentralized/distributed approaches
to GAN algorithms require large communication bandwidth to ensure convergence [5, 46] and
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Table 3. Experimental Results Comparing the Performance of Time Series
GANs for Sinewave Generation

Architecture Loss Function
Toy Sine Dataset

MMD DTW MSE

LSTM-LSTM
BCE 0.9527 91.1071 0.2308
MSE 0.0078 54.1644 0.1480

BiLSTM-LSTM
BCE 0.1215 428.4310 3.0700
MSE 0.9515 79.5607 0.2362

LSTM-CNN
BCE 0.006 55.3620 0.3154
MSE 0.5757 86.7357 0.5643

BiLSTM-CNN
BCE 1.129E-05 129.9257 0.9193
MSE 0.4891 43.2694 0.1869

GRU-CNN
BCE 0.0244 37.1630 0.2303
MSE 0.3727 42.7348 0.22823

FC-CNN
BCE 0.0039 58.3565 0.3048
MSE 0.0117 43.3611 0.2972

Table 4. Experimental Results Comparing the Performance of Time Series
GANs for ECG Generation on the MIT-BIH Dataset

Architecture Loss Function
MIT-BIH Arrhythmia Dataset
MMD DTW MSE

LSTM-LSTM
BCE 0.9931 30.1816 0.0867
MSE 0.8842 44.4553 0.1389

BiLSTM-LSTM
BCE 0.9916 22.8634 0.0699
MSE 0.9737 23.5533 0.0806

LSTM-CNN
BCE 0.5519 13.0158 0.0151

MSE 0.0005 24.7306 0.0457

BiLSTM-CNN
BCE 0.9246 117.3994 0.2272
MSE 0.0687 22.6740 0.0586

GRU-CNN
BCE 0.0055 20.4845 0.0335
MSE 0.7704 108.4124 0.1948

FC-CNN
BCE 0.2068 23.9910 0.0309
MSE 0.3082 18.2340 0.0212

are also subject to strict privacy constraints. A new method that enables communication efficient
collaborative learning on a shared model while keeping all of the training data decentralized
is known as federated learning [73]. Rasouli et al. [86] applied a federated learning algorithm
to a GAN for communication-efficient distributed learning and proved the convergence of
their federated learning GAN (FedGAN) [86]. However, it should be noted that they did not
experiment with differential privacy in this study but note that it as an avenue of future
work.

Combining the preceding techniques of federated learning and differential privacy in developing
new GAN algorithms would lead to a fully decentralized private GAN capable of generating data
without leakage of private information to the source data. This is clearly an open research avenue
for the community.
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7.3 Assessment of Privacy Preservation

We can also assess how well the generative model was able to protect our privacy through tests
known as attribute and presence disclosure [17]. The latter test is more commonly known in the
machine learning space as a membership inference attack. This has become a quantitative assess-
ment of how machine learning models leak information about the individual data records on which
they were trained [89]. Membership inference attacks attempt to detect the data that was used to
train a target model without the attacker having access to the model’s parameters. A nefarious
actor creates random records for a target machine learning model. The attacker then feeds each
record into the model. The model will return a confidence score, and based on this score, the
records will be fine tuned until a higher confidence score is returned. This process will continue
until the model returns a very high score, and at this stage the record will be nearly identical to
one of the examples used in the training dataset. These steps will be repeated until enough dataset
examples are generated. The fake records will then be used to train an ensemble of models to
predict whether a data record was used in the training set of the target model.

Hayes et al. [48] carried out membership inference attacks on synthetic images and concluded
that for acceptable levels of privacy in the GAN, the quality of the data generated is sacrificed.
Conversely, others have followed this approach and found that differential privacy networks can
successfully generate data that adheres to differential privacy and resists membership inference
attacks without too much degradation in the quality of the generated data [11, 21, 31].

8 DISCUSSION

We have presented a survey of time series GAN variants that have made significant progress in ad-
dressing the primary challenges identified in Section 3.2. These GANs introduced the idea of both
discrete and continuous sequential data generation and have made incremental improvements
over one another via an architecture variant or a modified objective function capable of capturing
the spatio-temporal dependencies present in these data types. The loss functions implemented in
these works for some architectures will not necessarily generalize to others; hence, they become
architecture specific. The architecture choices of the time series GANs affect both the quality and
diversity of the data. However, there remain open problems in terms of the practical implementa-
tion of the generated data and GANs in real-world applications, particularly in health applications
where the performance of these models can directly affect patients’ quality of care/treatment.

The “best” GAN architecture and objective function is yet to be determined. This is because
humans have manually designed most architectures. As a result, there is growing interest in au-
tomated neural architecture search (NAS) methods [30], whereby automating the architecture
engineering aspect of machine learning. It is a growing branch of automatic machine learning
(AutoML) and automatic deep learning (AutoDL) that seeks to optimize the processes around ma-
chine learning. Work has been done in the image domain space with neural architecture search and
GANs [35]. This method, named AutoGAN, achieved highly competitive performance compared
to state-of-the-art human-engineered GANs. This is a promising area for time series GANs; to the
authors’ knowledge, it is yet unexplored.

As it stands, GANs tend to be application specific; they perform well for their intended purpose
but do not generalize well beyond their original domain. Furthermore, a major limitation of time
series GANs is the restrictions placed on the length of the sequence specified that the architecture
can manage; documented experiments validating how well a time series GAN can adapt to varying
data lengths are notably absent at the time of writing. However, glimpses of work in the NLP
literature in the form of Transformers [96] have demonstrated some applicability to dealing with
varying sequence lengths that may prove beneficial in addressing this issue and might emerge in
time series generation given time.
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Other aspects not in the scope of this survey article but important to note is how GANs can deal
with issues such as scalability and real-time data. Given its importance, we present some draft
ideas and direct the interested reader to further resources for full-stack machine learning in gen-
eral. Thankfully, the emerging practice of machine learning operations (MLOps) addresses most
concerns surrounding retraining models once real-time data begins to diverge from the original
dataset it was trained on [14, 94]. This can be applied to GANs, whereby the datasets encoun-
tered in production can be driven through a metric process to assess divergence from the original
data and subsequent data for retraining, allowing for reliable machine learning solutions that scale.
For a parallel computing approach, we would consider federated learning, as referenced previously,
where you can train the GAN on subsets of the data and can combine the models following training.

9 CONCLUSION

This article reviews a niche but growing use of GANs for time series data based mainly around
architectural evolution and loss function variants. We see that each GAN provides application-
specific performance and does not necessarily generalise well to other applications—for example,
a GAN for generating high-quality physiological time series may not produce high-fidelity audio
due to some limitation imposed by the architecture or loss function. A detailed review of the appli-
cations of time series GANs to real-world problems has been provided, along with their datasets
and the evaluation metrics used for each domain. As stated in the work of Wang et al. [100], GAN-
related research for time series lags that of computer vision both in terms of performance and
defined rules for generalization of models. This review has highlighted the open challenges in this
area and offers directions for future work and technological innovation, particularly for those GAN
aspects related to evaluation, privacy, and decentralized learning.
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