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Abstract 

Despite increased demand for cleaner fuel alternatives such as ethanol in recent 

decades, portfolio weight allocation has become challenging due to the complex interlinkage 

among crude, ethanol and soft agricultural commodities that form part of the value chain. As a 

result, portfolio returns face three trade-offs in terms of risk: dispersion across mean, risk 

arising due to market interconnectedness, and risk arising due to global shocks for assets 

sharing common macroeconomic fundamentals. This study proposes an optimal weight 

allocation portfolio strategy, encapsulating the three risk measures and returns, estimated using 

state-of-the-art multi-objective elitist Non-Dominated Sorting Algorithm II (NSGA-II). Our 

proposed strategy performs well for newly constituted objectives against the Markowitz Mean-

Variance approach and Global Minimum Variance. A balanced diversification escapes the 

feedback spillover loop trap at the same time. Our results indicate that soybean oil, sugar, and 

rice offer a better reward to risk, aiding portfolio immunisation to extreme market movements. 

Furthermore, using GJR-GARCH volatility to capture the volatility asymmetry effect, the 

Generalized Forecast Variance Decomposition (GFVED) shows the existence of a strong triplet 

pair Crude-Ethanol-Soybean as a breeding ground for the feedback effect to occur. Moreover, 

replacing crude weight with ethanol depicts a fall in spillover risk up to a threshold of 30% 

Ethanol weight, after which the feedback effect kicks in. 
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1. Introduction 

Over the last two decades, the interaction of crude oil with its substitutes, such as 

ethanol, has evolved and become more complex (Natanelov et al., 2011). Apart from the 

petrodollar connection (Coudert and Mignon, 2016), technological advancement has resulted 

in using agricultural commodities in the production of biofuel substitutes, such as ethanol and 

biodiesel (Fernandez-Perez et al., 2016) that are part of the value chain (Zhang et al., 2009; 

Coudert and Mignon, 2016). Nevertheless, at the same time, commodities sharing 

macroeconomic fundamentals are vulnerable to extreme market movements due to global 

shocks exposing commodity investors to interconnectedness risks. Thus, this research aims to 

address the risk of complex market interlinkage between crude, ethanol, and soft agricultural 

commodities. We do this by segregating the three types of risks these commodities are exposed 

to (i) dispersion across the mean, (ii) risk arising due to market interconnectedness and (iii) risk 

associated with common global shock due to shared macroeconomic fundamentals.1 The 

segregation of these three risk measures aids in addressing factors contributing to tail risk and 

further enables us to suggest an optimal portfolio balance to maximise reward to risk.  

The inherent fundamental factors like carriage costs, stock of the commodity, and 

expected prices asserted by the rational expectation competitive storage theory primarily drive 

the agriculture commodity prices (Deaton, and Larowue, 1995; Rapsomanikis et al., 2003; 

Ahti, 2009). However, the use of ethanol (produced from corn or sugar) and biodiesel 

(produced from rapeseed oil and palm oil) as a cleaner alternative to crude has resulted in 

agricultural commodity price interconnection with crude prices (Chang et al., 2018). The 

substitution effect explains the interconnections among the fuel prices, i.e., crude and cleaner 

alternatives such as ethanol (Ji and Fan, 2012). In this regard, Natanelov et al. (2011) 

highlighted that the change in energy policy, which induced ethanol’s market growth, impacted 

the co-movement of crude oil and agricultural commodities.  

The increased interdependence between crude and agricultural commodities has raised 

concern for policymakers (Mensi et al., 2014) and investors. The economic interdependence 

between crude, ethanol, and soft agricultural commodities exposed to common macroeconomic 

shocks undermines the benefits of portfolio diversification. Moreover, events such as the 

Global financial crisis (GFC) (2008), Eurozone sovereign debt crisis (2010), and the Covid-19 

 
1 Noteworthy, empirical standard measures of the risk of the three types exist, i.e., variance for dispersion across 

the mean, Spillover Index by Diebold and Yilmaz (2012) to measure risk due to market interconnectedness, and 

COVOL measure by Engle and Campos-Martins (2022) to measure risk due to global shock exists. 
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pandemic (2019) have jolted the commodity market, wiping away investors’ surplus 

accumulated over time. During such distress events, the feedback loops serve as sinkholes for 

systemic risk intensification, increasing extreme market movements. While deviation from the 

mean and interconnectedness are responsible for fatter tails owing to persistent spillover over 

time, a measure of sensitivity to common global shock can be attributed to the spike in tail due 

to a sudden market spurt.  

Value at risk (VaR), Copula-based Approach, etc., the portfolio risk mitigation 

methods, primarily related to the tail risk, are responsive to assumptions on data distributions, 

which seldom deviate and hence are criticised. However, these methods use the historical 

occurrence of extreme events as given and therefore safeguard the portfolio position based on 

past experiences. On the other hand, incorporating systemic risk and COVOL measures aids 

investors in examining factors contributing to fatter tails on a pairwise and systemic basis. It is 

challenging to encapsulate the three risk measures, viz. dispersion across the mean, risk due to 

interconnectedness, and sensitivity to global shocks while retaining the essence of these 

measures. As a result, certain studies circumventing minimum spillover portfolio weight 

allocation are gaining popularity (Kumar and Singh, 2022; Do and Linh 2022; Jiang et al. 

2019). Nevertheless, treating variance and spillover as separate risk measures needs 

improvisation.  

In this manuscript, we aim to showcase the need for factoring the three risk measures 

separately in the portfolio construction along with the expected return. We further show the 

proposed portfolio’s efficacy via cross-comparison with the Markowitz Mean-Variance 

approach (1952) and Global Minimum variance. Conceptually, the proposed portfolio strategy 

illustrates the evasion of feedback loops by minimal weight allocation to assets constituting the 

triplet pair for the loop to form. VAR based interconnectedness approach, as a proxy of 

systemic risk, are comprehensive and therefore have an advantage over traditional methods 

such as Johnson cointegration and DCC GARCH. Thus, we follow Diebold & Yilmaz (2012) 

to capture the systemic risk, an industry-standard spillover estimation measure based on 

interconnectedness. Importantly, volatility spillover quantified daily returns give equal weight 

to positive adverse shocks. However, during times of distress, the persistence of volatility spike 

is observed more frequently; thus, the conditional mean behaves differently to positive and 

negative shock (Glosten et al., 1993; Nelson, 1991; Engle and Ng, 1993). Thus, spillover-based 

measures must account for this asymmetry; the estimation may be understated, especially in 

times of distress, contributing adversely to the tail risk. Asymmetric volatility could be 
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attributed to the volatility feedback effect driven by time-varying risk premium (French et al., 

1987; Campbell and Hentschel, 1992). However, this assertion is based on the assumption that 

high volatility remains persistent. However, financial markets are exposed to large shocks 

triggering breakage of the consistency invariance, thus challenging the assumption of volatility 

persistence. Thus, the GARCH model chosen should account for the structural break 

(Hillebrand, 2008). We use the GJR-GARCH that incorporates asymmetricity by behaving 

differently for positive and negative shocks while managing the volatility persistence to 

account for the volatility feedback.  

We estimate the COVOL as a risk measure for common global shocks after fitting a 

single index model with the real food price index as a factor explaining price volatility in crude, 

ethanol, and agri commodities. Since the research proposes a portfolio management approach 

encapsulating variance along with systemic risk and COVOL, we use standard estimation 

procedures.2 As a result, there is no loss of generality with the application of this portfolio 

management strategy. Notably, substituting crude weight with ethanol changes the systemic 

risk dynamics and the portfolio’s performance, as the other two risk measures are not invariant 

of the crude weight. Hence, the proposed portfolio strategy should bring the optimum balance 

amid the three risk measures. However, non-linear linkage dynamics increase the complexity 

to optimise the weights (Cheng and Cao, 2019). Thus, incorporating all three measures while 

framing portfolio objectives makes the portfolio management process more scientific.  

For our study, the variables of interest are crude, soft agri-commodities, and ethanol 

(the cleaner alternatives of crude). Since the trading of biodiesel started only recently, i.e., in 

2015 and due to insufficient data for a comparative study, we chose ethanol as the only 

substitute for crude for this study. Therefore, this study comparatively analyses the evolution 

of spillover dynamics post-induction of ethanol, i.e., July 2007. Our research factors in soft 

commodities such as corn, wheat, sugar, soybean, soy oil, palm, rapeseed, and rice that are 

gaining importance as raw material inputs for ethanol production. Thus, we contribute to the 

Crude-Ethanol-Commodity linkage study by identifying the feedback loops as the source for 

the intensification of systemic risk via triplet pairs. We provide insights into the impact on the 

dynamic linkage of Crude-Ethanol-Soft Agri Commodities due to the substitution of Crude 

weight with ethanol in investor’s portfolio. Finally, we propose a portfolio management 

 
2 However, we acknowledge that improvisations with other spillover estimation measures can be used to reflect 

systemic risk better. Likewise, COVOL, as a measure of common global shock, being a market-based measure, 

can be replaced with other measures of common global shocks. 
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strategy with encapsulation of three risk measures viz. dispersion across mean, systemic risk 

arising due to market interconnectedness, and risk associated with common global shock due 

to shared macro-economic fundamentals. 

The remainder of the paper is outlined as follows: Section 2 reviews the contemporary 

literature concerning our topic. Section 3 deals with the research design, followed by the 

discussion of results in Section 4. In the last section, we provide conclusions with suggestions 

to policymakers and investors. 

2. Literature Review 

In the last two decades, many studies have been conducted to determine fossil fuel’s 

substitution effect, which leads to its linkage with biofuel and soft commodities. However, 

studies exploring the substitution effect of fossil fuel leading to the cross-asset linkage of crude, 

biofuel, and soft commodities and the feedback effect of the same are rare. These studies can 

be classified by time as pre and post-renewable fuel policy implementations. Few of the studies 

have focused on finding the short & long-term co-movement between these indices, and few 

others focused on directional causalities & volatility spillover amongst them (Busse et al., 

2011; Liu, 2014; Serra et al., 2011; Trujillo-Barrera et al., 2012; Nazlioglu et al., 2013).  

Natanelov et al. (2011) studied the co-movement of crude oil futures with agricultural 

commodities for mature markets. In the context of biofuel, they found that when crude price 

exceeds a certain threshold, biofuel policy has buffered the co-movement of agri-commodities 

such as corn and soybean with crude. Additionally, they stressed the importance of 

understanding the dynamics of crude and agri-commodities to aid policymaking. Some 

researchers worked on using biofuels in tandem with crude and Agri commodity prices. For 

example, Du et al. (2011) find strong evidence of volatility spillover amongst the wheat, corn, 

and crude post-2006. The spillover linkage was attributed to the usage of corn and wheat for 

ethanol production instead of rising crude prices. Thus, the intense price shocks have triggered 

volatility in wheat and corn. Chang and Su (2010) deployed a bivariate EGARCH model to 

explore the usage of biofuels such as ethanol as a substitute for crude in times of high and low 

oil prices. The study finds the substitution effect during higher oil prices. The effect resulted 

from price spillover from crude to commodities such as corn and soybean futures amid rising 

crude prices. 
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Antonakakis et al. (2018), Broadstock et al. (2022), Khalfaoui et al. (2019) propose 

measures to mitigate systemic risk exposure of investors in asset-cross linkages. The systemic 

risk minimisation approach concentrates on the tail risk, a shift in how risk minimisation 

happens for fat tails. This proactive approach targets the factors contributing to tail risk (as 

against responsive approaches). At the same time, systemic risk measures are intensifying due 

to risk transgression via market interconnectedness due to exposure to the common global 

shock “COVOL” Engle and Campos-Martins (2022). Though different sensitivity measures of 

common global shocks exist, Baker et al. (2016) and Caldara and Iacoviello (2022) use 

macroeconomic news announcements to quantify the risk arising from common global shocks. 

Nevertheless, market practitioners appreciate market-based measures. Building on the 

idiosyncratic correlated volatilities, Herskovic et al. (2016) and Engle and Campos-Martins 

(2022) propose COVOL, exploiting the correlation existing in the error residuals to be 

attributed to the risk associated with common global shocks. Notably, the existence of feedback 

loops leads to the intensification of systemic risk in the system (Singh et al., 2019). Since only 

a proportion of risk arising due to COVOL is reflected in estimated systemic risk, ignorance of 

COVOL while framing a portfolio management strategy could be problematic. 

The current study gives a new dimension to the work of Chiu et al. (2016) and Paris 

(2018) from an investor’s perspective while constituting a portfolio with the existence of a 

multi-directional feedback effect amongst fossil fuel and agricultural commodities. 

Furthermore, spillover intensification has been studied in light of risk arising due to common 

global shock by proposing a portfolio management strategy for better reward to risk. Thus, the 

research via crude, ethanol and commodity linkage dynamics intends for a paradigm shift in 

defining the risk a portfolio is exposed to while framing a portfolio management strategy. It 

treats the three risk exposures: dispersion across the mean, risk arising due to 

interconnectedness, and risk arising due to global shocks. 

3. Research Design 

As part of the empirical strategy, we employ three methodologies, viz. Sensitivity to 

global shocks, estimation of systemic risk, and portfolio weight allocation to minimise 

variance, systemic risk, and risk arising due to common global shocks. 

3.1 Sensitivity to Global Shocks 

The estimation involves fitting a single index model for each commodity, with the Real 

Food Price Index as the explanatory variable. We source the data  from the Food and 
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Agricultural Organization of the United Nations. Additionally, we undertake an autoregressive 

process to account for historical information in return for discovery. For the analysis, we 

include crude oil, soft commodities (wheat, corn, rice), and oil seeds (soybean, rapeseed, sugar, 

crude palm oil, and soybean oil). The commodities data is obtained from the Bloomberg 

database. The Bloomberg codes used are CL1 Comdty for WTI Crude Oil, ETHNCHIC index 

for Ethanol, C 1 Comdty for Corn, KO1 Comdty for Crude Palm Oil, IJ1 Comdty for Rapeseed, 

RR1 Comdty for Rice, BO1 Comdty for Soybean oil, S 1 Comdty for Soybean, QW1 Comdty 

for Sugar LIFFE, W 1 Comdty for Wheat. The ethanol trading data obtained from the Chicago 

Exchange Argo Ethanol data starts from February 2007 as the trading began only in late 

February 2007. The monthly periodic sample spans several significant financial and 

commodity market high volatile episodes. 

Figure 1 displays the time series plot of prices and the return of crude oil and soft 

commodities. We observe that in the post-2008 crisis, prices of all commodities remained 

highly volatile. The WTI crude oil price rose significantly in 2006-07 and the first half of 2008 

to almost USD 143 per barrel. Contemporaneously price rise is observed amongst soft 

commodities, such as corn, wheat, and rice; prices rose sharply between 2007 and 2008. 

However, after peaking in 2008, prices fell sharply in the late-2009 due to the global recession. 

The prices rose again in 2011 and 2012 post-recession. Over the following years until 2016, 

prices fell again, reaching low levels similar to 2008. The contemporaneous price movement 

of crude, ethanol and soft commodities observed in the Figure 1 time-series plot indicates their 

dependence structure. 

Table 1 depicts the preliminary statistics of the variables considered for the study for 

the entire sample. Compared to crude oil and ethanol, soft commodities generally show higher 

average monthly returns but with a lower standard deviation than crude oil. For investors, it 

looks plausible to bag the commodities with a higher average monthly return per unit of risk 

estimated from variance. However, bagging the commodities sharing a significant Pearson 

correlation coefficient Table 2, of less than one would serve the Markowitz portfolio selection 

approach. However, this ignores the risk associated with the spillover effect amongst the 

commodities (Tiwari et al, 2022) and the risk associated with global events, be they political, 

economic, or related to the pandemic or climate (Nam, 2021). Hence, considering only variance 

would underestimate the importance of systemic and global risks.  
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Figure 1: Time Series Plot of Price and Return of Crude, Biofuel, and Soft Commodities 

      Note: The left axis represents daily price levels. The right axis represents return levels. 
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Table 1: Descriptive Statistics of Crude Oil, Soft Commodities and Ethanol 

  mean sd min max skew kurtosis ADF-Test 

Crude 0.00135 0.12186 -0.78187 0.63327 -0.96122 11.64173 -7.74287 

Ethanol 0.00063 0.1301 -0.57108 0.55057 -0.28729 4.73659 -9.46799 

Corn 0.00249 0.09277 -0.30838 0.27115 -0.3705 0.7755 -7.34414 

Palm Oil 0.00135 0.09671 -0.31295 0.28122 -0.24996 0.49714 -6.43777 

Rapeseed 0.00293 0.07022 -0.18911 0.20853 -0.13985 0.59195 -6.60824 

Rice 0.00277 0.0748 -0.26491 0.20074 -0.45788 1.38764 -7.52932 

Soybean Oil 0.00412 0.07614 -0.28052 0.25747 -0.14125 2.01119 -6.84074 

Soybean 0.00304 0.07435 -0.24266 0.17747 -0.5415 0.60803 -7.9072 

Sugar 0.00247 0.06881 -0.28455 0.18154 -0.15835 0.95052 -8.60775 

Wheat 0.00355 0.09671 -0.29099 0.35301 0.0823 0.77038 -8.68671 

 

Table 2: Unconditional Correlation Statistics of Crude Oil and Soft Commodities (Full Sample)  

  Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat 

Crude -          

Ethanol 0.259***          

Corn 0.233** 0.366***         

Palm Oil 0.289*** 0.074 0.322***        

Rapeseed 0.349*** 0.180* 0.482*** 0.481***       

Rice 0.046 0.254*** 0.377*** 0.115 0.168*      

Soybean Oil 0.422*** 0.199** 0.529*** 0.711*** 0.640*** 0.185*     

Soybean 0.275*** 0.240*** 0.633*** 0.480*** 0.563*** 0.275*** 0.701***    

Sugar 0.204** 0.163* 0.263*** 0.204** 0.260*** 0.088 0.276*** 0.285***   

Wheat 0.09 0.265*** 0.603*** 0.326*** 0.513*** 0.327*** 0.418*** 0.515*** 0.186* - 

Computed correlation used Pearson-method with listwise-deletion. 
Note: All correlation coefficients are significant at 5% 
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Table 2 shows a significant correlation coefficient between crude and soft commodities. 

Ethanol, too, shows a significant correlation with crude and soft commodities. The univariate 

linear dependence ascertains further multivariate exploration of crude, soft commodity, and 

ethanol. For tracking the trending behaviours of commodities, the time series (level and log 

return) is checked for (no) stationarity using the unit root test Augmented Dickey-Fuller test 

(ADF). The ADF test rejects the null hypothesis at 1%, thus implying the time series to be I(0). 

The correlation matrix does not provide information on how these commodity indices interact 

in a system. 

3.1.1 Methodology to Capture Sensitivity as an indicator of Common Global Shock 

Here the approach is based on the COVOL measure proposed by Engle and Campos-

Martins (2022). The approach attributes to factor analysis of the unexplained variance after 

fitting a single index model. For our analysis, we have taken the Real Food Price index (RFP) 

as an explanatory variable for the single index model, as shown in equation (1). 

Step 1: ∆lnCi = ∆lnRFP + 𝜀𝑖 (1) 

Where Ci represents the commodities considered for the study. Next, we check the existence of 

the ARCH effect in the residuals of the conditional mean model. For this, we first estimate an 

autoregressive process on the residuals of the Single Index model and then check for the ARCH 

effect. Affirmative volatility persistence leads to fitting a suitable GARCH model. For 

homogeneity, GARCH (1,1) model has been fit. The leftover erroneous terms after GARCH 

estimation are attributed to common global shocks, provided the correlation of the squared 

residuals differs significantly from zero. It is to be noted here that the correlation amongst the 

squared residuals is attributed to the shocks arising from a common global event impacting the 

commodity. 

Mathematical deduction: 

Step 2:  GARCH(1,1) estimation 

𝜀𝑖𝑡  = eit 𝝈it (2.a) 

𝜎𝑖𝑡
2  = 𝝎i + 𝞪i1 𝜀𝑖𝑡−1

2
 + 𝞫it 𝜎𝑖𝑡−1

2  (2.b) 

Step 3:  COVOL estimation 

The error term after the GARCH(1,1) fit is assumed to follow the equation (3.a) 
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eit = √𝑔(𝑠𝑖𝑥𝑡) 𝝽it ; g = si xt +1 - si (3.a) 

After that, we deduct the covariance estimator of the residuals from the following 

specifications: 

𝜳t = 
1

𝑇
 [ 𝐸 ∑ 𝑒𝑡

2𝑒𝑡
2′𝑇

𝑡=1  ]  => 
1

𝑇
 ∑ 𝛹𝑡 

𝑇
𝑡=1  = ss`𝝼 + D (3.b) 

D = diag{2𝑠𝑖
2 + 2} (3.c) 

Where “s” reflects the factor loadings after the Principal Component Analysis (PCA) 

estimation performed on the residuals of the GARCH(1,1) estimation. Further, we also perform 

a z-test to check the correlation amid the residuals of GARCH fit differs significantly from 

zero.  

3.2 Estimation of Systemic Risk 

We use the standard Diebold and Yilmaz (2008) connectedness-based Spillover index 

to estimate the systemic risk between the commodities. We compute the Spillover index on the 

GJR-GARCH volatility.  

3.2.2 Estimation of GJR-GARCH Volatility Parameters   

The initial step involves estimating GJR-GARCH volatility, followed by Spillover 

estimation. The GJR-GARCH volatility of Glosten et al. (1993) has been used on each time 

series under consideration to capture the asymmetric volatility. The mathematical formulation 

for the GJR-GARCH (1,1) is as follows. 

𝜎𝑡
2 = 𝝎 + 𝛼1 𝜂𝑡−1

2 + 𝛼2 𝐼𝑡−1 𝜂𝑡−1
2 + β 𝜎𝑡−1

2 (4) 

Where,  𝜎𝑡  is the forecasted conditional standard deviation, 𝝎 is the intercept for the 

equation, 𝛼1 𝜂𝑡−1
2   is the previous residuals,  𝛼2 𝐼𝑡−1  is the dummy variable to account for 

negative shocks. GJR-GARCH volatility helps capture the leverage effect by setting different 

equations based on past residual behaviour (Asgharian, 2016). Thus, negative shocks induce a 

much higher variance captured by GJR-GARCH. A high magnitude of negative persistence 

shock will aid in better capturing spillover during distress. Moreover, the persistence of 

negative shocks aids in observing the volatility feedback effect (Bollerslev et al., 2006).   

3.2.3 Connectedness using Standard Diebold & Yilmaz (2012) Spillover Index (D&Y) 

One of the VAR model characteristics is variance error decomposition, which 

distributes the share of variance amongst the variables fitted in the VAR model. Generalised 
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Forecast Error Variance Decompositions (GFEVD) are invariant of the ordering of the variable. 

The GFEVD-based connectedness approach is computationally feasible with a closed-form 

solution; hence system-wide connectedness assessment is feasible without the curse of 

dimensionality. Moreover, since the logarithmic returns are I(0), it satisfies the VAR model 

assumptions of the stationary data series. 

Using the GFEVD, Diebold and Yilmaz (2012) derived a set of connectedness measures 

and deployed them to different levels of granularity from pairwise to system-wide. In Diebold 

and Yilmaz (2012), the pairwise connectedness values, i.e., off-diagonal elements, demonstrate 

how much average shock variance each system entity contributes to all the other entities. 

Further, the summation of all H-step ahead forecast error variance terms of the pairwise sets is 

computed as per the equations (5.a-5.d) below to showcase “From,” “TO,” “NET,” and 

“TOTAL” connectedness values (for details, please see Diebold and Yilmaz, 2012) 

 

𝐶𝐹𝑅𝑂𝑀(𝑖←∎)(𝐻) =
∑ 𝜗̃𝑖𝑗

𝑔
 (𝐻)𝑁

𝑗=1 𝑖≠𝑗

∑ 𝜗̃𝑖𝑗
𝑔

 (𝐻)𝑁
𝑖,𝑗=1

 × 100 =  
∑ 𝜗̃𝑖𝑗

𝑔
 (𝐻)𝑁

𝑗=1 𝑖≠𝑗

𝑁
 × 100 

(5.a) 

 

 

𝐶𝑇0 (∎←𝑖)(𝐻) =
∑ 𝜗̃𝑗𝑖

𝑔
 (𝐻)𝑁

𝑗=1 𝑖≠𝑗

∑ 𝜗̃𝑗𝑖
𝑔

 (𝐻)𝑁
𝑖,𝑗=1

 × 100 =  
∑ 𝜗̃𝑗𝑖

𝑔
 (𝐻)𝑁

𝑗=1 𝑖≠𝑗

𝑁
 × 100 

(5.b) 

 

 

𝐶𝑖 (𝑁𝐸𝑇)(𝐻) = 𝐶∎←𝑖(𝐻) − 𝐶𝑖←∎(𝐻) (5.c) 

 

𝐶𝑇𝑂𝑇𝐴𝐿(𝐻) =
∑ 𝜗̃𝑖𝑗

𝑔
 (𝐻)𝑁

𝑖,𝑗=1 𝑖≠𝑗

∑ 𝜗̃𝑖𝑗
𝑔

 (𝐻)𝑁
𝑖,𝑗=1

=
∑ 𝜗̃𝑖𝑗

𝑔
 (𝐻)𝑁

𝑖,𝑗=1 𝑖≠𝑗

𝑁
 

(5.d) 

The connectedness concept is built from pieces of rolling variance decompositions to track the 

directional connectedness in real-time. The connectedness measure based on the standard D&Y 

Spillover index suffers shortcomings with data insufficiency. This is especially true when 

dealing with macroeconomic data, which are limited in their periodicity. Time-varying 

parameter VAR (TVP-VAR) (Antonakakis and Gabauer, 2017) is an extension to the GFEVD 

by Diebold & Yilmaz (2012) to help resolve this issue. We use Minnesota prior to capturing 

time-varying error decomposition parameters serving as spillover estimation on a pairwise 

basis. 
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4. Results 

We systematically present our empirical analysis. The first subsection presents the 

“COVOL” analyses as an indicator of risk to common global shocks. Next, we present the 

analyses of the systemic risk utilising network diagrams. The third section explores the 

dynamic linkage of crude-ethanol and soft agri commodities by substituting crude with ethanol 

and vice versa. We follow this with the section where we propose a strategy for portfolio weight 

allocation incorporating measures related to risk, viz. standard deviation, COVOL, and 

systemic risk from historical information. Finally, we conclude the empirical analysis with a 

cross-comparison of the proposed portfolio weight allocation strategy with the Markowitz 

Mean-Variance approach and Global Minimum Variance Portfolio. 

4.1 Analysis of COVOL 

The estimation initially requires fitting a Single Index model, with RFP Index as an 

explanatory variable. Table 3 provides the output of the OLS estimates for the model. As 

observed, the RFP Index is a highly significant explanatory variable for all commodities, which 

is in line with the studies related to food price volatility owing to speculation in the commodity 

market (Gilbert and Morgan, 2010). In the same study, Gilbet and Morgan (2010) find rice to 

be less associated with food grains such as wheat along with soybean. As a result, the RFP 

Index gets shaped by the aggregation of agricultural commodities and has less influence on rice 

than other commodities. On the other hand, the influence on crude is supported by the 

import/export angle giving rise to the petrodollar connection. Increased volatility in food prices 

will transmit to crude price fluctuations via dollar movement. 

Though the RFP Index explains a portion of the volatility in commodity prices, some 

information remains encapsulated in historical data that can be exploited for price discovery. 

Thus, we aim to explore the volatility persistence in the residuals after fitting the factor model 

for the presence of the ARCH effect. As a result, after fitting the conditional mean equation 

with an AR(1) process, we perform the ARCH – LM test on the residuals. Appendix Table A2, 

displays the choice of lag 1 for the AR process based on Akaike Information criteria. 

Noteworthy, though, for certain commodities, different lags have the lowest AIC; however, to 

maintain homogeneity, the lag order with the maximum frequency of the lowest AIC is chosen. 

Post-fitting the AR process on each commodity, we check for the ARCH effect by Lagrange 

Multiplier test up to lag order 4. As we can observe from appendix Table A2 that all the 

commodities residual after fitting the conditional mean equation show the ARCH effect.  
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Table 3: Factor Model Regression Output 

  Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

RFP Index  1.342*** 1.069*** 1.011*** 1.109*** 0.972*** 0.293* 0.913*** 0.873*** 0.674*** 0.882*** 

  -0.266 -0.293 -0.203 -0.21 -0.147 -0.173 -0.164 -0.161 -0.153 -0.216 

            

Number of observations  187 187 187 187 187 187 187 187 187 187 

R2  0.12 0.067 0.118 0.13 0.19 0.015 0.142 0.137 0.095 0.082 

Adjusted R2  0.115 0.062 0.113 0.126 0.185 0.01 0.137 0.132 0.09 0.077 

Residual Std. Error (df =186)  0.114 0.126 0.087 0.09 0.063 0.074 0.071 0.069 0.066 0.093 

            

F Statistic (df = 1; 186)  25.411*** 13.340*** 24.776*** 27.900*** 43.539*** 2.878* 30.801*** 29.407*** 19.544*** 16.708*** 

 
***Significant at the 1% level, **Significant at the 5% level, *Significant at the 10% level      
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Thus, we proceed with fitting a GARCH(1,1) model. It is also to be noted that student – t 

distribution has been chosen for fitting individual GARCH processes as the residuals of the 

Single Index model lack normality appendix Table A2. Attributing the significant correlation 

amongst the standardised square residuals post-fitting GARCH process appendix Table A1, to 

common global shocks, we opt to fit the COVOL model proposed by Engle and Campos-

Martins (2022). Notably, crude shares a highly significant correlation with ethanol, which 

indicates synchronisation of sensitivity to global shocks. Thus, we observe that apart from 

sharing a significant correlation with ethanol in the return series Table 2, it also shares an 

interrelationship while responding to global shocks appendix table A1. 

Fig. 2 shows the temporal movement of combined sensitivity to global shocks of the 

commodities. By construction, the sensitivity to global shocks for commodities is in sync after 

extracting the return explained by the RFP index. As we can observe, the pandemic era 2019-

21 marks the time frame with the highest sensitivity owing to the complete lockdown and 

disruption of the financial markets. The sensitivity during the covid era surpasses episodes of 

economic downturns such as the GFC 2008, the Eurozone sovereign debt crisis 2010-11, 

Chinese Slowdown 2014-15 by a large margin. Notably, spikes are only observed for the time 

frames for which an economic/political/pandemic event happens with a global outreach to 

impact financial markets. However, the commodity faced much more backlash during Covid-

19 than any financial downturn, as evident from Fig. 2. The recent Russian aggression on 

Ukraine, yet another event with global repercussions, has resulted in a rise in combined 

sensitivity mid-2022.  

Fig. 3 depicts a synchronisation of the rise and fall in COVOL across the time frame. 

Though the sensitivities of some of the commodities differ, they tend to rise and fall together 

with the occurrence of global events. Since COVOL is not commodity specific and somewhat 

tied to the severity of the global event to affect financial markets, the behavioural trend rightly 

reflects the temporal movement of commodities to be in sync. However, investors need to be 

wary of sensitivity to global shocks while allocating weights during distress years.  

Fig. 4 shows the asymmetry amongst commodities regarding the two risk measures 

estimated so far. The basic measure is based on variance, i.e., standard deviation and risk 

associated with global events estimated via COVOL. Rapeseed, corn, soybean, etc., offer much 

lower standard deviation than crude, yet their sensitivity to global shock supersedes that of 

crude. Hence, the trade-off between the two risk measures has to be factored in to mitigate the 



 

16 

 

exposure to global shocks and market risk. An important observation is that the sensitivity of 

crude to global shocks is comparatively lower than the soft commodities in general. Barring 

sugar, all the commodities, including ethanol, surpass crude in terms of COVOL loadings. 

Corn, followed by ethanol, shows extreme sensitivity to global shocks. Previous studies have 

explored the causal linkage amongst the commodities; however, research on the impact of 

general macroeconomic conditions shaping commodities return is limited (Serra and Gil, 2013; 

Bouri et al. 2020). 

Apart from the risk associated with global events and market co-movement, the 

contagion effect is also prominent amongst the commodities. Past research has found 

significant spillovers among them. For instance, see Gomez-Gonzalez et al. (2022), Ameur et 

al. (2021), and Just et al. (2022). Though these studies differ in methodological perspective, 

the research rests on the need for policymakers and portfolio managers to account for systemic 

risk while portfolio formation. Moreover, the researchers have found spillover intensification 

amid years of distress. During the same time frames, the sensitivity to global shocks has 

intensified. Thus, bagging assets in the portfolio and weight allocation involves consideration 

of these risks viz. “variance risk,” “COVOL risk,” and “spillover risk.” The following section 

explores the systemic risk estimation based on the connectedness measure. 

 

Figure 2: Average combined Sensitivity to global shock across the time frame 
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Figure 3: COVOL - Commodity wise across the time frame 

               

 

Figure 4: Average COVOL and Standard Deviation for the full sample 

 

4.2 Analysis of Systemic Risk 

The analysis estimates average connectedness as a measure of systemic risk using the 

standard Diebold & Yilmaz Spillover Index (2012). Noteworthy, the spillover estimation has 

been done on the estimated GJR-GARCH volatility for each time series. Table 4 provides the 

average connectedness among the crude, ethanol, and soft commodities. The diagonal elements 

of the matrix depict the variance in volatility explained by the self. In contrast, the off-diagonal 

elements compute the variance contributed by others and displays the pairwise directional 

connectedness. The difference between two directional connectedness for a pair thus computes 

the net directional connectedness and decides the direction of connectedness. For each variable, 

the second last row computes the net spillover sent by the variable in the system, coined as 

“TO” connectedness. At the same time, the last column of the matrix computes the net spillover 
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received by the variable from all others, coined as “FROM” connectedness. The last row 

calculates the difference between the “TO” and “FROM” connectedness value for each variable 

to determine whether it is a net transmitter of shock in the system or a net receiver. The last 

row’s last column value, an average of all the “FROM” or “TO” connectedness, computes the 

“TOTAL” connectedness of the system.  

As we can observe from Table 4, on average, the total connectedness amongst the crude, 

ethanol and soft commodities is strong enough to reflect the intensity of system-wide systemic 

risk. The “Total” connectedness measure stands close to 60%. It implies the importance of 

systemic risk to be factored in when constituting a portfolio comprising crude, ethanol, and soft 

agri commodities. Nevertheless, at the same time, each commodity’s contribution to systemic 

risk varies system-wide and pairwise, as we can observe that soft commodities viz. soybean 

oil, rapeseed, and palm oil, are net transmitters of shock in the system. Crude and ethanol are 

net receptors, with ethanol being the primary receptor.  

Though crude offers moderate COVOL  and spillover reception, the variance stays high 

as shown in Fig. 4. Thus, a trade-off emerges between the estimated risk measures, viz. 

variance, COVOL, and spillover. Compared to COVOL, the systemic risk measure is 

somewhat complex and shares the same structure as the covariance matrix, where the off-

diagonal elements reflect the spillover. Hence, pairwise analysis deems necessary to explore 

the spillover interaction. To address the multidimensional pairwise structure, we utilise 

network diagrams shown in Fig. 5. For segregation of the strength of the pairwise net 

directional relationship, edges have been imparted thickness, weighted on the pairwise 

directional connectedness amongst the variables based on quantiles. The color codes have been 

incorporated with “red,” showing spillover of the highest intensity followed by “blue” and 

“green  .” Within the same color code, segregation has been done based on the thickness of the 

edge, which is based on the value of directional spillover connectedness. The color code has 

been based on the quartile division of the net pairwise directional connectedness values. Red 

color depicts values greater than the third quartile, blue between the second to the third quartile, 

and green for less than the second quartile. Nodes on the same lines have been segregated as 

net transmitter and net receptor based on net spillover as {TO – FROM}, see Table 4. However, 

size allocation is based on absolute net spillover with the third quartile as base 100. The 

transmitter and receiver have two further segregations for colour: moderate and strong 

transmitter/receptor. 
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Table 4: Static Connectedness Matrix of Crude, Ethanol, and Soft Commodities 

 Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat FROM 

Crude 55.82 4.51 2.29 9.73 8.28 0.53 10.75 4.6 1.69 1.79 44.18 

Ethanol 7.32 33.74 7.12 8.53 14.13 2.95 15.72 5.12 3.02 2.36 66.26 

Corn 0.3 3.91 43.44 1.18 6.5 2.92 9.95 16.28 3.64 11.88 56.56 

Palm Oil 4.17 0.41 3.32 43.46 16.26 0.37 19.72 7.1 1.48 3.72 56.54 

Rapeseed 4.03 1.29 5.47 20.6 33.46 0.69 16.46 7.78 1.13 9.08 66.54 

Rice 2.21 4 9.43 2.6 4.13 59.53 2.98 5.95 1.4 7.78 40.47 

Soybean Oil 4.91 1.07 7.93 19.72 18.53 0.6 28.72 12.24 1.7 4.57 71.28 

Soybean 1.85 2.12 12.69 11.11 12.7 2.81 15.7 30.42 2.15 8.45 69.58 

Sugar 1.62 1.3 5.6 9 5.21 1.16 8.43 6.82 58.93 1.94 41.07 

Wheat 1.6 1.99 10.76 9.24 16.21 4.37 10.04 10.23 1.09 34.49 65.51 

TO 28.01 20.6 64.6 91.71 101.94 16.4 109.75 76.1 17.31 51.56 Total 

NET -16.17 -45.66 8.04 35.17 35.41 -24.1 38.47 6.52 -23.8 -13.95 57.8 
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The spillover relationship observed amongst agricultural commodities apart from cross-

asset investment bears an economic linkage too. One linkage arises due to soft commodities 

being close substitutes, such as wheat and corn, while some form part of the value chain, such 

as soy oil extracted from the soybean. On the other hand, the spillover relationship with crude 

traces its routes to the petrodollar connection, as the trade of commodities is primarily settled 

in US dollars. Thus, the demand for a particular soft commodity shapes the price dynamics of 

the commodity itself and is also reflected in the crude prices (Singh et al., 2019; Dahl et al., 

2020). In contrast, the relationship of soft agricultural commodities with ethanol is attributed 

to two reasons. The first is that it forms part of the value chain with corn. Notably, raw input 

for ethanol production involves feedstocks, where corn is the leading crop to serve as feedstock 

for ethanol production. From Fig. 5, we can observe a spillover from corn to ethanol. 

Significantly, starch and sugar-based feedstocks aid large-scale ethanol production 

economically. Brazil’s ethanol production is led by sugarcane molasses (Wheals et al, 1999). 

Lately, wheat and soybean have served as feedstock for ethanol production. On the other hand, 

the second reason is that rapeseed oil provides excellent blending material in ethanol 

production (Mazanov et al., 2016). Thus we can observe that ethanol’s economic linkage with 

soft commodities relates to the latter being a part of the value chain in ethanol production. The 

connectedness value quantifies that economic linkage is reflected in the market in the form of 

price. Demand for ethanol shapes its price, and the price of raw feedstocks is part of its value 

chain and vice versa. 

The plausible economic relationship between ethanol with crude primarily derives from 

two fundamental reasons for our study. The first is the direct relationship arising due to the 

substitution effect, where the demand for a cleaner alternative to crude, i.e., ethanol, would 

ultimately lead to a fall in demand for crude. The second is related to increased volatility in 

crude due to geopolitical events leading to ethanol being a choice by investors to bag yet 

another energy commodity in their portfolio. Besides endogenous linkage, global economic 

circumstances also shape the price and volatility of agricultural commodities. Economic events 

such as GFC, Eurozone sovereign debt crisis, the Chinese Slowdown, and the pandemic Covid 

19 are part of this time frame, where the spillover relationship intensifies quite obviously. Thus 

the intensified spillover relationship could be either due to endogenous or global factors, as we 

can observe from Fig. 5 that the net directional spillover is from Crude -> Ethanol.  

Importantly the incorporation of commodities in the spillover system makes the 

interlinkage complex, yet at the same instance, interesting features are observed. Heavy 



 

21 

 

directional spillover is observed from commodity -> crude. The same pattern is observed for 

ethanol too. Due to the emergence of indirect economic linkage amid {crude – ethanol – 

commodity}, a significant feedback effect of shock originating at crude can be observed to 

transgress across ethanol to commodity and back to crude. Thus, a multichannel shock 

propagation involving crude-ethanol-commodity is feasible apart from a bi-directional 

feedback reciprocation amid crude – ethanol. Thus, a spillover triplet emerges amongst crude 

– ethanol–commodity with economic underpinnings and empirically showcasing the feedback 

effect. Nevertheless, identifying such triplet pairs utilising the static connectedness table would 

be messy and will not aid in rapid decision-making by an investor or policymaker. Hence, the 

network diagram comes into use. As we can observe, {Crude-Ethanol-Soybean}, {Crude-

Ethanol-Rapeseed} and {Crude-Ethanol-Palm Oil} are major triplets with strong directional 

transmissions, thus providing breeding grounds for a feedback mechanism to happen. 

Furthermore, pairwise analysis of the triplet pair gives two inferences: First, which soft 

commodity pair is more connected with the crude-ethanol pair? Second, the level of 

connectedness among the triplet pair showcases an intense feedback spillover effect. The 

importance of feedback spillover routes from rerouting idiosyncratic shocks endogenous to an 

asset via market interconnectedness is noteworthy. As a result, not only the macroeconomic 

factors endogenous to an asset are essential for a fundamental analysis while investing, but also 

the market connectedness has to be considered. In the case of increased market connectedness, 

the underlying risk of fallout is underestimated if the feedback spillover arising due to 

connectedness is not factored in. To counter the feedback mechanism, an alternative could be 

replacing crude share with ethanol in a portfolio constituting crude, ethanol, and soft 

commodities. However, the strategy would mitigate the feedback propulsion provided the 

average linkage dynamics of ethanol with soft commodities subdues or remains statistically 

insignificant. Apart from that, the other two risk factors, viz. COVOL and variance come into 

play, thus making the weight allocation a complex exercise. 
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Figure 5: Network diagram based on Pairwise Net Directional Connectedness 
 

Note: Node size based on quartile division of Absolute Net Spillover; color transmitters {Net Spillover > 10 (Red) else Orange} 

receptors {Net Spillover > -20 (Yellow) else Green} ; Edge color based on Net pairwise directional connectedness (NPDC) 

{NPDC > 75% “Red”, 50% < NPDC < 75% “Blue”,  NPDC < 50% “Green} 

 

                       

4.3 Linkage Dynamics of Crude, Ethanol and Soft commodity with substitution 

To investigate the change in linkage dynamics of the soft commodities along with crude 

and ethanol, we perform sensitivity analysis with varying weights of crude and ethanol. After 

that, we randomly allocate weights to the soft commodities while maintaining the summation 

of weights for the portfolio to be unity. The portfolio weights for soft commodities are 

simulated one million times, with a spillover of the portfolio estimated for each trial. We then 

average the estimated spillovers for each ethanol-crude weight combination. Table 5 displays 

the linkage dynamics of spillover amid crude-ethanol and soft commodities. As we can observe 

from Table 5, with ethanol weight fixed, a reduction in the weight of crude leads to a fall in 

average spillover linkage with soft commodities. The pattern holds true for each fixed weight 

of ethanol. At the same time, asymmetry is observed when crude weight is fixed while ethanol 

weight varies across the scale. Thus, with fixed ethanol weight in the portfolio, crude weight 

allocation has to be low to reduce systemic risk. However, the same only holds when the weight 

of crude is static. While limiting weight allocation to ethanol would reduce the exposure to 

COVOL Fig. 4, weight allocation to crude can also be scaled to limit exposure to systemic risk. 
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Based on an investor’s risk appetite, COVOL and spillover risk can be calibrated well. Notably, 

crude and ethanol offer a low reward to risk (Table 1), and ethanol showing high sensitivity 

(Fig. 4) would be a low priority for investors. An investor, who may speculate a spurt in prices 

of these two commodities, can calibrate the weight allocation to mitigate the risk exposure to 

COVOL along with systemic risk. Notably, a low weight allocation to crude and ethanol 

already addresses the variance; hence calibration would also monitor the portfolio exposure to 

systemic risk and COVOL. 

The diagonal values of Table 5 matrix represent the weight variation for both crude and 

ethanol. Along the diagonal from left to right, a fall is observed in the spillover linkage with 

the substitution of crude by ethanol till a threshold limit of 30% ethanol weight in the portfolio. 

Hence, an upper threshold value for ethanol exists while substituting for crude, as the exposure 

to systemic risk reduction happens to a limited extent. Nevertheless, at the same time, more 

weight allocation exposes the portfolio more to COVOL (Fig. 4). Importantly, due to trio 

linkage, a possibility of feedback effect intensifying the spillover always exists. Hence, the 

substitution of crude with ethanol would reduce system spillover to an extent, after which a 

spurt in systemic risk will be observed owing to the feedback effect. Thus, on one side, static 

ethanol weight offers calibration of crude weight to limit spillover risk based on the investor’s 

risk preference and appetite. On the other hand, substituting crude with ethanol reduces 

spillover risk to a certain threshold before the feedback effect kicks in. Hence, the challenge 

lies for an investor to choose the optimal level of weight allocation in order to mitigate the 

three risk measures. Moreover, while constituting a portfolio, the return has to be weighed to 

the risk undertaken, thus adding complexity to weight allocation. 

             Table 5: Spillover Linkage with Varying weights of Crude - Ethanol 

Weights 

Ethanol 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Crude 

0.4 18.24 18.06 18.107 18.38 18.878 19.603 20.554 21.731 

0.35 16.549 16.305 16.287 16.495 16.929 17.589 18.475 19.588 

0.3 15.228 14.919 14.836 14.98 15.349 15.945 16.766 17.814 

0.25 14.276 13.903 13.756 13.834 14.139 14.67 15.427 16.41 

0.2 13.694 13.256 13.044 13.059 13.299 13.765 14.457 15.376 

0.15 13.482 12.979 12.703 12.652 12.828 13.229 13.857 14.711 

0.1 13.639 13.072 12.731 12.616 12.726 13.063 13.627 14.416 

0.05 14.166 13.534 13.128 12.948 12.995 13.267 13.766 14.49 
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4.4  Implications for Investors 

On account of the existence of the three risks, viz. market co-movement (covariance), 

the risk to global shocks (COVOL), and systemic risk (Spillover), weight allocation to portfolio 

constituting soft commodities, crude, and ethanol is complex. Factoring the three risk measures 

and returns forms a multi-objective function, which can be either addressed by scalarisation or 

pareto optimality of the multi-objective function. Notably, the allocation of weights to different 

objectives would be arbitrary and depend solely on the decision-maker. One strategy would be 

the maximisation of return and the minimisation of the three objectives. A multi-objective 

approach should involve the trade-off among each objective to pursue optimality conditions. 

We allocate random weights to a portfolio constituting crude, ethanol, and soft agri 

commodities to explore the same. We fetch portfolios constituting maximum return and 

minimum of the three risk measures using one million trials. Thereafter, return and the three 

risk measures are scaled for each portfolio. Fig. 6 Panel A showcases that maximising return 

increases all three risk measures considered in the study. However, at the same instance, the 

minima of the three risk measures are not in congruence, implying that a reduction of any risk 

measure does not result in the reduction of the rest. As a result, the first challenge is to frame 

objectives that have to be maximised or minimised. The behavior of the three risk measures 

with return maximisation is in sync, and henceforth we consider framing objectives as reward 

to risk. 

This is followed by the formulation of three objectives to reflect the reward per unit of 

risk, viz. [R/V := Portfolio Return / Portfolio Variance] , [R/Sp := Portfolio Return/Portfolio 

Spillover], [R/C := Portfolio Return/Portfolio COVOL]. Importantly, the challenge to address 

the multi-objective function can be catered to using state-of-the-art multi-objective algorithms 

such as  NSGA-II (Deb et al., 2002). Nevertheless, the possibility of numerous pareto optimal 

solutions remains. Further, the trade-off between the three risk measures has to be ascertained 

before proceeding with multi-objective optimisation. The convexity should bring forward the 

plausible weights to the soft commodities along with crude and ethanol. Importantly, the three 

objective measures are on different scales; hence for trade-off comparison, min-max scaling is 

performed. Fig. 6 Panel B displays the heatmap for the three framed objectives and vis-à-vis 

maximisation of reward to risk for the three objectives. The maximisation of one objective 

bears a negative relationship with the other two, implying the existence of a trade-off. 

Henceforth, we proceed with finding the optimal balance between the three trade-offs. 
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The approach to finding the optimal solution requires optimisation of multi-objective 

function viz. R/V, R/Sp, R/C. All three objectives need to be maximised. For the same, we opt 

for elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II), (Deb et al., 2002). Fig. 6 

Panel C tunes the number of crossovers for a population size of 200, for which the number of 

pareto optimal solutions stabilises. We proceed with 100 crossovers to find the pareto optimal 

solution for the three objectives. Importantly, though all the solutions are non-dominated, hence 

equally likely, nevertheless, an investor has to take a call to choose the best among the available 

pareto optimal solutions. An alternative would be a subjective call by an investor to weigh any 

one of the objectives more than the other and, after that, choose weights. However, if the 

decision maker opts to rank the pareto optimal solution, he will be constrained by the different 

scales for each objective Appendix Table A3 (min-max) values. Hence, a simple merger would 

be a fallacy. 

As a result transformation of the pareto solutions to scores deems necessary. 

Nevertheless, opting out of a strategy to transform must suffice the two primary conditions; 

first, the scales should be the same, and second, it should rightly reflect the position of the 

solution of where it stands. To address the same, we opt for normalisation of each objective by 

min-max scaling so that each solution ranges from [0,1]. Notably, a higher value on the scale 

reflects a higher objective. Fig. 6 Panel D plots the scatter diagram of all the non-dominated 

solutions on an ellipsoidal plane, reflecting them as equally probable solutions. After that, we 

summarise the transformed three objectives for a unified pareto solution. The next issue of 

reflecting the position of the output is catered via fitting the empirical CDF on the unified scale, 

subtracting it from unity { 1  - eCDF (x) }. The lower the value of { 1 – eCDF(x) }, the closer 

the unified objective to 1, signifying a better solution. After sorting the fitted empirical CDF 

on the unified scale of the pareto optimal solution, we can order the pareto efficient solutions 

and thus choose the best among them. 
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Figure 6: Pareto Optimal Portfolio 

                                           

4.4.1 Portfolio Cross-Comparison 

For the same portfolio universe, the Global Minimum Variance Portfolio and 

Markowitz Mean-Variance Portfolio approach is taken for weight allocation. After that, reward 

to risk for the three Portfolio strategies viz. Global Minimum Variance Portfolio, Markowitz, 

and Multi-objective approach are cross-compared. Since the three objectives are on different 

scales, min-max scaling is performed, proceeded by the unification of the score and estimation 

of empirical cdf. Based on the empirical CDF of the unified score of the three objectives, viz. 

{R/V, R/Sp, R/C}, the results for three portfolio strategies are sorted. We can observe that the 

three objectives attain unified maxima under the multi-objective optimisation approach, 
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followed by the Markowitz approach. While Global minimum Variance minimises the variance 

to extremum, it fails to maximise reward to risk for all the three risk measures considered. 

Table 6: Portfolio strategies Cross-Comparison 

Models R/V scaled R/Sp scaled R/C scaled ecdf 

MO 1.000 0.856 1.000 0.000 

MMV 0.384 1.000 0.993 0.333 

GMV 0.000 0.000 0.000 0.667 

Note: MO = Multi-objective Portfolio strategy; MMV = Markowitz Portfolio; GMV = Global Minimum Variance Portfolio 

 

Table 7: Weight allocation under different Portfolio Strategies. 

  Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat 

MO 0.004 0.000 0.000 0.000 0.016 0.251 0.342 0.002 0.296 0.090 

MMV 0.000 0.000 0.000 0.000 0.000 0.250 0.481 0.000 0.201 0.068 

GMV 0.032 0.018 0.000 0.048 0.212 0.297 0.006 0.059 0.328 0.000 

Note: MO = Multi-objective Portfolio strategy; MMV = Markowitz Portfolio; GMV = Global Minimum Variance Portfolio 

Table 7 provides the weight allocated under different portfolio strategies. We can 

observe that portfolio constructed using a multi-objective approach is more diversified than 

Markowitz’s. As Markowitz’s diversification strategy suffers from portfolio concentrated to 

certain weights, the multi-objective optimisation strategy offers a better solution in terms of 

diversification. Though the Global Minimum Variance Portfolio strategy diversifies by 

allocating weights across all the commodities, it lags behind Reward to Risk to multi-objective 

and Markowitz. Notable, Soybean Oil, Sugar, and Rice rank high in weight allocation for multi-

objective and Markowitz owing to better reward to risk. The reward Risk approach factoring 

the three risk measures diversifies the portfolio better and maximises the Reward to Risk. 

Significantly, GMV allocates significant weights to Crude and Ethanol, whereas MO allocates 

much less weight 4% to crude, while there is no allocation to ethanol. The trend is in line with 

what is observed in sensitivity study Section 4.3, where a reduction in systemic risk is observed 

for a fixed Ethanol weight, and Crude weight allocation is calibrated to minima. Notably,   the 

fall in systemic risk observed with crude replaced by ethanol is accompanied by a fall in return 

along with a spike in COVOL, thereby reducing reward to risk. Hence, for a risk-averse 

investor, bagging in ethanol could be safe, yet reward has to be considered for a higher risk 

appetite. Another stark observation is the prominent triplet pairs for feedback effect loop 

transgression Fig. 5 weigh low in the Multi-objective Portfolio Strategy. Whereas the Global 

Minimum Variance Portfolio strategy allocates significant weight to the assets forming the 

triplets, viz. { Crude, Ethanol, Soybean, Rapeseed, Palm Oil}. Thus, a balance has emerged in 
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terms of diversification benefits reaped to maximise Reward to Risk. MO provides more 

diversification than Markowitz, yet at the same time, checks the level of diversification in 

comparison to GMV to maximise Reward to Risk. Notably, feedback loops associated with 

Triplet pair have macroeconomic fundamentals as the soft Agri commodities form part of the 

value chain. Hence, portfolio weights concentrated for the triplet pairs are more exposed to 

spillover risk due to the intensification of feedback loops arising due to the substitution of 

Crude for Ethanol.                                                   

4.5 Temporal movement of COVOL and Spillover and Investor’s limitation 

As we can observe that the overall rolling total connectedness estimated on a window 

of 90 periods is more pronounced for GFC and Eurozone, followed by covid and the crude oil 

crisis, respectively (see Fig. 7). Despite the endogenous shock to crude being higher for the oil 

crisis and the COVOL peak for covid era, the volatility feedback effect plausibility is more 

pronounced during GFC and Eurozone sovereign debt crisis. If translated from an economic 

viewpoint, the observation stresses triplet linkage arising due to substitution from crude to 

ethanol for a cleaner fuel alternative rather than an economic incentive in light of high volatility 

in crude prices. If this had not been the case, the volatility spillover would have been more 

pronounced during the oil crisis, i.e., 2014-15. Nevertheless, at the same instance, global events 

engulf all the assets contemporaneously; hence the feedback becomes more pronounced due to 

the contribution of shocks at every node that forms part of the economic connection amid 

erude-ethanol-commodities. Thus, the spillover-based study opens the dual channel of 

exploration. First, the upswing in spillover was observed during crisis times, and second intense 

volatility feedback shocks were observed during times of distress. Both observations add 

misery to portfolio managers, as systemic risk works as a double-edged sword. One is the 

upswing in volatility observed due to endogenous economic factors, and the second is due to 

market interconnectedness. Importantly, if the price fluctuations in crude remained the sole 

driver of ethanol used as an alternative, then the motive for cleaner fuels would be despair.   
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Figure 7: Temporal Movement of Spillover and COVOL 

 

5. Conclusion & Policy Implications 

The complex price interlinkage of crude, along with its substitute ethanol, engulfs the 

agricultural commodities that form part of the value chain in Ethanol production. The desire 

for cleaner alternatives and volatility in crude prices has made the dynamics amongst the crude-

ethanol and soft agri commodities rather complex. An investor is a struct to strike an optimum 

balance of weight allocation while constituting a portfolio. Despite the abundance of historical 

information on return movement, a strategy to empirically translate the risks contributing to fat 

tail along with spikes during global shocks still needs to be developed. To address the same, 

risk measures have been segregated. Apart from risk captured via variance due to market co-

movements, risk transmission arising due to market interconnectedness Diebold & Yilmaz 

(2012) and risk captured due to common global shock Engle and Campos-Martins(2022) 

COVOL has been estimated. Thereafter, portfolio weight allocation has been done by framing 

three objectives reflecting Reward to Risk, viz. [R/V := Portfolio Return / Portfolio Variance] 

,[R/Sp := Portfolio Return/Portfolio Spillover], [R/C := Portfolio Return/Portfolio COVOL]. 

Notable, for COVOL estimation, first, the commodities co-movement with the Real Food Price 

Index is harnessed to fit a single index model, followed by fitting AR(1) and GARCH(1,1) 

models. After that, extracted loadings in the first component of the correlating residuals are 

attributed as COVOL, which remains in sync as per the construction and reflects risk owing to 

common global shocks. The average combined COVOL loadings show that the Covid-19 

pandemic period surpassed the GFC(2008) and Eurozone Sovereign Debt Crisis(2010) by 
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mammoth terms. Recently, a rise in combined sensitivity to global shocks has been observed 

owing to Russian aggression on Ukraine. To measure the risk associated with market 

interconnectedness, we adopt the measure proposed by Diebold and Yilmaz spillover 

estimation as a proxy for systemic risk. Importantly, spillover estimation has been done on 

estimated GJR-GARCH volatility characterised by incorporating asymmetry in response to 

positive and negative shocks while managing volatility persistence to account for volatility 

feedback. Since substituting Crude with Ethanol is a vital component of the research, volatility 

feedback must be captured well. The findings suggest the average systemic risk to be 

significant, implying market interconnectedness to be considered while framing Portfolio 

strategies. Pairwise directional spillover analysis aided by Network diagrams showcases the 

emergence of triplet pair for feedback effect to transgress, to be more prominent for {Crude-

Ethanol-Soybean}, {Crude-Ethanol-Rapeseed}, {Crude-Ethanol-Rapeseed}. In the case of 

substituting Crude with Ethanol, either driven by price volatility in oil or a desire for cleaner 

alternatives, intensifying systemic risk can be observed with these Feedback loops serving as 

sinkholes. Sensitivity analysis to capture the substitution effect of Crude with Ethanol shows a 

reduction in systemic risk of the portfolio up to a threshold of 30% Ethanol weight, post which 

the Feedback effect kicks in. However, freezing Ethanol weight provides calibration of Crude 

weight to monitor systemic risk. 

Post ascertaining the trade-off existing amid the three framed objectives viz. {R/V; 

R/Sp; R/C}, multi-objective optimisation algorithm NSGA-II is applied to generate equally 

possible Pareto solutions. After that, Pareto optimal solutions are ranked based on the 

subtraction from the unity of the empirical cumulative distribution function. Notably, empirical 

CDF is calculated on each objective’s unified min-max scaled score. The proposed Portfolio 

Management strategy outshines the Markowitz Mean-Variance approach and Global Minimum 

Variance approach in terms of Reward to Risk and providing ample diversification. Compared 

to Markowitz, weight allocation is not concentrated on a selected few commodities but instead 

diversified across groups of assets. Apart from outperformance on empirical grounds, the 

proposed strategy allocates low weight to the triplet pair {(Crude-Ethanol-Soybean), (Crude-

Ethanol-Rapeseed), (Crude-Ethanol-Palm Oil)}  thus escaping the trap of Feedback loops of 

systemic risk. The proposed Portfolio strategy, to be the first of its type, proves to be more 

holistic as it encapsulates the three risk measures, Variance, Spillover, and COVOL, in 

Portfolio weight allocation while maintaining their essence by treating them separately. 

Soybean Oil, Sugar, and Rice are the most favored soft Agri commodities regarding Reward 
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to Risk, with Crude weighing pretty low in portfolio. We observe how allocating weights at an 

optimum level to mitigate the three risk exposures over the whole sample resolves the 

investor’s dilemma. Nevertheless,  portfolio rebalancing remains challenging, especially in the 

presence of temporal movement of Spillover and COVOL with time. As we can witness, 

systemic risk and COVOL have different episodes of high and low with few in-sync episodes 

when both show a spurt Fig. 7. Henceforth, metaheuristics application could be challenging in 

case of frequent rebalancing owing to time complexity. Though constraint by the periodicity 

of data for spillover estimation has way out to perform Bayesian-based VAR estimation; 

however, the choice of a prior would be subjective, thus introducing uncertainty in output 

owing to the decision maker’s perception. Nevertheless, the need to factor the two risks, viz. 

systemic and COVOL, provides a better return and aids in the immunisation of portfolio to 

global shocks. Further, it makes the portfolio robust to external shocks, provided portfolio 

rebalancing occurs before the distress period kicks in. Apart from macroeconomic 

fundamentals, the temporal movement of systemic risk and COVOL can be utilised to generate 

early warning signals, thus adjusting the portfolio weights accordingly. 

 



 

32 

 

References 

1. Ahti, V. (2009). Testing the rational expectations competitive storage hypothesis. Helsinki 

Center of Economic Research Discussion Papers, University of Helsinki, Discussion Paper 

No. 267.  

2. Ameur, H. B., Ftiti, Z., & Louhichi, W. (2021). Intraday spillover between commodity 

markets. Resources Policy, 74, 102278. 

3. Antonakakis, N., & Gabauer, D. (2017). Refined measures of dynamic connectedness based 

on TVP-VAR. 

4. Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The 

quarterly journal of economics, 131(4), 1593-1636. 

5. Bollerslev, T., Litvinova, J., and Tauchen, G. (2006). Leverage and volatility feedback 

effects in high-frequency data. Journal of Financial Econometrics, 4(3), 353-384.  

6. Bouri, E., Dutta, A., & Saeed, T. (2021). Forecasting ethanol price volatility under structural 

breaks. Biofuels, Bioproducts and Biorefining, 15(1), 250-256. 

7. Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2022). Minimum connectedness 

portfolios and the market for green bonds: Advocating socially responsible investment (SRI) 

activity. In Applications in Energy Finance (pp. 217-253). Palgrave Macmillan, Cham. 

8. Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. American Economic 

Review, 112(4), 1194-1225. 

9. Campbell, J. Y., and Hentschel, L. (1992). No news is good news: an asymmetric model of 

changing volatility in stock returns. Journal of Financial Economics, 31(3), 281–318.   

10. Chang, C. L., McAleer, M., and Wang, Y. A. (2018). Modelling volatility spillovers for bio-

ethanol, sugarcane and corn spot and futures prices. Renewable and Sustainable Energy 

Reviews, 81(Part 1), 1002-1018.  

11. Chang, T.-H., and Su, H.-M. (2010). The substitutive effect of biofuels on fossil fuels in the 

lower and higher crude oil price periods. Energy 35(7), 2807–2813.  

12. Cheng, S., and Cao, Y. (2019). On the relation between global food and crude oil prices: An 

empirical investigation in a nonlinear framework. Energy Economics, 81 (June), 422-432.  

13. Chiu, F. P., Hsu, C. S., Ho, A., and Chen, C. C. (2016). Modeling the price relationships 

between crude oil, energy crops and biofuels. Energy, 109 (August), 845-857.  

14. Coudert, V., and Mignon, V. (2016). Reassessing the empirical relationship between the oil 

price and the dollar. Energy Policy, 95, 147-157.  

15. Dahl, R. E., Oglend, A., and Yahya, M. (2020). Dynamics of volatility spillover in 

commodity markets: Linking crude oil to agriculture. Journal of Commodity Markets, 20 

(December), Artcile No. 100111.  

16. Deaton, A., and Laroque, G. (1995). Estimating a nonlinear rational expectations 

commodity price model with unobservable state variables. Journal of Applied 

Econometrics, 10(S1), S9-S40.   

17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 

6(2), 182-197. 

18. Diebold, F. X., and Yilmaz, K. (2012). Better to give than to receive: Predictive directional 

measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66.  



 

33 

 

19. Diebold, F. X., and Yilmaz, K. (2014). On the Network Topology of Variance 

Decompositions: Measuring the Connectedness of Financial Firms. Journal of 

Econometrics, 182(1), 119-134.  

20. Engle, R. F., and Ng, V. K. (1993). Measuring and testing the impact of news on 

volatility. Journal of Finance, 48 (December), 1749–1778.  

21. Fernandez-Perez, A., Frijns, B., and Tourani-Rad, A. (2016). Contemporaneous interactions 

among fuel, biofuel and agricultural commodities. Energy Economics, 58 (August), 1-10.  

22. French, K. R., Schwert, G. W., and Stambaugh, R.F. (1987). Expected stock returns and 

volatility. Journal of Financial Economics, 19(1), 3–29.   

23. Gilbert, C. L., & Morgan, C. W. (2010). Food price volatility. Philosophical Transactions 

of the Royal Society B: Biological Sciences, 365(1554), 3023-3034. 

24. Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the 

expected value and the volatility of the nominal excess return on stocks. The Journal of 

Finance, 48(5), 1779-1801.  

25. Gomez-Gonzalez, J. E., Hirs-Garzon, J., & Uribe, J. M. (2022). Spillovers beyond the 

variance: Exploring the higher order risk linkages between commodity markets and global 

financial markets. Journal of Commodity Markets, 100258. 

26. H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. 

27. Herskovic, B., Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2016). The common factor 

in idiosyncratic volatility: Quantitative asset pricing implications. Journal of Financial 

Economics, 119(2), 249-283. 

28. Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of 

Econometrics, 129 (1-2), 121–138.   

29. Ji, Q., and Fan, Y. (2012). How does oil price volatility affect non-energy commodity 

markets?. Applied Energy, 89(1), 273-280.  

30. Just, M., & Echaust, K. (2022). Dynamic spillover transmission in agricultural commodity 

markets: What has changed after the COVID-19 threat?. Economics Letters, 217, 110671. 

31. Khalfaoui, R., Sarwar, S., & Tiwari, A. K. (2019). Analysing volatility spillover between 

the oil market and the stock market in oil-importing and oil-exporting countries: 

Implications on portfolio management. Resources Policy, 62, 22-32. 

32. Kumar, P., & Singh, V. K. (2022). Does crude oil fire the emerging markets currencies 

contagion spillover? A systemic perspective. Energy Economics, 116, 106384. 

33. Liu, L. (2014). Cross-correlations between crude oil and agricultural commodity markets. 

Physica A: Statistical Mechanics and its Applications, 395 (February), 293–302.  

34. Mazanov, S. V., Gabitova, A. R., Usmanov, R. A., Gumerov, F. M., Labidi, S., Amar, M. 

B., ... & Le Neindre, B. (2016). Continuous production of biodiesel from rapeseed oil by 

ultrasonic assist transesterification in supercritical ethanol. The Journal of Supercritical 

Fluids, 118 (December), 107-118.  

35. Mensi, W., Hammoudeh, S., Nguyen, D. K., Yoon, Seong-Min (2014). Dynamic spillovers 

among major energy and cereal commodity prices. Energy Economics, 43(May), 225–243.  

36. Nam, K. (2021). Investigating the effect of climate uncertainty on global commodity 

markets. Energy Economics, 96, 105123. 

https://scholar.google.com/scholar?btnG=&hl=en&as_sdt=0%2C23&q=author:H.%20Markowitz


 

34 

 

37. Natanelov, V., Alam, M. J., McKenzie, A. M. and Van Huylenbroeck, G. (2011). Is there 

co-movement of agricultural commodities futures prices and crude oil? Energy Policy, 

39(9), 4971-4984.  

38. Nazlioglu, S., Erdem, C., and Soytas, U. (2013). Volatility spillover between oil and 

agricultural commodity markets. Energy Economics, 36 (March), 658-665.  

39. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new 

approach. Econometrica, 59(2), 347–370.  

40. Paris, A. (2018). On the link between oil and agricultural commodity prices: Do biofuels 

matter? International Economics, 155 (October), 48-60.  

41. Pham, L., & Do, H. X. (2022). Green bonds and implied volatilities: Dynamic causality, 

spillovers, and implications for portfolio management. Energy Economics, 106106. 

42. Serra, T., & Gil, J. M. (2013). Price volatility in food markets: can stock building mitigate 

price fluctuations?. European Review of Agricultural Economics, 40(3), 507-528. 

43. Serra, T., Zilberman, D., and Gil, J. (2011). Price volatility in ethanol markets. European 

Review of Agricultural Economics, 38(2), 259–280.  

44. Singh, V. K., Kumar, P., & Nishant, S. (2019). Feedback spillover dynamics of crude oil 

and global assets indicators: a system-wide network perspective. Energy Economics, 80, 

321-335. 

45. Tiwari, A. K., Abakah, E. J. A., Adewuyi, A. O., & Lee, C. C. (2022). Quantile risk 

spillovers between energy and agricultural commodity markets: Evidence from pre and 

during COVID-19 outbreak. Energy Economics, 113, 106235. 

46. Trujillo-Barrera, A., Mallory, M., and Garcia, P. (2012). Volatility spillovers in US crude 

oil, ethanol, and corn futures markets. Journal of Agricultural and Resource Economics, 

37(2), 247-262.  

47. Wheals, A. E., Basso, L. C., Alves, D. M., and Amorim, H. V. (1999). Fuel ethanol after 25 

years. Trends in biotechnology, 17(12), 482-487.  

48. Zhang, Z., Lohr, L., Escalante, C., and Wetzstein, M. (2009). Ethanol, corn, and soybean 

price relations in a volatile vehicle-fuels market. Energies, 2(2), 320-339.   

 



 

35 

 

Appendix 

Table A1: Pearson Correlation on standardised square residuals of the AR(1) GARCH(1,1) process 

 Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat 

Crude           

Ethanol 0.416***          

Corn -0.042 0.124         

Palm Oil -0.033 -0.009 0.074        

Rapeseed -0.048 -0.011 0.207** 0.161*       

Rice -0.007 -0.051 0.019 -0.008 0.174*      

Soybean Oil -0.017 0.014 0.308*** 0.308*** 0.342*** 0.018     

Soybean -0.025 0.001 0.264*** 0.139 0.122 -0.052 0.323***    

Sugar 0.043 0.032 -0.011 -0.043 0.078 0.043 0.056 0.082   

Wheat 0.007 0.017 0.281*** 0.113 0.306*** -0.011 0.092 0.157* 0.007  

Computed correlation used Pearson-method with listwise-deletion. 

Table A2: Akaike Information Criterion for different lags and ARCH – LM test for Commodities 

Akaike Information Criteria for different AR lag length 

Crude Ethanol Corn Palm Oil Rapeseed Rice Soybean Oil Soybean Sugar Wheat 

p AIC p AIC p AIC p AIC p AIC p AIC p AIC p AIC p AIC p AIC 

1 -279.12 1 -249.75 1 -389.59 1 -369.51 1 -507.97 1 -441.81 1 -471.33 1 -468.97 1 -485.84 1 -365.26 

2 -283.11 2 -267.64 2 -388.6 2 -367.59 2 -506.62 2 -439.99 2 -469.75 2 -466.99 2 -484.94 2 -371.62 

3 -281.4 3 -265.93 3 -386.6 3 -366.82 3 -504.63 3 -438.19 3 -467.83 3 -471.04 3 -485.53 3 -370.15 

4 -283.79 4 -264.45 4 -385.35 4 -365.16 4 -503.21 4 -437.2 4 -467.2 4 -469.47 4 -483.54 4 -368.74 

 

Lagrange Multiplier Test up to lag 4 

LM p.value LM p.value LM p.value LM p.value LM p.value LM p.value LM p.value LM p.value LM p.value LM p.value 

99.237 0 83.579 0 66.14 0 37.781 0 55.736 0 66.787 0 78.395 0 57.966 0 65.692 0 73.54 0 

 

Shapiro Wilk Test  

SP p.value SP p.value SP p.value SP p.value SP p.value SP p.value SP p.value SP p.value SP p.value SP p.value 

0.862 0 0.914 0 0.984 0.027 0.992 0.393 0.979 0.006 0.976 0.002 0.973 0.001 0.977 0.004 0.986 0.057 0.993 0.571 
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Table 3: Preliminary Statistics of Pareto Optimal Solutions 

  Return/Variance Return/Spillover Return/COVOL 

Mean 1.131 0.004 0.022 

Std. Deviation 0.116 0.001 0.004 

Median 1.138 0.004 0.022 

Minimum 0.885 0.001 0.014 

Maximum 1.332 0.005 0.032 

Range 0.447 0.004 0.018 

Skewness -0.204 -0.064 0.13 

Kurtosis -0.983 -1.241 -0.972 

 

 

 

 

 

 

 

 

 

 

 

 


