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ABSTRACT

Generic concept detection has been a widely studied topic
in recent research on multimedia analysis and retrieval, but
the issue of how to exploit the structure of a multimedia on-
tology as well as different inter-concept relations, has not
received similar attention. In this paper, we present re-
sults from our empirical analysis of different types of similar-
ity among semantic concepts in two multimedia ontologies,
LSCOM-Lite and CDVP-206. The results show promise
that the proposed methods may be helpful in providing in-
sight into the existing inter-concept relations within an on-
tology and selecting the most facilitating set of concepts and
hierarchical relations. Such an analysis as this can be uti-
lized in various tasks such as building more reliable concept
detectors and designing large-scale ontologies.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.2.4 [Database Management]:
Systems— Multimedia databases

General Terms

Experimentation, Algorithms, Human Factors

Keywords

Multimedia ontologies, semantic concept detection

1. INTRODUCTION & CONTEXT

Associating semantic information with visual data has at-
tracted a lot of research attention recently in order to facili-
tate semantic indexing and concept-based retrieval of visual
content. The predominant approach has been to employ var-
ious statistical modeling techniques for mid-level semantic
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concepts (events, objects, locations, people, etc.) based on
low-level visual features. These models are then used to sup-
port high-level indexing and querying on visual data. Such
approaches have shown promising results [1] as the seman-
tic concept models can be trained off-line with considerably
more relaxed requirements for computational efficiency and
more positive and negative examples than would be avail-
able at query time.

Recently published large-scale multimedia ontologies as
well as large manually annotated datasets have allowed an
increase in multimedia concept lexicon sizes by orders of
magnitude. The availability of ontologies like the Large
Scale Concept Ontology for Multimedia (LSCOM) [11] and
the MediaMill Challenge 101 [19] have been important de-
velopments in the research field. Both of these ontologies
are accompanied by manual annotations on TREC Video
Retrieval Evaluation (TRECVid) datasets. The TRECVid
workshop [16] is an annual workshop series which encourages
research in multimedia information retrieval by providing a
large test collection, uniform scoring procedures, and a fo-
rum for comparing results for participating organisations.
The TRECVid benchmarks have included a separate high-
level concept detection task since 2002.

Semantic concepts do not exist in isolation but have differ-
ent relationships between each other, including similarities
in their semantic and visual (low-level) characteristics, co-
occurrence statistics, and different hierarchical relations if a
taxonomy has been defined for the concepts. Several tech-
niques have recently been proposed to utilize these contex-
tual inter-concept relations, but the question of how should
they be utilized for various tasks still remains as an open re-
search question. One approach is to concatenate the detec-
tion scores of either all available concept detectors or some
“basis” concepts selected based on criteria such as coverage
or reliability of detection. These individual concept detec-
tors are gathered into a model vector space in which some
statistical learning technique is then applied, as with any
low-level feature space. In [17] and [5], the model vectors
are used as input to a SVM to improve the performance
of concept detection. In [18], the context vectors are in-
corporated into an authoring metaphor, which divides the
indexing process into content, style, and context steps. A
semiautomatic version of this approach was proposed in [6],
in which a subset of detection scores is replaced with man-
ually provided annotations. In [2], individual events are
modeled as temporal processes within video shots using the
temporal dynamics of the concurrent concepts.



An alternative approach to utilizing inter-concept rela-
tions is to analyze pairwise relations among all concepts in
order to identify those that have a measurable effect (either
positive or negative) to detecting or modeling a given con-
cept. Various graphical models have been proposed for this
purpose. In [14], models based on manually and automati-
cally constructed Bayesian networks are used to capture the
interaction between concepts. In [13], a factor graph frame-
work for multimedia objects or “multijects” is used to model
their interaction. Multiple graphical models for concept de-
tection are studied in [22]. In [7], concept clustering and
statistical G-tests are used for finding concept pairs that
co-occur frequently. The use of frequent itemset mining,
k-means clustering, and hidden Markov models to pattern
mining of large-scale multimedia ontologies is studied in [21].
In [20], an existing ontology hierarchy is used to influence
individual concept detectors. A boosting factor is used for
top-down influence from parent concepts to children, and a
confusion factor is defined for mutually exclusive concepts.

In the work reported here we analyze the inter-concept
relations and levels of similarity between concepts in two
large-scale multimedia ontologies and present preliminary
results of an empirical study using these multimedia on-
tologies. While the definitive utility of any such analysis
is derived from the application of such results to practical
tasks of importance such as concept detection or annotation,
such a study can provide additional insights into the ontolo-
gies as well as encourage the application of such methods
provided that the results are plausible. We study here the
overall characteristics and similarities among semantic con-
cept models instead of processing the detection confidence
scores of some individual data items. The analysis is based
on image-level annotations, which has obvious limitations
as most visual concepts are localized, i.e. they correspond
to a distinct object or part of the scene. Unfortunately,
producing localized annotations for large-scale multimedia
ontologies is a challenging task.

We study two ontologies, namely a subset of 39 concepts
from the LSCOM ontology and an in-house ontology devel-
oped at the Centre for Digital Video Processing at Dublin
City University, named CDVP-206 in the experiments. The
reason for choosing the latter instead of other commonly
used ontologies such as LSCOM or MediaMill 101 is that
neither of these ontologies currently contains a hierarchical
arrangement of its concepts, and we aim to study and ex-
ploit the hierarchical relations of concepts in the CDVP-206
ontology. The methodology for measuring concept similar-
ity is the same as the one presented in [9], but in this paper
we focus on the distinct and to a certain degree orthogo-
nal types of inter-concept similarity in greater detail and we
present an empirical study exploring these similarities.

The paper is organized as follows. Section 2 provides a
brief overview of the used methods for analyzing and mea-
suring different inter-concept similarity relations. In Section
3, the two ontologies used in the experimental part of the
paper are described. A series of experiments with the pro-
posed methods are presented in Section 4, and the paper is
concluded in Section 5.

2. CONCEPT SIMILARITIES

In this section, we describe methods to measure the over-
lap among concepts. In many of the existing approaches
to semantic concept modeling, the ontology, or the inter-

concept relations in general, have not been usefully exploited.
Each concept model is rather treated as a binary classifier
and processed as if it were an independent entity. This
approach may seem unsatisfactory, as there are obviously
strong links between the occurrence patterns of related con-
cepts, and these links could conceivably be exploited to im-
prove the quality of the models. Moreover, some concepts
are more inherently visual than others, and thereby easier
to model with low-level features. One strategy could then
be to use these visual concepts to improve the models for
the other, more difficult, concepts.

We now consider four different similarity relations be-
tween semantic concepts.

2.1 Visual Similarity

When considering the automatic detection or classifica-
tion of multiple concepts in an ontology, one question is
the similarity among concepts based on low-level features.
Despite the semantic gap and the resulting relatively low ac-
curacy of independent content-based concept models, these
models remain fundamental for many automatic processing
tasks for multimedia data.

For measuring visual similarity among concepts, as our
low-level representation we adopt a clustering-based prob-
abilistic model in which we model the probability density
function of the semantic concept over a set of k clusters
common to the whole data set. For brevity, the treatment
here is rather concise; see [9] for more details. The approach
provides rather coarse concept models but has the benefit of
being readily scalable to large multimedia lexicons as each
concept is represented as a set of discrete distributions over
clustered feature spaces. For simplicity, we adopt the term
“visual” for all characteristics based on low-level features
even though all such features might not be visual, e.g. for
video analysis one might also include audio features.

2.1.1 Global Descriptors

A common approach to representing visual data in low-
level feature spaces is to extract multiple global features
from each media object. If a certain feature extraction
method works favorably, semantically similar patterns will
still be mapped in the feature space nearer to each other
than semantically dissimilar ones. The dimensionality of the
feature space can then be reduced e.g. with clustering, while
preserving the similarity property. That is, after clustering
we can still expect a non-uniform distribution of semanti-
cally related objects over the clustering provided that the
low-level feature in question is able to capture enough of
the semantic similarity between the visual objects. Given
i = 1,...,k cluster centroids with V; as the corresponding
Voronoi region, a discrete probability histogram of a dataset
can be written as

P=Pxev) =t eVi} (1)
#{J}
where #{-} stands for the cardinality of a set. With a spe-
cific subset of data c, fulfilling a certain ground truth crite-
rion, the corresponding probability histogram will be
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In this paper, we refer to these subsets as semantic concepts.




2.1.2 Grid-Based Descriptors

The representation of visual data using global features
is quite limited in many cases. While some semantic con-
cepts do relate to the content of a video shot or image
as a whole, some others are localized to a distinct object
or a specific part of the background or scene. For region-
based image representation, we use a localized appearance
descriptor based on a regular grid dividing the image into
a fixed number of regions. The set of grid-based descrip-
tors is then quantized to produce visterms, after which the
multimedia object can be regarded as a document consisting
of a number of visterms. For modeling the documents in a
lower-dimensional space, we use probabilistic latent seman-
tic analysis (PLSA) [4], where a latent variable or aspect
zk, k= 1,...,n is associated with each observation. The
joint probability of documents and visterms is defined as the
mixture

P(wj,d; ZP wjlz) P(z|di) (3)

where P(wj|zk) is the class-conditional probability of the
visterm w; conditioned on the unobserved aspect z; and
P(zg|d;) denotes the probability distribution of the latent
aspects given the document d;. A new document d, can
be “folded-in” to the aspect space P(zx|dq) by keeping the
document-independent probabilities P(w;|zx) fixed. A con-
cept ¢m can then be aggregated to a document d.,, and
modeled as a distribution P(zx|d.,,) over the latent aspects.

2.1.3  Similarity Measurement

For both the global and grid-based descriptors, any bin-
to-bin histogram distance measure can be used in estimating
the visual distance dvis(¢m,cn) of concepts ¢m and ¢,. In
this paper, we use Jeffrey divergence

k—1
P P”
dyvis = dyp(P™,P") = ,
n( ) ; ( 2 *h )
A (4)
where P = (P™ + P™)/2 is the mean distribution, as it

is symmetric and numerically stable with empirical discrete
distributions and usually gives rather consistent results.

2.2 Co-occurrence

A complementary view of concept similarity can be ob-
tained by considering the co-occurrence statistics of pairs of
concepts. The concepts in an ontology are interrelated and
certain concept pairs co-occur more often or more rarely
in the same or neighboring multimedia objects than would
be expected by chance. For example, the concepts car and
road will in all likelihood appear frequently together whereas
indoor and outdoor are almost always mutually exclusive.
The knowledge of the presence or absence of certain concepts
may therefore be a valuable cue in predicting the presence
of other concepts. This can be exploited in many kinds of
applications, such as concept detection or annotation.

The presence of a semantic concept in a multimedia object
is usually assumed as a binary variable, making it straight-
forward to analyze co-occurrence patterns with standard
data mining techniques. A number of such methods have
been proposed in recent research, including the G-test [7],
frequent itemsets [21] and shot clustering [7, 21]. In a sim-
ilar manner, we examine concept occurrence as a binary
variable over the data items in the training set. We denote

C™ as a vector of length equalling the size of the training
set, with C;" = 1 if the ith item is relevant for concept ¢,
and C;" = 0 otherwise. To measure co-occurrence distance
dco(Cm, cn), we use the Cosine measure
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2.3 Semantic Similarity

The third type of concept similarity we consider is sim-
ilarity among concepts based on their semantic meaning.
By nature, these properties differ from the two similarities
discussed above and one cannot use a ground truth set of
annotated multimedia objects to deduce semantics of con-
cepts. Semantics are also highly subjective, so any group
of annotators will likely produce conflicting results on the
semantic similarity between concepts.

For our experiments, we gather subjective assessments of
different concepts’ semantic similarity from a group of hu-
man subjects. The details of the data gathering procedure
are given in Section 4.1.1. Gathering such assessments for a
small number of concepts is straightforward but with large-
scale ontologies this becomes infeasible due to the quadratic
increase in the number of concept pairs compared to the size
of the ontology. As a result, the semantic similarities based
on human assessments have to be restricted to some sub-
set of concept pairs. Here, we limit our study of semantic
similarities to comparisons with visual similarity relations.

dCO - dCOb Cm Cn

()

2.4 Hierarchical Structure

The fourth similarity relation considered in this paper is
based on an hierarchical construction or taxonomy of con-
cepts. A taxonomy provides a natural way of organizing
and processing large ontologies. Concepts near each other
in such a hierarchy, e.g. sibling concepts or concept pairs
with a parent-child relation, will have close association to
each other and should be treated differently than random
pairs of concepts. The concept hierarchy can also be used
directly to construct a tree distance, in which the distance
of two concepts is a function of the number of edges between
them. The most common relation in multimedia taxonomies
is the subsumption or is-a relation (e.g. dog is-a animal is-a
object). The whole hierarchy of the CDVP-206 ontology is
based on the subsumption relation.

The concept taxonomy can also highlight the fundamental
differences between concepts of different types. Generally,
top-level concepts are common and thus have lots of training
data, but are often too generic for accurate modeling. For
example, concepts such as person, outdoor and sky can often
appear in more than half of all multimedia objects. On the
other hand, rare leaf concepts may be distinctive but suffer
from a lack of positive examples. In practice, the rarest
concepts have to be excluded when building concept models
as they cannot be reliably modeled. As a result, the mid-
frequency concepts often provide the most fruitful portion
of concepts for automatic analysis and modeling.

An hierarchical structure among concepts can be directly
utilized for different purposes. One straightforward top-
down approach to concept detection is to consider the con-
cept hierarchy as a decision tree where each detector differ-
entiates among its immediate descendants. This approach is
suited for sibling concepts that are mutually exclusive, which
is a common property with multimedia ontologies but not
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Figure 1: The two topmost levels of the CDVP-206
ontology.

universal. For example, the positive result set of an animal
detector probably should not be further divided into distinct
species unless it is known that animals of only one species
may exist in any given multimedia object.

On the other hand, one may also employ a bottom-up ap-
proach where objects detected which are relevant to a child
concept with a high confidence are also deemed relevant
for the parent concept. This may be beneficial especially
if the child concept can be detected more reliably. Both the
top-down and bottom-up approaches can also be utilized in
semi-automatic annotation.

3. MULTIMEDIA ONTOLOGIES

In the empirical study presented in this paper, we use two
ontologies developed for news video material.

3.1 LSCOMe-Lite

LSCOM-Lite [12] is an interim subset of the LSCOM [11]
ontology, developed in the ARDA /NRRC workshop on Large
Scale Ontology for Multimedia (LSCOM). LSCOM-Lite con-
tains the following 39 semantic concepts:

airplane, animal, boat/ship, building, bus, car, charts,
computer/tv screen, corporate leader, court, crowd,
desert, entertainment, explosion/fire, face, flag us,
government leader, maps, meeting, military, moun-
tain, natural disaster, office, outdoor, people march-
ing, person, police/security, prisoner, road, sky, snow,
sports, studio, truck, urban, vegetation, walking/run-
ning, waterscape/waterfront, weather.

Video shots from the entire TRECVid 2005 [16] develop-
ment collection of about 80 hours of TV news recorded in
November 2004, were manually annotated for the LSCOM-
Lite concepts in a joint effort by TRECVid participants. As
global low-level features for this dataset we use two video
features (MPEG-7 Motion Activity and temporal color mo-
ments), three MPEG-7 image descriptors calculated from
the main shot keyframe (Color Layout, Edge Histogram, and
Homogeneous Texture), and one audio feature (mel-scaled
cepstral coefficient). As the clustering method for these fea-
tures, we use the Self-Organizing Map [8] with k£ = 256
(16 x 16 map units), and the different clusterings are fused
using weighted linear combination.

3.2 CDVP-206

The CDVP-206 ontology is based on an hierarchical mul-
timedia taxonomy of 213 concepts developed in the Centre
for Digital Video Processing at Dublin City University [3].

Figure 1 shows the two topmost levels of the CDVP-206
ontology hierarchy.

A subset of 6656 shots from the TRECVid 2004 dataset
was annotated using this ontology [3], after which 206 con-
cepts in the ontology had been assigned to at least one shot.
The is-a hierarchy of the ontology was utilized in comple-
menting the annotations of parent concepts with their chil-
dren’s annotations. With this dataset we take a keyframe-
based approach and use three grid-based image features
(color histogram, Gabor texture and Canny edge detection)
extracted over a regular 5x5 grid. For each of these features,
we use k-means clustering with £ = 256. By concatenating
these feature-wise clusters, we obtain a bag-of-visterms rep-
resentation of 75 (5x5x3) visterms out of a vocabulary of
768 for each keyframe. To obtain the final representation
for the keyframes, we perform PLSA with 50 latent aspects.

4. EMPIRICAL STUDY
4.1 Inter-Concept Similarity

We begin our ontology analysis by examining semantic
and visual similarities and distinctness of the concepts in
both ontologies. For purposes of illustration, we classify
concepts as either similar, neutral, or distinct, in relation to
other concepts in the ontology using heuristically set thresh-
olds. In actual application of the similarity values, it would
presumably be preferable to use the proper values instead.

In these experiments, we consider concepts ¢,, and ¢, to
be visually similar if the visual distance (Eq. (4)) between
them is smaller than a threshold, i.e. if dvis(¢m,cn) < Tois.
Similarly, a concept ¢, is considered visually distinct if

argmin dyis(cm, ¢;) > Tvdis (6)
c; €O\em

where O is the full ontology, i.e. a set containing all concepts.

4.1.1 Assessments of Semantic Similarity

We ran two separate experiments in which we measured
how the visual inter-concept similarity correlated with hu-
man observations of concept similarity. In the first experi-
ment, we presented sets of six concepts from the LSCOM-
Lite ontology to users in random order. These sets always
contained a seed concept and its five visually most similar
concepts. Users were then asked to nominate the odd one
out, namely the concept which was conceptually most dis-
tant to the others. This process was repeated for each of
the 39 concepts by 30 different users. In the second ex-
periment, the procedure was repeated for each concept in
the CDVP-206 ontology with the exception that the sets of
six concepts were now composed of the seed concept, its four
visually most similar concepts, and a randomly selected con-
cept, again in random order. For each concept as the seed,
we gathered results from 30 users.

Table 1 gives an overview of the results of the semantic
similarity experiments. The upper and lower rows show the
normalized mean and the median of the number of times the
corresponding concept was chosen as the odd one out. The
seed column shows the proportion of cases where the seed
concept was selected, and the other concepts are listed in
decreasing order of visual similarity. In the case of CDVP-
206, the rightmost value corresponds to the random con-
cept. We observe a non-uniform distribution of selections
for the non-seed concepts as was to be expected. On aver-



Table 1: An overview of semantic similarity assess-

ments.
LSCOM-Lite seed other concepts
normalized mean | 0.186 | 0.076 0.068 0.121 0.217 0.331
median 3 1 1 1 4 7
CDVP-206 seed other concepts
normalized mean | 0.131 | 0.071 0.092 0.106 0.130 0.470
median 1 1 1 1 1 14

Table 2: Semantically and visually distinct concepts

in LSCOM-Lite with T%, = 0.3 and T<,, = 10.

visually distinct:
animal, bus, charts, court,
flag us, maps, prisoner,

semantically distinct:
airplane, animal, boat/ship, court,
entertainment, flag us, natural dis-

Table 3: Some visually distinct but semantically
similar concept pairs in CDVP-206 (Tfis = 0.4 and

Tssem == 3) .

airplane — airplane landing

airplane — pilot

airplane landing — sky

bank setting — chair

baseball — tennis

bicycle — bird

bridge — tractor

dancing — tennis

department store setting —
supermarket setting

dome — tent

driving — pilot

entering — government leader
entering — standing

ice skating — playing

ice skating — sport event

ice skating — sports

pilot — road

pilot — sky

prisoner — transportation event
prisoner — truck

street light — tent
supermarket setting — table
tractor — tree

snow, weather aster, vegetation

visually and semantically distinct:
animal, court, flag us

age, visually more similar concepts are selected more rarely
than less similar ones. The random concept introduced in
the CDVP-206 experiment is chosen in almost half of the
answers as the odd one out. The median rows help to il-
lustrate the asymmetric form of the distributions; for the
majority of the concepts, the visually most similar concepts
are chosen only very rarely.

For the purposes of the following experiments, we define a
concept ¢, as semantically distinct if n}, > T, where n,
is the number of times c¢,, was selected as the odd concept
out; the asterisk is used to mark c,, as a seed concept. In a
similar manner, we consider ¢,, to be semantically similar to
¢m if min(ny,,nn) < Tim. Due to the nature of the experi-
ments, the defined semantic similarity relationship between
concepts is necessarily asymmetric.

4.1.2  Similar and Distinct Concepts

For LSCOM-Lite, by using threshold 73;; = 0.1 we can ob-
serve a rather large clique of visually similar concepts con-
sisting of face, person, government leader, outdoor, urban,
building, car, road, crowd, and walking/running in addition
to a smaller clique consisting of vegetation, outdoor, and sky.
Then, by taking into account the semantic similarity with
Te.n = 3, we obtain two separate cliques of concepts that
can be regarded as both semantically and visually similar.
These cliques are formed by the following concepts: face —
person — government leader and outdoor — urban — building
— car — road. The threshold values naturally have a direct
effect on the results; the number of similar concepts can be
increased by raising the thresholds.

The most distinct concepts of LSCOM-Lite, according to
our analysis, are listed in Table 2. With the thresholds set
as T4, = 0.3 and T,, = 10, the sets of visually and seman-
tically distinct concepts contain 9 and 8 concepts, respec-
tively. With the said thresholds, there are three concepts,
viz. animal, flag us, and court, that satisfy both criteria.

With the larger CDVP-206 ontology, the semantically most
similar concepts are quite possibly not among the four visu-
ally most similar concepts, so with the experimental settings
we used we cannot determine the overall semantic distinct-
ness of concepts. Furthermore, due to the larger size and the
existing concept taxonomy, there is a large number of both

visually and semantically similar concepts, many of which
have a direct relation with each other in the concept hier-
archy. For these reasons, we consider it to be more fruitful
to explore interesting anomalies existing in the CDVP-206
ontology. We focus here on concept pairs for which the two
distance measures have contrary values, i.e. concepts that
are visually similar but have a high semantic distance, or
vice versa. Unfortunately, due to the nature of the semantic
similarity experiments we carried out, the list of visually dis-
tinct but semantically similar concept pairs is partial as we
only gathered data on the semantic distance of each concept
to four other concepts. We are thus limited to studying the
concepts which are semantically similar but visually distinct
from their visually nearest concepts. Table 3 shows a list of
such concepts with threshold values T4, = 0.4 and T%,,,, = 3.

In the opposite case, that is with concepts scoring high
values for semantic distinctness but being visually similar
to one or more concepts, we observe that the resulting con-
cepts are to a large extent either generic, upper-level con-
cepts in the taxonomy (Fig. 1), or object-related concepts
for which the visual similarity is strongly affected by the
background due to the use of global features. For exam-
ple, with 7%, = 0.1 and T%,, = 10 the list of semanti-
cally distinct concepts consists of two program categories
(commercial and science/technology), two other generic con-
cepts (indoor and roles), in addition to animal, bottle/drink,
keyboard, and transportation setting.

4.2 Co-occurrence

We now turn our attention to the co-occurrence patterns
among multiple concepts. We measure the co-occurrence
distance between two concepts using Eq. (5).

Figures 2 and 3 illustrate the relationship between co-
occurrence distance and visual similarity among all concept
pairs in the LSCOM-Lite and CDVP-206 ontologies, respec-
tively. The correlation between the two properties is evident:
concept pairs that co-occur frequently together are also visu-
ally similar. This is however largely due to the global natures
of both the low-level features and the ground-truth annota-
tions, as the positive training sets for co-occurring concepts
are highly overlapping. Table 4 shows the ten pairs of con-
cepts that have the smallest co-occurrence distances in both
ontologies. The results are hardly surprising as the concept
pairs are also semantically very similar, even redundant, or,
in the case of CDVP-206, often have a direct parent-child
relationship in the concept hierarchy.

Figures 2 and 3 also show that among concepts having a



0.8 -

0.6 -

04+

visual distance

02+t

0 . . C e
0 0.2 04 0.6

co-occurrence distance

Figure 2: Visual vs. co-occurrence distances of all
concept pairs in the LSCOM-Lite ontology.
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Figure 3: Visual vs. co-occurrence distances of all
concept pairs in the CDVP-206 ontology.

high co-occurrence distance, the visual similarities are no-
tably dispersed. There are pairs of concepts for which both
distances are high, but also a considerable number of con-
cept pairs with high visual similarity. This demonstrates a
well-known major problem for concept detection as it shows
that the low-level features we used are unable to make a
distinction between many pairs of concepts even when they
tend not to occur simultaneously. The problem seems to
be less severe for LSCOM-Lite which is understandable as
many of the 39 concepts included are quite distinct.

The majority of the concept pairs have a high co-occur-
rence distance between each other. This highlights the po-
tential utility of discovering and exploiting mutually exclu-
sive or almost exclusive concepts pairs in an ontology. Pro-
vided that the presence of certain concepts is known in given
multimedia objects, e.g. by reliable detection or user anno-
tations, it becomes possible to exclude the presence of a
number of other concepts, with high accuracy.

4.2.1 Auxiliary Concepts for Concept Detection

As a potential application for the kind of concept-concept
analysis we have presented here, we explore the utilization
of visual and co-occurrence relations in concept detection.
Based on the analysis, we add both positive and negative
auxiliary concepts to aid individual concept detectors. Such
auxiliary concepts were utilized in our TRECVid 2006 ex-
periments [15], where they increased the mean (inferred)

Table 4: Ten pairs of concepts having the smallest
co-occurrence distances in both ontologies.

LSCOM-Lite CDVP-206
face — person adult — person
car — road people activities — people

american flag — flag
graphics — text overlay
gun — weapon

city street — cityscape
adult — people activities
outdoor — road people activities — person
face — studio protest — protesting
boat/ship — waterscape | adult — male

outdoor — sky
outdoor — urban
building — urban
road — urban
building — outdoor

average precision of our detectors by 16%.

As discussed earlier and clearly seen in Figures 2 and 3,
there are few if any concepts that co-occur together fre-
quently but are visually very different in our setting. Still,
when concept pairs exist that show such a tendency, it is
conceivable that this relation may be helpful when building
concept detectors for either one of the concepts. The second
concept might highlight such properties that are not clearly
manifested in the primary model for the concept in question
and thus reveal objects that, while being relevant, would
potentially otherwise be missed.

The opposite holds for concepts potentially useful as neg-
ative auxiliaries: objects relevant for a visually similar but
seldom co-occurring concept are likely to be false positives
in our current detector. In fact, this property is likely to
be more useful than the positive auxiliary concepts in im-
proving individual detectors, for two reasons. Firstly, there
are a lot more potential pairs of concepts having the said
property, as can be seen from Figures 2 and 3 and secondly,
using positive auxiliaries requires a delicate tuning of weight
parameters for the concepts. The positive training data for
the concept itself is the most important source of informa-
tion for the concept detector, and the additional concepts
are responsible for fine-tuning the detector. The negative
auxiliaries, on the other hand, offer an additional source of
information about potential false positives and are thus less
sensitive to the values of the weight parameters.

To select auxiliary concepts based on the criteria described
above, we apply a distance measure d from the concept pairs
to the “optimal” relations for positive and negative auxil-
iaries in the two-dimensional space spanned by the visual
and co-occurrence distances. The optimal points are de-
fined as the maximal visual distance (dvis = 1) and zero
co-occurrence distance (deo = 0) for the positive auxiliaries,
and vice versa for the negative auxiliaries. We denote these
distances to the positive and negative optimal points as d
and d~, respectively. In order to emphasize mid-range con-
cept pairs, i.e. pairs that have non-extremal values on both
dimensions dyis and deo, we chose here to use Minkowski dis-
tance of order oo instead of Euclidean distance. Thus, for
concept pair ¢, and c¢,, we get

dt (em,cn) = max{deo(Cm, cn), |dvis(Cm,cn) — 1]} (7)
d” (em,cn) = max{|dco(Cm,cn) — 1|, dvis(cm,cn)} . (8)

When building a detector for a specific concept ¢, the con-
cepts in ¢; € O\ ¢ that have the lowest values of d+(cm, ci)
and d~ (¢m, ¢;) are determined and can then be used as pos-
itive and negative auxiliary concepts, respectively.



Table 5: Ten most positive and negative concept
pairs in LSCOM-Lite.

positive pairs

maps — weather

person — studio

face — studio

boat/ship — waterscape
computer/tv screen — face
computer/tv screen — person
car — truck

mountain — waterscape

negative pairs

military — urban

urban — vegetation

building — military

building — crowd

car — walking/running

car — vegetation

vegetation — walking/running
road — vegetation

outdoor — people marching
person — sports

crowd — road
car — face

Table 6: Potential auxiliary concepts for selected

concepts in the CDVP-206 ontology.

concept | positive negative

building | car  crash, dome, | car, indoor, office set-
bridge, steps and stair- | ting, juvenile/child/
cases, explosion/fire teenager, table

golf sports, sport event, | tree, land, water body,
events, vegetation, | outdoors, natural disas-
greenery ter

indoor hockey /ice hockey, | outdoors, building,
charts, sports, playing, | cityscape/urban setting,
airport setting car, vehicle

tree car crash, golf, weather, | car, governm. leader, in-
commercial, snow door, carrying, politician

weapon | missile, soldier, missile | outdoors, building,
launch, store setting, | standing, setting/scene/
military personnel site, people

Table 5 lists the ten concept pairs that have the overall
smallest values of d™ and d~ in the LSCOM-Lite ontology,
and Table 6 shows five positive and negative auxiliaries for
a number of selected concepts in the CDVP-206 ontology.
In both tables, we observe concepts that tend to co-occur
in the positive columns. The concepts are, however, not se-
mantically identical or even remarkably similar but rather
they tend to express specific instances of the presence of the
related concept. The negative columns, on the other hand,
show concepts that would be likely to produce false positives
for each other. It should be noted that not all concepts listed
in Tables 5 and 6 are likely to function as beneficial auxil-
iaries, and the final positive and negative auxiliary concepts
should be determined e.g. with cross-validation.

4.3 Concept Hierarchy

In the third part of this study, we take into account the
concept taxonomy existing for the CDVP-206 ontology. For
many applications, such an hierarchical ordering of concepts
is crucial and multimedia ontologies such be designed ac-
cordingly. A concept taxonomy brings a structured repre-
sentation to a large-scale ontology and enables a multitude
of types of top-down and bottom-up processing. Especially
the similarity relations between parent and child concepts as
well as between sibling concepts are of particular interest.

In this preliminary study, we present the analysis of two
sets of sibling concepts in the CDVP-206 ontology, namely
the children of the concept indoor:

laboratory setting, meeting/board room, court, house
setting, press conference, bank setting, factory setting,

Table 7: Five most positive and negative concept
pairs among the children of outdoors in CDVP-206.

positive pairs

rural setting — desert
beach — water body
building — bridge
mountain — snow
vegetation — snow

negative pairs
water body — road
land — building
rural setting — road
land — road

land — water body

departm. store setting, hospital setting, store setting,
church setting, studio setting, restaurant setting,
school setting, supermarket setting, night club setting
airport setting, transport. setting, office setting,

and the concept outdoors:

cityscape/urban setting, land, building, sky, bridge,
rural setting, statue/monument, beach, steps and
staircases, cloud, vegetation, waterfall, mountain,
water body, desert, snow, road.

These were selected as they provide a realistic setting that
could be obtained top-down as the results of an indoor-
outdoor detector or, alternatively, of manual annotation. A
second reason for using these is that in the CDVP-206 on-
tology they represent both the mutually exlusive and non-
exclusive sets of sibling concepts. The children of indoor in
CDVP-206 are almost completely mutually exclusive whereas
some concept pairs among the children of outdoors co-occur
rather frequently. As a result, the indoor concepts can
be processed with a multi-class classifier whose confidence
scores can be updated e.g. using a confusion factor [10, 20].
The children of outdoors, however, require a different ap-
proach, such as the one taken in Section 4.2.

First of all, we examine the visual distances between the
sibling concepts. With thresholds T2, = 0.1 and T4, = 0.2
for both sets, we observe both distinct and similar concepts
in both cases. Among the children of indoor, the list of
distinct concepts contains laboratory setting, bank setting,
church setting, supermarket setting, and night club setting.
We also observe a large clique of visually similar concepts
consisting of meeting/board room, court, house setting, press
conference, factory setting, and office setting, as well as some
additional similar pairs (transp. setting — house setting and
hospital setting— office setting). The presence of such a large
clique of similar concepts suggests a problem for further au-
tomatic classification of indoor-type concepts.

For the outdoors concepts, the visually distinct concepts
are bridge, statue/monument, beach, waterfall, and desert.
There are also two cliques of similar concepts, both of which
contain the common concepts building, sky, vegetation, water
body, and road. In addition, the first clique contains the con-
cept cityscape/urban setting and the second concepts land
and rural setting. There are also two additional similar pairs
(sky — cloud and sky — mountain). As mentioned earlier, in
this case the visual similarity provides only one viewpoint
on the concept relations as the outdoors concepts do also
co-occur in the same objects, with the concept pair hav-
ing the smallest co-occurrence distance being vegetation —
sky. Therefore, it is justified to analyze these concepts as in
Section 4.2 where the co-occurrence distance was taken into
account using Eqgs. (7) and (8). Accordingly, Table 7 lists
the five concept pairs that have the overall smallest values
of d™ and d~ among the children concepts of outdoors.



5.  CONCLUSIONS

In this paper, we presented an approach to multimedia on-
tology analysis which we feel has potential in building con-
cept detectors for large-scale ontologies, as well as in ontol-
ogy design and diagnostics. Multimedia ontologies are more
than lists of independent concepts, and the inter-concept re-
lationships provide important cues that should be employed
in semantic multimedia analysis.

In this study, we used non-localized or image-level annota-
tions for concepts. This inevitably leads to overlapping pos-
itive sets in the training data and thus makes it problematic
to distinguish between co-occurrence and visual similarity
properties. We were still able to obtain meaningful results in
our experiments, but using localized annotations and region-
based indexing could lead to more accurate concept models.
The used method for measuring semantic similarity using
test subjects does not scale well to large ontologies, and
further studies should consider the use of semantic concept
networks instead. The concept taxonomy provides a natural
structure to large ontologies, and especially the parent—child
and sibling relations should be utilized comprehensively.

A yet another viewpoint for ontology analysis is to con-
sider the reliability of the concept models, as concepts that
can be more accurately modeled should generally be favored.
This was ignored in this study and can provide a natural di-
rection for further analysis.
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