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Summary 

The enzyme horseradish peroxidase has many uses in biotechnology but a stabilized 

derivative would have even wider applicability. To enhance thermal stability, we applied 

consensus mutagenesis (used successfully with other proteins) to recombinant horseradish 

peroxidase and generated five single-site mutants. Unexpectedly, these mutations had 

greater effects on steady-state kinetics than on thermal stability. Only two mutants (T102A, 

T110V) marginally exceeded the wild type’s thermal stability (4% and 10% gain in half-

life at 50oC respectively); the others (Q106R, Q107D, I180F) were less stable than wild 

type. Stability of a five-fold combination mutant matched that of Q106R, the least-stable 

single mutant. These results were perplexing: the Class III plant peroxidases display wide 

differences in thermal stability, yet the consensus mutations failed to reflect these natural 

variations. We examined the sequence content of Class III peroxidases to determine if 

there are identifiable molecular reasons for the stability differences observed. 

Bioinformatic analysis validated our choice of sites and mutations and generated an 

archetypal peroxidase sequence for comparison with extant sequences. It seems that both 

genetic variation and differences in protein stability are confined to non-helical regions due 

to the presence of a highly conserved alpha-helical structural scaffold in these enzymes.  
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Abbreviations: ABTS, 2,2’-azino-bis(3-ethylbenzthioline-6-sulfonic acid; δ-ALA, delta 

aminolevulinic acid; DMF, dimethylformamide; DMSO, dimethylsulfoxide; HRP, 

horseradish peroxidase isoenzyme C; HRPA2, horseradish peroxidase acidic isoenzyme 

A2; GnCl, Guanidine Hydrochloride; IPMDH, 3-isopropylmalate dehydrogenase; LB, 

Luria-Bertani medium; MeOH, methanol; ML, maximum likelihood; MRCA, most recent 

common ancestor; NCBI, National Centre for Bioinformatic Information; PAML, 

phylogenetic analysis using maximum likelihood; PEG, polyethylene glycol; RZ, 

reinheitszahl (purity number; A403/A280); SBP, soybean peroxidase; t½app, apparent half-life; 

v/v, volume per volume; w/v, weight per volume. 
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Introduction 

The peroxidases (E.C. 1.11.17) are a ubiquitous subset of enzymes found 

throughout the animal and plant kingdoms [1]. The enzyme from horseradish roots 

(Armoracia rusticana; HRP) is the most widely studied example, due mainly to its many 

diverse uses in biotechnology [2]. Although moderately stable, the availability of a 

stabilized form of HRP would increase its applicability still further. Previous stabilisation 

studies have focused on the plant-derived protein, with several reports describing chemical 

procedures such as crosslinking [3-6], surface modification [7-9], attachment of PEG [10] 

and modification of carbohydrate residues [11]. Immobilisation of HRP [12, 13] and 

addition of stabilising reagents [14, 15] have also led to enhanced stability. To date, 

random mutagenesis has been used to genetically alter recombinant HRP stability [16, 17] 

while yeast cell surface display has been used to select recombinant HRP variants with 

altered enantioselectivities [18]. There have been no reported attempts to stabilise 

recombinant HRP via site-directed mutagenesis.  

It is not necessary to examine a protein’s three-dimensional structure in order to 

identify stabilizing substitutions. Using sequence information alone, Steipe et al. [19] 

successfully predicted stabilizing mutations in a VH antibody domain with >60% 

frequency. This “Consensus” alignment procedure allows the identification of key 

stabilising residues in a protein structure [20]. The approach postulates that conserved 

residues in the sequence alignments of related proteins are more stabilising than non-

conserved residues [21] and that a set of amino acid sequences of homologous, mesophilic 

enzymes contains sufficient information to allow rapid design of a thermostabilised, fully 

functional enzyme [22]. The chances of a deleterious mutation are reduced, since the 

replacement amino acid has already proven its evolutionary fitness at that position.  
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A consensus peroxidase protein sequence was developed “in silico” from aligned 

sequences of Class III secretory plant peroxidases downloaded from NCBI utilising 

custom-built bioinformatic software that scores the most frequent amino acid in a 

particular position [23]. Using this consensus sequence, five HRP residues were mutated to 

the corresponding consensus residue. The mutant proteins were expressed, purified and 

characterised in terms of their stabilities and steady-state ABTS kinetics. 

Only two mutants registered marginal stability gains over wild type recombinant 

HRP, in sharp contrast to previous consensus studies with other proteins [19-22, 24-26]. 

This unexpected outcome prompted us to undertake an evolutionary analysis of the Class 

III peroxidases and to generate a hypothetical archetypal peroxidase sequence. Comparison 

of extant sequences with our hypothetical archetypal peroxidase reveals an interesting 

insight into plant peroxidase structure, function and evolution.  

 

Materials and Methods. 

Materials. All reagents were purchased from Sigma Aldrich and were of analytical 

grade or higher. The pQE60 vector was purchased from Qiagen (Valencia, CA); XL 10 

Gold cells and QuickChangeTM Mutagenesis Kit were purchased from Stratagene (La Jolla, 

CA). The HRP gene was a generous gift from Prof. Frances H. Arnold (Caltech, CA, 

USA).  

 Cloning. Based on refs. [27, 28], the HRP gene was directionally cloned into the 

pQE60 vector as a fusion with the pectate lyase (PelB) leader sequence [29] (preceding the 

HRP’s N-terminus) and a hexa-histidine purification tag (at the C-terminus), to generate 

plasmid pBR_I [30]. 
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 Bacterial Strains and Plasmids. E.coli XL 10 Gold was used as host strain to 

express the HRP protein. The plasmid pBR_I, carrying the HRP gene coding for the HRP 

fusion protein, was used for expression and site directed mutagenesis.  

 Recombinant DNA Techniques. All DNA manipulations were carried out by 

standard techniques [31]. Site directed mutagenesis was carried out as described in ref. 

[32] utilising the QuickChangeTM method. Mutant primers were supplied by MWG-Biotech 

(Germany). Mutants were confirmed by commercial di-deoxy sequencing (Fusion 

Antibodies, Belfast, Northern Ireland). 

 Expression and Purification. A single cell transformed with pBR_I (or mutant 

derivative) was grown in 10mL LB medium containing 100 µg/mL ampicillin and 2% w/v 

glucose until the OD600nm reached 0.4; the cells were removed via centrifugation at 2,000 × 

g for 5 min and resuspended in fresh LB (500 mL) supplemented with 100 µg/mL 

ampicillin, 1mM δ-ALA and 2mM CaCl2. The cells were then allowed to grow at 30oC, 

220 rpm for 16 h. Following overnight expression, the cells were centrifuged at 2,000 × g 

for 5 min and the supernatant was treated with 50% w/v ammonium sulphate for 2 h at 

room temperature. The cells were periplasmically lysed [33] and the periplasmic contents 

were similarly treated with 50% w/v (with respect to the initial supernatant volume) 

ammonium sulphate. Proteins precipitated by ammonium sulphate from both the culture 

supernatant and the periplasmic preparation were collected via centrifugation, resuspended 

in 50mM phosphate buffer pH 7.5, pooled and dialysed versus the same buffer overnight at 

4oC. Sodium chloride (1M) and GnCl (200mM) were added to the dialysed fractions (10 

mL total volume), and these latter were purified via nickel affinity chromatography at 

room temperature. Sodium acetate (25mM, pH 4.5) was utilised to elute the bound HRP. 

The eluted HRP was again dialysed versus 50mM phosphate buffer pH 7.5 overnight at 

4oC, after which the protein was concentrated (Amicon-Plus 20 concentrator tubes; 2 mL 
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final volume), filter sterilised and stored at 4oC. These procedures led to typical expression 

values of 0.086 mg HRP per litre of culture medium. Purified HRP (specific activity 0.58 

µmol.min-1.mg-1, RZ value 1.1) gave a single band on a 12% polyacrylamide gel (not 

shown).  

 Enzyme Assay and Characterisation. The stability parameters of recombinant HRP 

and mutant variants were determined as described for plant HRP [3, 9] except that 

thermoinactivation time courses used 50oC. Samples were removed periodically onto ice 

and their residual activities determined upon re-warming to room temperature; this 

procedure gives apparent half-life, t½app). A constant protein concentration of 0.1 mg/mL 

was used for all thermoinactivations to control for possible effects of protein concentration 

on stability. The substrate ABTS (2,2’-azino-bis(3-ethylbenzthioline-6-sulfonic acid)) 

gives steady-state kinetics, permitting estimation of the apparent kinetic parameters, Vm/E 

and K’m [34, 35].  

 Generation of Consensus and Ancestral Sequences. Approach 1: The peroxidase 

consensus sequence was generated in silico by the ‘Protein Parser’ software [23]. One 

hundred fully confirmed peroxidase protein sequences were downloaded from the NCBI 

homepage [http://www.ncbi.nlm.nih.gov/], using the following search terms 

“((((((Peroxidase) AND (plant))) NOT (precursor)) NOT (putative)) NOT (segment)) NOT 

(catalase)”. The sequences were then aligned via the Clustal W alignment package [36], 

using the default parameters. The alignment was saved as a “.aln” file and subsequently 

processed by Protein Parser [23] with a tolerance level of “50% Consensus” (i.e. ≥ 50% 

frequency of occurrence of a particular amino acid) to generate the consensus sequence.  

Approach 2: Using the fully resolved phylogenetic tree for Class III plant peroxidases  

(with bootstrap support  values > 70% reported on all nodes;  [37]),  a single representative 

of each clade was selected at random and the corresponding multiple sequence alignment 
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was generated using the default parameters in Clustal W [36]. The alignment consists of 24 

taxa and is 455 positions in length, see Figure 1(a). This multiple sequence alignment was 

subsequently parsed by ProteinParser producing a new consensus sequence. This second 

consensus sequence is free from any sampling bias or over-representation of sequences or 

clades, and serves as a control for the consensus sequence resulting from Approach 1.  

Approach 3: To test our consensus method used in this analysis, we reconstructed all 

ancestral nodes on the reduced phylogenetic tree of the peroxidases. This approach 

determines the full-length peroxidase sequence that existed in the Most Recent Common 

Ancestor (MRCA) of the extant enzymes soybean peroxidase (SBP) and HRP. This 

sequence should concur with the features that the consensus approach determines. Using 

the maximum likelihood (ML) method implemented in Paml [38, 39] for marginal 

reconstruction of ancestral sequences, all ancestral nodes on the phylogenetic tree were 

determined (see Figure 1(a)). More specifically the extinct protein reconstruction was 

achieved using the aaml program (codeml.c with “seqtype=2”) in the PAML package [39] 

allowing for a gamma distribution model of rates across sites. This applies Bayesian 

statistics to define the most probable character state for each ancestral character over the 

entire length of the sequence. This statistical approach has previously been shown to yield 

very high confidence intervals for reconstructed states (91-99% accuracy for lysozyme c 

sequences; [38]. The ancestral sequence reconstruction is available in the supplementary 

information. The full length MRCA sequence referred to as the “Archetype”, (see Figure 

1(a) and 2), was then compared with the consensus sequences from Approaches 1 and 2. 

The conserved, and most likely critical, positions in peroxidase enzymes are evident in 

Figure 2.  
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Results. 

Wild type recombinant HRP was less stable than the plant enzyme, probably due to 

glycosylation of the latter [40]. Over a 10-min incubation period, the half-inactivation 

temperatures for recombinant and plant HRP were 50oC and 55oC respectively. His-tagged 

and non His-tagged wildtype recombinant HRP displayed identical thermal stabilities.  

Wild type recombinant HRP differed from the Approach 1 consensus sequence at 5 

positions (single-letter amino acid code, wild type residues first: T102A, Q106R, Q107D, 

T110V, I180F; see Figure 2) and each position was mutated within the pBR_I plasmid to 

the corresponding consensus amino acid, whilst maintaining the leader sequence and 

purification tag.  

All HRP thermoinactivations fitted to a first-order decay (r2 > 0.93 in all cases) up 

to 10 min at a constant 50oC, allowing estimation of a first-order k-value and, hence, an 

apparent half-life (t½; see Discussion). Only T102A and T110V displayed modest 

increases in t½ (4% and 10% respectively); the other mutants were less stable than wild 

type (Table 1). The five-fold combination mutant showed very poor thermal stability, close 

to that of Q106R, the least-stable single mutant (Table 1).  

Regarding HRP steady-state kinetics with ABTS, our values of 482 s-1 for Vm/E and 

0.093 mM for K’m (Table I) compare with literature values of 810 s-1, 0.27 mM and 670 s-1, 

0.18 mM for plant and recombinant HRP (both RZ >3) respectively [33], obtained under 

similar conditions. (Measurement of individual rate constants has not yet been undertaken.) 

Only marginal differences in Vm/E (+/- 26%) are noted for mutants T102A, Q106R and 

T110V, while Q107D is indistinguishable from wild type (as is the combination mutant; 

Table I). These four mutations lie at the back of the substrate-binding site. I180F, located 

in a proximal helix, also has Vm/E indistinguishable from wild type. Effects on K’m are 

more marked, with increases of 9.5-fold noted for Q107D, 5.8-fold for Q106R, 3.3-fold for 
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I180F, 2.2-fold for T102A and 1.9-fold for T110V (Table 1).  K’m of the combination 

mutant is two-thirds that of wild type, the only instance of a K’m value lower than the wild 

type value (Table 1). These differences are perhaps due more to the location of the 

mutations (close to, but not in, the substrate binding site; [41]) than to the nature of the 

substitution. Changes observed with the large ABTS substrate, however, may not reflect 

these mutants’ performance with alternative reducing substrates; we have not yet tested 

any others.  

 

Discussion. 

The phylogenetic relationships within the class III plant peroxidase family have 

been fully resolved [37]. Soybean peroxidase (see Figure 1, Group H) and HRP 

isoenzymes C (see Figure 1, Group A1) and A2 (see Figure 1, Group A2) are closely 

related in this phylogeny, yet their stabilities differ markedly. Relative clade positions of 

HRPC, HRPA2 and SBP versus our reconstructed “Archetype” sequence are shown in 

Figure 1. SBP (69% sequence similarity to HRPC) is notably more thermostable than 

HRPC [42, 43] but HRPA2 (68% similar to HRPC) is much less so (after 10min at 45oC, 

HRPA2 (Biozyme HRP-5) retained only 36% initial activity, while HRPC and SBP (both 

Sigma) each retained >90% activity; A.-M. O’Brien, unpublished work in this laboratory). 

Clearly, closely-related peroxidases show notable differences in thermal stability, yet our 

consensus mutants failed to reflect these differences. This prompted us to analyse 

peroxidase sequences and phylogeny by complementary methods and to generate a 

hypothetical archetypal peroxidase sequence. Comparison of HRP, HRPA2 and SBP 

sequences with our hypothetical archetypal peroxidase (see supplementary material) 

reveals an interesting insight into plant peroxidase structure, function and evolution.  
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 We examined kinetic stability (persistence of catalytic activity) rather than folding 

stability because HRP unfolding is not a two-stage process [44]. Unlike previous 

successful consensus studies with other proteins [19-22, 24-26], none of the five 

substitutions yielded a significant gain in HRP thermal stability. Indeed, our consensus 

mutations had a greater influence on K’m for ABTS than on thermal stability (Table 1). 

(Note, however, that our inactivation rate constants (k values) were measured at a single 

elevated temperature and at uniform protein concentration. Possible temperature- and 

concentration-dependences of the various k values have not yet been explored by 

thermoinactivations performed at different temperatures and/or protein concentrations. 

Hence, our reported half-lives should be taken as apparent values. In addition, our steady-

state kinetic experiments, undertaken at constant H2O2 concentration, yielded values of 

Vm/E and K’m for ABTS only. An alternative steady-state methodology [45], where H2O2 

concentrations are also varied, can give greater insights by permitting estimation of the rate 

constants k1, k2, k3 and k4. (This last is a feature of recombinant HRP but does not occur in 

plant HRP [34])).  

In previous studies, six out of ten [19] and six out of twelve [46] consensus mutations were 

thermostabilizing; it has also been noted that thermostabilization occurs in about 33% of 

the total consensus mutants generated [22]. Our definition of ‘consensus’ (≥50% 

occurrence of a particular residue at a given site) was not unduly restrictive: five out of six 

stabilizing consensus substitutions in an antibody VH domain occurred at frequencies much 

greater than 50% [19]. The apparent failure of the consensus approach to yield a 

thermostabilized HRP (at least under our experimental conditions) led us to examine the 

sequence content of Class III peroxidases. We wished to discern possible molecular 

reasons for (i) the observed thermal stability differences among these enzymes and (ii) the 

disappointing outcome of our experiments.  
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We located consensus mutations by counting amino acid frequencies at each 

position of a Clustal alignment of 100 plant peroxidase sequences [37] using our Protein 

Parser programme [23] (Approach 1). We validated this approach by two alternative 

methodologies, Approaches 2 and 3, described above in Methods. Approach 3 provided us 

with complete sequences of the ancestral enzymes that gave rise to the extant enzymes. 

The complete phylogenetic tree for over 70 Class III peroxidase sequences was previously 

constructed [36] but no ancestral sequence was disclosed in that report. We compared our 

consensus sequences from Approaches 1 and 2 with the ancestral sequence (Approach 3) 

of the most ancient reconstructed peroxidase (the first or “archetype” peroxidase, which 

pre-dates all other peroxidases) and found 85% agreement across the alignment.  

All three approaches identified T102A, Q106R and Q107D. Both Protein Parser 

(Approach 1) and ancestral protein generation  (Approach 3) revealed T110V and I180F. 

These correspondences confirm that our initial consensus-identification approach was 

valid.  

Alignment of the relevant sequences reveals that HRPC consensus substitution 

T110V actually occurs in the more thermostable SBP but, curiously, the T102A and I180F 

substitutions occur in both SBP and in the less thermostable HRPA2 (see supplementary 

material). These coincidences suggest that the consensus approach may not be a fruitful 

one for plant peroxidases, irrespective of its success with other proteins.  

In previous reports of consensus protein thermostabilization, the various conserved 

columns are distributed evenly throughout the entire sequence. For example, Lehmann and 

Wyss [20] produced a consensus sequence for a fungal phytase consisting of single 

isolated columns of alignment. Four of our five consensus positions lie within a very short, 

nine-residue cluster spanning T102 - T110 in helix D (see Figure 2). Only I180 occurs 

outside this region (immediately before helix F’; see Figure 2).  Such grouping is not 
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unique to peroxidases, however. Using a phylogenetic tree, Watanabe et al. [46] prepared 

12 ancestral mutants of dimeric 3-isopropylmalate dehydrogenase (IPMDH), six of which 

were thermostabilized. Although the full set of 12 mutations was distributed throughout the 

polypeptide sequence, four clustered within positions 53-61 while another three occurred 

within positions 179-184. They also noted that the consensus and ancestral mutation 

approaches frequently indicated the same residue substitutions, as found in the present 

study. In the case of IPMDH, however, it appears that the ancestral residues are 

thermostabilizing because they occur in a hyperthermophilic common ancestor and not 

because they are conserved [46]. Mammalian antibodies, in contrast, are much more recent 

in origin and any stability gains for these proteins arising from consensus mutation (e.g. 

[19]) are unlikely to arise from the antiquity of the substituting residue [46]. It is possible 

that the amino acid sequences comprising the helix D region of plant peroxidases have 

already maximized thermostabilizing interactions for this region of the protein and that 

more global stability determinants, not revealed by consensus alignments, occur elsewhere 

in the molecule. 

Thermal stability differences between homologous proteins may be due to a very 

few naturally occurring sequence variations ([47] and references within). Magliery and 

Regan [48] have developed a more advanced model which addresses some of the 

inadequacies of the basic consensus approach [22]. The underlying principle of their 

improved consensus method defines the probability of occurrence of a particular residue at 

a specific position compared to a reference state; i.e. it asks “how free is a position to vary, 

or change to another amino acid?” This method is potentially a very powerful test of 

covariance: the free energies of pairs of positions can be compared to determine if 

substitutions observed at one position in the sequence compensate for those observed at the 

other position [48]. In the present analysis, however, we wished merely to identify single 
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positions that vary between peroxidase groups, as these positions are candidates for 

conferring stability.  

Gajhede et al. [41] had earlier noted that sequence variability within the Class III 

peroxidases was confined to certain "hot spots" in the molecule, including the substrate 

access channel and part of the region surrounding the interaction site of the aromatic donor 

molecule. From previous studies on peroxidases within A. thaliana, these enzymes share 

on average 75% identity in their primary structure [49]. This indicates that within the A. 

thaliana clade there is strong selective pressure to retain the structural conformation (HRP 

A2 is 95% similar to A. thaliana A2 peroxidase; [50]). We suggest that this is the case 

throughout the evolutionary history of the peroxidases in toto, as we observe that the 

ancestral peroxidase generated in this study also follows the same structural form. The 

Class III peroxidases have evolved to retain their structural helices and active site, 

suggesting that structure and function are tightly associated in this family: see Figure 1(b) 

and Figure 2. Retention of such structures suggests that these enzymes have a very ancient 

function consistent with their modern day one. There is some slight sliding of helices 

throughout evolution but this is acceptable over longer periods of time [51]. On the other 

hand, peripheral regions of a protein outside the helices are free to change their sequence 

(and folding pattern) entirely [51].  

The present consensus residues clearly have little influence on peroxidase thermal 

stability. The dominance of a highly conserved alpha-helical structural scaffold suggests 

that the consensus approach is not a suitable protein stabilisation strategy for plant 

peroxidases, despite its success with other proteins. The determinants of differential 

thermal stabilities seen among plant peroxidases (e.g. HRP A2, HRP C and SBP) may lie 

in the unstructured loops linking the conserved helices. Unfortunately, these non-helical 

loops show a low incidence of consensus amino acids, so rational or semi-rational design 
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of stabilizing mutations within these potentially highly variable loops remains a 

challenging task. The ancestral protein we have reconstructed will serve as our starting 

point for this analysis.  

Interestingly, a recent paper proposes that Met 37 of the SBP holoprotein is a key 

determinant of that enzyme’s enhanced stability: this Met residue forms a direct van der 

Waals interaction with the C8 vinyl substituent of the heme prosthetic group which does 

not occur in holo-HRP [52]. (The stabilities of both heme-free apoproteins are very 

similar.)  

Finally, although our consensus approach did not yield thermostabilized HRP 

variants, mutant T110V displayed significantly-enhanced resistance to inactivation by 

excess hydrogen peroxide [53]. 
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Figure and Table Legends 

 

Figure 1 : Phylogenetic tree and ancestral nodes  

(a) Reduced Radial Phylogenetic tree adapted from ref. [37]. A sequence representing each 

of the 24 clades identified for the peroxidase family. The leaves of the phylogeny represent 

the following sequences: A1, Aru_AAA33377; A2, Pba_CAA66036; A3, 

Gma_AAL40127; A4, Pvu_AAD37430; A5, Nta_AAA34108; A6, Aru_CAA40796; F, 

Ath_AT4G16270; C, Sol_AAF63026; B, Ahy_AAB06183; T, Les_CAA33852; D, 

Ghi_AAL93152; G, Lus_AAB02926; H, Gma_AAD11484; M, Tre_CAA09881; O, 

Ath_AtP51; N, Ath_At4g17960; R, Ath_At2g24800; P, Ath_AtP40; I, Ghi_AAL93154; J, 

Ath_AtP35; L, Les_AAA65637; Q, Ath_AtP30; K, Ath_At5g24070; S, Ama_BAB16317. 

The letters before the “_” represent the species names: Aru (Amoracia rusticana), Pba 

(Populus balsamifera), Gma (Glycine max), Pvu (Phaseolus vulgaris), Nta (Nicotiana 

tabacum), Ath (Arabidopsis thaliana), Sol (Spinacia oleracea), Les (Lycopersicon 

esculentum), Ghi (Gossypium hirsutum), Lus (Linum usitatissimum), Tre (Trifolium 

repens), Ama (Avicennia marina). The number following the “_” is the Genbank 

Accession number. “Archetype” refers to the earliest class III peroxidase. (b) 3-D 

structure of extant HRPC A Chain (PDB ID: 1W4Y; ref. 54) top and reconstructed extinct 

archetype peroxidase bottom. 

 

 

Figure 2: Alignment of extant HRP (PDB accession code 1W4Y; ref. 54), consensus 

sequence from approach 1 and reconstructed sequence referred to throughout this paper as 

the “archetype” (see Figure 1 for phylogenetic positions). Alpha-helices are highlighted by 

the bars above the alignment and the capital letters refer to the helix classification as found 
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in ref. [41]. Columns of the alignment selected for mutation in this study are marked by * 

beneath the column. Conservation of amino acid positions is noted within the domains 

across the different sequences.  

 

 

Table 1: Stability and Kinetic Characteristics of HRP Consensus Mutants 

Modelled k-value (first-order exponential decay rate constant), apparent half-life at 50oC 

(t½; 0.693/k) and Vm/E and apparent K’m for each consensus mutant. All stability tests were 

performed at 0.1 mg protein per mL. ABTS was the reducing substrate for steady-state 

kinetic analysis. k-values, Vm/E and apparent K’m values, including standard errors (SE), 

were calculated using the Enzfitter
TM software package (Version 1.05; Biosoft Ltd, 

Cambridge, UK: 1987). Data are the mean of three determinations from independent 

experiments in all cases. “Combined” is the five-fold mutant containing all five amino acid 

substitutions. Stability analysis was carried out at a constant protein concentration of 

100µg.mL-1, whilst kinetic values were determined at a constant 65 pM enzyme per 

microtitre well. 
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Table 1: Stability and Kinetic Characteristics of HRP Consensus Mutants 
Modelled k-value (first-order exponential decay rate constant), apparent half-life at 50oC 
(t½; 0.693/k) and Vm/E and apparent K’m for each consensus mutant. All stability tests were 
performed at 0.1 mg protein per mL. ABTS was the reducing substrate for steady-state 
kinetic analysis. k-values, Vm/E and apparent K’m values, including standard errors (SE), 
were calculated using the Enzfitter

TM software package (Version 1.05; Biosoft Ltd, 
Cambridge, UK: 1987). Data are the mean of three determinations from independent 
experiments in all cases. “Combined” is the five-fold mutant containing all five amino acid 
substitutions. Stability analysis was carried out at a constant protein concentration of 
100µg.mL-1, whilst kinetic values were determined at a constant 65 pM enzyme per 
microtitre well. 
 

 

 

 

 

 Thermal Stability   ABTS Kinetics  

Mutant 
k-value 

(min-1) 

SE  

(min-1) 

t½ 

(min) 

r
2 

Value 

Vm/E 

(s-1) 

SE 

(s-1) 

K’m 

(mM) 

SE  

(mM) 

Wild type 0.056 ± 0.003 12.4 0.98 

 

482 ± 12 0.093 ± 0.013 

T102A 0.054 ± 0.004 12.9 0.97  605 ± 37 0.200 ± 0.030 

Q106R 0.085 ± 0.006 8.1 0.96  359 ± 7 0.541 ± 0.025 

Q107D 0.068 ± 0.008 10.3 0.96  486 ± 33 0.885 ± 0.09 

T110V 0.051 ± 0.005 13.7 0.93  374 ± 4 0.170 ± 0.02 

I180F 0.065 ± 0.007 10.7 0.94  497 ± 3 0.308 ± 0.02 

Combined 0.078 ± 0.007 8.8 0.92  491 ± 10 0.062 ± 0.007 
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Ryan-O’Connell-Ó’Fágáin – Supplementary Material: Comparison of Soybean Peroxidase (SBP) and Horseradish Peroxidase A2 (HRP-A2) 

Sequences with Archetype 

 
 
HRP    --------------------------------------------------------MQLTPTFYD---NSCPN-------------------- 
Approach 1    --------------------------------------------------------MQL---FY------CP--------------------- 
Approach 2    ----------M---------------L-------------------------------L---FY------CP--------------------- 
 
Archetype     MKNLFNLFMAMAFSSSSVSLLVLVLLLALIASTTTPQAGGYGGDDDDDIALASLEDAGLSPNFYYKLSKSCPDNGSLLKNVSPDFDSLESGVA 
 
SBP           ---------------------------------------------------------QLTPTFYR---ETCPN-------------------- 
HRP-A2        ----------MAVTNLPTCDGLFIISLIVIVSSIFGTS-----------------SAQLNATFYS---GTCPN-------------------- 
 
 
 
HRP    --------------------------VSNIVRDTIVNELRSDPRIAASILRLHFHDCFVNGCDASILLDNTTSFRT--EKDAFGNANSA-RGF 
Approach 1    -----------------------------IV------------R--ASLLRLHFHDCFV-GCD-S-LLD---------EK-A-PN-----RGF 
Approach 2    ---------------------------E-IVR--V------D---AA-LLRLHFHDCFV-GCDAS-LLD---------EK-A--N-N---RGF 
 
Archetype     SILTLNNNKKRNSDKYLRQQLTPEACVESIVRSVVQSAFKSDPTIAAALLRLHFHDCFVNGCDASVLLDPDSGGNNTEEKTAPPNLNLGLRGF 
 
SBP           --------------------------LFPIVFGVIFDASFTDPRIGASLMRLHFHDCFVQGCDGSVLLNNTDTIES--EQDALPNINSI-RGL 
HRP-A2        --------------------------ASAIVRSTIQQALQSDTRIGASLIRLHFHDCFVNGCDASILLDDTGSIQS--EKNAGPNVNSA-RGF 
 
 
 
 
HRP    PVIDRMKAAVESA--CPRT-VSCADLLTIAAQQSVTLAGGPSWRVPLGRRDSLQAFLDL-ANANLPAPFFTLPQLKDSFRNVGLNRSSDLVAL 
Approach 1    -VID-IK---E----CP---VSCADILALAARDSVVL-GGP-W-VPLGRRDS--A-----AN--LP-P---L--L---F---GL----DLVAL 
Approach 2    -VID-IK--LE----CP---VSCADILALAARD-V-L-GGP-W-V-LGRRDG--------AN--LP-P----------F---GL----DLVAL 
 
Archetype     EVIDDIKAALEAAPQCPGVSVSCADILALAARDAVVLSGGPSWEVPLGRRDGLRSAAADVANNNLPSPTFTVDTLISLFASKGLNNVTDLVAL 
 
SBP           DVVNDIKTAVENS--CPDT-VSCADILAIAAEIASVLGGGPGWPVPLGRRDSLTANRTL-ANQNLPAPFFNLTQLKASFAVQGLN-TLDLVTL 
HRP-A2   NVVDNIKTALENA--CPGV-VSCSDVLALASEASVSLAGGPSWTVLLGRRDSLTANLAG-ANSSIPSPIESLSNITFKFSAVGLN-TNDLVAL 
 


