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Abstract

The fundamental problem addressed in this thesis is the problem of con-
structing confidence limits for mean or totals in finite populations, when the
underlying distribution is highly skewed and contains a substantial proportion
of zero values. This situation is often encountered in statistical applications
such as statistical auditing, reliability, insurance, meteorology and biostatis-
tics. The motivating example underlying this research is that of auditing
(see the report published by the National Academy Press entitled “Statisti-
cal Models and Analysis in Auditing”, Panel on Non-standard Mixtures of
Distributions 1989), where interest is focused on computing the confidence
bounds for the true total error amount. In such populations the use of the
classical survey-sampling estimators such as the mean-per-unit, the difference,
the ratio or regression, based on the normality assumption of the sampling
distribution of the estimates, has been found unreliable, (e.g. Stringer 1963,
Kaplan 1973, and Neter and Loebbecke 1975, 1977). Several alternative meth-
ods have been proposed, of which the Stringer bound (Stringer 1963), is the
most widely used. This bound, while overcoming the unreliability problem of
the classical estimators, has been found to be extremely conservative.

In this research, we develop new methods for constructing confidence intervals
for the mean of a bounded random variable. Further, we apply these new
methods to data that are heavily skewed and marked by many zero values. Our
proposed confidence intervals have a good coverage probability and precision.

The first method is based on a novel use of the Edgeworth expansion for
the studentised compound Poisson sum. In this work, we have reduced the
problem of estimating the total error amount in auditing to the compound
Poisson sum, and explored the asymptotic expansion for a compound Poisson
distribution as a method of constructing confidence bounds on the total error
amount. This method is less restrictive than the Stringer bound, and imposes
no prior structure on the error distribution.

We obtain a bound on the cumulative distribution function of the prorated
errors, which we then use to give an alternative form of the Stringer bound.
With this form of the Stringer bound, we were able to use Bolshev’s recursion
to obtain a lower bound on its coverage probability, and showed that, for a
sample size, n ≤ 2, this lower bound is greater than or equal to the stated cov-
erage probability. We illustrate numerically that the Stringer Bound is reliable
when (n, α) falls into a number of ranges; specifically n ≤ 11 and a significance
level α ∈ (0, 0.05); n ≤ 10 and α ∈ (0, 0.1); n ≤ 9 and α ∈ (0, 0.20); n ≤ 8 and
α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5).We also proposed an extension to the
Stringer method based on Rom’s adjusted significance levels, and illustrated
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numerically the reliability of the extended Stringer bound for values of α in
the range .05 to .5, and for n = 1 to n = 20.

For the new bounds, we provide explicit expressions which make their compu-
tations straightforward. Monte Carlo simulations are carried out to evaluate
the performance of the methods developed in this thesis when applied to
accounting data, we investigate the performance of each method and assess
whether or not it is affected by varying the distribution of accounting data,
the effects of 100-percent overstatement error and the effects of error rates,
using real and simulated populations. The method based on compound Pois-
son sum seems to reliable for large samples. However, for small samples the
compound Poisson bound has the poorest results (in the sense of coverage
probability), in particular, for populations containing a lower concentration
of small error amounts. Although the extended Stringer bound, has a good
coverage probability for all sample sizes and significance levels, it shares the
extreme conservativeness of the Stringer bound.
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Chapter 1

Introduction

1.1 Background

Most financial databases are subject to annual audits, which often entail random sampling
whenever the data set is too large for a complete audit. Very often, auditors use statisti-
cal sampling results and detailed testing of individual transactions to obtain reasonable
assurance to support audit opinion on financial statements (The AICPA’s Audit Sam-
pling Guide 1992). The sample statistics are used to estimate the amount of monetary
error in an account balance (or transaction) with reasonable accuracy. Their ultimate
interest is to compute an upper confidence bound for the true total error amount in the
recorded monetary value. This is used by the auditor as a threshold to accept or reject
the account balance. That is, the auditor compares the upper bound with the tolerable
error (the maximum error in the population that the auditor would be willing to accept
while still concluding that the result from the sample has achieved the audit objective). If
the upper bound exceeds the tolerable error, the auditor regards the statistical evidence
as indicating the possibility of material error. This calls for a much more rigorous audit.
When the computed upper confidence bound does not exceed the tolerable error amount,
the auditor decides that there is no material error (Robert 1978).

Earlier attempts in analysing audit data using statistical sampling techniques adopted
the classical survey-sampling estimators such as the Horvitz-Thompson (1952) estimator,
difference, ratio and regression estimators. These methods, however, rely on the use of
the central limit theorem, and have been found to be unreliable when making inferences
about the mean or total monetary error (e.g. Stringer 1963, Kaplan 1973, Neter and
Loebbecke 1975, 1977, Baker and Copeland 1979, and Beck 1980). Thus, the coverage
probability attained by these estimators frequently falls substantially below the nominal
level for the sample sizes commonly used by auditors. This unreliability is attributed to
the high skewness, low incidence of error peculiar to auditing populations (e.g. Stringer
1963, Neter and Loebbecke 1975, 1977, Frost and Tamura 1986). The skewness effect
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of the underlying distribution of auditing data may be so severe that traditional large-
sample techniques, based on the central limit theorem, are unreliable even if the sample
size is moderately large or the population is stratified (Neter and Loebbecke 1975, 1977).

1.2 Motivation

The unreliability problem of the classical survey-sampling estimators has motivated a
number of auditing practitioners and academics to explore other approaches. A variety
of methods have been developed to overcome the limitations of the classical estimators;
these include the Stringer Bound (Stringer 1963), Multinomial Bound (Fienberg, Neter,
and Letich 1977 and Leitch et al. 1982), Cell Bound (Leslie, Teitlebaum, and Anderson
1979), Cox and Snell bound (Cox and Snell 1979), Moment Bound (Dworin and Grim-
lund 1984, 1986), Bayesian Normal (Menzefricke and Smieliauskas 1984), Multinomial-
Dirichlet (Tsui, Matsumura, and Tsui 1985), Numerical Inversion of a Characteristic
Function motivated by the Ferguson’s Dirichlet process (Tamura 1988), Variance Aug-
mentation (Rohrbach 1993), Likelihood Ratio Method (Kvanli, Shen, and Deng 1998),
Empirical Cornish-Fisher Expansion and Bootstrap Calibration (Helmers 2000), and
Monte-Carlo Simulation (Laws and O’Hagan 2000).

The differences in the various methods include both selection techniques and evalua-
tion of the sample result. One problem they have in common is that the confidence level
attained by the bounds constructed by these methods could differ substantially from the
nominal coverage, depending on the distribution of the error. For example, the Moment
and Bayesian Normal bounds have unpredictable coverage failures (Grimlund and Fe-
lix 1987), whereas the Cell bound achieves coverage probability larger than the nominal
(Leitch et. al. 1982).

The most commonly used method is the Stringer bound. This bound, while overcom-
ing the unreliability problem of the classical estimators, has been found to be extremely
conservative, in the sense that the confidence bounds are substantially greater than the
actual error amount (e.g. Leitch et. al. 1982; Bickel 1992). As pointed out by Leitch
et al. (1982), this conservatism has unfortunate consequences in terms of power against
immaterial monetary error. There is an interest in auditing practice to find a less con-
servative and still reliable alternative method (see PNMD1 1989). “The National Audit
Office (NAO), which is responsible to the UK parliament for the audit of all Government
departments and a wide range of other public sector bodies, has established a Statistics
Advisory Panel of professional statisticians which advises on a range of statistical issues in
audit” (Barnett and Howarth 1998). As evidenced by a recent survey in the United States
“some auditors improperly rely on formal statistical methods to evaluate non-statistical
samples” (Hall, Hunton, and Pierce 2002). An extensive simulation study comparing 14

1PNMD = Panel on Non-standard Mixtures of Distributions
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bounds used in monetary-unit sampling performed by Swinamer et al. (2004) using both
real and simulated data, suggested that no one method is superior in sense of giving
smaller and reliable upper confidence bound. Motivated by these considerations, this
work develops improved methods of constructing confidence bounds for the true total
error amount in auditing populations.

1.3 Contributions of this Research

We develop alternative methods for constructing confidence bounds for population mean,
when the underlying distribution is highly skewed and marked by many zero values. The
first alternative method is based on the Edgeworth expansion for studentised compound
Poisson processes. The basic idea underlying this approach is to construct a model
using compound Poisson process incorporating two aspects of auditing populations: the
error rate and the distribution of non-zero prorated errors. Then, based on this model,
we estimate the upper confidence bound on the population mean prorated error. This
method imposes no prior structure on the error distribution.

Second, we obtain a bound on the cumulative distribution function of the prorated
errors, which we then use to give an alternative form of the Stringer bound. With this form
of the Stringer bound, we were able to use Bolshev’s recursion to obtain a lower bound
on its coverage probability, and showed that, for a sample size, n ≤ 2, this lower bound is
greater than or equal to the stated coverage probability. We illustrate numerically that
the Stringer bound is reliable when (n, α) falls into a number of ranges; specifically n ≤ 11
and a significance level α ∈ (0, 0.05); n ≤ 10 and α ∈ (0, 0.1); n ≤ 9 and α ∈ (0, 0.20);
n ≤ 8 and α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5). We also proposed an extension to the
Stringer method based on Rom’s adjusted significance levels, and illustrated numerically
the reliability of the extended Stringer bound for values of α in the range .05 to .5, and
for n = 1 to n = 20.

For these methods, we provide theoretical and numerical results to show the efficiency
and reliability of the proposed methods. Large-scale simulation studies are also carried
out to assess their performance using real and simulated populations. Our results indicate
that these methods are reliable for all cases investigated, with some coverage failures for
small samples sizes from populations containing a lower concentration of small error
amounts in the first method. Comparisons with the Stringer are also discussed.

1.4 Outline of Scope of the Thesis

The remainder of the thesis is structured as follows:

In Chapter 2, the general background to financial auditing is described.
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In Chapter 3, we review the characteristics of errors in accounting population, the
various methods that have been proposed for computing confidence bounds on the total
error amount, and we discuss their limitations.

In Chapter 4, we develop a new method for constructing confidence bounds for the
total error amount in auditing population, when the underlying distribution is highly
skewed and contains substantial proportion of zero errors. The problem of estimating
total error amount in auditing is reduced to a compound Poisson sum. We explore the
asymptotic expansion for a compound Poisson distribution as a method of constructing
confidence bounds on the total error amount.

In Chapter 5, we obtain a bound on the cumulative distribution function of the pro-
rated errors, which we then use to give an alternative form of the Stringer bound. With
this form of the Stringer bound, we were able to use Bolshev’s recursion to obtain a
lower bound on its coverage probability, and showed that, for a sample size, n ≤ 2, this
lower bound is greater than or equal to the stated coverage probability. We illustrate
numerically that the Stringer bound is reliable when (n, α) falls into a number of ranges;
specifically n ≤ 11 and a significance level α ∈ (0, 0.05); n ≤ 10 and α ∈ (0, 0.1); n ≤ 9
and α ∈ (0, 0.20); n ≤ 8 and α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5). We also proposed
an extension to the Stringer’s method based on Rom’s adjusted significance levels, and
illustrated numerically the reliability of the extended Stringer bound for values of α in
the range .05 to .5, and for n = 1 to n = 20.

Creation of study populations for testing the bounds are discussed in Chapter 6.

In Chapter 7, we evaluate two methods developed in this thesis for estimating upper
confidence bounds for error amount in accounting data: the studentised compound Pois-
son method and the extended Stringer method. We perform a Monte Carlo simulation
to compare these methods. We investigate the relative performance of each method and
assess whether or not it is affected by varying the distribution of accounting data, the
effects of 100-percent overstatement error and the effects of error rates.

An overview and suggestion for future research are given in Chapter 8.
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Chapter 2

Overview of Financial Auditing
Procedure

This chapter provides a brief overview of the financial audit procedures. We explain what
is involved in financial auditing, and also establish the relevance of statistical analysis in
financial audits.

We start with a definition of auditing in Section 2.1. Section 2.2 presents financial
auditing procedures. Types of errors in accounting system is given in Section 2.3. The
methods of obtaining audit evidence are discussed in Section 2.4. Section 2.5 deals with
the audit sampling. Section 2.6 gives a brief overview of statistical sampling strategies in
auditing.

2.1 What is Auditing?

The American Accounting Association (AAA) define auditing as:

A systematic process of objectively obtaining and evaluating evidence regarding as-
sertions about economic actions and events, to ascertain the degree of correspondence
between those assertions and established criteria, and communicating the results to
interested users (Report of the Committee on Basic Audit Concepts 1972 p18).

This definition is broad but contains the basic idea that an audit is an investigation
process. Most of the time, the term audit is used with a descriptive word to indicate
the purpose of audit or the subject matter of the audit or both: for example, financial
audit, tax audit or operational audit. This research deals with financial auditing, which
is concerned with the collection and evaluation of evidence to support or refute assertions
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in the financial statements on which the auditor is required to form an opinion (Mautz
and Sharaf 1961).

The accounting system that underlies the financial statements is the primary focus
of the auditor. An integral component of the accounting system is a carefully docu-
mented set of procedures that prescribe how the accounting system should operate. The
accounting system contains internal controls that are designed to prevent unintentional
and intentional errors in the operation of the system. The auditors investigation usually
begins with a general review of the client’s accounting system, including its internal con-
trols. This is for the purpose of concluding whether the system meets the needs for which
it was designed.

The AUS defines Internal control structure (internal controls) as “management’s phi-
losophy and operating style, and all the policies and procedures adopted by management
to assist in achieving the entity’s objectives” (AUS 402). The internal control structure
extends beyond those matters that relate directly to the financial report and consists of
three elements:

(i) Control environment, which means “the overall attitude, awareness and actions
of management regarding internal controls and its importance to the entity”(AUS
402).

(ii) Information system, which means “ the methods and records established to
identify, assemble, analyze, calculate, classify, record and report the transactions
and other events that affect an entity, and to maintain accountability for assets,
liabilities, revenues and expenditures”(AUS 402).

(iii) Control procedures, which means “those policies and procedures in addition
to the control environment that management has established to ensure, as far as
possible, that specific entity objectives will be achieved”(AUS 402).

2.2 The Financial Auditing Procedures

The ISA recognizes three main types of auditing procedures, risk assessment procedures,
compliance testing and substantive procedures. A flow chart giving a summary of the
auditing procedures is shown in Figure 2.1.
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Figure 2.1: Summary of Auditing Procedures
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2.2.1 Risk Assessment Procedures

Prior to the testing of the account balance and control procedures, the auditor generally
performs risk assessment. By risk assessment we mean the assessment of the risk that
the financial statement to be audited will contain an unacceptable error. The acceptable
level of error is often referred to as materiality and may be expressed as a monetary value
or as a percentage of the total account value. As AUS 402 says:

The auditor should obtain an understanding of the internal control structure sufficient
to plan the audit and develop an effective audit approach. The auditor should use
professional judgement to assess audit risk and to design audit procedures to ensure
it is reduced to an acceptable low level (AUS 402).

AUS 402 defines Audit risk as “the risk that the auditor gives an inappropriate audit
opinion when the financial statement is materially misstated”. Material misstatement
in this context means an unacceptable misstatement. It is the auditor’s responsibility to
determine the margin of acceptable error or materiality. Audit risk has three components:
inherent risk, control risk, and detection risk.

(i) Inherent risk means “the susceptibility of an account balance or class of transac-
tions to misstatement that could be material, individually or when aggregated with
misstatements in other balances or classes, assuming there were no related internal
controls”(AUS 402).

(ii) Control risk means “the risk that misstatements that could occur in an account
balance or class of transactions and that could be material, individually or when
aggregated with misstatements in other balances or classes, will not be prevented
or detected on a timely basis by the internal control structure”(AUS 402).

(iii) Detection risk means “the risk that an auditor’s substantive procedures will not
detect a misstatement that exists in an account balance or class of transactions
that could be material, individually or when aggregated with misstatements in
other balances or classes”(AUS 402).

According to AUS 402, the understanding of relevant aspects of the internal control
structure, together with inherent and control risk assessments and other considerations,
will enable the auditor to:

(a) identify the types of potential material misstatements that could occur in the fi-
nancial statement;

(b) consider factors that affect the risk of material misstatements; and
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(c) design appropriate audit procedures

The audit procedures performed for this purpose are referred to in auditing standards
as “risk assessment procedures” (ISA 400). Such procedures by themselves do not provide
sufficient appropriate audit evidence on which to base the audit opinion, but may be sup-
plemented by further audit procedures in the form of compliance testing, and substantive
procedures.

2.2.2 Compliance Testing

Gathering of evidence to verify that the accounting treatment of various transactions
does not deviate from prescribed control procedures (e.g. an invoice is dated in the
correct way, a cheque has all necessary signatures, and vouchers are filled out correctly)
is referred to in the audit standards as “ test of controls” or “compliance testing”. This
gives a quantitative measure of how effectively the internal control system works. As ISA
400 says “auditors test the operating effectiveness of the internal control system of their
client, where necessary”. This is usually to ensure that the control relied on is operating
as prescribed. Here it is the control which is being tested and not the transaction.

The auditor draws a conclusion as to whether the control was operating as intended for
the period covered by the test. This conclusion is used by the auditor to decide how much
audit assurance regarding the completeness and accuracy of the data can be placed on the
internal control system, and much of this assurance needs to be obtained from substantive
testing. Due to inherent limitations of the internal control structure, for example the risk
of management override, the potential for human error due to carelessness, distraction,
mistakes of judgement, misunderstanding of instructions, and the effect of system changes,
auditors are not permitted to rely completely on the internal control systems, (ISA 400).
They are required, in all cases, to make some substantive test.

2.2.3 Substantive Procedures

These are designed to obtain evidence concerning the validity and accuracy of transac-
tions, balances, and the various elements of financial statements. The nature, timing,
and the extent of substantive procedures are based on the auditors’ (i) inherent risk as-
sessment, (ii) control risk assessment and (iii) preliminary materiality judgements. There
are two main types of substantive testing:

(a) Analytical Review

Analytical review involves comparing current financial information with those for previous
period (e.g. year) to see if there are any significant trends or variances. Various financial
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ratios are calculated, which sometimes involve regression analysis. According to ISA 520,
analytical procedures compare an entity’s financial information with, for example:

◦ Comparable information for prior periods;

◦ Anticipated results of the entity, such as budget or forecasts, or expectations of the
auditor such as depreciation;

◦ Similar industry information, such as a comparison of the entity’s ratio of sales to
the accounts receivable with industry averages, or with the same ratio in comparable
entities in the same industry.

(b) Substantive Tests of details

These are concerned with the examination of the correctness of recorded monetary values
in a financial statement. These tests provide direct evidence about the accuracy of total
recorded monetary values. The auditor either applies substantive tests of detail exten-
sively, or applies compliance tests to see if reliance on those controls are efficient and
effective in reducing the tendency of material error in accounts; if so, then although sub-
stantive procedures are required, they would not be as extensive as for a full verification
approach. The choice of the approach depends on the efficiency and effectiveness of the
internal control system, and also the cost of compliance testing compared with that of
substantive testing (ISA 530).

2.2.4 Dual-Purpose Tests

According to AICPA Audit Sampling (1992), in some circumstances an auditor may
design a test that will have a dual purpose: testing for compliance with prescribed control
procedures and with regard to the value of the recorded balance or class of transactions
in which they occur.

2.3 Types of Errors in Accounting System

Generally, there are two different types of errors in accounting system:

Errors of Commission: Occur when errors are committed on inputs to the ac-
counting system. An error, in accordance with ISA 530, means either control deviation,
when performing compliance tests, or misstatements, when performing substantive test
of details. Misstatements could be caused by human error or fraud. Fraud is defined as
intentional acts designed to deceive another person causing him financial loss. An error
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that arises from an isolated event that has not recurred, other than on specifically identi-
fiable occasions and therefore not reflective of similar errors in the accounting population,
is referred to as an anomalous error. An example of this would be an error caused by a
computer breakdown that is known to have occurred on only one day during the period.

Errors of Omission: Occur when amounts are not entered into the accounting
system.

2.4 Audit Evidence

Audit evidence is obtained from an appropriate combination of compliance tests and
substantive procedures, and is defined in ISA 500 as:

Audit evidence is all of the information used by the auditor in arriving at the con-
clusions on which the audit opinion is based, and includes the accounting records
underlying the financial statement and other information (para 30).

Methods of obtaining audit evidence include inspection, observation, inquiry and con-
firmation, computation and analytical procedures (ISA 500). The choice of appropriate
methods is a matter of professional judgement in the circumstances. The application of
these methods will often involve the selection of items for testing from an accounting
population, which is composed of a finite set of accounts, called line items.

As mandated by the ISA 500, when designing audit procedures, the auditor should
determine appropriate means of selecting items for testing. In the manual ( AUS 514,
p9), the following selection methods have been suggested:

(a) Selecting all items (100% examination): The auditor may decide it will be most
appropriate to examine the entire population that make up an account balance
or class transactions (or a stratum within that population). 100% examination is
unlikely in the case of test of control; however it is more common for substantive
procedures. For example 100% examination may be appropriate when the data
constitutes a small number of large value items, when both inherent and control
risks are high and other means do not provide sufficient appropriate audit evidence,
or when the repetitive nature of a calculation or other process performed by a
computer information system makes a 100% examination cost effective.

(b) Selecting specific items: The auditor may decide to select specific items from an
a population based on such factors as knowledge of client’s business, preliminary
assessments of inherent and control risks, and the characteristics of the population
being tested. The judgemental selection of specific items is subject to non-sampling
risk. Specific items selected may include:
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• High value or key items: The auditor may decide to select specific items within a
population because they are high value, or exhibit some other characteristic, for
example items that are suspicious, unusual, particularly risk-prone or that have
history of error.

• All items over a certain amount : The auditor may decide to examine items whose
values exceed a certain amount, so as to verify a large proportion of total amount
of an account balance or class transactions.

• Items to obtain information: The auditor may examine items to obtain information
about matters such as the client’s business, the nature of transactions, accounting
and internal control systems.

• Items to test procedures: The auditor may use judgement to select and examine
specific items to determine whether or not a particular procedure is being performed.

While selective examination of specific items from an account balance or class
of transactions will often be an efficient means of gathering audit evidence, it
does not constitute audit sampling. The results of procedures applied to items
selected in this way cannot be projected to the entire population. The auditor
considers the need to obtain appropriate evidence regarding the remainder of
the population when that remainder is material.

(c) Audit sampling: The auditor may decide to apply audit sampling to an account
balance or class of transactions. Audit sampling can be applied using statistical or
non-statistical sampling methods. Audit sampling is discussed in detail in the next
section.

Remark: The selection procedures in (b) above is purposive (non-random) where as
the selection procedure in (c) is random.

2.5 Audit Sampling

Audit sampling deals with the application of auditing procedures to less than 100 percent
of the items within an account balance or class of transactions such that all sampling units
have a chance of selection, in accordance with ISA 530. The purpose of the sample is to
evaluate some characteristics of the balance or class. Auditors may use a statistical or
non-statistical sampling (judgmental sampling) approach (ISA 530). Sampling is used in
both compliance and substantive testing, and is treated in various standard textbooks in
auditing (see e.g. Arkin 1984, Guy, Carmichael, and Whittington 1994).
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According to AICPA Audit Sampling (2001), cost-benefit is the determining factor
of using either a statistical or non-statistical sampling approach. The AICPA statement
on auditing standard No. 39 (1981) says that either approach is valid, and requires that
the auditor use professional judgment in “planning, performing, and evaluating a sample
and in relating the evidential matter produced by the sample to other evidential matter
when forming a conclusion about the related account balance or class of transactions”.
Any choice of approach depends on the circumstances.

The theory and practice of audit sampling is detailed in Bailey (1981), Arkin (1984),
the AICPA ( 1992).

2.5.1 Statistical Sampling

A sampling approach is considered statistical if the selection of sampling items are ran-
dom, each item having a calculated probability of being selected. Inferences about the
population parameters may be made from the sample statistics. Random sampling en-
ables the auditor to project sample results mathematically and to state, with measurable
precision and confidence, the estimated rate of deviation in the population under audit
(compliance audit sampling), or the estimated monetary misstatement in the population
(substantive audit sampling) (Carmichael and Benis 1993). The most important benefit
which statistical sampling offers is reduction of the risk of overauditing or underauditing.

2.5.2 Non-statistical Sampling

A sampling strategy is said to be non-statistical if either the selection method is non-
probabilistic, or the result from a probabilistic sample are evaluated judgementally.

We next discuss the use of statistical sampling and inference procedures in financial
auditing.

2.5.3 Role of Statistical Techniques in Auditing

The auditor’s ultimate desire is to plan audits in a way that minimizes the total expected
cost of performing the audit procedures while also giving a fair opinion on the financial
statement. Sampling is therefore important in meeting these requirements. There are
two audit procedures for which statistical sampling has been utilized. These are compli-
ance and substantive tests. Statistical sampling in auditing seeks to assist auditors to use
random selection methods and statistical evaluation techniques in testing, whether for
compliance or substantive purposes. The objective is to reduce the risk of biased selec-
tion and quantify the sampling confidence level achieved. We discuss various statistical
methods used in compliance and substantive tests in the next section.
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We conclude this section with the general guidance on the use of sampling in an audit
of financial statements provided by the ISA 530, which states that there are three main
considerations in audit sampling, namely (a) the selection of the sample, (b) its size and
(c) how the results are evaluated. These considerations are described as follows:

(a) Selection of the Sample: As ISA 530 says: “the auditor should select a sample
that is representative of the population”.

(b) Determining the sample size: According ISA 530, when determining the sample
size, the auditor should consider sampling risk, tolerable error, and expected error.

• Sampling risk is “the risk that the auditor’s sample will yield a conclusion different
from the conclusion that would be reached if the entire population were tested. The
lower the sampling risk that the auditor is willing to accept, the larger the sample
will need to be”.

• Tolerable error is “the maximum error in the population that the auditor would be
willing to accept and still conclude that the result from the sample has achieved the
audit objective. The tolerable error should be related to the auditor’s judgement
about materiality levels. The smaller the tolerable error, the larger the sample size
will need to be”.

• Expected error is “the error the auditor expects to be present in a population. If
the auditor expects an error, a larger sample should be taken to ensure that the
actual error is not larger than the planned tolerable error”.

(c) Evaluation of the results: According to ISA 530, after performing tests of control
or substantive procedures on one sample, the auditor should:

• Analyze any error detected in the sample;
• Project the errors to the population;
• Reassess sampling risk.

It is an auditor’s responsibility to choose testing methods which is in his/her pro-
fessional judgement are sufficient to satisfy generally accepted auditing standards. In
the next section we review some of the statistical sampling methods used in substantive
testing.
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2.6 Statistical Sampling Methods in Auditing

Items to be reviewed during an audit are usually selected through one the following prob-
ability sampling methods: simple random, stratified random, systematic and probability
proportional to size sampling, and therefore it is useful to provide a quick overview of
these methods. The set of accounts to be audited is assumed to consist of N recorded
(book) amounts, denoted by y1, y2, ..., yN . The total recorded amount and the progres-
sive sum of the recorded amount shall be denoted by Ty =

PN
i=1 yi and Yi =

Pi
j=1 yj

respectively.

2.6.1 Simple random sampling (SRS)

In this case a sample of line items of the fixed size n is drawn one by one with the
same probability but without replacement. That is each draw is carried out among
items that have not already been chosen. There are thus N !/(N − n)! samples each
consisting of a combination of n of the N line items, and each such sample item has
the probability (N − n)!/N ! of being selected. This is detailed by Cochran (1977) and
Särndal, Swensson, and Wretman (1992). Robert (1978) gives a detailed account of the
simple random sampling in auditing.

2.6.2 Stratified random sampling (STRS)

Stratified random sampling in auditing consists of dividing the auditing population into
strata according to the sizes of the recorded amounts, and then selecting sampling items
from each stratum independently by simple random sampling without replacement. Cy-
ert, Hinckley, and Monteverde (1960) introduced the idea of achieving greater sampling
efficiency through stratified sampling in auditing. A number of methods of stratifying au-
dit populations effectively have been suggested, for example by Arkin (1974) and Robert
(1978).

2.6.3 Systematic Sampling

Systematic sampling of line items is carried as follows: For a desired sample size n, a
fixed sampling interval I = N/n is calculated, where I is an integer. A random number
r is chosen between 1 and I, and the subsequent sample consists of items r, r + I, ...,
r+ (n− 1)I of the population with corresponding recorded amount yr, yr+I , ..., yr+(n−1)I
respectively.
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2.6.4 Probability proportional to size sampling (PPS)

PPS selection is sampling with unequal probabilities of selecting items. If items with
larger values are relatively more important, then sampling with probability proportional
to size will be useful. With PPS selection a sample of line items are taken in such a way
that the inclusion probability, πi is proportional to yi, that is πi = nyi/Ty, provided that
yi < Ty/n. This design implicitly stratifies the sample by recorded amount.

PPS was originally developed in survey sampling theory by Hansen and Hurwitz
(1943) for selection of clusters of unequal size. In the auditing context, this method and
its variations are referred to as Monetary Unit Sampling (MUS) (see for example The
AICPA’s Audit Sampling Guide 1992), also known as Dollar Unit Sampling.

The idea of using individual monetary values as the sampling units was suggested by
Deming (1960). The basic concept of monetary unit sampling in auditing was developed
independently, first by van Heerden (1961) and later by Stringer (1963) and Stephen.
van Heerden suggested that an account balance or the line item could be regarded as a
cluster of monetary units being either correct or in error. A monograph by Meikle (1972)
discussed an early version of MUS. Monetary unit sampling was made popular by the
work of Anderson and Teitlebaum (1973). Their article expatiated upon monetary unit
sampling in a way that is understandable to audit practitioners. Leslie, Teitlebaum, and
Anderson (1979) gave a detailed account of Monetary Unit Sampling.

There are a number of ways of achieving the inclusion probability, πi = nyi/Ty. We
will discuss the main ones below:

Systematic PPS:

The N items in the population are listed in a random order, their yi are cumulated and a
systematic selection of n elements from a “random start” is then made as follows: For a
desired sample size n, a fixed sampling interval I = Ty/n is calculated. A random value
r between 0 and I is chosen, r is called the random start. The item i is selected if Yi−1
< r ≤ Yi. The subsequent items j are selected if Yj−1 < c ≤ Yj , where

c = {h : h = r + kI; k = 1, 2, ..., n− 1} .
Systematic selection is a well known procedure and the mathematical theory associated
with this procedure is provided in Hartley and Rao (1962). Anderson and Teitlebaum
(1973) suggested this selection method should be used in auditing, and it is widely used.

Unrestricted random selection of line items with PPS:

This is simple random sampling without replacement of the monetary values. The un-
restricted random selection is performed by selecting n random monetary values, r =
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(r1, ..., rn) , such that 1 ≤ rj ≤ Ty (j = 1, ..., n). The item i is selected if Yi−1 < rj ≤ Yi.
This method was initially described in the auditing context by Meikle (1972) with the
title; Cumulative-Monetary-Amounts (CMA) sampling. This method is also known as
unrestricted Dollar-Unit sampling (Anderson and Teitlebaum 1973). It is an accepted
audit sampling procedure.

Cell selection:

The method of cell selection was developed by Leslie, Teitlebaum, and Anderson (1979).
It is implemented in the same fashion as systematic sampling except that an independent
selection is made in each interval. For a desired sample size n, cell sampling is performed
by dividing the population of monetary units into n cells of size Ty/n each. One monetary
unit is selected from each cell. A random selection is made for each cell independently to
identify the sample monetary values.

Sieve selection:

Sieve selection was developed by Rietveld (1978, 1979) to avoid the need to sort random
numbers or accumulate the recorded value subtotals. Sieve sampling is performed by
selecting a random number between 0 and Ty/n independently for each line item in
population. If the random number for line item i is yi or less (i = 1, 2, .., N), then the item
i is selected. If the random number is greater than yi, then the line item is not selected.
This method has the advantage of selecting distinct items. However, the achieved sample
size could be greater than or less than the required sample size.

2.6.5 Statistical Sampling Strategies in Compliance Testing

In compliance tests the variable of interest is an error rate (proportion of transactions for
which the internal control operates wrongly). Samples of transactions are used to make
inferences about the error rate. Many of the statistical methods adopted for quality
control have been utilised in compliance testing. These methods are often referred to
in the auditing context as attribute sampling (Robert 1978). Based on the auditor’s
understanding of the accounting and internal control system, the attributes that indicate
performance of a control, as well as possible conditions of deviation, are identified, e.g.
failure to obtain suitable authorization for a purchase order, which does not necessarily
lead to a monetary loss. The auditor generally makes a preliminary assessment of the
rate of error he/she expects to find in the population to be tested and the level of control
risk. This assessment is based on the auditor’s prior knowledge or the examination of a
small number of items from the population. The preliminary assessment is used by the
auditor to design the audit sample and to determine the sample size.
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The random selection methods typically used in compliance tests of internal con-
trol procedures include simple random sampling, systematic sampling, and some non-
statistical sampling methods such as haphazard selection and block selection (see The
AICPA Audit Sampling Guide 1992). Sampling is not applicable to compliance testing
if the internal control procedures provide no documentary evidence of performance.

The main attribute sampling methods used in compliance testing are:

1. Estimation sampling: A simple random sample is selected without replacement.
The sample is examined to find the number of deviations from control procedures.
This is then used to estimate the upper limit on the rate of deviation from control
procedures in the population at some desired confidence level.

The major drawback of this method is that, unless the expected error rate (an
anticipation of the deviation rate in the entire population) is estimated in advance,
it is not possible to determine, in advance, actual sample size to meet the auditor
objectives.

2. Acceptance sampling: This a specialized sampling scheme developed for use in
quality control. Acceptance sampling involves selecting a fixed sample of items
from a population and, based on criteria established in advance, the population is
either accepted or rejected. This sampling scheme is used in tests of control and
provides the auditor with grounds to decide whether or not a population with a given
error rate is acceptable. Here, the auditor needs to specify the tolerable error rate
(maximum population rate of deviation from prescribed control procedures that
the auditor will tolerate without modifying the planned reliance on the internal
controls) and the expected error rate in the population before carrying out the
selection and examination. The difference between the tolerable error rate and the
expected error rate is used to determine the sample size. If the evaluation of the
sample results show that it is unlikely for the tolerable error rate to be exceeded,
the population is accepted and the relevant internal controls relied on. Acceptance
sampling plans were developed by Dodge and Roming (1959). There are many
variations of this sampling scheme. One of the earliest is a double sampling plan.
A further extension of double sampling is sequential sampling.

3. Discovery sampling : This is a statistical sampling method which provides an in-
dication of the probability of finding at least one attribute in question. It is not
designed to estimate the error rate in the population. This method has been used in
tests of control when the objective is to discover one example of an error if errors are
occurring at or above a given rate. It is a special case of acceptance sampling (for
which the expected error rate is set at zero). This sampling approach is very useful
when no errors are found in the sample, the conclusion being that the auditor can
rely on the relevant internal control. On the other hand when one or more errors
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are found, the auditor reduces his/her planned reliance on internal control. This
method gives the smallest sample size possible.

The theoretical properties of these methods, which usually use the Binomial or Poisson
approximations to the appropriate Hypergeometric distribution are well known. Their
application in auditing was first suggested by authors such as Vance (1947), Vance and
Neter (1956), and Arkin (1961).

The use of each of the above three attribute models depends on the auditor’s purpose
for the compliance tests. For example, if the auditor wants to estimate the rate of
occurrence of compliance error in the population, estimation sampling is employed. On
the other hand if the auditor’s purpose is to determine whether the occurrence rate of
compliance error is above or below a certain level, acceptance sampling is used. Discovery
sampling is also used if the auditor wants to preset the error rate at zero.

The use of statistical sampling and inference procedures for compliance testing has
not posed any special problem (see Robert 1978), and will not be dealt with any further
in this work.

2.6.6 Statistical Sampling Strategies in Substantive Testing

The statistical sampling methods often used in substantive auditing include simple ran-
dom, stratified random, systematic and probability proportional to size sampling. The
problem in auditing is the evaluation of substantive tests of detail, which entails using a
valid evaluation technique to determine whether the recorded amount could be materially
misstated. According to SAS No. 39 the auditor should

“project the error results of the sample to the population from which the
sample was selected and should add that amount to the errors discovered
in any item examined 100 percent. Regardless of whether the sample results
support the assertion that the recorded amount is not misstated by an amount
greater than tolerable error, the client may adjust the recorded amount of
the account because of the errors identified in the population. The total
projected error after the client has adjusted the recorded amount should be
compared with the tolerable error (materiality) for the account balance or class
of transactions” ( AICPA statement on auditing standard No. 39, 1981).

The methods used for evaluating account balances can be grouped as classical or
non-classical methods. The classical methods are the survey-sampling estimators such
as the Horvitz-Thompson (1952) estimator, difference, ratio and regression estimators
(see appendix A for the formulation of these estimators). These methods, which rely on
the use of the central limit theorem, were first employed in analysing audit data. Many
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Figure 2.2: Statistical Sampling Techniques in Substantive Auditing

researchers including Stringer (1963), Kaplan (1973), and Neter and Loebbecke (1975,
1977) have acknowledged that the classical survey-sampling estimators are unreliable
when making inferences about the total monetary error amount. An important feature
of this problem is that a substantial proportion of the items in the population are usually
error free, while the non-zero errors are highly skewed to the right (Johnson, Leitch, and
Neter 1981 and Neter, Johnson, and Leitch 1985).

Much effort has been spent on developing alternative strategies (sampling designs and
estimators) that might provide more satisfactory upper confidence bound for the total
error amount (PNMD 1989). The alternative methods which are mostly heuristics and
sometimes ad hoc are referred to as non-classical methods. Some of these methods which
are in use among auditing practitioners are summarized in Figure 2.2 and their definitions
will be detailed in Chapter 3. However, the confidence level attained by the non-classical
methods, which are discussed in Chapter 3, could differ substantially from the nominal
coverage, depending on the distribution of the error amount. So the development of new
methods and approaches for setting appropriate confidence bounds for the total error
amount in auditing data is a challenge for statisticians. This problem forms the core of
much of the subsequent research.

2.7 Summary

We recall the basic procedures of financial auditing and also establish the role of statistical
analysis in financial audits. Two main types of audit tests frequently rely on statistical
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sampling. First, when an auditor needs evidence to verify that the accounting treatments
of various individual transactions comply with prescribed procedures. Second, when an
audit requires evidence to verify that account balances are not materially misstated.
To evaluate the results of a sample the auditor is required to project errors found in the
sample to the entire population. For compliance testing, error projection does not involve
any statistical difficulties. For substantive testing, the auditor projects the total error
for the population to obtain an estimated total error amount. This poses a challenging
problem when the auditing data is highly skewed and contains few errors. This problem
is the subject of this research.
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Chapter 3

Related Work

The aims of this chapter are to formulate the statistical auditing problem, to review the
current state of the art of statistical sampling as applied to auditing, and to establish the
need for the research. Research on the use of statistical sampling in financial auditing
includes investigations of the behaviour of estimators when applied to audit populations.
The range of statistical techniques employed in substantive auditing is quite diverse.

The plan of the chapter is as follows. Section 3.1 presents the notations and formu-
lation of the statistical auditing problem. Section 3.2 reviews the empirical evidence on
the characteristics of errors in accounting populations. Section 3.3 reviews the classical
sampling estimation methods used for projecting the total error amount in substantive
auditing and the problems associated with them. Section 3.4 through 3.7 review respec-
tively the combined attribute and variable methods, likelihood ratio methods, methods
based on asymptotic expansions, and Bayesian approaches to analysis of audit data.
Comparative studies are reviewed in Section 3.8. A summary is given in Section 3.9.

3.1 Substantive Testing: Statement of the Problem

The account to be audited is assumed to consist of a set of N recorded (book) amounts,
denoted by y1, y2, ..., yN , and the total recorded amount by Ty :

Ty =
NX
i=1

yi. (3.1)

The audited (true) amount of the N line items in the population will be denoted by
x1, x2, ..., xN , and the total audited amount by

Tx =
NX
i=1

xi (3.2)
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The error in item i, is defined by zi = yi − xi, 1 ≤ i ≤ N. When zi > 0, the ith item
is said to be overstated and when zi < 0, it is understated. When zi = 0, the account is
said to be error free. The total error amount is denoted by

Tz =
NX
i=1

zi. (3.3)

For yi 6= 0, ti = zi/yi is called the fractional or prorated error (taint).

The values (x1, x2, ..., xN) are unknown and inaccessible before sampling, whereas
(y1, y2, ..., yN) are known. We assume that the amount of any overstatement does not
exceed the stated recorded value. The purpose of the audit is to estimate the total error
amount Tz, on the basis of an examination of a sample of size n items in the account. The
auditor’s interest usually focuses on obtaining as accurate an upper bound on Tz possible,
at a specified confidence level. If this upper bound exceeds the tolerable error amount
allocated to the statistical tests of details, the auditor regards the statistical evidence as
indicating the possibility of material error. When the upper confidence bound computed
does not exceed the tolerable error amount, the auditor decides that the recorded value
is a fair reflection of the accounts.

An important feature of this problem is that a substantial proportion of the items in
the population are usually error free, while the non-zero errors are highly skewed to the
right (Johnson, Leitch, and Neter 1981; Neter, Johnson, and Leitch 1985). The remainder
of this chapter will review various estimators developed to provide more satisfactory upper
confidence bound for the total error amount.

3.2 Characteristics of Accounting Populations

In testing the effectiveness of various sampling and estimation methods in substantive
auditing, assumptions are required regarding the distribution of errors and rate of oc-
currence of errors in auditing populations. Here we review empirical articles on the
characteristics of accounting populations, which will be used later in Chapter 8.

3.2.1 Distribution of Auditing Populations

Error characteristics are of great importance in determining the most appropriate and
efficient sampling plan. In what follows, we provide an overview of the empirical evidence
on characteristics of errors (mis-statements) in auditing populations. In particular, we
discuss error types, (i.e. whether errors are overstated -the recorded value exceeds the
audited value or understated -the audited value exceeds the recorded value), magnitude
of fractional or prorated error and any other pertinent details.
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Work by Stringer (1963), Kaplan (1973), and Neter and Loebbecke (1975, 1977) has
indicated that auditing populations are highly positively skewed, that is the small-value
items have a high frequency compared with the large-value line items.

Ramage, Krieger, and Spero (1979), Johnson, Leitch, and Neter (1981), and Neter,
Johnson, and Leitch (1985) analysed a data set from Peat, Marwick, Mitchell, & Co.
Approximately two-thirds of the data were accounts receivable audits and one-third in-
ventory audits. The data set contains the sample error rate, the recorded and audited
values for all sample items with error, as well as various characteristics of the recorded
amounts in each of the accounting populations. The errors considered in their studies are
those errors observed by the audit firm in audit samples for substantive tests. In each
case the sampling method employed by the auditor is stratified random sampling.

Ramage, Krieger, and Spero (1979) found that this auditing population was highly
positively skewed, and the distribution of error amounts for both inventory and accounts
receivable is not normal. Also the proportion of overstatement and understatement errors
differ for different types of population. About 80% of accounts receivable were reported
to have mainly overstated errors, whereas errors in inventory include both overstatement
and understatement with about equal frequency.

Empirical studies carried out by Johnson, Leitch, and Neter (1981) on the analysis of
error distributions in 55 accounts receivable and 26 inventories gave the following findings:

i. The distribution of error amounts for both inventory and accounts receivable is not
normal.

ii. Most errors in receivables audits are overstatements, whereas in inventory audits
overstatement and understatement errors are about equal frequency.

iii. The distribution of overstatement and understatement error amounts are unimodal.

iv. Prorated error distributions are often degenerate at 1.0 and usually more than 10%
of the line item have this degeneracy.

v. Large negative prorated errors are present in many inventories.

vi. Mean prorated error for accounts receivable tends to be 0.2 or higher.

vii. The shape of the prorated error distributions tends to be unimodal and negatively
skewed for inventory and either reverse J-shaped or unimodal and positively skewed,
with overstatement errors predominating, for accounts receivable.

Neter, Johnson, and Leitch (1985) also analyzed these data sets on the basis of mon-
etary units. Their studies indicate that
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i. The monetary unit prorated error distributions are much more concentrated near
zero than the line-item prorated error distributions.

ii. The shape of the monetary-unit prorated error distributions are similar to those of
the corresponding line-item prorated error distributions.

iii. The median monetary-unit prorated error rate for accounts receivable is 0.040
whereas the median monetary-unit prorated error rate for inventory is 0.186.

iv. The monetary-unit prorated error rates for both accounts receivable and inventory
accounts tend to be higher than the line-item prorated error rates.

v. The size of the prorated error tends to vary inversely with recorded amount. The
distributions of the proportion of overstatement errors in audits measured on a
monetary-unit basis are similar to the corresponding line-item basis.

vi They inferred that the shapes of the prorated error distributions vary largely, that
no one standard distribution (such as exponential distribution, gamma, beta and so
on) can be used satisfactorily, in all the cases, to describe prorated error distribution.

Ham, Losell, and Smieliauskas (1985) investigated the error characteristics of five
accounting categories using a data set from PriceWaterhouse, which consist of audit files
of five annual audits for each of 20 companies. The following error characteristics were
observed :

i. Error values for accounts receivable and sales are likely to be overstated, while
accounts payable and purchase errors tend to be understatement.

ii. Mean error amount for accounts receivable tends to be greater than the mean error
amount of the other four accounts.

iii. Error amounts are highly variable and are not normally distributed.

iv. The distributions of inventory, accounts receivable, and accounts payable errors are
significantly different. Accounts receivable, and accounts payable errors are affected
by individual firm characteristics which do not simply represent industry differences.

v. Accounts receivable prorated errors are larger than the prorated errors of the ac-
counts payable, purchase, sales, and inventory. Inventory prorated errors are the
smallest.

All the above studies on the error characteristics in audit population have been based
on manufacturing and merchandising companies. Bell and Knechel (1994) extended the
research by examining the characteristics of errors in audit of property and casualty
insurers. They reported that the error amounts are not normally distributed, with many
of the errors recurring.
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3.2.2 The Rate of Error Incidence in Auditing Population

Ramage, Krieger, and Spero (1979) examined the rate of error incidence of 97 different au-
dit populations. These studies used archived data of detected errors obtained from Peat,
Marwick, Mitchell, & Co described in subsection 3.2.1. They reported that auditing popu-
lations have a low error occurrence rate and that the error rates vary substantially by both
accounts receivable and inventory type of population.

Johnson, Leitch, and Neter (1981) also found great variation in the error rate for both
accounts receivable and inventory using the same database. They reported that accounts
receivable populations that they examined have first quartile, median and third quartile
error rates of 0.4%, 2.4% and 8.9% respectively. Thus a random sample of 100 items from
this distribution will contain, on the average, 2 non-zero errors. They also reported that
inventory audit populations have first quartile, median and third quartile error rates of
7.73%, 15.4% and 39. 9% respectively. That is a random sample of 100 items from this
distribution will contain, on the average, 15 non-zero errors.

Ham, Losell, and Smieliauskas (1985) examined the rate of error incidence, using
a data set from PriceWaterhouse, mentioned in subsection 3.2.1. Their study expands
upon previous work in two important directions. Firstly, they examined errors in accounts
payable, purchases, sales, accounts receivable and inventory, whereas the previous studies
(by Ramage, Krieger, and Spero 1979 and Johnson, Leitch, and Neter 1981) examined
only the error characteristics in accounts receivable and inventory. Secondly, four error
rates to describe error characteristics were defined and calculated. The previous studies
concentrated on error frequency, and prorated error, but these studies, in addition to
these two, included the proportion of monetary units in error and total discovered error
amount as a proportion of the recorded value of the sample. The authors reported that
the rate of error incidence is higher for receivable accounts than for inventory and the
error rates differ significantly between accounting categories except for the proportion
of the net monetary error. Ham, Losell, and Smieliauskas (1985) found that accounts
payable have the highest number of errors in relation to the number of items tested.

Neter, Johnson, and Leitch (1985) reported that, among the accounts receivable pop-
ulations that they examined, 40% had error rates below 2.5% and up to 73% of them had
error rates below 12%.

3.2.3 Summary of the Characteristics of Accounting Populations

The foregoing studies provide some insight into the evidence on the characteristics of
errors in auditing populations. The accounting populations are highly positively skewed
(e.g. Stringer 1963, Kaplan 1973), and there is considerable diversity in the character-
istics of error amounts in accounting populations across the accounting subsystem. The
studies suggest that there is considerable variation in each account type, error amount
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Table 3.1: Summary of the Principal Findings

Author(s) Account type Error Rate
Error
Distribution

Prorated
Error
Distribution

Ramage et al. 1979
Inventory
Receivable

low
low

non-normal N/A

Johnson et al. 1981
Inventory
Receivable

.154

.024
non-normal

unimodal
reverse J

Neter et al. 1985
Inventory
Receivable

0.186
0.040

non-normal
unimodal
reverse J

Ham et al. 1985

Inventory
Receivable
Payable
Sales
Purchases

low
low
moderately high
low
low

non-normal N/A

distribution as well as in error rates and balance of errors between overstatement and
understatement. The lack of normality of the error amounts distribution was noted by
many researchers (e.g. Ramage, Krieger, and Spero 1979; Johnson, Leitch, and Neter
1981; Neter, Johnson, and Leitch 1985 and Ham, Losell, and Smieliauskas 1985).

The results of Johnson, Leitch, and Neter (1981) supports the results obtained by
Ramage, Krieger, and Spero (1979). The finding of Ham, Losell, and Smieliauskas (1985)
are, in general, consistent with Ramage et al. (1979), Johnson, Leitch, and Neter (1981),
and Neter, Johnson, and Leitch (1985). One notable exception was that Ham, Losell,
and Smieliauskas (1985) found that the rate of error incidence is higher for receivable
accounts than for inventory. In Table 3.1, we list principal findings with authors.

These studies may be biased since the audit data sets used in the study is restricted
to certain industries and clients and it is uncertain how representative it is of the mass of
audit populations. Furthermore, the data is mostly confined to two accounting categories,
accounts receivable and inventory. However, the studies have provided some insight into
the characteristics of errors in auditing populations.

In the remainder of the chapter we consider the various estimation methods that
have been proposed for computing the upper confidence bound on Tz and which are in
use among the auditing practitioners, together with the problems associated with them,
commencing with the classical estimators.
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3.3 Estimating the Total Error Amount: Classical Ap-
proach

The estimators commonly used in the survey sampling such the Horvitz-Thompson (1952)
estimator, the difference, ratio or regression estimator were first used in the estimation
of the total error amount, Tz (see appendix A). These methods are described in standard
textbooks such as Cochran (1977) and Särndal, Swensson, and Wretman (1992) in the
general statistical context, and their application in auditing is discussed in textbooks such
as Robert (1978), Bailey (1981), and Arkin (1984). The Horvitz-Thompson estimator
with simple random sampling without replacement is often referred to in auditing context
as mean-per-unit. The mean-per unit, difference, ratio and regression estimators are
referred to in auditing literature as variable sampling (e.g. The AICPA’s Audit Sampling
Guide 2001 ). These estimators are used in auditing with SRS, STRS and PPS sampling.

The consideration of the above mentioned estimators in auditing started with Pry-
thercy (1942). He raised numerous issues, including the need to stratify populations
and examine the high-value stratum on 100 percent basis and perform some sampling
in the lower strata. Hill, Roth, and Arkin (1962) discussed the application of stratified
sampling and cluster sampling, as well as difference estimators in auditing. Elliot and
Rogers (1972) integrated quantitative evidence about the internal control system, along
with other audit procedures, in the determination of the required sample size for tests of
details using statistical sampling methods. The classical survey-sampling estimators were
implemented widely in auditing in 1970s and 1980s, their use has declined in the 1990s,
(AICPA Auditing Practice Research and Education 1995, p94). The application of the
Horvitz-Thompson (1952) estimator, the difference, ratio and regression estimators to
estimate the total error amount, however, lead to certain problems which we now discuss.

Kaplan (1973) performed a simulation study to examine the behaviour of the mean-
per-unit, difference, ratio, and regression estimators with sample sizes ranging from 25 to
200, and at 95 percent confidence level. He found that the sampling distribution of these
estimators often deviate from the Normal or Student’s “t” distribution. He also found
that the estimates of the mean were highly correlated with estimates of the standard error.
Kaplan (1973) hypothesized that high correlation between the mean of mean-per-unit,
difference, ratio, and regression estimators and standard error estimates would inflate
(reduce) the probability of a type II (type I) error.

The unsatisfactory performance of the mean-per-unit, the difference, ratio and re-
gression estimators in highly skewed accounting populations with low error rates was also
noticed by Neter and Loebbecke (1975, 1977). They extended Kaplan’s work by empiri-
cally assessing the reliability of ratio, mean-per-unit and difference estimators using four
real audit populations. Twenty study populations from the four real audit populations
were simulated with error rates 0.5%, 1%, 5%, 10% and 30%. Sample sizes of 100 and
200 with both unstratified and stratified samples of line items were utilised. Neter and

38



Loebbecke (1975, 1977) observed that the confidence interval for difference and ratio esti-
mators, whether with unstratified or stratified samples of audit units do not provide the
nominal level when error rates are low or errors refer to overstatement. The stratified
mean-per-unit estimator achieved a coverage near the nominal level when the error rates
were low, but fell substantially below the nominal level by about six percent points for the
ten percent error-rate study population for population 4 in Neter and Loebbecke (1977).

Neter and Loebbecke (1975, 1977) acknowledged that stratification improved the cov-
erage probability of the mean-per-unit estimator. For the ratio and difference estimators
they observed that stratification did not improve this probability when the error rate
was low. It was also reported that increasing the sample size from 100 to 200 improves
the coverage probability of the estimators but the substantial fall below the nominal 95
percent level as observed in the sample of size 100 remained.

The combined mean-per-unit and difference estimators and combined mean-per-unit
and ratio estimators suggested by Jones (1972), were also investigated by Neter and
Loebbecke (1975, 1977) using a weight of 0.1. They reported that the combined mean-per-
unit and difference estimators and combined mean-per-unit and ratio estimators attained
a coverage probability near the nominal level when the error rate was low or moderate for
populations with low skewness. For highly skewed populations the coverage probabilities
were found to be substantially below the nominal level.

As reported by Neter and Loebbecke (1975, 1977), the ratio and difference estimators
had the smallest relative standard error for all the study populations they considered.
The standard error for stratified mean-per-unit estimator was greater than that of the
difference and ratio estimators. The stratified difference estimator tends to be more pre-
cise than the other estimators, although it frequently fails to attain the nominal coverage.
The mean-per-unit estimator was inefficient compared to the difference estimator.

Further research on the performance of the classical estimators was carried out by
Burdick and Reneau (1978) on the same audit population used by Neter and Loebbecke
(1975, 1977) with systematic PPS. These authors observed that the coverage probabilities
of these estimators were less than the nominal confidence level.

Baker and Copeland (1979) studied the performance of the stratified regression es-
timator, using a real audit population. They observed that the coverages for regression
estimators were lower than the nominal level.

Beck (1980) used a method similar to Neter and Loebbecke (1975) to assess the
performance of the regression estimator in auditing populations. Beck observed that
the coverages for the regression estimator were lower than the nominal level, based on
unstratified and stratified sampling of line items with sample sizes of 200 and 600.

Garstka and Ohlson (1979) suggested a variance augmentation technique for the
Horvitz-Thompson (1952) estimator. The Garstka-Ohlson procedure uses a PPS sam-
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ple of n items. The upper confidence bound for Tz is constructed as:

bTz + Cm,ns
³bTz´ , (3.4)

where

Cm,n = [
npn(m; 1− α)

m
− 1][ nm

n−m
]1/2, (3.5)

bTz is the Horvitz-Thompson estimator, s³bTz´ is the standard error of bTz and m is

the number of errors observed in the sample (m ≥ 1), and pn(m; 1 − α) is the 1 −
α upper confidence limit for the binomial parameter p (error rate) when m errors are
observed in the sample. Simulation studies by Garstka and Ohlson (1979) and Duke,
Neter, and Leitch (1982) have shown, however, that the Garstka-Ohlson bound may not
necessarily attain the nominal confidence level. A further analysis of this bound has been
performed by Tamura (1985) and his study indicated that the applicability of the bound
is severely restricted; specifically, lower bounds tend to be too conservative and upper
bounds unreliable when there is a concentration of low prorated error.

Several theories have been put forward to explain the coverage problems of the ratio,
mean-per-unit, difference and regression estimators. For example, Jones (1975) argued,
that the coverage problems of the ratio, mean-per-unit and difference estimators were
attributable not to correlation between the mean and standard error, as suggested by
Kaplan (1973), but rather to the biased estimates of the standard error. Neter and
Loebbeck (1977) noticed that the bias and correlation problems appear to be interrelated,
and called for more research. Bias was also mentioned by Baker and Copeland (1979)
as the cause of the coverage problems reported in their studies. Beck (1980) attributed
the coverage problem of the regression estimator to heteroscedasticity which has been
induced by the distributions of accounting errors and recorded values. Frost and Tamura
(1986) also extended Kaplan’s investigation of the performance of classical estimators,
and attributed the coverage problem to the high skewness inherent in most auditing
populations.

The concern of these coverage problems stimulated interest in academic research to
further refine the classical methods in audit sampling, using computer intensive methods.
We discuss these in the next section.

3.3.1 Computer Intensive Methods in Auditing

The use of computer intensive methods such as the bootstrap and the jackknife (in the
auditing context) to improve the performance of classical estimators has been investigated
by many researchers including Frost and Tamura (1982), Biddle, Bruton, and Siegel (1990)
and Rohrbach (1993).
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In particular, Frost and Tamura (1982) used the jackknife to improve the performance
of the ratio estimator. The jackknife was introduced in statistical theory by Quenouille
(1949, 1956) as a method of reducing bias. Tukey (1958) used it to estimate variance and
calculate confidence intervals. Frost and Tamura utilised the delete-1 jackknife, where the
ratio estimator is consistently applied to all samples obtained from the original sample
with just one sample value deleted.

These authors performed simulations using the Neter and Loebbecke (1975) data
set to compare a jackknifed ratio estimator, with the conventional ratio estimator (with
sample sizes of 50, 100 and 200). Their results suggested that the ratio estimator gives
a reliable confidence interval when the error rate is high and the errors are composed of
overstatement and understatement. The jackknifed ratio estimator was superior to the
conventional ratio estimator but both estimators failed to attain nominal coverage for
lower error rates. They acknowledged the need for new procedures to be developed for
populations with low error rates.

Biddle, Bruton, and Siegel (1990) investigated the performance of computer-intensive
methods in the auditing context, by applying the bootstrap to difference and ratio estima-
tors. The bootstrap method is a computer based technique for estimating the distribution
of an estimator by resampling and simulation. It was developed by Efron (1979, 1982)
and described in detail by Efron and Tibshirani (1993). It provides a way to substitute
computation for mathematical analysis if calculating the asymptotic distribution of an
estimator or statistic is difficult.

Simulation studies were again carried out by Biddle, Bruton, and Siegel (1990) using
the Neter and Loebbecke (1975) data set. They observed that the bootstrap difference
and ratio estimators have the potential to increase reliability when compared with the
conventional counterparts. It was also clear from their findings that these bootstrap
estimators will not always attain the nominal confidence level.

Rohrbach (1993) argued that the failure of classical estimators to provide nominal
coverage is not the results of incomplete sample information utilization. He applied a
simple adjustment to the jackknife variance of the Horvitz-Thompson (1952) estimator
using PPS without replacement. Rohrbach (1993) defines the bound for the population
mean prorated error as

U1−α =M + z1−α
p
(1− f)

s√
n

where M = 1 − 1
n

P
iwi, f = n/N, wi = xi/yi, z1−α is the 100(1 − α) quantile of the

standard normal distribution, and s2 is adjusted jackknife variance of the mean-of ratio
estimator given by

s2 =

Ã
1

n

X
i

w2i

!
− (2− 2.7

n
)

⎛⎝ 1

n(n− 1)
X
i

X
i<j

wiwj

⎞⎠ .
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This approach gives a non-zero bound when no error is detected in the sample, but
will not always attain the nominal coverage under all conceivable error distributions, (as
acknowledged by Rohrbach 1993, p96).

The failure of the classical survey-sampling estimators to give reliable confidence
bounds, when used in sampling from highly skewed auditing populations with low er-
ror rates, has motivated a number of auditing practitioners and academics to explore
other approaches. Various evaluation methods have evolved; these are grouped under the
headings (i) combined attribute and variable method, (ii) likelihood ratio approach, (iii)
asymptotic expansion approach and (iv) Bayesian approach. We discuss these methods
in order.

3.4 Combined Attribute and Variable (CAV) Methods

Several statistical methods have been purposely developed for use in the auditing en-
vironment, mostly heuristic and sometimes ad hoc, to overcome the limitations of the
classical methods based on the central limit theorem, particularly for populations with
low error rates. These methods are based on sampling with probability proportional to
recorded monetary value. However, they do not rely on a large-sample theory. These es-
timation methods are commonly referred to as combined attribute and variable estimation
(Goodfellow, Loebbecke and Neter 1974). We discuss the most commonly used methods
below.

3.4.1 Stringer Bound

The Stringer bound is one of the first CAV methods developed and is still the most
widely used. It was introduced by Stringer (1963) and is a heuristic evaluation method.
The Stringer-based method for obtaining an upper bound for the total overstatement
error is given by

bTz(1− α) = Tyμst (3.6)

where

μst = pn(0; 1− α) +
nX
i=1

[pn(i; 1− α)− pn(i− 1; 1− α)] tn−i+1:n, (3.7)

for a sample of size n; and 0 ≤ t1:n ≤ t2:n ≤ ... ≤ tn:n ≤ 1 are the order statistic of sample
prorated errors arranged in decreasing order of magnitude. pn(i; 1−α) is the 1−α upper
confidence limit for the binomial parameter when i errors are observed in a sample of size
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n. That is to say, for a given α, n and number of errors i, we find the value pn(i; 1− α)
which satisfies

iX
j=0

µ
n

j

¶
[pn(i; 1− α)]j [1− pn(i; 1− α))]n−j = α. (3.8)

The Stringer bound is sometimes calculated using the Poisson approximation for obtaining
the upper confidence limits pn(i; 1− α).

The bound can be used with unrestricted, cell or systematic selection. The theoretical
justification of the Stringer bound remains an important and interesting open problem
(PNMD, 1989). There have been many studies on the Stringer bound. Much empirical
evidence supports that its coverage is at least the nominal confidence level. It has been
found to be overly conservative (e.g. Leitch et. al. 1982, Reneau 1978, Anderson and
Teitlebaum 1973). As pointed out by Leitch et al. (1982), this conservatism often leads
to the rejection of acceptable accounting populations.

Attempts to improve on the Stringer bound include the pioneering work of Bickel
(1992) who studied the asymptotic behaviour of the bound. He showed that for a large
sample, the confidence level achieved by the Stringer bound is most often greater than
the nominal level. He proposed a new bound, which is a compromise between the Stringer
and Gaussian bounds, behaving like Stringer when few errors are observed, and like the
Gaussian when more errors are observed.

Pap and Van Zuijlen (1996) extended Bickel’s work on demonstrating the asymptotic
conservatism of the Stringer bound. They showed that the bound is asymptotically con-
servative for confidence level 1−α, when α ∈ (0, 1/2] and asymptotically not conservative
when α ∈ (1/2, 1). On the basis of the asymptotic analysis, Pap and Van Zuijlen (1996)
proposed a modified Stringer bound which is correct for very large samples. De Jager,
Pap, and Van Zuijlen (1997) acknowledged that this modified method is not suitable
when both the sample size and the error rate are small. They acknowledged the need for
further enhancements of the Stringer bound in finite sample situations.

3.4.2 Multinomial Bound

Fienberg, Neter, and Letich (1977) developed a multinomial distribution-based method
for evaluating a monetary unit sample. Their method was intended to be a less conserva-
tive approach to the Stringer bound. The authors treated the monetary unit sampling in
a discretized form as multinomial sampling, where the multinomial classes represent the
different prorated errors expressed to the nearest cent. The computation of the bound
requires the use of nonlinear optimization methods. For this, let pi be the probability
that an item falls into the ith class, where 0 ≤ pi < 1 and

P
pi = 1. Then

t =
i

100
with probability pi,

43



and

Tz =
Ty
100

100X
i=1

ipi.

Let di be the number of observations in a sample of n that falls into ith class, so thatP
di = n. Then d = (d0, d1, ..., d100) follows a multinomial distribution with parameters

(n,p) , where p =(p0, p1, ..., p100) (assuming sampling is done with replacement). The
multinomial distribution was therefore used to develop the confidence region for pi. For
a given confidence level (1− α) , the multinomial bound for total error amount, Tz, is
obtained by solving the following maximization problem

Maximize Tz =
Ty
100

100X
i=1

ipi (3.9)

subject to
X
s

n!

v0!v1!...v100!
Π100i=0p

vi
i ≥ α,

X
vi = n (3.10)

where S is the set of outcomes v = (v0, v1, ...v100) which are as extreme or less extreme
than, the observed counts d.

A difficulty with this method is the complexity of finding the joint confidence region
and maximizing over it. This method has been used as a backup method by some auditing
firms, but the difficulty even large mainframe computers had in computing the error bound
has made the method unpopular, (AICPA Auditing Practice Research and Education
1995, p98).

The bound was modified in Leitch et. al. (1982) to make it computationally feasible.
The authors grouped observed prorated errors into clusters of similar sizes, then all errors
in the same cluster were assigned the maximum error value of the cluster. Extensive
simulation studies by Neter, Leitch and Fienberg (1978) and Leitch et. al. (1982) indicate
that the multinomial bound (unmodified or modified) is substantially tighter than the
Stringer, although the former may fail to achieve the nominal coverage.

3.4.3 Cell Bound

The cell bound was proposed as a less conservative approach to the Stringer bound by
Leslie, Teitlebaum, and Anderson (1979). This bound was developed for PPS with cell
selection. However, can also be used with unrestricted or systematic selection.

Suppose that t1:n ≥ t2:n ≥ ... ≥ tm:n are ordered sample taints; the upper error limit
of the kth ordered sample taint, Λk, is determined as follows:

Λk = max[Λk (1) ,Λk (2)]
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where

Λ0 = λu(0; 1− α)

Λk (1) = Λk−1 + tk:n

Λk (2) = λu(k; 1− α)

Pk
i=1 ti:n
k

and λu(k; 1 − α) denotes the upper 1 − α confidence limit for the Poisson distribution
parameter λ when k errors are observed in the sample and m is the number of errors in
the sample. The upper cell bound is computed as:

bTz(1− α) =
Ty
n
Λm.

For auditing populations containing low error amount, the bound may be substantially
greater than the actual error amount (Neter, Leitch, and Plante 1985).

3.4.4 Moment Bound

Another method of evaluating PPS sampling is the moment bound suggested by Dworin
and Grimlund (1984, 1986). They constructed an upper bound for the total error
amount by approximating the sampling distribution of the mean prorated error by a
three-parameter gamma distribution. Using the sample moments, together with heuristic
approximations, Dworin and Grimlund (1984) obtained estimates of the parameters of
gamma distribution. The 1− α upper moment bound for Tz is given by :bTz(1− α) = Ty bw(1− α), (3.11)

where bw(1− α) is defined as

bw(1− α) = G+A ∗B[1 + zα/
√
9A− 1/(9A)]3, (3.12)

where A,B and G are gamma distribution parameters given by A = 4UC32/UC
2
3 , B =

0.5UC3/UC2, G = UN1 − 2UC22/UC3 and

UC2 = UN2 − UN2
1 ,

UC3 = UN3 − 3UN1 ∗ UN2 + 2UN1
where

UN1 = RN1 ∗ TN1,
UN2 = [RN1 ∗ TN2 + (n− 1)RN2 ∗ TN2

1 ]/n,
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UN3 = [RN1 ∗ TN3 + 3(n− 1)RN2 ∗ TN1 ∗ TN2 + (n− 1)(n− 2)RN3 ∗ TN3
1 ]/n

2,

and

RN1 =
m+ 1

n+ 2
, RN2 =

m+ 2

n+ 3
RN1, RN3 =

m+ 3

n+ 4
RN2,

TNj = [(t
∗)j +

mX
i=1

tji ]/(m+ 1) , j = 1, 2, 3,

t∗ = 0.81[1− 0.667 tanh(10t)] ∗ [1 + 0.667 tanh(m/10)],

where t =
Pm

i=1 ti/m, n is the sample size and m number of non-zero errors. Their
method is able to handle both overstatement and understatement errors.

Extensive simulation studies by Dworin and Grimlund (1984, 1986) suggested that
the nominal coverage is close to the required. They compared their bound with the
Stringer and multinomial bounds for accounts receivable. Their results indicated that the
moment bound is less conservative than the Stringer bound, and would correctly accept
more accounts than the multinomial bound when the materiality limit is less than 4%
of total recorded value. However, for materiality limits in excess of 5%, the multinomial
bound correctly accepted more accounts than the moment bound. The moment bound
has sporadic coverage failures (Grimlund and Felix 1987).

3.4.5 Bounds based on Hoeffding’s inequalities

Hoeffding’s inequality can be used to obtain confidence bounds for the mean prorated
error. Fishman (1991) described a confidence interval-estimation procedure based on this
idea. In particular, when observations are drawn from a population with cumulative
distribution function F with mean μ(F ), he obtained a finite sample 100(1 − α) confi-
dence interval for the population mean, μ(F ), when F has bounded support, based on
Hoeffding’s inequality (1963) as follows: Suppose that Pr(0 ≤ Ti ≤ 1) = 1, define

H(ε, μ) = (ε+ μ) ln(
μ

ε+ μ
) + (1− ε− μ) ln(

1− μ

1− ε− μ
), for 0 < ε < 1− μ

and let

μL(Tn) =

½©
μ : 0 < μ ≤ Tn ≤ 1 and exp(nH(Tn − μ, μ)) = α/2

ª
; for Tn > 0

0; for Tn = 0
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and

μU (Tn) =

½©
μ : 0 ≤ Tn ≤ μ ≤ 1 and exp(nH(μ− Tn, 1− μ)) = α/2

ª
; for Tn < 1

1; for Tn = 1

Fishman (1991) showed that

Pr[μL(Tn) ≤ μ(F ) ≤ μU (Tn)] ≥ 1− α.

This bound is more conservative than the Stringer bound.

Hoeffding’s inequalities based confidence bound has recently rediscovered by Bentkus
and Van Zuijlen (2003). They described various forms of upper confidence bounds based
on the inequality in Theorem 3 of Hoeffding (1963). The inequality in Theorem 3 of
Hoeffding (1963) is best possible inequality that can be obtained from using the expo-
nential moment method as noticed by Hoeffding (1963). A modification of this inequality
allowing the use of a prior information and incorporating the estimation of the variance
are discussed in Bentkus and Van Zuijlen (2003).

3.4.6 Combined bound

The combined bound proposed by Howard (1994) is based on a combination of a boot-
strap approximation of the bound generated by Hoeffding’s inequality and a modified
nonparametric bootstrap-t method. Using Hoeffding inequality

Pr
¡
R− ρ ≥ c

¢ ≤ (µ ρ

ρ+ c

¶ρ+cµ 1− ρ

1− ρ− c

¶1−ρ−c)n

, (3.13)

where ρ is the population mean proportion of monetary unit that is correct,

R = n−1
nX
i=1

(1− ti), (3.14)

is the sample mean proportion of monetary unit that is correct, and c is some constant
(0 < c < 1− ρ), Howard derived a 1− α lower confidence bound, Lρ, for ρ, by replacing
ρ+ c in the right side of relation (3.13) by R, then setting the resulting expression to α,
and solving for ρ. The 1 − α upper confidence bound for the population mean prorated
error was then obtained as 1− Lρ.

Using the assumption that each sample of monetary values is resampled with replace-
ment, many times with the bootstrap samples having the same size, n, Howard obtained
a new 1− α upper confidence bound for the population mean prorated as

bw(1− α) = 1−R+ c,
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where c is obtained by solving the Hoeffding inequality (3.13), replacing R by R
∗
,and ρ by

R, then setting the resulting expression to α. Here, R
∗
is the mean proportion of monetary

units that are correct in each bootstrap sample. Simulation studies were carried out by
Howard (1994) to examine the behaviour of the combined bound. The results showed
that the combined bound is not uniformly better than the Stringer bound. However
the combined bound seemed to offer a moderate advantage over the Stringer for accounts
receivable with low error rates, low proportion of 100% overstatement and high proportion
of understatement.

3.5 A Likelihood Ratio Approach

The confidence bound approach discussed in the previous section is based on heuristic
approximations and ad hoc methods. An alternative methods based on the likelihood
ratio has been suggested by Kvanli, Shen and Deng (1998), Chen, Chen, and Rao (2002)
and Chen and Qin (2003). These methods are discussed below.

3.5.1 Parametric Likelihood Method

Kvanli, Shen and Deng (1998) suggested that if the non-zero values in given auditing data
can be assumed to come from some appropriate parametric model, then the likelihood
ratio test can be used to construct a two-sided approximate confidence interval for the
mean error amount. The theory behind their procedure is the results of Wilks (1938)
on the chi-square limiting distribution of the likelihood ratio statistics. They provided
simulation results for which the distribution of error amount is assumed to be normal
or based on an exponential density function. Their results indicated that the coverage
attained by this method is very close to nominal when the auditing data follows the
assumed parametric model.

The limitation of this procedure is that it depends on the choice of the underlying
model. The bound may not perform up to expectations if the data departs from the
model assumed. As evidenced by empirical studies, the error distributions in practice
varies widely so that it is unlikely to be modelled by one standard distribution (e.g. see
Johnson, Leitch, and Neter 1981; Neter, Johnson, and Leitch 1985).

3.5.2 Empirical Likelihood Method

A competitive method for constructing tests and confidence intervals is the empirical
likelihood method introduced by Owen (1988). The empirical likelihood method has many
advantages over normal approximation-based methods and the bootstrap for constructing
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confidence intervals (e.g. Hall and La Scala 1990). One of the interesting features of the
empirical likelihood is that it is transformation invariant and respects range restrictions on
parameters. A comprehensive account and update of developments in empirical likelihood
method can be found in Owen (2001). Let T1, ..., Tn be independent and identically
distributed real-valued random observations drawn from a population with cumulative
distribution function F with mean μ(F ) and Fn be the empirical distribution function of
this sample. For a distribution supported on the T 0is, that is F ({T1, ..., Tn}) = 1, let

zc = {F | R(F ) ≥ c, F ({T1, ..., Tn}) = 1}
for some 0 ≤ c ≤ 1, where R(F ) is the empirical likelihood ratio function define by R(F ) =
Ln(F (t))/Ln(Fn(t)) and Ln(F (t)) =

Qn
i=1 (F (ti)− F (ti−)) . Let TL,n = infF∈zc

R
tdF

and TU,n = supF∈zc
R
tdF. Under a weak moment condition Owen (1988) showed that

lim
n→∞Pr(TL,n ≤ μ(F ) ≤ TU,n) = Pr(χ

2
1 ≤ −2 log c),

where χ21 denotes a random variable with chi-squared distribution of one degree of free-
dom. The interval [TL,n, TU,n] is the empirical likelihood confidence interval for μ(F ).
This interval has a coverage error of O(n−1) (see e.g. Hall and La Scala 1990). DiCiccio,
Hall and Ramano (1991) showed that the coverage error of empirical likelihood confidence
interval could be reduced to O(n−2) by Bartlett correction.

Recently Chen, Chen, and Rao (2002) have suggested a confidence interval for the
mean of a highly skewed data containing many zero based on a profile empirical likelihood
ratio function. Their approach is based on results of Owen (1988,1990), which show that
the profile empirical likelihood ratio function tends to the chi-square with one degree of
freedom as the sample size tends to infinity. The authors acknowledged that this approach
works well when the proportion of non-zero values is not too small, which is not the case
in audit populations.

Chen and Qin (2003) proposed empirical likelihood-based confidence intervals for
mean of a data with many zeros observations. Both direct application of Owen’s empiri-
cal likelihood and Bartlett correction to Owen’s empirical likelihood confidence intervals
based on bootstrap were investigated. In their empirical likelihood approach, zero and
non-zero observations were separated. Their simulation results indicated that empirical
likelihood confidence intervals perform better than normal approximation based coun-
terparts. However, there were still under-coverage problems with empirical likelihood
confidence intervals. The under-coverage was improved to certain degree by their pro-
posed empirical Bartlett correction.

3.6 An Asymptotic Expansion Approach

Suppose x1, x2, ..., xn are n independent and identically distributed observations with
underlying distribution F, and let Sn(x1, x2, ..., xn) be some statistic with distribution
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Fn. If, after suitable standardization, Sn is asymptotically normally distributed then
one can obtain a higher order approximation to Fn using the first few terms of the
Edgeworth expansion (see Appendix B). This method is based on the Fourier inversion
of an approximate characteristic function of the statistic. The inversion of Edgeworth
expansion yields the so called Cornish-Fisher expansion, which provides an asymptotic
expansion for an α−level quantile of a statistic in terms of the α−level quantile of the
standardized normal distribution.

Helmers (2000) derived an upper confidence bound for the total error amount based
on the empirical Cornish-Fisher expansion and bootstrap calibration. Using a simple
random sampling of the line items, he obtained an empirical Cornish-Fisher bound on
the total error amount. However, Helmers observed that the coverage probability of
Cornish-Fisher bound may not achieve the nominal confidence level, and suggested direct
use of bootstrap calibration of the nominal coverage probability. That is, resample the
coverage probability, with α replaced by δ, for a grid of values of δ in (0, 1) , and select
the largest value bδ for which the bootstrap estimate is at least 1−α (see Hall and Martin
1988). Helmers (2000) also acknowledged that this method is not suitable for a sample
size as small as 100 and also for cases where no error or one error is observed. The
sampling selection method used is not the preferred sample design in financial auditing,
which is PPS.

3.7 A Bayesian Approach to Analysis of Audit Data

Up to now we have been largely concerned with methods which are based solely on
the sample data. We have paid no heed to the fact that the auditor may have prior
information about the data which can be explicitly incorporated into the estimation
method. This section reviews various methods that have been proposed, which allow
the auditor to explicitly incorporate his/her prior information about the data into the
estimation method.

3.7.1 Parametric Bayesian Approach

Cox and Snell (1979) studied the statistical auditing problem, and proposed a parametric
Bayesian approach based on PPS sampling. In their approach, a finite population of the
recorded values was treated as a realization from a superpopulation and errors constrained
to be positive. This work provides a theoretical basis for the widely used monetary unit
sampling. Cox and Snell split the population mean prorated error into two independent
variables: unconditional error rate, π, and conditional mean prorated error, μ. Assuming
exponential distribution with mean μ for the prorated error, they considered conjugate
gamma priors:
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π ∼ Γ(a/π0, a) and μ ∼ (b− 1)μ0/Γ(1, b),

where Γ(a, b) denotes the distribution with density abxb−1 exp(−ax)/Γ(b), and parameters
a and b are the scale and shape parameters, respectively. Cox and Snell then obtained
the density of a posterior distribution of the population mean prorated error, w, as:

f
¡
w|mt

¢
=

∙
(b− 1)μ0 +mt

(a/π0 + n)

¸ ∙
a+m

b+m

¸
F [2 (a+m) , 2 (b+m)] , (3.15)

where F [2 (a+m) , 2 (b+m)] denotes the density of the F distribution with 2 (a+m)
degrees of freedom in the numerator and 2(b+m) degrees of freedom in the denominator,
and n is the sample size. Given the assessed values for the prior parameters, the observed
sample values m and t, the (1− α) upper bound for w is given by

bw(1− α) =

∙
(b− 1)μ0 +mt

(a/π0 + n)

¸ ∙
a+m

b+m

¸
F [1− α; 2 (a+m) , 2 (b+m)] , (3.16)

where F [1− α; 2 (a+m) , 2 (b+m)] denotes the 100(1− α)% of the F distribution with
2 (a+m) and 2(b+m) degrees of freedom. Hence the (1− α) upper bound for Tz, the
total error amount is given as:

bTz(1− α) = Ty bw(1− α). (3.17)

The drawback of this method is that the sample prorated errors are assumed to be
random observations from an exponential distribution; but as indicated in Section 3.2,
the error distribution, in practice varies widely and is unlikely to be modelled by one
standard distribution. In this case, the bound may not perform up to expectations if
there are departures from model assumptions.

Godfrey and Neter (1984) analysed the Cox and Snell model. They noted that the
Cox and Snell bound contains a number of simplifying assumptions, for example use
of an exponential distribution for prorated errors, which does not recognize an upper
bound of 1.0 for the overstatement prorated error, as well as failure to recognize the
frequent occurrence of prorated error degeneracy at 1.0. Godfrey and Neter developed
four modified models in which these and other assumptions were relaxed. They performed
simulation studies to further investigate the modified versions of the Cox and Snell model.
Their simulation results suggested that the modified bounds were tighter than Stringer
and cell bounds.

Menzefricke and Smieliauskas (1984) also proposed a parametric Bayesian model
which assumes that the density of non-zero prorated error is normal. Their model is
a modification of the general model developed in Felix and Grimlund (1977). One short-
coming of this model is that there is no empirical evidence to suggest that the prorated
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errors are normally distributed (e.g. see Johnson, Leitch, and Neter 1981, Neter, Johnson,
and Leitch 1985). This bound has sporadic coverage failures (Grimlund and Felix 1987).

McCray (1984) proposed a quasi-Bayesian model which gives a discrete posterior
distribution on the expected total error amount. He assumed a multinomial sampling
model for prorated errors. McCray selected those multinomial parameter values for a
given total error amount that maximizes the likelihood of the observed prorated errors.
He did not provide any theoretical justification for using a maximum likelihood. The
model can evaluate any monetary unit sample with any number of overstatement and
understatement errors. This model was assessed by comparing its upper bound with that
of the multinomial (Fienberg, Neter, and Letich 1977, and Neter, Leitch and Fienberg
1978). McCray argued that these comparisons strongly suggest that his proposed model
is a reasonable approach for evaluating monetary unit sampling.

3.7.2 Nonparametric Bayesian Approach

A nonparametric Bayesian model has also been suggested, as a standard distribution does
not appear to work well for modelling the distribution of prorated errors.

Tsui, Matsumura, and Tsui (1985) proposed nonparametric Bayesian method for con-
structing confidence bounds for the population total error amount. Their approach is
based on the multinomial sampling model suggested by Fienberg, Neter, and Letich (
1977). The auditors’ prior prediction of the discrete distribution of the prorated errors
was modelled by a Dirichlet distribution. Using simulation, Tsui, Matsumura, and Tsui
(1985) suggested certain parameters to be used as the prior setting for the upper bound.
They argued that those parameters performed well under repeated sampling for a wide
range of prorated error distribution.

Tamura (1988) pointed out that the error distribution was unlikely to be modelled by
any standard parametric distributions. He proposed a nonparametric Bayesian approach
using Ferguson’s Dirichlet process to specify the prediction of the conditional distribution
of the error. He modelled the error rate by a beta distribution and hypothesized that
the auditor cannot predict the exact form of error distribution, but is able to describe
the expected form. He argued that the auditor may either use any standard parametric
model as his best prior prediction or base it on the past data. Tamura makes inferences on
the expected aggregated error amount through numerical inversion of the characteristic
function.

Laws and O’Hagan (2000) extended Tamura’s nonparametric Bayesian model with an
extra layer of modelling, by introducing a classification of errors according to prorated
errors. Laws and O’Hagan make inference for the aggregated error amount through
simulation.

The implementation of all the Bayesian methods, requires the assessment of prior
probability distribution. A number of studies (e.g. by Corless 1972, Felix 1976, Crosby
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1981) have suggested that auditors may have some difficulties in providing suitable infor-
mation about prior.

3.8 Comparative Studies

Several authors have investigated the merits and drawbacks of the various estimators
proposed in substantive tests of details.

In particular Menzefricke and Smieliaukas (1984) investigated the comparative per-
formance of the Stringer and Cox and Snell bounds. Their analysis focused on the power
of the performance of the bounds. The study confirmed that the Stringer bound tends
to provide poor protection against rejecting populations whose total error amount is less
than materiality.

Neter, Leitch, and Plant (1985) analysed the multinomial, Stringer, cell and stratified
difference bounds. It was reported in their findings that the multinomial bound is sub-
stantially tighter than the Stringer, and somewhat tighter than the cell bound, when each
bound is based on cell selection. It was also reported that the multinomial bound is not
as tight as the stratified difference. However, the multinomial bound has coverage prob-
abilities near or above the nominal level, whereas those for the stratified difference are
below the nominal level. The coverage probabilities for the Stringer and cell bound were
reported to be substantially higher than nominal level. They also observed that when
the true aggregated error amount is substantially smaller than the materiality amount
(tolerable error), the probability of rejection for the multinomial seems to be moderately
low and at about the same level as those for stratified difference bound, whereas that
for Stringer and cell are higher. Neter, Leitch, and Plante (1985) also reported that
systematic or cell selection of the monetary units do not have a substantial effect on the
sampling distribution of the multinomial, cell and Stringer bounds when line items are
in random order.

Smieliauskas (1986) studied the comparative performance of Bayesian and non-Bayesian
methods in monetary unit sampling evaluation, using an approach pioneered by Leitch
et al. (1982). The non-Bayesian bounds considered by Smieliauskas include the Stringer
bound, the multinomial bound, the cell bound, and the moment bound. The Bayesian
bounds he considered are the Cox and Snell bound and normal Bayesian (Menzefricke
and Smieliauskas 1984). The general conclusion of his study was that the non-Bayesian
bounds achieved coverage close to the nominal in most cases, which were accompanied
by the lack of tightness whereas the Bayesian bounds had coverage failures but tighter
than non-Bayesian bounds.

Dworin and Grimlund (1986) compared the performance of the moments bound with
that of McCray’s quasi-Bayesian bound using the uniform prior. The two bounds achieved
coverage probability higher than the nominal level of 95% used for their study populations.
Both bounds were considerably tighter than the Stringer bound.
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Grimlund and Felix (1987) carried out simulation studies to compare four different
monetary error confidence bounds: these are the Cox and Snell, moment, Bayesian-
Normal and multinomial-Dirichlet bounds. It was reported that the multinomial-Dirichlet
method achieved a coverage probability near the nominal level in most cases, the Cox
and Snell bound failed to attain the nominal coverage in some cases, whereas the moment
bound and Bayesian Normal bound had sporadic coverage failures.

Wurst, Neter, and Godfrey (1989) compared sieve sampling with random and cell
sampling of monetary unit in terms of the behaviour of the Stringer and cell bounds. A
simulation study based on two actual accounting populations used in Neter and Loebbeck
(1975) was employed. It was reported that the method of sample selection has no substan-
tial effect on the mean bound and the coverage of the bound. However, the sieve sample
bounds were reported to be less variable than those for random selection for larger sample
sizes and more variable than those for cell sampling for small sample sizes.

Matsumura et al. (1991) performed simulation studies to compare the lower multi-
nomial bound and multinomial-Dirichlet lower bound. Their studies suggested that the
coverage probability of the two bounds were quite similar for almost all the 24 cases they
considered. As reported by the authors, computational considerations favour selection of
the multinomial-Dirichlet bound as a reasonable procedure for lower-bound estimation.

Horgan (1996) carried out a comparison of unrestricted random, cell and sieve sam-
pling of monetary unit in terms of the behaviour of the moment bound. It was reported
that the moment bound is more precise with cell and sieve sampling than with unre-
stricted random sampling.

Swinamer et al. (2004) performed an extensive simulation study comparing 14 bounds
used in monetary-unit sampling using both real and simulated data. These include
Stringer bound, augmented variance bound, modified moment bound, Cox and Snell
bound, multinomial-dirichlet bound, and Claytons combined bootstrap Hoeffding/bootstrap-
t bound. Their results suggested that no one method is superior in sense of giving smaller
and reliable upper confidence bound.

3.9 Summary

In this chapter we overview the characteristics of errors in accounting population and the
methods proposed to estimate the total error amount, along with the problems involve.
We noted a wide range of statistical methods is used in auditing. We first looked at
the classical estimators such as Horvitz-Thompson (1952) estimator, the difference, ratio
and regression, then followed respectively by the CAV bounds, likelihood ratio methods,
methods based on asymptotic expansions, and Bayesian methods.

The various research studies suggest that the survey sampling estimators provide
accurate point estimates but their confidence intervals based on assumptions of asymp-
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Table 3.2: Some Previous Work on Problems in Statistical Auditing and their Limitations
Author(s) Approach Limitations
Stringer (1963) Heuristics overly conservative
Fienberg et al. (1977) Multinomial computationally intensive
Leslie et al. (1979) Cell conservative
Cox and Snell (1979) Parametric Bayesian unreliable
Garstka and Ohlson (1979) Heuristic coverage failure
Menzefricke and Smieliauskas (1984) Beta-Normal sporadic coverage failure
Dworin and Grimlund (1984) Moment sporadic coverage failure
Tsui et al. (1985) Multinomial Dirichlet unreliable in some cases
Tamura (1988) Dirichlet Process difficult to implement
Rohrbach (1993) Augmented Variance coverage failure

totic normality of the estimators fail to attain the nominal confidence level when used
in sampling from a highly skewed population containing a substantial proportion of zero
values.

The CAV bounds have provided a frame for the main stream of results in computing an
upper confidence bound on the total error amount in the population. The performances
of these methods vary, and no one approach clearly dominates.

The Bayesian method provides more structured approaches for combining subjective
evidence, such as that obtained from the evaluation of compliance tests and analytical
review, with objective evidence obtained from statistical sampling for substantive testing
in computing confidence bounds on the total error amount in the auditing population.
However the elicitation of subjective priors or quantification of expert knowledge poses a
problem, this makes the implementation of the Bayesian methods difficult.

One problem that the methods reviewed in this chapter have in common is that the
confidence level attained by the bounds constructed by these methods could differ sub-
stantially from the nominal coverage, depending on the distribution of the error amount.
A brief summary of the properties of the estimators proposed is given in Table 3.2, which
shows that none of the estimators is overwhelmingly superior or preferable. This leaves
an open problem for further research and development.

An approach which has not been explored extensively is the use of asymptotic expan-
sion techniques such as the Edgeworth expansion and saddlepoint approximation. We
explore this approach in this thesis. We also propose to obtain confidence bounds that
maintain their coverage probability over broad class of distributions.

In the remainder of this thesis we develop improved bounds for estimating the total
error amount in substantive tests.
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Chapter 4

Estimation of the Total Error
Amount Using Asymptotic
Expansion Techniques

In this Chapter we develop a new estimator for estimating the total error amount. The
sum of non-zero prorated errors in auditing data leads naturally to a compound Binomial
distribution. This is approximated by a compound Poisson distribution, and using an
empirical Edgeworth expansion for a studentised compound Poisson sum, we construct
confidence bounds on the total error amount.

As a first step, we present the model formulation in error analysis in audit data
in Section 4.1. In Section 4.2, we apply the theory of compound Poisson sum to the
error analysis in audit data, and illustrate how an asymptotic expansion for a compound
Poisson distribution can apply. In Section 4.3, we construct confidence bounds on the
total error amount. In Section 4.4, we look at a particular numerical example taken
from Leitch et al. (1982), which is chosen to exhibit the comparative performance of our
proposed estimator with other estimators in the literature. Summary and discussion is
provided in the final section.

4.1 The Auditing Issue

We are interested in constructing accurate non-parametric confidence bounds on the
total error amount, Tz. Throughout the following analysis, we suppose that samples
are drawn with systematic PPS as defined in Section 2.6.4. Since the population size,
N, is usually large this design can be thought of as being implemented through almost
identical independent draws. We also assume that the probability of an item being in
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error is independent of its recorded value. Our statistical model is formulated in terms
of the prorated errors.

Suppose T1, T2, ..., Tn are independent and identically distributed real-valued random
variables (representing the prorated error) with common distribution function F, of the
form

F (t) = πG(t) + (1− π)δ0, (4.1)

where π is the population proportion of monetary units in error, G is the distribution
of non-zero prorated errors and δ0 is the one point distribution function concentrated at
zero (representing the correct values). We can, therefore, express the prorated error T
as:

T =

½
V with probability π
0 with probability 1− π

(4.2)

where V is a random observation from the distribution G. Then the population mean
prorated error can be written (Aitchison 1955) as

w = πE (V ) . (4.3)

From Cox and Snell (1979), with E (V ) = μ, we have the total error amount

Tz = Tyπμ.

That is

Tz = Tyw. (4.4)

The total book amount, Ty, is known. Therefore to estimate Tz in (4.4) we need to
estimate w.

Suppose m errors are observed in the sample of size n. Let Vi be the ith non-zero
prorated error observation then a point estimate of w is:

bw = 1

n

mX
i=1

Vi.

The problem now becomes that of finding a (1− α) upper confidence bound on w. This
is considered in the next section.

4.2 The Statistical Model of the Non-Zero Prorated Errors

To estimate w = πE (V ) in (4.3) we need to construct a model incorporating two aspects
of auditing populations: the distribution of error rate, π, and the distribution of non-zero
prorated errors, G. Then, based on this model, we aim to construct upper confidence
bounds on the population mean prorated error, w. A useful way of expressing this model
is through a compound Poisson processes which are often useful as approximate models
when describing rare events (Feller 1971, p181).
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4.2.1 The Number of Errors Distribution

The number of errors, M, observed in the sample of size n, is a random variable. The
exact distribution forM is the Hypergeometric. One can view the accounting population
at the time of auditing as a random sample of size N from an infinite population, so
that the distribution of M is approximated by the Binomial. Thus M has a Binomial
distribution,

Bn,π(M = k) =:

µ
n

k

¶
πk(1− π)n−k, k = 0, 1, ..., n. (4.5)

In audit population π and nπ2 are usually small, therefore the distribution of M can be
further approximated by the Poisson distribution,

Pλ(k) =: exp (−λ) (λ)k /k!, k = 0, 1, ... (4.6)

where λ = nπ. Here, we make no use of the classical requirement that λ = nπ is fixed,
while π → 0 and n → ∞. The Poisson approximation to Binomial works well provided
that π and nπ2 are small (Barbour, Holst, and Janson 1992).

4.2.2 Distribution of the Sum of Non-Zero Prorated Errors

Assume that V1, ..., VM are independent and identically distributed random variables,
each distributed as a random variable V (representing the nonzero prorated error), where
M is a number of errors observed in the sample of size n. We assume further that the
sequence {Vi} is independent of the variable M. Define a random variable S as

S =

½PM
i=1 Vi if M > 0

0 if M = 0
; (4.7)

obviously S gives the sum of non-zero prorated errors observed in a sample of size n.
Then with the assumption that the error occurrence in auditing populations constitute
a Poisson process with constant rate λ = nπ, S is a compound Poisson variable with
parameter λ and component distribution G. That is the cumulative distribution of S is

Pr[S ≤ x] =
∞X
k=0

pkG
∗k(x), x ≥ 0

where G∗k(x) is kth convolution of G with itself, G∗0(x) = 1 for x > 0, i.e.

G∗k(x) = Pr (V1 + V2 + ...+ Vk ≤ x)
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and pk = Pr[M = k] and so the cumulative distribution of S is given (Feller 1971,
p159-181) by

Pr[S ≤ x] =
∞X
k=0

e−λ (λ)k

k!
Pr (V1 + V2 + ...+ Vk ≤ x) . (4.8)

Let MS(r) = E[exp {rS}] denote the moment generating function of S, then

MS(r) = E[exp {rS}]

=
∞X
k=0

E[exp {rS} |M(n) = k]P{M(n) = k}

=
∞X
k=0

E[exp {r(V1 + V2 + ...+ Vk)} |M(n) = k]e−λ
(λ)k

k!

=
∞X
k=0

(E[exp r(V1)])
ke−λ

(λ)k

k!
, from independence of V 0i s. (4.9)

Letting MV1(r) = E[exp r(V1)] denote the moment generating function of V1, we have
from (4.9) that

MS(r) =
∞X
k=0

(MV1(r))
ke−λ

(λ)k

k!

= exp {λ(MV1(r)− 1)} . (4.10)

Differentiating MS(r) in (4.10) with respect to r, it is easy to see that the mean and
variance of S are given by:

E[S] = λE(V ) (4.11)

and

V ar[S] = λE(V 2). (4.12)

Explicit evaluation of the cumulative distribution function of the sum of non-zero pro-
rated errors, S, presented in (4.8) is impossible because of the complicated nature of the
convolutions. So we have to resort to approximations.

Remark: The motivation for taking a random sum of the non-zero prorated error is
that the standard deviation is underestimated when the number of summands is fixed.
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4.2.3 Approximation of the Cumulative Distribution of the Sum of the
Non-Zero Prorated Errors

We denote the moments of the distribution of V about the origin and about the mean of
order r respectively as

μ0r = E[V r]

and

μr = E [V − μ]r , r = 1, 2, ...

obviously μ01 = μ and μ2 = V ar(V ) = σ2v. To approximate the distribution function of S
consider a standardized statistic:

Υn =
S −E[S]p
V ar[S]

=
(
PM

i=1 Vi − λμ)p
λμ02

.

In practice, the asymptotic variance V ar[S] = λμ02 would be unknown therefore it is
useful to consider a Studentised version:

Υt =
(
PM

i=1 Vi − λμ)qPM
i=1 V

2
i

=
(
PM

i=1 Vi − nπμ)qPM
i=1 V

2
i

, (4.13)

since
PM

i=1 V
2
i is a natural consistent estimator of the variance of (

PM
i=1 Vi−λμ), i.e. for

all ε > 0.

lim
n→∞Pr

Ã¯̄̄̄
¯
MX
i=1

V 2i − λμ02

¯̄̄̄
¯ > nε

!
= 0.

It is impossible to present the exact distribution of the statistic Υt in a tractable
form. To construct a confidence bound on w we need to know the distribution of Υt. It
is common practice to approximate the distribution of Υt using traditional large-sample
techniques based on the central limit theorem. However, the distribution of the Vi is highly
skewed in auditing populations, therefore for any sample size the sampling distribution
of
PM

i=1 Vi will be skewed, as well as that of Υt. As a result, appropriate sample sizes
for the application of the central limit theorem are likely to be larger than desirable in
the audit context. The normal approximation or Student t distribution in general does
not perform well even for moderately large sample sizes such as 50,100, or 200, when
the skewness is severe, see Sutton (1993) and the references therein. In such situations,
the confidence bounds constructed on the basis of the Student t distribution would have
inflated significance level for the lower bounds and loss of power for the upper bounds
(Sutton 1993).
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It therefore seems natural to try to obtain a higher order approximation in the hope
that this will give sufficiently good approximation to the distribution of function of Υt.
We propose a transformation of Υt which removes the skewness effect of the auditing
population. This transformation would be used as the basis for constructing accurate
confidence bounds for the population mean prorated error, w. To do this, we require
a one-term Edgeworth expansion for Υt (Abramovitch and Singh 1985 and Hall 1992a,
1992b), which is obtained in the next section.

4.2.4 The Edgeworth Expansion of the Cumulative Distribution of the
Aggregated Non-Zero Prorated Errors

The Edgeworth expansion is an asymptotic expansion as n → ∞ of the distribution
of the standardised or studentized variable, Pr (Υt ≤ x) , in terms of the corresponding
normal distribution and in powers of n−1/2 (see appendix B). A detailed treatment of the
univariate Edgeworth expansion is given in Bardorff-Nielsen and Cox (1989, Chapter 4)
and Hall (1992b). The comprehensive treatment of the classical theory of the Edgeworth
expansion for the sample mean can be found in Chapters 4 and 5 of Bhattacharya and
Rao (1976). The one-term Edgeworth expansion for a studentized statistic is usually of
the form

Φ(x) + n−1/2p(x)φ(x) + o(n−1/2), (4.14)

where p(x) is a polynomial whose coefficients depend on the first few population moments
and φ(x) , Φ(x) denote standard normal density and distribution functions respectively.
The o(n−1/2) is a standard notation for some unspecified function f having the prop-
erty that limn→∞

√
nf = 0. That is o(n−1/2) is negligibly small compared with n−1/2

as n→∞. Asymptotic expansions for compound Poisson processes can be found in von
Chossy and Rappl (1983) and Hipp (1985). Indeed, using Edgeworth expansions of dis-
tribution function of Υt (4.13) far more accurate approximations may be obtained for
the distribution of Υt. However, the Edgeworth expansion for distribution function of Υt

is not readily available. To obtain a one-term Edgeworth expansion for the distribution
function of Υt Theorem 2.1 of Babu, Singh, and Yang (2003), which is stated as the
following lemma is needed.

Lemma 1(Babu, Singh, and Yang 2003, Theorem 2.1): Let {N(t), t > 0}, be
a Poisson process with rate λ > 0. Suppose X1,X2, ... are independent and identically
distributed random variables independent of {N(t), t > 0} and that E(X1

6) < ∞ and
the distribution of X1 has continuous component. Then uniformly in x, as t→∞,

Pr

⎛⎝(PN(t)
i=1 Xi − λμt)qPN(t)

i=1 X2
i

≤ x

⎞⎠ = Φ(x) +
1

6ν3
√
λt
[μ3(1 + 2x

2)− μ3(x2 − 1) +

3μ
¡
σ2 + x2σ2 + x2ν2

¢
]φ(x) + o(t−1/2) (4.15)
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where μ = E (X1) , σ
2 = V ar (X1) , μ3 = E (X1 − μ)3 , ν2 = E

¡
X2
1

¢
.

Theorem 1 below provides the Edgeworth approximation of the distribution function
of Υt up to terms of order o(n−1/2).

Theorem 1: Assume that M(n),the number of errors observed in the sample of size
n, follows a Poisson distribution with parameter π > 0. Suppose V1, V2, ... are independent
and identically distributed random variables independent of M(n) and that E(V16) <∞
and the distribution of V has a non-degenerate absolutely continuous component. Then

Pr (Υt ≤ x) = Φ(x) +
1

6(μ02)3/2
√
nπ
{μ3(1 + 2x2)− μ3(x2 − 1)

+3μ
¡
σ2v + x2σ2v + x2μ02

¢}φ(x) + o(n−1/2) (4.16)

uniformly in x, as n→∞.

Proof: Let {M(t), t > 0}, be a Poisson process with rate π > 0. Suppose V1, V2, ... are
independent and identically distributed random variables independent of {M(t), t > 0}
then by Lemma 1

Pr

⎛⎝(PM(t)
i=1 Vi − πμt)qPM(t)

i=1 V 2i

≤ x

⎞⎠ = Φ(x) +
1

6(μ02)3/2
√
πt
{μ3(1 + 2x2)− μ3(x2 − 1)

+3μ
¡
σ2v + x2σ2v + x2μ02

¢}φ(x) + o(t−1/2) (4.17)

Assume that we observe the process S =
PM(t)

i=1 Vi at equally spaced time points h, 2h, 3h · · · ,
where h > 0. Then we have at time t = hn, where n = 1, 2, · · · .

Pr

⎛⎝(PM(nh)
i=1 Vi − πμnh)qPM(nh)

i=1 V 2i

≤ x

⎞⎠ = Φ(x) +
1

6(μ02)3/2
√
nhπ

{μ3(1 + 2x2)− μ3(x2 − 1)

+3μ
¡
σ2v + x2σ2v + x2μ02

¢}φ(x) + o((nh)−1/2).(4.18)

Taking h = 1, and recalling that

Υt =
(
PM(n)

i=1 Vi − πμn)qPM(n)
i=1 V 2i

,

we obtain the result. ¤
We next use the Edgeworth expansion of Υt in (4.16) to remove the skewness effect

of audit data so that confidence bounds on the population mean prorated error, w, can
be more accurately computed.
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4.2.5 Removal of Skewness Effect of Auditing Data.

Procedures that reduce the effect of population skewness on the distribution of standard-
ised or studentised statistics in general terms have been suggested by many authors such
as Johnson (1978), Hall (1983, 1992a), and Abramovitch and Singh (1985), among oth-
ers. These procedures seek to convert an asymmetric statistic into a symmetric one, then
approximate by a standard normal distribution. Here we use the Edgeworth correction
for skewness discussed by Abramovitch and Singh (1985) to transform our statistic Υt.
That is

Lemma 2 (Abramovitch and Singh 1985, Theorem 1): Suppose that a pivotal
statistic S = (bθn − θ)/bσθ admits an Edgeworth expansion

Pr (S ≤ x) = Φ(x) + n−1/2ρ(F, x)φ(x) + o(n−1/2)

uniformly in x, where ρ(F, x) is a polynomial in x whose coefficients possibly depend
upon the underlying distribution F. Let bpn be an estimator of ρ(F, S) which satisfies the
condition that for all ε > 0

Pr (|bpn − ρ(F, S)| > ε) = o(n−1/2) (4.19)

as n→∞. Then S1 = S + n−1/2bpn has the following Edgeworth expansion
Pr (S1 ≤ x) = Φ(x) + o(n−1/2). (4.20)

Remark 1 (Remark 1 of Abramovitch and Singh 1985): If ρ(F, x) is a poly-
nomial in x whose coefficients depend on F only through its first r moments, if these
coefficients as a function of these moments have bounded partial derivative in a neigh-
bourhood of the true moments of F, and

R |X| 3r2 +δ dF <∞ for any δ > 0, then

Pr (|ρ(Fn, S)− ρ(F, S)| > ε) = o(n−1/2)

for any ε > 0.

Our transformed statistic is formally stated in the following theorem. Suppose m > 0
errors are observed in a sample of size n, and let

bμ = m−1
mX
i=1

Vi, bμ02 = m−1
mX
i=1

V 2i ,

bσ2v = 1

m− 1
mX
i=1

(Vi − bμ)2 , bμ3 = m−1
mX
i=1

(Vi − bμ)3 .
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Then define

bpn = 1

6(bμ02)3/2pm/n
{bμ3(1 + 2Υ2t )− bμ3(Υ2t − 1) + 3bμ ¡bσ2v +Υ2t bσ2v +Υ2t bμ02¢}. (4.21)

Theorem 2: Assume that Υt admits an Edgeworth expansion as given in Theorem
1. Define

Υ0t = Υt + n−1/2bpn, (4.22)

then the distribution of Υ0t has an Edgeworth expansion

Pr
¡
Υ0t ≤ x

¢
= Φ(x) + o(n−1/2) (4.23)

uniformly in x.

We point out that equation (4.23) means that the transformed statistic, Υ0t, if approx-
imated by the standard normal, will only be in error by o(n−1/2).

Proof of Theorem 2: By Theorem 1, one-term Edgeworth expansion for Υt could
be expressed as

Pr (Υt ≤ x) = Φ(x) + n−1/2ρ(G,x)φ(x) + o(n−1/2)

where

ρ(G,x) =
1

6(μ02)3/2
√
nπ
{μ3(1 + 2x2)− μ3(x2 − 1) + 3μ ¡σ2v + x2σ2v + x2μ02

¢}.
Using Lemma 2 and (4.16) of Theorem 1, we modify Υt as:

Υ0t = Υt + n−1/2ρ(Gn,Υt) (4.24)

where Gn is the empirical distribution of V. Since bpn = ρ(Gn,Υt), an estimator of
ρ(G,Υt), by Remark 1 satisfies the condition that for all ε > 0

Pr (|ρ(Gn,Υt)− ρ(G,Υt)| > ε) = o(n−1/2), (4.25)

It follows from Lemma 2 that Υ0t has the Edgeworth expansion

Pr(Υ
0
t ≤ x) = Φ(x) + o(n−1/2) (4.26)

as claimed. ¤
Clearly, the transformation (4.22) reduces the effect of extreme skewness inherent in

auditing population on our statistic Υt. As it will become clear in the next section, we
can obtain an accurate asymptotic confidence bound on the population mean prorated
error, w, on the basis of the transformed statistic, Υ0t.
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4.3 Confidence Bounds for the Mean Prorated Error

In this section an approximate non-parametric confidence bound on the population
mean prorated error, w, with a coverage probability (1− α) , based on Abramovitch and
Singh (1985, Theorem 2) is derived. That is :

Lemma 3 (Abramovitch and Singh 1985, Theorem 2): Suppose a statistic
S = (bθn − θ)/bσθ admits an Edgeworth expansion

Pr (S ≤ x) = Φ(x) + n−1/2ρ(F, x)φ(x) + o(n−1/2)

uniformly in x, and the conditions of remark 1 hold. Let S1 = S + n−1/2ρ(Fn, S). Then

Pr
³
θ < bθn − a1bσθ´ = P

¡
S1 > zα/2

¢
+ o(n−1/2)

= α/2 + o(n−1/2)

and

Pr
³
θ > bθn − a2bσθ´ = P

¡
S1 < −zα/2

¢
+ o(n−1/2)

= α/2 + o(n−1/2).

where α ∈ (0, 1/2), −zα/2 = Φ−1 (α/2), so that zα/2 = Φ−1 (1− α/2) and

a1 = zα/2 − n−1/2ρ(Fn, zα/2)

a2 = −zα/2 − n−1/2ρ(Fn,−zα/2)
and Fn denotes the empirical cumulative distribution function.

Application of Lemma 3 to our statistic Υt yields the following results which are
formally stated in Theorem 3.

Theorem 3: Assume that (4.16) of Theorem 1 holds. Define the quantities

η1 = zα − 1

6(bμ02)3/2√m [bμ3(1 + 2z2α)− bμ3(z2α − 1)
+3bμ ¡bσ2v + z2αbσ2v + z2αbμ02¢], (4.27)

η2 = −zα − 1

6(bμ02)3/2√m [bμ3(1 + 2z2α)− bμ3(z2α − 1)
+3bμ ¡bσ2v + z2αbσ2v + z2αbμ02¢]. (4.28)

Then

Pr

⎛⎝w < bwn − η1
n

vuut mX
i=1

V 2i

⎞⎠ = Pr
¡
Υ0t > zα

¢
+ o(n−1/2) (4.29)

= α+ o(n−1/2) (4.30)
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and

Pr

⎛⎝w > bwn − η2
n

vuut mX
i=1

V 2i

⎞⎠ = Pr
¡
Υ0t < −zα

¢
+ o(n−1/2) (4.31)

= α+ o(n−1/2). (4.32)

where α ∈ (0, 1/2), m = number errors observed in a sample of size n, and −zα =
Φ−1 (α), so that zα = Φ−1 (1− α), w is the population mean prorated error.

Proof of Theorem 3: By Theorem 1, one-term Edgeworth expansion for Υt is
given by

Pr (Υt ≤ x) = Φ(x) + n−1/2ρ(G,x)φ(x) + o(n−1/2)

where

ρ(G,x) =
1

6(μ02)3/2
√
nπ
{μ3(1 + 2x2)− μ3(x2 − 1) + 3μ ¡σ2v + x2σ2v + x2μ02

¢}.
Let Gn be empirical distribution of V. Then for any ε > 0

Pr (|ρ(Gn,Υt)− ρ(G,Υt)| > ε) = o(n−1/2).

Thus Lemma 3 applies. Let Υ0t = Υt + n−1/2ρ(Gn,Υt) and define

η1 = zα − n−1/2ρ(Gn, zα),

η2 = −zα − n−1/2ρ(Gn,−zα).
Then it follows by Lemma 3 that

Pr

⎛⎝w < bwn − η1
n

vuut mX
i=1

V 2i

⎞⎠ = P
¡
Υ0t > zα

¢
+ o(n−1/2)

= α+ o(n−1/2)

and

Pr

⎛⎝w > bwn − η2
n

vuut mX
i=1

V 2i

⎞⎠ = P
¡
Υ0t < zα

¢
+ o(n−1/2)

= α+ o(n−1/2).

¤
This theorem says that a confidence bound for the population mean prorated error,

w, constructed on the basis of transformed statistic Υ0t has a coverage error of o(n−1/2).

66



Remark: We may use a bootstrap approach to compute the empirical 100 (1− α)
percentile of the Υ0t instead of the normal approximation (Hall 1992). The coverage error
can be reduced to o(n−1) by bootstrapping Υ0t (Abramovitch and Singh 1985).

Clearly, Theorem 3 can be used to construct interval for w. We next construct confi-
dence bounds for w , when (1) two or more errors are observed and (2) exactly one error
is observed in a sample of size n.

4.3.1 Treatment for Samples with Two or More Errors

We first consider the case where the number of errors observed in the sample is two or
more. By Theorem 3 we have

Pr

⎛⎝w > bwn − η2
n

vuut mX
i=1

V 2i

⎞⎠ = α+ o(n−1/2) for m ≥ 2 (4.33)

provided α ∈ (0, 1/2). It follows that 100(1− α)% upper confidence bound on w is:

bwu(1− α) =
1

n

mX
i=1

Vi

+
1

n
{ 1

6(bμ02)3/2√m [bμ3(1 + 2z2α)− bμ3(z2α − 1)
+3bμ ¡bσ2v + z2αbσ2v + z2αbμ02¢] + zα}

vuut mX
i=1

V 2i (4.34)

The method (4.34) provide 100(1−α)% upper confidence bound for the population mean
taint, w. To obtain a bound for the population total error amount, Tz, multiply (4.34) by
the total recorded value Ty. Thus the (1− α) upper confidence bound on Tz is:bTz(1− α) = Ty bwu(1− α). (4.35)

Similarly the 100(1−α)% lower confidence bound on w, bwl(1−α), is derived using Theorem
3:

bwl(1− α) =
1

n

mX
i=1

Vi

+
1

n
[

1

6(bμ02)3/2√m{bμ3(1 + 2z2α)− bμ3(z2α − 1)
+3bμ ¡bσ2v + z2αbσ2v + z2αbμ02¢}− zα]

vuut mX
i=1

V 2i (4.36)
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where zα satisfies Φ(zα) = α. Therefore (1− α)100 lower confidence bound on Tz is:bTz(1− α) = Ty bwl(1− α). (4.37)

4.3.2 Treatment for Samples with One Error

With one error, the variance is zero, then the statistics Υ0t in (4.22), can be written as

Υ0t = Υt +
1

6
(2Υ2t + 1).

and η2 in Theorem 3 as:

η2 = −zα −
1

6
(2z2α + 1),

Therefore we have a (1− α) upper confidence bound on Tz as:

bTz = Ty
V1 + [zα +

1
6(2z

2
α + 1)]V1

n
. (4.38)

The bounds (4.35) and (4.38) shall be referred to as Studentised compound Poisson
(SCP) bound. So far we have seen that, for any auditing data, the use of equations (4.35)
and (4.38) in computing upper confidence bounds of the error amount are theoretically
justifiable.

Clearly the definition of the statistic Υ0t in (4.22) depends on M = m and if m = 0,
where m is the number of errors observed in a sample of size n, Υ0t is undefined.

4.4 Numerical Evaluation of the Upper Bound

Before going on to an extensive examination of the bound developed in this Chapter (SCP)
in Chapter 7, we first carry out a preliminary investigation of its performance following
an approach pioneered by Leitch et al. (1982). This approach involves generating, in a
single sample of given size, a replica of a particular population prorated error model for a
specified error rate. Various bounds are computed based on this single sample to provide
representative information about the bounds behaviour. However, this does not provide
sampling information about the bounds.

Typical tainting patterns were created in Leitch et al. (1982) as follows:

If k error taintings were to be created for a sample of n, corresponding to an error
rate of π = k/n, the smallest error tainting was set to be equal to the 1/2k− quantile of
the probability distribution, the next smallest error tainting was set to the 3/2k -quantile
and so on. For example, for the χ2 distribution with three degrees of freedom and k = 10
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errors, the smallest error tainting would be set equal to the 100[1/2(10)] = 5th percentile,
which is 0.0352 (scaled down). The other error taintings were created in corresponding
fashion.

Four prorated error models were utilised in Leitch et al. (1982). These are the

(i) J: χ2 distribution with one degree of freedom (χ21),

(ii) J-100: χ2 distribution with one degree of freedom with 20% of 100 percent over-
statement,

(iii) Unimodal: χ2 distribution with three degrees of freedom (χ23) and

(iv) Uniform distribution from 0 to 1.

Error rates of 6, 10, 15, 20 and 25% were also utilised in the study. For the χ2

distribution, the actual total error seeded in the population is given

Tz = Tyπ[100(1− q) + 10dq]/100,

where π = error rate, q =fraction of non-100 percent overstatement, and d =number of
degrees of freedom of the chi-squared variate. The typical tainting patterns used in study
here are given in the appendix 4.

The SCP bound in (4.35) is applied to benchmark data sets, “typical sample error
tainting patterns” given in Leitch et al. (1982). The results are given in Table 4.1, in the
last column.

For convenience and for purpose of comparison, the reported results for the Stringer
bound (SB), Modified Multinomial (MM) from Leitch et al. (1982), Moment bound
(MB) from Dworin and Grimlund (1984, Table 3), Multinomial-Dirichlet bound (MD)
from Tsui, Matsumura, and Tsui (1985, Table 4) and Augmented Variance bound (AV)
from Rohrbach (1993, Table 1) based on “typical tainting patterns” described in Leitch
et al. (1982) are included. These are summarised in Table 4.1, columns 4 through 8.

4.4.1 Performance of the SCP Bound

The last column in Table 4.1 gives the 95% upper confidence bounds obtained by the
SCP bound, using typical tainting patterns described in Leitch et al. (1982).

As can be seen from Table 4.1 the SCP bound is tighter (much closer to the true
population mean taint, at a specified confidence level) than all the five bounds for the
J- error model. For the J-100, the SCP bound is tighter than all except the Augmented
Variance bound. It is tighter than the Stringer, Modified Multinomial, and Moment
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Table 4.1: Comparisons of Upper Bounds Based on a Typical Tainting Pattern in One
Sample n=100, 95% nominal confidence, Recorded Value=1 million Dollars
Error
Model

Line Item
Error Rate

Exact SB MM MB MD AV SCP

J

6%
10%
15%
20%
25%

.006

.010

.015

.020

.025

.039

.045

.052

.059

.066

.031

.033

.037

.043

.049

.025

.031

.038

.045

.051

.028

.033

.039

.044

.050

.025

.030

.036

.042

.047

.014

.021

.028

.035

.042

J-100

6%
10%
15%
20%
25%

.017

.028

.042

.056

.070

.054

.060

.080

.087

.106

.047

.050

.068

.075

.093

.042

.047

.068

.073

.092

.045

.049

.068

.073

.090

.040

.044

.063

.069

.087

.042

.046

.068

.072

.092

unimodal

6%
10%
15%
20%
25%

.018

.030

.045

.060

.075

.057

.074

.094

.114

.133

.039

.051

.072

.098

.117

.042

.059

.080

.098

.115

.043

.059

.076

.093

.110

.041

.055

.074

.091

.108

.038

.054

.075

.094

.112

Uniform

6%
10%
15%
20%
25%

.030

.050

.075

.100

.125

.076

.104

.136

.167

.198

.057

.083

.116

.151

.183

.067

.095

.126

.156

.185

.064

.088

.116

.144

.171

.059

.084

.114

.143

.171

.062

.088

.120

.151

.180
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Table 4.2: Paired t test for SCP and other Upper Bounds Based on a Typical Taint-
ing Pattern in One Sample n=100, 95% nominal confidence, Recorded Value=1 million
Dollars. Ho: mean(SCP-other bounds) = mean(diff) = 0

Bounds Average Std. Dev. diff(SCP- bound) p-value
Stringer .09005 .0423 -.01835 0.0000
Multinomial .07465 .0412 -.00295 0.0173
Moment .07675 .0427 -.00505 0.0000
Multinomial-Dirichlet .07415 .0380 -.00245 0.0450
Augmented Variance .07115 .0389 .00055 0.6614
SCP .07170 .0437

bound, and compares well with the Multinomial-Dirichlet bound for the unimodal and
uniform distribution.

Paired t-tests to investigate whether the SCP bound is significantly tighter than the
other bounds estimates, based on the typical tainting pattern in a sample of 100 were
carried out. The results are given in Table 4.2.

It can be seen that SCP bound is significantly tighter than the Stringer, Modified
Multinomial, Moment bound and Multinomial-Dirichlet estimates with p-value = 0.000,
0.035, 0.000 and 0.045 respectively. As shown in Table 4.2. the SCP bound is not signif-
icantly tighter than Augmented Variance bound, based on the typical tainting pattern in
a sample of 100. These tests are regarded as approximate since the populations are not
normally distributed. Table 4.23 gives the summary of statistics of upper bounds based
on a typical tainting pattern

Large-scale simulation studies are carried out in Chapter 7 to further assess the per-
formance of the SCP bound using real and simulated populations in terms of coverage
probability, relative efficiency and relative advantage over the Stringer bound.

4.5 Summary and Discussion

In this chapter, we have developed a new method for constructing confidence bounds
for the total error amount in an auditing population, when the underlying distribution
is highly skewed and contains substantial number of zero errors. We have reduced the
problem of estimating total error amount in auditing to compound Poisson sum and using
the Edgeworth expansion for a compound Poisson distribution, we removed the effect of
a extreme skewness inherent in auditing data. One interesting feature of the SCP bound
is that it can handle both overstatement and understatement errors and also could be
used to construct both upper and lower confidence bounds.
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Using an approach pioneered by Leitch et al. 1982, we compared the performance
of the new bound with other methods in the literature. Our initial results presented in
this chapter suggest that the new bound compares favourably to other methods in the
literature. The generalizability of the results is limited by the representativeness of the
audit conditions considered here, the typical tainting patterns of Leitch et al. (1982).
Further numerical investigation is carried out in Chapter 7 to investigate the reliability
of the bound and also to give better indications on when our proposed estimator is
appropriate.
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Chapter 5

On the Stringer Bound

In this chapter, we obtain a bound on F , the common cumulative distribution function
of the prorated errors, which we then use to give an alternative form of the Stringer
bound. With this form of the Stringer bound, we were able to use Bolshev’s recursion
to obtain a lower bound on its coverage probability, and showed that, for n ≤ 2, this
lower bound is greater than or equal to the stated coverage probability. We illustrate
numerically that the Stringer bound is reliable when (n, α) falls into a number of ranges;
specifically n ≤ 11 and α ∈ (0, 0.05); n ≤ 10 and α ∈ (0, 0.1); n ≤ 9 and α ∈ (0, 0.20);
n ≤ 8 and α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5). We also proposed an extension to the
Stringer method based on Rom’s adjusted significance levels, and illustrated numerically
the reliability of the extended Stringer bound for values of α in the range .05 to .5, and
for n = 1 to n = 20.

5.1 Introduction

Writing T1, T2, · · · , Tn for the sample prorated errors, we assume that they are inde-
pendent and identically distributed random variables with common cumulative distribu-
tion function (cdf) F . We also assume that the Ti are non negative and that Pr(0 ≤
Ti ≤ 1) = 1. We also write ti:n as the ith order statistics of (T1, T2, . . . , Tn), so that
0 ≤ t1:n ≤ t2:n ≤ t3:n ≤ · · · ≤ tn:n ≤ 1.
One of the most widely used upper confidence bounds for estimating the error in the
population is the Stringer bound (Stringer, 1963), which attempts to provide an upper
1− α confidence bound for the mean error amount in the population:

μst = pn(0; 1− α) +
nX
i=1

{pn(i; 1− α)− pn(i− 1; 1− α)}tn−i+1:n, (5.1)
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where p = pn(i; 1− α) is a unique solution to equation

iX
k=0

µ
n

k

¶
pk(1− p)n−k = α, (5.2)

for i = 0, 1, · · ·n− 1,and α ∈ (0, 1). By convention pn(n; 1− α) = 1. There is inequality

0 < pn(0 : 1− α) < ... < pn(n− 1 : 1− α) < 1.

The formulation of the Stringer bound has never been satisfactorily explained (Panel
on Nonstandard mixtures of Distributions, 1989). However there is a common belief in
auditing practice that the bound works in the sense that its coverage probability is at
least the nominal confidence level. That is the Stringer bound, μst, satisfies

Pr[μst ≥ μ(F )] ≥ 1− α (5.3)

for all n and for α typically less than 0.5, where F is the common cumulative distribution
function of the prorated errors with mean μ(F ). While, there is no general mathematical
proof of (5.3) (Pap and Van Zuijlen 1996), some asymptotic results have been obtained
by Bickel (1992) and Pap and Van Zuijlen (1996).

Bickel (1992) studied the asymptotic behaviour of the Stringer bound, and showed
that (5.3) for n = 1, while

Pr[μst ≥ μ(F )] ≥ (1− α)n+1 (n ≥ 2)

under certain conditions on the distribution F. Bickel also showed that

μst = n−1
nX
i=1

Ti + C(F )z1−α/n1/2 + op(n
−1/2) (5.4)

where z1−α is (1− α) percentile of the standard normal distribution, and

C(F ) =

Z 1

0
F−1(t)

2t− 1
2
p
t(1− t)

dt, (5.5)

and C(F )2 ≥ σ2(F ) =V ar(T ) with equality only when F concentrates on at most 2
points. The op(n−1/2) is a standard notation for some unspecified random variable νn
having the property that n1/2νn converges in probability to zero as n→∞.

Pap and Van Zuijlen (1996) extended this work to demonstrate the asymptotic con-
servatism of the Stringer bound. They showed that (5.4) converges almost surely and
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constructed an example to show that C(F )/σ can be arbitrarily large. From (5.4) and
the inequality C(F )2 ≥ σ2, they deduced

lim
n→∞Pr(μst ≥ μ(F )) ≥ 1− α for α ∈ (0, 1/2] (5.6)

lim
n→∞Pr(μst ≥ μ(F )) ≤ 1− α for α ∈ (1/2, 1). (5.7)

That is, the Stringer bound is asymptotically conservative for α ∈ (0, 1/2] and asymptot-
ically not conservative for α ∈ (1/2, 1).

Pap and Van Zuijlen (1995) gave recursive relations for obtaining the exact distri-
bution of the Stringer bound in case where the underlying distribution of the prorated
errors is a uniform distribution on the interval [0, 1],or a distribution with positive mass
at zero and conditionally uniform on (0, 1]. Based on this recursive relation Pap and Van
Zuijlen constructed a concrete example where the Stringer bound is not conservative.

In what follows we revisit the Stringer bound, and examine some of its properties.
We first obtain bound on F, the common distribution function of prorated errors, and
go on to use Bolshev’s recursive formulae, as given in Shorack and Wellner (1986), and
the adjusted significance levels of Rom (1990) in an attempt to obtain a reliable upper
bound.

5.2 An Alternative Form of the Stringer Bound

The empirical cumulative distribution function Fn of prorated error is given by

Fn(t) =
1

n

nX
i=1

I[0,Ti](t) (5.8)

Here I is the indicator function, i.e. for Ti,

I[0,Ti](t) =

½
1 if Ti ≤ t

0 if Ti > t
.

For each fixed t, the observations Xi = I[0,Ti](t), i = 1, · · · , n, can be considered as
a random sample from a population with Bernoulli distribution with success probability
p = F (t). It follows that nFn(t) has a binomial distribution with parameters n and F (t).
The c.d.f of Fn(t) is given by

Ψ(x,F (t)) =

[nx]X
i=0

µ
n

i

¶
F (t)i(1− F (t))n−i.
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where [nx] denotes the integer part of nx.We can define a lower bound on F (t) as follows:
Let

bFn,L(t) = inf nF (t) : Ψ(F obs
n (t)−, F (t))) ≤ 1− α

o
,

where F obs
n (t) denotes the observed value of Fn(t). Here

Ψ(F obs
n (t)−, F (t))) = Pr(F (t) < F obs

n (t)).

Now bFn,L(t) is the unique solutions of equation
Ψ(F obs

n (t)−, F (t)) = 1− α,

i.e.

Ψ(F obs
n (t)−, F (t)) =

nF obs
n (t)−1X
i=0

µ
n

i

¶
F (t)i(1− F (t))n−i (5.9)

or equivalently, we could say that bFn,L(t) is the unique solutions of equation
nX

i=nF obs
n (t)

µ
n

i

¶
F (t)i(1− F (t))n−i = α (5.10)

It therefore follows (Wilks 1962, p. 368 and Shao 2003 p.475 ) that

Pr
³
F (t) ≥ bFn,L(t)´ ≥ 1− α. (5.11)

Since 0 ≤ t1:n ≤ t2:n ≤ ... ≤ tn:n ≤ 1 are order statistic of (T1, T2, ..., Tn), thenbFn,L(t) = qn(i− 1; 1− α) if ti−1:n ≤ t < ti:n (5.12)

where qn(i; 1− α) is a unique solution of

nX
k=i

µ
n

k

¶
qk(1− q)n−k = α.

By convention qn(0; 1 − α) = 0. Thus q = qn(i; 1 − α) is the Clopper-Pearson one-sided
lower confidence bound for binomial parameter with i successes. The combination of
these pointwise confidence bands can expressed as:

bFn,L(t) = n+1X
i=1

qn(i− 1; 1− α)I[ti−1:n,ti:n)(t),

76



using the convention that t0:n = 0 and tn+1:n = 1.

Like Fn(t), bFn,L(t) is a step function that jumps only at observed values of Ti. Now
let us consider

R 1
0 [1− bFn,L(t)]dt. Since the n observations of Ti divide the interval [0, 1]

into n+ 1 intervals, we can writeZ 1

0
[1− bFn,L(t)]dt =

n+1X
i=1

Z ti:n

ti−1:n
[1− bFn,L(t)]dt

=
n+1X
i=1

(1− qn(i− 1; 1− α))(tin − ti−1:n)

=
n+1X
i=1

pn(n− i+ 1; 1− α)(ti:n − ti−1:n)

since by the invariance property of the binomial probabilities we have (see Blyth 1986,
p844)

1− qn(i− 1; 1− α) = pn(n− i+ 1; 1− α), for i = 0, 1, 2, ..., n (5.13)

This gives Z 1

0
[1− bFn,L(t)]dt = nX

i=0

[pn(i; 1− α)− pn(i− 1; 1− α)]tn−i+1:n. (5.14)

which is the Stringer bound, μst, given in (5.1), i.e.

μst =

Z 1

0
[1− bFn,L(t)]dt.

We have used the convention pn(−1; 1 − α) = 0. In the next section, we use Bolshev’s
recursion to examine the coverage probability of the Stringer bound.

5.3 Bolshev’s Recursion

Recalling that the mean prorated error may be written as

μ(F ) =

Z 1

0
(1− F (t))dt,

the coverage probability, CP , attached to the Stringer bound is:
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CP = Pr[μ(F ) ≤ μst]

= Pr[

Z 1

0
(1− F (t))dt ≤

Z 1

0
(1− bFn,L(t))dt]

≥ Pr [F (t) ≥ bFn,L(t) for all t ∈ [0, 1]]
= Pr {

n\
i=1

[F (ti:n) ≥ bFn,L(ti:n) ]}.
Since {F (ti:n), 1 ≤ i ≤ n} is distributed as the order statistic of n independent random
variables with uniform distribution on [0, 1] (see Shorack and Wellner 1986, Chapter 1),
then

Pr {
n\
i=1

[F (ti:n) ≥ bFn,L(ti:n) ]} = Pr (Ui:n ≥ qn(i− 1 : 1− α), 1 ≤ i ≤ n) ,

which means

CP ≥ Pr (Ui:n ≥ qn(i− 1 : 1− α), 1 ≤ i ≤ n) (5.15)

Because the random vectors (Ui:n, 1 ≤ i ≤ n) and (1− Un−i+1:n, 1 ≤ i ≤ n) have the same
uniform distribution with constant density n! on the simplex {u ∈Rn : 0 ≤ u1 ≤ ... ≤
un ≤ 1}, we have that

Pr (Ui:n ≥ qn(i− 1 : 1− α), 1 ≤ i ≤ n) = Pr (Ui:n ≤ pn(i : 1− α), 1 ≤ i ≤ n) ,

which means that the coverage probability in (5.15) is

CP ≥ Pr (Ui:n ≤ pn(i : 1− α), 1 ≤ i ≤ n) . (5.16)

Therefore for each n we can define:

Pn = Pr (Ui:n ≤ pn(i : 1− α), 1 ≤ i ≤ n) ,

which is a lower bound on the CP, the coverage probability of the Stringer bound. There
are many different recursion formulas in the literature which can be used to compute
Pn. For a review of these formulas see Shorack and Wellner (1986, Section 9.1). Here
we invoke Bolshev’s recursion as described in Shorack and Wellner (1986, p. 366-367). A
general recursive formula for Pn is given by

Pn = 1−
nX
i=1

µ
n

i

¶
{1− pn(n− i+ 1 : 1− α)}iPn−i, (5.17)
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with P 0 = 1. Equivalently

Pn = 1−
n−1X
i=0

µ
n

i

¶
{1− pn(i+ 1 : 1− α)}n−iP i. (5.18)

Hence, for each n,

Pr[μ(F ) ≤ μst] ≥ Pn for all α ∈ (0, 1). (5.19)

We will now investigate when Pn ≥ 1− α.

For n ≤ 2, we can show that Pn ≥ 1 − α for α ∈ (0, 1). Recall the nth degree
polynomial equation (5.2) satisfied by p = pn(i; 1− α). When i = 0, (5.2) takes the form

(1− p)n = α,

which gives

pn(0; 1− α) = 1− α1/n,

while for i = n− 1, (5.2) is

1− pn = α,

which gives

pn(n− 1; 1− α) = (1− α)1/n .

Thus

P 1 = p1(1 : 1− α) = 1 ≥ 1− α.

When n = 2, we find

P 2 = 2p2(1 : 1− α)p2(2 : 1− α)− p2(1 : 1− α)2

= 2(1− α)1/2 − (1− α)

≥ 1− α.

We have been unable to show that Pn ≥ 1 − α for all α when n > 2. However, we can
evaluate Pn for specific values of n and specific values of α. Table 5.1 gives the values of
Pn evaluated for α = 0.05, 0.1, 0.15, · · · , 0.5, and for n = 1, 2, · · · , 20. using the recursive
relation given in (5.17). The C++ code for obtaining Pn is given in the Appendix.
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Table 5.1: Numerical illustration of lower bound (Pn ) on the coverage probability of the
Stringer bound

1− α
n 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.999 0.997 0.994 0.989 0.982 0.973 0.963 0.949 0.933 0.914
3 0.998 0.990 0.979 0.965 0.948 0.928 0.904 0.877 0.846 0.811
4 0.993 0.979 0.960 0.937 0.910 0.879 0.845 0.807 0.765 0.719
5 0.988 0.966 0.940 0.908 0.873 0.833 0.790 0.744 0.695 0.643
6 0.982 0.953 0.920 0.880 0.837 0.791 0.742 0.690 0.636 0.580
7 0.976 0.940 0.899 0.853 0.804 0.752 0.698 0.642 0.585 0.527
8 0.970 0.928 0.880 0.829 0.774 0.718 0.660 0.601 0.542 0.483
9 0.964 0.915 0.862 0.806 0.747 0.687 0.626 0.565 0.505 0.445
10 0.958 0.904 0.845 0.784 0.722 0.659 0.596 0.533 0.472 0.413
11 0.952 0.892 0.829 0.764 0.699 0.633 0.569 0.506 0.444 0.384
12 0.946 0.882 0.814 0.746 0.678 0.610 0.545 0.481 0.419 0.360
13 0.940 0.871 0.800 0.729 0.658 0.589 0.522 0.458 0.396 0.338
14 0.935 0.861 0.787 0.712 0.640 0.570 0.502 0.438 0.376 0.319
15 0.930 0.852 0.774 0.697 0.623 0.552 0.484 0.419 0.358 0.302
16 0.925 0.843 0.762 0.683 0.607 0.535 0.467 0.402 0.342 0.286
17 0.920 0.834 0.751 0.670 0.593 0.520 0.451 0.387 0.327 0.272
18 0.915 0.826 0.740 0.657 0.580 0.506 0.437 0.373 0.314 0.260
19 0.910 0.818 0.729 0.645 0.566 0.492 0.423 0.360 0.301 0.248
20 0.906 0.810 0.720 0.634 0.554 0.480 0.411 0.348 0.290 0.237
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• n ≤ 11 and α = 0.05

• n ≤ 10 and α ∈ (0, 0.1)
• n ≤ 9 and α ∈ (0, 0.2)
• n ≤ 8 and α ∈ (0, 0.4)
• n ≤ 7 and α ∈ (0, 0.5)

In all other cases, the lower bounds, Pn, are lower than the stated significance level
1− α, and can often be substantially lower.

5.4 Rom’s Adjusted Significance Levels

Various extensions can be made to the Stringer method, either to improve its tightness
or to expand the method to have the right coverage probability for all n ≥ 1 and α ∈
(0, 1). Based on the asymptotic behaviour of the Stringer bound, Pap and Van Zuijlen
(1996) proposed a modified Stringer bound which has asymptotically correct coverage
probability for all α ∈ (0, 1). De Jager, Pap, and Van Zuijlen (1997) acknowledged that
this modified method is not suitable when both the sample size and the error rates are
small. They acknowledged the need for further enhancements of the Stringer bound.

In this section we discuss an extension of the Stringer method using Rom’s (1990)
procedure for adjusting significance levels for multiple testing, which are determined
recursively as

αk =
1

k

(
k−1X
i=1

αi −
k−2X
i=1

µ
k

i

¶
αk−ii+1

)
, (5.20)

where k = 2, ..., n, with α0 = α1 = α, where α ∈ (0, 1). For example, a fixed α ∈ (0, 1),
we have

α2 = α/2;

α3 =
α

3
+

α2

12
;

and

α4 =
α

4
+

α2

12
+

α3

24
− α4

96
.
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Table 5.2: Illustration of significance level, αk for α = 0.05, k=1,2,...,15
k αk
1 5.00×10−2
2 2.50×10−2
3 1.69×10−2
4 1.27×10−2
5 1.02×10−2
6 8.51×10−3
7 7.30×10−3
8 6.39×10−3
9 5.68×10−3
10 5.12×10−3
11 4.65×10−3
12 4.26×10−3
13 3.94×10−3
14 3.66×10−3
15 3.41×10−3

The adjusted significance levels are given in Table 5.2 for α = 0.05 and for k =
1, 2, · · · , 20.

This is an extension of Table 1 in Rom (1990), where the adjusted significance levels
are given for n = 1, 2, · · · , 10. Using these adjusted significance levels in Stringer bound
as defined in (5.1), we obtain an extended Stringer bound.

ESTU (1− α) = pn(0; 1− α) +
nX
i=1

{pn(i; 1− αi)− pn(i− 1; 1− αi−1)}tn−i+1:n (5.21)

Table 5.3 gives the lower bound on the coverage probability of the extended Stringer
bound for α = 0.05, 0.1, 0.15, · · · , 0.5 and n up to 20 using Bolshev’s recursion. In all
these cases, the method appears reliable. 

We anticipate though that this extended Stringer bound is overly conservative.

5.5 Summary

In this chapter, we obtain a bound on F , the common cumulative distribution function of
the prorated errors, which we then use to give an alternative form of the Stringer bound.
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Table 5.3: Numerical illustration of lower bound on the coverage probability of the Ex-
tended Stringer bound

1− α
n 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.999 0.997 0.994 0.989 0.982 0.973 0.963 0.949 0.933 0.914
3 0.997 0.990 0.979 0.965 0.948 0.928 0.904 0.877 0.846 0.811
4 0.993 0.981 0.965 0.945 0.922 0.896 0.867 0.834 0.799 0.760
5 0.990 0.974 0.954 0.931 0.904 0.875 0.843 0.808 0.770 0.729
6 0.987 0.969 0.946 0.920 0.891 0.860 0.826 0.789 0.750 0.708
7 0.985 0.964 0.940 0.912 0.881 0.848 0.813 0.775 0.735 0.692
8 0.984 0.961 0.935 0.905 0.874 0.839 0.803 0.764 0.724 0.680
9 0.982 0.958 0.930 0.900 0.867 0.832 0.795 0.756 0.716 0.671
10 0.981 0.956 0.927 0.896 0.862 0.827 0.789 0.749 0.707 0.663
11 0.980 0.953 0.924 0.890 0.858 0.822 0.783 0.743 0.701 0.657
12 0.979 0.952 0.921 0.889 0.854 0.817 0.779 0.738 0.696 0.652
13 0.978 0.950 0.919 0.886 0.851 0.814 0.775 0.734 0.692 0.647
14 0.977 0.949 0.917 0.884 0.848 0.811 0.772 0.731 0.688 0.643
15 0.976 0.947 0.916 0.882 0.846 0.808 0.769 0.727 0.684 0.640
16 0.976 0.946 0.914 0.880 0.844 0.806 0.766 0.725 0.682 0.637
17 0.975 0.945 0.913 0.878 0.842 0.804 0.764 0.722 0.679 0.634
18 0.975 0.944 0.912 0.877 0.840 0.802 0.762 0.720 0.677 0.632
19 0.974 0.944 0.910 0.875 0.838 0.800 0.760 0.718 0.675 0.630
20 0.974 0.943 0.909 0.874 0.837 0.798 0.758 0.716 0.673 0.628
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With this form of the Stringer bound, we were able to use Bolshev’s recursion to obtain
a lower bound on its coverage probability, and showed that, for n ≤ 2, this lower bound
is greater than or equal to the stated coverage probability, indicating that the Stringer
bound is reliable when n ≤ 2.

Though unable to provide a mathematical proof of the reliability of the Stringer bound
when n > 2, we were able to illustrate numerically that it appears to be reliable when
(n, α) falls into a number of ranges; specifically n ≤ 11 and α ∈ (0, 0.05); n ≤ 10 and
α ∈ (0, 0.1); n ≤ 9 and α ∈ (0, 0.20); n ≤ 8 and α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5).
Outside these ranges, our lower bound on the coverage is less than the stated coverage,
and often substantially less.

We also proposed an extension to the Stringer method based on Rom’s adjusted sig-
nificance levels, and illustrated numerically that this extended Stringer bound appears to
be reliable for values of α in the range .05 to .5, and for n = 1 to n = 20.
In the next chapter we will compare the performance of this extended Stringer bound
with that of the Stringer bound itself in terms of the coverage, efficiency, and tightness.
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Chapter 6

Simulation of Study Populations

6.1 Introduction

We investigate the performance of the methods developed in chapter 4 and 5: the studen-
tised compound Poisson method (SCP) and the extended Stringer method (EST) using
a spectrum of accounting populations. Data for this study was generated in two main
ways.

In section 6.2, we generate artificial data to capture the essential features of audit
populations. We followed Grimlund et al. (1987), where the prorated errors are simu-
lated from a mixture of an appropriately scaled and truncated chi-squared distribution,
a degenerate distribution at one and zero errors. Similar approach was used by Dworin
and Grimlund 1984; Neter and Godfrey 1985; Plante, Neter, and Leitch 1985; Tsui,
Matsumura, and Tsui 1985; Rohrbach 1993 and Howard 1994 for testing performance of
estimators in substantive auditing.

In section 6.3 we present a real population of debtors in commercial entities in the
Irish Public Sector. We describe how errors were seeded into this population to form 15
error populations, with 5 different error rates and 3 different taint values as in Horgan
(1996). Neter and Loebbecke (1975) used a similar approach to generate populations for
testing performance estimators in substantive auditing.
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6.2 Building a Model to Capture the Essential Features of
the Audit Populations

6.2.1 Model for Recorded Value Distribution

As seen in Chapter 3, the empirical distribution of the recorded values is highly positively
skewed. That is, they usually contain a large number of small-value items and a relatively
small number of large-value line items.

The distributions of recorded values have been modelled in past simulation studies
by a number of skewed distributions. For example, Smith (1979) used the exponential
distribution while Rohrbach (1993) used the lognormal. The lognormal distribution is
adopted in our simulation studies, motivated by the fact that this model resembles posi-
tively skewed gammas and it does not contain trivially many small items. The lognormal
distribution has density function:

f(x) =

½ 1√
2πσ(x−a) exp[−

[ln(x−a)−μ]2
2σ2

]; x > a

0 otherwise

where a is the location parameter, which merely shifts the origin; σ > 0 the shape
parameter and μ the scale parameter. Three Populations of recorded values of sizes
3000 (population 1), 4000 (population 2) and 5000 (population 3) are generated using
the parameters (a = 0, μ = 7.8, σ = 1.015), (a = 0, μ = 6.25, σ = 0.78) and (a = 0,
μ = 6.8, σ = 1.02) respectively. These parameters were chosen to give different means and
variances in the three populations. The characteristics of our recorded values simulated
here reasonably represents the empirical recorded value distributions reported by Johnson,
Leitch, and Neter (1981) and Neter, Leitch, and Johnson (1985). They are also consistent
with the one used by Rohrbach (1993) for testing performance of estimators in substantive
auditing. Summary statistics and the distribution of these populations are given in Tables
6.1 through 6.3, and Figures 6.1 through 6.3.
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Table 6.1: Population 1
Total line-items 3000
Minimum 37.63
1st Quartile 1247.56
Mean 4046.83
Median 2468.17
3rd Quartile 4806.83
Maximum 93628.38
Standard Deviation 5366.48
Total Recorded Value 12140480.00
Skewness 5.17
Kurtosis 47.04

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
Population 1

0.0

0.1

0.2

0.3

Figure 6.1: Histogram for Population 1
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Table 6.2: Population 2
Total line-items 4000
Minimum 18.55
1st Quartile 304.16
Mean 725.88
Median 521.41
3rd Quartile 887.96
Maximum 11945.27
Standard Deviation 721.63
Total Recorded Value 2903502.00
Skewness 3.97
Kurtosis 30.84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Population 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 6.2: Histogram for Population 2
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Table 6.3: Population 3
Total line-items 5000
Minimum 15.30
1st Quartile 502.85
Mean 1646.37
Median 990.82
3rd Quartile 1925.43
Maximum 49617.7
Standard Deviation 2241.38
Total Recorded Value 8231853.49
Skewness 5.98
Kurtosis 72.47

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Population 3

0.0

0.1

0.2

0.3

0.4

0.5

Figure 6.3: Histogram for Population 3
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6.2.2 Line Item Error Rate

Johnson, Leitch, and Neter (1981) reported that accounts receivable populations have
first quartile, median and third quartile error rates of 0.4%, 2.4% and 8.9% respectively.
They also reported that inventory audit populations have first quartile, median and third
quartile error rates of 7.73%, 15.4% and 39.9% respectively. Also Neter, Leitch, and
Johnson (1985) reported that, among the accounts receivable populations they examined,
40% had error rates below 2.5% and up to 73% of them had error rates below 12%.

In this study error rates of 5%, 10%, 15%, 20% and 25% are used. These were chosen
to be consistent with the empirical findings and also the past simulations studies on this
subject.

6.2.3 Model for Prorated Error Distribution

The prorated errors in various simulation studies have been based on the description of the
empirical distributions of prorated errors in accounts receivable and inventory populations
reported by Ham, Losell, and Smieliauskas (1985), Johnson, Leitch, and Neter (1981) and
Neter, Leitch, and Johnson (1985). The following four prorated error distributions are
commonly used in simulation studies, examining estimators in statistical auditing (e.g.
Plante, Neter, and Leitch 1985):

1. reversed J-shape (J): This designates a distribution of overstatement errors, char-
acterized by many small errors. This type of prorated error distribution is most
likely to be found in accounts receivable populations.

2. reversed J-shape with 100% prorated error (J-100): This designates a mixture of a
reversed J-shaped distribution, with 20% of 100 percent overstatement errors.

3. Unimodal : This designates a distribution of overstatement errors, with mean pro-
rated error greater than the reversed J-shaped distributions.

The reversed J-shaped and unimodal distributions have been approximated by ap-
propriately scaled and truncated χ2 distributions in simulation studies (see Dworin and
Grimlund 1984; Neter and Godfrey 1985; Plante, Neter, and Leitch 1985; Tsui, Mat-
sumura, and Tsui 1985; Rohrbach 1993 and Howard 1994). This is because the χ2 model
reasonably represents the empirical prorated error distributions reported by Johnson,
Leitch, and Neter (1981) and Neter, Leitch, and Johnson (1985), and this is the approach
taken here. We simulated prorated errors from the following model:

π[100(1− q) + 10χ2dq]/100 + (1− π)δ0, (6.1)
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where π = error rate, q = proportion of prorated errors following a chi-squared dis-
tribution, d =number of degrees of freedom of the chi-squared variate, and δ0 is the
one point distribution function concentrated at zero. The proportion of prorated errors
degenerate at 1.0 is 1 − q. The levels of the simulation experiment factors used were
π = 5%, 10%, 15%, 20% and 25%, d = 1, 3 and q = 100%, 80% .

1. The J is modelled by a chi-squared distribution with 1 degree of freedom scaled
down to have a mean of 0.1 (i.e. χ21/10 ). That is by model (6.1) with q = 100%
and d = 1

2. The J-100 is modelled by a mixture of errors with 80% of chi-squared distribution
with 1 degree of freedom and 20% of a degenerate distribution at 1.0. That is by
model (6.1) with q = 80% and d = 1

3. Unimodal is modelled by a chi-squared distribution with three degrees of freedom
scaled down to have a mean of 0.3 (i.e. χ23/10). Thus by model (6.1) with q = 100%
and d = 3

6.2.4 Generation of hypothetical study Populations

45 study populations are generated by seeding different line item error rates and pro-
rated error models into the three basic populations created from lognormal distribution
described in Section 6.2.1.

The seeding error procedure adopted here is similar to Plante, Neter, and Leitch
(1985). Line items are randomly selected to receive an error. Randomly selected line
items are seeded with a given proportion of error from the error distribution. The errors
seeded in the basic populations can be described as follows:

xi =

⎧⎨⎩
yi with probability 1− π
(1− χ2d)yi with probability π0
0 with probability π1

where xi is the true (audited), and yi the recorded value of the ith account, π is the
line item error rate, π1 = π(1 − q) is the proportion of line items with 100 percent
overstatement and π0 = πq is the proportion of items with overstatement error which are
not 100%. The three populations each with five line item error rates, each with three
different prorated error distributions gave 45 study populations in all. For each of the five
error rates and the three prorated error distributions, Tables 6.4, 6.5 and 6.6 summarise
the errors in population 1, population 2, and population 3 respectively.
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Table 6.4: Summary of Errors Seeded into Population 1
Error

Distribution
Line Item
Error Rate

%
Total Error
Amount

Mean
Prorated Error

J5
J10
J15
J20
J25

J

5
10
15
20
25

10371
17977
25741
197523
227769

0.00085
0.00148
0.00212
0.01601
0.01842

J5-100
J10-100
J15-100
J20-100
J25-100

J-100

5
10
15
20
25

88192
213126
406448
469221
547953

0.00721
0.01725
0.03239
0.03721
0.04319

Ju5
Ju10
Ju15
Ju20
Ju25

Unimodal

5
10
15
20
25

172268
310912
450915
555903
624402

0.01399
0.02497
0.03581
0.04378
0.04892

Table 6.5: Summary of Errors Seeded into Population 2
Error

Distribution
Line Item
Error Rate

%
Total Error
Amount

Mean
Prorated Error

J5
J10
J15
J20
J25

J

5
10
15
20
25

1915
3649
6239
7621
9470

0.00066
0.00126
0.00214
0.00262
0.00325

J5-100
J10-100
J15-100
J20-100
J25-100

J-100

5
10
15
20
25

36785
60930
78363
109608
137839

0.01251
0.02055
0.02628
0.03638
0.04532

Ju5
Ju10
Ju15
Ju20
Ju25

Unimodal

5
10
15
20
25

42682
72496
87550
125055
158140

0.01449
0.02436
0.02927
0.04129
0.05165
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Table 6.6: Summary of Errors Seeded into Population 3

Population
Error

Distribution
Line Item
Error Rate

%
Total Error
Amount

Mean
Prorated Error

J5
J10
J15
J20
J25

J

5
10
15
20
25

37684
84217
127593
170564
198058

0.00459
0.01001
0.01550
0.02072
0.02406

J5-100
J10-100
J15-100
J20-100
J25-100

J-100

5
10
15
20
25

125537
231154
347056
472839
561497

0.01525
0.02808
0.04216
0.05744
0.06821

Ju5
Ju10
Ju15
Ju20
Ju25

Unimodal

5
10
15
20
25

115493
245834
336354
458414
574043

0.01403
0.02942
0.04086
0.05569
0.06973

The choice of the error rates and the prorated error models are supported by the em-
pirical findings and are consistent with the ones used by Grimlund et al. (1987), Rohrbach
(1993) and Howard (1994). These study populations presented here give reasonable rep-
resentation of characteristics common to account receivables or debtors populations with
varying (i) distribution of recorded values, (ii) incidence of 100-percent tainting ( 20%
of 100-percent overstatement error) and (iii) line item error rates (5%,10%,15%,20% and
25%).

6.3 Using Real Population of Debtors in Commercial Enti-
ties in the Irish Public Sector

Horgan (1996) presented real population of debtors in commercial entities in the Irish
Public Sector. The data consists of 3711 accounts of positive balances and contains a
relatively large number of small accounts. The distribution of the recorded values are
similar to the account receivable population of Neter and Loebbecke (1975, 1977). The
basic information about the data is given in Table 6.7 and Figure 6.4. The only adjustment
in the data was the exclusion of very large recorded amounts from the populations since
that would be examined by auditor on a 100 percent basis.
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Table 6.7: Summary Statistics of the Horgan Population
Minimum 2.00
1st Quartile 87 .00
Mean 763.4
Median 239.00

3rd Quartile 640.00
Maximum 28000 .00

Total line-items 3711
Standard Deviation 1801.07
Total Recorded Value 2833039

Skewness 6.70
Kurtosis 67.12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Population

0.0

0.2

0.4

0.6

Figure 6.4: Histogram for Horgan Population
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Table 6.8: Summary Statistics of the Study populations, Total book value=2.833039×106
Population

Error
Distribution

Line Item
Error Rate

%
Total Error
Amount

Mean
Prorated Error

p(1,1)
p(2,1)
p(3,1)
p(4,1)
p(5,1)

Prorated error 1

1.8
3.7
5.5
11.0
16.5

33098
53696
74285
155096
241987

0.0128
0.0259
0.0384
0.0766
0.1146

p(1,2)
p(2,2)
p(3,2)
p(4,2)
p(5,2)

Prorated error 2

1.8
3.7
5.5
11.0
16.5

34291
55908
77447
161688
251763

0.0129
0.0262
0.0389
0.0776
0.1161

p(1,3)
p(2,3)
p(3,3)
p(4,3)
p(5,3)

Prorated error 3

1.8
3.7
5.5
11.0
16.5

41543
68862
95486
200328
308473

0.0137
0.0279
0.0414
0.0824
0.1232

6.3.1 Generation of study Populations from real accounting data

Study populations with different error rates and prorated errors were created on the basis
of the observed error patterns found in the real Irish accounting population described in
Horgan (1996). The error rates and prorated errors found in the investigative audits were
varied consistently to give study populations representative of real audit populations.
Detailed description of the investigative audits and the procedure used to create the study
populations are given in Horgan (1996). As outlined in Horgan (1996) the line item error
rate found in the sample drawn from the parent population was 5.5% with all errors being
overstatements. Five error rates were seeded in the parent population; one the same as
found in the investigative audit, two lower and two higher. The error rates ranged from
1.8% to 16.5%. Three mean prorated error sizes were also utilized; one just as found in
the in the investigative audit, one lower and one higher. The error characteristics of the
study populations, p(i,j), where i = 1, 2, 3, 4, 5 and j = 1, 2, 3 designating the error rates
and the mean prorated error sizes respectively are summarized in Table 6.8.

Prorated Error Models used in the real data

In the real population (Horgan 1996 population), a regression model was fitted to the
taints using the corresponding book value as the independent variable. Line items that
were not in error and items with 100% taints were not included in the taint modelling.
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The purpose of the regression analysis was to predict the taint value other than 0 or 1. To
improve the fit, it was necessary to transform both the independent and the dependent
variables. The sample data were used to obtain estimates of coefficients using least squares
regression. The regression equation found has r2 of 0.764 indicating that model is able to
take account of 76.45% of the total variations in the dependent variable. Examination
of the residuals showed that heteroscedasticity was not present.

6.4 Summary

The study populations were generated based on the tainting distribution model described
by Grimlund et al. (1987). The tainting distribution is modelled by a mixture of an
appropriately scaled and truncated chi-squared distribution, a degenerate distribution at
1.0 and zero errors. The characteristics of our study populations reasonably represents
the empirical error distributions reported by Johnson, Leitch, and Neter (1981) and
Neter, Leitch, and Johnson (1985). They are also consistent with those used by Dworin
and Grimlund 1984; Neter and Godfrey 1985; Plante, Neter, and Leitch 1985; Tsui,
Matsumura, and Tsui 1985; Rohrbach 1993 and Howard 1994 for testing performance of
estimators in substantive auditing.

Furthermore, the real population of debtors in commercial entities in the Irish Public
Sector from Horgan (1996) was used to provide evidence concerning the performance of
the bounds when applied to real audit data. The Horgan (1996) data has characteristics
similar to the audit populations of Neter and Loebbecke (1975).

These study populations give reasonable representation of characteristics common to
account receivables or debtors populations. We investigate in the next Chapter how the
new bounds behave with different error rates and taint sizes.
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Chapter 7

Numerical Experiments on the
New Bounds

In this chapter, we examine the performance of SCP, EST, and compare it to that of the
Stringer bound. A Monte Carlo simulation using the generated study populations is used
to investigate the performance of each method and assess whether or not it is affected by
varying the distribution of recorded values, effects of 100-percent tainting (20% of 100-
percent overstatement error) and effects of error rates (error rates of 5%,10%,15%,20%
and 25%).

The sample selection method, sample sizes used and performance measures are dis-
cussed in section 7.1. The analysis of the simulation results is carried out in section 7.2.
In Section 7.2.1, we investigate the behaviour of the proposed bounds using hypothetical
study populations. Section 7.2.2 discusses the behaviour of the proposed bounds using
actual accounting populations seeded with errors. Concluding remarks and recommen-
dations based on the simulation results are given in Section 7.3.

7.1 Simulation Experiment Factors

7.1.1 Sample Selection

Random samples of sizes n = 60, 100, 150 and 200 are drawn from the study populations.
These sample sizes are chosen to reflect those used in audit practice and in the previous
studies. Systematic PPS sampling with random ordering of line items are used in selecting
samples from the simulated study populations. We observe that all items in the study
populations with population size N = 5000, 4000 and 3000 satisfy the condition nyi < Ty
respectively for n up to 165, 243 and 129. In practice the large items, that is those for
which nyi ≥ Ty, are usually not subject to sampling.
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For each sample, the three confidence bounds for the total error amount are computed:
the studentised compound Poisson method (SCP) and the extended Stringer method
(EST). These are calculated at nominal confidence levels 95%, 90%, and 85%, and are
replicated 1000 times (see Appendix D for justification of the number of replicates).

7.1.2 Performance Measures

The estimates of the error bound obtained from the simulated data are compared using
the following performance criteria:

(a) Coverage probability for a bound refers to the proportion of replications for which
a bound is greater than or equal to the true population error amount. A bound
is considered unreliable if its coverage is significantly below the specified nominal
coverage, otherwise it is reliable. With the 1000 replicates, lower bounds of the 95%,
90% and 85%, the nominal confidence for the population proportion are 93.2%,
87.6% and 82.1% respectively, at the 95% level of confidence. We say that the
bound has a coverage failure if the coverage is below these lower bounds for the
respective confidence.

(b) Variability of the bound : A measure by which an estimator is judged is its variance.
This is an indicator of the uncertainty of the bound. This is measured by Mean-
Squared Error (MSE): The efficiency of an estimator is usually measured by the
mean-squared error, which is the weighted average of squared deviation of the bound
from the true mean taint, and is defined as:

MSE =
1

1000

1000X
i=1

(bμ(i)− μ)2. (7.1)

where bμ(i) is the estimated value for μ (mean taint) at the ith replicate.
(c) Relative Efficiency : The relative efficiency is defined as the ratio of the MSE of

the bounds. For example the efficiency of SCP relative to SB is:

eff(SCP/SB) =
MSE(SCP )

MSE(SB)
. (7.2)

When eff(SCP/SB) < 1, the SCP is more efficient than the SB. With eff > 1,
the bound is said to be less efficient compared to the Stringer.

(d) Mean: The mean of the bound is computed as follows:

Ave(bμ) = 1

1000

1000X
i=1

bμ(i), (7.3)
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(e) Relative Advantage (RA) : The RA is a means of comparing the relative tightness
of two bounds. For example, for each simulation the RA of the SCP over SB is
defined as:

RA =
Ave(SB)−Ave( SCP )

Ave(SB)
, (7.4)

where Ave( SCP ) is defined in (7.3). When 0 ≤ RA < 1, the bound SCP is tighter
than the SB. The bound is said to be more conservative than the SB if RA < 0.

These three measures of performance are calculated for each bound over 1000 repli-
cates. The results are given in the next section.

7.2 Simulation Results

Discussion of results consists of some general observations on performance of the stu-
dentised compound Poisson method (SCP) and the extended Stringer method (EST)
and their comparative performance with that of the Stringer bound. We examine the
performance of each method and assess whether or not it is affected by varying

(i) the distribution of recorded values,

(ii) incidence of 100-percent tainting ( 20% of 100-percent overstatement error) and

(iii) line item error rates (5%,10%,15%,20% and 25%).

The discussion highlights the performance of the methods developed with respect to
(a) coverage probability, (b) relative efficiency, (c) mean, and (d) relative advantage over
the Stringer method.

7.2.1 Comparisons of the methods for estimating upper confidence bounds
using hypothetical study populations

Results are presented in Tables 7.1 through 7.4. The simulation results at the 95%
confidence limit with samples of size n = 200, 150, 100 and 60 drawn from Population 2
which is of size N = 4000 are given in Tables 7.1 through 7.4 respectively. The pattern of
results at 90% and 85% are similar and therefore the results are not tabulated. The mean
of SCP is not calculated if no error is observed in at least 1 out of the 1000 replicates
used in each simulation. This occurs in six cases. We indicate such cases by NA (not
applicable). This situation happened in populations with 5%, 10% error rate when a
sample of size 100 and 60 were drawn.
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Table 7.1: The simulation results at the 95% confidence limit with samples of size n =
200 drawn from Population 2 which is of size N = 4000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 93.1 0.016 0.016 0.001 -1.3 91.8 1.03 0.003
J10 100 100 93.6 0.017 0.017 0.002 -2.7 87.4 1.06 0.004
J15 100 100 95.1 0.018 0.018 0.003 -4.0 82.2 1.09 0.01
J20 100 100 94.9 0.018 0.019 0.004 -4.6 79.4 1.11 0.01
J25 100 100 95.4 0.019 0.020 0.005 -5.1 76.4 1.13 0.01

J5-100 100 100 94.3 0.034 0.038 0.025 -14.5 26.7 1.43 0.51
J10-100 100 100 95.3 0.044 0.052 0.035 -18.6 20.0 1.53 0.59
J15-100 100 100 94.8 0.051 0.061 0.042 -19.7 17.1 1.60 0.61
J20-100 100 100 95.2 0.063 0.075 0.054 -19.9 13.2 1.68 0.66
J25-100 100 100 95.7 0.073 0.087 0.065 -19.6 10.9 1.66 0.72
Ju5 100 100 93.4 0.043 0.051 0.032 -18.7 25.7 1.44 0.42
Ju10 100 100 94.6 0.048 0.057 0.038 -18.5 20.6 1.61 0.52
Ju15 100 100 94.8 0.053 0.063 0.043 -18.3 19.4 1.61 0.54
Ju20 100 100 95.1 0.068 0.081 0.058 -18.2 14.1 1.76 0.59
Ju25 100 100 95.3 0.079 0.093 0.069 -17.8 12.8 1.80 0.65
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Table 7.2: The simulation results at the 95% confidence limit with samples of size n =
150 drawn from Population 2 which is of size N = 4000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 90.1 0.021 0.021 0.001 -0.8 93.1 1.02 0.002
J10 100 100 93.2 0.022 0.022 0.002 -2.0 89.6 1.04 0.003
J15 100 100 93.7 0.023 0.023 0.003 -3.2 85.1 1.07 0.01
J20 100 100 95.1 0.023 0.024 0.004 -3.7 83.1 1.09 0.01
J25 100 100 94.9 0.024 0.025 0.05 -4.2 80.5 1.10 0.01

J5-100 100 100 92.9 0.039 0.043 0.027 -11.6 31.2 1.32 0.44
J10-100 100 100 94.9 0.049 0.057 0.037 -15.5 24.1 1.47 0.58
J15-100 100 100 93.8 0.056 0.066 0.044 -18.0 20.8 1.54 0.59
J20-100 100 100 95.3 0.068 0.082 0.057 -19.2 16.2 1.63 0.62
J25-100 100 100 96.1 0.079 0.95 0.069 -19.4 13.39 1.62 0.67
Ju5 100 100 93.3 0.049 0.057 0.035 -16.3 28.6 1.31 0.36
Ju10 100 100 93.8 0.054 0.063 0.041 -16.8 24.3 1.53 0.47
Ju15 100 100 95.1 0.060 0.069 0.045 -17.0 23.1 1.54 0.49
Ju20 100 100 95.4 0.075 0.088 0.062 -18.6 16.8 1.68 0.56
Ju25 100 100 95.2 0.084 0.101 0.073 -19.9 13.3 1.71 0.59
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Table 7.3: The simulation results at the 95% confidence limit with samples of size n =
100 drawn from Population 2 which is of size N = 4000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 NA 0.031 0.031 NA -0.4 NA 1.00 NA
J10 100 100 90.5 0.031 0.032 0.002 -1.2 92.4 1.03 0.002
J15 100 100 93.1 0.033 0.033 0.004 -2.2 88.8 1.04 0.01
J20 100 100 93.4 0.033 0.034 0.004 -2.7 87.0 1.05 0.01
J25 100 100 94.1 0.034 0.035 0.005 -3.0 85.3 1.06 0.01

J5-100 100 100 NA 0.048 0.052 NA -7.2 NA 1.22 NA
J10-100 100 100 93.3 0.060 0.067 0.042 -12.3 30.0 1.35 0.47
J15-100 100 100 94.3 0.068 0.078 0.050 -14.9 25.6 1.42 0.49
J20-100 100 100 94.9 0.080 0.094 0.063 -16.9 20.8 1.53 0.56
J25-100 100 100 95.2 0.090 0.106 0.074 -18.0 17.9 1.56 0.60
Ju5 100 100 93.1 0.053 0.059 0.036 -11.4 32.2 1.34 0.39
Ju10 100 100 94.1 0.064 0.073 0.045 -13.3 30.6 1.40 0.42
Ju15 100 100 94.9 0.070 0.80 0.50 -13.9 28.3 1.42 0.42
Ju20 100 100 95.3 0.085 0.099 0.067 -16.4 21.8 1.55 0.51
Ju25 100 100 95.2 0.093 0.110 0.078 -18.3 16.4 1.60 0.63
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Table 7.4: The simulation results at the 95% confidence limit with samples of size n =
60 drawn from Population 2 which is of size N = 4000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 NA 0.050 0.050 NA -0.2 NA 1.00 NA
J10 100 100 NA 0.051 0.051 NA -0.6 NA 1.01 NA
J15 100 100 89.7 0.052 0.053 0.004 -1.2 91.7 1.02 0.003
J20 100 100 92.9 0.052 0.053 0.005 -1.5 90.7 1.03 0.003
J25 100 100 93.7 0.053 0.054 0.006 -1.83 89.2 1.04 0.004

J5-100 100 100 NA 0.069 0.071 NA -2.4 NA 1.08 NA
J10-100 100 100 NA 0.080 0.086 NA -6.5 NA 1.20 NA
J15-100 100 100 93.1 0.087 0.094 0.058 -8.2 33.6 1.24 0.43
J20-100 100 100 93.9 0.100 0.113 0.072 -12.2 28.5 1.37 0.49
J25-100 100 100 94.6 0.112 0.127 0.085 -13.8 24.0 1.41 0.54
Ju5 100 100 91.9 0.071 0.075 0.042 -5.6 40.2 1.08 0.23
Ju10 100 100 93.2 0.085 0.092 0.053 -7.8 37.8 1.22 0.35
Ju15 100 100 93.5 0.091 0.099 0.057 -9.5 37.2 1.26 0.36
Ju20 100 100 93.8 0.106 0.119 0.075 -12.4 29.2 1.39 0.44
Ju25 100 100 94.3 0.115 0.131 0.086 -13.9 25.4 1.51 0.56
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7.2.2 Coverage properties of the bounds

Tables 7.1 through 7.4 gives estimated coverages for the Stringer bound, SB, EST and
SCP bounds. From the tables, we see that EST and SB achieved the coverage probabili-
ties generally above the nominal level and often close to 100% at the nominal 95 percent
level using samples of sizes 200, 150, 100 and 60.

In the case of SCP bound, the coverage probabilities are at least the nominal 95
percent coverage on average for populations J10 to J25, J5-100 to J25-100, and Ju5
to Ju25 ( i.e. it is not significantly below nominal level on average for any case) with
samples of size 200 and150. The coverage probability of SCP bound is significantly below
the nominal level (less than 93.2%) for populations J5 and J5-100 using samples of size
150; and for population J5 using samples of size 200. With sample of size 100, coverage
failures were observed in three cases, namely J10, J15 and Ju5 test populations. With
sample of size 60, the SCP bound had coverage failures (Table 7.4; coverage probability
less than 93.2%) in about 40% cases.

Simulations at 90 and 85 percent nominal confidence were also performed. The pattern
of results at 90% and 85% were similar and therefore the results are not tabulated.

7.2.3 Relative Efficiencies of the bounds

In column five of Tables 7.1-7.4, the relative efficiency of SCP over the Stringer (eff(SCP/SB))
are given. From the tables, we observe that eff(SCP/SB) < 1 in all cases, implying
that the SCP is more efficient (lower MSE) than the SB. We observe that the relative
efficiency for a given prorated error model increases with increasing error rate. This im-
plies the efficiency of SCP reduces with increasing error rate. The gains in efficiency of
the SCP bound are greatest in populations with low error rates. The relative efficiency
also increases with increasing sample size or a given prorated error model and error rates.

In the case of EST bound eff(EST/SB) ≥ 1 in all cases, implying that the EST
is less efficient compared to the Stringer bound. However for small sample sizes (e.g.
n = 60), low error rates (5% or10%) and test populations with J prorated error models
(J5 to J25), the relative efficiency eff(EST/SB) ≈ 1, implying that the EST and SB
give almost identical results in case of small sample size, low error rates and reversed
J-shape prorated error model. Within each prorated error model (J, J-100 and Ju ) the
relative efficiency increases with increasing error rates. For a given prorated error model
(J, J-100 and Ju ) and error rates relative efficiency increases with increasing sample size.

7.2.4 Average values of the bounds

With respect to the average of the bounds, given in Tables 7.1-7.4, we observe that the
Stringer bound, SB, and EST are substantially larger than the SCP bound in all cases.
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Tests of significance at 0.01 level indicated that the difference were all significant. For
comparison of EST with SB, the average values were almost identical for small samples,
populations with low error rates (e.g. 5% and 10%) and test populations with J prorated
error models (J5 to J25). For a large samples EST was bigger than SB as expected but
this was not significant at 0.01 level. The simulation results demonstrate that the SCP
bound is significantly tighter than both the Stringer and the EST, and more efficient.
However, the SCP bound fails to produce a bound when no error is found in the sample.

7.2.5 Relative Advantage of the bounds over Stringer

From the tables, we observe that the relative advantage of the SCP and EST over SB
varies with the line item error rate, the prorated error model as well as the sample size.

For the SCP, RA decreases with increasing error rate. The greatest gain occurs in
populations with lower error rates. For the variation with prorated error model, RA is
higher in audit populations containing a large concentration of small prorated errors (J
type model), where RA values range from 10.9% to 93% depending on the sample sizes.
RA is moderately higher for audit populations containing J error model. The least gains
occurred in audit populations containing 100 percent overstatement (J-100 error model).

In the opposite, the relative advantage of EST over Stringer bound was RA < 0 in all
cases, indicating that the Stringer bound is less conservative than EST. The RA ranges
from -0.2 to -19.9 depending on the sample sizes.

Populations of size 3000 and 5000

A similar analysis was carried out with population1 and population 3 of sizes N = 3000
and 5000 respectively. The results are presented in Appendix C, Table C.1-C5. The
pattern of results are similar to that for a Population 2 which is of size N = 4000 at 95%
discussed above.
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Table 7.5: The simulation results at the 95% confidence limit with samples of size n = 100
drawn from Horgan Populations. Reporting the empirical coverage probability, average,
relative advantage and relative efficiency over Stringer bound (RA). Results are based on
1000 replications.

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
p(1,1) 100 100 NA 0.048 0.049 NA -1.9 NA 1.08 NA
p(1,2) 100 100 NA 0.049 0.051 NA -4.0 NA 1.11 NA
p(1,3) 100 100 84.0 0.053 0.056 0.043 -4.2 18.9 1.14 0.69
p(2,1) 100 100 89.8 0.060 0.063 0.050 -5.9 15.8 1.27 0.76
p(2,2) 100 100 83.0 0.060 0.064 0.049 -7.1 18.4 1.31 0.77
p(2,3) 100 100 91.0 0.066 0.071 0.056 -8.2 15.7 1.33 0.69
p(3,1) 100 100 93.5 0.070 0.077 0.062 -10.4 11.9 1.45 0.81
p(3,2) 100 100 93.4 0.072 0.079 0.063 -10.7 11.9 1.46 0.79
p(3,3) 100 100 96.3 0.080 0.090 0.070 -12.6 11.7 1.55 0.73
p(4,1) 95.7 95.8 94.8 0.108 0.128 0.103 -18.9 4.8 1.88 0.90
p(4,2) 96.3 97.1 95.0 0.109 0.129 0.103 -19.0 5.2 1.93 0.87
p(4,3) 99.8 100 95.5 0.127 0.153 0.120 -20.0 5.6 2.08 0.81
p(5,1) 96.6 99.4 96.1 0.145 0.176 0.142 -21.5 2.0 2.16 0.95
p(5,2) 98.7 99.8 96.3 0.151 0.183 0.147 -21.2 2.1 2.11 0.97
p(5,3) 97.9 98.8 96.0 0.172 0.207 0.166 -20.5 3.0 2.28 0.91

7.3 Comparison of the methods using real accounting pop-
ulation

In this section we report the results of simulation studies of finite-sample performance
of the confidence bounds proposed in this thesis. In particular, we investigate their
coverage behaviour, relative advantage and efficiencies when applied to real accounting
populations.

Here, we considered sample sizes, n = 60 and 100. As before systematic PPS sam-
pling with random ordering of line items were used in selecting samples from the simulated
study populations. For each sample, the proposed confidence bounds for the mean pro-
rated error were computed. These were calculated at a nominal confidence level of 95%,
and replicated 1000 times. The empirical coverage probability, relative advantage and
efficiency over the Stringer bound were calculated. Table 7.5 and 7.6 compare the empir-
ical coverage probability, average of the bounds and the relative advantage of SCP and
EST over the Stringer bound at the nominal 95% confidence level for n = 100, 60.
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Table 7.6: The simulation results at the 95% confidence limit with samples of size n = 60
drawn from Horgan Populations. Reporting the empirical coverage probability, average,
relative advantage and relative efficiency over Stringer bound (RA). Results are based on
1000 replications.

Pop coverage average
Relative
Advantage(%)

eff(SCP )

SB EST SCP SB EST SCP EST SCP EST SB
p(1,1) 100 100 NA 0.067 0.067 NA -0.3 NA 1.01 NA
p(1,2) 100 100 NA 0.068 0.069 NA -1.2 NA 1.03 NA
p(1,3) 100 100 NA 0.072 0.074 NA -2.8 NA 1.05 NA
p(2,1) 100 100 78.8 0.079 0.081 0.058 -2.8 26.3 1.13 0.18
p(2,2) 100 100 80.2 0.080 0.082 0.060 -1.7 24.6 1.19 0.19
p(2,3) 100 100 83.9 0.087 0.090 0.069 -4.4 19.9 1.22 0.22
p(3,1) 100 100 88.7 0.091 0.095 0.076 -4.5 16.4 1.37 0.26
p(3,2) 100 100 89.8 0.090 0.094 0.078 -4.2 13.2 2.10 0.44
p(3,3) 100 100 88.3 0.100 0.107 0.089 -7.3 11.0 2.15 0.56
p(4,1) 98.5 98.5 95.1 0.128 0.143 0.118 -12.1 7.5 1.54 0.86
p(4,2) 98.8 98.8 95.9 0.133 0.150 0.122 -13.2 7.9 1.56 0.86
p(4,3) 98.9 99.3 95.2 0.149 0.171 0.137 -14.5 8.4 1.66 0.83
p(5,1) 96.6 96.6 95.7 0.167 0.197 0.162 -17.6 3.3 1.81 0.94
p(5,2) 98.7 98.7 95.4 0.173 0.203 0.167 -17.5 3.4 1.84 0.94
p(5,3) 97.3 98.8 94.8 0.195 0.229 0.186 -17.7 4.3 1.90 0.93
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7.3.1 Coverage

The Stringer bound and EST attained coverage probabilities above the nominal level.
The SCP bound attained coverage probability close to the the nominal 95% level for test
populations p(i, j), i = 3, 4, 5 and j = 1, 2, 3 with sample size 100. With sample size
60, SCP has under-coverage problems in six cases (coverage probability less than 93.2%).
These results are consistent with the earlier results.

7.3.2 Relative Efficiency

The relative efficiency of SCP over the Stringer was less than one (i.e. eff(SCP/SB) <
1) in all cases. This imply that the SCP is more efficient (lowerMSE) than the SB. The
SCP is also more efficient than the EST.

In the case of EST bound eff(EST/SB) ≥ 1 in all cases, implying that the EST is
less efficient compared to the Stringer bound. However for sample sizes n = 60,100 and
low error rate 1.8% (i.e. in populations p(1,1) p(1,2) and p(1,3)) the relative efficiency
eff(EST/SB) ≈ 1, which indicates that the EST and SB give almost identical confidence
bound for small or moderate sample sizes and low error rates. Within each prorated error
model the relative efficiency increases with increasing error rates. For a given prorated
error model and error rates relative efficiency increases with increasing sample size.

7.3.3 Average values

The SCP bound has the smallest average value in all the 15 study populations. The
pattern of results are similar to the previous results. The Stringer bound was uniformly
smaller than EST in all the 15 study populations. Thus the EST is more conservative
than the Stringer bound, SB.

7.3.4 Relative Advantage

As observed in the earlier results the relative advantage of the SCP and EST over SB
varies with the line item error rate, the prorated error model as well as the sample size.

For the SCP, the RA ranges from 2 to 26 depending on the sample sizes. The least
gains occurred in test populations p(5,1). In the opposite, the relative advantage of EST
over Stringer bound was RA < 0 in all cases, indicating that the Stringer bound is less
conservative than EST. The RA ranges from -0.3 to -20.0 depending on the sample sizes.
These are consistent with the earlier results.
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7.4 Summary

Several conclusion can be drawn from this study. First, the asymptotic inference based on
studentised compound Poisson bound (SCP) is demonstrated through simulation studies
to have comparable coverage for larger sample sizes and more efficient compared with the
widely used Stringer method. However, for small samples (n < 100) and for populations
with very low error rates the SCP bound has under-coverage problems.

The extended Stringer bound was reliable in all cases tested which underpins the
theoretical results. Furthermore, for larger samples the extended Stringer bound is less
efficient compared to the Stringer bound. However for sample sizes n = 60,100 and
populations with low error rates, the extended Stringer bound and Stringer bound give
virtually the same efficiency.

The two methods tested here compliment each other. For small sample and low
error rates the extended Stringer bound is recommended whereas for large samples and
moderately high error rates the studentised compound Poisson bound is recommended.
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Chapter 8

Overview and Suggestions for
Future Work

8.1 Overview

The fundamental problem addressed in this thesis is the problem of constructing confi-
dence limits for mean or total in finite populations, when the underlying distribution is
highly skewed and contains a substantial proportion of zero values. In Chapter 3, several
procedures for constructing confidence bounds for means or totals in finite populations
were reviewed, and because no single method has emerged as the best solution for all the
financial auditing problem, some new methods were developed in Chapters 4 & 5.

In Chapter 4 a nonparametric confidence bound was derived based on the empirical
Edgeworth expansion for studentised compound Poisson sum. The sum of non-zero pro-
rated errors in auditing data leads naturally to a compound Binomial distribution. This
was approximated by a compound Poisson distribution because the incidence of error
is rare. Using the empirical Edgeworth expansion for a studentised compound Poisson
sum (SCP), we removed the effect of extreme skewness inherent in auditing data and
constructed an appropriate confidence bound for the total or mean error amount.

In Chapter 5, we obtained a bound on the cumulative distribution function of the
prorated errors, which we then use to give an alternative form of the Stringer bound.
With this form of the Stringer bound, we were able to use Bolshev’s recursion to obtain
a lower bound on its coverage probability, and showed that, for a sample size, n ≤ 2, this
lower bound is greater than or equal to the stated coverage probability. We illustrate
numerically that the Stringer bound is reliable when (n, α) falls into a number of ranges;
specifically n ≤ 11 and a significance level α ∈ (0, 0.05); n ≤ 10 and α ∈ (0, 0.1); n ≤ 9
and α ∈ (0, 0.20); n ≤ 8 and α ∈ (0, 0.40); and n ≤ 7 and α ∈ (0, .5). We also proposed
an extension to the Stringer method based on Rom’s adjusted significance levels, and
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illustrated numerically the reliability of the extended Stringer bound for values of α in
the range .05 to .5, and for n = 1 to n = 20.

In Chapter 6, we simulated the study populations for testing the bounds.

In Chapter 7, we showed how the methods discussed in Chapters 4 and 5 apply to
the auditing problem. In particular, we evaluate methods developed for estimating up-
per confidence bounds for error amount in accounting data: the studentised compound
Poisson method and the extended Stringer method. We performed a Monte Carlo simu-
lation to compare these methods with the Stringer bound. We investigated the relative
performance of each method and assessed whether or not it is affected by varying the
distribution of accounting data, effects of 100-percent overstatement error and effects of
error rates.

8.2 Summary of the Findings

8.2.1 Method 1: Studentised Compound Poisson (SCP) Bound

It is shown that, for any auditing data, the use of our proposed method in computing
confidence bounds for the error amount is theoretically justifiable, and has a coverage error
of o(n−1/2). The bound approaches its asymptotic coverage probability from below. One
disadvantage of the SCP is that it fails to produce a bound when no error is found in the
sample.

The results of our simulation studies in Chapter 7 suggest that the SCP bound is sig-
nificantly tighter than the Stringer and also more efficient. The SCP bound has coverage
level close to the nominal for large sample sizes, n ≥ 100. Under-coverage problems were
observed for small sample sizes and populations with lower error rates.

8.2.2 Method 2: Extended Stringer Bound

This method, though appears to be reliable for values of all sample sizes and significance
levels tested, it shares the extreme conservativeness of the Stringer bound. For larger
samples the extended Stringer bound is less efficient compared to the Stringer bound.
However for sample sizes e.g. n = 60,100 and populations with low error rates, the
extended Stringer bound and Stringer bound give virtually the same efficiency.

In conclusions, for small sample and low error rates the extended Stringer bound is
recommended whereas for large samples and moderately high error rates the studentised
compound Poisson bound is recommended.
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8.3 Suggestions for Future Work

(I) Understatements

The SCP bound is suitable for accounting populations predominated by understatement
errors but this study concentrated on overstatement since monetary unit sampling is
designed more or less for overstatement errors.

(II) Small Samples

One limitation of the SCP bound is that for small samples it is unreliable. This might
be improved by

(a) bootstrap calibration, using direct calibration of the nominal coverage probability
as indicated in Helmers (2000).

(b) small sample asymptotic techniques, which are closely related to saddlepoint ap-
proximation, might fruitfully be explored in constructing confidence bounds on rare
errors in auditing populations. An alternative to the approximation of the com-
pound Poisson distribution discussed in Chapter 4 is saddlepoint approximation,
introduced by Daniel (1954). This approximation can be more accurate than the
Edgeworth expansion, especially for small sample sizes. However, the saddlepoint
approximations require knowledge of the cumulant generating function, which is
often not available. A better approach would be to explore Easton and Ronchetti
(1986) techniques for converting an Edgeworth expansion into a saddlepoint approx-
imation, and Jorge (2003) saddlepoint approximation inversion techniques. These
might be applied in order to obtain an approximation for the quantiles of compound
Poisson distribution discussed in Chapter 4. This could be used to construct reli-
able confidence bounds on the population mean prorated errors, in particular for
small sample sizes.

(III) Application to Other Field

Although the two bounds were developed for auditing applications, they could be em-
ployed in any field when one is making inference about mean or totals in finite populations
with the underlying distribution being highly skewed and containing a substantial pro-
portion of zero values or not necessarily normal. For example in diagnostic test charge
data in Zhou and Tu (2000).

8.4
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Appendix A

Classical Estimators

This appendix reproduces the forms of classical estimators used in substantive testing.
Let the set of accounts to be audited consist of N recorded (book) amounts, denoted by
y1, y2, ..., yN with corresponding audited (true) amount x1, x2, ..., xN , and n the sample
size.

(a) Horvitz-Thompson Estimator

Consider the estimation of a population total audited amount, Tx =
PN

i=1 xi based on a
probability sample of size n and inclusion probability πi. The Horvitz-Thompson estima-
tor of Tx is

bTx = nX
i=1

xi/πi. (A.1)

The sampling design determines how sampling variability is estimated. For example when
SRS is used, we have

bTx = Nx (A.2)

with estimated variance

s2(bTx) = N2 N − n

Nn(n− 1)
nX
i=1

(xi − x)2, (A.3)

where x =
Pn

i=1 xi/n. The estimator given in (A.2) is referred to as mean-per-unit esti-
mator.
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(c) Ratio estimator

The standard ratio estimator is

bTx = Ty
x

y
(A.4)

where y =
Pn

i=1 yi/n. Its estimated variance is

s2( bTx) = N2(1− n

N
)

1

n(n− 1)
nX
i=1

(xi − x

y
yi)

2. (A.5)

(d) Difference estimator

This is given by

bTx = Ty +N(x− y) (A.6)

with estimated variance

s2(bTx) = N2(1− n

N
)

1

n(n− 1)
nX
i=1

[(xi − yi)− (x− y)]2 . (A.7)

(e) Regression estimator

This is given by

bTx = Nx+

Pn
i=1(xi − x)(yi − y)Pn

i=1(yi − y)2
(Ty −Ny). (A.8)

with estimated variance

s2(bTx) = N2 N − n

Nn(n− 2)

"
nX
i=1

x2i − nx2 − (
Pn

i=1 xiyi − nxy)2Pn
i=1 y

2
i − ny2

#
. (A.9)
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Appendix B

Edgeworth Expansion

This appendix gives an overview of the basic Edgeworth expansion for cumulative dis-
tributions of sums of independent and identically distributed random variables. The
following exposition is mainly based on Petrov (1975).

Suppose that X1 is a random variable with characteristic function χ1, mean E (X1) =

0, variance E(X2
1 ) = 1, and E

³
|X1|r+2

´
< ∞ for some integer r ≥ 0. Then X1 has

cumulants

κ1 = 0, κ2 = 1, κ3, κ4, ..., κr+2

and the cumulant generating function of X1, KX1(t), admits Taylor expansion

KX1(t) =
r+2X
j=0

κj (it)
j

j!
+ o

¡
tr+2

¢
(as t→ 0) .

≈ −t
2

2
+

κ3 (it)
3

3!
+

κ4 (it)
4

4!
+

κ5 (it)
5

5!
+ ...+

κr+2 (it)
r+2

(r + 2)!
. (B.1)

Suppose that {Xj} is a sequence of independent and identically distributed random vari-
able, copies of random variable X1. Consider a standardized variable

Sn =
Xn −E(Xn)

σX
,

where Xn =
Pn

j=1Xj/n, σ
2
X
is the asymptotic variance of Xn, thus

Sn =

Pn
j=1Xj√
n

,
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then the cumulant generating function of Sn is given by

KSn(t) = nKX1(t/
√
n)

≈ −t
2

2
+

κ3 (it)
3

3!

1√
n
+

κ4 (it)
4

4!

1

n
+

κ5 (it)
5

5!

1

n3/2
+ ...+

κr+2 (it)
r+2

(r + 2)!

1

nr/2
.(B.2)

Let

γn =
κ3 (it)

3

3!

1√
n
+

κ4 (it)
4

4!

1

n
+

κ5 (it)
5

5!

1

n3/2
+ ...+

κr+2 (it)
r+2

(r + 2)!

1

nr/2
,

then the characteristic function of Sn is given by

χn(t) =

µ
χ1(

t√
n
)

¶n

= exp (KSn(t))

≈ e−
t2

2 eγn (B.3)

χn(t) ≈ e−
t2

2

µ
1 +

γn
1!
+

γ2n
2!
+

γ3n
3!
+ ...+

γrn
r!

¶
, by Taylor series expansion for eγn

Sorting and grouping with respect to powers of n−1/2 gives

bχn(t) = e−
t2

2

⎛⎝ rX
j=0

qj(it)

nj/2

⎞⎠ (B.4)

where qj(z) are Cramer-Edgeworth polynomial in z of degree 3j whose coefficients depend
on κ3, κ4, ..., κr+2. That is

q0(z) = 1,

q1(z) =
κ3
3!
z3,

q2(z) =
κ4
4!
z4 +

κ23
2(3!)2

z6,

q3(z) =
κ5
5!
z5 +

35κ3κ4
7!

z7 +
280κ23
9!

z9,

and so on; for each j. Since

χn(t) =

Z ∞

−∞
eitxdPr [Sn ≤ x]

and

e−t
2/2 =

Z ∞

−∞
eitxdΦ(x),
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where Φ(x) is the standard Normal distribution, we have Fn(x) = Pr [Sn ≤ x]

Fn(x) ∼ Φ(x) +
rX

j=1

1

nj/2
Pj(x) + o(n−r/2). (B.5)

where Pj(x) is given by Z ∞

−∞
eitxdPj(x) = qj(it)e

−t2/2.

We refer to (B.5) as rth-order Edgeworth expansion or approximation to Pr [Sn ≤ x] .
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Appendix C

Supplementary Tables

The simulation results at the 95% confidence limit with samples of size n = 150, 100 and
60 drawn from Population 3 which is of size N = 5000 are given in Tables C.1 through
C.3 respectively. Similar results at the 95% confidence limit with samples of size n =100
and 60 drawn from Population 1 which is of size N = 3000 are given in Tables C.4 and
C.5 respectively. The pattern of results at 90% and 85% are similar and therefore the
results are not tabulated. The pattern of results presented are similar to that discussed
under section 7.2.
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Table C.1: The simulation results at the 95% confidence limit with samples of size n =
150 drawn from Population 3 which is of size N = 5000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications.

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 86.1 0.027 0.028 0.011 -4.5 59.1 1.19 0.19
J10 100 100 89.3 0.035 0.038 0.019 -8.9 44.7 1.28 0.23
J15 100 100 93.2 0.0414 0.046 0.026 -11.8 36.9 1.47 0.25
J20 100 100 94.2 0.049 0.055 0.034 -13.3 30.1 1.48 0.31
J25 100 100 93.9 0.052 0.060 0.037 -14.0 28.7 1.58 0.30

J5-100 100 100 93.0 0.044 0.048 0.036 -9.0 18.4 1.37 0.43
J10-100 99.1 99.5 94.0 0.061 0.071 0.054 -16.0 11.3 1.71 0.75
J15-100 98.5 99.3 94.6 0.079 0.094 0.072 -19.6 8.3 2.00 0.78
J20-100 98.0 99.2 95.2 0.097 0.118 0.092 -21.3 5.9 2.16 0.82
J25-100 98.4 99.5 96.0 0.111 0.136 0.106 -21.7 4.9 2.27 0.84
Ju5 100 100 93.2 0.040 0.045 0.037 -10.8 9.0 1.39 0.47
Ju10 99.9 99.9 94.6 0.061 0.071 0.049 -16.3 19.8 1.71 0.48
Ju15 99.9 99.9 96.2 0.076 0.089 0.064 -17.5 16.1 1.89 0.51
Ju20 99.8 100 95.8 0.093 0.109 0.081 -17.9 13.0 2.04 0.53
Ju25 99.5 99.9 95.1 0.108 0.128 0.097 -17.8 10.9 2.11 0.57
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Table C.2: The simulation results at the 95% confidence limit with samples of size n =
100 drawn from Population 3 which is of size N = 5000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications.

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 84.6 0.037 0.038 0.016 -2.5 56.8 1.25 0.15
J10 100 100 86.5 0.044 0.046 0.021 -5.6 53.1 1.20 0.18
J15 100 100 92.6 0.052 0.057 0.029 -9.1 43.9 1.24 0.21
J20 100 100 92.3 0.059 0.065 0.037 -10.5 36.9 1.40 0.28
J25 100 100 93.5 0.063 0.070 0.041 -11.5 35.2 1.42 0.27

J5-100 100 100 89.0 0.053 0.056 0.039 -4.8 26.4 1.21 0.30
J10-100 100 100 93.5 0.072 0.079 0.061 -11.0 15.3 1.46 0.73
J15-100 99.0 99.1 95.8 0.092 0.106 0.082 -15.7 10.4 1.71 0.77
J20-100 98.1 98.3 94.5 0.110 0.130 0.101 -18.5 7.7 1.91 0.80
J25-100 98.4 98.7 96.2 0.125 0.150 0.117 -19.7 6.3 1.98 0.83
Ju5 100 100 93.5 0.051 0.054 0.038 -7.2 25.5 1.25 0.39
Ju10 100 100 94.6 0.072 0.082 0.054 -13.3 24.7 1.52 0.44
Ju15 99.8 100 95.2 0.087 0.100 0.069 -15.2 20.3 1.62 0.47
Ju20 99.9 100 95.2 0.104 0.121 0.087 -16.4 16.7 1.79 0.50
Ju25 99.9 100 95.1 0.121 0.142 0.105 -16.8 13.8 1.90 0.55
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Table C.3: The simulation results at the 95% confidence limit with samples of size n =
60 drawn from Population 3 which is of size N = 5000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications.

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 NA 0.056 0.057 NA -0.9 NA 1.02 NA
J10 100 100 NA 0.064 0.066 NA -2.9 NA 1.08 NA
J15 100 100 0.90 0.072 0.076 0.034 -5.6 52.7 1.13 0.18
J20 100 100 89.0 0.080 0.085 0.042 -6.8 48.2 1.35 0.23
J25 100 100 91.3 0.083 0.089 0.046 -7.7 44.5 1.22 0.22

J5-100 100 100 NA 0.074 0.075 NA -2.0 NA 1.08 NA
J10-100 100 100 NA 0.092 0.097 NA -5.5 NA 1.22 NA
J15-100 100 100 90.3 0.111 0.122 0.089 -9.3 19.8 1.40 0.50
J20-100 99.4 99.5 94.5 0.149 0.118 0.108 -12.7 10.9 1.53 0.78
J25-100 98.4 99.1 94.7 0.148 0.170 0.134 -14.8 9.0 1.64 0.82
Ju5 100 100 NA 0.071 0.073 NA -3.4 NA 1.11 NA
Ju10 100 100 NA 0.092 0.100 NA -8.6 NA 1.29 NA
Ju15 100 100 93.8 0.107 0.119 0.078 -11.1 26.8 1.43 0.43
Ju20 100 100 94.3 0.125 0.142 0.097 -13.2 22.5 1.53 0.46
Ju25 99.9 99.9 94.1 0.142 0.162 0.115 -14.2 18.9 1.65 0.51
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Table C.4: The simulation results at the 95% confidence limit with samples of size n =
100 drawn from Population 1 which is of size N = 3000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 91.1 0.031 0.031 0.002 -0.7 93.6 1.01 0.003
J10 100 100 92.9 0.032 0.032 0.003 -1.5 90.9 1.03 0.004
J15 100 100 94.1 0.033 0.033 0.004 -2.2 88.6 1.05 0.004
J20 100 100 94.3 0.051 0.055 0.024 -9.3 52.2 1.28 0.08
J25 100 100 94.2 0.053 0.059 0.027 -9.8 48.9 1.32 0.09

J5-100 100 100 NA 0.041 0.043 NA -3.4 NA 1.10 NA
J10-100 100 100 94.1 0.055 0.061 0.036 -10.3 33.9 1.32 0.39
J15-100 100 100 93.9 0.075 0.087 0.058 -16.4 22.5 1.47 0.54
J20-100 100 100 94.4 0.081 0.095 0.065 -17.4 20.4 1.55 0.54
J25-100 100 100 94.3 0.088 0.104 0.072 -17.9 18.3 1.58 0.58
Ju5 100 100 90.4 0.051 0.054 0.032 -7.1 36.8 1.19 0.36
Ju10 100 100 92.2 0.065 0.074 0.044 -14.1 32.1 1.40 0.44
Ju15 100 100 94.2 0.080 0.093 0.061 -16.5 22.8 1.49 0.52
Ju20 100 100 94.5 0.088 0.103 0.070 -17.1 20.7 1.56 0.51
Ju25 100 100 94.4 0.094 0.110 0.075 -16.9 19.6 1.56 0.55
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Table C.5: The simulation results at the 95% confidence limit with samples of size n =
60 drawn from Population 1 which is of size N = 3000. Reporting the empirical cover-
age probability, average, relative advantage and relative efficiency over Stringer bound.
Results are based on 1000 replications

Pop coverage average
Relative
Advantage(%)

eff

SB EST SCP SB EST SCP EST SCP EST SCP
J5 100 100 NA 0.050 0.050 NA -0.2 NA 1.00 NA
J10 100 100 89.9 0.051 0.051 0.003 -0.7 93.8 1.02 0.002
J15 100 100 91.7 0.052 0.052 0.004 -1.1 91.7 1.02 0.003
J20 100 100 92.8 0.070 0.075 0.027 -6.7 61.6 1.18 0.06
J25 100 100 93.5 0.073 0.079 0.030 -7.15 58.7 1.20 0.07

J5-100 100 100 NA 0.060 0.061 NA -0.2 NA 1.00 NA
J10-100 100 100 84.6 0.075 0.079 0.043 -5.0 42.4 1.16 0.33
J15-100 100 100 93.2 0.096 0.106 0.067 -11.0 29.9 1.31 0.46
J20-100 100 100 93.4 0.103 0.115 0.075 -12.4 27.1 1.38 0.49
J25-100 100 100 94.1 0.108 0.122 0.081 -13.5 25.2 1.41 0.50
Ju5 100 100 NA 0.070 0.072 NA -2.98 NA 1.08 NA
Ju10 100 100 93.1 0.085 0.092 0.052 -8.0 39.2 1.23 0.36
Ju15 100 100 93.3 0.100 0.112 0.071 -11.8 29.8 1.36 0.44
Ju20 100 100 93.7 0.110 0.124 0.080 -12.5 27.3 1.39 0.46
Ju25 100 100 93.9 0.115 0.131 0.086 -13.7 27.8 1.42 0.46
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Appendix D

Justification of the Number of
Replicates Used

The sensitivity of the number of replicates used in this study was assessed analytically.
For a fixed confidence level, the bound bTz is assumed to follow a normal distributionbTz(i) ∼ N(Tz, σ

2
z), (i = 1, 2, ..., R) ,

where R is the number of replicates. Following Knottnerus (2002, p. 298),

(R− 1)s
2
z,sim

σ2z
=

RX
i=1

(bTz(i)− 1
R

PR
i=1

bTz(i))2
σ2z

∼ χ2R−1.

Thus

E

Ã
s2z,sim
σ2z

!
= 1, V ar

Ã
s2z,sim
σ2z

!
=

2

R− 1 .

Therefore if the precision of the estimate of σ2z from the R replications is β%, then we
have (using 5% level of significance)

1.96

r
2

R− 1 = β%,

Thus the number of replicates does not depend on the population or sample size.

137



Appendix E

Typical Tainting Patterns used in
Study
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Table E.1: Typical Tainting Patterns used in Study
Error
Model

rates Error Taintings (cents)

J

6%
10%
15%
20%
25%

1, 1, 3, 7, 13, 30
1, 1, 1, 2, 4, 9, 13, 21, 38
1, 1, 1, 1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 27, 46
1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 24, 32, 50
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 22, 27, 34, 54

J-100

6%
10%
15%
20%
25%

1,1, 5, 11, 27, 100
1, 1, 1, 3, 6, 7, 12, 19, 36, 100
1, 1, 1, 1, 2, 3, 5, 7, 9, 12, 17, 25, 43, 100, 100
1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 22, 30, 48, 100, 100
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 9, 11, 13, 16, 20, 25, 33, 52, 100, 100, 100

unimodal

6%
10%
15%
20%
25%

5, 12, 20, 28, 41, 67
4, 8, 12, 16, 21, 26, 33, 41, 53, 78
3, 6, 9, 12, 14, 17, 20, 24, 27, 32, 37, 43, 51, 63, 87
2, 5, 7, 9, 11, 13, 15, 18, 20, 22, 25, 28, 31, 35, 39, 44, 50, 57, 69, 94
2, 4, 6, 8, 9, 11, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 37, 40, 44, 49, 55, 63, 74,

Uniform

6%
10%
15%
20%
25%

8, 25, 42, 58, 75, 92
5, 15, 25, 35, 45, 55, 65, 75, 85, 95
3, 10, 17, 23, 30, 37, 43, 50, 57, 63, 70, 77, 83, 90, 97
2, 8, 12, 18, 22, 28, 32, 38, 42, 52, 58, 62, 68, 72, 78, 82, 88, 92, 98
2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90,
98
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Appendix F

An Auxiliary Theorem

We state and prove a theorem which is useful in Chapter 5 for deriving a nonparametric
confidence band for a cumulative distribution function.

Theorem (Wilks 1962, p 368): Suppose (x1, ..., xn) is a random sample from the
cumulative distribution function (c.d.f.) F (x, θ), where x is a discrete random variable
and θ is a parameter whose space is an interval (θ1, θ2). Let bθ be an estimator for θ
defined at every mass point in the sample space Sn ⊂ (θ1, θ2) . Let V (bθ, θ) be the c.d.f ofbθ and V ∗(bθ, θ) = 1−V (bθ, θ). Furthermore let V (bθ, θ) be continuous and decreasing in θ at
each mass point of bθ so that limθ→θ1 V (

bθ, θ) = 1, limθ→θ2 V (
bθ, θ) = 0, for all bθ ∈ (θ1, θ2) .

Let θ and θ be the values of θ for which V (bθ, θ) = α1 and V ∗(bθ, θ) = α2, respectively,
where α = (α1 + α2) ∈ (0, 1). Then

¡
θ, θ
¢
is a confidence interval for θ with confidence

coefficient ≥ 1− α.

Proof: Let θ1 be the largest value of bθ for which V (bθ, θ0) ≤ α1 and θ2 the smallest

value of bθ for which V ∗(bθ, θ0) ≤ α2. Then Pr
³
θ1 ≤ bθ ≤ θ2

´
≥ 1−α. Since V (bθ, θ) is mono-

tonically decreasing in θ and nondecreasing in bθ and V ∗(bθ, θ0) is monotonically increasing
in θ and nonincreasing in bθ, it is evident that θ1 ≤ bθ ≤ θ2 if and only if V (bθ, θ0) > α1
and V ∗(bθ, θ0) > α2. That is if and only if

¡
θ ≤ θ0 ≤ θ

¢
, thus Pr

¡
θ ≤ θ0 ≤ θ

¢ ≥ 1− α. ¤
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Appendix G

C++ Code for obtaining Pn

#include ”binom_parameter.h”

const int NN=20;

template <class T>

inline T fac(int k)

{

T result = 1;

for(T i = 2; i <= k; ++i)

result *= i;

return result;

}

template<class T>

T binomial(int n, int k)

{

if(k < n/2)

k = n-k;

T result = 1;

for(int i = k+1; i<= n; ++i)

result *= i;

return result / fac<T>(n-k);

}

141



template<class T>

T summation(T* array, int k)

{

T result = 0;

for(int i = 0; i<= k; ++i)

result += array[i];

return result;

}

template<class T>

T product(T* array, int k)

{

T result = 1;

for(int i = 0; i<= k; ++i)

result *= array[i];

return result;

}

double Stringer_coverage(int n, double A[]) {

double *L, *P;

int j, i, twonp2;

double lsum, bound=0;

twonp2 = n+1;

P = (double*)malloc((twonp2*twonp2)*sizeof(double));

L= (double*)malloc((twonp2*twonp2)*sizeof(double));

if( !L||!P){
fprintf(stderr,”Not enough memory to handle n=%d.\n”,n);
}

if (n==0)

return 1;

L[0]=1.0;

for ( i=1; i<=n; i++)
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{

for (j=0; j<=i-1; j++)

{

P[j]=binomial<double>(i, j)*pow(1-A[j+1],i-j)*L[j];

}

lsum=0.0;

for (j=0; j<i; j++)

{

lsum +=P[j];

}

L[i]=1-lsum;

}

bound=L[n];

return bound;

free(L);

free(P);

}

int main()

{

long int n, twonp3;

long int f;

double *a, *bb;

double alpha=0.05;// significance level

double Stringer_bound[NN+1];

for (n=1; n<=NN; n++) {

twonp3 = n+1;

a = (double*)malloc((twonp3*twonp3)*sizeof(double));

bb= (double*)malloc((twonp3*twonp3)*sizeof(double));

//computation of coefficient of the Stringer bound//

for ( f=0; f<=n; f++)
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{

double lower_conf=0, upper_conf=0, true_conf;

int true_conf_flag;

confidence_intervals( f,n, 1-2*alpha, &lower_conf, &upper_conf,

&true_conf,

&true_conf_flag);

a[f]=lower_conf;

bb[f]= upper_conf;

}

double ans=0;

ans=Stringer_coverage(n,bb); // lower bound on Stringer’s coverage

Stringer_bound[n]= ans;

free(a);

free(bb);

}

// print output into file called Yb1

char temp[30];

ofstream St (”Yb1.txt”, ios::out | ios::trunc);
if (!St) {

cout <<”file could not be opened.”<<endl;

return 1;

}

for(int ii=1;ii<sizeof(Stringer_bound)/sizeof(double);ii++)

{

sprintf(temp,”%f\r\n”,Stringer_bound[ii]);
int iii=1;

while(true)

{

if(temp[iii]==’\r’)
break;
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iii += 1;

}

St.write(temp, iii+2);

}

St.close();

return 0;

}
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Appendix H

C++ Code for the Simulation
Studies

This appendix presents the C++ code that was used to perform the simulation studies
in Chapter 9. Separate code was written for generating study populations, seeding errors
as well as calculating the confidence bound on Binomial parameters which are used as
coefficients in the Stringer bound.

int i;

open_file1();

read_data1();

open_file2();

read_data2();

Stat st1,st2,st3,st4,st5,st6, st7,st8, st9, st10;

for (i=0; i<populationSize; i++)

error_amount[i]=y[i]-x[i];

//Random Ordering of the population //

for ( i=0; i<populationSize; i++)

{

int ndx1= rand() % populationSize;

int ndx2= rand() % populationSize;

double amt = x[ndx1];

double apt = y[ndx1];
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x[ndx1] = x[ndx2];

y[ndx1] = y[ndx2];

x[ndx2]= amt;

y[ndx2]= apt;

}

for (i=0; i<populationSize; i++)

st1.add(y[i]);

for (i=0; i<populationSize; i++)

st5.add(error_amount[i]);

// the progressive sum of the recorded amount//

cum[0]=y[0];

for (i=1;i < populationSize; i++ )

cum[i]=cum[i-1]+y[i];

double error[samplesize];

double taint[samplesize];

double audit[samplesize];

double hold;

int searchkey;

double NewBound[replicates];

double Stringer_bound[replicates];

double Extended_Stringerbd[replicates];

double MSE1[replicates];

double MSE2[replicates];

double MSE3[replicates];

int counter1=0;

int counter2=0;

int counter3=0;

int counter4=0;

int interval=(int)(cum[populationSize-1])/samplesize;
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//computing the coefficient of the Stringer bound //

for (k=0; k<=samplesize; k++)

{

double lower_conf=0, upper_conf=0, true_conf;

int true_conf_flag;

confidence_intervals( k,samplesize, 0.90, &lower_conf, &upper_conf,

&true_conf,

&true_conf_flag);

p[k]= upper_conf;

}

//computing the coefficient of the Extended Stringer bound //

double alpha3[samplesize+1];

alpha3[0]=alpha1;

alpha3[1]=alpha1;

for (f=2; f<=samplesize; f++)

{

alpha3[f]=CriticalValue( f, alpha1);

}

for (f=0; f<samplesize; f++)

{

double alpha2=1-(2*alpha3[f]);

double lower_conf=0, upper_conf=0, true_conf;

int true_conf_flag;

confidence_intervals( f,samplesize, alpha2, &lower_conf, &upper_conf,

&true_conf,

&true_conf_flag);

bart[f]= upper_conf;

}

// Simulation//

for(i=0;i<replicates;i++)
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{

//Sample selection: Systematic PPS//

int j=0;

searchkey =1+rand()%interval; //uniformDiscrete ( 1, interval)

while (j<samplesize)

{

int ret_index=0;

for (;;)

{

if (searchkey<=cum[ret_index])

break;

ret_index++;

}

//Auditing the selected account and calculating the prorated error//

select[j]=y[ret_index];

audit[j]=x[ret_index];

error[j]= select[j]-audit[j];

taint[j]=error[j]/select[j];

searchkey +=interval;

j++;

}

//Ordering the taint//

for ( int pass = 0; pass < samplesize-1 ; pass++ ) // passes

for ( j = 0; j < samplesize-1 ; j++ )// one pass

if ( taint[j] < taint[j+1]) // && taint[j+1]<=1

{

hold = taint[j]; // one swap

taint[j] = taint[j+1];

taint[j+1] = hold;

}
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int taint_count = 0;

double T[samplesize+1];

T[0]=1;

for (j=0; j<samplesize; j++)

T[j+1]=taint[j];

// counting the non-zero taint//

for (j=0; j<samplesize+1; j++)

if (T[j]>0.00000)

{

taint_count +=1;

}

else

taint_count=taint_count;

//Computing the Stringer bound//

double z[samplesize];

for (j=0;j<taint_count;j++)

z[j]=(p[j]-p[j-1])*T[j];

for (j=taint_count;j<samplesize; j++)

z[j]=0.0;

Stringer_bound[i]=cum[populationSize-1]*summation(z,0,taint_count-1);

//Computing the SCP bound//

double empirical=0;

double Ed1=0;

double Ed2=0;

double Ed3=0;

double Ed4=0;

double un=0;

double s = 0.0;

double u2= 0.0;

double u21=0.0;
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double u3= 0.0;

double b=0;

for (int n=1; n<=taint_count; n++)

{

b += T[n];

}

un= b/(double) (taint_count-1);

for (n=0; n<taint_count; n++)

{

Ed1 += (T[n+1]-un)*(T[n+1]-un);

Ed2 += T[n+1]*T[n+1];

Ed3 += (T[n+1]-un)*(T[n+1]-un)*(T[n+1]-un);

Ed4 += T[n+1]*T[n+1]*T[n+1];

}

s = Ed1/(double) (taint_count-2) ;

u2 = Ed2;

u21 = Ed2/(double)(taint_count-1);

u3 = Ed3/(double)(taint_count-1);

empirical= ( (double)(taint_count-1)*un +sqrt(u2)*((u3*(2*a*a+1)-un*un*un*(a*a-
1)+

3*un*(s+a*a*s+a*a*u21))*(1.0/(6.0*u21*sqrt(u21)*sqrt((double) (taint_count-1))))+a))*1.0/(double

NewBound[i]= cum[populationSize-1]*empirical;// SCP bound

//Computing the Extended Stringer bound//

double zz[samplesize];

for (j=0;j<taint_count;j++)

zz[j]=(bart[j]-bart[j-1])*T[j];

for (j=taint_count;j<samplesize; j++)

zz[j]=0.0;

ExtendedStringer_bound[i]=cum[populationSize-1]*summation(zz,0,taint_count-1)
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//Computing Mean Square Error of the bounds//

MSE1[i]=(Extended_Stringerbd[i]-st5.sum())*(Modified_Stringerbd[i]-st5.sum());

MSE2[i]=(NewBound[i]-st5.sum())*(NewBound[i]-st5.sum());

MSE3[i]= (Stringer_bound[i]-st5.sum())*(Stringer_bound[i]-st5.sum());

//Coverage//

if (Stringer_bound[i]>=st5.sum())

{

counter1 +=1;

}

if (Extended_Stringerbd[i]>=st5.sum())

{

counter2 +=1;

}

if (NewBound[i]>=st5.sum())

{

counter3 +=1;

}

}

for (i=0;i < replicates; i++ )

st2.add(Stringer_bound[i]);

for (i=0;i < replicates; i++ )

st3.add(Extended_Stringerbd[i]);

for (i=0;i < replicates; i++ )

st4.add(NewBound[i]);

for (i=0;i < replicates; i++ )

st7.add(MSE2[i]);

for (i=0;i < replicates; i++ )

st8.add(MSE1[i]);

for (i=0;i < replicates; i++ )

st6.add(MSE3[i]);
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cout <<“Number of Line items ”<<setw(25)<< populationSize<<endl;

cout <<“Sample Size ”<<setw(25)<< samplesize<<endl;

cout <<“Number of replicates ”<<setw(25)<< replicates<<endl;

cout<<“Population Mean taint ”<<setw(25)<< st5.sum()/cum[populationSize-1]<<endl;

cout <<“Total Error Amount ”<<setw(25)<< st5.sum()<<endl;

cout <<“Mean Stringer Bound ”<<setw(25)<< st2.mean() <<endl;

cout <<“Mean Extended Stringer Bound ”<<setw(25)<< st3.mean() <<endl;

cout <<“Mean New bound ”<<setw(25)<< st4.mean() <<endl;

cout <<“std of Stringer Bound ”<<setw(25)<< st2.stdev()<<endl;

cout <<“std of Extended Stringer Bound ”<<setw(25)<< st3.stdev() <<endl;

cout <<“Std of New Bound ”<<setw(25)<< st4.stdev() <<endl;

cout<<“Coverage of Stringer Bound ”<<setw(25)<< ((double)counter1/replicates)*100<<endl;

cout<<“Coverage of Extended Bound ”<<setw(25)<< ((double)counter2/replicates)*100<<endl;

cout<<“Coverage of New Bound ”<<setw(25)<< ((double)counter3/replicates)*100<<endl;

cout <<“Tightness of Stringer Bound ”<<setw(25)<< st2.mean()/st5.sum()<<endl;

cout<<“Tightness of Extended Bound ”<<setw(25)<< st3.mean()/st5.sum()<<endl;

cout <<“Tightness of New Bound ”<<setw(25)<< st4.mean()/st5.sum()<<endl;

cout<<“Relative Advantage (EST)”<<setw(25)<< 100*((st2.mean()-st3.mean())/st2.mean()
)<<endl;

cout<<“Relative Advantage (SCP) ”<<setw(25)<< 100*((st2.mean()-st4.mean())/st2.mean()
)<<endl;

cout <<“Relative Efficiency (EST) ”<<setw(25)<< st7.mean()/st6.mean()<<endl;

cout <<“Relative Efficiency (SCP) ”<<setw(25)<< st8.mean()/st6.mean()<<endl;

return 0;

}
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