

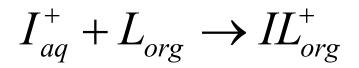
Dye-free, simultaneous multianalyte optical recognition using ionic liquid-based polymeric membrane

AsiaSense 2009

Dr. Aleksandar Radu

Outline

- Ionophore-based chemical sensors
 - Basic principles
 - Potentiometric sensors
 - optical sensors
- Ionic liquids in chemical sensors
 - Dye-free simulataneous multianalyte recognition
 - Characterization (IR, Raman, UVVIS, response time)
- → Conclusions
- → Future work



Chemical sensors with potentiometric detection - Ion Selective Electrodes (ISEs)

 $I^{+} \leftrightarrow L$ $A^{-} R^{-} IL^{+}$

$$E_{PB}$$

$$E_{PB} = \frac{RT}{z_I F} \ln \left(\frac{k_I \beta_{IL}[L] a_{I,aq}}{[IL^+]_{org}} \right)$$

ISEs measure activity NOT total concentration!

DUBLIN CITY UNIVERSITY

TYNDALL NATIONAL INSTITUTE

TYNDALL NATIONAL INSTITUTE

Potentiometric sensors

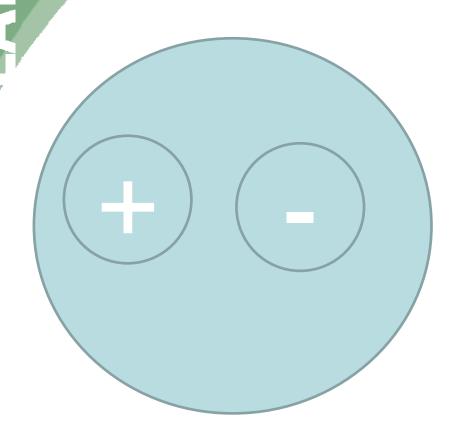
method/ion	ICPMS	AAS	ISE	EPA
Ag	0.005	1.5	0.03 ¹	50
Ca²t	0.5	1.5	0.04^{2}	
Cd ²⁺	0.005	0.8	0.01^{3}	10
CIO ₄			3 ⁴	1*
C s [→]	0.01	5	1 ⁵	
Cu ²⁺	0.005		0.01^{6}	1300
	1		0.25^{4}	
K ⁺	0.5	3	0.2^{7}	
Na ⁺	0.05	1	0.7^{8}	
NH_4^+			0.2^{7}	100**
Pb ²⁺	0.001	15	0.001^9	50
Vitamin B1			3.3 ¹⁰	

^{*} suggested

- 1. Wygladacz, K.; Radu, A.; Xu, C.; Qin, Y.; Bakker, E.; Anal. Chem. 2005, 77 (15), 4706-4712
- **2.** Radu A., Peper S., Bakker E., Diamond; *Electroanalysis*, **2006**, 18, 1379-1388
- 3. Ion A.C. Bakker E., Pretsch E., Anal. Chim. Acta, 2001; 401,71
- Malon A., Radu A., Qin, W.; Qin, Y.; Ceresa, A.; Maj-Zurawska, M.; Bakker, E.; Pretsch, E.; Anal. Chem.; 2003; 75(15), 3865-3871
- 5. Radu A., Peper S., Gonczy C., Diamond D., Runde W., Electroanalysis, 2006, 13-14, 1379-1388
- 6. Szigeti Z., Bitter I., Toth K., Latkoczy C., Fliegel D. J., Guenther D., Pretsch E.; Anal. Chim. Acta, 2005, 532, 129-136
- 7. Qin W., Zwickl T., Pretsch E.; *Anal. Chem.*; **2000**; 72; 3236-3240
- 8. Vigassy T., Huber C. G., Wintringer R., Pretsch E.; Anal. Chem.; 2005, 77, 7801-7809
- 9. Sokalski T., Ceresa A., Zwickl T., Pretsch E.; J. Amer. Chem. Soc.; 1997; 119; 11347-11348
- 10. Zhang G. H., Imato T., Asano Y., Sonoda T., Kobayashi H., Ishibashi N.; Anal. Chem., 1990, 62, 1644

^{** (}depending on pH and T)

Chemical sensors with optical detection - optodes


$$I^{+} \longleftrightarrow L \quad IL^{+}$$
 $R^{-} \quad R^{-}$
 $H^{+} \longleftrightarrow C \quad HC^{+}$

Ionic liquids

Cation Anion protonated cations $H_2PO_4^ HSO_4$ amphoteric Acidic (A) Neutral (N) BF₄- NO_3 H_3C — SO_3 Basic (B) H₂PO₄ HSO₄

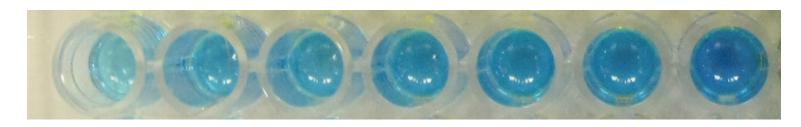
amphoteric

Ionic Liquids

- Almost negligible vapour pressure
- Non-flammable
- Good solubility for inorganic and organic compounds
 - Solvents
 - Matrixes
 - Sample preparation
 - Separation
- Sensors
 - Use of ILs is starting to emerge
 - Plasticizers (ionophore-based sensors)
 - Matrixes (QCM change in viscosity due to solubilization)

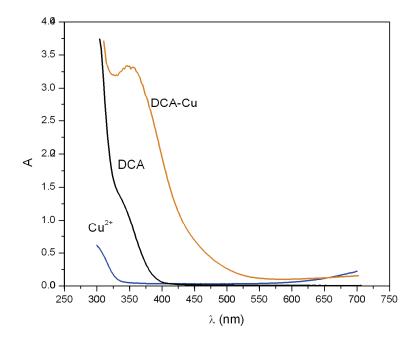
Ils as ligands?

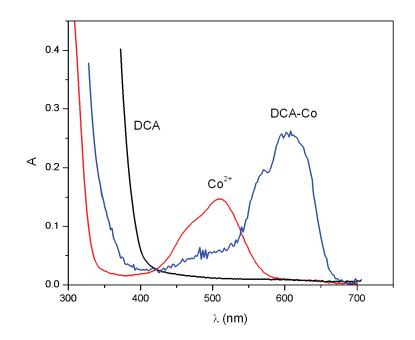
- PVC-IL is the most simple chemical sensor (no leaching of the components)
- Combinations are endless (both cation- and anion-based combinations serving as ligands)
- → Self-indicating
- Allows printing of thin yet sensitive films
- → Simultaneous multianalyte analysis



ILs as ligands

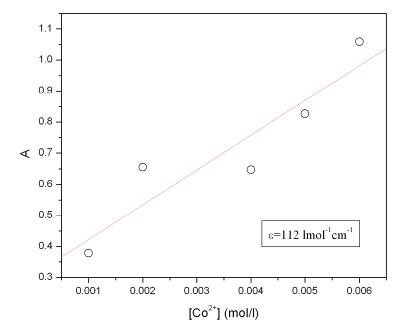
$$C_{6}H_{11}$$
 $C_{6}H_{11}$
 $C_{14}H_{29}$
 $C_{6}H_{11}$
 $C_{6}H_{11}$
 $C_{14}H_{29}$
 $C_{6}H_{11}$
 $C_{14}H_{29}$
 $C_{15}H_{29}$
 $C_{15}H_{$

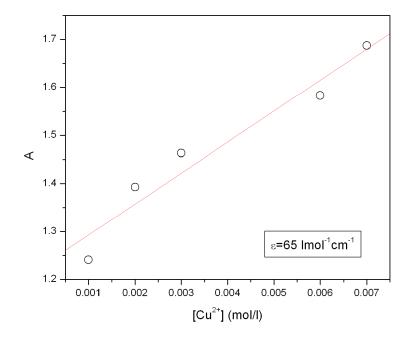




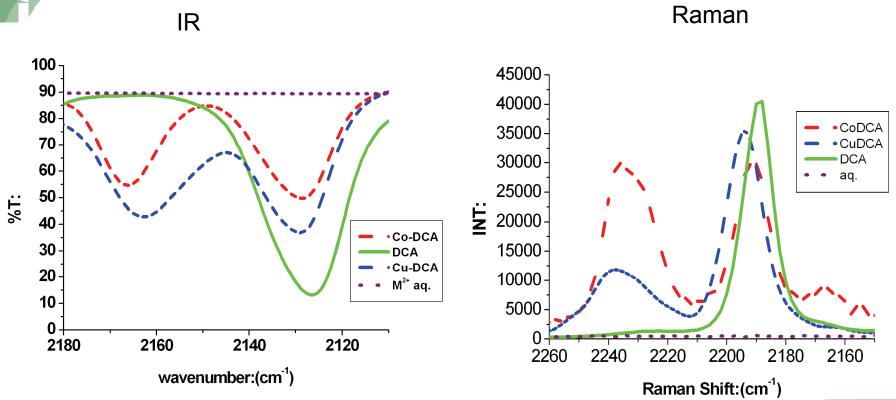
DCA + ions

No interferences Ni²⁺, H⁺, Na⁺, K⁺

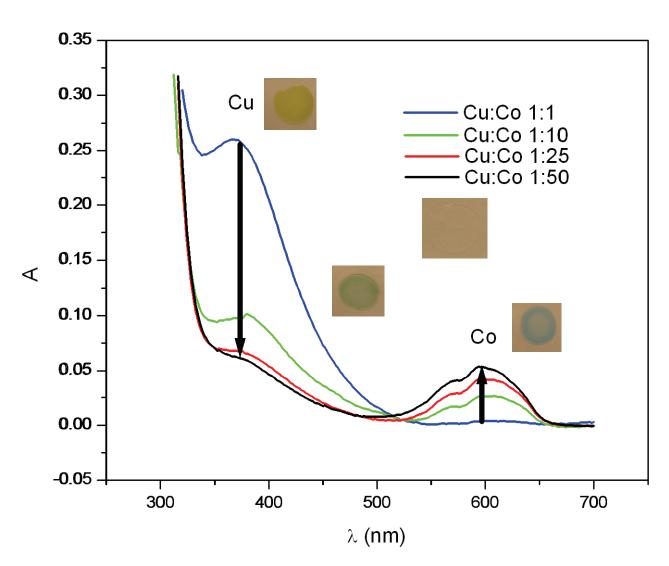


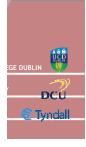


Individual calibration

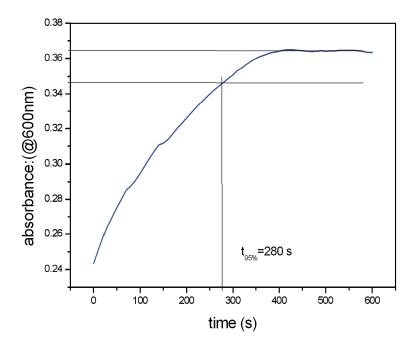


Structural characterization



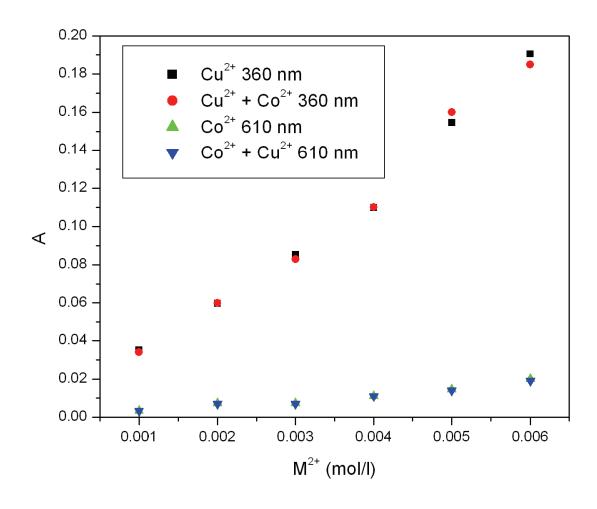


Simultaneous multianalyte recognition





Response time



Simultaneous multianalyte recognition

Conclusions

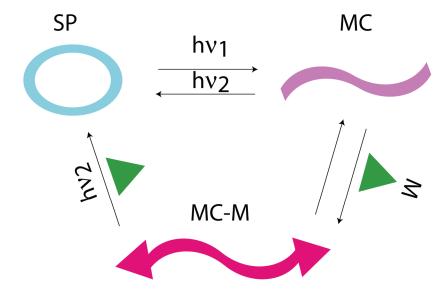
- Anions in IL can behave as ligands utilization in chemical sensors
- → Fast response time
- → DCA simultaneously binds Cu²⁺ and Co²⁺ with development of distinct colours simultaneous, multianalyte recognition
- Synthesis of IL of interest fairly easy can an ionophore be an anion?

Acknowledgments

Andrew Kavanagh

• Dr. Robert Byrne

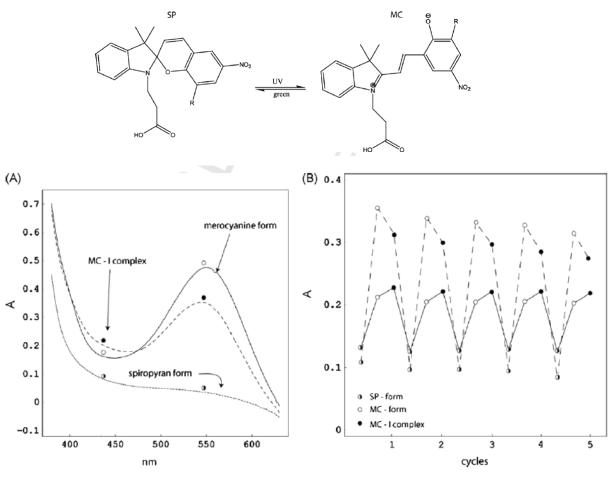
 Prof. Dermot Diamond


- •DCU Research Career Start 2008;
- •Enterprise Ireland (grant 07/RFP/MASF812) MASTRA; FP6 MATERA-ERA-NET
- Science Foundation Ireland (grant 07/CE/I1147)

Optical sensors with "smart" ligands

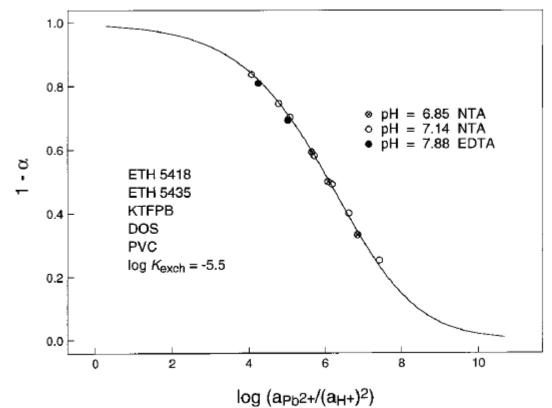
Radu et al. "Photonic Modulation of Surface Properties: A Novel Concept In Chemical Sensing"; J.Phys. D: Appl.

Phys. 40, 2007, 7238-7244
This work is supported by Science Foundation Ireland under grant 07/CE/I1147



Optical sensors with "smart" ligands

Radu et al. "Spiropyran-based reversible, light-modulated sensing with reduced photofatigue"; *J.Photochem. Photobiol. A: Chem*, **2009**, In press



 $a_{\rm I} = (zK_{\rm exch}^{{\rm IL}_n})^{-1} \left(\frac{\alpha}{1-\alpha}a_{\rm H}\right)^z \times$

$$\frac{R_{\rm T}^{-} - (1 - \alpha)C_{\rm T}}{\{L_{\rm T} - (R_{\rm T}^{-})^{2}\} + (1 - \alpha)C_{\rm T}}$$

