
EBSL: Supporting Deleted Node Label Reuse in
XML?

Martin F. O’Connor and Mark Roantree

Interoperable Systems Group, School of Computing,
Dublin City University, Dublin 9, Ireland

{moconnor,mark.roantree}@computing.dcu.ie

Abstract. Recently, there has been much research into the specification
of dynamic labeling schemes supporting XML updates. The primary de-
sign goal of any dynamic labeling scheme is to limit the growth rate in
node label size, and consequently increase query performance and reduce
update costs. The ability to reuse deleted node labels is a key property
in achieving this goal. In this paper, we review the existing dynamic
labeling schemes that provide this functionality and identify their short-
comings. We present our own dynamic labeling scheme that guarantees
every delete node label can be reused. Further, we provide a deleted
node label reuse strategy that best suits the nature of node insertions
and deletions in an XML tree.

1 Introduction

In recent years, there has been considerable research on the development of new
dynamic labeling schemes capable of supporting XML updates. To date, most
of the analysis of such labeling schemes has been limited to the computation
complexity of the update cost, the impact on label size under various update
scenarios and to comparative performance analysis with other labeling schemes.
In our previous work [15], we provided a holistic evaluation framework based
on the desirable properties that are characteristic of a good dynamic labeling
scheme for XML. In this paper, we focus on one such desirable property - the
ability to reuse deleted node labels.

Almost all dynamic labeling schemes for XML published to date [16], [20],
[2], [21], [11], [19], [4], [5], [9], [1] are not truly dynamic in that they support in-
sertion updates of nodes only. When a node is deleted, the node label is marked
as deleted. Subsequently, if we want to insert a new node at the same position in
the XML tree as the previously deleted node, a new node label is generated. The
deleted node label is not reused and is thus, wasted. In a highly dynamic envi-
ronment with frequent node insertions and deletions, such as online transaction
processing systems of heterogeneous data deployed in XML repositories, the in-
ability to reuse deleted node labels leads to a rapid increase in label sizes. Large

? Funded by Enterprise Ireland Grant No. CFTD/07/201



node label sizes result in slower label comparison operations and consequently
to slower query evaluations and slower update performance.

To incorporate deleted node label reuse as a property of a dynamic labeling
scheme, is not a trivial task. Between any two consecutive nodes, there may have
been an arbitrary number of node deletions. The ability to detect, identify and
reclaim a deleted node label must be provided from the information encoded
in the label alone. The labeling scheme may not rely on external indices to
keep track of nodes as they are deleted and inserted. Furthermore, it is not
sufficient to reclaim deleted node labels simply because they exist. A deleted
node label may be longer in size than a newly generated label. In such scenarios,
it is preferable to generate and insert the smaller node labels first and to only
reuse the larger labels when no smaller labels are available. Consequently, it is
necessary to identify the deleted label and determine the size of the deleted label
in order to determine if it is suitable for reuse in the current scenario. All of this
functionality must be provided from the information encoded in the labels alone
while maintaining document order and guarantying that all nodes labels are
unique throughout the XML tree whether they are newly generated or recently
reused.

Contribution. In this paper, we present our new dynamic labeling scheme
called Enhanced Binary String Labeling (EBSL) that provides full support for
the reuse of deleted node labels during insertion operations. EBSL does not
require the relabeling of existing nodes nor the recalculation of any values when
inserting new nodes in an XML tree. To the best of our knowledge, EBSL is the
only dynamic labeling scheme which guarantees that every deleted node label
can be reused. Finally, EBSL supports a deleted label reuse strategy that best
suits the nature of node deletions and node insertion in an XML tree.

This paper is structured as follows: in §2, we review the three dynamic label-
ing schemes that claim to support deleted node label reuse. In §3, we present our
new dynamic labeling scheme, namely EBSL, and the underlying properties that
facilitate deleted node label reuse. These properties ensure every deleted node
label can be reused and the size of the reclaimed label can always be determined
from the neighboring labels. In §4, we present our algorithms which perform the
detection, identification and selection of the appropriate deleted node label for
reuse. Finally in §5, our conclusions are presented.

2 Related Research

Several surveys have been performed that provide an overview and analysis of the
principle dynamic labeling schemes for XML proposed to date [17], [6], [18], [15].
To the best of our knowledge, there are only three published dynamic labeling
schemes for XML that support the reuse of deleted node labels while maintaining
document order [12], [8], [13].



QED – Not reusing shortest label

Desirable Properties of XML Update Expressions 7th May 2010      5

112 21312
dc e f

132

g

a b
122

Fig. 1. Reusing a deleted node label in a QED labeled tree.

2.1 Extended QED Labeling Scheme

The Extended QED labeling scheme [12] uses a quaternary code to encode node
labels. Four numbers 0, 1, 2 and 3 are used in the code and each number is
stored with two bits; i.e.: 00, 01, 10, 11. However, the number 0 is reserved
as a separator and the remaining numbers 1, 2 and 3 are used to encode the
node labels. The authors provide an algorithm AssignInsertedCodeWithReuse

to extend the QED labeling scheme to support the reuse of deleted node labels
and the algorithm has the property of always selecting the smallest deleted node
label available.

Consider an XML tree which has been initially labeled with 16 nodes. The
first 6 nodes are illustrate in Fig. 1. Now delete the first two nodes a and b.
Insert a new node g before the current leftmost node c. According to algorithm
AssignInsertedCodeWithReuse, the new node g will be assigned the label 112.
The smallest deleted label (12) of node b was not reused.

Perhaps a more significant problem with algorithm AssignInsertedCodeWit

hReuse is that the same label is assigned to two different nodes. Consider an
XML tree which has been initially labeled with 16 nodes. The first 4 nodes (a,
b, c and d) are illustrated in Fig. 2. Insert a new node g to the left of the current
leftmost node a. Then insert a new node h between node g and node a. The new
node h will be assigned the label 1112. But this label has already been assigned
to node g. The assignment of the same node label to two different nodes violates
the properties of unique node identity as required by the XPath data model.

2.2 Improved Binary String Labeling Scheme

In [8], the authors propose a dynamic labeling scheme called IBSL (Improved
Binary String Labeling) which supports node updates without the need to relabel
existing nodes. IBSL, an extension of their earlier work [7], is a binary stringQED – Non unique labels

Desirable Properties of XML Update Expressions 7th May 2010      6

1112 13121112
ba c d

122
g h

112

Fig. 2. Duplicate label assignment in a QED labeled tree.



IBSL Labeled XML Tree

Desirable Properties of XML Update Expressions 7th May 2010      1

100 110 11101

1110.1010.100 10.10 1110.1101110.1100

10 1110

10.101

Fig. 3. IBSL Labeled XML tree.

prefix-based labeling scheme and introduces new insertion algorithms to permit
the reuse of deleted node labels in their original position. Fig. 3 illustrates an
IBSL labeled XML Tree, the dotted circles indicating newly inserted nodes in
an existing tree.

In [8], the authors present an algorithm (Algorithm 3) to insert a new node
label with the smallest length between two adjacent node labels. The algorithm
is designed to process three generic cases: inserting a new leftmost node (case 1);
inserting a new node between two adjacent nodes (case 2); and finally inserting
a new rightmost node (case 3). The second case of inserting a new node between
two consecutive nodes is broken down further into 3 subcases. Thus, five distinct
case scenarios are presented in all. However, it can be shown that the algorithm
fails to reuse deleted labels in four of these scenarios. We will highlight two of
these now.

A comment on the convention we use is necessary at this point. Every node
insertion is considered to be an insertion between two consecutive nodes. Nleft

is the node label on the left, Nright is the node label on the right, and Nleft is
lexicographically less than Nright. When inserting a new node to the right of the
current rightmost node, Nleft is said to be not empty and Nright is empty. The
new node to be inserted is referred to as Nnew. In our algorithms, we use the
symbol ⊕ to denote the concatenation of two binary strings.

Case 1: : Inserting a new node to the left of the current leftmost node. Consider
an XML tree which has been initially labeled with just two nodes a and b.
Insert the following new nodes in the order they are listed: node c and node d,
as illustrated in Fig. 4. Delete node c (the current leftmost node is now node
d). Finally, insert a new node e to the left of the current leftmost node d. NodeIBSL – Case 1 and 3

Desirable Properties of XML Update Expressions 7th May 2010      2

100 10 11011001 110
c d

e

g f

11010

h

a b

Fig. 4. Case 1 and 3: Inserting a new leftmost node and new rightmost node after a
node deletion.



label e is assigned the label 10010 and not assigned the deleted label of node c
(100). Thus, algorithm 3, case 1 did not reuse the deleted node label.

Case 3: : Inserting a new node to the right of the current rightmost node. Con-
sider an XML tree which has been initially labeled with just two nodes a and b.
Insert the following new nodes in the order they are listed: node f and node g, as
illustrated in Fig. 4. Delete node f (the current rightmost node is now node g).
Finally, insert a new node h to the right of the current rightmost node g. Node
label h = 110101. There is a typographical error in case 3 [8]. However, there is a
clear symmetry between case 1 and case 3 and we surmise the authors meant to
write that Nnew should be lexicographically greater than Nleft. In either case,
Nnew does not reuse the deleted node label that belonged to node f (1101).

2.3 V-CDBS Labeling Scheme.

To the best of our knowledge, there is only one published dynamic labeling
scheme, called V-CDBS [13], that supports the reuse of deleted node labels.
V-CDBS is a binary string dynamic labeling scheme. Referring to the authors
illustrated example of V-CDBS codes in Table 2 in [13] and using their algorithm
3 AssignMiddleBinaryStringWithSmallestSize [13], when Nleft=0001 and
Nright=001, inserting a new node will result in Nnew=0001011. The valid label
with the smallest size and lexicographically ordered between Nleft and Nright is
00011 and is not reused.

The algorithm AssignMiddleBinaryStringWithSmallestSize can never gu
arantee to always select the middle binary string with the smallest size due to
the intrinsic properties of the assign initial labels algorithm employed by the V-
CDBS labeling scheme. The V-CDBS assign initial labels algorithm is presented
as algorithm 2 in [13]. It adopts a recursive divide-and-conquer approach whereby
given N nodes to label, it first identifies and labels the middle node between
0 and N. The middle node is then used to divide the search space and the
algorithm continues recursively. The middle node is selected using the formula:
middle(start,end) = round(start + (end - start)/2). The first node is assumed
to begin at position zero and consequently the round function guarantees that
every node from 1 to N will be labeled. For example, middle(0,4) = round(0
+ (4-0)/2) = 2. However, middle(0,3) = round(0 + (3-0)/2) = 2 also. The use
of the round function introduces an approximation function into the V-CDBS
assign initial labels algorithm. Thus, the V-CDBS labels are not assigned in
a deterministic manner. In other words, the label value of node n is not and
cannot be determined solely from the label values of node n+1 or node n-1. The
V-CDBS encoding algorithm can guarantee lexicographical order but cannot
guarantee the accurate calculation of the size of a node label n or indeed the
label n itself, based solely on the node labels adjacent to node n. It follows
that when node n is deleted, the V-CDBS labeling scheme cannot guarantee the
accurate calculation of the deleted node label n (and its size), and consequently
cannot guarantee that the deleted node label n will be reused.



3 Enhanced Binary String Labeling Scheme (EBSL)

In this section, we introduce our new dynamic labeling scheme for XML called
the Enhanced Binary String Labeling scheme (EBSL). EBSL is based on the
IBSL labeling scheme. EBSL does not require the relabeling of existing nodes
nor the recalculation of any values when inserting new nodes in an XML tree.
EBSL fully supports the reuse of deleted node labels when inserting new nodes
into positions that previously contained deleted nodes. EBSL guarantees that
every deleted node label can be reused. That is to say, there are no (simple
or complex) insertion/deletion scenarios that will result in a deleted node label
remaining unused when it would be appropriate to reuse that label. EBSL may be
deployed using the prefix-based approach and thus, support ancestor-descendant,
parent-child and sibling-ordered XPath evaluations. Finally, EBSL supports a
deleted label reuse strategy that best suits the nature of node deletions and
insertions in an XML tree. Conceptually, the construction of a dynamic labeling
scheme for XML (that permits the reuse of deleted nodes labels) may be viewed
as a three stage process:

1. The AssignInitialLabels stage.
2. The SimpleInsertion stage.
3. The InsertionWithDeletedLabelReuse stage.

Before we present the algorithms facilitating the construction process, it is
necessary to introduce our customized definition of lexicographical order, a key
property facilitating the reuse of deleted node labels.

3.1 Lexicographical Order

EBSL compares node labels using lexicographical order and not numerical or-
der. Our customized definition of lexicographical order differs from existing ap-
proaches [10], [6], [14], [3], [21], [7], [13] and is also different to the definition
employed by the IBSL labeling scheme [8].

Definition 1. (Lexicographical order ≺) Given two consecutive binary strings
Sleft and Sright (Sleft represents the left binary string, Sright represents the
right binary string), Sleft is said to be lexicographical equal to Sright iff they are
exactly the same. Sleft is said to be lexicographically less than Sright (Sleft ≺
Sright) iff

1. the lexicographical comparison of Sleft and Sright is bit by bit from left to
right. If the current bit of Sleft is 0 and the current bit of Sright is 1, then
Sleft ≺ Sright and stop the comparison, or

2. len(Sleft) < len(Sright), Sleft is a prefix of Sright, the first extra bit of Sright

= 1 (i.e.: substring(Sright, len(Sleft)+1, len(Sleft)+1) = 1), then Sleft ≺
Sright and stop the comparison, or

3. len(Sleft) > len(Sright), Sright is a prefix of Sleft, the first extra bit of Sleft

= 0 (i.e.: substring(Sleft, len(Sright)+1, len(Sright)+1) = 0), then Sleft ≺
Sright and stop the comparison.



RBSL Assign Initial Labels Tree

Desirable Properties of XML Update Expressions 7th May 2010      7

110 11110

1110.1010.10 10.110 1110.11101110.110

10 1110

10.1110

Fig. 5. An EBSL tree labeled using the AssignInitialLabels algorithm.

The conventional definition of lexicographical order defines a prefix string
to be always lexicographically less than the larger string beginning with that
prefix (e.g.: 110 ≺ 11001). In our definition of lexicographical order, (condition
3) the larger string containing the prefix is lexicographical less than the prefix
string if and only if the subsequent bit immediately after the prefix in the larger
string is a 0 bit (e.g.: 11001 ≺ 110). Conversely, (condition 2) the larger string
containing the prefix is lexicographical greater than the prefix string if and only
if the subsequent bit immediately after the prefix in the larger string is a 1 bit
(e.g.: 110 ≺ 11010).

3.2 The Assign Initial Labels Algorithm

The EBSL AssignInitialLabels encoding algorithm is the same as the IBSL
AssignInitialLabels algorithm [8] and thus is not detailed here. The algorithm
takes as input a parent node, and assigns a unique label to every child node of
the parent. The first child is always assigned the self label 10. Thereafter, all
subsequent children are deterministically labeled such that the self label of child
i is the computed as the concatenation of a 1 bit and the self label of child i -
1. The algorithm may be applied recursively to the XML tree to assign labels
to every node in the tree. An example of an EBSL labeled tree is illustrated in
Fig. 5.

Definition 2. (<label) A node label with the properties of a label assigned by
the AssignInitialLabels algorithm is denoted as an <label. The properties
that uniquely characterize an <label are:

1. The node label begins with a prefix binary string consisting of one or more
consecutive 1 bits, and

2. The node will contain a single 0 bit and this 0 bit will be the last bit in the
node label.

Every node label assigned by the AssignInitialLabels algorithm is an
<label. Definition 2 defines the unique characteristics of an <label. Examples
of an <label are 10, 110, 1110, 11110, 111110 and so on. All <label node labels
are lexicographically greater than the first child label 10. <label node labels will
always and only ever be assigned when inserting a new node to the right of the
current rightmost node. The ability to identify a node label with the properties



Algorithm 1: Simple Insertion Algorithm
input : left self label Nleft, right self label Nright

output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright

1 begin
2 Case 1: Nleft is empty but Nright is not empty

/* Insert a new node before the current leftmost node. */
3 Nnew ←− Nright ⊕ 0 ; // ⊕ means concatenation.

4 Case 2: Nleft is not empty but Nright is empty

/* Insert a new node after the current rightmost node. */
5 Nnew ←− 1 ⊕ Nleft;

6 Case 3: Nleft is not empty and Nright is not empty

/* Insert a new node between two existing nodes. */
7 if (len(Nleft) ≤ len(Nright)) then Nnew ←− Nright ⊕ 0;

8 else if (len(Nleft) > len(Nright)) then Nnew ←− Nleft ⊕ 1;

9 end

of an <label is a key requirement in order to guarantee that every node label
can be reclaimed and reused in the face of arbitrary nodes insertions and node
deletions.

3.3 The Simple Insertion Algorithm

Algorithm 1 is the EBSL SimpleInsertion label encoding algorithm. The al-
gorithm takes as input two node labels, Nleft and Nright, and generates a new
node label Nnew such that Nleft ≺ Nnew ≺ Nright. The SimpleInsertion al-
gorithm assumes no nodes have been deleted in the XML tree. This assumption
is important so as to permit the clear specification of the rules governing the
creation of a new node label when inserted between two existing consecutive
node labels (and when no deleted labels are available to be reused).

It should also be noted that although cases 1 and 3 of our SimpleInsertion
algorithm is the same as the IBSL simple insertion algorithm, case 2 is different.
Concerning case 2, the IBSL simple insertion algorithm assigns Nnew = Nleft

⊕ 1. Our SimpleInsertion algorithm case 2 assigns Nnew = 1 ⊕ Nleft. This
change fundamentally distinguishes the EBSL labeling scheme from the IBSL
labeling scheme in a dynamic scenario, because new node insertions to the right
of the current rightmost node will now end in a 0 bit, and not a 1 bit. This
will directly influence lexicographical order evaluations and consequently the
label values of new node inserted after the rightmost node. Algorithm 1 case 1
introduces a new category of labels called `label.

Definition 3. (`label) A node label with the properties of a label assigned by
Case 1 of the SimpleInsertion algorithm (algorithm 1) is denoted as an `label.
The properties that uniquely characterize an `label are:

1. The node label begins with a single 1 bit, and
2. All subsequent bits in the node label consists of a sequence of two or more

consecutive 0 bits.



RBSL – Simple Insertion

Desirable Properties of XML Update Expressions 7th May 2010      8

100
110 11110

1110.1010.100 10.10 1110.1101110.1100

10 1110

10.110

1001
a b c

d e f

g h i

j k m

Fig. 6. An EBSL labeled tree with new nodes inserted (dotted circles) using the
SimpleInsertion algorithm (algorithm 1).

Examples of an `label are 100, 1000, 10000, 100000, 1000000 and so on. All
`label node labels are lexicographically less than the first child node 10. `label
node labels will only ever be assigned when inserting a new node to the left of the
current leftmost node. The ability to identify a node label with the properties of
an `label is a key requirement in order to guarantee that every node label can
be reused.

We provide an illustration of an EBSL labeled tree in Fig. 6 with nodes a
through f assigned by the AssignInitialLabels algorithm and nodes g through
m inserted in alphabetical order using the SimpleInsertion algorithm. The
SimpleInsertion algorithm case 3 can never generate a new node label that
has the characteristics of either an <label or an `label. It should be observed
that an arbitrary EBSL node label will be an <label label or an `label label or
neither of the two. The three cases in the SimpleInsertion algorithm are closed
(i.e.: both Nleft and Nright cannot be empty).

4 Reusing Deleted Node Labels

In this section, we present our algorithms to facilitate the insertion of a new
node into an XML tree while permitting the reuse of deleted node labels. Before
we present these algorithms, it is good to summarize what we know thus far so
as to identify the conditions in which these algorithms must operate.

An arbitrary node label in an EBSL labeled tree will always fall into one and
only one of the following three lexicographical categories:

1. The node label will be lexicographically greater than (�) the node label 10.
2. The node label will be lexicographically less than (≺) the node label 10.
3. The node label will be lexicographically equal to the node label 10.

When we consider a node insertion algorithm, there are always three high
level scenarios to be processed:

1. Insertion of a new node after the current rightmost node.
2. Insertion of a new node before the current leftmost node.
3. Insertion of a new node between two existing nodes with non-empty labels.

In our EBSL deterministic labeling scheme, case 1 is the most important
scenario and case 3 will always rely on case 1 to identify and reclaim a deleted



Algorithm 2: Insert New Node After Rightmost Node.
/* This algorithm inserts a new node after the current rightmost node Nleft and, if it

exists, reuses the deleted node label to the right of Nleft that was originally used
to create Nleft. */

input : left self label Nleft, Nleft is not empty
output: New self label Nnew such that Nleft ≺ Nnew

1 begin

2 if (Nleft == 10) then
3 Nnew ←− 1 ⊕ Nleft ; // Apply SimpleInsertion algorithm, Case 2
4 return Nnew;

5

/* The Following IF statement is processed when Nleft ≺ 10. */
6 else if (prefix of Nleft == 100) then
7 Nnew ←− SelectNewRightmostNodeLessThan10(Nleft);
8 return Nnew;

9

/* The Following IF statement is processed when 10 ≺ Nleft. */
10 else if (prefix of Nleft == 11) then
11 Nnew ←− SelectNewRightmostNodeGreaterThan10(Nleft);
12 return Nnew;

13 end

14 end

node label. Case 2 has a natural symmetry with case 1. Due to space restrictions,
case 2 is not included in this paper. We first present the algorithms for case 1,
followed by the algorithm for case 3.

4.1 Inserting a New Node after the Rightmost Node

Algorithm 2 is the EBSL InsertNewNodeAfterRightmostNode encoding algo-
rithm that supports the reuse of deleted node labels. Algorithm 2 takes one node
label as input, the non-empty left self label Nleft. This algorithm will output a
new node label Nnew such that Nnew will be the reclaimed deleted node label to
the right of Nleft that was originally used to create Nleft or a newly generated
node label if there is no deleted node label available to be reused.

Essentially, the purpose of algorithm 2 is to determine the prefix of Nleft,
and based on the prefix, to call a function which will determine exactly what
the new node label should be. If the node label Nleft has the prefix 100, the
function SelectNewRightmostNodeLessThan10 will be invoked and will iden-
tify and reclaim a deleted node label if one exists, otherwise it will gener-
ate a new node label. If the node label Nleft has the prefix 11, the function
SelectNewRightmostNodeGreaterThan10 will be invoked and will identify and
reclaim a deleted node label if one exists, otherwise it will generate a new node
label. The details of these functions will be presented later in this section.

4.2 Function SelectNewRightmostNodeLessThan10

Algorithm 3 contains the pseudocode of the function SelectNewRightmostNode

LessThan10. This function receives as input the current rightmost node label



Algorithm 3: SelectNewRightmostNodeLessThan10.
/* This algorithm takes as input the current rightmost node Nleft such that Nleft ≺

10, and selects a deleted node label lexicographically greater than Nleft. We are
certain there exists at least one deleted node label to the right of Nleft because
the first self label assigned by the AssignInitialLabels algorithm is always 10 and
the current rightmost node Nleft ≺ 10, therefore label 10 has been deleted. */

input : left self label Nleft, Nleft is not empty, Nleft ≺ 10
output: New self label Nnew such that Nleft ≺ Nnew

1 begin

/* Remember Nleft has prefix 100. */

2 if (lastbit of Nleft == ’0’) then
3 Nnew ←− substring(Nleft, 1, len(Nleft) - 1);
4

5 else if (lastbit of Nleft == ’1’) then
6 Ntemp ←− Nleft;

7 while (lastbit of Ntemp == ’1’) do
/* Remove all consecutive 1 bits from the end of label. */

8 Ntemp ←− substring(Ntemp, 1, len(Ntemp) - 1);

9 end

10 Nnew ←− substring(Ntemp, 1, len(Ntemp) - 1);
/* Reclaim the deleted node label on RHS originally used to create Nleft. */

11 end

12 end

Nleft with a non-empty self label such that Nleft ≺ 10. The purpose of this
function is to identify and reclaim the deleted node label (if it exists) to the
right of Nleft that was originally used to create Nleft. If a deleted node label is
not available to be reused, the function should generate a new node label. From
a high level point of view, there are just two cases to consider when inserting a
new node to the right of the current rightmost node Nleft when Nleft ≺ 10:

1. The first case is when the node label Nleft was itself created as a result of an
insertion operation to the left of a leftmost `label node and therefore Nleft

also has the properties of an `label (e.g.: 100, 1000, 10000, 100000). In this
case, Nnew will be selected such that Nnew is the `label lexicographically
greater than Nleft where length(Nleft) = m and length(Nnew) = m-1. For
example, if the current rightmost node label Nleft = 1000, then Nnew = 100.

2. The second case exploits the fact that all other node labels ≺ 10 must have
resulted from an insertion operation between two existing nodes with non-
empty labels. Therefore, if Nleft is the current rightmost node, and Nleft

was created as the result of an insertion operation between two nodes with
non-empty labels, then we know for certain at least one deleted node label
exist to the right of Nleft (i.e.: the deleted node label to the right of Nleft

that was original used to create Nleft). In this second case, we will reuse the
deleted node label to the right of Nleft that was originally used to create
Nleft.



Algorithm 4: SelectNewRightmostNodeGreaterThan10.
/* This algorithm takes as input the current rightmost node Nleft such that 10 ≺

Nleft. */
input : left self label Nleft, Nleft is not empty, 10 ≺ Nleft

output: New self label Nnew such that Nleft ≺ Nnew

1 begin

/* Remember Nleft has prefix 11. */

2 if (lastbit of Nleft == ’0’) then
3 Ntemp ←− substring(Nleft, 1, len(Nleft) - 1);

/* Remove the last 0 bit from the label Nleft. */

4 if (AllBitsAreOne (Ntemp)) then
/* Confirms Nleft is an <label. */

5 Nnew ←− Ntemp ⊕ 10;
/* Insert new label according to simple insertion rules, Case 2. */

6 else
7 Nnew ←− Ntemp;

/* Otherwise, reclaim deleted node label on RHS originally used to create
Nleft by simply removing the last 0 bit (line 3). */

8 end

9

10 else if (lastbit of Nleft == ’1’) then
/* In this case, the Nleft label was originally created by appending a 1 bit

to a label on the LHS of Nleft. However, we want to find the deleted node
label on the RHS that was originally used to create Nleft. Therefore we mus
first remove all consecutive 1 bits, and then finally remove the last 0 bit
to obtain the deleted node label. */

11 Ntemp ←− Nleft;

12 while (lastbit of Ntemp == ’1’) do
/* Remove all consecutive 1 bits from the end of label. */

13 Ntemp ←− substring(Ntemp, 1, len(Ntemp) - 1);

14 end

15 Nnew ←− substring(Ntemp, 1, len(Ntemp) - 1);
/* Remove the last 0 bit to reclaim the deleted node label on RHS originally

used to create Nleft. */

16 end

17 end

4.3 Function SelectNewRightmostNodeGreaterThan10

Algorithm 4 contains the pseudocode of the function SelectNewRightmostNode

GreaterThan10. This function receives as input the current rightmost node label
Nleft with a non-empty self label such that 10 ≺ Nleft. The purpose of this
function is to identify and reclaim the deleted node label to the right of Nleft

that was originally used to create Nleft. If a deleted node label is not available
to be reused, the function generates a new node label. From a high level point
of view, there are just two cases to consider when inserting a new node to the
right of the current rightmost node Nleft when 10 ≺ Nleft:

1. The first case is when the node label Nleft was itself created as a result of an
insertion operation to the right of a rightmost <label and therefore Nleft also
has the properties of an <label (e.g.: 110, 1110, 11110, 111110). In this case,
Nnew will be selected such that Nnew is the smallest <label lexicographically
greater than Nleft. For example, if the current rightmost node label Nleft =
110, then Nnew = 1110.



Algorithm 5: Insert New Node Between Two Existing Nodes (Reuse)

/* This algorithm inserts a new node between two existing consecutive nodes with
non-empty labels. */

input : left self label Nleft is not empty, right self label Nright is not empty
output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright

1 begin
2 Ntemp ←− InsertNewNodeAfterRightmostNode (Nleft);

3 if (Ntemp ≺ Nright) then
4 Nnew ←− Ntemp;
5 else
6 Nnew ←− SimpleInsertion (Nleft, Nright);
7 end

8 return Nnew

9 end

2. The second case exploits the fact that all other node labels � 10 must have
resulted from an insertion operation between two existing nodes with non-
empty labels. Therefore, if Nleft is the current rightmost node, and Nleft

was created as the result of an insertion operation between two nodes with
non-empty labels, then we know for certain there must be at least one deleted
node label available to the right of Nleft (i.e.: the deleted node label to the
right of Nleft that was originally used to create Nleft). In this second case,
we will reuse the deleted node label to the right of Nleft that was originally
used to create Nleft.

4.4 Inserting a New Node between Two Existing Nodes with
Non-Empty Labels

Algorithm 5 is the EBSL InsertNewNodeBetweenTwoExistingNodes encoding
algorithm that supports the reuse of deleted node labels. Algorithm 5 initially
invokes the function InsertNewNodeAfterRightmostNode passing the node label
Nleft as a parameter and returns a temporary node label Ntemp. If Nleft is an
<label, then Ntemp will be assigned the smallest <label lexicographically greater
than Nleft (e.g.: if Nleft = 110, then Ntemp = 1110). If Nleft is an `label, then
Ntemp will be assigned the `label lexicographically greater than Nleft such that
length(Nleft) = m and length(Ntemp) = m-1 (e.g.: if Nleft = 1000, then Ntemp

= 100). If Nleft is neither an <label nor an `label, then Ntemp will be assigned
the node label to the right of Nleft that was originally used to create Nleft (e.g.:
if Nleft = 11001, then Ntemp = 110). Finally, the node label Ntemp will fall under
one of three lexicographic conditions:

1. If the Ntemp label is lexicographically less than Nright, then Ntemp is a
deleted node label and is available for reuse. Therefore, Nnew is assigned the
label of Ntemp.

2. If the Ntemp label is lexicographically equal to Nright, then the Ntemp label
is already in use and assigned to Nright. Therefore, Nnew is assigned a new
node label generated by the SimpleInsertion algorithm.



3. If the Ntemp label is lexicographically greater than Nright, then there are no
deleted node labels available between Nleft and Nright. Therefore, Nnew is
assigned a new node label generated by the SimpleInsertion algorithm.

It may be observed that the InsertNewNodeBetweenTwoExistingNodes al-
gorithm does not select the smallest deleted node label available between two
given consecutive node labels. In an XML tree, when given κ nodes to insert,
the κ nodes must be inserted in document order. The labeling scheme cannot
arbitrarily decide the order in which to insert the nodes. By initially selecting the
shortest deleted node label available, the V-CDBS labeling scheme ensures the
node labels between Nleft and the shortest deleted node label will remain unused
when inserting a contiguous sequence of nodes between two consecutive node la-
bels. Due to the deterministic labeling property of our EBSL labeling scheme,
the InsertNewNodeBetweenTwoExistingNodes algorithm will always select the
deleted node label immediately to the right of Nleft if it exists. Otherwise, it
will always select the <label or `label to the immediate right of Nleft when Nleft

is an <label or `label respectively. Consequently the deterministic property of
the EBSL labeling scheme always guarantees that every deleted node label can
be reused. Holistically, the EBSL labeling scheme will always select the shortest
deleted node labels available when inserting a sequence of nodes between two
given nodes that contain a sequence of deleted node labels.

5 Conclusions

In this paper, we presented our Enhanced Binary String Labeling scheme (EBSL)
supporting XML updates. EBSL does not require the relabeling of existing nodes
nor the recalculation of any values when inserting new nodes in an XML tree.
EBSL guarantees every deleted node label can be reused, all assigned nodes labels
are unique and document order is maintained. EBSL supports a deleted label
reuse strategy that best suits the nature of node insertions and node deletions
in an XML tree.

As part of our future work, we will perform an analysis of the label size un-
der various update scenarios and evaluate the computational complexity of our
algorithms. We will also attempt to extract the underlying principles facilitat-
ing the reuse of deleted node label in our EBSL labeling scheme with the goal
of specifying the core properties such that any binary string dynamic labeling
scheme can support deleted node label reuse if they adapt their labeling scheme
to encapsulate these properties. We will investigate the specification of an up-
date operator to efficiently process bulk node insertions. This should be possible
as every node is deterministically created based on the labels of the adjacent
nodes. We will also investigate various label reuse strategies for the bulk update
operator.



References

1. Alkhatib, R., Scholl, M.H.: Compacting XML Structures Using a Dynamic Label-
ing Scheme. In: BNCOD. pp. 158–170 (2009)

2. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for
XML Documents. In: ICDE. pp. 705–707 (2003)

3. An, D.C., Park, S.M., Park, S.: Efficient Secure Labeling Method under Dynamic
XML Data Streams. In: IWSEC. pp. 246–260 (2008)

4. Böhme, T., Rahm, E.: Supporting Efficient Streaming and Insertion of XML Data
in RDBMS. In: DIWeb. pp. 70–81 (2004)

5. Duong, M., Zhang, Y.: LSDX: A New Labelling Scheme for Dynamically Updating
XML Data. In: ADC. pp. 185–193 (2005)

6. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data Knowl. Eng. 60(1), 126–149 (2007)

7. Ko, H.K., Lee, S.: An Efficient Scheme to Completely Avoid Re-labeling in XML
Updates. In: WISE. pp. 259–264 (2006)

8. Ko, H.K., Lee, S.: A Binary String Approach for Updates in Dynamic Ordered
XML Data. IEEE Trans. Knowl. Data Eng. 22(4), 602–607 (2010)

9. Kobayashi, K., Liang, W., Kobayashi, D., Watanabe, A., Yokota, H.: VLEI code:
An Efficient Labeling Method for Handling XML Documents in an RDB. In: ICDE.
pp. 386–387 (2005)

10. Li, C., Ling, T.W.: An Improved Prefix Labeling Scheme: A Binary String Ap-
proach for Dynamic Ordered XML. In: DASFAA. pp. 125–137 (2005)

11. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In: CIKM. pp. 501–508 (2005)

12. Li, C., Ling, T.W., Hu, M.: Reuse or Never Reuse the Deleted Labels in XML
Query Processing Based on Labeling Schemes. In: DASFAA. pp. 659–673 (2006)

13. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary
String to Quaternary String. VLDB Journal 17(3), 573–601 (2008)

14. Min, J.K., Lee, J., Chung, C.W.: An Efficient XML Encoding and Labeling Method
for Query Processing and Updating on Dynamic XML Data. Journal of Systems
and Software 82(3), 503–515 (2009)

15. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms.
In: EDBT/ICDT Workshops (2010)

16. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Labels. In: SIGMOD Conference. pp. 903–908 (2004)

17. Sans, V., Laurent, D.: Prefix based Numbering Schemes for XML: Techniques,
Applications and Performances. PVLDB 1(2), 1564–1573 (2008)

18. Su-Cheng, H., Chien-Sing, L.: Node Labeling Schemes in XML Query Optimiza-
tion: A Survey and Trends. IETE Technical Review 26, 88–100 (2009)

19. Thonangi, R.: A Concise Labeling Scheme for XML Data. In: International Confer-
ence on Management of Data (COMAD ’06). Computer Society of India (December
2006)

20. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In: ICDE. pp. 66–78 (2004)

21. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: From Dewey to a Fully Dynamic XML
Labeling Scheme. In: SIGMOD Conference. pp. 719–730 (2009)


