
Semantic Model-Driven Architecting of
Service-based Software Systems

Claus Pahl

Dublin City University
School of Computing

Dublin 9, Ireland
email: Claus.Pahl@dcu.ie

phone: ++353 +1 700 5620
fax: ++353 +1 700 5442

ABSTRACT:
Model-driven development is a software development framework that emphasises model-
based abstraction and automated code generation. Service-based software architectures
benefit in particular from semantic, ontology-based modelling. We present ontology-based
transformation and reasoning techniques for layered semantic service architecture modelling.
Integrated ontological layers support abstract domain modelling, architectural design, and
interoperability aspects. Ontologies are beneficial due to their potential to formally define
models, to allow reasoning about semantic models, and to automate transformations at all
layers. Ontologies are suitable in particular for the Web Services platform due to their
ubiquity within the Semantic Web and their application to support semantic Web services.

KEYWORDS:
Software Architecture, Model-Driven Development, Web Services, Semantic Modelling,
Ontologies.

1 Introduction

The recognition of the importance of modelling as a means of abstraction and the need to
automate software development has over the past years led to model-driven development as a
software engineering approach [19]. Model-driven development combines layered modelling
techniques based on notations such as the Unified Modelling Language (UML) with
automated transformations and code generation. Recently, ontology-based modelling has been
investigated as a semantic modelling framework that enhances the semantic richness of the
classical UML-based approaches. While formal modelling and reasoning is, to some extent,
available in the UML context in form of the Object Constraint Language OCL, ontologies as
logic-based formalisms offer full reasoning support. A second benefit of ontologies as
sharable knowledge representations is the potential to easily reuse and share models.

Modelling and developing software systems as service-based architectures is gaining
increasing momentum [2,5,18]. The activities of modelling and describing these reusable and
composable services is central for both providers and clients of services. Providers need to
provide an accurate description or model for a service that can be inspected by potential
clients. In particular the attention that Web services [32] have received recently emphasises
the importance of service-orientation as the architectural paradigm. Service-oriented
architecture is becoming an important software engineering paradigm. Our focus is the Web
services platform based on techniques such as the service description language WSDL and the
service invocation protocol SOAP, but also extensions like the service-based business process
execution language WS-BPEL [33,27,14]. This specific area is particularly suitable to
demonstrate the benefits of semantic ontology-based modelling due to the component-
orientation and distributed nature of service-based software development with its emphasis on
provision and discovery of descriptions and on sharing and reusing of models and services. In

 1

addition to the modelling capabilities, ontologies also provide a formal framework that
enables reasoning and transformation and, thus, supports the automation of development
activities.

While a process has started towards the development of an ontology metamodel that can
support semantic, ontology-based modelling for platform-independent model layers [20], we
take a more comprehensive approach here with ontologies for computation-independent,
platform-independent, and platform-specific layers. Other authors, e.g. [10], have already
explored Web ontology languages to enhance modelling capabilities in model-driven
development frameworks. We extend these approaches by presenting here a layered, ontology
transformation-based semantic modelling approach for software services. Ontologies turn out
to support a number of modelling tasks – from domain modelling to architectural
configuration and also service and process interoperability. We put an emphasis on processes,
which play an important role in modelling domain activities such as business processes, but
also in modelling interaction processes in software architecture configurations. Process-
orientation and interaction and composition in distributed architectures are central for service-
based software systems.

Our work has to be seen in the context of three fundamental paradigms of software and
knowledge engineering – model-driven development, service-oriented architecture, and
ontology. While a unification of these three paradigms is not our goal, our aim is to adapt
model-driven development to service architecture using ontology technology as the
integrating tool. We propose a framework for ontology-based model-driven architecture of
service-based software systems, i.e. model-driven architecture as the development approach,
applied here to service-oriented architecture as the platform and ontology as the semantic
modelling technique. Our contribution is a layered ontological transformation framework with
different ontologies focussing on the needs of modelling of services and processes at
particular abstraction layers.

We start with an overview of ontology-based service development in Section 2. Layered
service modelling with ontologies is introduced in Section 3. We address the transformations
between ontological layers in Section 4. We discuss our efforts in the context of
interoperability and standardisation activities in Section 5. Related work is discussed in
Section 6. We end with some conclusions in Section 7.

2 The Development of Service Architectures

The Web services platform defines a Web service as a software system that provides a
coherent set of operations at a certain location [32]. The service provider makes an abstract
service interface description available that can be used by potential service users to locate and
invoke the service using XML-based messages. Services have so far usually been used ’as is’
in single request-response interactions. However, the configuration and coordination of
services in service-based architectures and the composition of services to processes is equally
important in the second generation of service technology. Existing services can be reused and
composed to form business or workflow processes.

Model-driven architecture (MDA) is a model-driven development framework emphasising the
importance of modelling for the design of software systems and their architecture, which is
promoted by the Object Management Group [19]. The need to address abstract semantic
descriptions and to address composition in the context of service-based software development
makes MDA (in combination with ontologies) a suitable framework. MDA is based on a
three-layered approach:

 2

� The Computation Independent Model (CIM) describes a system from the computation-
independent viewpoint, addressing structural aspects of the system. A CIM is often called
a domain model.

� The Platform Independent Model (PIM) can be seen as defining a system in terms of a
technology-neutral virtual machine or a computational abstraction.

� The Platform Specific Model (PSM) usually consists of a platform model that captures
the technical concepts and services that make up the platform and an implementation-
specific model geared towards the concrete implementation technique.

Although platform-neutral by definition, the archetypical MDA is based on UML for platform
independent modelling and one of the predominant component technologies (EJB, .NET,
CORBA) as the platform. In our context, the platform is service-based. The Web services
discovery and invocation infrastructure – a directory or marketplace where potential users can
search for suitable services and an invocation protocol – with the services and their clients
form our platform, i.e. a service-oriented architecture. Different platform types can be
distinguished. The generic platform is service-oriented architecture here, the technology-
specific platform is the Web services platform, and vendor-specific platform technologies
include for instance the Apache Axis or Oracle BPEL service engines.

Description languages are central elements of service-oriented architecture. With the second
generation of service technology and efforts such as MDA, the emphasis has shifted from
description to the wider and more comprehensive activity of modelling. Behaviour and
interaction processes are essential parts of modelling and understanding software architectures
[1,27].

Ontology languages – the backbone of the Semantic Web – are knowledge representation and
logical inference techniques [6]. They can create a precisely defined shared understanding of
annotations of resources such as Web pages or services. Ontologies usually consist of
hierarchical definitions of important concepts in a domain and descriptions of the properties
of each concept, supported by logics for knowledge representation and reasoning. Ontologies
are, however, important beyond sharable and processable annotations of Web resources.
Some effort has already been made to exploit Semantic Web and ontology technology for the
software engineering domain in general and modelling in particular [24]. OWL-S [7] is a
service ontology, i.e. it is a language that provides a specific vocabulary for describing
properties and capabilities of Web services, which shows the potential of this technology for
service engineering. Formality in the Semantic Web framework facilitates machine
understanding and automated reasoning. A variant of the Web Ontology Language OWL,
called OWL-DL, is equivalent to description logics [3]. This fruitful connection provides
well-defined semantics and reasoning systems. Description logic is particularly interesting for
the software engineering context due to a correspondence between description logic and
dynamic logic (a modal logic of programs), which has been used to model and reason about
software systems [3,30].

3 Modelling with Ontologies

MDA proposes three modelling layers – each with a distinct focus that, as we aim to
demonstrate, can be supported ontologically for service-based software development. The
computation-independent layer focuses on domain capture. The platform-independent layer
focuses on architecture configuration and service process composition. The platform-specific
layer focuses on interoperability and discovery support. A case study from the banking
domain will accompany our discussion of the three layers.

3.1 Models and Ontologies

 3

The notions of models and ontologies need to be clarified before we can address the
individual MDA layers.
� Models in the software development process are constructed to specify, visualise, and

document software artefacts and their properties. A common modelling language is the
Unified Modelling Language UML. It addresses the conceptual modelling of structural
and behavioural properties of software systems [6]. Often, the purpose of model
construction is also to enable reasoning within a logical framework, i.e. a stronger
semantic modelling considering the semantics in a formal framework.

� An ontology is the formulation of a conceptualisation of a domain – usually hierarchically
structured based on subsumption (classification) relationships, but also other semantic
relationship types such as composition [6]. The purpose of ontologies is to enable
classification and reasoning. Ontology languages allow conceptual modelling based on
the introduction of vocabularies and taxonomies, but they also provide a logical
framework to specify rules and to reason about expressions.

In particular semantic modelling and ontologies are similar in their purpose. Logic-based
ontology languages are suitable to enhance traditional modelling languages in order to enable
model-driven service architecture. We propose therefore ontology-based semantic modelling
to support model-driven architecting of service-based software systems.

UML 2.0 allows the description of conceptual models where subclass relationships can be
semantically specified. The subclass relationship is also semantically well specified at the
meta-level. The building of axioms, inference rules and theorems, however, forms a logical
theory, which ontology languages support, but not UML [6]. The Object Constraint Language
OCL is an extension of UML that adds formal specifications to UML, but the pre- and
postcondition technique does not address service and process behaviour adequately. The
requirements here go beyond capabilities of UML and OCL. These are requirements that are
addressed with the Ontology Definition Metamodel (ODM), which is an OMG-supported
activity [20]. As we will see later on, using ontology languages is actually even more suitable
for the service-oriented architecture context than a UML/OCL combination due to a link
between description logics (the foundation of ontology languages such as OWL) and dynamic
logic (a modal logic that allows reasoning about processes).

An ontology is defined in terms of concepts and relationships. An ontology is a model of a
domain made available through a vocabulary of concepts and relationships. Concrete objects
of a particular concept are called instances. Relationships are used to capture properties of
concepts. Properties of concepts are specified in terms of (universal or existential)
quantifications over relationships with other concepts. To emphasise modelling, we often give
preference to a diagrammatic, rather than textual representation of models. We present our
approach here in terms of an abstract notation, usually avoiding the verbosity of XML-based
representations.

3.2 CIM – Computation Independent Model

The purpose of the Computation Independent Model (CIM) is to capture a domain with its
concepts and properties. Typically, two viewpoints of domain modelling can be distinguished.
Concepts are represented in form of hierarchies – called the information viewpoint in MDA.
Behaviour is represented in a process-based form – called the enterprise or process viewpoint
in MDA, based on distributed processing concepts. We add a third aspect – the structural
viewpoint – that addresses structural properties of objects and processes. Our aim is to
provide a single ontological notation that can capture all three viewpoints. A process-oriented
ontology shall capture two types of domain entities.
� Two types of concepts shall be distinguished: objects, which are static entities, and

processes, which are dynamic entities.
� Three relationship types shall be distinguished: is a (the subclass relationship), has part

(the component relationship), and depends (the dependency relationship).

 4

Constraints, or properties, on concepts and relationships can be expressed as logical formulas.
The subclass relationship is the classical form of relating concepts in ontologies. For domain-
specific software systems, the composition of objects and processes from a component
perspective is additional, but also essential information. Dependencies are useful to describe
input-output relationships between objects and activities that process them. Specific ordering
requirements on composed processes can be expressed through constraints. We will discuss
the semantics of this ontology notation in Section 3.5.

We need to define or identify an ontology language that can provide the necessary notational
framework. An OWL-based ontology with support for the component and dependency
relationships satisfies these requirements for notational framework of our modelling approach.

Example 1 (Semantic Modelling). The example that we will use to illustrate the modelling and
transformation techniques throughout the paper is taken from the banking domain. We can
identify the following concepts (see Fig.1):
� objects such as account and sum (of money),
� activities such as account open, close, lodge, transfer, and enquire and processes such

as for instance open; !(enquire + lodge + transfer); close which describes sequencing,
iteration, and choice of activities. The principal process combinators are ’;’ (sequential
composition), ’!’ (iteration), ’+’ (choice), and ’||’ (parallel composition),

Constraints, such as a precondition balance ≥ sum on the transfer activity, complement the
model. The example in Fig. 1 visualises a basic domain ontology-based model for the bank
account example. The information viewpoint shows a classification hierarchy (is_a) of the
central objects. The structure viewpoint specifies the internal structure of both objects and
processes. The process viewpoint presents the dependencies (data flow) between processes
and objects. The three viewpoints are each based on a different relationship type.

Reasoning facilities of an ontological framework can be deployed to check the consistency of
ontologically defined domain models. The verification of properties is important for service
development and deployment due to the involvement of different clients and providers.

Example 2 (Reasoning). With instances attached to the entities, an inference engine can, for
example, determine all bank account instances with a negative account balance. Another
example of a reasoning task is the satisfaction of a precondition for a money transfer on a
particular account.

<< Fig. 1. CIM-level Excerpts from a Banking Domain Ontology. >>

3.3 PIM – Platform Independent Model

The Platform Independent Model (PIM) shifts the focus from the computation-independent
capture of the domain to a focus on architectural constraints imposed by the computational
environment. Architectures and processes are the key aspects at this service modelling level.
The architectural focus is on services, their architectural configuration, and interaction
processes [27,28,8]. Architectural configuration addresses the interaction processes (remote
invocation and service activation) between different components of a software system. Again,
we will use an ontology to express these aspects.

Services are the components of the system architecture. They form the starting point of
architecture modelling. Different approaches for service ontologies have been proposed.
These differ in the way service and processes are represented in the ontologies – see Section 6
for a more detailed review. Since representing not only properties of services, but also their
configuration and assembly into processes is important here, we use the Web Service Process

 5

Ontology (WSPO), whose foundations were developed in [23]. This ontology focuses on the
architectural perspective more than service ontology frameworks such as OWL-S [7] and
WSMO [13]. OWL-S and the FLOWS ontology [31] also support service composition, but
we chose WSPO as a more focussed and decidable ontology defined for service composition
support. Services (and processes) in WSPO are not represented as concepts, but as
relationships denoting accessibility relations between states of the system in order to realise a
coherent process-oriented framework that enables modal reasoning about software behaviour.

WSPO provides a template for service and service process description. Syntactical parameter
information in relation to the activities – to be implemented through service operations – and
also semantic information such as pre-conditions are attached to each activity as defined in
the template. This PIM service process template defines the basic structure of states and
service processes. In Fig.2, the template is applied to service transfer. Instead of transfer, a
composite process could also have been the central template relationship.
� Ontology concepts in this approach are states (pre- and poststates), parameters (in- and

out-parameters), and conditions (pre- and postconditions).
� Two forms of relationships are provided in the ontology. The services or processes

themselves are called transitional relationships. Syntactical and semantical descriptions –
here parameter objects (syntax) and conditions (semantics) – are associated through
descriptional relationships.

WSPO can be distinguished from traditional service ontologies by two specific properties.
Firstly, based on an extension of description logics [3], it adds a relationship-based process
sublanguage enabling process expressions based on iteration, sequential and parallel
composition, and choice operators. Secondly, it adds data to processes in form of parameters
that are introduced as constant process elements into the process sublanguage. This
ontological representation in WSPO is actually an encoding of a simple dynamic logic (a
logic of programs) in a description logic format [23], allowing us to avail of modal logic
reasoning about processes in this framework.

<Fig. 2. WSPO Service Process Template for the PIM-layer applied to Service ‘transfer’.>

Example 3a (Semantic Service Modelling). A number of individual services – such as open,
balance, lodge, transfer, and close – have been defined. A semantic model of each of the
services comprises syntactical and semantical aspects. In Fig. 2, these functional properties of
service ‘transfer’ are illustrated, where the input- and output-parameter objects and the pre-
and postcondition are modelled. The constraint from the CIM model, see Example 1, is here
integrated as a precondition.

Example 3b (Semantic Process Modelling). The architecture- and process-oriented PIM
model of the bank account focuses on the activities and how they are combined to processes.
The abstract process

open; !(enquire + lodge + transfer); close

defined in Example 1 describes a sequence of account creation, an iteration of a choice of
balance enquiry, lodgement, and transfer activities, and a final account closing activity. This
process, which is another example of a transitional relationship in the PIM template, can be
represented in WSPO as a composed relationship expression (here in textual representation):

open ° (acc);
! (enquire ° (acc); lodge ° (acc, sum); transfer ° (from, to, sum));
close ° (acc)

 6

with parameter data attached to service names using the functional application operator °.

WSPO actually formalises our understanding of the central service and process notions in the
context of service-based software systems.

Ontologies enable reasoning about specifications. WSPO enables reasoning about the
composition of services in architectures. In [23], we have presented an ontological matching
notion that can be applied to determine whether a service provider can be connected to a
service user based on their individual service and process requirements. A classical
refinement notion for operations [17] and a simulation notion for processes [29] in description
logic format form the basis for this matching definition.

Example 4 (Reasoning). Assume that in order to implement an account management process,
a transfer service needs to be integrated. For any given state, the process developer might
require

 ∀preCond . (balance > sum)
and
 ∀transfer . ∀postCond . (balance() = balance()@pre − sum)

which would be satisfied by a provided service with

 ∀preCond . true
and
 ∀transfer . ∀postCond . (balance() = balance()@pre − sum) ∧

 (lastActivity = ’transfer’)

based on a refinement condition – weakening the precondition and strengthening the
postcondition. The @-construct, known from OCL, refers to the attribute in the prestate.

The refinement notion used in the example above is based on the consequence inference rule
from dynamic logic and integrates the pre/postcondition technique into WSPO – which
demonstrates the benefit of using the non-standard interpretation of concepts and relationships
and the link to dynamic logic.

While architecture is the focus of this model layer, our approach does not qualify as an
architecture description language [16], although the aim is also the separation of computation
(within services) and communication (interaction processes between services). Architecture
description languages usually provide notational means to describe components (here
services), connectors (channels between services), and configurations (the assembly of
instantiations of components and connectors). Our approach comes close to this aim by
allowing services as components and process expressions as configurations to be represented.

3.4 PSM – Platform Specific Model

Our platform is the Web services platform – consisting of languages, protocols, and software
tools. Models for the platform-specific layer (PSM) need to address two aspects: a platform
model and implementation specific models. The platform model is here constrained by the
Web services technologies and its service-oriented architecture principles. The
implementation-specific models characterise the underlying models of the predominant
languages of the platform. The platform in our case is different from typical MDA platforms
such as Java, .NET, or CORBA where the generation of executable programs is at the centre.
The Web services platform is about abstract syntactical service descriptions (WSDL), abstract

 7

semantical service descriptions (e.g. WSMO or OWL-S), and service process definitions (e.g.
WS-BPEL or WS-CDL). Transformations into this layer are therefore distinctively different
from traditional PIM-to-PSM mappings. We focus on models for the WSMO and WS-BPEL
platform languages here – although the ultimate aim of model-driven development is to
provide transformations for a range of target languages.

Interoperability of services is a key objective of the Web services platform. Two concerns
determine the techniques used at this layer: the abstract description of services to support their
discovery and remote invocation and the standardised assembly of services to processes. Two
different models supporting executable and tool-supported languages are therefore relevant
here:
� Description and Discovery. Abstract syntactical and semantical service interfaces shall be

supported. The Web Services Description Language (WSDL) supports syntactical
information needed for service invocation. We, however, focus here on semantically
enhanced descriptions enabled. Services as the basic components of processes can be
represented as concepts in ontologies [25]. This approach is followed by widely used
service ontology frameworks such as OWL-S [7] and WSMO [13].

� Processes and Composition. The Business Process Execution Language for Web Services
(WS-BPEL) is one of the proposed service coordination languages [26,33]. WS-BPEL
specifications can be created by converting process expressions from WSPO.

The benefit of using an ontology for description and discovery can easily be seen when the
discovery and matching of OWL-S or WSMO-based semantic service descriptions of a range
of functional and non-functional properties is compared with syntax-oriented WSDL
descriptions.

Example 5a (Semantic Service Description). WSMO descriptions capture syntactical and
semantical descriptions as WSPO does, see Examples 3 and 4. It adds, however, various non-
functional aspects that can be included into the discovery and matching task. WSMO defines
a template for the representation of service-related knowledge, see Fig. 3. The WSMO
concepts are the central services concept and auxiliary domains for descriptional entities, i.e.
expressions of different kinds. Relationships in the template represent service properties of
two kinds. Properties such as preCond, postCond, assumption, and effects relating to the
service semantics are called capabilities. Properties such as messageExchange are
syntactically oriented interface aspects.

<<Fig. 3. Ontological Service Template (WSMO) with Interface and Capability Aspects.>>

Standardised description and invocation formats enable interoperability. Required
functionality for a particular process can be retrieved from other locations. An example is an
authentication feature for an online banking system. The authentication service, integrated
into the banking process, can be provided at a remote location by a third-part provider.

Example 5b (Service Process Definition). WS-BPEL offers a range of control flow operators
including sequence, flow (parallel composition), switch (choice), and while (iteration). These
are direct counterparts of the WSPO relationship combinatory. The result of the
transformation for the account management process can be seen in Appendix 1.

3.5 Semantics of the Ontology Layers

Ontology languages are logics defined by interpretations and satisfaction relations on
semantical structures such as algebras (sets and relations) and state-based labelled transitions
systems (e.g. Kripke transition systems). We can exploit the description logic foundation of
ontology languages such as OWL [3]. While a full treatment is beyond the scope of this paper,

 8

we address the central ideas since the definition of ontology transformations requires
underlying formal semantical models. A semantical metamodel for each of the layers can be
formulated based on standard approaches in this context:
� A domain ontology – the CIM layer – can be defined in terms of sets (for concepts) and

relations (for relationships). We have proposed OWL-DL, which is defined in terms of
standard description logic [3].

� The architectural and process aspects – the PIM layer – can be defined in terms of
labelled transition systems, such as Kripke transition systems, where sets represent states
and relations represent transitions between states. WSPO is also defined in terms of
description logics with some extensions that exploit a link to dynamic logic [3,30].

� The interoperability aspects – s the PSM layer – can be split into interface (defined in
terms of sets and relations) and configuration and process behaviour (defined in terms of
state transition mechanisms). The proposed service description notation WSMO is also
rigorously defined in terms of logics. BPEL is a workflow and business process language
whose central concepts can be defined in terms of a process calculus along the lines of the
process expression sublanguage of WSPO [15,22].

In the future, these frameworks can be mapped onto the soon to be standardised OMG-
supported Ontology Definition Metamodel (ODM). This can be expected to be
straightforward due to an ODM-OWL mapping as part of ODM.

4 Ontology-based Model Transformations

Without explicitly defined transformations, a layered modelling approach will not be feasible.
Transformations between the model layers need to be automated to provide required tool
support and to enable the success of the approach. Following the OMG-style for MDA
transformations, we define transformation rules based on patterns and templates. While it is
evident that the transformations we require here are about adding new structures, for instance
notions of state and state transition for the architectural PIM layer, the original model should
be recoverable and additional application information on that layer should not be added. What
we aim at is therefore not a refinement or simulation notion in the classical sense – although
these notions will help us to define the transformations.

The main aim of transformations in traditional MDA is full automation, which is not our
central objective here. Supporting and guiding the software architect, however, is important –
see Fig. 4 for an overview of the transformation approach.
� The CIM-to-PIM mapping changes the focus from domain modelling to architecture

modelling, which might require some additional information. However, given a detailed
domain model addressing the three viewpoints, all information required by the PIM
template is available.

� The PIM-to-PSM mapping requires additional information, in particular for the
comprehensive abstract description of functional and non-functional aspects.

Both transformations can in any case automatically generate structured templates and
skeletons that contain core elements.

<< Fig. 4. Mappings between the Ontology Layers – Overview. >>

4.1 CIM-to-PIM Mapping

The CIM-layer supports abstract, computation-independent domain modelling. This model is
mapped to a computation-oriented, but still platform-independent service-based model. The
PIM-layer supports analysis and reasoning for architecture and process aspects, such as

 9

configuration and composition, on an abstract level. Consequently, information only needs to
be added to a CIM to provide a sufficient level of structure for the PIM-level if the process
viewpoint is not adequately modelled. A process-specific PIM template, see Fig. 3 for a
template application to the banking context, guides the transformation process. We have
defined the rules for the CIM-to-PIM transformation in Table 1.

Table 1. Transformation Rules for the CIM-to-PIM Mapping.

Rule Aspect Description
CP0 template For each process element in the CIM, create a PIM template.
CP1 process element The PIM process element is the process element of CIM.
CP2 states Create default concepts for pre- and post-states.
CP3 syntax For each in- and out-parameter of processes, create a separate

syntax (object) element.
CP4 semantics Create pre- and postconditions depending on availability of

external additional information in form of constraints.
CP5 process If process expressions available in form of constraints, then

expressions create complex process using relationship expressions
in WSPO.

In MDA, the transformation steps are defined in terms of model markings and applications of
templates. Marks are annotations (or metadata) of entities in the original model to support the
mapping that indicates how these entities are used in the target model. Marks can support the
determination of the mapping template to be deployed. The CIM-to-PIM transformation rule
CP0, which defines the creation of a PIM-template for CIM-concepts marked as ’process’, is
an example of this.

Example 6 (CIM-to-PIM Transformation). Fig. 2 represents the result of the transformation of
the transfer process from Fig. 1 using the rules defined in Table 1. The transfer concept in
Fig. 1 is marked as a process, which based on rule CP0 creates a PIM process template with
explicit states (rule CP2). The CIM concept transfer becomes the transitional relationship
element at the centre of the PIM template (rule CP1). The input and output elements,
associated to transfer using dependencies (see Fig. 1), are mapped to syntax descriptions
(rule CP3). Equally, additional constraints in the CIM such as pre- and postconditions are
mapped to the PIM semantical descriptions (rule CP4).

A detailed CIM with constraints actually contains all information needed to fill the WSPO
template. In general, not all CIM information is used. For instance, structural aspects are only
relevant for the platform specific layer.

4.2 PIM-to-PSM Mapping

The platform-specific model (PSM) is defined in our approach by two separate models:
service metadata based on ontology descriptions to address service discovery, and process
orchestration and choreography descriptions to address service composition. The
corresponding transformation rules for these two aspects – we chose WSMO for ontology-
based description and WS-BPEL for service orchestration to illustrate this mapping – are
presented in Table 2.

Table 2. Transformation Rules for the PIM-to-PSM Mapping.

Rule Aspect Description
PP1 WSMO From the WSPO-based PIM, map process relationships to

WSMO service concept and fill messageExchange and

 10

pre/postCond properties accordingly, see WSMO-template in
Fig. 4.

PP1.1 WSMO
messageExchange

Map the WSPO in and out objects onto WSMO message
exchange descriptions.

PP1.2 WSMO
pre-/postconditions

Map the WSPO pre- and postconditions onto WSMO pre and
postconditions.

PP2 WS-BPEL The complex WSPO process relationships can be mapped to

BPEL processes.
PP2.1 WS-BPEL process

partners
For each process create a BPEL partner process

PP2.2 WS-BPEL
orchestration

Convert each process expression into BPEL-invoke activities
and the client side BPEL-receive and -reply activities at the
server side.

PP2.3 WS-BPEL process
activities

Convert the process combinators ’;’, ’+’, ’ !’, and ’||’ to the
BPEL combinators sequence, pick, while, and flow, resp.

The WSPO-to-WSMO mapping copies functional properties – both syntax and semantics – to
the PSM. Similar to states that are added to CIMs to provide the structure to express process
behaviour, we add structure in form of non-functional aspects to PIMs to support further
descriptions for service discovery. Due to the nature of the platform requiring abstract service
descriptions, the aspect is on the same level of abstraction as the platform-independent model.

Example 7 (PIM-to-PSM Transformations). The WSMO example in Fig. 3 is the result of
mapping the PIM, presented in Fig. 2, to the Web services platform layer according to rule
PP1 defined in Table 2. Syntactical elements for the interface and semantical capabilities such
as pre- and postconditions are directly mapped from the corresponding WSPO elements
according to the transformation rules PP1.1 and PP1.2.

The WSPO-to-WS-BPEL mapping converts process expressions into a BPEL business
process skeleton, see Fig. 4. WS-BPEL is an implementation language for process execution
in form of process orchestrations. WS-BPEL implementations are supported by service
engines available from various providers. Since WSPO comprises a process expression
sublanguage similar to WS-BPEL, a WSPO model can be fully translated into WS-BPEL. In
order to form a complete, executable WS-BPEL specification, a number of additional
elements have to be specified, which includes namespace and partner type information. This
is platform-specific information and is therefore not included in WSPO.

A central benefit of MDA is the provision of several transformations for a given CIM to
support different platforms. For instance, we could have provided transformations for OWL-S
and WS-CDL as alternatives to WSMO and WS-BPEL, respectively, allowing user to switch
between platform languages easily. These automated transformations would also allow
circumventing implementation restrictions by providing a richer set of process combinators at
the PIM level, supported by transformations onto a combination of simpler combinators.

4.3 Formal Mapping Definitions

Our focus here is the illustration of the different modelling capabilities of ontology languages
and ontologies on the different model layers. Our objective is to motivate the need for and the
benefits of a layered ontological modelling and transformation approach. A formal model of
transformations is beyond the scope of this paper. Languages such as QVT [21], like ODM
also supported by the OMG, can provide standardised frameworks in the future. Graph
transformation and graph grammars provide suitable formal frameworks to formalise the
transformation rules [12,4]. We have used graphs as the visualisation mechanism for
ontological models. Graph-based models and CIM-to-PIM transformation semantics are

 11

therefore a natural combination. The semantics of a CIM can be seen as a directed labelled
graph with nodes (objects and processes) and edges (relationships). The semantics of a PIM
can be seen directed labelled graph, where descriptional and transitional roles are
distinguished. This is equivalent to a Kripke transition system, the semantic structure
underlying description logic specifications (see Section 3.4). This can be implemented as a
graph expansion, where essentially state concepts are introduced. The original CIM can be
retrieved by projecting on individual PIMs and then merging all process PIMs into one CIM.
Formal transformation definitions are required to establish the correctness of the
transformation in terms of semantics preservation.

5 Modelling – Standards and Interoperability

Interoperability and model integration is a central issue in model-driven development. The
remodelling of existing UML-models in ontology format cannot be expected from a software
developer. Automated conversion between the formats is consequently needed. Although
UML and ontology languages are not the same, they do overlap substantially and therefore
allow the conversion between UML models and OWL-based ontologies. A common
metamodel with mappings to UML and OWL can solve this problem.

A standardised ontology metamodel like ODM [20] allows us to integrate our technique
further with existing standards. ODM provides mappings between ontology and other
modelling languages. A UML profile for ontologies makes UML’s graphical notation
available. MOF compliancy for ODM facilitates tool support. XMI, i.e. production rules using
XSLT, can be used to export model representations to XML, e.g. to generate XML Schemas
from models using the production rules. We have summarised the MDA framework and
compared it with our proposed extension in Fig. 5. Our framework is shown on the left-hand
side and the OMG MDA-context on the right-hand side. It illustrates the interoperability and
integrability of our ontology models with UML-based models.

<< Fig. 5. Overview of MDA and Ontology-based Service Modelling (with transformations
between the layers and the influence of ODM for the ontology layers). >>

In addition to the standards relating to modelling and description, transformation standards
also need some attention. Declarative query and transformation languages have recently been
promoted to replace older, procedural languages such as XSLT. The Query View
Transformation language QVT is an example [21]. We have used an ad-hoc approach in our
implementation based on a format supported by the OMG in the MDA framework. In the
future, once QVT is widely supported, it is another option to transformation specification and
implementation.

6 Related Work

Service ontologies are ontologies to describe Web services, essentially to support their
semantics-based discovery in Web service registries. WSMO [13] and OWL-S [7] are the two
predominant examples that have been developed and used extensively in the recent past.
WSMO is not an ontology, as OWL-S is, but rather a framework in which ontologies can be
created. The Web Service Process Ontology WSPO [23] is also a service ontology, but the
focus has shifted here to the support of description of and reasoning about service
composition and service-based architectural configuration. Both OWL-S and WSPO are or
can be written in OWL-DL. WSMO is similar to our endeavour here, since it is a framework
of what can be seen as layered ontology descriptions. We have already looked at the technical

 12

aspects of WSMO descriptions. WSMO supports the description of services in terms more
abstract assumptions and goals and more concrete pre- and postconditions. The FLOWS
ontology from the Semantic Web Services Framework is a recent service process ontology
very similar to WSPO [32]. Although FLOWS is a more expressive modelling framework,
WSPO is in contrast to FLOWS decidable [23], which adds to the tractability of our solution.

In addition to service description, service modelling as part of a service engineering approach
is a staged, layered process. We have already discussed the OMG efforts to develop an
ontology definition metamodel (ODM) for layered model-driven architecting in the previous
section, which, due to its support of OWL, allows integration with UML-style modelling.
ODM, however, is a standard addressing ontology description. The reasoning component,
which is important here, would need to be addressed in more detail. Some developments have
started exploiting the connection between OWL and MDA. In [9], an MDA-based ontology
architecture is defined, which includes aspects of an ontology metamodel and a UML profile
for ontologies – corresponding to ODM. A transformation of the UML ontology to OWL is
implemented. The works by Djurić et.al. [9,10] and the OMG [19,20], however, need to be
carried further to address the ontology-based modelling and reasoning of service-based
architectures.

In particular, the Web services platform needs to be addressed in the context of Web-based
ontology technology. Grønmo et.al. [11] introduce – based on ideas from [9] – an approach
similar to ours. Starting with a UML profile based on activity diagrams, services are modelled.
These models are then translated into OWL-S. Although the paper discusses process
composition, this aspect is not detailed. We have built on their work in this respect by
considering process compositions and by mapping into a service ontology that focuses on
providing explicit support for service processes. Other authors [15] have directly connected
UML modelling with WS-BPEL code generation, without the explicit ontology framework.
Integrating ontologies, however, enhances the semantic modelling and reasoning capabilities
in the context of service architectures. These approaches go beyond our framework in that
UML-style graphical modelling is provided. We have discussed in Section 5 how this could
be introduced into our solution

7 Conclusions

The development of service-based software architectures requires the integration of domain
modelling and architectural configuration aspects in order to implement services as reusable
and composable entities in a process-oriented environment. We have presented an integrated,
layered semantic service modelling and transformation framework. We have demonstrated
that different ontology-driven modelling techniques exist to support these different activities.
The effort leading towards model-driven architecture acknowledges the importance of
modelling for the architectural design of software systems:
� Ontologies are a natural choice to enhance modelling capabilities. While this is

recognised in the community, we have exploited the new degree of sharing and ubiquity
enabled through Web ontology languages and the reasoning capabilities of logic-based
ontology languages for service engineering.

� Ontology-based transformations allow the seamless and coherent transition from one
development focus to another. These ontology transformations allow the integration of
domain modelling, architectural design, and the description and discovery of services.

Our approach addresses a software service-specific solution, reflecting the current
development of the Web services and the Semantic Web. The primary platform we aim to
support is service-oriented architecture with the second Web services generation focusing on
processes and composition, utilising the Semantic Web with its ontology technology support.

 13

A platform of the expected importance in the future, such as the Web services platform,
requires an adequate and platform-specific MDA-based service engineering solution. Service-
specific solutions, which have only started to emerge due to the novelty of the platform, are
required since the platform with service and process execution and publishable service
description is different from the classical MDA focus on component and object platforms.
Our framework provides effective support for the software architect through service
architecture modelling on an abstract level. The software architects benefits from semantic
modelling and reasoning, improved maintainability, and automated generation of potentially a
range of different platform specific implementations. In addition to the banking example,
which we have implemented to study distribution patterns of services, we have also
investigated service-based learning technology systems implementations. Although not all
aspects are currently fully automated, as our transformation discussion shows, both areas have
demonstrated the benefits of model-driven development in terms of improved software
change and maintenance through abstraction and reasoning capabilities.

A critical problem that has emerged from this investigation is the need for conformity and
interoperability. As MDA and the Web as a platform are developed and standardised by
different organisations, this can potentially cause problems. The current developments, such
as the Ontology Definition Metamodel (ODM), however, aim to reconciliate some of these
problems. With ODM, our proposed ontologies can, due to their grounding in OWL-DL, be
integrated into the ODM. This enables interoperability between ontology-based and
traditional models.

Our aim was to demonstrate the benefits and the feasibility of layered ontology-based
semantic modelling and transformation for service-oriented architecture. We have developed
a semantic modelling and transformation framework. While we have developed reasoning
support specific to architectural modelling activities such as refinement- and simulation-based
matching, more techniques are possible that exploit the full range of modal reasoning for
service description, discovery, and composition and architectural configuration. Reasoning
about safety and liveness conditions can enhance the semantic modelling potential further.

References

[1] R. Allen, D. Garlan, A Formal Basis for Architectural Connection, ACM Transactions on Software

Engineering and Methodology, 6 (1997) (3), pp. 213–249.

[2] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services – Concepts, Architectures and

Applications, Springer-Verlag, Berlin, 2004.

[3] F. Baader, D. McGuiness, D. Nardi, P.P. Schneider (editors), The Description Logic Handbook,

Cambridge University Press, Cambridge, 2003.

[4] L. Baresi, R. Heckel, Tutorial Introduction of Graph Transformation: A Software Engineering

Perspective, In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (editors), Proc. 1st Int.
Conference on Graph Transformation ICGT02, Springer-Verlag, LNCS 2505, 2002, pp. 402-429.

[5] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice (2nd Edition), SEI Series in

Software Engineering, Addison-Wesley, Boston, 2003.

[6] M.D. Daconta, L.J. Obrst, K.T. Smith, The Semantic Web, Wiley, Indianapolis, 2003.

[7] DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web, In I. Horrocks

and J. Hendler (editors), Proc. First International Semantic Web Conference ISWC 2002, Springer-
Verlag , LNCS 2342, 2002, pp. 279–291.

 14

[8] N. Desai, M. Singh, Protocol-Based Business Process Modeling and Enactment, Proc.
International Conference on Web Services ICWS 2004, IEEE Press, 2004, pp. 124–133.

[9] D. Djurić, MDA-based Ontology Infrastructure, Computer Science and Information Systems

(ComSIS), 1 (2004) (1), pp. 91–116.

[10] D. Gašević, V. Devedžić, D. Djurić, MDA Standards for Ontology Development – Tutorial, In

International Conference on Web Engineering ICWE2004, 2004.

[11] R. Grønmo, M.C. Jaeger, H. Hoff. Transformations between UML and OWL-S, In A. Hartman and

D. Kreische (editors), Proc. Model-Driven Architecture - Foundations and Applications, Springer-
Verlag, LNCS 3748, 2005, pp. 269-283.

[12] J. Kong, K. Zhang, J. Dong, G. Song, A Graph Grammar Approach to Software Architecture

Verification and Transformation, Proc. 27th Annual International Computer Software and
Applications Conference COMPSAC’03, 2003, pp. 492-497.

[13] R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, D. Fensel, Web Service Modeling

Ontology, Applied Ontology, 1 (2005) (1), pp. 77-106.

[14] D.J. Mandell, S.A. McIllraith, Adapting BPEL4WS for the Semantic Web: The Bottom-Up

Approach to Web Service Interoperation, In D. Fensel, K.P. Sycara, and J. Mylopoulos (editors),
Proc. International Semantic Web Conference ISWC’2003, Springer-Verlag, LNCS 2870, 2003,
pp. 227–226.

[15] K. Mantell, From UML to BPEL - Model Driven Architecture in a Web services world, IBM,

http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel/, 2005, (visited
31/07/2006).

[16] N. Medvidovic, R.N. Taylor, A Classification and Comparison framework for Software

Architecture Description Languages, Proceedings European Conference on Software Engineering /
International Symposium on Foundations of Software Engineering ESEC/FSE’97, Springer-
Verlag, 1997, pp. 60–76.

[17] C. Morgan, Programming from Specifications, Addison-Wesley, London, 1994.

[18] E. Newcomer, G. Lomow, Understanding SOA with Web Services, Addison-Wesley, Boston,

2005.

[19] Object Management Group, Model-Driven Architecture MDA Guide V1.0.1, OMG, 2003.

[20] Object Management Group, Ontology Definition Metamodel (OMG RFP: as/2003-03-40), OMG,

2003.

[21] Object Management Group, MOF QVT Final Adopted Specification (OMG RFP: ptc/05-11-01),

OMG, 2005.

[22] C. Pahl, Layered Ontological Modelling for Web Service-oriented Model-Driven Architecture,

Proc. European Conference on Model-Driven Architecture ECMDA’2005, Springer-Verlag, LNCS
3748, 2005, pp. 88-102.

[23] C. Pahl, An Ontology for Software Component Matching. International Journal on Software Tools

for Technology Transfer, Special Edition on Component-based Systems Engineering, 7 (2006), pp.
1-10.

[24] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic Matching of Web Services

Capabilities, In I. Horrocks and J. Hendler (editors), Proc. First International Semantic Web
Conference ISWC 2002, Springer-Verlag, LNCS 2342, 2002, pp. 279–291.

 15

[25] T.R. Payne, O. Lassila, Semantic Web Services, IEEE Intelligent Systems, 19 (2004) (4), pp. 14-
15.

[26] C. Peltz, Web Service orchestration and choreography: a look at WSCI and BPEL4WS, Web

Services Journal, 3 (2003) (7).

[27] F. Plasil, S. Visnovsky, Behavior Protocols for Software Components, ACM Transactions on

Software Engineering, 28 (2002) (11), pp. 1056–1075.

[28] J. Rao, P. Küngas, M. Matskin, Logic-Based Web Services Composition: From Service

Description to Process Model, Proc. International Conference on Web Services ICWS 2004, IEEE
Press, 2004, pp. 446–453.

[29] D. Sangiorgi, D. Walker, The π-calculus - A Theory of Mobile Processes, Cambridge University

Press, Cambridge, 2001.

[30] K.A. Schild, Correspondence Theory for Terminological Logics: Preliminary Report, Proceedings

12th International Joint Conference on Artificial Intelligence, 1991, pp. 466-471.

[31] Semantic Web Services Language (SWSL) Committee, Semantic Web Services Framework

(SWSF), http://www.daml.org/services/swsf/1.0/, 2006, (visited 31/07/2006).

[32] World Wide Web Consortium, Web Services Architecture Definition Document,

http://www.w3.org/TR/ws-arch, 2006, (visited 31/07/2006).

[33] WS-BPEL Coalition, WS-BPEL Business Process Execution Language for Web Services –

Specification Version 1.1, http://www-106.ibm.com/developerworks/webservices/library/ws-bpel,
2004, (visited 31/07/2006).

 16

Appendix 1. WS-BPEL Code

<?xml version="1.0" encoding="utf-8"?>
<process name="AccountProcess"
 ... <!– namespaces -->
 <partnerLinks>
 <partnerLink name="client" ... />
 <partnerLink name="loginServer" ... />
 <partnerLink name="accountManager" ... />
 </partnerLinks>
 <variables>
 <variable name="userID"
 messageType="ID" />
 ...
 </variables>
 <sequence>
 <receive partnerLink="client" <!-- login -->
 portType="ClientProcess"
 operation="login"
 variable ="userID“
 variable="userPWD" />
 <invoke partnerLink="loginServer"
 portType="loginSrv"
 operation="login"
 inputVariable="userID"
 inputVariable="userPWD" />
 <while>
 <switch>
 <case condition="" <!-- balance enquiry -->
 <invoke partnerLink="accountManager"
 portType="accMngr"
 operation="enquire"
 inputVariable="account"
 outputVariable="balance" />
 <receive partnerLink="accountManager"
 portType="accMngr"
 operation="enquire-res"
 variable="balance" />
 </case>
 <case condition="" <!-- transfer-->
 <invoke partnerLink="accountManager"
 portType="accMngr"
 operation="transfer"
 inputVariable="account"
 inputVariable="sum" />
 <receive partnerLink="accountManager"
 portType="accMngr"
 operation="transfer"
 variable="balance" />
 </case>
 <case condition="" <!-- lodge-->
 <invoke partnerLink="accountManager"
 portType="accMngr"
 operation="lodge"
 inputVariable="account"
 inputVariable="sum" />
 <receive partnerLink="accountManager"
 portType="accMngr"
 operation="lodge"
 variable="balance" />

 17

 </case>
 </switch>
 </while>
 <receive partnerLink="client" <!-- logout -->
 portType="ClientProcess"
 operation="logout"
 variable="userID " />
 <invoke partnerLink="loginServer"
 portType="loginSrv"
 operation="logout"
 inputVariable="userID" />
 </sequence>
</process>

 18

Information Viewpoint
(using is_a relationships)

object

balance sum of
money account

monetary
object bank object

customer

balance

account

customer

sum of
money

transfer
open

enquire

Enterprise (Process) Viewpoint
(using dependency relationships)

lodge

Structure Viewpoint
(using composition relationships)account

balancenumber

banking
activity

transfer
money

open
account

enquire
balance

Information Viewpoint
(using is_a relationships)

object

balance sum of
money account

monetary
object bank object

customer

Information Viewpoint
(using is_a relationships)

object

balance sum of
money account

monetary
object bank object

customer

balance

account

customer

sum of
money

transfer
open

enquire

Enterprise (Process) Viewpoint
(using dependency relationships)

lodgebalance

account

customer

sum of
money

transfer
open

enquire

Enterprise (Process) Viewpoint
(using dependency relationships)

lodge

Structure Viewpoint
(using composition relationships)account

balancenumber

banking
activity

transfer
money

open
account

enquire
balance

Structure Viewpoint
(using composition relationships)account

balancenumber

banking
activity

transfer
money

open
account

enquire
balance

Fig. 1. CIM-level Excerpts from a Banking Domain Ontology.

 19

ig. 2. WSPO Service Process Template for the PIM-layer applied to Service ‘transfer’.

account

postpre

postcondition
semantics

precondition
semantics

in-object
syntax

transfer

sum of
money

balance =
balance@pre

- sum
balance >

sum

account
out-object

syntax

account

postpre

postcondition
semantics

precondition
semantics

in-object
syntax

transfer

sum of
money

balance =
balance@pre

- sum
balance >

sum

account
out-object

syntax

F

 20

ig. 3. Ontological Service Template (WSMO) with Interface and Capability Aspects.

transfer
service

nonFctProp

preCond

effect

assumption

postCond
message-
Exchange

nonFctProp

security:
SSL-encrypt

Interface Capabilities

balance > sum

balance =
balance@pre

-sum

exists(account)

transfered(sum)

in: acc x acc x sum
out: void

location “address”
transfer
service

nonFctProp

preCond

effect

assumption

postCond
message-
Exchange

nonFctProp

security:
SSL-encrypt

Interface Capabilities

balance > sum

balance =
balance@pre

-sum

exists(account)

transfered(sum)

in: acc x acc x sum
out: void

location “address”

F

 21

Structure
domain model

Semantic Service Process
architectural configuration

service composition

Abstract Service Description
service discovery

Service Process Implementation
service interoperability

and coordination

CIM

Process
domain model

Constraints
domain model

PIM

PSM

OWL OWL OWL

WSPO

WSMO BPEL

Structure
domain model

Semantic Service Process
architectural configuration

service composition

Abstract Service Description
service discovery

Service Process Implementation
service interoperability

and coordination

CIM

Process
domain model

Constraints
domain model

PIM

PSM

OWL OWL OWL

WSPO

WSMO BPEL

Fig. 4. Mappings between the Ontology Layers – Overview.

 22

ig. 5. Overview of MDA and Ontology-based Service Modelling (with transformations

CIM

PIM

PSM

OWL-DL
domain model

WSPO
architectural configuration

service composition

WSMO/OWL-S
service discovery

WS-BPEL
service interoperability

and coordination

UML2 Profile
CORBA

OWL-DL
mapping

UML2 Profile
ontologies

ODM

MDA with Ontologies MDA Models MDA Metamodels

CIM

PIM

PSM

OWL-DL
domain model

WSPO
architectural configuration

service composition

WSMO/OWL-S
service discovery

WS-BPEL
service interoperability

and coordination

UML2 Profile
CORBA

OWL-DL
mapping

UML2 Profile
ontologies

ODM

MDA with Ontologies MDA Models MDA Metamodels

F
between the layers and the influence of ODM for the ontology layers).

 23

	1 Introduction
	2 The Development of Service Architectures
	3 Modelling with Ontologies
	3.1 Models and Ontologies
	3.2 CIM – Computation Independent Model
	3.3 PIM – Platform Independent Model
	3.4 PSM – Platform Specific Model
	3.5 Semantics of the Ontology Layers

	4 Ontology-based Model Transformations
	4.1 CIM-to-PIM Mapping
	4.2 PIM-to-PSM Mapping
	4.3 Formal Mapping Definitions

	5 Modelling – Standards and Interoperability
	6 Related Work
	7 Conclusions
	References

