
Ontology-based Composition and Matching for
Dynamic Service Coordination

Claus Pahl, Veronica Gacitua-Decar, MingXue Wang, and Kosala Yapa
Bandara

Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University, Dublin, Ireland

[cpahl|vgacitua|mwang|kyapa]@computing.dcu.ie

Abstract. Service engineering needs to address integration problems
allowing services to collaborate and coordinate. The need to address
dynamic automated changes - caused by on-demand environments and
changing requirements - can be addressed through service coordination
based on ontology-based composition and matching techniques. Our so-
lution to composition and matching utilises a service coordination space
that acts as a passive infrastructure for collaboration. We discuss the
information models and the coordination principles of such a collabora-
tion environment in terms of an ontology and its underlying description
logics. We provide ontology-based solutions for structural composition of
descriptions and matching between requested and provided services.
Keywords: Service coordination; Tuple space; Dynamic service compo-
sition; Service Ontology.

1 Introduction

Service-oriented architecture (SOA) as a methodological framework aims at pro-
viding a service-based infrastructure for interoperable development and integra-
tion [1]. However, recent trends such as on-demand and service outsourcing [2]
pose challenges in terms of flexibility of composition and also scalability.

We introduce an ontology-based solution for service collaboration, focussing
on its description logic foundations, that makes a step from static service ar-
chitectures (based on Web service orchestration) to dynamic coordination [3].
The coordination solution based on a coordination space addresses the need
to support dynamic collaboration through semantic matching of providers and
requesters at runtime. It enables the self-organisation of service communities
through flexible dynamic composition of service architectures. In contrast to ex-
isting mediation solutions, where providers initially publish their services and
where clients search for suitable services, here the approach is reversed - chang-
ing from a pull-mode to a push-mode where the client posts requests that can
be taken on by providers. Different coordination models have been proposed
[4, 5, 6]. Domain- and application context-specific solutions [7, 8, 9] and ap-
proaches based on semantic extensions are investigated [10, 11], which have also
been applied to service composition and mediation. We built up on these seman-



2 Claus Pahl et al.

tic mediation approaches by adding a process perspective and by linking this to
a coordination technique for requests of services [12]. We focus on the structural
composition of objects and processes as part of service requests to support the
coordination of requests and provided services. We use an ontology-based for-
malisation for description and subsumption-based matching. Our contribution
is an ontology language for request coordination that adds a process view to
existing service matching. We specifically investigate the structural composition
of request elements within a dynamic coordination context.

The next section discusses the context of service collaboration. In Section
3, we address the description of requests and services in the coordination space
in terms of ontology-based specification and composition techniques. In Section
4, the matching-based coordination is defined. Section 5 discusses evaluation as-
pects. We discuss related work in Section 6 before ending with some conclusions.

2 Service Collaboration and Coordination Spaces

Cloud and on-demand computing are emerging as new forms of providing and
consuming software as services to enable an integrated collaboration of service
communities. Applications often exhibit a more dynamic nature of interaction,
which requires techniques for the identification of needs and behaviours and the
association and customisation of provided services to requested needs [13, 14].

A scenario shall motivate our solution. Customer care is a classical enterprise
software scenario (layered on top of a full software system) that can be enhanced
through distributed, on-demand collaboration infrastructure.

– Sample objects are software objects, problem descriptions and help files.
– Activities include explanations or activities to repair/adapt software.
– Two sample processes are a software help wizard that guides an end-user

through a number of steps to rectify a problem and a customer care workflow
that in a number of steps identifies a problem, decides on a resultion strategy
and implements the latter (e.g. through adaptation/change of components).

Initially, a user asks for help by posting a request referring to a software compo-
nent (e.g. a search feature) and a problem (help file not OK), Fig. 1. An analysis
service takes on the task and determines whether explanation and guidance is
sufficient or whether the software itself needs to be changed. In both cases, new
requests (objects and goals) are generated. In the first case, the discovery of
suitable responses (e.g. by correcting help files) is the aim. In the second case,
software changes need to be implemented. Automatically identifying the ongoing
process pattern allows a more targeted processing of the initial goal.

The current approach to service composition is to develop service processes
that are orchestrations of individual services. Service orchestrations are exe-
cutable process specifications based on the invocation of individual services, e.g.
in WS-BPEL, the business process execution language. While this is successful
for intra-organisational software integration, limitations exist. Firstly, the inflex-
ible nature: common to both is the static nature of these assemblies, requiring



Ontology-based Dynamic Service Coordination 3

Coordination Space                                                        

Requestor
Change

Management

help(searchFeature,helpFile),
correct(help), 

?

searchFeature, 
correct(searchFeature), 
change(searchFeature)

searchFeature, 
correct(searchFeature), 
change(searchFeature)

Help File
Change

Software
Change

2

3a 3b

4b

4a

5b

5a

1

8 7

6b
6a

Fig. 1. Coordinated Process of Requests.

them to be pre-defined and which can only be alleviated to some extent through
dynamic adapter generation [15]. Secondly, the lack of scalability: orchestrations
are simple process programs without abstraction mechanisms, thus restricting
the possibility to define complex and manageable system specifications. Increas-
ing flexibility of composition by allowing partners to dynamically join or leave
the community is not possible using the classical approach. The dynamic re-
questing and providing of services (by asking for activities to be executed on
objects to achieve a goal) avoids complex, pre-defined process definitions, thus
making the coordination more scalable through self-organisation.

The solution to address flexibility and scalability of collaboration is a coor-
dination space, which acts as a passive infrastructure to allow communities of
users and providers to collaborate through matching of requests and provided
services. It is governed by coordination principles:

– tasks to perform an activity on an object occur in states
– services collaborate and coordinate their activities to execute these tasks
– advanced states are reached if the execution is permitted by guards

The central concepts are objects and goals (reflecting outcomes of activities)
provided together as services and processes that are seen as goal-oriented as-
semblies of services. Service requesters enter a typed object together with a goal
that defines the processing request. Service and process providers can then select
(match) this processing request.

3 Coordination Request Specification and Composition

Users are usually concerned with processing objects such as electronic documents
passing through business processes. The central concepts of our information
model are objects, goals and processes, which together form requests:



4 Claus Pahl et al.

– Changing, evolving objects are dynamic entities. This follows trends to focus
on structured objects and documents as the central entities of processing, as
proposed by ebXML and other business standards.

– Goals are declaratively specified, expressing the requested result of processed
objects [16]. Essentially, the aim is to allow users and providers to refer to
them declaratively, e.g. in the form of a goal-oriented user request (requesting
object processing) and to enable semantic goal-based matching.

– The process notion refers to business and workflow processes. States of the
process are points of variation for objects: data evolves as it passes through
a process. Goals relating to objects are expressed in terms of states of the
processes where a process state is considered at the level of individual object
modifications. The link to objects is provided via states of processes. Process-
centricity is the central feature of service coordination here, thus we retain the
compositional principle of Web services.

Cloud computing as an information processing and management infrastructure
would benefit from requests being formulated in terms of the underlying in-
formation objects being processed, an abstract specification of goals and the
process that the individual processing activities are embedded in. We will now
formalise this information model in terms of a description logic-based ontology
for specification and composition of requests.

3.1 Ontologies and Description Logic

Our solution is a description logic-based composition ontology to support match-
ing between requests and provided services. Ontologies are a good candidate for
semantic, goal-oriented specification of objects and processes [17]. We intro-
duce the core of the description logic language ALC [18], which defines ontology
languages like OWL-DL. ALC provides combinators and logical operators that
suffice for our service composition ontology. It consists of three basic elements.

– Concepts are the central entities. Concepts are classes of objects with the same
properties. Concepts represent sets of objects.

– Roles are relations between concepts. Roles define a concept through other con-
cepts. We distinguish two role types: descriptive roles to define static properties
and transitional roles to define activies (object state changes in processes).

– Individuals are named objects.

A Tarski-style model semantics based on an interpretation I maps concepts
and roles to corresponding sets and relations, and individuals to set elements.
Properties are specified as concept descriptions:

– Basic concept descriptions are formed as follows: A denotes an atomic concept;
if C and D are (atomic or composite) concepts, then so are ¬C (negation),
C uD (conjunction), C tD (disjunction), and C → D (implication).

– Value restriction and existential quantification, based on roles, are concept
descriptions that extend the set of basic concept descriptions. A value restric-
tion ∀R.C restricts the value of role R to elements that satisfy concept C. An
existential quantification ∃R.C requires the existence of a role value.



Ontology-based Dynamic Service Coordination 5

The combinators are defined using classical set-theoretic, i.e. extensional con-
cept interpretations. Given a value set S, we define the semantics of concept
descriptions as

>I = S and ⊥I = ∅ and (¬A)I = S\AI and (C uD)I = CI ∩DI

(∀R.C)I = {a ∈ S | ∀b ∈ S.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S | ∃b ∈ S.(a, b) ∈ RI ∧ b ∈ CI}

Combinators u and → can be defined based on t and ¬ as usual. An individual
x defined by C(x) is interpreted by xI ∈ S with xI ∈ CI .

Structural subsumption v, used for service component matching in Section
4, is a relationship defined by subset inclusions for concepts and roles.

3.2 Ontology-based Specification of Requests

We semantically enrich an information model – a conceptualisation – capturing
object structure, object modification states and an object evolution process [19,
20]. Ontologies with descriptive and operational layers through an encoding of
dynamic logic in a description logic provide the foundations for our object and
process specification framework. This allows us include behavioural and temporal
aspects into the core ontology framework capturing objects [21]1.

– Objects types are expected to be represented as concepts in a domain ontol-
ogy. Objects in the form of XML data schemas, embedded into an assumed
domain ontology, represent the object type. A composition relationship be-
comes a core generic relationship for our request ontology (in addition to the
traditional subsumption-based taxonomic relationship). Structural nesting of
XML elements is converted into ontological composition relationships.
Sample objects are a searchFeature and a helpFile, connected by a help role.

– Goals are properties of the object concepts stemming from the ontology (cov-
ering domain-specific properties as well as software qualities). Goals are ex-
pressed in terms of ontology-based properties of objects (concept descriptions),
denoting states of an object reached through processing.
A sample goal is correct(help), which might need to be resolved by modifying
the respective role source and target.

– Processes are based on a service process ontology with service process com-
position operators in the form of transitional roles (like sequencing ’;’, choice
’+’ or iteration ’ !’ – see [21] for details) as part of the ontology. Processes are
specified based on input and output states linked to goals as properties.
A sample process is analyse(help); (change(searchFeature) + change(helpFile)).

A sample object is a software component, the goal the request to change param-
eters. This would form a semantically annotated service goal specification

∃change.typeOf(component, TypeA) t typeOf(component, TypeB)
1 Transitional roles, which represent state changes and which link objects and their

processing from state to state to processes, require a tailored semantics [21].



6 Claus Pahl et al.

here requesting the object to be changed such that the type of the component
is one of the specified TypeA or TypeB. change is a transitional role here.

A software component as an object in the context of customer care has prop-
erties such as deployed, analysed, or changed. A maintenance process could be
expressed as a cyclic process !(deploy; analyse; change) which defines an iteration
of the 3-sequence of activities. In terms of the ontology, this process specification
is a composed role description that can be further specified, e.g.

∀(deploy; analyse; change).equal(state, consistent)

saying that the sequence is expected to result in a consistent state. We call these
roles transitional as they result in state transitions. A subprocess has been used
above in the process part of the sample request triple.

The notions of a request specification and its semantics need to be made more
precise. We assume a request to be a specification request = 〈Σ,Φ〉 based on the
elementary type ontology with a signature Σ = 〈C,R〉 consisting of concepts C
and roles R and concept descriptions φ ∈ Φ based on Σ which cover both goals
and processes through descriptive and transitional roles. A request is interpreted
by a set of models M . The model notion refers to algebraic structures that satisfy
all concept descriptions φ in Φ. The set M contains algebraic structures m ∈M
with classes of elements CI for each concept C, relations RI ⊆ CI

i × CI
j for all

roles R : Ci → Cj such that m satisfies the concept description. Satisfaction is
defined inductively over the connectors of the description logic ALC as usual [18].
A signature Σ defines the request language vocabulary, e.g. consisting of domain-
specific object component, activities change or deploy, and property typeOf.

3.3 Ontology-based Object, Goal and Process Composition

Composition Principles. The core format for request specifications has been
defined, which is built on the service process ontology from [21]. We add now sup-
port for the compositionality of the request elements, which extends approaches
such as [17, 22, 23]. This faciliates the decomposition of requests into processing
smaller objects through a composed process of individual object processing ac-
tivities, as we already illustrated with the help decomposition into two smaller
steps, see Fig. 1.

Subsumption is the central relationship in ontology languages, which allows
concept taxonomies to be defined in terms of subtype or specialisation relation-
ships. In conceptual modelling, composition is another fundamental relationship
that focuses on the part-whole relationship. In ontology languages, composition
is less used [18]. The notion of composition can be applied in different ways:

– Structural composition. Structural hierarchies of architectural elements define
the core of architectures. It can be applied to objects here.

– Sequential (and behavioural) composition. Dynamic elements can be composed
to represent sequential behaviour. Sequential composition can be extended by
adding behavioural composition operators like choice or iteration.



Ontology-based Dynamic Service Coordination 7

We use the symbol “B” to express the composition relationship. It is syntactically
used in the same way as subsumption “v” to relate concept descriptions.

– Composition object hierarchies shall consist of unordered subcomponents,
expressed using the component composition operator “B”. An example is
ProblemDescr B FaultCause, i.e. a ProblemDescr consists of FaultCause
as a part. Composed objects are interpreted by unordered multisets.

– Processes can be sequences or complex behaviours that consist of ordered pro-
cess elements, again expressed using the composition operator “B”. An exam-
ple is maintenance B analysis, meaning that maintenance is actually a com-
posite process, which contains for instance an analysis activity. A more com-
plex decomposed subprocess is maintenance B analysis; change; deployment.
We see composite process implementations as being interpreted as ordered
tuples providing a notion of sequence. For more complex behavioural compo-
sitions, graphs serve as models to interpret this behaviour.

Request Composition. We introduce two basic syntactic composition con-
structs for object and process composition2, before looking at behavioural com-
position as an extension of sequential composition:

– The structural composition between C and D is defined through C B {D}, i.e.
C is structurally composed of D if type(C) = type(D) = Object.

– The sequential composition between C and D is defined through C B [D], i.e.
C is sequentially composed of D if type(C) = type(D) = Process.

Note, that the composition operators are specific to the respective request ele-
ment. This basic format that distinguishes between the two composition types
shall be complemented by a variant that allows several parts to be associated to
an element in one expression.

– The structural composition C B {D1, . . . , Dn} is defined by C B {D1} u . . .u
C B {Dn}. The parts Di, i = (1, .., n) are not assumed to be ordered.

– The sequential composition C B [D1, . . . , Dn] is defined by C B [D1] u . . . u
C B [Dn]. The parts Di with i = (1, .., n) are assumed to be ordered with
D1 ≤ . . . ≤ Di ≤ . . . ≤ Dn prescribing an execution ordering ≤ on the Di.

The latter allows us to write maintenance B [deploy, analyse, redevelop] as
a composed behavioural specification, which gives semantics to the expression
deploy; analyse; redevelop.

The semantics of the two composition operators shall now be formalised. So
far, models m ∈M are algebraic structures consisting of sets of elements CI for
each concept C in the service object signature and relations RI ⊆ CI × CI for
roles R. We now consider elements to be composite:

– Structurally composite concepts C B {D1, . . . , Dn} are interpreted as multi-
sets CI = {{DI1

1 , . . . , D
Ik

1 , . . . , DI1

n , . . . , DIl

n }}. We allow multiple occurrences
for each concept Di, (i = 1, .., n). With c ∈ CI we denote set membership.

2 Goals are logical expressions, i.e. structural/behavioural composition is not applica-
ble.



8 Claus Pahl et al.

– Sequentially composite concepts C B [D1, . . . , Dn] are interpreted as tuples
CI = [DI

1 , . . . , D
I
n]. Tuples are ordered collections of sequenced elements.

Apart from membership, we assume index-based access to the tuples in the
form CI(i) = DI

i , (i = 1, .., n), selecting the i-th element in the tuple.

While subsumption as a relationship is defined through subset inclusion, com-
position relationships are defined through membership in collections (multisets
for structural composition and ordered tuples for sequential composition).

Behavioural specification is based on the process composition operators.
These operators allow us to refine a process and specify detailed behaviour.
While a basic form of behaviour (sequencing) has been defined, we extend it to
a more comprehensive approach that requires a more complex model semantics
(graphs). This has reasoning implications, as we will discuss at the end of Section
4. We define a process P through a behavioural specification: P B [B] where B
is a behavioural expression consisting of a basic process P or

– a unary operator ’ !’ applied to a behavioural expression !B (iteration), or
– a binary operator ’+’ applied to two behavioural expressions B1 +B2, express-

ing non-deterministic choice, or
– a binary operator ’;’ applied to two behavioural expressionsB1 ; B2, expressing

the previously introduced sequencing.

In line with the basic forms of composition, the iteration P B [!B] is defined by
P B [B, . . . , B], the choice P B [B1 + B2] is defined by P B [B1] t C B [B2],
and the sequence C B [B1 ; B2] is defined as above in Section 3.3.

We extend the semantics by interpreting behaviourally composite processes
through graphs (N,E) where processes are represented by edges e ∈ E and
nodes n ∈ N represent connection points for sequence, choice and iteration. The
three operators are defined through simple graphs.

4 Coordination Principles

The coordination functionality follows established coordination approaches like
tuple spaces [4, 5] by providing deposit and retrieval functions for the space
elements – tuples which consist of object type, goal and supporting process.
Specifically, one deposit and two retrieval functions for the ontology-defined
requests from the previous section are provided:

– deposit(object!, goal!, process!), where the parameters are defined as above in
Section 3, is used by the client who deposits a copy of the tuple [object, goal,
process] into the coordination space. The exclamation mark ’ !’ indicates that
values are deposited. The process element is optional; it can be determined
later to guide individual processing activities.

– meet(object?, goal?), with parameters as above, is used by a service provider
and identifies a matching tuple in the coordination space. The question mark
indicates that abstract patterns are provided that need to be matched by con-
crete deposited tuples. Ontological subsumption reasoning along the object



Ontology-based Dynamic Service Coordination 9

Coordination Space

Requestor
Service 
Providerobject, goal, process

object, goal, process

object, goal, processService 
Provider

Service 
Provider

2

3a 3b

4b

4a

5b

5a

1

8 7

6b
6a

Fig. 2. Abstract Coordinated Process of Requests.

concept hierarchy enhances the flexibility of retrieval by allowing subconcepts
to be considered as suitable matches. A subconcept is here defined as a sub-
class of the concept in terms of the domain ontology, but it also takes the
composition properties (see structural composition in the previous section)
into account, i.e. requires structural equality.

– fetch(object?, goal?) is used as meet, but it does remove the tuple, blocking
further access to the tuple. The coordination space will select the tuple that
is deemed to be the closest subsumption-based match, i.e. conceptually the
closest in the ontological hierarchy of a given central domain ontology.

meet is used to inspect the tuple space; fetch is used if a requested task is taken
on and is taken as a commitment to achieve the goal. We assume for simplicity
here that provider results are directly communicated to the requester.

Matching in the meet and fetch operations is the critical activity here and
shall be defined in terms of the ontological framework. Subsumption is a rela-
tionship defined by subset inclusions for concepts and roles:

– Subsumption C1 v C2 between two concepts C1 and C2 is defined through set
inclusion for the interpretations CI

1 ⊆ CI
2 .

– Subsumption R1 v R2 between two roles R1 and R2 holds, if RI
1 ⊆ RI

2.

Subsumption is not implication. Structural subsumption (subclass) is weaker
than logical subsumption (implication), see [18]. C1 u C2 v C1 or C2 → C1

implies C2 v C1. We use subsumption to reason about matching of two request
descriptions based on transitional roles.

In Fig. 2, a process emerges from the sequence of events, indicated through
numbered coordination operations. If this process is initially not given by the
requester, then a process mining tool might identify one to guide and constrain
further processing, but that is beyond the scope here. The schematic example
follows the customer care scenario and abstracts its activities that we outlined
in Section 2: 1) client deposits the help request (problem description object with
guidance as the goal), 2) one service provider meets and fetches the request, 3)



10 Claus Pahl et al.

provider creates and deposits two more requests - one to create a suitable help
file for the problem, the other to determine whether the software needs to be
modified (software entity as object and analysis request as goal) 4) these tuples
are in turn fetched by other providers, 5) these providers then deposit solutions,
6) which are fetched by the initial provider, 7) who in turn deposits an overall
solution, 8) which is finally used by the requester.

While description and reasoning capabilitiues of our ontology solution have
been illustrated, the tractability of reasoning is a central issue in the dynamic
context here. While the richness of our description logic with complex roles that
represent processes has some potentially negative implications for the complexity
of reasoning, the complexity can be reduced here. We can restrict roles to func-
tional roles. Another beneficial factor is that for roles negation is not required
[18]. Then, decidability is achieved, which is critical for dynamic reasoning.

5 Evaluation

Our key concern here was the definition of an ontology-based language for dy-
namic request coordination. We have already discussed the theoretical limita-
tions of the language in terms of e.g. decidability earlier on. The sample illustrate
the need for the novel components of our approach - the process aspect and the
request composition mechanisms, which allow complex taks to be broken up and
managed by a specific process. Now, we briefly address the concrete implemen-
tation to demonstrate the feasibility of the implementation, which also looks at
tractability and performance concerns. The functionality of the coordination and
knowledge spaces is currently implemented in the form of infrastructure services.
These services are based on Java implementations exposed as services. We rep-
resent dynamic requests as constraints, which need to be validated at runtime.
Our environment facilitates constraints generation. We express constraints as
CLiX (Constraint Language in XML, http://clixml.sourceforge.net/) rules
and use the Xlinkit validator engine (http://www.messageautomation.com/)
to validate them dynamically. This architecture demonstrates the feasibility of
ontology-based processing at runtime.

Full behavioural composition is currently not supported. This technology
platform has already been used for dynamic service compositions [24], but our
approach differs in that it refers to OWL-DL-based ontology request specifi-
cations. It uses an analogy between description logics and predicate logics to
rewrite the ontology specifications as first-order predicates that are checked by
Xlinkit. Our results to-date show an acceptable performance overhead of around
normally not more than 10 % for coordination activities (dynamic matching)
compared a traditional hardwired WS-BPEL composition of service. The re-
quired flexibility gain is achieved (in comparison to a WS-BPEL solution) by
enabling dynamic composition.

Another issue is scalability. However, this remains to be investigated further
using on-demand systems. We currently have automated process graph gener-
ation techniques in place. These shall be used to test the coordination space,



Ontology-based Dynamic Service Coordination 11

firstly, with more complex processes and, secondly, with more processes in par-
allel. A central success criterion is here the ability to deal with (i.e. match)
requests in adequate time (assuming suitable providers).

6 Related Work

The coordination paradigm applied here is a fundamental change to existing ser-
vice discovery and matching approaches. Coordination models have been widely
used to organise collaboration. The Linda tuple space coordination model [4]
has influenced a wide range of variations including our on work on concurrent
task coordination in programming languages [5], which in turn has influenced
the solution here. More recently, domain- and application context-specific solu-
tions and approaches based on semantic extensions have been investigated [10].
However, dynamic environments have not yet been addressed. Over the past
years, coordination has received much attention [7, 8, 9] due to the emergence
of collaborative ICT-supported environments, ranging from workflow and col-
laborative work to technical platforms such as service collaboration. The latter
ones have also been applied to service composition and mediation. In [25], an
ontology-based collaboration approach is described that is similar to our in that
it advocates a push-service object of coordination. We have added to semantic
mediation approaches like [10, 25] by including a process notion as a central
component of request tuples [19], supported by a process-centric ontology lan-
guage. Through the goal/state link, this process context is linked to the request
coordination technique focussing on objects are primary entities.

WSMO [17] is an example of a service ontology that provides composition
and matching support. Service ontologies are ontologies to describe Web ser-
vices, aiming to support their semantics-based discovery in Web service reg-
istries. WSMO is not an ontology, as OWL-S is, but rather a framework in
which ontologies can be created. The Web Service Process Ontology WSPO
[21, 26, 27] is also a service ontology, but its focus is the support of description
and reasoning about service composition and service-based architectural config-
uration. An important development is the Semantic Web Services Framework
(SWSF), consisting of a language and an underlying ontology [28], which takes
OWL-S work [29] further and is also linked to convergence efforts in relation
to WSMO. The FLOWS ontology in SWSF comprise process modelling and
it equally suited to support semantic modelling within the MDA context. We
combine here a process-centric ontology with composition and deploy this in a
dynamic composition environment.

7 Conclusions

Manually designed service architectures support software systems in classical sec-
tors such as finance and telecommunications. However, their structural inflexibil-
ity makes changes and evolution difficult. Current service computing platforms



12 Claus Pahl et al.

suffer also from scalability problems. Our coordination space techniques enhances
collaboration capabilities in the context of dynamic applications. Decoupling re-
questers from providers through the space achieves flexibility. Scalability can be
achieved through a passive coordination architecture with reduced coordination
support - which, however, necessitates the cooperation of providers to engage
and pro-actively use the coordination space as a market place.

Our focus here has been on an ontology language for service request com-
position and matching. Based on a description logic formalisation, it provides
composition-oriented description operators and a subsumption-based matching
construct. We have specifically looked at tractability problems, which are im-
portant for dynamic environments. The main contribution is an ontology-based
matching solution that is based on structured, composed requests and the cus-
tomisation of this framework for a dynamic composition environment. Abstract
specifications of data and behaviour, formalised as ontology-based models, are
at the core. These models are processed to generate or control service execution.

While we have defined the core coordination principles here, the range of sup-
porting features needs to be investigated further. Part of this are fault-tolerance
features supporting self-management and semantic techniques deducing object
and process types from possibly incomplete information [30]. Trust is a related
aspect that needs to be addressed. We have occasionally indicated advanced
functionality; this could further include the automated identification of processes
based on stored process history or the possibility to consider non-functional as-
pects reflected in profiles and context models during matching.

Acknowledgment

This research work was supported, in part, by Science Foundation Ireland
grant 03/CE2/I303 1 to Lero - the Irish Software Engineering Research Cen-
tre (www.lero.ie) and grant 07/RFP/CMSF429 CASCAR.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts, Archi-
tectures and Applications. Springer-Verlag. 2004.

2. B. Hayes. Cloud computing. Communications of the ACM 51(7):9-11. 2008.
3. J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. Intl.

Workshop on Semantic Web Services and Web Process Composition 2004. Springer
LNCS 3387, 43-54, 2005.

4. D. Gelernter. Generative Communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7(1):80-112. 1985.

5. E.-E. Doberkat, W. Hasselbring and C. Pahl. Investigating Strategies for Cooper-
ative Planning of Independent Agents through Prototype Evaluation. In P. Cian-
carini, editor, Proc. First International Conference on Coordination Models and
Languages, Cesena, Italy. Springer-Verlag, LNCS Series 1061, 1996.



Ontology-based Dynamic Service Coordination 13

6. E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers and C.
Pahl. PROSET - Prototyping with Sets, Language Definition. Software-Engineering
Memo 15, Universitt GH Essen, 1992.

7. B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces. Journal of Systems and Software 69(3), 243-266. 2004.

8. Z. Li and M. Parashar. Comet: A Scalable Coordination Space for Decentralized
Distributed Environments. In Proceedings of the Second international Workshop
on Hot Topics in Peer-To-Peer Systems HOT-P2P. IEEE, 104-112. 2005.

9. D. Balzarotti, P. Costa, G.P. Picco. The LighTS tuple space framework and its
customization for context-aware applications. Web Intelligence and Agent Systems
5(2): 215-231. 2007

10. L. Nixon, O. Antonechko and R. Tolksdorf. Towards Semantic tuplespace comput-
ing: the Semantic web spaces system. In Proceedings of the 2007 ACM Symposium
on Applied Computing SAC ’07. ACM, 360-365. 2007.

11. NIST. Process Specification Language (PSL) Ontology - Current Theories and
Extensions. http://www.mel.nist.gov/psl/ontology.html. National Institute of Stan-
dards and Technology, USA. 2007.

12. C. Pahl. Dynamic Adaptive Service Architecture - Towards Coordinated Service
Composition. European Conference on Software Architecture ECSA’2010. Springer,
LNCS, 2010.

13. C. Pahl, Y. Zhu. A Semantical Framework for the Orchestration and Choreography
of Web Services. Proceedings of the International Workshop on Web Languages and
Formal Methods (WLFM 2005). Electronic Notes in Theoretical Computer Science
151(2):3-18. 2006.

14. V. Gacitua-Decar and C. Pahl. Automatic Business Process Pattern Matching for
Enterprise Services Design. 4th International Workshop on Service- and Process-
Oriented Software Engineering (SOPOSE-09). IEEE Press. 2009.

15. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. Proc. IC-
SOC06. Pages 27-39. Springer LNCS 4294. 2006.

16. B. Andersson, I. Bider, P. Johannesson, and E. Perjons. Towards a formal definition
of goal-oriented business process patterns. BPM Journal 11:650-662. 2005.

17. R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

18. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

19. C. Pahl. A Pi-Calculus based Framework for the Composition and Replacement
of Components. Proc. Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications OOPSLA’2001 - Workshop on Specification and Verifica-
tion of Component-Based Systems. Tampa Bay, Florida, USA. ACM Press. 2001.

20. C. Pahl. A Formal Composition and Interaction Model for a Web Component
Platform. ICALP’2002 Workshop on Formal Methods and Component Interaction.
Malaga, Spain. Elsevier Electronic Notes on Computer Science ENTCS, Vol. 66,
No. 4. July 2002.

21. C. Pahl. An Ontology for Software Component Description and Matching. Inter-
national Journal on Software Tools for Technology Transfer - Special Edition on
Foundations of Software Engineering. 9(2): 169-178. 2007.

22. A. Arroyo and M.-A. Sicilia. SOPHIE: Use case and evaluation. Inf. Softw. Technol.
Journal 50(12):1266–1280. 2008.

23. C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based Modelling of Architec-
tural Styles. Information and Software Technology 12(1):1739-1749. 2009.



14 Claus Pahl et al.

24. A. Dingwall-Smith and A. Finkelstein. Checking Complex Compositions of Web
Services Against Policy Constraints. In 5th International Workshop on Modelling,
Simulation, Verification and Validation of Enterprise Information Systems. 2007.

25. W.T. Tsai, B. Xiao, Y. Chen and R.A. Paul. Consumer-Centric Service-Oriented
Architecture: A New Approach. In Proceedings IEEE Workshop on Software Tech-
nologies for Future Embedded and Ubiquitous Systems, and Workshop on Collab-
orative Computing, Integration, and Assurance. 175-180. 2006.

26. C. Pahl. A Conceptual Architecture for Semantic Web Services Development and
Deployment. International Journal of Web and Grid Services 1(3/4):287-304. 2005.

27. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. European Conference on Model-Driven Architecture - Foundations
and Applications ECMDA’2005. LNCS 3748. Pages 88-102, 2005.

28. Semantic Web Services Language (SWSL) Committee. Semantic Web Services
Framework (SWSF). http://www.daml.org/services/swsf/1.0/, 2006.

29. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

30. M. Wang, K. Yapa Bandara and C. Pahl. Integrated Constraint Violation Han-
dling for Dynamic Service Composition. IEEE International Conference on Services
Computing SCC 2009. IEEE. 2009.


