
Model Driven Distribution Pattern Design for Dynamic Web
Service Compositions

Ronan Barrett, Claus Pahl
School of Computing
Dublin City University

Dublin 9, Ireland

{rbarrett|cpahl}@computing.dcu.ie

Lucian M. Patcas, John Murphy
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

{lucian.patcas|j.murphy}@ucd.ie

ABSTRACT
Web service compositions are often used to realise service-
based enterprise applications. These enterprise systems are
built from many existing discrete applications, often legacy
applications exposed using Web service interfaces. Accep-
tance of these systems is often constrained by non-functional
aspects, such as Quality of Service (QoS). A number of fac-
tors affect the QoS of an enterprise system, including avail-
ability, scalability and performance. There are a number of
architectural configurations or distribution patterns, which
express how a composed system is to be deployed. These
distribution patterns have a direct impact upon the QoS
of the composition. However, the amount of code required
to realise these distribution patterns is considerable. Ad-
ditionally, there is an increased deployment time associated
with setting up different distribution patterns. We therefore
propose a novel approach which combines a Model Driven
Architecture using UML 2.0 for modeling and subsequently
generating Web service compositions, with a method for
achieving dynamic decentralised interaction amongst ser-
vices with reduced deployment overheads. These approaches
combined provide for the generation of dynamic Web service
compositions driven by a distribution pattern model.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
languages, patterns

General Terms
Design, Management, Performance, Reliability

Keywords
Distribution patterns, Web services, compositions, decen-
tralisation, MDA

1. INTRODUCTION
Service-based enterprise applications are often realised by

composing a number of Web services. The development of
such composite Web services is often ad-hoc, without re-
gard for non-functional requirements, and requires consid-

Copyright is held by the author/owner(s).
ICWE’06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

erable low level coding effort for realisation [1]. We address
these issues with a modeling approach, a non-intrusive de-
centralised interaction mechanism, and a solution for dy-
namic deployment of the composition, to address these is-
sues. Our novel approach combines a Model Driven Archi-
tecture using UML 2.0, for modeling and subsequently gen-
erating Web service compositions, with a method for achiev-
ing decentralised communication amongst services. We also
provide a Web service based facility for enabling the dy-
namic deployment of compositions.

Our modeling approach suggests that Web service com-
positions have three modeling aspects. Two aspects, ser-
vice modeling and workflow modeling, are considered by
[18]. Service modeling expresses interfaces and operations
while workflow modeling expresses the control and data flow
from one service to another. We consider an additional as-
pect, distribution pattern modeling [21], which expresses
how the composed system is to be deployed. Distribution
patterns are an abstraction mechanism useful for achiev-
ing non-functional requirements or QoS [2]. Patterns ex-
press proven techniques, which make it easier to reuse suc-
cessful designs and architectures [9]. Having the ability to
model, and thus alter the distribution pattern, allows an
enterprise to utilise distribution patterns which meet their
QoS requirements. Two well known patterns are centralised
and peer-to-peer, both of which offer different QoS char-
acteristics. For example centralised patterns express high
maintainability, but exhibit poor performance and scalabil-
ity when compared to peer-to-peer patterns, due to a central
message bottleneck [4].

We base our development approach on the OMG’s Model
Driven Architecture (MDA) [8]. MDA considers models as
formal specifications of the structure or function of a system
where the modeling language is in fact the programming lan-
guage. Having rich, well specified, high level models allows
for the auto-generation of a fully executable system based
entirely on the model. Our models will be generated based
on existing Web service interfaces, requiring only limited
intervention from a software architect, who defines the dis-
tribution pattern, to complete the model.

Our approach provides a high level model which intu-
itively expresses, and subsequently generates, the system’s
distribution pattern using a UML 2.0 based Activity di-
agram [7]. Some associated benefits of our modeling ap-
proach are isolation from the instability of unstandardised
web composition technologies, as well as fast and flexible
development of compositions. Motivated by these concerns,

129



we have devised an approach, a technique and an implemen-
tation, for the model driven design of distribution patterns.

There is however additional deployment time overheads
associated with enabling different distribution patterns. This
effort is increased in proportion to the number of Web ser-
vices in a composition or by a requirement for composition
participants to be flexible [3]. Distribution patterns such as
peer-to-peer have considerable QoS advantages, discussed in
the following section, but have a large deployment overhead
when compared to centralised approaches. We propose a
mechanism which allows documents, necessary to describe
decentralised interactions, to be passed for deployment and
subsequent enactment to each participant in a composition.
This approach enhances the service container of each partic-
ipant to enable decentralised composition, while preserving
the existing functionality of these services.

The paper is structured as follows: section two discusses
our modeling approach, some distribution patterns and de-
centralised composition issues; section three investigates our
modeling and transformation technique, as well as a moti-
vating case study; section four introduces our tool imple-
mentation; section five evaluates our approach; section six
presents some related work; finally, section seven considers
future work and concludes the paper.

2. BACKGROUND
In this section, we provide some background to exist-

ing modeling approaches, present some distribution patterns
and introduce some issues related to decentralised composi-
tion.

There is a subtle difference between two of the modeling
aspects within a Web service composition, namely work-
flows and distribution patterns [21]. Both aspects refer to
the high level cooperation of components, termed a collabo-
ration, to achieve some compound novel task [17]. Here, we
consider workflows as compositional orchestrations, whereby
the internal and external messages to and from services are
modeled, as well as the business logic, from the perspec-
tive of only one of the participants in the composition. In
contrast, distribution patterns are considered compositional
choreographies, where only the external messages between
services are modeled. Distribution patterns, as a composi-
tional choreography, consider only the message flow between
services. As such, a choreography can express how a sys-
tem would be deployed. The compositional orchestration of
these services are not modeled here, as there are many ex-
isting approaches [6, 10]. In fact the two approaches could
be combined to provide a more complete model of the com-
position from both the workflow and distribution pattern
perspectives.

Distribution patterns in MDA terms are a form of platform-
independent model (PIM), because the patterns are not tied
to any specific workflow specification language. We consider
there to be four basic distribution patterns, which are listed
below and elaborated in [5].

• Centralised

• Decentralised or Peer-to-Peer

• Ring

• Hierarchical

In order to exploit the potential of pattern-driven chore-
ography definition, the consideration of a variety of patterns
is beneficial, see Figure 1. Each pattern presents different
QoS characteristics, such as varying levels of autonomy, per-
formance, scalability and availability.

Peer-to-Peer PatternCentralised Pattern

Ring Pattern Hierarchical Pattern

Figure 1: Examples of distribution patterns

In a centralised pattern, a composition is managed in a
single location by the enterprise initiating the composition.
This pattern is the most widespread and is appropriate for
compositions that only span a single enterprise. The ad-
vantages are ease of implementation and low deployment
overhead, as only one controller is required to manage the
composition. However, this pattern suffers from a communi-
cation bottleneck at the central controller. This represents
a scalability and availability issue for larger enterprises [3].

The peer-to-peer pattern [21] addresses many of the short-
comings of the centralised pattern by distributing the man-
agement of the composition amongst its participants, re-
sulting in improved scalability, availability and performance
[3][14]. This pattern allows a composed system to span mul-
tiple enterprises while providing each enterprise with auton-
omy [20]. It is most important for security that each business
acts upon its private data but only reveals what is necessary
to be a compositional partner. In a peer-to-peer pattern, the
initiating peer is only privy to the initial input data and fi-
nal output data of a composition. It is not aware of any
of the intermediate participant values, unlike a centralised
pattern. The disadvantages of a peer-to-peer pattern are in-
creased development complexity and additional deployment
overheads.

The ring pattern, is an enhancement of the centralised
pattern. It features a cluster of computational resources
providing load balancing and high availability. There is no
longer a single point of failure or bottleneck as the load is
spread across the entire ring, however all the participants are
normally at the same physical site. Each of the participants
in this pattern perform an identical function.

The hierarchical pattern facilitates organisations whose
management structure consists of a number of levels, by
providing a number of controller hubs. This partitioning of
the system allows for the delegation of work to departments,
providing for security of data as well as scalability, as more
controllers manage the compositions as the system scales up.
The hierarchical pattern is easily extended by adding addi-
tional controlling hubs. The disadvantage of this pattern is

130



WSDL

UML 2.0 Model

UML 2.0
Model

Step # 1 Step # 2

Actor

Distribution Pattern

Step # 3 Step # 4

DPL

DPL

Valid DPL
or

DPL errors

Step # 5

Executable System

Valid DPL

Interaction Logic/
Interfaces/

Deployment 
Descriptors

Generator Definition

Distribution Pattern

Generator

Distribution Pattern

Validator Generator

UML 2.0
Model

UML 2.0
Model

Step # 6

Deployment

Engine

Deployed
Executable

System

Interaction Logic/
Interfaces/

Deployment 
Descriptors

Figure 2: Overview of modeling approach

that there is a single point of failure at the root controller.
If this controller fails the entire composition will fail.

There are also complex variations of these distribution
patterns, where a mix of two or more patterns are combined.
Complex patterns are useful in that the combination of pat-
terns often results in the elimination of a weakness found in a
basic pattern. An example of a complex pattern is a “ring +
centralised pattern”, which provides clustering for a highly
loaded central controller. We also consider two other distri-
bution pattern variants, dedicated hub and dedicated peer,
which may be applied to the first two distribution patterns
and their complex derivatives. For example, the addition of
a dedicated hub to a centralised distribution pattern allows
a composition to be initiated by a participant external to a
composition. A similar scenario is where an additional peer
is added to a decentralised pattern to initiate a composition.

Web services, as passive participants within a composi-
tion often require mediation. This facet makes decentralised
composition, necessary for some distribution patterns such
as peer-to-peer, hard to achieve. However, the mediation
or interaction logic, can be modeled centrally, and subse-
quently deployed to participants, provided that the runtime
infrastructure of the participants supports enactment of the
interaction logic[16]. Such characteristics, as well as the ad-
ditional deployment overheads of decentralisation, should be
addressed when attempting to enable decentralised compo-
sitions.

3. MODELING AND TRANSFORMATION
TECHNIQUE

In this section, we introduce the techniques we have de-
veloped for our distribution pattern modeling and transfor-
mational approach. There are four specific techniques listed
below and elaborated in the six specific steps that follow.
Each step is illustrated in Figure 2.

• UML activity diagram/Profile extension (step 1,2)

• DPL/DPL validator (step 3,4)

• Generators (step 1,3,5)

• Deployment Engine (step 6)

Our technique is motivated by a case study. The case
study is an enterprise banking system with three interact-
ing business processes. We choose an enterprise banking
system as banks have specific QoS requirements, such as
stringent controls over data management, as well as spe-
cific scalability and performance requirements, all of which
are important factors when choosing a distribution pattern.
Banks are also susceptible to changes in organisational struc-
ture, which necessitates a flexible distribution pattern. The
scenario involves a bank customer requesting a credit card
facility. The customer applies to the bank for a credit card,
the bank checks the customer’s credit rating with a risk as-
sessment agency before passing the credit rating on to a
credit card agency for processing. The customer’s credit
card application is subsequently approved or declined.

3.1 Step 1 - From Interface To Model
The initial step takes a number of Web service interfaces

as input. These interfaces represent the services which are
to be composed. As Web services’ WSDL interfaces are
constrained by XML Schemas, their structure is well defined.
This allows us to transform the interfaces, using the UML
2.0 model generator, into a UML 2.0 activity diagram, an
approach also considered by [6]. The UML model generated
contains many of the new features of UML 2.0, such as Pins,
CallBehaviorActions and ControlFlows [13].

A UML activity diagram is chosen to model the distri-
bution pattern as it provides a number of constructs which
assist in clearly illustrating the distribution pattern, while
providing sufficient information to drive the generation of
the executable system. Activity diagrams show the sequen-
tial flow of actions, which are the basic unit of behaviour,
within a system and are typically used to illustrate work-
flows.

UML ActivityPartitions, also known as swim-lanes are
used to group a number of actions within an activity di-
agram. In our model, these actions will represent WSDL
operations. Any given interface has one or more ports that
will have one or more operations, all of which will reside in a
single swim-lane. To provide for a rich model, we use a par-
ticular type of UML action to model the operations of the
WSDL interface. These actions, called CallBehaviorActions,
model process invocations and have an additional modeling

131



<<profile>>

DPLProfile

<<<<metaclass>>>>

Activity

<<<<stereotype>>>>

DPLMetadata

+collaboration_language: CollaborationLanguage

+distribution_pattern: DistributionPattern

+service_name: String

+base_namespace: String

+namespace_prefix: String

+operation_name: String

<<<<metaclass>>>>

CallBehaviorAction

<<<<stereotype>>>>

DPLParticipant

+name: String

+role: Role

+returns: Boolean

<<<<metaclass>>>>

InputPin
<<<<metaclass>>>>

OutputPin

<<<<stereotype>>>>

DPLMessage

+message_name: String

+is_correlation_variable: Boolean

<<<<metaclass>>>>

ActivityPartition

<<<<stereotype>>>>

DPLPartition

+ns: String

+interface_uri: String

+engine_uri: String

<<<<enumeration>>>>

DistributionPattern

+centralised

+peer_to_peer

+ring

+hierarchical

+mesh

+hybrid

<<<<enumeration>>>>

CollaborationLanguage

+WS-BPEL

+WS-CDL

<<<<enumeration>>>>

Role

+peer

+hub

+spoke

Figure 3: UML profile for modeling distribution patterns

constructs called pins. There are two types of pins, Input-
Pins and OutputPins, which map directly to the parts of the
WSDL messages going into and out of a WSDL operation.

For our UML activity diagram to effectively model distri-
bution patterns, we require the model to be more descriptive
than the standard UML constructs allow. We use a standard
extension mechanism of UML, called a profile [8]. Profiles
define stereotypes and subsequently tagged values that ex-
tend a number of UML constructs. Each time one of these
derived constructs is used in our model we may assign values
to its tagged values. An overview of our profile can be seen
in Figure 3, while the individual tagged values are described
in detail in Table 1. The profile extends the Activity, Activ-
ityPartition, CallBehaviorAction, InputPin and OutputPin
UML constructs. This extension allows distribution pattern
metadata to be applied to the constructs via the tagged val-
ues. For example, the distribution pattern is chosen by se-
lecting a pattern from the DistributionPattern enumeration
and assigning it to the distribution pattern tagged value on
the DPLMetadata construct.

The banking case study provides three WSDL interfaces
as input to the UML 2.0 model generator. These inter-
faces represent the bank (CoreBanking), the risk assess-
ment agency (RiskManagement) and the credit card agency
(CreditCard). All three are represented in the generated
UML activity diagram, albeit without any connections be-
tween them. A swim-lane is provided for each interface.
Each interface has one operation, represented as a CallBe-
haviorAction, which is placed in the appropriate swim-lane.
The message parts associated with each operation are repre-
sented as InputPins and OutputPins. These pins are placed
on the appropriate CallBehaviorAction. No model interven-
tion from the software architect is required at this step.

3.2 Step 2 - Distribution Pattern Definition
The UML model produced in step 1, requires additional

modeling. First the architect selects a distribution pattern
and then assigns appropriate values to the tagged values
of the stereotypes. The software architect must then de-
fine the sequence of actions by connecting CallBehaviorAc-
tions to one another, using UML ControlFlow connectors,
guided by the chosen distribution pattern. The architect

must also connect up the UML InputPins and OutputPins
of the model, using UML ObjectFlows connectors, so data
is passed through the composition.

Returning to the case study, we must connect up the three
Web services to realise a distribution pattern. Before we do
this, however, the architect must select a distribution pat-
tern appropriate to the bank’s QoS requirements by apply-
ing values to the tagged values of the stereotypes. Some
appropriate values can be seen in Table 1. The peer-to-
peer distribution pattern is appropriate as the bank requires
credit rating information from a third party and does not
wish to reveal any of the intermediate participant values of
the composition. Also, the bank anticipates a high number
of credit card applications, so the load must be distributed
to avoid availability issues. Other scenarios would demand
the use of other distribution patterns. The pattern is applied
by connecting the CoreBanking and RiskManagement Call-
BehaviorActions together and subsequently connecting the
RiskManagement and CreditCard CallBehaviorActions con-
structs together, using ControlFlow connectors, as in Figure
4. A dedicated peer is not used as the entry point to the
composition, although this option is available. The Input-
Pins and OutputPins of the CallBehaviorActions are con-
nected together using ObjectFlow connectors, to allow the
message parts propagate through the distribution pattern.
An extra OutputPin, accountName, must be added to the
RiskManagement CallBehaviorAction, to provide data for
an InputPin, accoutName, to the CreditCard CallBehav-
iorAction.

3.3 Step 3 - From Model to DPL
Using the model generated in step 2 as input, the model

is transformed to a Distribution Pattern Language (DPL)
document instance, using the distribution pattern generator.
This document, which is at the same level of abstraction as
the UML model, is an internal representation of the distri-
bution pattern which can be validated. The DPL specifica-
tion, written in XML Schema, and the document instance,
an XML file, have no reliance on UML and so provide for
interoperability with other modeling techniques.

With regard to our case study, the ControlFlow connec-
tors previously defined between the CallBehaviorActions are

132



Figure 4: Generated model with connections defined by software architect, viewed in IBM RSA

Table 1: Detailed description of DPLProfile stereotypes attributes

Attribute Description Example Value

collaboration language Choice of collaboration language WS-BPEL

distribution pattern Choice of distribution pattern peer-to-peer

service name Name used by clients to consume the composition BankingPeerToPeer

base namespace Namespace URI for the composition, avoids name clashes http://foo.com/wsdl/

namespace prefix Namespace alias for the composition, avoids name clashes BankingPeerToPeer

operation name Operation name used by clients to consume the service applyForCC

ns Namespace URI of the participant, avoids name clashes http://RiskManagement

interface uri URI specifying the location of the participant’s interface http://localhost/RM?WSDL

engine uri URI specifying the location of the enactment engine http://localhost/services/

name Name of the participant in the composition RiskManagement

role Choice of roles for the participant from the Role enumeration peer

returns Last participant in the composition or not false

message name Name of the message from which the pin gets or puts its data getAccountNameResponse

is correlation variable Unique identifier field for a composition false

used to assign an order value to the participant’s operations,
which themselves are derived from the CallBehaviorActions
(getAccountName, getRiskAssessment and getCreditCard)
in the UML model. The ObjectFlow connectors between
the InputPins and OutputPins are used to define the map-
pings between participants. The first participant does not
require any explicit ObjectFlow connectors as the initial val-
ues passed into the system are used as its input automati-
cally.

3.4 Step 4 - Model Validation
The DPL document instance, representing the distribu-

tion pattern modeled by the software architect, is verified
at this step by the distribution pattern validator, to ensure
the values entered in step 2 are valid. The verification pro-
cess ensures the distribution pattern selected by the software
architect is compatible with the model settings. If incorrect
values have been entered, the architect must correct these
values, before proceeding to the next step. For example, in
our case study, as the peer-to-peer distribution pattern has
been chosen, there must be at least two participants with

a peer role and there must not be any participants with a
hub role. If any errors are detected they must be corrected
by the software architect by returning to step 2. Validation
of the distribution pattern instance is essential to avoid the
generation of an invalid system.

3.5 Step 5 - DPL to Interaction Logic
The executable system generator takes the validated DPL

document instance and generates all the interaction logic re-
quired to realise the distribution pattern. The generator cre-
ates the interaction logic documents based on the collabora-
tion language setting. Interaction logic documents describe
the message flow between the participants in the distribu-
tion pattern as well as input and output variable mappings.
The generator also creates interfaces which expose the new
interaction logic processing capability as a wrapper to the
existing Web service functionality of the participant. A de-
ployment descriptor document, describing the participants
of the composition is also created for each participant. These
documents are generated by parsing the DPL document in-
stance and the WSDL interfaces associated with each par-

133



ticipant. Once deployed, these documents will realise the
Web service composition, driven by the distribution pattern
applied by the software architect.

In our case study example, three WS-BPEL workflow doc-
uments are created to represent the interaction logic between
the three peers in the distribution pattern. Three WSDL in-
terfaces and three deployment descriptor documents are also
created, all that remains is for the system to be deployed.

3.6 Step 6 - Interaction Logic to Deployed Ex-
ecutable System

In the final step, the interaction logic, interface and de-
ployment descriptor documents generated in the previous
step are automatically passed to the participant services, by
the deployment engine. We consider a novel enhancement
to the container of each participant called Interaction Logic
Document Processor (ILDP), see Figure 5(a). The ILDP en-
hancement must be installed on each participant, however
this is a once off installation. ILDP enhanced participants
are exposed as Web services, capable of receiving, process-
ing and deploying these documents, see Figure 5(b). These
enhanced participants can receive documents from the de-
ployment engine. Subsequently the documents are processed
by ILDP to ensure they are valid before storing them on the
participant. Finally the stored documents are deployed by
ILDP on the participant and exposed for composition by a
composition runtime interface. An enactment engine, inde-
pendent of ILDP, is responsible for enacting the interaction
logic and subsequently invoking the participant services, fa-
cilitating decentralised interaction amongst the participant
services. This approach negates any requirement of manu-
ally deploying documents to participant services. Moreover,
as the mechanism enhances the container capability, it is
non-intrusive to the existing Web service implementation or
to the existing interfaces of the participant services.

Send
Documents

Receive
Documents

Process 
Documents

Deploy
Documents

Deployment Engine Participant Services

Install ILDP
on Participants

Expose ILDP as
Web Service Interface

(a) (b)

Figure 5: ILDP Deployment

The evolution of the participant’s interface can be seen in
Figure 6. In step 1 the original Web service interface of the
participant is visible. In step 2 the ILDP is installed and
an additional interface is exposed by ILDP so it can receive
interaction logic, interface and deployment descriptor doc-
uments. Finally in step 3, on receipt of documents, ILDP
creates a composition runtime interface for participants in a
particular composition to communicate to each other, using

interaction logic. An ILDP can have any number of composi-
tion runtime interfaces enabling the participant to take part
in many distribution pattern based compositions. ILDP en-
gines realise a distribution pattern by enacting interaction
logic documents and by communicating to each other us-
ing the composition runtime interface, if necessitated by the
distribution pattern guiding the composition.

 Existing 

Interface

 Existing 

Interface

ILDP 

Interface

 Existing 

Interface

ILDP 

Interface

Composition

Runtime

Interface

Step # 1 Step #2 Step # 3

Figure 6: Participant interface evolution

With regards to our case study, all three participant ser-
vices, CoreBanking, RiskManagement and CreditCard will
be contacted by the deployment engine. The engine will pass
the relevant interaction logic, interface and deployment de-
scriptor documents to the participant services. We assume
each of the participant service containers has the ILDP en-
hancement installed, and is therefore capable of receiving,
processing and deploying these documents at runtime, as
well as subsequently enacting the interaction logic.

4. IMPLEMENTATION
TOPMAN (TOPology MANager) is our solution to en-

abling distribution pattern modeling using UML 2.0 and
subsequent dynamic Web service composition generation.
The only technologies required by the tool are the Java run-
time and both an XML and XSLT parser. The tool imple-
mentation is illustrated in Figure 7.

UML 2.0 Model 
Generator

WSDL
Model as XMI
Profile as XMI

Manipulate

Actor

DPL as XML
WS-BPEL(s)

WSDL(s)
PDD(s)

Distribution Pattern 
Generator

Executable System
 Generator

XSLT/DOM

XSLT/DOM

RSA

UML2

Distribution Pattern
Validator

DPL XML Schema

XSLT/DOM

Deployment
Engine

SOAP Messages

Figure 7: Overview of TOPMAN tool

The UML 2.0 model generator uses XSLT to transform
the WSDL interfaces of the Web services participating in
the composition, to a UML 2.0 activity diagram, which gen-
erates, using XML DOM, an XMI 2.0 [11] document. XMI is
the XML serialisation format for UML models. The model
generated includes a reference to our predefined UML pro-
file for distribution patterns, which is also serialised to XMI
2.0.

A number of tools may be used to describe the distri-
bution pattern. IBM’s commercial tool Rational Software
Architect (RSA) is compatible with XMI 2.0 and supports
many of the UML 2.0 features. The tool has a GUI which

134



allows the software architect to define the distribution pat-
tern. Upon completion, the model can be exported back to
XMI for further processing by TOPMAN. An alternative to
IBM’s commercial tool is UML2, an open source tool sup-
porting UML 2.0, which allows the model to be viewed and
manipulated in an editor.

The distribution pattern generator uses XSLT to trans-
form the UML 2.0 model to a DPL instance document. The
DPL document instance is then verified by an XML vali-
dating parser. Finally the DPL document instance is used
to drive the executable system generator. The executable
system generator creates three distinct types of documents.
XSLT and XML DOM are used to generate the interaction
logic (realised here using WS-BPEL). WSDL interfaces and
ILDP engine specific deployment descriptor documents, re-
quired by an ILDP compatible engine to participate in a
composition, are also generated. Each participant in the
composition must have an ILDP engine installed to enact
interaction logic.

Finally, depending on the distribution pattern chosen, the
generated interaction logic, interface and deployment de-
scriptor documents are distributed to the participants in
the composition by the deployment engine. The deploy-
ment engine creates SOAP messages containing these doc-
uments and sends them to the ILDP enhanced service con-
tainer, via the ILDP interface of each participant. Here we
use WS-BPEL to implement the interaction logic, WSDL
to implement a wrapper which exposes the interaction logic
processing capabilities, and the ActiveBPEL specific Process
Deployment Descriptor (PDD) to describe the composition
participants. The ActiveBPEL workflow engine is used as
the enactment engine which processes the interaction logic.

5. EVALUATION
We assess our approach using the criteria set out in [18],

along with some of our own criteria.

• Pattern expression - We have identified a number of
reusable distribution patterns and have shown how
patterns can be expressed using UML with our DPL-
Profile extension and in XML, using our novel DPL
specification. Different distribution patterns have dif-
ferent QoS characteristics such as availability, scalabil-
ity and performance, as set out in section 2.

• Readability - Our modeling approach, which visualises
the distribution pattern, should be intelligible to soft-
ware architects. As the model is at the PIM level,
clutter from implementation details is avoided.

• Executable - Our UML model and associated profile
is sufficiently rich to generate a DPL document in-
stance and subsequently all the interaction logic, in-
terface and deployment descriptor documents needed
to create an executable system.

• Independence of technologies - As both our UML model
and DPL instance document are modeled at the PIM
level, there is no reliance on any particular workflow
language. Also the container enhancement, ILDP, is
not bound to any interaction logic or workflow lan-
guages such as WS-BPEL.

• Maintenance overhead - Our MDA approach, using
UML provides for easy manipulation of the system’s

distribution pattern. Additionally, the container en-
hancement we propose allows for increased flexibility
to changes. Changes made to the distribution pattern
after deployment time, have significantly reduced rede-
ployment overheads, when compared with the manual
deployment of interaction logic, interface, and deploy-
ment descriptor documents. Our ILDP enhancement,
applied to the participant services, provides for dy-
namic deployment and enactment of the interaction
logic documents. However, each participant within the
composition must support this enhancement technol-
ogy.

6. RELATED WORK
Two workflow management systems motivate and pro-

vide concrete implementations for two of the distribution
patterns explored in this paper. However, neither system
provides a standards-based modeling solution to drive the
realisation of the chosen distribution pattern. The first sys-
tem DECS [21], is a workflow management system, which
supports both centralised and peer-to-peer distribution pat-
terns, albeit without any code generation element. DECS
defines elementary services as tasks whose execution is man-
aged by a coordinator at the same location. The solution
is based on OPENFlow [12] which has a GUI for work-
flow management and is CORBA based. The second sys-
tem SELF-SERV [20], proposes a declarative language for
composing services based on UML 1.x statecharts. SELF-
SERV provides an environment for visually creating a UML
statechart which can subsequently drive the generation of a
proprietary XML routing table document. Pre- and post-
conditions for successful service execution are generated based
on the statechart inputs and outputs. A related paper [3]
provides some interesting performance metrics to confirm
the advantages of peer-to-peer execution over centralised ex-
ecution.

From the modeling perspective Grønmo et al. [18, 6], con-
sider the modeling and building of compositions from exist-
ing Web services using MDA, an approach similar to ours.
However, they consider only two modeling aspects, service
(interface and operations) and workflow models (control and
data flow concerns). The system’s distribution pattern is not
modeled, resulting in a fixed centralised distribution pat-
tern for all compositions. Their modeling effort begins with
the transformation of WSDL documents to UML, followed
by the creation of a workflow engine-independent UML 1.4
activity diagram (PIM), which drives the generation of an
executable composition. Additional information required to
aid the generation of the executable composition is applied
to the model using UML profiles. A tool called UMT [19] is
provided to support their technique.

Enabling distribution patterns such as peer-to-peer re-
quires considerable work. A strategy, utilised by us, is in-
troduced in [4] and described in [15], where workflow agents
(ILDPs in our approach) are placed as proxies, at each
participant to manage the distributed composition. These
workflow agents manage the distributed composition by com-
municating directly to each other. The authors also consider
build time and runtime issues of decentralisation. However,
the problem of deploying decentralised compositions is left
open, resulting in considerable deploy time overheads. We
propose a mechanism for facilitating the dynamic deploy-
ment of decentralised compositions.

135



7. CONCLUSION AND FUTURE WORK
A software engineering approach to the composition of

service-based software systems is necessary. We have in-
troduced techniques based on architectural modeling and
pattern-based development. Our contribution is a modeling
and transformation approach, technique and implementa-
tion for expressing the distribution pattern of a Web service
composition. Our novel modeling aspect, distribution pat-
terns, expresses how a composed system is to be deployed,
providing for improved maintainability, comprehensibility,
and varying QoS characteristics depending on the pattern
chosen. Four modeling and transformation techniques were
introduced, along with a tool (TOPMAN) which assists in
the generation of an executable system.

We have also contributed a mechanism for the dynamic
deployment of decentralised compositions. Our novel mech-
anism ILDP, preserves the autonomy of services, by enhanc-
ing the service container of each participant. This approach
results in significantly reduced deployment overheads and
provides a mechanism to realise distribution patterns. How-
ever, we foresee replacing WS-BPEL as our interaction logic
language, as it is overly complex for our interaction logic re-
quirements. Instead we envisage a more concise interaction
logic language, possibly a subset of WS-BPEL, and a com-
patible interaction logic document processor.

Extensions to our modelling approach are being consid-
ered, based on integrating our approach with existing service
and workflow modelling efforts [18], which could enable us
to model more complex Web service compositions. We also
envisage using semantics, which could reduce the software
architects workload. Currently the connections and map-
pings between Web services must be made manually using
our modeling technique. However if semantics were present
the architect would simply choose a distribution pattern,
possibly from a pattern repository, and the connections and
mappings would be made automatically.

8. ACKNOWLEDGMENTS
This research is supported by the Irish Research Council

for Science, Engineering and Technology (IRCSET) and the
Advanced Technology Research Programme (ATRP), from
the Informatics Research Initiative of Enterprise Ireland.

9. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.

Web Services: Concepts, Architecture and
Applications. Springer Verlag, 2004.

[2] M. Barbacci. Quality Attributes. Technical report,
CMU/SEI-95-TR-021, 1995.

[3] B. Benatallah, Q. Z. Sheng, and M. Dumas. The
self-serv environment for web services composition.
IEEE Internet Computing, 7:40–48, 2003.

[4] G. B. Chafle, S. Chandra, V. Mann, and M. G.
Nanda. Decentralized orchestration of composite web
services. In Proc. of the 13th international World
Wide Web conference, pages 134 – 143, New York,
NY, USA, May 2004.

[5] D. Choon-Hoong, S. Nutanong, and R. Buyya.
Peer-to-Peer Computing: Evolution of a Disruptive
Technology. Idea Group Publisher, 2005.

[6] D. Skogan and R. Grønmo and I. Solheim. Web service
composition in uml. In Proc. 8th International IEEE

Enterprise Distributed Object Computing Conference,
pages 47–57, Monterey, California, September 2004.

[7] H. E. Eriksson, M. Penker, B. Lyons, and D. Fado.
UML 2 Toolkit. Wiley, 2003.

[8] D. S. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns:Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[10] T. Gardner. Uml modeling of automated business
processes with a mapping to bpel4ws. In Proc. First
European Workshop on Object Orientation and Web
Service (EOOWS), Darmstadt, Germany, July 2003.

[11] T. J. Grose. Mastering XMI: Java Programming with
XMI, XML, and UML. Wiley, 2002.

[12] J. Halliday, S. K. Shrivastava, and S. M. Wheater.
Flexible workflow management in the openflow
system. In Proc. 5th IEEE/OMG International
Enterprise Distributed Object Computing Conference,
pages 82–92, Seattle, Washington, September 2001.

[13] G. Kramler, E. Kapsammer, W. Retschitzegger, and
G. Kappel. Towards using uml 2 for modelling web
service collaboration protocols. In Proc. First
Interoperability of Enterprise Software and
Applications, Geneva, Switzerland, February 2005.

[14] D. Liu, K. H. Law, and G. Wiederhold. Analysis of
integration models for service composition. In Proc.
3rd international workshop on Software and
Performance, pages 158–165, New York, NY, USA,
2002. ACM Press.

[15] M. G. Nanda, S. Chandra, and V. Sarkar.
Decentralizing execution of composite web services. In
Proc. 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and
applications, pages 170–187, New York, NY, USA,
2004. ACM Press.

[16] L. M. Patcas, J. Murphy, and G. M. Muntean.
Middleware support for data-flow distribution in web
services composition. In The PhDOOS Workshop and
Doctoral Symposium, ECOOP, Glasgow, UK, July
2005.

[17] C. Peltz. Web services orchestration and
choreography. IEEE Computer, 36, 2003.

[18] R. Grønmo and I. Solheim. Towards modeling web
service composition in uml. In Proc. 2nd International
Workshop on Web Services: Modeling, Architecture
and Infrastructure (WSMAI-2004), pages 72–86,
Porto, Portugal, April 2004.

[19] R. Grønmo and J. Oldevik. An empirical study of the
uml model transformation tool (umt). In Proc. First
Interoperability of Enterprise Software and
Applications, Geneva, Switzerland, February 2005.

[20] Q. Z. Sheng, B. Benatallah, and M. Dumas. Self-serv:
A platform for rapid composition of web services in a
peer-to-peer environment. In Proc. 28th International
Conference on Very Large Data Bases, pages
1051–1054, Hong Kong, China, August 2002.

[21] S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and
S. M. Wheater. A system for distributed enactment of
composite web services. In Work in progress report,
Int. Conf. on Service Oriented Computing, Trento,
Italy, December 2003.

136


