
Krishnamurthy, A. and O’Connor, R. V. Using ISO/IEC 12207 to Analyze Open Source Software
Development Processes: An E-Learning Case Study Proceedings 13th International Conference on
Software Process Improvement and Capability dEtermination (SPICE 2013), CCIS Vol. 349, Springer-
Verlag, May 2013.

Using ISO/IEC 12207 to Analyze Open Source Software
Development Processes: An E-Learning Case Study

Aarthy Krishnamurthy1, Rory V. O’Connor2

1 School of Electronic Engineering, Dublin City University, Ireland

2 School of Computing, Dublin City University, Ireland
aarthy.krishnamurthy2@mail.dcu.ie, roconnor@computing.dcu.ie

Abstract. To date, there is no comprehensive study of open source software
development process (OSSDP) carried out for open source (OS) e-learning
systems. This paper presents the work which objectively analyzes the open
source software development (OSSD) practices carried out by e-learning
systems development communities and their results are represented using
DEMO models. These results are compared using ISO/IEC 12207:2008. The
comparison of DEMO models with ISO/IEC 12207 is a useful contribution; as
it provides deeper understanding to-wards the OS e-learning system
development.

Keywords: Software Development Process, Open Source Software, DEMO
Models, Activity Flow Diagrams, E-Learning Systems, ISO/IEC 12207:2008.

1 Introduction and Research Approach

The e-learning systems developed as a Closed Source Software (CSS) follow either a
traditional software development process (SDP) or a tailored version to suite the local
needs and demands. These development processes have associated
standards/guidelines that are followed, which mostly results in good quality software
products. However on the other hand, OSS e-learning systems are developed by a
community of like-minded developers, who are geographically distributed, yet work
together closely on a specific software product [1].

OSSD has gained significant attention in recent years and is widely accepted as
reliable products (e.g. Moodle, Apache, Linux, etc.). However, they lack a defined
SDP which hinders the delivery of high quality systems to its users. Hence it is
imperative to analyze and understand the existing and successfully running OS e-
learning systems before developing a generalized OSS process for e-learning systems.

To the best knowledge of authors, there has been no comprehensive study
performed on OS e-learning system development activities nor it has been modeled.
Hence, the aim of this paper is to objectively analyze the OSSD of three most popular
e-learning systems - Moodle, ILIAS and Dokeos. Most importantly, this paper
discusses the result of the analysis (represented using DEMO Models) in conjunction
with ISO/IEC 12207:2008 standard. This is a crucial work towards developing a

generalized OSSDP as using ISO/IEC 12207:2008 is the only way to get a deeper
insight of the current OSSD practices.

The research approach is basically divided into two distinct parts. The first part
deals with collecting the information about the development practices of Moodle,
ILIAS and Dokeos and modeling the results using activity flow diagrams and DEMO
models. These are briefly explained in this paper to give an initial understanding of
how these results are used in conjunction with ISO/IEC 12207:2008 standard. The
second part of the research approach focuses on how these results is used with
ISO/IEC 12207:2008. This leads to the detailed understanding of various
development activities carried out in all the three OS e-learning systems. These are
explained in detail under section 3.

The paper is organized into 4 sections. Section 1 introduced the research
background and the objective of this research along with the research approach used.
Section 2 describes briefly the DEMO models and its results. Section 3 discusses the
important aspect of this paper – ISO/IEC 12207:2008 and its mapping with DEMO
results. Finally Section 4 presents the conclusion and future work.

2 Activity Flow Representation and DEMO Models

The initial task under the first part of this research work is towards discovering the
current development practices on all the three OS e-learning systems [2]. The findings
of the background study were represented as activity flow diagram for Moodle, ILIAS
and Dokeos [3]. Each of the three OS e-learning system has executed different
activities at different stages of development. Notably, the manner in which each stage
is carried out depends entirely on the expertise, experience and availability of
resources and skills. Further, the initial background study helped in identifying the
various implicit and explicit stages of development. There were distinct similarities
and differences between Moodle, ILIAS and Dokeos on different aspects. These are
summarized in Table 1. Please note that the activity flow diagrams are introduced
here because the results of this background work are an input towards the analysis of
OSSDP.

Table. 1. Comparison results based on the background study.

 Moodle ILIAS Dokeos
No of development
stages

Not explicitly
categorized

Six explicit stages Not explicitly
categorized

Who validates
proposed idea

Anyone can validate Only the core team
validates

No validation

Development plan No plan is produced No plan is produced No plan is produced
Person(s)
responsible for
development

Initial volunteer &
subsequent team
formation

Initial volunteer &
subsequent team
formation

Any interested
volunteers

Testing Anyone can test at
any time.

Anyone can test at
anytime

Anyone can test until
release

Release Two stage release Two stage release One stage with no

process is followed process is followed beta release

There have been few works carried out for modeling OSSD process. The model
proposed by Jensen and Scacchi [4] for discovering the process followed for OSS
development doesn’t provide complete clarification for investigating the results
obtained which inhibits its use for generalizing the OSSD process. Another model
Basili and Lonchamp uses a multi-level approach for modeling the OSSD process [5]
However, it does not provide precise notations for specifying the relationship between
the product and the role. In addition, both the modeling techniques are depended upon
the implementation method. Hence, DEMO methodology was considered in this
research work as it overcomes the drawbacks of activity flow diagrams and also is
independent of the implementation method.

DEMO (Design and Engineering Methodology for Organizations) is a
methodology used for developing high-level and abstract models of construction and
operation of organizations. DEMO applies enterprise ontology theory and ‘Ontology’
can be simply defined as an ‘explicit specification of a conceptualization’ [6]. DEMO
models focuses on the communication pattern between human actors and various
outputs produced during software development [7]. In this case we can use DEMO
models to provide a high level overview of how the OS e-learning software products
are developed without taking into consideration the technology or technique used for
the development. The DEMO methodology and models has been already applied to
OS systems and has been proved to provide a high quality, abstract model [7].

DEMO specifies various axioms, two of which are used in this wok. The first is the
production axiom and according to this axiom, social individuals/actors fulfill the
goals of an enterprise by performing ‘acts’. The result of successfully performing an
act is recorded in a ‘fact’. On the ontological level, two kinds of acts occur:
production acts (P-acts) and coordination acts (C-acts). Performing a P-act correspond
to the delivery of products, services and information to the environment of an
organization. By performing a P-act, a new production fact (P-fact) is brought into
existence. In order to complete the performance of a P-act, social individuals /actors
have to communicate, negotiate and commit themselves. These activities are called
coordination acts (C-acts), and they result in coordination facts (C-facts).

The second axiom is the transaction axiom and it states that the coordination
involved to successfully complete a P-act can be expressed in a universal pattern,
which is called a ‘Transaction’. A transaction consists of three phases: order phase,
execution phase and result phase. In the order phase, the actors negotiate about the P-
fact that is the subject of the transaction. Once an agreement is reached, the P-fact is
produced in the execution phase. In the result phase, the actors can negotiate and
discuss about the result of the transaction. These phases are subdivided into process
steps, which consist of four coordination acts and one production act. C-act includes
request, promise, state and accept. While the production act includes execute (process
step). In DEMO, exactly two actors are associated with a transaction: an initiator and
an executor. The authority over the execution of a single transaction is assigned to the
executor [6]. This authority can be attributed to individuals or groups of individuals.

There are several ways (i.e., numerous diagrammatic representations) for modeling
a development process using DEMO methodology. They include: State model, Action
model, Interstriction model, Process structure diagram (PSD) and Actor transaction

diagram (ATD). The ATD shows the various actors’ involvement in specific
communication for executing a task and which actor actually produces the P-fact.
This is a major advantage over the activity flow representation. In addition, ATD
provides an overview of the actors and transactions within the scope of the
enterprise/project and therefore aggregates the information contained within the PSD.
In this paper we present the ATD for all three OS e-learning systems along with
various outputs produced during the software development.

DEMO Model (ATD) for Moodle: The ATD for Moodle development is shown
in Fig. 1, wherein the information of each of the PSD is aggregated. The actors
involved in developing Moodle include; the Moodle community, core team/owner,
developer, triage, integration reviewer, tester and a maintainer. Notably, Moodle
carries out 11 transactions in total, from inception to release. These are denoted by
‘T0x’, where ‘x’ ranges from 1 to maximum number of transactions. In addition, Fig.
1 demonstrates two important points: Firstly, it shows which actor starts
communicating with the other for executing a particular task. Secondly, it shows
which actor actually executes the task to produce corresponding output (P-fact). For
instance, ‘Community’ starts communicating with the ‘Core team’ for performing a
transaction ‘T01’. It is the ‘Core Team’s’ responsibility to carry out the task and is
denoted by a ‘n’ at the end of the line.

Feature
released &
published

Request for
testing

integrated
feature

Bug fixing

Items
Prioritized

for bug
fixing

Bugs are
tested and
reported

Specification

document
Reviewed/
updated

Feature
implem-
entation

Selected feature
added to
roadmap

Voting process
for feature
selection

Community

Developer

Developer
Core
team

Developer TriageCommunity

T01

T01T01T01T01T05

T03

T04

T08

T02

T010

T09

T011

Community

T06 T07

Integration
Reviewer

Tester

Community

Maintainer

Specifica-
tion

document
created

Request for
feature

integration

Fig. 1 ATD for Moodle Development

In Moodle, there are 4 transactions to be executed in order to select a feature and

develop requirement specification for the selected feature(s). They are T01, T02, T03
and T04. The roles that execute the tasks corresponding to these transactions are the

Moodle community, owner/core team and the developer. P-fact is produced on
successful execution of T01which implies successful completion of voting process for
selecting the feature. Once the voting is done, the features with highest number of
votes are selected (immediate requirement) and are added to the roadmap list.
Therefore, the P-fact of T02 is the roadmap developed for feature implementation. In
Moodle, specification document are to be created for each of the feature added to the
roadmap. Hence the corresponding P-fact produced by executing T03 is the
specification document. Finally, the P-fact for the transaction T04 is the suggestions
and discussion on the specification document that the entire community provides,
based on the specification released earlier.

The next stage in Moodle development is the implementation of the selected
Moodle feature. Two transactions were executed for implementing and verifying the
implementation of the Moodle feature (T05 & T06). The owner/core team starts
communicating with the developer by placing a request ‘T05 rq’ for developing a
particular feature. The developer promises to do the work which is indicated as ‘T05
pm’ and executes the task denoted by ‘T05 ex’. The developer then requests the
community to verify his work before merging the code ‘T06 rq’. The community
promises to verify the code ‘T06 pm’, verifies it and changes its status as verified
‘T06 st’. Further, it sends the feedback to the developer who in turn acknowledges the
work, ‘T06 ac’. It then changes the status ‘T05 st’ and sends the code to the
owner/core team. They in turn acknowledge the developer ‘T05 ac’. The P-fact of
transaction, T05 implies the successful implementation of the Moodle feature. P-fact
of T06 is the completion of initial testing and bugs found in this testing are then
reported for a fix.

Once the implementation was successfully finished, the feature is then tested and
released to the Moodle-using community - Transactions T07 through T011 (for
testing and releasing the Moodle feature developed). The P-fact of T07 is the
prioritized list of items developed by the triage for fixing & testing. These are then
sent to the developer. The developer then fixes the issue and tests it. The bugs that are
fixed form the P-fact of T08 and are then added to the integration queue. The
integration reviewers are responsible for integrating the same - the P-fact of T09. In
transaction T010, the integrated code is tested and verified. The corresponding P-fact
is the updated tracker item. The P-fact of the final transaction T011 is latest version of
the software, which would be freely available for download from production
repository. The P-facts produced during Moodle development are summarized in
Table 2.

Table. 2. P-Facts produced during Moodle development.

Transaction P-facts
T01 Voting process is completed.
T02 Development road map is created.
T03 Specification document created.
T04 Selected features are discussed.
T05 Feature is developed.
T06 Feature is tested by the community & bugs reported.
T07 Reported bugs are prioritized.
T08 Bugs are fixed.

T09 Features are added to the integration queue.
T010 Features are integrated and tested.
T011 A stable feature is released.

DEMO Model (ATD) for ILIAS: Various actors’ involved in ILIAS development
are: the user community, core team, developer, tester and maintainer. The transactions
carried out for its development are denoted from T01 through T09 and the ATD for
ILIAS is shown in Fig. 2. For selecting a feature in ILIAS, the user community and
the core team communicate with each other and subsequently, the core team executes
the transaction T01. The P-fact produced for this transaction is a feature wiki page
which includes the selection decision along with the discussions that led to the final
decision. The next step in ILIAS development is the development of requirement
specification. Various actor’s involved in developing and verifying the requirement
specifications are: core team, user community and the developer. There are three
transactions involved in developing the specification (T02, T03 and T04). The P-facts
produced for each transaction (T02, T03 & T04) are the creation of requirement
specification document, discussions on the specification document. Subsequently, the
core team improves the specification doc by implementing some of the suggestions.

User
Community

Core
Team

Developer

T01 T02

Request
verification

T06

Alpha
Testing

Feature
Selection

Specification
Development

Tester T06

Beta
Testing

T09
Request

for
Release

T07

Core
Team

T04

T05

Request
verification

Request
code

develop

Verify with
Core TeamT08Maintainer

T03

Fig. 2 ATD for ILIAS Development

The next step is feature implementation and this involves 3 main actors: the core
team, the developer and the user community over 2 transactions T05 and T06. The P-
fact produced by successful execution of T05 is the successful implementation of the

feature selected. The P-fact of T06 is the bug reported on that feature in their bug
reporting system. Once the feature is developed, it has to be tested and released and
the actors involved in this are developer, maintainer, core team and tester. There are
three transactions T07, T08 & T09 executed by these roles. The P-facts achieved by
the transactions are released working feature, updated roadmap with the released
feature included in it and the bugs reported after the release in the bug tracking
system. The P-facts have been summarized in Table 3.

Table 3. P-Facts produced during ILIAS development.
Transaction P-facts
T01 Feature wiki with selected features is created.
T02 Specification document is developed.
T03 Specification document is discussed.
T04 Specification document is improved.
T05 Feature is developed.
T06 Feature is tested and bugs are reported.
T07 Accepted feature is released.
T08 Release road map is developed.
T09 Tested the released feature and bugs are reported to

bug tracking system.

DEMO Model (ATD) for Dokeos: The ATD for Dokeos development is shown in
Fig. 3. The actors involved in Dokeos development are user community, core team
and the Dokeos Company. In all, 7 transactions are executed in developing a feature
successfully for Dokeos (T01 through T07).

Feature
release

Bug
Fixing

Bug
Reporting

Feature
Testing

Implementation
Verification

Core
TeamT01 T02

T03T03

Core
Team

Developer T04T04
User

CommunityUser
Community

T04T05

Core
Team T04T06 Developer

T04T07

Dokeos
Company

Feature selection Feature
implementation

Fig. 3. ATD representation for Dokeos

Dokeos features are selected by the core team from the dream map (user community
requests are polled in dream map) to road map. This is done in a single transaction
T01. The transaction is initiated by the user community by adding the feature’s
request to the dream map. The core team would then select the feature and add it to
the roadmap - the P-fact of the transaction T01. Once, the feature is selected by the
core team for development, the developers are requested to build the feature which is
depicted by transaction T02. The P-fact for T02 is the developed feature itself. Once
the feature is developed, the developer requests the core team (T03) to verify and fix
anomalies, if any. The P-fact of T03 is the verified and fixed feature. For testing and
fixing the bug, the developer, core team and the user community communicate with
each other. The developer requests the user community to carry out testing on the
newly developed feature (T04). Once the user finishes testing, the bug fixes are
reported to the core team which is the P-fact of T04. The core team in turn verifies,
categorizes and organizes all the reported bugs. This list of verified, categorized and
organized bugs is the P-fact of T05. These are then forwarded to the corresponding
developer to fix the issues (T06). The fixed and working feature becomes the P-fact of
T06. The next step is releasing the feature and the core team initiates the release
process by requesting the Dokeos Company with a request. Then the feature is
released by the Dokeos Company which is executed in transaction T07. The P-facts
produced during Dokeos development are summarized in Table 4.

Table 4. P-Facts produced during Dokeos development.

Transaction P-facts
T01 Feature is selected for development.
T02 Feature is implemented.
T03 Implemented feature is verified.
T04 Feature is tested and bugs are reported.
T05 Bugs are prioritized.
T06 Bugs are fixed.
T07 Feature is released.

2.1 Comparison

The previous sections in this paper provide sufficient details with regard to the
development practices followed by the three OS e-learning systems. The activity flow
diagrams provided information about the implicit/explicit software development
stages and also helped in classifying the same. On the other hand, DEMO models
provided information about what outcomes have been produced in each of the
development stages (by executing a particular transaction) and by whom was that
transaction executed. Table 5 presents various transactions executed for different
basic development stages identified from the background study. For each of the three
OS e-learning system development, if a particular development stage was identified
as being executed then a tick mark ‘þ’ is placed in the corresponding cell in Table 5;
otherwise a cross mark ‘ý’ is placed. Also, the transaction executed under a
particular development which produces a successful outcome is mentioned inside the
parentheses ‘[]’. However at this stage it is not clear that, to what extent each of the

OS e-learning systems had carried out each of the activities corresponding to various
development stages. Therefore, there is a need for ISO/IEC 12207:2008 which helps
in getting a deeper insight into the development processes of these OS e-learning
systems.

Table 5. Summary of the research findings

Development stages Moodle ILIAS Dokeos
Inception þ [T01, T02] þ [T01] þ [T01]
Planning ý ý ý
Requirement
Analysis

þ [T03, T04] þ [T02, T03, T04] ý

Design þ [T03, T04] þ [T02, T03, T04]
Implementation þ [T05, T06] þ [T05, T06] þ [T02, T03]
Testing þ [T07, T08] þ [T08, T09] þ [T04, T05, T06]
Release &
maintenance

þ [T09, T010,
T011]

þ [T07] þ [T07]

3 ISO/IEC 12207:2008 Mapping

ISO/IEC 12207:2008 standard is a fully integrated suite of system and software life
cycle processes which explains seven process groups, forty three processes, hundred
and twenty one activities and four hundred and six tasks. Each of the processes within
those process groups is described in terms of its (a) scope, (b) purpose, (c) desired
outcomes, (d) list of activities and tasks which need to be performed in order to
achieve the outcomes. The Software implementation processes are divided into six
lower level processes with 29 outcomes that can be achieved by successfully carrying
out the software implementation process and its corresponding activities and tasks [8].
Table 6 lists all possible outcomes that can be expected when these lower level
processes are completed successfully.

Table 6. ISO/IEC 12207:2008 Process Groups
Lower Level Process Possible Outcomes
Requirement
Analysis
Process

RA1 Requirements of software element & interfaces are defined
RA2 Requirements analyzed for correctness & testability
RA3 Understand the impact of the requirement on environment
RA4 Consistency & traceability between system requirement are drawn
RA5 Software requirement for implementation are defined
RA6 Software requirements are approved and updated
RA7 Changes to the requirement are evaluated
RA8 Requirements are base-lined & communicated to all parties

Architectural
Design
Process

AD1 Software architecture is designed and base-lined
AD2 Internal & external interfaces of each s/w item are defined
AD3 Consistency & traceability is established

Detailed
Design
Process

DD1 Detailed design of each software component is defined
DD2 External interfaces are defined
DD3 Consistency and traceability are established between architectural

design, requirement & detailed design
Construction
Process

CP1 Verification criteria defined against requirements
CP2 Software units defined by design are produced.
CP3 Consistency & traceability are established
CP4 Verification against requirement and design is accomplished

Integration
Process

IP1 Integration strategy is developed
IP2 Verification criteria for s/w items are developed
IP3 Software items are verified using defined criteria
IP4 Software item defined by integration strategy are produced.
IP5 Results of integration testing are recorded.
IP6 Consistency & traceability are established
IP7 Regression strategy is developed and applied when change occurs

Qualification
& Testing
Process

QT1 Criteria for the integrated software are developed that
demonstrates compliance with the software requirements

QT2 Integrated software is verified using the defined criteria
QT3 Test results are recorded.
QT4 A regression strategy is developed and applied

The major advantage of using ISO/IEC 12207:2008 standard is that the outcomes
mentioned by the standards can be compared directly with the P-Facts that were
identified from the DEMO models. The comparative details are presented in Table 6.
For each outcome mentioned by the standard, the corresponding transaction for
Moodle, ILIAS and Dokeos have been mapped. Further, any particular outcome
stated in the standard that is not met by the OS development community is denoted
with an ‘-’. Notably, in case of RA8, all three OS e-learning systems produce data
logical information (marked with ‘*’) whereas outcomes of other transactions
correspond to ontological information.

Table 7. Comparison with ISO/IEC 12207:2008 Process Groups
Outcomes Moodle ILIAS Dokeos
RA1 T02 T02 -
RA2 T01 T03 -
RA3 T01 T01 T01
RA4 - - -
RA5 - - -
RA6 T01 & T02 T04 T01
RA7 - - -
RA8 Road maps* Feature wiki* Road maps*
AD1 - - -
AD2 - - -
AD3 - - -
DD1 T03 T02 -
DD2 - - -
DD3 T04 T03 -
CP1 T04 - -
CP2 T05 T05 T02
CP3 T06 T06 T03
CP4 T06, T07 & T08 T06 T03
IP1 T09 - -

IP2 - - -
IP3 T09 T07 T04
IP4 T010, T011 T07 T07
IP5 T010 - T05, T06
IP6 - T08 -
IP7 - - -
QT1 - - -
QT2 T010 T09 -
QT3 T010 T09 -
QT4 - - -

It can be observed from Table 7 that Moodle meets 16 out of 29 outcomes mentioned
by the standard by executing 11 transactions. On the other hand, ILIAS meets 14 out
of 29 outcomes by executing 9 transactions while Dokeos meets only 8 out of 29
outcomes by executing 7 transactions. Even though Moodle and ILIAS has achieved
higher number of outcomes as compared to Dokeos, all three OS e-learning systems
still have a huge scope for improvement in different stages of development.

4 Conclusions

The mapping of the process outcomes and the DEMO models results have identified
that none of the OS e-learning systems have achieved all the outcome described by
the process. However, it is important to know the extent to which each of the OS e-
learning systems have performed. This is done by calculating the percentage of
achievement for each of the development stages for all the three e-learning systems.

Table 8 Percentage of achievement by Moodle, ILIAS and Dokeos
 Moodle ILIAS Dokeos
Requirement analysis 50% 50% 25%
Architectural design 0% 0% 0%
Detailed design 66% 66% 0%
Construction 100% 75% 75%
Integration 57% 42% 42%
Qualification & testing 50% 50% 0%
Overall 53% 47% 23%

The percentage of achievement here is defined as the ratio between the number of
outcomes achieved and the number of outcomes listed in the standard. For instance, in
case of requirement analysis, the standard had prescribed eight outcomes as desired
outcome of which Moodle satisfied four. Therefore, the achievement for Moodle
under RA is 50%. Table 8 shows the percentage of achievement for each of the six
stages for all three OS e-learning systems, along with the overall achievement ratio.
This table also shows the weakness in the different development stages of all three OS
e-learning systems. Moodle with 53% has the highest achievement rate. On the other
hand, with an achievement rate of only 23%, Dokeos performs very poorly. Notably,
all three OS e-learning systems have significant weakness in most of the development
stages, except for construction stage. Without ISO/IEC 12207:2008, it would have not

been possible to identify the underlying weaknesses in each of the development stages
for these three OS e-learning systems.

Having identified the whether the OS e-learning system had performed any
activities pertaining to a development stage and the extent to which it has performed;
it is possible to come up with a generalized OSSDP. Hence the next step would be
come up with a strategy on selecting different stages of development, the frequency
with which each stage could be performed, various important tasks and activities
pertaining to each development stages.

Acknowledgments. Supported by Irish Research Council (IRC) - Embark Initiative
Program.

References

1. Scacchi, S., Feller, J., Fitzgerald, B., Hissam, S. and Lakhani K., Understanding
Free/Open Source software Development Process, Software Process Improvement and
Practice, 11 (2),. pp. 95-105 (2006)

2. Krishnamurthy, A., O’Connor, R., McManis, J., Usability in Software Development
Process for Open Source e/m-Learning Systems, Proceedings, 4th Irish Human Computer
Interaction Conference (iHCI 2010), 2010.

3. Krishnamurthy, A and O’Connor, R.V.: Analysis of Software Development Processes of
Open Source E-Learning Systems. In: McCaffery, F., O'Connor, R.V. and Messnarz R
(eds.) EuroSPI 2013. CCIS, vol. 346. Springer, Heidelberg (2013).

4. Jensen, C., and Scacchi, W., Guiding the Discovery of Open Source Software Processes
with a Reference Model, Third IFIP International Conference on Open Source Systems,
Limerick, Ireland (2007)

5. Basili, V. R. and Lonchamp, J. 2005. Open source software development process
modeling IN: Acuña, S. T. and Juristo, N. (eds.). Software Process Modelling, 10. US:
Springer. pp. 29-64.

6. Gruber, T. 1994. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. IJHCS. 43(5/6): 907-928.

7. Huysmans, P., Ven, K. and Verelst, J. 2010. Using the DEMO methodology for modeling
open source software development processes. Information and Software Technology.
52(2010) pp. 656–671.

8. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: Towards a comprehensive reference framework. Journal of Information and
Software Technology 54(5), 433–447 (2012)

