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ABSTRACT 
From its earliest days, software development has been beset with challenges in relation to timely 
delivery, appropriateness of features and quality of deliverables. Many advances in software 
development processes have helped to address these concerns. For example, agile software 
development has helped to deliver working software more frequently and capability maturity 
frameworks have brought about improved consistency in quality levels. However, the age-old 
challenge of better, cheaper, faster software has continued to beguile developers. In this paper, we 
discuss an emerging approach to software development, continuous software engineering (CSE), 
wherein software of operational quality may be delivered on a very frequent basis, up to many times 
in a given day. This approach employs a complex set of independent tools that together reduce the 
lead time in delivering commercial-grade software. Having examined the situational context of one 
industrial organisation applying CSE, we conclude that the approach may not presently be appropriate 
to all manners of software development. Nonetheless, the authors are of the view that CSE represents 
a significant progression in software engineering and that software development settings of all types 
stand to gain from aspects of the CSE approach.    
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1. INTRODUCTION 
It is generally accepted that no single software development process is perfectly suited to all software 
development undertakings [1] and that all software development settings are continually witnessing 
change [2], [3]. The result is that some amount of process adaption and situational tailoring [4] is 
required in order to render a process suitable to a given situational context, evidence for which can be 
seen in the reported amount of process improvement in practice [5], [6]. As noted in the literature, a 
software process itself is therefore a continuous rather than a static concern [7], and so we should seek 
to identify techniques that can improve our understanding of interactions between software processes 
and their situational contexts [8]. We should furthermore take account of the significant complexity 
associated with the production of commercial grade software [9]. This paper identifies the aggressive 
adoption and integration of toolsets which replace aspects of development work which were at one 
time human-intensive and detailed in nature, and for which automated tooling can offer an 
opportunity to manage the complexity and associated error-proneness.  

Continuous software development and deployment has started to receive greater attention in recent 
years [10] and in the context of our work, we define Continuous Software Engineering (CSE) as the 
application of automation via tools to increase the deployment frequency of new releases of 
commercial-grade software. CSE permits software feature delivery at rates which just a few short 
years ago may have been considered unachievable. The authors take the view that one can consider 
CSE to be the next major wave in software engineering to follow the agile software development [11] 
and lean software development [12] movements. It is different to these earlier approaches in that CSE 
emphasises the role of tooling in software development [13], which at least to some extent runs 
contrary to the agile manifesto which values individuals and interactions over processes and tools. 
With CSE, the importance and investment in tool chains is large and its centrality to the delivery 
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lifecycle is likely to raise its value to at least be on a par with the value associated with individuals 
and interactions. Furthermore, CSE may also impose greater emphasis on processes. However, with 
CSE the nature of the process is quite different to earlier software development process initiatives. 
Accordingly, whereas the ISO 9001 [14] perspective on process may involve very detailed work 
process definitions and adherence, a CSE implementation involves the realisation of well-thought 
through development, build and deployment procedures which are realised through knitting together 
various independent tool chains and automating aspects of the lifecycle. Therefore, if by the term 
process we mean the sequence of steps required to develop or maintain software [15], then clearly 
CSE places considerable emphasis on process, and in particular, on process automation. 

Core to the concept of CSE is Continuous Integration, a set of software engineering practices that 
speed up the delivery of software by decreasing integration times. It emerged in the Extreme 
Programming (XP) community [16] and is described as “a software development practice where 
members of a team integrate their work frequently, usually each person integrates at least daily - 
leading to multiple integrations per day, where each integration is verified by an automated build 
(including test) to detect integration errors as quickly as possible” [17]. 

Continuous integration promises advantages in large-scale software development by enabling 
software development organizations to deliver new functions faster. According to studies of 
commercial projects using daily builds and thus some form of continuous integration, advantages of 
continuous integration include [18] reduced integration risks (errors are found early) and motivation 
(you see a working system). Continuous integration is also an alternative to ‘big bang’ integration, 
where all modules are combined in one go, and which usually results in large numbers of errors, hard 
to isolate and correct owing to the vast expanse of the program. Disadvantages of continuous 
integration may include degeneration of architecture due to lack of focus on overall design and time 
spent on too frequent releases of too poor quality [18]. However, implementing continuous integration 
in large software development organizations is challenging because of organizational, social and 
technical reasons. One of the technical challenges is the ability to rapidly prioritize the test cases 
which can be executed quickly and trigger the most failures as early as possible [19]. 

The CSE concept is perhaps only possible at this point in time as a result of the innovation that has 
taken place in the tooling domain, specifically in the tools that support software manufacturers. These 
tools range from configuration management tools, such as Git1, to build tools such as Jenkins2, and 
deployment tools, such as Docker3. Central to the CSE approach that we present in this work is the 
microservices architecture [20], which seeks to deliver small, self-contained and rigidly enforced 
atoms of functionality. The resulting tool set and microservices architecture promotes the frequent 
delivery of new commercial-grade software features that can seamlessly interact with preexisting 
operational systems.   

To examine the impact of CSE, we undertake a case study with an industrial partner who is presently 
fully committed to a CSE approach. We investigate the industrial partner in detail, seeking to 
understand why CSE has proven to be very effective in their instance. To enable the examination, we 
employ the situational factors reference model [8] which was previously developed by the authors. 
This model ensures that we examine in great detail the specific aspects of the industrial partner’s 
business that have influenced their adoption of CSE. Indeed, these same factors – as we shall present 
in the paper – have contributed to the success of our industrial partner’s CSE agenda.  

This paper is organized as follows: Section 2 outlines the situational factors framework which we 
adopted to examine the suitability of CSE for our industrial partner; Section 3 presents an overview of 
the company studied, including details of its CSE process; Section 4 evaluates why CSE has proven 
effective for our industrial partner; and finally, Section 5 presents a conclusion. 

                                                                    
1 Git is a free and open source distributed version control system. See website for more information:  https://git-scm.com 
2 Jenkins is an open source cross-platform, continuous integration and continuous delivery application. See website for more 

information:  https://jenkins.io/ 
3 Docker is an open-source project that automates the deployment applications inside software containers. See website for 

more information:  https://www.docker.com/ 
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2. SITUATIONAL FACTORS 
The importance of context in software process decisions has been acknowledged for some time [21]. 
Whilst the literature has noted that “the organization’s processes operate in a business context that 
should be understood” [22] and that a “life cycle model… [should be] appropriate for the project's 
scope, magnitude, complexity, changing needs and opportunities” [6], contributions to the literature in 
relation to software process context space are lacking. Software development necessarily occurs in a 
development context, which includes a large number of concerns and factors [23], [24] and it is this 
contextualization which provides a better understanding of what works for whom, where, when, and 
why [25]. In support of the importance of understanding the impact of situational factors, authors such 
as Dyba [26] point out that it is this dependence on a potentially large number of context variables in 
any study that is an important reason for why software engineering is so hard. 

 
Figure 1. Situational Factors Reference Framework 

Despite the frequent references to the importance of situational context in the literature, it was the 
apparent lack of a comprehensive situational factors framework for software development that led two 
of the authors to produce and publish an initial reference framework [8], itself an amalgamation of 
earlier contributions. To raise the scope and coverage of the situational factors reference framework 
[8], various important contributions throughout software development’s history were incorporated, 
including models and standards [22], [27], risk factors [28], [29], [30], [31], [32], [33], cost estimation 
[34], [35], [36], environmental factors [37], process tailoring [38], [39], process agility [40] and 
bodies of knowledge [41]. In each case, the contribution was thoroughly assessed to identify factors 
that might influence the software development process. Later, these factors were systematically 
integrated into a unified model using the constant comparison and memoing techniques from 
grounded theory [42], [43]. The result is a systematically derived, comprehensive reference 
framework of factors that influence software processes that is well suited to the task of identifying 
specific situational factors in specific software development settings. This reference framework is in 
the view of its authors a stepping stone towards greater appreciation of the complexity of software 
development settings, and the rigorous approach employed in its creation from a rich variety of 
sources has given rise to a framework that they consider to present a broadly informed reference for 
the software development community [44]. We therefore employed this framework so as to evaluate 
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the situational context of our industrial partner with a view to understanding why CSE has proven 
effective in that particular setting.  
 

Table 1. Situational Factors Classification 

Classification Description 
Personnel Constitution and characteristics of the non-managerial personnel involved in the software 

development efforts. 
Requirements Characteristics of the requirements. 
Application Characteristics of the application(s) under development. 
Technology Profile of the technology being used for the software development effort. 
Organization Profile of the organization. 
Operation Operational considerations and constraints. 
Management Constitution and characteristics of the development management team. 
Business Strategic and tactical business considerations. 
 

The framework incorporates 44 individual factors (ref. Figure 1) which are categorized using 8 
classifications (ref. Table 1), and which are based upon 170 underlying sub-factors. A sample listing 
of the sub-factors in the Personnel classification is presented in Table 2. 

 
Table 2. Personnel Factors & Sub-Factors  

Factor Sub-Factors  
Turnover Turnover of personnel 
Team size Size of team 
Culture Team culture/resistance to change 
Experience General team experience; team diversity; team ability to understand the human implications of 

a new information system/team ability to work with management; application experience; 
analyst / programmer /tester experience; experience with development methodology platform 
experience. 

Cohesion General cohesion; team members who have not worked for you; team not having worked 
together in the past/team ability to successfully complete a task; team ability to work with 
undefined elements and uncertain objectives; overdependence on team members; distributed or 
geographically distant team. 

Skill Operational knowledge; team expertise (task); team ability to work with undefined elements 
and uncertain objectives; training development. 

Productivity Team ability to carry out tasks quickly; general productivity. 
Commitment Commitment to project among team members. 
Changeability Scope creep; continually changing system requirements; ill-defined project goals; gold plating; 

unclear system requirements. 
Disharmony Interpersonal conflicts. 
 

3. CASE STUDY COMPANY 
The case study firm nearForm Ltd., is a software development company with a presence in the US 
and Europe and which has experienced substantial growth in recent times through the continual 
delivery of high quality software to some of the largest companies in the world, including blue chip 
financial institutions. Value is a key focus in the nearForm lifecycle and it is concerned with an acute 
responsiveness to client needs (be they new features or defect resolutions). The organization works to 
a regular 5-day iteration for software development, deploying working software to customer site(s) 
weekly (sometimes daily) through a standard feature bundle. While regular iterations can be 
predictable from the outset, continual analysis of the value stream ensures that each iteration may be 
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re-planned in real time, delivering the highest possible value from organizational capacity (ref. Figure 
2). 
 
Whilst it is acknowledged that tooling can affect the design of a software process [45], the impact of 
technology on shaping the process in this case is profound and may even run contrary to the Agile 
Manifesto value of ‘Individuals and interactions over processes and tools’. Within nearForm the 
continual software evolution and delivery is made possible through the aggressive incorporation of 
contemporary and predominately open source software tools. While the speedy delivery of innovative 
features is a vital enabler of competitive advantage, it is only effective if it is accompanied by reliable 
and high quality deployments.  

 

Figure 2. nearForm Process Lifecycle 

There are five key technology enablers driving the process architecture: (1) JavaScript and Node.js 
which enable extremely rapid code development by utilizing the same programming language across 
the entirety of the system; (2) Alongside a distributed microservices architecture, under which the 
system is broken down into a set of discrete co-operating processes, typically each service is of the 
order of several hundred lines of code only; (3) The adoption of cloud technologies, whereby all 
infrastructure may be treated as code, supports the rapid creation of testing and production 
environments; (4) The architectural approach is coupled with a continuous deployment model, layered 
over the Docker container engine, whereby individual services (or several services at a time) may be 
deployed without perturbing the system as a whole; (5) Finally the company ensures quality through 
steps such as code commit hooks via GitHub4 and the Travis5 Continuous Integration tool set to 
construct continuous delivery pipelines. Together, these technologies enable the company to perform 
well under a time and materials contract basis, whereby clients are initially attracted through the rapid 
delivery of a prototype in 10 days, and thereafter, regular iterations of new working software are 
reviewed every 5 days. 

3.1 JavaScript and Node.js  
JavaScript is an interpreted programming language with object-orientated capabilities. Once 
considered a ‘toy’ language by many developers [46]. The growing use of JavaScript has created 
whole new technical and business models of program construction and deployment [47]. JavaScript 
now presents as an ideal language for full-stack, enterprise development [48].  

                                                                    
4 GitHub is a web-based Git repository hosting service for revision control and source code management. See website for 

more information:  https://github.com/ 
5 Travis CI is a hosted, distributed continuous integration service used to build and test software projects hosted at GitHub. 

See website for more information: https://travis-ci.org/ 



O'Connor, R. V., Elger, P., Clarke, P., Continuous Software Engineering – A Microservices Architecture Perspective, 
Journal of Software: Evolution and Process, Vol.29, No. 11, 2017. http://dx.doi.org/0.1002/smr.1866 

Node.js - also called Node - is a cross platform runtime environment originally developed in 2009 by 
for developing server-side applications. It can be regarded as server-side JavaScript. It was created to 
address the issues platforms can have with the performance in network communication time 
dedicating excessive time processing web requests and responses. Node.js is a platform built on 
Chrome’s JavaScript runtime for easily building fast, scalable network applications. Node.js uses an 
event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-
intensive real-time applications that run across distributed devices. Node has become popular as it 
makes creating high performance, real-time web applications easy. Node allows JavaScript to be used 
end to end, both on the server and on the client. 
Node.js when coupled with its supporting package management system – npm6 – provides a lean and 
efficient platform that enables developers to be highly productive. This, when combined with an 
effective front-end framework (such as angular or react) provides a powerful and rapid development 
platform enabling the same language to be used in all tiers. The rapid adoption of Node.js is 
evidenced by Figure 3, which shows the number of open source modules available for the various 
popular open source platforms (Node.js is the top line). As of January 2016, there are over 225,000 
modules available for Node.js with module downloads running in excess of 2.5 billion per month 
[49], a very strong indicator that this technology stack has some significant momentum behind it. 

 
Figure 3 module counts 

3.2 Microservice Architecture  
Microservices are a small application that can be deployed independently, scaled independently, and 
tested independently and that has a single responsibility [13]. The term microservice architecture 
refers to a style of development under which a system is broken down into a number of small co-
operating components [20], where these components typically interact over a direct point-to-point 
interface (for example, http) or utilizing an event bus technology such as Apache Kafka or RabbitMQ.  
The microservice architectural style can be viewed as an approach to developing a single application 
as a suite of small services, each running in its own process and communicating with lightweight 
mechanisms, often an HTTP resource API [50]. These services are built around business capabilities 
and independently deployable by fully automated deployment machinery. There is a bare minimum of 
centralized management of these services, which may be written in different programming languages 
and use different data storage technologies 
By way of comparison a monolithic architectural style is where an application is built as a single unit, 
typically compromising three main parts: a client-side user interface a database and a server-side 
application. In this case the server-side application is a ‘monolith’ - a single logical executable. Any 
changes to the system involve building and deploying a new version of the server-side application. 
Monolithic applications can be successful, but increasingly people are feeling frustrations with them 
[50], in particular as more applications are being deployed to the cloud. Change cycles are tied 

                                                                    
6 npm is the default package manager for the JavaScript runtime environment Node.js.. See website for more information: 

https://www.npmjs.com/ 
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together - a change made to a small part of the application, requires the entire monolith to be rebuilt 
and deployed. Over time it's often hard to keep a good modular structure, making it harder to keep 
changes that ought to only affect one module within that module. Scaling requires scaling of the entire 
application rather than parts of it that require greater resource.  
These frustrations have led to the microservice architectural style: building applications as suites of 
services. As well as the fact that services are independently deployable and scalable, each service also 
provides a firm module boundary, even allowing for different services to be written in different 
programming languages. They can also be managed by different teams 
The key benefits of microservices architectural style includes: 

• A highly modular and decoupled system that can be easier to maintain than a traditional class 
hierarchy; 

• The ability to deploy services rapidly to a production system – because services are 
independently deployable entities, only the service under question need undergo rigorous 
testing and the rest of the system has not been changed;  

• Microservices are highly cohesive units of code that are easier to reason about and manage in 
isolation, this tends to reduce the burden on developers and if implemented responsibly can 
lead to simpler code with less defects. 

As a corollary to these benefits, microservice systems require a more sophisticated DevOps 
infrastructure [51], typically requiring the construction of a service deployment pipeline. Use of cloud 
and container technologies enables the construction of such pipelines and it is this technology enabler 
that is driving the adoption of these hyper-agile, lean processes. It is the final piece in the jigsaw that 
makes the technology stack so powerful.  

3.3 Cloud Infrastructure and DevOps 
The traditional world of IT infrastructure management and systems operations teams is fundamentally 
and rapidly changing. The world of capital expenditure, hardware lead times and capacity planning is 
fast becoming outmoded. It has become very clear over recent years that most IT organizations are 
embracing the notion of commoditized, elastically scaled compute power delivered by infrastructure 
as a service providers (IAAS) such as Amazon Web Services (AWS). Whilst there will remain certain 
pockets of specialized co-located services with dedicated operations teams, these will be restricted to 
specialized application domains. Even in these environments cloud technology is being applied at the 
periphery in so called hybrid cloud computing models. Under this model, infrastructure management 
and operations becomes just another programming discipline, often termed DevOps. This rise can be 
witnessed by the growth of AWS (figure 4), which is expected to exceed over USD10Bn in revenues 
in 2016 [52]. 

 
Figure 4 AWS revenue growth 

The power of the cloud computing model for rapid software creation and deployment becomes 
apparent when one observes that environments like AWS are fully programmable through an 
extensive API set that allows third party vendors and implementers to control all aspects of the 
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platform (figure 5). Use of power tools such as Hashicorp’s Terraform7 make this environment simple 
to configure and use. This allows companies like nearForm to rapidly spin up build, staging and 
production environments based on the formulaic application of a few simple scripts. 
 

 
Figure 5 microservice reference architecture 

 

3.4 Software Container Technology 
Software containers provide a means of encapsulating functionality within an isolated process space, 
i.e. a single operating system level process can attend to just a specific, small piece of executable 
code. The concept of software containers originated in the late seventies with the addition of the 
chroot system call to the BSD Unix operating system. This feature was largely unused until FreeBSD 
jails were introduced in 2000. This was followed by Solaris zones in 2004. A more mainstream user-
land implementation in the Linux kernel followed in 2008 with the advent of LXC8 (LinuX 
Containers). However the technology first began to gain wide adoption in 2013 via the Docker 
project, and it has resulted in the capability of developers to regularly inject new, easily digestible 
features into live systems with less risk than traditional software development and deployment 
models.   

                                                                    
7 Terraform is a tool for building, changing, and combining infrastructure safely and efficiently. See website for more 

information: https://www.terraform.io/ 
8 LXC (Linux Containers) is an operating-system-level virtualization method for running multiple isolated Linux systems 

(containers) on a control host using a single Linux kernel. See website for more information:  https://linuxcontainers.org/ 
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Container technology may become the mainstream for certain types of software development, 
especially with the development of container management and orchestration systems such as 
Kubernetes, Docker Swarm and AWS container services. 
Container technology solves two key problems, thereby enabling the construction of rapid 
deployment pipelines and advanced software deployment strategies. Firstly the ‘runs on my machine’ 
problem; the container holds both the code and the execution environment such as library 
dependencies, underlying OS and environment settings etc. this means that a container that executes 
successfully in a test environment can be promoted to production with a high degree of confidence 
that it will execute successfully, removing concerns of differences in OS version and complex code 
dependency chains. Secondly containers provide a homogeneous abstraction allowing deployment 
scripts and tooling to deal with a single entity irrespective of what is executing inside of the container. 
It is perfectly possible to have a system comprising multiple execution environments (for example, 
Node.js, Java, Python etc.) all deployed using the same tool chain. 
 

3.5 Continuous Delivery Pipeline 
[53] describe Continuous delivery (CD) is the ability to release software whenever we want. This 
could be weekly or daily deployments to production. The frequency is not our deciding factor, it is the 
ability to deploy at will that is a key factor. More broadly CD is a software engineering approach in 
which teams keep producing valuable software in short cycles and ensure that the software can be 
reliably released at any time. CD is attracting increasing attention and recognition. CD advocates 
claim that it lets organizations rapidly, efficiently, and reliably bring service improvements to market 
and eventually stay a step ahead of the competition [54]. 
Continuous delivery treats the commonplace notion of a deployment pipeline [55] (also known as 
deployment production line): a set of validations through which a piece of software must pass on its 
way to release. Code is compiled if necessary and then packaged by a build server every time a 
change is committed to a source control repository, then tested by a number of different techniques 
(possibly including manual testing) before it can be marked as releasable. 
Due to the need to support multiple applications for multiple clients, nearForm creates a CD pipeline 
for each application. Although each application’s pipeline will differ somewhat from another 
application’s pipeline, the pipeline architecture is broadly similar and the generic nearForm CD 
pipeline is depicted in Figure 6. 
 

 
Figure 6 continuous delivery pipeline 

A typical pipeline consists of the following stages: 
• Code is checked in by developers and immediately pulled onto the build system 
• A successful build (i.e. all test passing at the required coverage level) results in a updated set 

of containers that are pushed to a centralized container registry 
• A deployment process is executed to distribute the updated containers into a staging or test 

environment 
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• A suite of end to end tests is run against the staging environment and the results made 
available 

• Given that all containers are operating correctly in staging updates may be made immediately 
to the production environment 

Whilst this type of process may be realized with a multitude of different tools, some examples for 
each phase are provided in Table 3. 

Table 3. Example Tools to Enable CSE 

Phase Tool 

Development Fuge - http://fuge.io/ 

Seneca - http://senecajs.org/ 

HAPI - http://hapijs.com/ 

Repository Git / github - https://github.com/ 

BitBucket - https://bitbucket.org/ 

Build Jenkins - https://jenkins.io/ 

Drone - https://drone.io/ 

Test Tap - https://testanything.org/ 

Phantom - http://phantomjs.org/ 

Pdiffy - https://github.com/kennychua/pdiffy 

Infrastructure EC2 - https://aws.amazon.com/ec2/ 

ELB - https://aws.amazon.com/elasticloadbalancing/ 

Consul - https://www.consul.io/ 

Deployment Docker registry- https://docs.docker.com/registry/ 

Code Deploy – https://aws.amazon.com/codedeploy/ 

Swarm - https://docs.docker.com/swarm/ 

Kubernetes - http://kubernetes.io/ 

 

The above process occurs on every code commit, thus there may be multiple daily releases to the 
systems production environment. Key benefits of this type of continuous delivery process are: 

• Minimization of the delta between development and production. The high frequency of 
deployment minimizes risk, because each change is a small incremental update allowing rapid 
diagnosis in the event of production issues.  

• Making deployment a common occurrence has the effect of removing fear and uncertainty 
from the process – contrast this with a quarterly deployment process. 

• Everything is automated, human intervention is not required unless a problem is detected. 
The case study company applies all of the above technologies, i.e. the node.js platform, cloud 
infrastructure and containers along with the indicated tooling to build delivery pipelines and software 
systems aligned with the micro-services architectural paradigm. It is important to note that it is the 
architectural and systemized approach that is key and that this is readily transferrable across platforms 
and tool chains. For example the company has applied the same formula to RackSpce (a provider of 
cloud infrastructure) with similar results. The company has also built systems using a combination of 
Scala, Java and node.js, demonstrating this transferability. 
 

4. APPLYING THE SITUATIONAL FACTORS REFERENCE FRAMEWORK  
Two researchers in association with the Director of Engineering from nearForm undertook a detailed 
analysis of the company’s situational factors, the primary results of which are presented in Table 4. 
Since the researchers were also the creators of the Situational Factors model adopted in this study, 
familiarity with the model allowed the researchers to progress the investigation of factors with the 
benefit of significant amassed competence in this domain. The nature of the engagement between the 
researchers and the case study organization took the form of a series of detailed discussions during 
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which the nearForm development process was examined in detail, at each step taking note of the key 
motivators that informed the process design. This was achieved by the researchers consulting the 
Situational Factors references model, and querying the motivation for the process through the lens of 
the model. A number of meetings were held by telephone, following which various understandings 
were documented and shared with the nearForm to seek to established their validity and accuracy. 

From the researchers’ perspective, one of the researchers would conduct the discussion with the 
nearForm process specialist, thereafter documenting the results and discussing them with the second 
researcher. This allowed the first researcher to elicit objective feedback on the proposed relationships 
and to provide a checkpoint for concerns that may have been overlooked in the initial analysis. This 
could be considered to be a form of informal internal review. Gradually, this iterative approach to 
building up the understanding of the nearForm process motivations yielded a more concrete and 
complete understand, with each iteration providing feedback opportunities from both the perspective 
of the case study organisation and the research team. It is important to stress that this process took the 
form of telephone calls, email communications and informal feedback, sometimes delivered verbally. 
From a strictly academic perspective this approach does raise some issues relating to reproducibility 
and traceability. However, with each step, the understanding was refined and shared in some type of 
documented form, with the final iteration agreed upon by both researchers and nearForm.  

 
Table 4. Situational Factors Influencing Software Process in Case Study 

Factors Identified in Case Study 

Pe
rs

on
ne

l 

Cohesion: The company has a geographically distributed team which whose effectiveness is made 
possible through the adoption of tools, especially with respect to geographically diverse programming as 
supported by GitHub; 
Culture: The team culture has a low resistance to change. Change is in fact promoted as a highly 
desirable characteristic and it is enabled at a technical level through the various tools and technologies 
identified in this paper; 
Experience, Skill & Productivity: The experience, skill and productivity of personnel are all at the 
upper end of the scale – what are sometimes referred to as premium people. The staff cohort in the 
company tend to be of high to very high core technical competency, with the result that individuals may 
operate fluidly and efficiently without the need for extensive training or up-skilling; 
Turnover: Personnel turnover is low (especially with key technical staff) with the result that continuity 
of technical excellence and know-how is high. There is therefore a reduced need for documented 
artefacts in relation to product architecture and process descriptions. 

R
eq

s. Changeability: Requirements are subject to frequent, sudden and significant change, a reality of 
operating in a fast moving and highly innovative market. As a result, a lean/agile approach to software 
development (such as was outlined in Section 3) is preferable for this setting. 

A
pp

lic
at

io
n 

Quality: Operational product quality requirement is high and the technology adopted, including 
Continuous Integration systems, assists greatly in achieving product quality targets; 
Type: The applications under development and evolution (though requiring a high level of quality) do 
not need to be at the level of safety-critical software, nor are they directly affected by market regulation. 
As a result, a lean process, enabled via the technology and development stack, is suitable for the needs of 
this organization. 

Te
ch

no
lo

gy
 Emergent: The technology is emergent and innovative thus there is a high level of adoption of new 

technologies and tools to enable process initiatives. Embracing the rapid supporting technology offerings 
means that the process itself is subject to change as a result of technology strengths and limitations. This 
too is a feature of the context that has reduced the desirability of precise and extensive process 
descriptions which would continually need to be revisited as a result of the rapid pace of change. 

O
rg

. Size: Organizational size is small – with the result that information exchange and communications can 
occur efficiently through video conferences or calls or face-to-face meetings thus enabling more 
agile/lean software approaches. Organization is experiencing substantial growth in staff headcount. 
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O
pe

ra
tio

n End-Users: Operational end-users of the software are open to changing requirements and rapidly 
evolving software systems. In fact, end-users are in this case demanding such capability from their 
software supplier in pursuit of competitive advantages in a fast moving market. This fact is key in 
shaping much of the process design – which is capable of working to a time and materials payments 
model and accommodates rapidly changing requirements. 

M
gm

t
. 

Expertise & Accomplishment: Management expertise and accomplishment is high in key markets and 
product technology stacks, meaning that the business can pivot in harmony with the emerging 
technology without the risk of the business and technical strategic directions becoming discommoded. 

B
us

in
es

s 

Time to Market: The company are in a fast moving market where the need for rapid delivery is 
paramount (smooth, regular and rapid delivery is enabled through the adoption of a microservices 
architecture along with deployment infrastructure such as Docker); 
Business Drivers: The company’s business drivers are leveraged upon vanguard activities in key open 
source emerging technologies - technical excellence and high levels of innovation are key to 
differentiation and business development; 
Payment Arrangements: Payment terms tend to be time and materials based which supports the type of 
near-real feature elaboration with clients that is made possible by the microservices architecture. 

 

5. DISCUSSION 
Continuous software engineering (CSE) refers to the application of tools, which in many cases are 
open-source projects, to increase the deployment frequency of new releases of commercial-grade 
software. It is an emerging software development concept which has already been the subject of 
dedicated publication [10] but which we examine in the specific context of a microservices 
architecture.  Through background research and industrial collaboration, we have established one 
working template for this concept: the continuous delivery pipeline enabled by microservice 
architectures together with container technology and innovative and full lifecycle integration of a 
suite of software development tools. While many of the tools have existed for some time, for example 
Git and Jenkins, it is the integrated use of sets of tools that delivers increased production and 
deployment speed. The result that the company has experienced that new features can be rapidly 
deployed to operational systems but also with confidence in relation to quality. This confidence is 
supported by the automation of many tasks that were once human intensive and which perhaps 
suffered from volatility as a result. 

In the case of nearForm the adoption of tooling allows for regressively test existing code bases at a 
unit, feature and system level, while also validating new features or modifications through adaptation 
of earlier test routines. This can significantly reduce the risk of introducing new defects when 
delivering new features (or when resolving existing defects). Tooling can also address other aspects of 
software delivery that were once-upon-a-time dependent on direct human activity, such as 
configuration management, system building, and deployment. Collectively, software development, 
build and deployment tools can be chained together to bring about an almost turnkey software 
development and deployment framework.  

Work in this area holds great promise for future eras of software development as it supports two vital 
software development concerns: Quality and Speed. A third vital consideration – Cost – presents a 
somewhat different proposition since there is a necessary investment in tooling infrastructure and 
knowhow, which itself impacts on initial setup speeds. The findings from our case study are limited as 
a result of not quantifying the investment required to establish the CSE infrastructure in the 
participant organisation. Although the tooling utilised is in the main available via open source 
projects, the cost of adapting and integrating these individual tools into a functioning tool chain, and 
the hardware and time required to do so, should be researched so that companies wishing to adopt a 
CSE approach can be better informed of the cost implications. 

A further limitation in this work stems from the approach taken when adopting the situational factors 
reference model. Since the researchers involved in this work were also the creators of the Situational 
Factors reference model, it was possible to quickly progress the situational investigation in an 
iterative and fluid form in discussions with nearForm. This might not be the case for researchers not 
so familiar with the Situational Factors reference model and therefore similar related future research 
conducted by alternative researchers might first need to review and develop an understand of the 
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reference model prior to conducting the empirical work, thereby introducing increased costs and 
timelines. In the fullness of time, the authors of this paper intend to provide greater assistance to 
future researchers seeking to apply the Situational Factors reference model but at this time, there is a 
shortfall in the supporting resources, e.g. published survey instruments, to assist third parties.   

On the point of limitations, the Situational Factors reference framework itself may also have 
introduced some limitations to the study. It was chosen as it is the most comprehensive framework of 
its type presently published. However, with the relationship between software processes and 
situational contexts being so richly varied and complex [CITE 7], it will necessarily prove very 
challenging to attempt to model such phenomena in bounded frameworks. Consequently, factors not 
presently addressed in the Situational Factors reference framework may have been overlooked in this 
study. For the author’s however, this reality does not diminish the importance of attempting to 
improve our understanding of the relationship between a process and its context, and we advocate that 
to be effective, process optimisation must be sensitive to the peculiarities of individual settings. This 
viewpoint may not meet with opposition from those familiar with software development, however, we 
are presently grappling with the complexity of the interactions between a process and its context. It is 
not our objective to fully quality all manners of interactions, but rather to begin to better understand 
the relationships. Each successive research undertaken with respect to this complex problem helps to 
gradually improve our understanding of the domain.  

Our on-going work in the case study company is focused on a process formalization roadmap for our 
industrial partner who is presently witnessing business expansion – this roadmap will act to sustain 
the speed and quality characteristics of the present process while enabling significant growth in 
personnel. Certain challenges present when scaling this approach for larger numbers of development 
personnel. Firstly, since greater numbers of personnel will be introducing changes to build and 
deployment environments, it will be necessary to introduce mechanisms to avoid build and 
deployment conflicts and ensuing crashes. In some cases, this may be resolved through the 
introduction of more hardware, though hardware alone will not be sufficient to completely resolve 
this challenge. It is expected that further investment by the organization in build and deployment 
routines will be required, in effect this can be considered build and deployment architecture (or in our 
case, re-architecture). 

A further challenge at the present time is the complexity involved from a tooling perspective – up to 
20 independent tools may need to be employed to form a continuous software engineering and 
deployment chain (refer to Table 3 for examples of potential tools). In time however, this complexity 
can be reduced and more integrated toolsets will, we expect, appear on the software engineering 
landscape before long. It is the view of the authors that toolset integration and consolidation is not just 
beneficial, it is inevitable. We suggest that within 5-10 years from now, integrated continuous 
software engineering tooling (or tool management) will emerge, perhaps through extensions to 
existing integrated development environments and source code control systems.   

Despite the clear benefits of CSE using microservice architectures, the authors do not suggest that it is 
a suitable approach for all software development, not least because it is a well-established position 
that no single software development process is perfectly suited to all software development 
undertakings [1]. For this reason, we examined the various factors of the situational context [5] that 
presented in our partner industrial organisation. We found that in this respect, the web-based non-
safety-critical characteristic of the applications and the predilection of customers for rapid feature 
delivery imposed significant weight on the suitability (and success) of CSE in the case of our specific 
situation. For the time-being, other environments may not stand to benefit from the CSE approach, 
including the various safety-critical domains (e.g. medical, nuclear and automotive). It is also the case 
that there remain some challenges in terms of the reliability of the associated operationalised 
microservices architectures, since they present a particular set of volatility considerations when up-
scaling – though these, the authors suggest, can be managed and reduced through mechanisms such as 
load balancing. In any case, where a client-vendor relationship is characterised by formal contracts, 
fixed-price arrangements and multiple integrators, the need for CSE may be significantly reduced. 
This however does not imply that all software development environments should not seek to exploit 
the advantages of automation through tooling throughout the software development lifecycle. 
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Targeted automation can help reduce traditionally repetitious human-led activities, for example in 
testing, building and deploying, and in so doing can offer favourable outcomes for all aspects of 
software development, including safety considerations.  

Of interest is the interaction of the CSE approach that we have outlined with agile software 
development as underpinned by the agile manifesto. In this respect, the authors suggest that it is 
emerging developments in technology and tooling that are perhaps the primary reason that the CSE 
approach is even possible; an observation that may not be entirely congruent with the Agile Manifesto 
value of ‘Individuals and interactions over processes and tools’. It may therefore be the case that 
there is a need for a new manifesto to charter the path for CSE progression.  

A final point we wish to acknowledge relates to the terminology we have chosen to describe the 
approach we have presented in this paper: Continuous Software Engineering (CSE). As Georg Hegel, 
the German Philosopher who offered valuable insights on language, observed “truth is found neither 
in the thesis nor the antithesis, but in an emergent synthesis which reconciles the two.” Indeed, in 
other research, the authors have argued that inconsistency in relation to software process terminology 
application may be a somewhat underappreciated concern at this time [56], [57]. Thus, there are 
contemporary implications for our application of the word continuous. The authors wish to clarify that 
at the present time, the CSE approach that we have presented permits for commercial-grade software 
to perhaps be deployed to operational environments on an hourly basis and it is in this sense that we 
consider the approach to be continuous. Clearly, however, this is not akin to the real-time continuity 
we might associate with the passing of time. Nevertheless, the CSE approach that we have identified 
herein represents a considerable reduction in the granularity of new feature delivery to operational 
platforms when compared with many earlier software delivery timelines. Perhaps in the fullness of 
time, a concentrated focus on test, build and deployment automation may push the delivery 
granularity ever closer to real time continuous deployment, though clearly it can never quite get there. 
The term asymptote is perhaps appropriate as a description of the likely progression but such concerns 
are not likely to bear major influence on software engineers, certainly not at the level that they impact 
on our colleagues in mathematics.    
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