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Abstract 
 
 
A study of clinical strains of Pseudomonas aeruginosa and the investigation of 

antibiotic resistance mechanisms in the multidrug resistant strain PA13 
 
Damien Ferguson, 

 

School of Biotechnology, Dublin City University 

 

Thirteen clinical strains of bacteria from two Irish hospitals were identified as 
Pseudomonas aeruginosa using classical methods, API 20NE and Biolog GN. Their 
identification was confirmed by 16S rRNA gene sequencing. The antibiotic resistance 
profiles of the isolates were determined against forty-one antibiotics belonging to 
eleven distinct classes. All the isolates were resistant to penicillin G, ampicillin, 
cephalothin, cloxacillin, oxacillin, amoxicillin, cefotaxime, moxalactam, sulphatriad 
cotrimoxazole, chloramphenicol and tetracycline. All were sensitive to ceftazidime, 
piperacillin-tazobactam, cefepime, ceftriaxone, meropenem, aztreonam, amikacin, 
apramycin, butirosin A, lividomycin and colistin sulphate. One of the isolates, PA13, 
was resistant to a further fourteen antibiotics and was identified as a multidrug 
resistant strain. A 2.2 kbp PCR product was amplified from P. aeruginosa PA13. 
When this product was sequenced it was found to contain four open reading frames. 
BLASTN analysis identified these as being an integrase gene (ORF1), an 
aminoglycoside acetyltransferase gene, aac(6’)-Ib (ORF2), an oxacillinase gene 
(ORF3) and a quaternary ammonium compound resistance gene (ORF4). The 
presence of the integrase gene and the quaternary ammonium compound gene 
suggested that the genes were on a Class 1 integron. The acetyltransferase aac(6’)-Ib 
gene contained the mutant type of the enzyme with a leucine substitution by serine at 
position 119. Two expression vectors were chosen to investigate the novel 
oxacillinase gene. One was a commercially available vector, pET-28a (Novagen) and 
the other was an in-house vector, pPC. The gene was successfully cloned into both 
vectors. Following induction the desired protein was not expressed in either the 
soluble or insoluble fractions. 
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1.0 Introduction 

 

 

1.1 Pseudomonads 

 

The genus Pseudomonas belongs to the bacterial family Pseudomonadaceae which 

also contains the genera Azomonas, Azotobacter, Cellvibrio, Mesophilobacter, 

Rhizobacter and Rugamonas. These bacteria are common inhabitants of soil and 

water. The term Pseudomonad is used to describe strictly aerobic Gram-negative, non-

sporulating bacteria. They are oxidase positive or negative, catalase positive, non-acid 

fast rods, which are generally straight, but maybe slightly curved, 0.5 – 1 µm in 

diameter and 1.5 – 5 µm in length. These bacteria are generally motile, with polar 

flagella and do not ferment carbohydrates, do not fix nitrogen and are not 

photosynthetic. Most species fail to grow in acidic conditions (pH 4.5 or lower) and 

do not require organic growth factors. The optimum growth temperature for most 

strains is 28°C, but many are capable of growth between 4- 45°C (Bergey’s Manual of 

Systematic Bacteriology, 2001). 

 

Members of the genus Pseudomonas are free-living organisms and occupy a dominant 

position in the biosphere in terms of variety of habitats and the number of species in a 

given habitat (Todar, 2004). One of the most striking properties of the members of 

this genus is their remarkable nutritional versatility. They play an important role in 

decomposition, biodegradation and the carbon and nitrogen cycles. Organic 

compounds such as alcohols, aliphatic acids, amides, amines, amino acids, aromatic 

compounds, carbohydrates and hydrocarbons are all readily used by Pseudomonas 

species as growth substrates. In fact the only organic compounds that cannot be 

attacked by the Pseudomonads are teflon, styrofoam and one-carbon organic 

compounds such as methane, methanol, formaldehyde etc. (Todar, 2004). 

 

The biological identity of the genus Pseudomonas has changed dramatically in recent 

years during the transition between artificial classification based on phenotypic 

properties and revisionist classification based on genotypic properties (Todar, 2004). 

In the past, Pseudomonas species were subdivided on the basis of rRNA homology 

into five similarity groups (Palleroni, 1986). There were about forty species. More 
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recently only members of Group I were held in the genus Pseudomonas. Group I is 

the largest group, including fluorescent strains such as P. aeruginosa, P. fluorescens 

and P. putida and the plant pathogens P. syringae and P. cichorii. It also includes 

many important nonfluorescent species such as P. stutzeri and P. mendocina. The 

members of groups II, III, IV, V were moved into new or previously existing genera 

such as Burkholderia, Xanthomonas and Comamonas based on 16S rRNA gene 

analysis (Bergey’s Manual of Systematic Bacteriology, 2001). 

 

The use of 16S rRNA gene sequene in the classification of bacterial species has now 

been well established (García-Martínez et al., 2001). It is the part of the DNA now 

most commonly used for taxonomic purposes for bacteria (Harmsen and Karch, 

2004). This gene is present in all bacteria and therefore can be used to measure 

relationships between them. This gene can be compared not only to other bacteria but 

also with archaeobacteria and the 18S rRNA gene of eukaryotes function (Clarridge 

III, 2004). Its degree of conservation is believed to result from the importance of the 

16S rRNA as a critical component of cell. Other genes, such as those that make 

enzymes, can tolerate more frequent mutations because they may affect structures not 

as unique and essential as rRNA. Therefore, very few genes are as highly conserved 

as the 16S rRNA gene. Although the absolute rate of change in 16S rRNA is not 

known, it does mark the evolutionary distance and relatedness of organisms 

(Clarridge III, 2004). 

 

The ribosome is an organelle in cells that assembles proteins. It is composed of both 

ribosomal RNA and ribosomal proteins, known as the ribonucleoprotein. Ribosomes 

can be found floating freely in the cytoplasm or bound to the endoplasmic reticulum 

or the nuclear envelope and are usually found in large number in cells. Ribosomal 

RNA (rRNA) is the major proportion of cellular RNA and makes up about 65% of the 

bacterial ribosome (Rodnina et al., 2007). 

 

Ribosomal RNAs are at present the most useful and most used of the molecular 

chronometers (Clarridge III, 2004). Since ribosomes are an essential component of 

protein synthesis apparatus and the structures are strictly conserved, the DNA 

component of the small ribosome subunit has been proven extensively to be an 

important and useful molecular clock for quantitating evolutionary relationships 



   

3 
 
 

 

between organisms (Ueda et al., 1999). They are useful because they occur in all 

organisms, and different positions in their sequences change at very different rates, 

allowing phylogenetic relationships, both close and distant, to be measured, which 

makes their range all encompassing (Clarridge III, 2004). They are large and they 

consist of many domains. There are about 50 helical stalks in the 16S rRNA structure 

(Figure 1.1) and almost 100 in the 23S rRNA (Wimberly et al., 2000). The number of 

domains is important because non-random changes affecting one of the units will not 

appreciably affect the others. This is a major advantage of using the larger rRNAs 

(16S and 23S) over the smaller 5S rRNA (Woese, 1987). 

 

Figure 1.1: The secondary structure of 16S ribosomal RNA (Gutell, 1994). The small 

numbers indicate nucleotide numbers in E. coli and the large numbers indicate the 

loop number. 
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Since the development of molecular techniques such as the polymerase chain reaction 

and DNA sequencing in the 1980s, the phylogenetic structure of bacteria has been 

studied by comparing sequences of 16S ribosomal RNA. Fox et al. (1980) described 

the process, which changed the way microorganisms were identified and classified. It 

was identified that the 16S rRNA gene is highly conserved within a species and 

among a species of the same genus. Nucleotide substitutions occur within ribosomal 

nucleic acids at steady rate throughout evolutionary history (Woese, 1987). Some 

regions of rRNA genes evolve at different rates resulting in regions of nucleotide 

conservation and variability. The conserved regions allow for the selection of 

universal primers for PCR amplification of almost all prokaryotes. 

 

Bacteria can be identified by amplifying the 16S rRNA gene, sequencing it and 

comparing it to other bacterial sequences in a database, such as GenBank, the largest 

database of nucleotide sequences. The reliability of DNA sequences generated in 

laboratories has been greatly improved by the introduction of automated sequencing 

systems and DNA alignment software. However, other factors, such as the purity of 

the DNA template and number of overlapping nucleotide fragments in the alignment, 

contribute to the reliability of the final sequence (Sacchi et al., 2002). 

 

A phylogenetic tree can be constructed which shows the bacterium’s position in the 

evolutionary order based on base differences between species. This process is fast and 

very accurate and is aided by the large number of available programmes and 

databases. Databases are available that have thousands of 16S rRNA sequences from 

almost all known genera of bacteria (Zhang et al., 2002). Advances in sequencing 

technology have also increased the speed with which sequence information can be 

obtained. 16S rRNA gene sequencing is now the gold standard of bacterial 

identification. It enables the identification of non-cultivable microorganisms and 

elucidates the relationship between unknown species and known ones (Woo et al., 

2000). 

 

Ribosomal RNA sequences do not always coincide with characterisations based on 

classic taxonomic methods. Whereas genotypic classifications are based on relatively 

stable and uniform molecular targets, phenotypic classification is subject to variations 

in morphology, metabolic status and interpretation. When sequence data are included 
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with other methods (e.g. API, Biolog identification kits) in a polyphasic approach, a 

comprehensive taxonomic and phylogenetic assessment can be obtained (Kolbert and 

Persing, 1999). 

 

 

1.1.1 Pseudomonas aeruginosa 

 

Pseudomonas aeruginosa was first obtained in pure culture by Gessard in 1882 from 

wounds that had produced blue-green discoloration (Forkner, 1960). The word 

‘aeruginosa’ comes from the Latin word for verdigris or copper rust. This describes 

the blue-green bacterial pigment seen in laboratory cultures of P. aeruginosa.  

Pseudomonas aeruginosa is a Gram-negative, mesophilic, aerobic rod (measuring 0.5 

to 0.8 µm by 1.5 to 3.0 µm) (Bergey’s manual of Systematic Bacteriology, 2001). 

These bacteria are commonly found in soil and water. They occur regularly on the 

surface of plants and occasionally on the surfaces of animals. The pseudomonads are 

better known to microbiologists as pathogens of plants rather than animals, but few 

pseudomonads species are pathogens of humans (Todar, 2004). 

 

Stover et al. (2000) accomplished sequencing of the complete 6.3Mbp genome of P. 

aeruginosa. The large genome size and genetic complexity of P. aeruginosa reflects 

evolutionary adaptations permitting it to thrive in diverse ecological niches. P. 

aeruginosa has broad capabilities to transport, metabolize and grow on organic 

substances, numerous iron siderophore uptake systems and enhanced ability to export 

compounds, e.g., antibiotics, by a large number of protein secretion and efflux 

systems.  

 

Pseudomonas aeruginosa is not particularly distinctive as a pseudomonad, but there 

are a few characteristics that are noteworthy and relate to its pathogenesis (Todar, 

2004). Pseudomonas aeruginosa possesses the metabolic versatility for which 

pseudomonads are so renowned. Pseudomonas aeruginosa is nonfermentative and 

derives its energy from oxidation rather than fermentation of carbohydrates. It can 

utilise at least eighty organic compounds but can grow on minimal media with only 

acetate for carbon and ammonium sulphate for nitrogen. It does not require any 

organic growth factors (Bergey’s Manual of Systematic Bacteriology, 2001). 
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Pseudomonas aeruginosa is extremely versatile biochemically and can multiply in an 

extraordinary assortment of environments including eye drops, soaps, sinks, 

anaesthesia and resuscitation equipment, fuels, humidifiers and even stored distilled 

water, which is evidence of its minimal nutritional requirements (Todar, 2004). 

Although the bacterium is respiratory and never fermentative, it will grow in the 

absence of O2 if NO3 is available as a respiratory electron acceptor. Its optimum 

temperature for growth is 37ºC, and it is able to grow at temperatures as high as 42ºC. 

Indeed, it is this ability to grow at 42ºC that distinguishes it from many other 

Pseudomonas species. No growth occurs at 5ºC (Bergey’s Manual of Systematic 

Bacteriology, 2001).  Its tolerance to a wide variety of physical conditions, including 

temperature, contributes to its ecological success as an opportunistic pathogen. 

Pseudomonas aeruginosa does, however, show a preference for growth in moist 

environments, a reflection of its origins in soil and water (Todar, 2004).  

 

Pseudomonas aeruginosa isolates can produce three different colony types. One is 

large, smooth, with flat edges and an elevated centre (“fried egg” appearance) and the 

other is small, rough and convex. Clinical materials are, in general, good sources of 

the large colony type, while the small is commonly obtained from natural sources 

(Véron and Berche, 1976). A third type (mucous) often can be obtained from 

respiratory and urinary tract secretions and was first observed by Sonnenshein (1927). 

The mucus is attributed to the production of alginate slime. The smooth mucoid 

colonies are presumed to play a role in colonisation and virulence (Bergey’s Manual 

of Systematic Bacteriology, 2001).   

 

Pseudomonas aeruginosa produces many types of soluble pigments of which 

pyocyanin and pyoverdin are the most common. The latter is produced abundantly in 

media of low-iron content, and functions in iron metabolism in the bacterium. 

Pyocyanin refers to “blue pus” which is a characteristic of suppurative infections 

caused by Pseudomonas aeruginosa. (Palleroni, 1986)  Other pigments produced are 

pyorubin (red), pyomelanin (brown) and pyoverdin (yellow/green) (Bergey’s Manual 

of Systematic Bacteriology, 2001).   
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Pseudomonas aeruginosa is the epitome of an opportunistic pathogen of humans. It 

rarely causes infections in healthy individuals but is a major cause of hospital 

acquired nosocomial infections. Even though the bacterium almost never infects 

uncomprimised tissues, there is hardly any tissue that it cannot infect, if the tissue 

defences are compromised in some manner (Todar, 2004). It tends to infect people 

with immunodeficiency or burns and those with indwelling catheters or on respirators. 

Infection with P. aeruginosa can lead to urinary tract infections, sepsis (blood stream 

infection), pneumonia, endocarditis, pharyngitis, meningitis, and many other medical 

problems. It colonises the lungs of patients with cystic fibrosis (CF) and contributes to 

the chronic progressive pulmonary disease and death rate in CF. Although the initial 

isolation of P. aeruginosa from sputum may be intermittent in CF and bronchiectasis, 

once a chronic infection is established it is almost impossible to eradicate it even with 

intensive antibiotic treatment (Rayner et al., 1994). 

 

Pseudomonas aeruginosa is notorious for its resistance to antibiotics and is, therefore, 

a particularly dangerous and dreaded pathogen (Seol et al., 2002). It has a natural 

tendency for the development of resistance to antibiotics. This limits future 

therapeutic uses of antibiotics against this bacterium and increases rates of mortality. 

The bacterium is naturally resistant to many antibiotics including tetracyclines and 

benzylpenicillin due to the permeability barrier afforded by its outer membrane 

lipopolysaccharide (LPS) (Li et al., 1994 [a]). It can colonise surfaces in a biofilm 

form making the cells impervious to antibiotics.  Pseudomonas aeruginosa has been 

living in the soil for millions of years in the presence of antibiotic producing bacilli, 

actinomycetes and moulds. Therefore, it has developed resistance to a variety of their 

naturally occurring antibiotics. Moreover, P. aeruginosa maintains antibiotic resistant 

plasmids, and is able to transfer these genes by means of the bacterial processes of 

transduction and conjugation. Only a few antibiotics are effective against 

Pseudomonas, including some β-lactams, aminoglycosides and fluoroquinolones, and 

even these antibiotics are not effective against all strains.  The futility of treating 

Pseudomonas infections with antibiotics is most dramatically illustrated in cystic 

fibrosis patients, virtually all of whom eventually become infected with a strain that is 

so resistant that it cannot be treated (Todar, 2004). 
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Pseudomonas aeruginosa produces a variety of virulence factors, which aid it in 

colonising a host. These include protease enzymes, mucoid exopolysaccharide, pili, 

exotoxin A, lipopolysaccharide, pigments, lipase, haemolysin, histamine, exoenzyme 

S, leukocidin and rhamnolipids (Schaber et al., 2004) These help the bacteria to 

adhere and invade to their host by damaging the host’s immune responses and 

forming a barrier to antibiotics. No single virulence factor by itself is potent but the 

whole array of factors contributes to the pathogenicity of the P. aeruginosa (Wilson 

and Dowling, 1998). 

 

1.2 Antibiotics 

 

Bacteria comprise a large group of unicellular, prokaryotic, microorganisms, which 

are also able to form spores, i.e., dormant forms produced under adverse conditions, 

but with the potential to germinate or revert to the cellular, replicating bacterial form 

in a favourable environment. Some bacterial activities are beneficial to man while 

others, notably the capacity to cause disease, are detrimental. Undoubtedly, one of the 

most important scientific achievements of the last century has been the ability to 

control the detrimental activities of bacteria by the use of antibiotics (Russell and 

Chopra, 1990). 

 

It is widely accepted that bacteria as living organisms came to existence over 3.5 

billion years ago (Schopf and Packer, 1987). As these microorganisms were forced to 

interact with each other and other living organisms, they became more complex and 

evolved the biochemical means for influencing the existence of each other. One of 

these developments was the advent of biochemical pathways for the production of 

antibiotics. If these antibiotics could inhibit the growth of a competitor, then more 

resources would be available for the growth of the original organism (Walsh, 2003). 

 

Antibiotics (meaning “against life”) are molecules that stop microbes, both bacteria 

and fungi, from growing or kill them outright. Antibiotics that stop bacteria from 

growing are bacteriostatic, exemplified by the drug chloramphenicol. Antibiotics that 

cause bacterial cell death are bactericidal. Penicillins and aminoglycosides are 

examples of these bactericidal agents (Russell and Chopra, 1990). Antibacterial 

agents can also destroy spores. These are called sporicidal agents. Some antibiotics 
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can display bactericidal activity in some circumstances and bacteriostatic activity in 

others, where sufficient damage to one or more cell pathways or structures occurs that 

a net bactericidal response is triggered. Some bactericidal agents are also sporicidal 

and vice versa, but bacteriostatic agents are ineffective against resting spores (Walsh, 

2003). 

 

Antibiotic agents can either be natural products or synthetic chemicals, designed to 

block some crucial process in microbial cells’ selectivity. They specifically interfere 

with the biochemical processes of bacteria and hence they can be safely used in 

mammalian hosts (Todar, 2002). Many of the antibiotics in human clinical use today 

are natural products. Both bacteria and fungi produce natural antibiotic products, with 

the major group of antibiotic-producing bacteria being the actinomycetes. 

Antimicrobial compounds can be antibacterial or antifungal but there are almost no 

therapeutically useful agents that are effective as both antibacterial and antifungal 

agents because of different molecular and cellular targets and microbial cell 

penetration issues (Walsh, 2003).  

 

The establishment of infections in humans and animals by a pathogenic bacterium 

usually involves the following steps: (a) attachment to the epithelial surfaces of the 

respiratory, alimentary or urogenital tracts; (b) penetration of the epithelial surfaces 

by the pathogen; (c) interference with, or evasion of, host defence mechanisms; (d) 

multiplication in the environment of the host’s tissues; (e) damage of the host tissues. 

Antibiotics usually interfere at step (d) either by killing the pathogen or by slowing 

their growth to the point where host defence mechanisms can clear the infection. 

(Russell and Chopra, 1990). 

 

The worldwide genome sequencing efforts have completed approximately 400 

bacterial genomes to date (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). The 

number of genes in most of these organisms varies from between 1000 and 5000 

genes. It is estimated that only between 20 and 200 genes are essential for the survival 

of most bacteria (Fang et al., 2005). Therefore the proteins encoded by these genes are 

potential targets for antibiotics. Other types of antibiotics interfere with assemblies of 

these gene products or with structural components that result from their actions, such 

as the cell wall, bacterial envelope or ribosome. Known antibiotics interfere with a 
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handful of biochemical processes. These are interference in metabolic pathways, 

disruption of the integrity of the cytoplasmic membrane, inhibition of protein 

biosynthesis, inhibition of DNA and RNA biosynthesis and disruption of the 

biosynthesis of cell wall (Golemi-Kotra, 2002) (Figure 1.1). A list of antibiotic classes 

and their targets are shown in Table 1.1. 

 

Table 1.1: Antibiotics and their targets (Adapted from Todar, 2002) 

 

Antibiotic Target 

β-lactams Cell wall synthesis 

Glycopeptides Cell wall synthesis 

Quinolones DNA replication and repair 

Aminoglycosides Protein synthesis 

Tetracyclines Protein synthesis 

Macrolides Protein synthesis 

Chloramphenicol Protein synthesis 

Sulphonamides Folic acid pathway 

Trimethoprim Folic acid pathway 

Lipopeptides Cell membrane 

 

 

1.2.1 Antibiotic classes and their targets 

 

Four major targets of antibiotics are cell wall synthesis, DNA replication and repair, 

protein synthesis and metabolic pathways. These targets and others are illustrated in 

Figure 1.2. 
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Figure 1.2: Major targets for antibacterial action (Neu, 1992) 

 
1.2.1.1 Antibiotics that act on cell wall biosynthesis 

 

The Gram stain is probably the most widely used staining procedure in microbiology 

(Forster, 2002). It is a differential stain that differentiates between Gram-positive and 

Gram-negative bacteria. Gram-positive stain purple and Gram-negative stains pink. 

Bacteria such as Pseudomonas aeruginosa and E. coli are Gram-negative whereas 

streptococci and staphylococci are Gram-positive. Gram-positive and Gram-negative 

stain differentially because of fundamental differences in the structure of their cell 

walls (Figure 1.3) (Bergey’s Manual for Systematic Bacteriology, 2001).  

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Diagram showing the composition of Gram-negative and Gram-positive 

cell walls (Adapted from http://library.mtandao-afrika.org/TQA01074/ 

english/bio.htm) 
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The bacterial cell wall serves to give the organism its size and shape and also to 

prevent osmotic lysis. Peptidoglycan (also called murein) is the component of the cell 

that confers its rigidity. Both Gram-positive bacteria and Gram-negative bacteria have 

a peptidoglycan layer as part of their cell wall structure. The peptidoglycan layer is 

substantially thicker and multilayered in Gram-positive bacteria. It is a vast polymer 

consisting of interlocking chains of identical peptidoglycan monomers. The monomer 

consists of two joined sugars, N-acetylglucosamine (NAG) and N-acetylmuramic acid 

(NAM), with a pentapeptide coming off the NAM (Figure 1.4). The monomers are 

synthesized in the cytoplasm of the bacterium where they attach to a membrane 

carrier molecule called bactoprenol. Bactoprenols transport the peptidoglycan 

monomers across the cytoplasmic membrane and work with enzymes to insert the 

monomers into existing peptidoglycan enabling bacterial growth following binary 

fission (Russell and Chopra, 1990). 

 

 

 

 

 

 

 

 

 

Figure 1.4: Structure of peptidoglycan (Walsh, 2003) 

 

Once the new peptidoglycan monomers are inserted, glycosidic bonds then link these 

monomers into the growing chains of peptidoglycan. These long sugar chains are then 

joined to one another by means of peptide cross-links between the peptides coming 

off the NAMs. The peptide cross-links introduce covalent connectivity to the 

meshwork, impart mechanical strength and provide the major structural barrier to 

osmotic pressure forces that could kill the bacterium (Walsh, 2003). 

 

In order for bacteria to increase in size following binary fission, links in the 

peptidoglycan monomers must be inserted and the peptide cross-links must be 

resealed. Williams et al. (1996) described the synthesis of peptidoglycan. 
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Peptidoglycan is made in several stages. The initial reactions occur in the cytoplasm. 

Further transformations are then effected in the cell membrane and the final 

incorporation of peptidoglycan into the bacterial cell wall occurs at the point of 

extension of the cell wall. 

 

Cytosolic phase 

 

The basic unit of peptidoglycan made in the cytoplasm consists of NAM attached to 

the inactivating nucleotide uridine diphosphate (UDP) and bearing a pentapeptide. N-

acetylglucosamine-1-phosphate is first converted into UDP-NAG. The lactic acid 

residue that converts UDP-NAG into UDP-NAM is incorporated as pyruvate from the 

glycolytic intermediate phosphoenolpyruvate (PEP), followed by the reduction of this 

pyruvate to lactate. The lactate is joined by an ether link between its hydroxyl and the 

3-hydroxyl of the NAG. The peptide is attached to the carbonyl group of the lactic 

acid residue. The stepwise addition of three amino acids by peptide bonds forms the 

tripeptide derivative of UDP-NAM-tripeptide. The final two amino acids of the 

pentapeptide are added as a dipeptide of D-alanine, which is synthesized separately by 

D-Ala-D-Ala synthase. Fosfomycin is an antibiotic that inhibits the cytosolic phase of 

phase of peptidoglycan synthesis. 

 

Membrane phase 

 

The membrane carrier used in the membrane phase of peptidoglycan synthesis is the 

55-carbon lipid undecaprenyl phosphate (Und-P), comprising 11 isoprene units. The 

lipid accepts phospho-NAM-pentapeptide from UDP-NAM-pentapeptide in a reaction 

involving translocase I, releasing UMP into the cytoplasm. These lipid complexes in 

the membrane then accept NAG from cytoplasmic UDP-NAG in the transfer using 

translocase II, so that the growing peptidoglycan subunit now contains the NAM-

β1:4-NAG disaccharide subunit and pentapeptide. Bacitracin is an antibiotic that 

inhibits the membrane phase of peptidoglycan synthesis. It binds to Und-P-P and 

inhibits the membrane pyrophosphatase that releases undecaprenyl phosphate from 

the pyrophosphate, causing an accumulation of the lipid carrier in the pyrophosphate 

form.  
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Cell wall phase 

 

Growing bacteria have lytic enzymes to hydrolyse the mucopeptide locally in order to 

allow new components to be added at growing points. The peptidoglycan subunit in 

the membrane is detached from the undecaprenyl pyrophosphate  (Und-P-P) carrier 

and transferred to a growing point in the peptidoglycan by a bond to the NAM-NAG 

disaccharide. The released undecaprenyl lipid bears pyrophosphate, which must be 

hydrolysed by a specific pyrophosphatase to form monophosphate that may again 

accept UDP-NAM-pentapeptide from the cytoplasm. In the cross-linkage of 

peptidoglycan by transpeptidation, the side-chain amino group of the pentaglycine of 

one glycan chain reacts enzymatically with the peptide bond between two D-alanine 

residues of a pentapeptide from another glycan chain. The reaction involves the 

migration of the peptide bond and the transfer of a proton from the pentaglycine 

amino group; free D-alanine is released. There is no requirement for energy input 

because these enzymes work outside the cell on the periplasmic face of the membrane 

where ATP and other energy sources are not routinely available (Walsh, 2003).  

 

ββββ-lactams 

 

The β-lactams were the first antibiotics to be discovered and used. Without doubt, the 

β-lactams are the most important group of drugs that inhibit the final stage of 

peptidoglycan synthesis (Russell and Chopra, 1990). They are favoured because of 

their efficacy, broad spectra and low toxicity. All β-lactams are bactericidal agents 

(Walsh, 2003). The penicillins are derived from the fungus Penicillium and 

modifications made upon the parent compound can alter the drug’s spectrum of 

action. The β-lactam antibiotics include the penicillins (oxacillin, ampicillin, 

carbenicillin, piperacillin etc.) (Table 1.2), where the chemical warhead, the four-

membered β-lactam ring, is fused to a five-membered sulphur ring system (Figure 

1.5) (Merck, 2007). Penicillins are primarily active against non-β-lactamase-

producing, aerobic Gram-negative, some fastidious, aerobic Gram-negative bacteria 

and some anaerobic bacteria. Aminopenicillins (ampicillin and amoxicillin) are active 

against additional Gram-negative species, including some members of the 

Enterobacteriaceae. Carboxypenicillins (carbenicillin and ticarcillin) and 
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ureidopenicillins (mezlocillin and piperacillin) are active against an expanded list of 

Gram-negative bacteria including many Pseudomonas and Burkholderia spp. 

Penicillinase-stable penicillins (cloxacillin, dicloxacillin, methicillin, nafcillin and 

oxacillin) are active against predominantly Gram-positive bacteria including 

penicillinases-producing staphylococci (Clinical and Laboratory Standards Institute 

(CLSI) (M100-S16, 2006). 

 

The cephalosporins (cephalothin, ceftazidime etc.) are β-lactams in which the β-

lactam is fused to a sulphur-containing ring expanded system (Walsh, 2003). Different 

cephalosporins exhibit somewhat different spectrums of activity against aerobic and 

aerobic Gram-positive and Gram-negative bacteria. The cephalosporins antimicrobial 

class includes the classical cephalosporins. Cephalosporins are often referred to as 

“first-”, “second-”, “third-” or “fourth-generation” cephalosporins (Table 1.2) based 

on the extent of their activity against the more antimicrobial agent-resistant, Gram-

negative aerobic bacteria. All representatives of a specific group or generation do not 

necessarily have the same spectrum of activity (Clinical and Laboratory Standard 

Institute (CLSI), M100-S16, 2006). 

 

Other variants of the β-lactam natural products are the penems and monobactams 

(Table 1.2) (Todar, 2002). The penems (imipenem and meropenem) structure differs 

slightly from that of the penicillins. They have a broader spectrum of activity against 

both Gram-negative and Gram-positive bacteria because they are a lot more resistant 

to β-lactamase hydrolysis. Monobactam antimicrobial agents are monocyclic β-

lactams. Aztreonam is the only approved monobactam antimicrobial agent. It only has 

activity against Gram-negative aerobic bacteria (Clinical and Laboratory Standard 

Institute, M100-S16, 2006).  

 

There are also antimicrobial agents which are combinations that include a β-lactam 

and a second agent that has minimal antibacterial activity but functions as an inhibitor 

of some β-lactamases (Walsh, 2003). Currently, three β-lactamase inhibitors are in 

use: clavulanic acid, sulbactam and tazobactam. The results of tests of only the 

penicillin portion of the combination against β-lactamase-producing organisms are 



   

16 
 
 

 

often not predictive of susceptibility to the two-drug combination (Clinical and 

Laboratory Standard Institute, M100-S16, 2006). 

 

 

 

 

 

 

Figure 1.5: Structure of penicillin (Walsh, 2003) 

 

β-lactams stop bacterial cells reproducing by inhibiting the synthesis of a new cell 

wall, which is essential for the survival of the bacteria. Penicillin, as well as other β -

lactams, inhibits the enzyme that places essential cross-links between the individual 

polymer strings of the cell wall. It does this specifically by using the β-lactam ring to 

irreversibly block the active site of the enzyme, which catalyzes the reaction, 

transpeptidase. This inhibition allows the bacteria to newly synthesize a cell wall and 

to elongate, but not divide. This is due to the lack of cross-linking. The result is 

disruption of cell wall integrity, making the cell osmotically unstable and susceptible 

to lysis (Walsh, 2003).  

 

The β-lactams resemble the sequence of the terminal dipeptide of uncrosslinked 

mucopeptide, D-alanine-D-alanine, the natural substrate for the cross-linking enzyme 

transpeptidase. The –CO-N- bond of the β-lactam ring is the analog of the peptide 

bond between the two alanine residues of the natural substrate. Penicillin reacts with 

the transpeptidase to form a stable acyl intermediate. The β-lactam ring acylates the 

hydroxyl group of one specific serine residue in the transpeptidase, producing an 

inactive penicilloyl-enzyme complex (Williams et al., 1996). 

 

The transpeptidases “commit suicide” when they start a catalytic cycle with β-lactam 

antibiotics as substrates, mistaking them for immature peptidoglycans waiting to be 

cross-linked. The active-site serine adds into the strained four-ring carbonyl and 

generates an acyl enzyme intermediate in which the β-lactam ring has opened. The 

enzyme is then stuck in mid-catalytic cycle. The transpeptidases are designed to 
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exclude water from intercepting the normal acyl enzyme intermediates and, therefore 

the penicilloyl enzyme forms are very slow to hydrolyse. These covalent penicilloyl 

enzymes build up and are effectively inactive until slow hydrolysis allows it to 

recover. It may take between hours and days for hydrolysis to occur (Walsh, 2003). A 

list of common β-lactam antibiotics is shown in Table 1.2. 

 

Table 1.2: List of common β-lactam antibiotics (adapted from Merck, 2007) 

 

Penicillins 

Amoxicillin 

Amoxicillin/Clavulanate 

Ampicillin 

Ampicillin/Sublactam 

Bacampicillin 

Carbenicillin 

Cloxacillin 

Dicloxacillin 

Methicillin 

Mezlocillin 

Nafcillin 

Oxacillin 

Penicillin G 

Penicillin V 

Piperacillin 

Piperacillin/Tazobactam 

Ticarcillin 

Ticarcillin/Clavulanate 

 

Monobactams 

Aztreonam 

 

Carbapenems 

Ertapenem 

Imipenem 

Meropenem 

Cephalosporins 

 

1
st
 Generation 

Cefadroxil 

Cefazolin 

Cephalexin 

Cephalothin 

Cephapirin 

Cephradine 

 

2
nd

 Generation 

Cefaclor 

Cefamandole 

Cefonicid 

Cefotetan 

Cefoxitin 

Cefprozil 

Cefuroxime 

Loracarbel 

 

3
rd

 Generation 

Cefdinir 

Cefditoren 

Cefixime 

Cefoperazone 

Cefotaxime 

Cefpodoxime 

Cefsulodin 

Ceftazidime 

Ceftibuten 
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Ceftizoxime 

Ceftriaxone 

 

4th Generation 

Cefepime 

Cefozopran 

 

 

Glycopeptides 

 

Vancomycin and teicoplanin are two glycopeptide antibiotics that have been approved 

for human use (Moellering, 2006). The structures of both antibiotics can be seen in 

Figure 1.6. Glycopeptides are only effective against Gram-positive bacteria 

(Greenwood and Whitley, 2003). They interfere with the glycan unit insertion in 

peptidoglycan synthesis. Vancomycin, which is a large hydrophilic molecule, 

undergoes hydrogen bonding to the acyl-D-alanyl-D-alanine terminus of various 

peptidoglycan precursors. It inhibits the transglycosylation step by which the glycan 

units are polymerized within the peptidoglycan. It doesn’t inhibit the transglycosylase 

enzyme but the complex of vancomycin with the peptide prevents the substrate from 

interacting with the active site of the enzyme (Walsh, 2003). Teicoplanin works in a 

similar way. Their mode of action is not to be confused with that of β-lactams 

(Russell and Chopra, 1990). 

 

 

Figure 1.6: Structures of vancomycin (left) and teicoplanin (right) (Available at 

http://www.chemsoc.org/chembytes/ezine/images/1997/resfig1.gif) 
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1.2.1.2 Antibiotics that block DNA replication and repair 

 

Biosynthesis of DNA and its repair has been targeted by the quinolone class of 

antibiotics (Oliphant and Green, 2002). Quinolones are a novel group of synthetic 

antibiotics that were developed in response to the increasing problem of antibiotic 

resistance. They are derivatives of nalidixic acid, a synthetic quinolone compound. 

Quinolones are low molecular weight hydrophilic molecules. Fluoroquinolones such 

as ciprofloxacin (Figure 1.7), norfloxacin, sparfloxacin and gatifloxacin have a broad 

spectrum of activity and are widely used in the treatment of both Gram-negative and 

Gram-positive infections. The quinolones inhibit the replication of DNA without 

immediately affecting RNA or protein synthesis in sensitive bacteria. These 

antibiotics inhibit DNA topoisomerases, which are necessary for DNA synthesis. 

Topoisomerases are essential for cell viability. The DNA topoisomerases change the 

linking number in supercoiled DNA by making transient cuts in the DNA substrate 

and then passing the DNA to be relaxed topologically through the transient break, 

either one strand at a time (Type I) or both strands at a time (Type II). Topoisomerase 

IV is essential for the separation of interlinked daughter DNA molecules. These 

antibiotics bind to the complex formed between DNA and DNA gyrase or 

topoisomerase IV, during the replication process. When the replication fork collides 

with the quinolones-enzyme-DNA complex, its progress is halted and the reformation 

of the phosphate diester is prevented. (Walsh, 2003). 

 

Nalidixic acid causes disintegration of DNA and filamentation of bacterial cells but its 

toxicity in animals is limited to inhibition of mitochondrial DNA replication. These 

antibiotics display concentration-dependent bactericidal activity. Nalidixic acid is 

bactericidal to most of the Gram-negative bacteria but is only useful for treatment of 

urinary tract infections because it does not achieve bactericidal concentrations in any 

bodily fluid except urine. The second-generation quinolones, norfloxacin and 

ciprofloxacin are more effective against a wider range of bacteria. New quinolones 

such as fleroxacin are active against a wide range of Gram-negative aerobes and 

moderately effective against Gram-positive aerobes (Williams et al., 1996). 
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Figure 1.7: Structure of ciprofloxacin (Walsh, 2003) 

 

 

1.2.1.3 Antibiotics that block bacterial protein biosynthesis 

 

Aminoglycosides were originally isolated from soil bacteria including various species 

of Streptomycetes and Micromonospora (Greenwood, 1995). Schatz and Waksmann 

(1944) reported the first aminoglycoside antibiotic. It was called streptomycin and 

proved to be the first chemotherapeutic agent that was effective against 

Mycobacterium tuberculosis. Streptomycin is considered to be the parent molecule for 

the aminoglycosides but there are now two distinct sub families of aminoglycosides 

based upon the structure of the aminocyclitol ring. The basic chemical structure 

required for both potency and the spectrum of antimicrobial activity of 

aminoglycosides is that of one or several aminated sugars joined in glycosidic 

linkages to a dibasic cyclitol. In most clinically used aminoglycosides (the larger 

kanamycin/neomycin group) the cyclitol is 2-deoxystreptamine and it is streptidine in 

the streptomycin group of aminoglycosides. The kanamycin/neomycin group consists 

of a central aminocyclitol ring (B ring) with two or three substituted aminoglycan 

rings linked either at the 4 and 5 hydroxyls of the B ring (neomycin, paromomycin, 

butirosin and lividomycin) or at the 4 and 6 hydroxyls (kanamycin, amikacin, 

tobramycin and gentamicin) (Figure 1.8) (Smith and Baker, 2002). There have been 

many more aminoglycoside antibiotics discovered since streptomycin including 

kanamycin, tobramycin, netilmicin and gentamicin, which have established the 

aminoglycosides as being very effective against aerobic Gram-negative infections 

(Gonzalez and Spencer, 1998).  

 

Chemists have developed semisynthetic variants that have broader spectra of activity 

and that are not susceptible to aminoglycoside resistance enzymes. Aminoglycosides 
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exhibit activity against a variety of clinically important Gram-negative bacteria such 

as Klebsiella spp., Serratia spp., Citrobacter spp., Enterobacter spp., Proteus spp. and 

Pseudomonas spp. as well as Staphylococcus aureus and streptococci, but they have 

extremely reduced activity against microorganisms growing in an anaerobic 

environment (Vakulenko and Mobashery, 2003). Aminoglycosides have varying 

spectra of antimicrobial activity. For example, gentamicin is more active than 

tobramycin against Serratia spp., whereas tobramycin has greater activity against 

Pseudomonas aeruginosa than gentamicin. The widest spectrum of activity of the 

aminoglycosides belongs to arbekacin, an aminoglycoside that is most commonly 

used in Japan. It has remarkable activity against MRSA strains that show no 

susceptibility to other aminoglycosides (Aoki, 1994). 

 

Aminoglycosides are very useful antibiotics as they have relatively predictable 

pharmokinetics, a postantibiotic effect, synergism with other antibiotics and have 

concentration-dependent bactericidal activity (Vakulenko and Mobashery, 2003). 

They are commonly used in combination with antibiotics, which inhibit cell wall 

synthesis i.e., β-lactams and vancomycin, particularly in the treatment of enterococci, 

Pseudomonas aeruginosa and Staphylococcus aureus (Gonzalez and Spencer, 1998). 

The increased permeability afforded by these antibiotics results in an increase in 

intracellular uptake of aminoglycosides (Eliopoulos and Moellering, 1996). 

Aminoglycosides exhibit a postantibiotic effect (Craig and Gudmundsson, 1996). That 

means they continue to kill bacteria after the aminoglycoside has been removed 

following a short incubation with the microorganism. Aminoglycosides show 

concentration-dependence (Gonzalez and Spencer, 1998). This means that their 

bactericidal activity depends more on their concentration than on the duration of 

bacterial exposure to inhibitory concentrations of antibiotic and is also significantly 

less dependent on the bacterial inoculum size. The killing potential of 

aminoglycosides therefore increases with increasing concentration of the antibiotic 

(Vakulenko and Mobashery, 2003). 

 

Aminoglycosides are one of the commonest causes of drug-induced nephrotoxicity 

(Walker and Duggin, 1988). Nephrotoxicity induced by aminoglycosides manifests 

clinically as nonoliguric renal failure (Mingeot-Leclercq and Tulkens, 1999). 
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Therefore, aminoglycosides are usually not the first antibiotic of choice. 

Aminoglycosides are usually administered parenterally, although to increase the 

concentration of the antibiotic at the site of infection or to reduce toxicity, aerosolized 

tobramycin and gentamicin have been used in cystic fibrosis therapy (Heinzl et al., 

2002). 

 

The RNA and protein machinery of the prokaryotic ribosomes is sufficiently distinct 

from the analogous eukaryotic machinery that there are many inhibitors of protein 

synthesis, targeting different steps in ribosome action, with selective antibacterial 

action (Walsh, 2003). Aminoglycoside antibiotics are protein synthesis inhibitors. The 

ribosome is a complex structure made up of three RNA molecules and more than 50 

proteins (Vakulenko and Mobashery, 2003).  This complex, along with several GTP-

hydrolysing protein factors, catalyses protein synthesis. The bacterial ribosome is 

made up of two subunits, 50S and 30S. The 50S comprises two further subunits, 5S 

and 23S rRNAs and 33 proteins, while the 30S is made up of a single 16S rRNA and 

20 to 21 proteins (Walsh, 2003). Aminoglycoside antibiotics bind to the 30S 

ribosomal subunit, which plays a crucial role in providing high-fidelity translation of 

genetic material (Vakulenko and Mobashery, 2003). 

 

The ribosome has three functionally important tRNA binding sites: A (aminoacyl), P 

(peptidyl) and E (exit) (Green and Noller, 1997). During protein synthesis, the 

ribosome decodes information stored in the mRNA and catalyses sequential 

incorporation of amino acids into a growing polypeptide chain. High fidelity 

translation is achieved by the ability to discriminate between conformational changes 

in the ribosome-induced binding of cognate and noncognate tRNAs at the A site. 

Aminoglycosides that contain the 2-deoxystreptamine ring increase the error rate of 

the ribosome by allowing incorporation of the noncognate tRNAs. The structure of the 

30S subunit indicates that two universally conserved adenine residues (A1492 and 

A1493) are directly involved in the decoding process during normal translation. In the 

native structure of the ribosome, these adenine residues are stacked in the interior of 

helix 44. Binding of the tRNA to the A site flips A1493 and A1492 out from their 

stacked position. It also flips G530 out from the syn to the anti conformation. The N1 

of adenines interacts with the 2’-OH groups of the tRNA residues that are in the first 
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and second positions of the codon-anticodon triplet (Vakulenko and Mobashery, 

2003). 

 

 

Figure 1.8: Structure of gentamicin (Walsh, 2003) 
 

Aminoglycosides that contain the 2-deoxystreptamine ring bind to the major groove 

of helix H44 of 16S rRNA. This results in the flipping out of the same conserved 

A1492 and A1493 residues that are normally displaced upon binding of the cognate 

tRNA. The conformational changes induced in the 30S subunit by binding of the 

cognate tRNA are energetically favourable because they allow the ribosome to 

participate in a greater number of compensating interactions between the codon and 

anticodon double helixes (Vakulenko and Mobashery, 2003). Because the flipping out 

of the adenine residues might require energy expenditure, aminoglycoside-induced 

flipping-out can reduce energetic cost, allowing binding of near-cognate tRNAs and 

subsequent mistranslation of mRNA (Ogle et al, 2001). 

 

Streptomycin has a different structure to that of other aminoglycosides but it binds at 

the functional centre of the ribosome in close proximity to the binding site of other 

aminoglycosides. Like other aminoglycosides, it induces misreading of the genetic 

code, but the mechanism is different. During translation, the 30S subunit switches 

between two distinct conformations. It has been shown that mutational stabilization of 

one of the conformations over the other results in two different fidelity phenotypes. 

One increases fidelity and the other decreases fidelity, i.e., ram (ribosomal ambiguity) 

or error-prone. The interaction of streptomycin with the ribosome is thought to 

preferentially stabilize the ram state. This stabilisation lowers the affinity for tRNAs 

and allows binding of near-cognate tRNAs, which renders the A-site more 

promiscuous. It could also affect the proofreading by making transition to the 

restrictive site more difficult (Vakulenko and Mobashery, 2003). 
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The passage of aminoglycosides (highly polar molecules) across the outer membrane 

of Gram-negative bacteria is a self-promoted uptake process involving the drug-

induced disruption of Mg2+ and Ca2+ bridges between adjacent lipopolysaccharide 

molecules. Penetration through porin channels is unlikely because of the large size of 

aminoglycosides (Mingeot-Leclercq et al., 1999). Uptake of aminoglycoside 

antibiotics across the bacterial cytoplasmic membrane is essential for antibacterial 

activity and is similar in Gram-positive and Gram-negative bacteria. Aminoglycoside 

uptake is multiphasic with three distinct phases, one of which is energy-independent 

(EIP) and the remainder being energy-dependent (EDPI and EDPII) (Russell and 

Chopra, 1990). 

 

The EIP phase of uptake occurs very rapidly and represents the initial binding of 

antibiotic to bacteria. Although, in Gram-negative bacteria, this partially represents 

interaction with the outer membrane, uptake during EIP also represents binding of 

drug molecules to the cytoplasmic membrane. EDPI represents a slow, but poorly 

characterised, energy-dependent uptake of drug molecules across the cytoplasmic 

membrane. A threshold transmembrane potential generated by a membrane-bound 

respiratory chain is required for the uptake of aminoglycosides during EDPI. This is 

why anaerobes are resistant to these antibiotics.  EDPII, associated with progressive 

binding of aminoglycosides to ribosomes within the cell, results in an acceleration of 

uptake seen towards the end of EDPI. Aminoglycosides virtually irreversibly saturate 

all ribosomes, causing cell death. It is not known whether the third phase of uptake 

involves a transport carrier, nor is even the exact nature of the energy source driving 

EDPII mediated aminoglycoside uptake (Russell and Chopra, 1990). 

 

 

1.2.1.4 Antibiotics that act on metabolic pathways 

 

Folate is a coenzyme essential for cell growth. However, bacteria cannot transport 

folate and have to synthesis it de novo. Eukaryotes cannot synthesise folate and 

instead scavenge it from dietary sources and transport it into cells. Therefore selective 

inhibition can be achieved (Greenwood and Whitley, 2003). 
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Sulphonamides inhibit the incorporation of p-aminobenzoic acid (pABA) (Figure 1.9) 

into a precursor of dihydrofolic acid (DHF) that should then be reduced by the 

enzyme dihydrofolate reductase (DHFR) to tetrahydrofolic acid (THF). THF, which is 

a derivative of folic acid, is an important coenzyme involved in the transfer of small 

residues containing a single carbon atom (e.g. methyl, formyl) in intermediary 

metabolism. THF derivatives are also required for the synthesis of the amino acid 

methionine and of the nucleic acid bases, including thymine. DHF is synthesized in 

two stages. Firstly, dihydropteroic acid synthase catalyses the combination of 

pteridine derivative with pABA. This reaction is inhibited by sulphonamides. This is 

followed by the condensation of glutamic acid with dihydropteroic acid (Todar, 

2002). 

 

Trimethoprim inhibits the conversion of dihydrofolate to tetrahydrofolate. This limits 

the supply of some amino acids and nucleic acids. There is therefore a lag time 

between the administration of sulphonamides and the cessation of bacterial growth, 

which corresponds to the time taken for the bacteria to use up the stocks of 

biosynthetic components and folic acid already present in the cell. These drugs are 

bacteriostatic drugs since it may take some generations for the folate pool in the 

bacteria to decrease (Williams et al., 1996). They are active against both Gram-

negative and Gram-positive organisms (Clinical and Laboratory Standard Institute, 

M100-S16, 2006). These antibiotics are usually administered as co-trimoxazole, 

which is a combination of the two antibiotics. A diagram showing the sites of action 

of sulphonamide and trimethoprim in the folic acid synthesis pathway can be seen in 

Figure 1.10. 

    

  

 

Figure 1.9: Structure of sulphonamide (left) and p-aminobenzoic acid (pABA) (right) 

(Walsh, 2003) 

 

NH2 
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Figure 1.10: Diagram showing the sites of action of sulphonamides and trimethoprim 

in the folic acid synthesis pathway (Williams et al., 1996) 

 

 

1.3 Antibiotic resistance 

 

For millions of years, bacteria in the environment have been secreting specific 

compounds toxic to other bacterial cells. Soil bacteria, for example, are extremely 

prolific secretors of bactericidal chemicals such as aminoglycosides. However, these 

compounds are not toxic to the microorganisms that produce them. To overcome this 

threat, the bacteria that secrete these compounds have developed built in self-defence 

mechanisms, specifically, enzymes that deactivate these compounds. As a result, the 

bacterium can produce its toxins and, immune from their effects, gain an advantage 

over its neighbours. However, over time, those neighbouring bacteria have 

incorporated some of the same enzymes into their genomes, in response, so that they 

are then able to deactivate the antimicrobials secreted by other bacteria. This has been 

helped by the fact that the genes encoding such enzymes are generally found on 

transposons and plasmids. Although this is essential for the survival of the bacteria, it 

is now seen as an example of acquired resistance (Smith and Baker, 2002). 

 

The past half century was an extraordinarily successful period in medical history 

during which, most human diseases were brought under control by antibiotics. 
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However, the increasing number of bacteria that are becoming resistant to antibiotics 

is now threatening this situation (Mazel and Davies, 1999). Resistance is only just 

beginning to be considered as a societal issue. Resistance is not a new phenomenon. It 

was recognised early on as a scientific curiosity and then as a threat to effective 

treatment. Resistance costs money, livelihoods and lives and threatens to undermine 

the effectiveness of health delivery programmes. Deaths from acute respiratory 

infections, diarrhoeal diseases, measles, AIDS, malaria and tuberculosis account for 

more than 85% of the mortality from infection worldwide. Antimicrobial use is the 

key driver of resistance (World Health Organisation, 2001). 

 

 

Every time a patient takes an antibiotic for a bacterial infection, the antibiotic might 

kill most of the bacteria. But a few tenacious germs may survive by mutating or 

acquiring resistance genes from other bacteria. These surviving genes can multiply 

quickly, creating antibiotic resistant strains. The presence of these strains may mean 

that a patient’s next infection will not respond to the first-choice antibiotic therapy. 

The resistant bacteria may then be transmitted to others in the patient’s community 

(Nordenberg, 1998). 

 

The greatest risk is for patients in hospitals, nursing homes and other settings where 

people tend to be sick and are taking large quantities of antibiotics, increasing the 

chance of antibiotic resistant bacteria originating in their own bodies. Hospitalised 

patients are also in contact with others whose infectious diseases may spread and their 

immune systems may be weakened and unable to fight infections (Loeb et al., 2003). 

 

Antibiotic resistance is not a new problem. Ever since the discovery and subsequent 

clinical use of antibiotics, resistance to these agents has been observed with a negative 

impact on the treatment of infectious disease. The growing problem of antimicrobial 

resistance has become a significant public health concern. It is no longer an isolated 

problem of a few bacteria; almost all important human pathogens once treatable with 

antibiotics have developed some resistance (Nordenberg, 1998). It involves almost all 

types of pathogens, including bacteria, fungi, mycobacteria, viruses and parasites. 

Antibiotic resistance is now a major problem in the treatment of infections in hospitals 

and, with increasing and alarming frequency, in the community. For example, all 
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strains of Neisseria gonorrhoeae were susceptible to sulphonamides when these were 

first employed in 1938. By 1948 resistance had built up so much that less than 20% of 

strains were susceptible (Walsh, 2003). Methicillin was developed to control 

staphylococci, but there are now increasing cases of methicillin-resistant S. aureus 

(MRSA) in many countries. Resistant strains have normally been controlled by 

vancomycin but resistance to this antibiotic is beginning to be identified. Some of 

these strains are still susceptible to other antibiotics but there is concern that a fully 

resistant strain of S. aureus will soon emerge (Patterson, 1999). 

 

These strains are still treatable with other types of antibiotics but another serious 

problem is beginning to emerge, that of multi-drug resistance. There has been a recent 

resurgence in Mycobacterial diseases such as tuberculosis. Isoniazid, rafampin, 

ethambutol and streptomycin are successful in the treatment of tuberculosis but have 

to be used in multidrug treatments over long periods. This has contributed to the 

emergence of multidrug resistant strains of M. tuberculosis in these patients and, more 

disturbingly, the spread of these resistant strains into hospitals, as reported by Russell 

and Chopra (1990). 

 

 

1.3.1 Causes of resistance to antibacterial agents 

 

In less than two human generations antibiotics have revolutionised medicine, but, by 

selecting resistance, they carry the seeds of their own obsolescence. Resistance to 

antibiotics is an increasing global problem and a public health threat. It has resulted in 

morbidity and mortality from the failure of treatments and the increased costs of 

treating patients with infections caused by antibiotic resistant bacteria (World Health 

Organisation, 2001). 

 

The indiscriminate usage of antibiotics in agriculture and particularly in the hospital 

setting can promote the survival of resistant bacteria and, in addition, impact on other 

normally innocuous bacteria, encouraging the development of drug-resistant strains of 

these species (Smith and Baker, 2002). Antibiotics are undoubtedly beneficial when 

used correctly, but doctors and members of the public frequently use antibiotics 

inappropriately. Examples of inappropriate use of antibiotics include: doctors 
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prescribing antibiotics to treat viral infections such as colds and flus; failing to 

accurately identify the bacteria causing an infection; unnecessarily prescribing 

expensive, broad-spectrum antibiotics; not following established recommendations for 

using chemo prophylaxis; the availability of antibiotics over the counter in many 

countries and the failure of patients to complete their full course of antibiotics. All of 

these promote the survival of antibiotic-resistant bacteria (World Health Organisation, 

2001). It is essential that more stringent controls be placed on the use of antibiotics, 

since careful prescribing can halt the emergence of resistant strains (Smith and Baker, 

2002). 

 

While overuse of antibiotics in human medicine is a major contributor to antibiotic 

resistance, agricultural use of antibiotics also contributes to the problem. Meat 

producers use an estimated 70 percent of all U.S. antibiotics and related drugs non-

therapeutically, such as in feed additives to promote faster growth of an animal and to 

compensate for unsanitary and crowded conditions. The amount of antibiotics used 

non-therapeutically in agriculture is eight times greater than the amount used in all 

human medicine (Mellon et al., 2001). The non-therapeutic use of antibiotics in 

agriculture is at a low-concentration over a long period of time. Long-term exposure 

to low antibiotic concentrations is the condition most likely to foster stable 

maintenance of resistance genes because it gives incoming elements and resistance 

genes a chance to adapt to their new host (Salyers and Amábile-Cuevas, 1997). Many 

of the antibiotics used in agriculture are also used to treat humans. The antibiotic 

resistant bacteria can be transferred to humans via food, contaminated soil and water 

and through contact with the animals (Mellon et al., 2001). 

 

This inappropriate use of antibiotics exerts a selective pressure that acts as a driving 

force in the development of antibiotic resistance (Barbosa and Levy, 2000). As 

resistance to these first-line antibiotics occurs, therapy with new, broader spectrum 

and more expensive antibiotics increases. Increased usage of these antibiotics 

eventually leads to resistance to the newer drugs (Hart, 1998). However, all antibiotic 

use whether appropriate or inappropriate exerts selective pressure for the emergence 

of resistant bacteria (Seppäla et al., 1997). Our only means of handling the situation is 

through prudent use of antimicrobial agents, improved diagnostics and infection 

control (Fishman, 2006). 
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Resistance factors, especially those carried on mobile elements, can spread rapidly 

within human and animal populations. These mobile elements enable resistant 

bacteria to rapidly spread both locally and globally. Antibiotic resistance patterns vary 

locally and regionally and so surveillance data is collected from selected sources 

(Agustín et al., 2005). The data obtained from this surveillance can indicate if doctors 

are appropriately or inappropriately prescribing antibiotics. Although a few studies 

(Rice et al., 1990), (Seppälä et al., 1997) have suggested that resistant clones can be 

replaced by susceptible ones, in general, resistance is slow to reverse or is irreversible 

(World Health Organisation, 2001). 

 

 

1.3.2 Mechanisms of antibiotic resistance  

 

Bacterial resistance to antibiotics occurs in many ways, reflecting the different ways 

in which the various classes of antibiotics have an effect. Antibiotics fall into the 

following classes: cell wall synthesis inhibitors, protein synthesis inhibitors, nucleic 

acid synthesis inhibitors, cytoplasmic membrane function inhibitors and other agents 

that affect DNA and RNA (Williams et al., 1996). 

 

Resistance can be acquired (also known as active) (i.e., the result of a specific 

evolutionary pressure to adapt a counterattack mechanism against an antibiotic) or 

passive (also known as innate) (where resistance is a consequence of general adaptive 

processes that are not necessarily linked to a given class of antibiotic; e.g., the non-

specific barrier afforded by the outer membrane of Gram-negative bacteria) (Wikens 

and Wade, 2005). Acquired resistance results from: mutations – spontaneous single or 

multiple changes in the bacterium’s chromosomal DNA occurring at a rate of about 

10-9 to 10-5 per cell, per generation cycle (a generation cycle commonly occurs every 

20 minutes or so), or by the addition of new DNA – most commonly by the 

acquisition of plasmids, transposons and integrons (Masterton, 2003). 

 

The major advantage, in terms of dissemination of resistance, of mutations is that the 

progeny stably inherits them (Courvalin, 1996). Bacterial enzymes that are involved 

in normal physiological cell metabolism, can, as a result of single or multiple 
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mutations in their genetic determinants change their substrate spectrum and degrade 

antibiotics (Martinez and Baquero, 2000). Bacteria can become resistant to many 

antibiotics by modifying their target structures by single- or multi-step mutations, so 

that antibiotics cannot bind to them. These mutations usually have little or no 

influence on the biological activity of the gene products but render them insensitive to 

the inhibitory activities of a particular antimicrobial agent. Once established in a 

pathogen, genes encoding enzymes that catalyse covalent modifications of therapeutic 

agents can undergo mutations that remodel the active site of the enzyme, changing the 

spectrum of antibiotics that may be modified (Davies, 1994). 

 

The genetic determinants of defence mechanisms may originate from bacteria such as 

antibiotic producing bacteria. The antibiotic producers possess defence mechanisms 

against their own antibiotic and these resistance genes are usually found in their 

chromosomes. These genes can be integrated into mobile genetic elements such as 

plasmids, transposons and integrons and passed on by horizontal transfer to other 

bacteria, thus conferring antibiotic resistance to those bacteria (Masterton, 2003). 

 

Plasmids are extrachromosomal, double stranded DNA molecules that have been 

found in almost all bacterial genera of medical importance. They vary in size from 2 

kbp to more than 100 kbp. Plasmids are capable of autonomous replication within the 

bacterial cell. They encode the mechanism for their own mobilization and are 

therefore excellent vehicles for transferring genes, not only to their progeny but also 

from one bacterium to another (Schwarz and Nobel, 1999). Plasmids generally carry 

genes that play a role in the bacterium’s adaptation to a change in its environment, 

such as those involved in resistance to antibiotics, disinfectants and heavy metals 

(Dobrindt et al., 2004). However, they also encode metabolic properties such as 

metabolism of carbohydrates and amino acids, virulence factors such as haemolysins 

and enterotoxins and conjugal properties such as sex pili production and mobilisation 

function. Plasmids may be integrated in part or in total into the chromosomal DNA or 

may represent vectors for transposons via conjugation or transformation (Schwarz and 

Nobel, 1999). 

 

Transposons are double-stranded DNA elements which, in contrast to plasmids, 

cannot replicate autonomously. They carry transposition genes along with other 
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genes. They have to integrate into replication-proficient vector molecules such as 

plasmids or chromosomal DNA for replication. They can insert more or less at 

random into plasmids or bacterial chromosomes (Masterton, 2003). They vary in size 

from 1 kbp to more than 60 kbp (Schwarz and Nobel, 1999). Transposons carry one or 

more additional genes most of which are genes conferring resistance to antibiotics, 

which can then ‘jump’ between the bacterial chromosome and a plasmid and vice 

versa (Roy, 1999). 

 

Integrons are another vehicle by which antibiotic resistance determinants can be 

passed on from one bacterium to another. Antibiotic genes are frequently trapped in 

gene cassettes on integrons, which provide an efficient means for capturing and 

exchanging various resistance genes (Van Belkum et al., 2001). Recruiting exogenous 

genes represents a rapid adaptation against antimicrobial compounds, and the integron 

functional platform is perfectly suited for capturing the genes that enable bacteria to 

survive during multiple antibiotic treatment regimes (Mazel, 2004). Integrons have 

been almost exclusively found in Gram-negative bacteria (Nešvera et al., 1998). 

 

Integrons recognize and capture mobile gene cassettes. Gene cassettes consist of a 

specific recombination site and one gene that is in most known cases an antimicrobial 

resistance gene (Hall and Collis, 1995). The resistance integron platforms don’t allow 

for self-transposition. However, this defect is often complemented through association 

with transposons and conjugative plasmids, which can serve as vehicles for the 

transmission of genetic material between bacteria (Mazel, 2004). 

 

Integrons possess two essential elements, located at the 5’ conserved segment (CS), 

able to mobilize and insert gene cassettes. These are an intI gene encoding a site-

specific recombinase belonging to the integrase family and its associated primary 

recombination site, attI. Class 1 integrons also possess a quaternary ammonium 

compound resistance gene, located at the 3’ conserved segment (Collis and Hall, 

1995). Captured genes (usually antibiotic resistance genes) are part of discrete mobile 

cassettes that contain the protein-coding region and a 3’-associated integrase-specific 

recombination site known as attC, belonging to the family of sites known as 59-base 

elements (Recchia and Hall, 1995). Uncaptured gene cassettes exist in their free form 

as circular molecules consisting of only one open reading frame and a 59-base 
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element situated downstream. Integration of these gene cassettes involves IntI-

catalysed site-specific recombination between the integron associated attI site and the 

attC (59-base element) recombination site associated with the incoming gene cassette 

(Collis et al., 1998). Each gene cassette has a unique 59-base element, which differs 

in both sequence and length (Collis et al., 1998). The attC sites vary from 19 bp to 

141 bp and their nucleotide sequence similarities are primarily restricted to the inverse 

core-site and the core-site (Mazel, 2004). The 59-base element family exhibits a 

common inverted repeat structure and consensus sequences at each end that consists 

of approximately 25 bases (Collis et al., 1998). The outer boundaries of the 59-base 

element also contain the conserved seven base pair core site GTTRRRY (R = purine, 

Y = pyrimidine) at the recombinant cross-over point, and an inverse core site 

RYYYAAC at the 3’ end of the inserted gene cassette (Poirel et al., 2001 [a]). 

 

Integrons can be divided into two major groups, resistance integrons and super-

integrons (Hall and Stokes, 2004). Resistance integrons carry mostly gene cassettes 

that encode resistance against antibiotics and disinfectants, and can be located either 

on chromosome or on plasmids (Fluit and Schmitz, 1999). The larger 

chromosomally–located integrons that contain gene cassettes with a variety of 

functions belong to the super-integron group. The super-integrons were initially 

known as class 4 integrons (Shi et al., 2006). 

 

There are three different classes of resistance integron, class 1, 2 and 3, defined on the 

basis of homology of their integrase genes (Norrby, 2005). Each class appears capable 

of sharing and acquiring the same gene cassettes (Mazel, 2004). Most resistance 

integrons belong to class 1 and these integrons have been found in many Gram-

negative genera including Pseudomonas (Fluit and Schmitz, 2004). More than 60 

different gene cassettes have been described, the majority of which encode resistance 

to antibiotics (Lindstedt et al., 2003). Class 1 integrons are the most prevalent class in 

clinical isolates, carrying single or multiple gene cassettes (Weldhagen, 2004). 

Integron inserted genes encode for various antibiotic resistance mechanisms, 

conferring resistance to beta-lactams, aminoglycosides, sulphonamides, 

chloramphenicol, macrolides, rafampin, erythromycin, disinfectants and antiseptics of 

the quaternary ammonium compound family (Weldhagen, 2004). Class 1 integrons 

are frequently located on plasmids that can be transferred by conjugation (Girlich et 
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al., 2001). Class 2 integrons are embedded in the Tn7 family of transposons and 

consist of an integrase gene followed by gene cassettes. Class 3 integrons have been 

described in some isolates from Japan and are similar in structure to class 2 integrons 

(Fluit and Schmitz, 2004). 

 

Class 1 integrons are associated with a variety of resistance gene cassettes. Class 1 

integrons isolated from bacterial infections in humans often harbour gene cassettes 

encoding ß-lactam resistance (Fluit and Schmitz, 1999). Several class A β-lactamases 

are encoded by integron-located gene cassettes. These include VEB, GES, IBC, PSE 

and CTX-M type enzymes. Two families of class B β-lactamases have been found on 

integrons. These are the IMP family and the VIM family. Class D β-lactamases found 

on integron structures belong to the OXA-type family (Fluit and Schmitz, 2004).  

They commonly occur on Class 1 integrons from Pseudomonas aeruginosa, but in 

rare cases have been found in Salmonella enterica and Enterobacter aerogenes 

(Tosini et al., 1998), (Ploy et al., 1998). OXA-type genes found on gene cassettes 

within integrons in Pseudomonas aeruginosa tend to be the secondary bla-gene 

cassette on the integron, with a class A-type bla-gene mostly functioning as the 

primary integron-borne β-lactamase (Livermore, 2002), (Poirel et al., 2001[b]). This 

is in contrast to oxacillinase genes found on class 1 integrons from 

Enterobacteriaceae, which tend to be carried as sole β-lactamase gene cassettes on 

the integron along with other co-resistance genes (Tosini et al., 1998), (Ploy et al., 

1998). In the absence of an antibiotic selective pressure, the integron-borne resistance 

genes can be lost by the host bacterium (Rosser and Young, 1999). 

 

Resistance to a variety of non-related compounds can be conferred simultaneously by 

the presence of co-resistance gene cassettes on integrons. Poirel et al. (2002) reported 

that integron-mediated drug resistance tends to favour co-selection of isolates. This 

allows for widespread dissemination through patients with a wide variety of clinical 

disciplines. It is common for gene cassettes encoding aminoglycoside-modifying 

enzymes to co-occur with β-lactamase gene cassettes. On Class 1 integrons these 

genes occur with the co-resistance genes to quaternary ammonium compounds and 

sulphonamides at the distal 3’ end of the integron (Poirel et al., 2002), (Di Conza et 

al., 2002). 
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The horizontal transfer of genetic material within and between bacteria has been 

extremely important in the emergence of novel antibiotic resistance traits observed 

worldwide (Maiden, 1998). Rapid and widespread emergence of resistance and 

similar patterns of resistance have been encountered in phylogenetically diverse 

clinical isolates on an increasing scale (Rowe-Magnus et al., 2002). 

 

Bacteria achieve active drug resistance through four major mechanisms: the efflux of 

the antibiotic from the cell via a collection of membrane-associated pumping proteins, 

modification of the antibiotic target  (e.g., through the mutation of key binding 

elements such as ribosomal RNA or even by reprogramming of biosynthetic 

pathways, such as in resistance to the glycopeptide antibiotics), and via the synthesis 

of modifying enzymes that selectively target and destroy the activity of antibiotics 

(Table 1.3, p. 43). All of these mechanisms require new genetic programming by the 

cell in response to the presence of antibiotics. In general, the antibiotics or their action 

usually regulate the expression of resistance genes. Therefore, bacteria expend a 

considerable amount of energy and genetic space to actively resist antibiotics (Wright, 

2005). 

 

 

1.3.2.1 Membrane barrier 

 

Bacteria use several ingenious mechanisms to develop resistance to antibiotics. These 

include degradation of the antibiotic (β-lactamases), inactivation of the antibiotic by 

enzymatic modification (aminoglycoside modifying enzymes) and altering the target 

of the antibiotic (Walsh, 2003). These mechanisms are all specific for a single drug or 

single class of drugs. There are more general mechanisms of drug resistance, in which 

access of the unaltered antibiotic to its target is prevented by the barrier and active 

transport functions of the biological membranes. The organism can surround itself 

with a barrier of low permeability in order to decrease the influx of the drug into the 

cell and can also pump out the drug in an energy-dependent fashion (Nikaido, 1994). 
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Bacteria are unicellular organisms and their internal environment is separated from 

the external environment by the cytoplasmic membrane. The major permeability 

barrier in any membrane is the lipid bilayer structure. Some bacteria further protect 

themselves by making an additional structure that surrounds the cell, outside the 

cytoplasmic membrane. Gram-positive bacteria surround themselves with a thick 

layer of peptidoglycan but this offers little protection against most antibiotics. Gram-

negative bacteria are surrounded by a second membrane, called an outer membrane, 

which functions as a very effective barrier (Nikaido, 1994). It is composed of an 

unusual lipid known as lipopolysaccharide (LPS). The fatty acid chains in this LPS 

are all saturated, therefore making the interior of the bilayer fluid and preventing the 

tight packing of the hydrocarbon chains. In general, the larger number of hydrocarbon 

chains linked to a single head group decreases the fluidity of the lipid interior. 

Hydrophobic molecules permeate across the outer membrane about one-hundredth the 

rate through the usual bilayers (Vaara et al., 1990) Most clinically important 

antibiotics show some hydrophobicity. The LPS-containing bilayers therefore act as 

an efficient barrier against rapid penetration of many antibiotics (Nikaido, 1994). 

 

However, with such an effective barrier, Gram-negative bacteria have developed a 

separate mechanism to bring essential nutrients into the cell. They do this by means of 

a special class of proteins known as porins, which produce non-specific aqueous 

diffusion across the membrane (Nikaido, 1994). These porins also make the influx of 

antibiotics almost impossible because of their narrow openings and because the 

openings are lined with a number of charged amino acid residues, which orient the 

water molecules in a fixed direction. This makes the entrance of lipophilic molecules 

difficult because it disturbs this energetically favourable orientation of water (Schulz, 

1993). 

 

Even with this arrangement, hydrophilic agents such as some of the newer β-lactam 

antibiotics can penetrate through the porins of enteric bacteria (Yoshimura and 

Nikaido, 1985). To overcome this, Pseudomonas aeruginosa lacks the typical high–

permeability porins but instead has low-efficiency porins, which only allow the 

diffusion of small molecules at about one-hundredth the rate through classical porins 

(Bellido et al., 1992). In order for it to take up nutrients, P. aeruginosa has a number 
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of special channels that enable it to take up a specific class of compound. This makes 

this bacterium intrinsically resistant to most antibiotics (Hancock et al., 1990). 

However, even the most effective permeability barrier in bacteria cannot completely 

shut out the influx of small molecules. Even the low permeability membrane of P. 

aeruginosa can only prolong the half-equilibration time of most antibiotics for a few 

minutes (Nikaido, 1989). Therefore, a second mechanism of antibiotic resistance is 

usually required in addition to a low permeability barrier. 

 

 

1.3.2.2 Efflux of the antibiotic 

 

For antibiotics to be effective they must reach their specific bacterial targets and 

accumulate at the concentrations that can act in some reasonable time frame. For 

example, antibiotics that act on the ribosome must pass through the cell membranes 

into the cytoplasm and then accumulate at high enough concentrations that they can 

block the particular susceptibility step of protein assembly (Walsh, 2000). Both 

bacterial and eukaryotic cells typically contain an array of cytoplasmic membrane 

transport systems involved in vital roles such as the uptake of essential nutrients, the 

excretion of toxic compounds, and the maintenance of cellular homeostasis (Qinghu 

et al., 2006). Increasing numbers of such transport systems are being identified, 

primarily because of the explosion in the use of cloning and sequencing technology 

over the last 20 years (Paulsen et al., 1996). At least 300 gene products are proposed 

to transport known substrates effectively, out of which around 20-30 transport 

antibiotics and other drugs (Van Bambeke et al., 2003). 

 

Both Gram-negative and Gram-positive bacteria commonly produce proteins, which 

act as efflux pumps for antibiotics. If the drug is pumped out faster than it can diffuse 

in, intrabacterial concentrations of the antibiotic are kept low and ineffectual. 

Therefore, the bacterial protein synthesis proceeds at largely unimpeded rates. These 

pumps are variants of membrane pumps that all bacteria possess in order to move 

lipophilic and amphipathic molecules in and out of the cell. Antibiotic producing 

microorganisms possess these pumps in order to pump antibiotics out of the cell as 

fast as they are produced. This acts as a protective mechanism for the microorganism 

and prevents it from being killed by its own chemical weapons (Walsh, 2000). Most 
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drug efflux pumps have broad substrate specificity and, therefore may deal with a 

wide range of drugs of completely unrelated pharmacological classes. Drug efflux 

decreases the load on efflux mediated detoxification systems, thereby avoiding their 

saturation, while the chemical modification by enzyme-based systems, which usually 

increases the amphiphilicity of the drug, provides the pumps with better substrates 

(Van Bambeke et al., 2000). 

 

Four protein families of efflux pumps that can function in antibiotic resistance have 

been described (Van Bambeke et al., 2000) (Figure 1.11, p.40). The first three couple 

drug efflux to a counterflow of protons, while the fourth uses the hydrolysis of ATP to 

provide the energy for active transport of the antibiotic or other foreign compounds 

out of the cell (Paulsen et al., 1996). The pumps driven by proton motive force are 

categorized in the major facilitator subfamily (MFS), the small multidrug regulator 

(SMR) family or the RND (resistance/nodulation/cell division) family, based on the 

projected size and the need for partner proteins and subunits. The second major 

category of efflux pumps, those hydrolysing ATP, is called the ATP-binding cassette 

(ABC) family. The ATP-driven pumps predominate in eukaryotes, whereas the proton 

driven antiporters predominate in bacterial genomes (Walsh, 2003). The genes 

encoding these pumps can be found on plasmids, transposons or even as part of 

integrons, which facilitates widespread dissemination of the genes. However, several 

of these pumps are already encoded in microbial genomes (Van Bambeke et al., 

2003). 

 

The mechanism of transport and of substrate recognition remains largely unknown in 

most instances, and many of the current views are based on extrapolations from data 

obtained with transporters of physiological substrates. SMR, RND, and most MFS 

transporters use a proton gradient as the driving force. The putative method of drug 

transport, as established by site-directed mutagenesis of a SMR transporter, could 

involve the following steps: (i) exchange between the drug and a proton fixed on a 

charged residue; (ii) translocation of the drug by a series of conformational changes 

driving it through a hydrophobic pathway; and (iii) replacement of the drug by a 

proton in the external medium and return to the initial conformational state (Mordoch 

et al., 1999). The overall result of the transport is therefore an exchange between a 

drug and a proton (antiport). As for proton antiporters, conformational change of the 
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ABC protein is necessary for drug extrusion and probably is triggered by drug binding 

and ATP hydrolysis (Van Bambeke et al., 2000). 

The exact mechanism for drug transport is still controversial. Among the different 

models that have been proposed, the two most likely ones present efflux pumps as 

acting either like hydrophobic ‘vacuum cleaners’ or like flippases. In the first model, 

the drug is thought to move freely into the lipid phase of the membrane, then reaching 

the protein and its central channel, from where it is actively expelled outwardly. In the 

second model, the drug is also thought to reach the protein from within the membrane, 

but then would be flipped to the outer layer (Van Bambeke et al., 2000). 

 

It must be emphasised that a given antibiotic may be a substrate for different types of 

pumps and a given pump may extrude not only different antibiotics within the same 

class but also different classes of antibiotics.  Finally, a single cell may possess a vast 

and complex arsenal of efflux pumps allowing for the extrusion of a very broad 

spectrum of drugs (Van Bambeke et al., 2000).  

 

Four different efflux systems dependent on the genes mexAB-oprM (β-lactams), 

mexXY-oprM (aminoglycosides), mexCD-oprJ and mexEF-oprN (carbapenems and 

quinolones) are known to exist, allowing extrusion of all classes of antibiotics except 

the polymixins (Poole and Srikumar, 2001). Genes for these efflux systems are found 

in all strains of Pseudomonas aeruginosa but are expressed at relatively low levels, 

under the control of regulatory genes. Mutations in these regulators can lead to high-

level expression and confer enhanced antibiotic resistance (Poole and Srikumar, 

2001). 
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Figure 1.11: Main classes of efflux pumps acting on antibiotics 

(Van Bambeke et al., 2000) 

 

 

 

1.3.2.3 Reprogramming the target structure 

 

This mechanism of antibiotic resistance focuses on reprogramming or camouflaging 

of the antibiotic target in the bacteria rather than destruction or removal of the 

antibiotic. Methicillin, with its bulky substitution on the 6’-aminopenicillin scaffold 

was introduced in 1950 to treat Gram-positive bacterial infections that were resistant 

to penicillin via inducible β-lactamase hydrolysis of the antibiotic. The side chain 

slowed the deacylation hydrolytic step and effectively deactivated the β-lactamase. 

This was effective until methicillin resistant strains of S. aureus (MRSA) appeared in 

1961. These bacteria had acquired the mecA gene, which encodes a new penicillin-

binding protein, termed PBP2A. MRSA are resistant to essentially all β-lactam 

molecules. This insensitivity to β-lactams stems from the low binding affinity of the 
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mecA-encoded PBP2A, a bifunctional transglycosylase/transpeptidase. In contrast, the 

normal PBPs, PBP1-PBP4, may remain sensitive to acylation by β-lactams in 

methicillin sensitive S. aureus. The morphology of the peptidoglycan being 

synthesised by PBP2A in the absence of other PBPs is somewhat altered but sufficient 

to allow MRSA growth (Walsh, 2003). 

 

In the erythromycin-resistance manifolds, in addition to efflux pumps, resistant 

bacteria have emerged that have learned to mono- or dimethylate a specific adenine 

residue, A2058, in the peptidyl transferase loop of the 23S RNA component of the 

ribosome. A methyl transferase enzyme known as Erm27 carries out this modification. 

It does not impair protein biosynthesis but does lower the affinity of all members of 

the erythromycin class of drugs for the RNA. This Erm27 mechanism is the main 

resistance mechanism of drug resistant clinical isolates of S. aureus and is present in 

erythromycin-producing strains as a self-immunity mechanism (Walsh, 2000). 

 

The increasing use of vancomycin to treat MRSA has selected for vancomycin 

resistant enterococci (VRE). These pathogens are less potent than staphylococci, but 

are opportunistic pathogens and can cause problems in immunocompromised patients. 

VRE use a reprogramming strategy to avoid vancomycin. In VRE, the vanHAX genes 

encode a new pathway of enzymes that reduces pyruvate to D-lactate (vanH), adds D-

alanine and D-lactate together to produce D-Ala-D-Lac (vanA), and then hydrolyses 

the normal metabolite D-Ala-D-Ala while sparing D-Ala-D-Lac (vanX). In this cell, 

only the D-Ala-D-Lac accumulates and serves as a substrate to be elongated and 

presented at the termini of the peptidoglycan strands. This analog is a good substrate 

for transpeptidase cross-linking, enabling the covalently cross-linked, mechanically 

sound peptidoglycan to be produced such that VRE are not labile to osmotic lysis. The 

reprogramming of peptidoglycan to end in D-Ala-D-Lac instead of the normal D-Ala-

D-Ala has no effect on the crosslinking by the transpeptidating PBPs but the new 

terminus lowers the binding affinity for vancomycin by 1000-fold (Walsh, 2003). 
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1.3.2.4 Cell wall permeability 

 

Aminoglycosides, quinolones, β-lactams and polymixins must cross the bacterial cell 

wall to reach their targets. Penetration can be reduced by the development of an 

antibiotic-resistant biofilm with secretion of an anionic exopolysaccharide matrix, 

which binds cationic antibiotics (Drenkard and Ausubel, 2002). The outer membrane 

of Gram-negative bacteria may represent a permeability barrier for certain antibiotics. 

Reduced uptake may be due to the reduced expression, alteration or even loss of 

porins which allow the antibiotic to enter the bacterial cell. The outer membrane, 

which excludes large molecules, also limits penetration by small hydrophilic 

antibiotics, which must pass through aqueous channels in porin molecules (Nikaido, 

1994). Aminoglycosides and colistin promote their absorption through the cell wall by 

binding to the superficial lipopolysaccharide (LPS), allowing penetration and then 

their active transport via the cytoplasmic membrane antibiotics (Drenkard and 

Ausubel, 2002). A switch in the charge of the cell wall lipopolysaccharides from a 

negatively charged into a more neutral form may prevent highly positive charged 

antibiotics such as aminoglycosides from crossing the outer membrane (Schwarz and 

Nobel, 1999). 

 

 

 

1.3.2.5 Enzymatic strategies of antibiotic inactivation 

 

There are wide ranges of enzymes produced by bacteria, which can inactivate one or 

more antibiotics. These remarkable proteins use many strategies to confer antibiotic 

resistance. Some of these enzymes inactivate the antibiotic by hydrolysing susceptible 

bonds which are central to the antibiotics’ biological activities (β-lactamases), 

whereas others modify the antibiotic resulting in structural alterations that impair 

target binding (aminoglycoside modifying enzymes) (Walsh, 2003). 
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Table 1.3: Major antibiotics: structural classes, targets, modes of action and 

resistance mechanisms (adapted from Walsh, 2003) 

 

Antibiotic Target Mode of action Resistance mechanism 

Cell wall 

Β-lactams 

 

 

 

 

Glycopeptides 

 

Transpeptidases/ 

Transglycosylases 

(PBPs) 

 

 

D -Ala- D -Ala 

termini of 

peptidoglycan and of 

lipid II 

 

Blockade of 

crosslinking enzymes 

in peptidoglycan 

layer of cell walls 

 

Sequestration of 

substrate required for 

crosslinking 

 

β -lactamases, Penicillin 

Binding Protein mutants 

 

 

 

Reprogramming of D-Ala- D –

Ala to D -Ala- D -Lac or D-

Ala- D –Ser 

Protein synthesis 

 

Aminoglycosides 

 

 

 

Ribosome 

 

 

 

Blockade of protein 

synthesis 

 

 

 

rRNA methylation 

 

Drug efflux 

 

Aminoglycoside modifying 

enzymes 

DNA replication / 

repair 

Fluoroquinolones 

 

 

 

DNA gyrase 

 

 

 

Blockade of DNA 

replication 

 

 

 

Efflux pumps, gyrase 

mutations  

 

 

1.3.3 Antibiotic resistance in Pseudomonas aeruginosa 

 

Pseudomonas aeruginosa infections have always been difficult to treat with 

antibiotics. The completion of the sequence of P. aeruginosa revealed why it is such a 

resistant species (Stover et al., 2000). The Pseudomonas aeruginosa genome contains 

about 6.26 Mbp with 5567 open reading frames. Its genome is among the largest 

genomes in the prokaryotic world. The Pseudomonas aeruginosa genome is thus 

substantially larger than that of Escherichia coli (4.64 Mbp, 4279 genes) and of 

Staphylococcus aureus (2.81 Mbp, 2594 genes) (Lambert, 2002). The P. aeruginosa 

genome encodes an unusually high proportion of proteins involved in regulation, 
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transport and virulence functions. Genes encoding proteins involved in antimicrobial 

resistance are encoded by 0.3% of the total genes in the genome. Ten percent of the 

genes are located on pathogenicity islands comprising genes encoding virulence 

factors. It can also easily acquire large mobile genetic elements such as integrons that 

encode resistance genes. All this means that the P. aeruginosa genome is highly 

flexible (Mesaros et al., 2007). 

 

Chromosomal mutations within its genome can lead to changes in regulation of 

resistance genes. It can also acquire resistance genes from other organisms via 

plasmids, transposons and bacteriophages (Lambert, 2002). 

 

P. aeruginosa is noted for its intrinsic resistance to many front-line antibiotics, due 

mainly to its lower outer membrane permeability and to active efflux of antibiotics. It 

would appear that, in the course of evolving the functional diversity required to 

compete with other microorganisms in a variety of environments, it developed 

mechanisms for resisting naturally occurring antimicrobial compounds. (Stover et al., 

2000). 

 

Pseudomonas aeruginosa possesses most of the antibiotic resistance mechanisms 

mentioned in Section 1.3.2. These include resistance conferred from its low-outer 

membrane permeability (Li et al., 1994 [a]), the low permeability of its cell wall 

(Lambert, 2002), its large array of porins to exclude antibiotics (Bellido et al., 1992), 

its efflux pumps to pump antibiotics from the cell (Köhler et al., 1996) (Li et al., 1994 

[a]), its ability to reprogramme the target of the antibiotic, such as mutating the gyrA 

gene (the target for quinolone antibiotics; Lambert, 2002) and the production of the 

antibiotic inactivating enzymes, aminoglycoside modifying enzymes and β-

lactamases (Walsh, 2003). 

 

1.3.4 Aminoglycoside modifying enzymes 

 

The use of aminoglycosides has reduced potential due to the emergence of 

aminoglycoside resistant strains of bacteria. Bacterial resistance to aminoglycosides is 

mainly based on either the modification of the ribosomal target, decreased uptake and 
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accumulation or enzymatic modification by aminoglycoside modifying enzymes 

(Schwartz and Noble, 1999). 

 

Alteration of the ribosomal binding sites usually only causes significant resistance to 

streptomycin and spectomycin. Resistance in this case is caused by mutational 

changes in ribosomal proteins or 16S rRNA and enzymatic methylation of the rRNA. 

(Sigmund et al., 1984). Another mechanism of drug resistance in bacteria is the active 

export or efflux of the antibiotic so that lethal concentrations are not attained in the 

cytoplasm. The antibiotic is not altered or degraded in any way (Vakulenko and 

Mobashery, 2003). This active efflux is attained and controlled by transmembrane 

proteins acting as pumps to export the aminoglycoside, often against gradients, both 

in the cytoplasmic membranes and also in the outer membrane proteins of Gram-

negative bacteria (Walsh, 2003). This type of resistance produces low-level broad-

spectrum resistance in bacteria (Vakulenko and Mobashery, 2003). Active efflux has 

been shown to produce resistance to neomycin and kanamycin (Edgar and Bibi, 

1997). Decreased drug uptake and accumulation is often due to membrane 

impermeabilisation. It produces moderate level resistance to aminoglycosides 

(Mingeot-Leclercq et al., 1999). 

 

The most prevalent source of clinically relevant resistance to aminoglycosides is 

conferred by aminoglycoside modification (Vakulenko and Mobashery, 2003). These 

antibiotics are enzymatically inactivated by aminoglycoside modifying enzymes. 

Resistance through enzymatic deactivation is a complex phenomenon involving three 

different classes of enzyme. Aminoglycoside-modifying enzymes catalyze the 

covalent modification of specific amino or hydroxyl functions, leading to a 

chemically modified drug (ester or amide), which binds poorly to ribosomes and for 

which the EDP-II of accelerated drug uptake fails to occur. The deactivation of the 

aminoglycoside is catalyzed by bacterial enzymes that transfer an acetyl group, 

derived from acetyl-CoA, an adenyl group, derived from ATP or a phosphate group, 

also derived from ATP (Walsh, 2003). These are broadly classified as N-

acetyltransferases (AACs), O-nucleotidyltransferases (ANTs) (or O-

adenyltransferases) and O-phosphotransferases (APHs). Each of the three families is 

further divided into classes, designated by the site of modification (Figure 1.12), 

which is indicated in parentheses. These are then further subdivided into enzyme 
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types, designated by Roman numerals. Finally, the individual enzymes of the same 

class and type that produce the same phenotype but are encoded by different genes are 

designated by a lowercase letter (Shaw et al., 1993). For example, the AAC(6’)-I 

enzymes AAC(6’)-Ia, AAC(6’)-Ib, AAC(6’)-Ic, etc., are aminoglycoside 

acetyltransferases that modify the antibiotic at position 6’ and produce the same 

phenotype but are encoded by different genes (Vakulenko and Mobashery, 2003). 

Shaw et al. (1993) listed fifty-seven variants in a comprehensive literature review of 

aminoglycoside modifying enzymes. These are the largest and most diverse family of 

resistance enzymes.  

 
A, amikacin; Dbk, dibekacin; Gm, gentamicin; I, isepamicin  Km, kanamycin; Lv, lividomycin; N, 

netilmicin; S, sisomicin; T, tobramycin. 

 

Figure 1.12: Sites of action of aminoglycoside modifying enzymes on 

aminoglycoside antibiotics (Avaiable at http://www.md.ucl.ac.be/infect/antiinfectieux 

/Assets/PLS/AG/AG-res-enz-540.gif). 

 

Aminoglycoside modifying enzymes (AMEs) are often plasmid encoded but are also 

associated with transposable elements. Plasmid exchange and dissemination of 

transposons aid the rapid acquisition of a drug resistance phenotype not only within a 

species but also among a large variety of species (Mingeot-Leclercq et al., 1999). A 
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list of the antibiotic resistance profiles for aminoglycoside modifying enzymes is 

shown in Table 1.4 (p 51). 

 

1.3.4.1 Aminoglycoside N-Acetyltransferases (AACs) 

 

This is the largest of the three AME groups (Shaw et al., 1993). They are members of 

the GCN5 superfamily of proteins (Dyda et al., 2000). This group comprises four 

classes of enzyme; AAC(1), AAC(3), AAC(2’) and AAC(6’). They use acetyl-CoA as 

the donor of the acetyl group in modifying aminoglycosides at position 1 and 3 of the 

2-deoxystreptamine ring and positions 2’ and 6’ of the aminohexose ring (Shaw et al., 

1993). 

 

AAC(6’)s are the largest group of aminoglycoside acetyltransferases and are the most 

common mechanism of aminoglycoside acetyltransferase-mediated aminoglycoside 

resistance in clinical isolates of bacteria. They are capable of modifying almost all of 

the clinically important aminoglycosides (Vakulenko and Mobashery, 2003). The 

AAC(6’)-I produces resistance to amikacin, tobramycin, kanamycin, netilmicin, 

isepamicin, dibekacin and sisomicin (but not to gentamicin) (Shaw et al., 1993). At 

least 26 AAC(6’)-I enzymes have been identified (Smith and Baker, 2002). Two 

AAC(6’)-II enzymes, AAC(6’)-IIa and AAC(6’)-IIb have been discovered and they 

confer resistance to gentamicin, tobramycin, dibekacin, netilmicin and sisomicin (but 

not to amikacin). The AAC(6’) enzymes are classified into three subfamilies by 

comparing their amino acid sequences. The first includes AAC(6’)-Ib, AAC(6’)-Ie, 

AAC(6’)-IIa and AAC(6’)-IIb. The second group contains AAC(6’)-Ia, AAC(6’)-Ii, 

AAC(6’)-Ip, AAC(6’)-Iq AAC(6’)-Id. The third family contains AAC(6’)-Ic, -Id, -If, 

-Ig, -Ih, -Ij, -Ik, -Il, -Ir, -Is, -It, -Iu, Iv, -Iw, -Ix and –Iz (Vakulenko and Mobashery, 

2003). 

 

AAC(6’)-Ib is the most commonly found AAC(6’) in bacteria. Shaw et al. (1993) 

found that among those Gram-negative strains producing the AAC(6’) resistance 

profile, 70.6% possess the AAC(6’)-Ib gene. The reason why the AAC(6)-Ib is so 

widely distributed among bacteria is that the gene for the enzyme is commonly found 

on mobile genetic elements, which facilitates its rapid transfer (Vakulenko and 

Mobashery, 2003). The aminoglycoside resistance profile of AAC(6’)-IIa and 
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AAC(6’)-IIb has only been observed in Pseudomonas strains. The aac(6)-IIa gene 

shows a 74% sequence identity with aac(6)-Ib. The presence of AAC(6)-II enzymes 

with the presence of low permeability and efflux pumps are now a major mechanism 

of resistance to aminoglycosides in Pseudomonas aeruginosa (Shaw et al., 1993) 

 

The AAC(3) enzymes are the second largest group of aminoglycoside 

acetyltransferases (Shaw et al., 1993). AAC(3)-I enzymes, AAC(3)-Ia and AAC(3)-

Ib, produce a narrow spectrum of resistance including sisomicin, gentamicin and 

fortimicin (Vakulenko and Mobashery, 2003). AAC(3)-II enzymes produce a wide 

range of resistance to tobramycin, sisomicin, gentamicin, netilmicin and dibekacin 

(Shaw et al., 1993). Less common AAC(3) enzymes include AAC(3)-III, AAC(3)-IV 

and AAC(3)-VI. The AAC(3)-III acetylates sisomicin, neomycin, dibekacin, 

gentamicin, tobramycin, kanamycin, lividomycin and paromomycin. AAC(3)-IV 

modifies netilmicin, tobramycin, gentamicin, apramycin and dibekacin but is rarely 

found among clinical strains. AAC(3)-VI produces resistance to gentamicin but is also 

rarely encountered in clinically important bacteria (Shaw et al., 1993).  AAC(3)-VII, 

AAC(3)-VIII, AAC(3)-IX and AAC(3)-X have also been identified but are only found 

in aminoglycoside-producing actinomycetes (Vakulenko and Mobashery, 2003). 

 

AAC(1) acetylates apramycin, paromomycin, lividomycin and ribostamycin. 

However, AAC(1) has not been found in any clinically important strains (Vakulenko 

and Mobashery, 2003). AAC(2’)-I produces resistance to gentamicin, tobramycin, 

dibekacin and netilmicin (Shaw et al., 1993).  It is primarily restricted to the 

Providencia group of organisms but a few cases of Pseudomonas strains with this 

enzyme have been observed. It is universally present in all clinical strains of 

Providencia stuartii (Shaw et al., 1993). 

 

 

1.3.4.2 Aminoglycoside O-Nucleotidyltransferases (ANTs) 

 

This group is the smallest of the three groups of acetyltransferases. It comprises five 

classes of enzymes; ANT(2”), ANT(3”), ANT(4’), ANT(6) and ANT(9). These 

enzymes use ATP as the second substrate and modify aminoglycoside antibiotics by 
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transferring AMP to their hydroxyl group at position 2’’, 3’, 4’, 6 and 9 (Shaw et al., 

1993). 

 

ANT(2”) is widespread among Gram-negative bacteria. The gene for this enzyme is 

found on plasmids, transposons and integrons. It produces resistance to gentamicin, 

tobramycin, dibekacin, sisomicin and kanamycin (Cameron et al., 1986). ANT(3”)-I 

confers resistance to streptomycin by modifying its 3”-hydroxyl group and to 

spectomycin by modifying it at position 9. There are at least eight ant(3”)-I genes and 

they show between 59% and 95% amino acid sequence identity (Partridge et al., 

2002) (Shaw et al., 1993). ANT(4’)-I confers resistance to tobramycin, amikacin, 

isepamicin and dibekacin. It is the main mechanism of aminoglycoside resistance in 

Japanese strains of S. aureus and has been found in 50% of MRSA strains in Europe 

(Schmitz et al., 1999). ANT(4’)-II is only found in Gram-negative bacteria such as the 

Pseudomonads (Vakulenko and Mobashery, 2003). ANT(6)-I is found in enterococcal 

and staphylococcal isolates. It confers resistance to streptomycin. ANT(9)-I is only 

found in Staphylococcus aureus. It has limited clinical importance as it only produces 

resistance to spectinomycin (Vakulenko and Mobashery, 2003). 

 

 

1.3.4.3 Aminoglycoside O-Phosphotransferases (APHs) 

 

This is the second largest group of aminoglycoside modifying enzymes. 

Aminoglycoside O-phosphotransferases (kinases) use ATP as the second substrate 

and are able to phosphorylate specific hydroxyl groups in all classes of antibiotics 

(Vakulenko and Mobashery, 2003). There are seven classes of APH enzymes, 

APH(3’), APH(2”), APH(3”), APH(4), APH(7”), APH(6) and APH(9). Most of the 

enzymes belong to the APH(3’) subfamily, of which there are eight types, APH(3’)-I 

to APH(3’)-VI (Shaw et al., 1993). These enzymes modify the hydroxyl groups of 

aminoglycosides at the 3’ position. APH(3’)-I confers resistance to kanamycin, 

neomycin, lividomycin, paromomycin and ribostamycin (Shaw et al., 1993). It is 

generally found on plasmids and transposons in Gram-negative bacteria, although it 

has been found in a Gram-positive strain, Corynebacterium (Ouellette et al., 1987). 

The ability of APH(3)-I to produce resistance to kanamycin has resulted in the clinical 

obsolescence of this antibiotic (Vakulenko and Mobashery, 2003). 
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APH(3)-II produces resistance to kanamycin, neomycin, paromomycin, ribostamycin, 

butirosin and gentamicin. Although it has an impressive aminoglycoside resistance 

profile, it is rarely encountered in clinical isolates (Shaw et al., 1993). APH(3’)-III 

confers resistance to kanamycin, neomycin, paromomycin, ribostamycin, lividomycin, 

butirosin gentamicin, amikacin and isepamicin (Shaw et al., 1993). The gene for this 

enzyme is found in both Gram-negative and Gram-positive bacteria. APH(3’)-IV and 

APH(3’)-V are only found in antibiotic-producing microorganisms (Vakulenko and 

Mobashery, 2003). APH(3’)-VI is responsible for resistance to kanamycin, neomycin, 

paromomycin, ribostamycin, butirosin gentamicin, amikacin and isepamicin and is 

found primarily in Acinetobacter strains. APH(3’)-VII confers resistance to 

kanamycin and neomycin (Shaw et al., 1993). 

  

The next largest group consists of the APH(2”)-I enzymes, of which there are four 

different types, APH(2”)-Ia to APH(2’’)-Id (Smith and Baker, 2002). These enzymes 

modify the 2” hydroxyl group of gentamicin, tobramycin and kanamycin. APH(2”)-Ib 

produce mid-level resistance to the above antibiotics whereas APH(2”)-Id confers 

higher levels of resistance (Shaw et al., 1993). Activity of these enzymes is restricted 

to enterococci (Vakulenko and Mobashery, 2003). 

 

APH(3”) modify the 3” group of streptomycin. There are two types APH(3”)-Ia and 

APH(3”)-Ib. APH(6) enzymes modify the 6-hydroxyl group of streptomycin. There 

are four types of these enzymes APH(6)-Ia to APH(6)-Id.  APH(4) and APH(7”) 

confer resistance to hygromycin and APH(9) produces resistance to spectinomycin. 

However APH(4), APH(7”) and APH(9) have not been discovered in any clinically 

important strains (Vakulenko and Mobashery, 2003). 
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Table 1.4: Antibiotic resistance profiles for aminoglycoside modifying enzymes 

 (modified from Shaw et al., 1993) 

Amk, amikacin; Apr, Apramycin, But, butirosin; Gm, gentamicin; Hyg, hygromycin B; Km, 

kanamycin; Lv, lividomycin; Neo, neomycin; Ntl, netilmicin; Sm, streptomycin; Prm, paromomycin; 

Siso, sisomicin; Sp, spectinomycin; Tob, tobramycin. 

 

Enzyme Resistance Profile 

Acetyltransferase 

AAC(1) 

AAC(3)-I 

AAC(3)-II 

AAC(3)-III 

AAC(3)-IV 

AAC(3)-VI 

AAC(6’)-I 

AAC(6’)-II 

AAC(6’)-APH(2’’) 

AAC(2’)-I 

 

Nucleotidyltransferase 

ANT(2’’)-I 

ANT (3’’)-I 

ANT (4’)-I 

ANT(4’)-II 

ANT(6)-I 

ANT(9)-I 

 

Phosphorylase 

APH(3’)-I 

APH(3’)-II 

APH(3’)-III 

APH(3’)-IV 

APH(3’)-V 

APH(3’)-VI 

APH(3’)-VII 

APH(3’’)-I 

APH(6)-I 

APH(4)-I 

 

 

Apr, Lv, Prm, But, Neo 

Gm, Siso 

Gm, Tob, Ntl, Siso 

Gm, Tob, Siso, Km, Neo, Prm, Lv 

Gm, Tob, Ntl, Apr, Siso 

Gm, Siso, Tob, Ntl, Km 

Tob, Ntl, Amk, Siso 

Gm, Tob, Ntl, Siso 

Gm, Tob, Ntl, Amk 

Gm, Tob, Ntl 

 

 

Gm, Tob, Siso, Km 

Sm, Sp 

Tob, Amk 

Tob, Amk 

Sm 

Sp 

 

 

Km, Neo, Prm, Lv, Gm 

Km, Neo, Prm, But, Gm 

Km, Neo, Prm, Lv, But, Gm, Amk 

Km, Neo, Prm, But 

Neo, Prm,  

Km, Neo, Prm, But, Gm, Amk 

Km, Neo, Amk 

Sm 

Sm 

Hyg 
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1.3.5 GCN5-Related N-Acetyltransferases (GNAT) 

 

One of the fundamental biochemical processes is the transfer of an acetyl group from 

one molecule to another. GCN5-related N-acetyltransferases (GNAT) catalyze the 

transfer of the acetyl group from acetyl coenzyme A to a primary amine. There are 

several members of the GNAT superfamily (Dyda et al., 2000). Histone N-

acetyltransferase (HAT) enzymes are involved in the acylation of histones at specific 

lysine residues. This is a process that is required for transcriptional activation and that 

has been implicated in chromatin assembly and DNA replication. The serotonin N-

acetyltransferase family catalyzes the penultimate step in the synthesis of the 

circadian neurohormone melatonin from serotonin. The circulating levels of 

melatonin are correlated with the light-dark cycle. They play a role in coordinating the 

sleep-wake cycle and adaptations to seasonal changes.  

 

However, the most relevant member of the GNAT superfamily for this study is the 

bacterial aminoglycoside N-acetyltransferase (AAC). These enzymes are responsible 

for the chemical modification of aminoglycoside antibiotics, which results in a 

decreased affinity of the antibiotic for its target, the 30S ribosome. These N-

acetyltransferases can be further divided into different subclasses depending on the 

regiospecificity of acetyl transfer (Dyda et al., 2000). 

 

The three-dimensional structures of several of these GNAT enzymes have been 

determined (Tercero et al., 1992) and (Neuwald and Landsman, 1997). There are four 

conserved motifs, C, D, A and B. The most highly conserved motifs are A and B, with 

C being the least conserved. These four regions comprise the N-acetyltransferase 

domain. Although there is functional variation across this family of enzymes, the 

protein similarity is almost identical (Dyda et al., 2000). The structure of the 

aminoglycoside N-acetyltransferase is illustrated in Figure 1.13. 
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Figure 1.13: Three–dimensional structure of GCN5-related N-acetyltransferase. The 

four conserved motifs of the GNAT superfamily, C, D, A and B are shown in purple, 

green , yellow and red, respectively. The black lines indicate acetyl coenzyme A 

(Dyda et al., 2000). 

 

Dyda et al. (2000) described the structure and function of the GNAT enzymes. The N-

acetyltransferase domain folds around a central, mixed β-sheet that is built up of 

antiparallel strands. AAC(6’) has seven strands in the β-sheet (Wybenga-Groot et al, 

1999). The β-sheet that forms the core of the N-acetyltransferase domain is made up 

of two parts, one encompassing the first four strands and second, the last three strands. 

In the loop connecting the first and second strands, two helices run antiparallel to each 

other and almost perpendicular to the first four strands. 

 

There are many interactions (primarily hydrophobic) between helices α1 and α2 and 

the four-stranded sheet below. These contribute to the rigidity of the first four strands 

of the β-sheet. There are a lot of hydrophobic interactions between the helices. These 

interactions, together with the hydrogen bonding between the antiparallel strands, 

result in a rigid and compact subdomain in this region of the molecule (Dyda et al., 

2000). 

 

Motif C includes the first helix. The second helix (α2) is shorter than α1. This part of 

the enzyme is subject to conformational changes, shortening or extending depending 

on whether the acetyl coenzyme A (AcCoA) binding site is occupied or not (De 
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Angelis et al, 1998). The polypeptide chain after α2 completes the first four strands of 

the sheet running through sequence motif D. Motif D includes most of strands β2 and 

β3 and turns into β4 where motif A, the longest and most highly conserved motif 

starts. Motif C and D interact with each other, forming the rigid subdomain that 

comprises the first half of the molecule. β4 is crucial for AcCoA binding and catalytic 

activity of the enzyme. Strand β4 and the structure following it (α3) form the essence 

of the AcCoA binding site. Motif A starts just before the parallel stretch of β4 and 

extends to α3. The parting of these two parallel strands results in a wedge-like 

opening in the centre of the protein where AcCoA binds (Dyda et al., 2000). 

 

The β bulge is a characteristic feature of the GNAT family (Richardson, 1981). It is 

located in the middle of β4. This bulge is thought to break the parallel segment 

between β4 and β5, forming the AcCoA binding site. Downstream of the β bulge are 

three residues that form main-chain hydrogen bonds with the AcCoA substrate. The 

acetyl and pantetheine moieties of AcCoA (Figure 1.14) project carbonyl and amides 

groups to both sides and are separated at the correct distance to hydrogen bond with 

an adjacent β strand (Dyda et al., 2000). 

 

 

 

Figure 1.14: The chemical structure of acetyl coenzyme A (Dyda et al., 2000) 
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The pyrophosphate-binding pocket is found at the end of α3, the longest helix in the 

structure. Its helix dipole contributes to phosphate binding. α3 consists of five turns, 

which leads to β5. The turn between these two structures is where motif A ends. Motif 

B starts at β5. Although β5 and α4, the helix that follows it, lack direct hydrogen 

bonds, they do make interactions with the AcCoA substrate. There are many large 

hydrophobic residues located on α4 that contact the substrate, stabilizing this bottom 

part of the donor substrate-binding site. α4 also plays a role in correctly positioning 

the acetyl group of AcCoA for the transfer action to occur. Motif B ends at the end of 

α4. In AAC(6’) there is then a long insertion between β5 and α4 between here and the 

C-termini (Dyda et al., 2000). 

 

AcCoA binds in the opening formed between the diverging strands β4 and β5, 

contacting protein atoms from β4 and α4, through main-chain interactions. The 

carbonyl of the acetyl group is hydrogen bonded to the main-chain amine of a residue 

just downstream of the β bulge (Dyda et al., 2000). 

 

Structure determinations have not yet been carried out that include aminoglycoside N-

acetyltransferase but structure determinations have been carried out for 

arylalkylamine N-acetyltransferase (AANAT) (Hickman et al., 1999) and the 

Tetrahymena GCN5 N-histone acetyltransferase (HAT) (Rojas et al., 1999). In both 

cases the N-acetyltransferase domain uses the same regions to make key interactions 

with the amine-containing substrate. α1 and α2 are critical for interaction. This two-

loop region is located on the surface of the molecule and defines a cleft located 

directly above the acetyl group of AcCoA. Both serotonin (substrate for AANAT) and 

the histone H3 (substrate of HAT) lie in this cleft. It seems that the formation of a 

GNC5/AcCoA complex is required prior to binding (Dyda et al., 2000). 

 

There are two possible ways that acetyltransferases could catalyze the transfer of the 

acetyl group. The first is a ping-pong mechanism, where the acetyl group is 

transiently transferred to a suitably located cysteine residue of the enzyme, forming a 

covalently bound acetylated enzyme intermediate (Figure 1.15). The enzyme then 

catalyses the transfer of the acetyl group from the cysteine residue to the acceptor 

substrate. The second, and more likely, mechanism is the transfer of the acetyl group 
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directly from AcCoA to the acceptor via direct nucleophillic attack by the primary 

amine on the acyl-carbon. This mechanism requires the formation of a ternary 

complex between the enzyme, AcCoA, and the acceptor substrate. Kinetic 

experiments, the failure to identify covalently bound intermediates and the inability to 

inactivate the acceptor using reagents that block thiol groups favour the direct acetyl 

transfer mechanism. 

 

 

 

 

 

Figure 1.15: The reaction catalysed by GCN5-related N-acetyltransferases, showing 

the presumed tetrahedral intermediate that results from nucleophillic attack of a 

primary amine on the acyl carbon of the acetyl group. 

(Dyda et al., 2000) 

 

 

For direct nucleophillic attack to occur, the primary amine must be in an uncharged 

form. Therefore, it is likely that GNAT enzymes provide some sort of deprotonation, 

probably involving an amino acid near the active site, which acts as a general base 

(Dyda et al., 2000). 
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1.3.6 ββββ-lactamases 
 

β-lactamases are enzymes which catalyse the hydrolysis of an amide bond in the beta-

lactam ring of antibiotics belonging to the penicillin/cephalosporin family to create 

ineffective antimicrobials (Figure 1.16) (Abraham and Chain, 1940). β-lactamases 

have attracted a lot of attention because of their clinical importance and their 

ecological and evolutionary interest. β-lactamases are thought to share a common 

ancestory with the DD-peptidases, which form peptide cross-links with the 

peptidoglycan network during cell wall synthesis (Kelly et al., 1986). Mechanistically 

the β-lactamases are similar to the DD-peptidases in the acylation step (Pratt, 2002). 

However, the acyl intermediate of the β-lactamases undergoes deacylation much more 

rapidly and is therefore very efficient at destroying the antibiotic and protecting the 

peptidoglyacan synthesis (Sun et al., 2003).  

 

 

 

 

Figure 1.16: The inactivation of a β-lactam antibiotic by a β-lactamase (Caselli et al., 

2001) 

 

β-lactamases are produced by both Gram-positive and Gram-negative bacteria and 

protect the organisms against the action of β-lactam antibiotics (Massova and 

Mobashery, 1998). The destruction of β-lactams by β-lactamases is the most 

important resistance mechanism in Gram-negative bacteria (Babic et al., 2006). β-

lactamases of Gram-positive species are largely extracellular, although, depending on 

the growth conditions, some enzymes may adhere to the cytoplasmic membrane. By 

contrast, the β-lactamases of Gram-negative species are largely periplasmic, although 

some extracellular release may occur, mediated by leakage rather than secretion 

(Livermore, 1995).  

Inactive Antibiotic 
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Originally, β-lactamases were named after substrates, biochemical properties, 

peculiarities of sequence, location of their discoveries, location of the gene on the 

chromosome, strains of bacteria, the patient providing the sample and the 

investigators who described them. In 1975, the application of isoelectric focusing for 

β-lactamases characterisation allowed many more enzymes to be distinguished 

(Jacoby, 2006). β-lactamases have become families of closely related enzymes. To 

date, over 530 β-lactamase enzymes have been reported. 150 TEM, 88 SHV, 88 

OXA, 53 CTX-M, 22 CMY, 22 IMP, 12 VIM and smaller numbers in other enzyme 

families have been described by Jacoby and Bush (http://www.lahey.org/studies). The 

TEM and SHV families are closely related, with individual members differing by only 

one to seven amino acids. Other families (CTX-M and IMP) differ among themselves 

by as much as 20% in amino acid composition, while members of the OXA family 

can have almost 80% difference, because they have been grouped by activity on 

oxacillin and related substrates and not by primary structure (Babic et al., 2006).  

 

β-lactamases can be broadly divided into enzymes with a serine residue at the active 

site, similar to bacterial penicillin-binding proteins, from which they probably 

evolved, and metalloenzymes with zinc ion as a cofactor and with a separate heritage 

(Sun et al., 2003). Both are ancient enzymes. Analysis of β-lactamase sequences 

allows them to be divided into four molecular classes according to their amino acid 

content. Class A, C and D use an active-site serine in their mechanism of action, 

whereas class B enzymes require divalent metal cations like zinc to catalyse β-lactam 

hydrolysis (Ambler, 1980). Another less commonly used classification system is 

based on substrate and inhibitor profile (Bush et al., 1995). The three classes of serine 

β-lactamases are evolutionarily related and belong to a superfamily that also includes 

DD-peptidases and a variety of other penicillin-binding proteins (PBPs) (Joris et al., 

1988). All these proteins contain a Ser-X-X-Lys motif, where the serine is the active 

site residue. Although clearly homologous, the sequences of the three classes of serine 

beta-lactamases exhibit a large degree of variability and only a small number of 

residues are conserved in addition to the catalytic serine.  

 

β-lactamases do not consist of many components. They are globular proteins that 

characteristically have alpha helices, β-pleated sheets and share similar structural 
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features (Herzberg, 1991). In a short time, infectious bacteria have acquired β-

lactamases to counteract the effects of traditional β-lactams. They have also acquired 

variant forms of these enzymes to hydrolyse newly developed extended-spectrum β-

lactams (Petrosino et al., 1998). 

 

 

Class B β-lactamases 

 

Metallo-β-lactamases are classified as group 3 enzymes because they hydrolyse 

penicillins, cephalosporins and carbapenems but are resistant to almost all 

conventional β-lactam inhibitors (Bush et al., 1995). They do not hydrolyse 

aztreonam. Ambler  (1980) classified metallo-β-lactamases as class B enzymes. Class 

B β-lactamases require divalent cations, primarily zinc, for activity and are inhibited 

by metal chelators. The metalloenzymes are further categorised into three functional 

subgroups, B1, B2 and B3, based on metal requirements. In subclass B1, which 

includes most metallo-β-lactamases, Zn1 is tightly coordinated and Zn2 is loosely 

coordinated (Fabiane et al., 1998). The B2 functional subgroup possesses two zinc 

sites each with similar binding affinity (Crowder et al., 1996). The B3 subgroup has a 

Zn1 site that tightly binds zinc and is sufficient for maximal enzymatic activity 

(Hernandez-Valladares et al., 1997). 

 

Class B metallo-β-lactamases have been identified in both Gram-positive and Gram-

negative bacteria. They are found in many clinically important species such as 

Acinetobacter spp. and Pseudomonas aeruginosa. The most clinically important Class 

B β-lactamases belong to the IMP and VIM families (Majiduddin et al., 2002). These 

β-lactamases confer resistance to all β-lactams except monobactams and their activity 

is not inhibited by β-lactamase inhibitors (Babic et al., 2006). The production of these 

enzymes is primarily constitutive (Majiduddin et al., 2002). The genes for class B β-

lactamases can be chromosomal or plasmid-borne and are found on integrons. This 

facilitates the dissemination of these genes by horizontal transfer (Laraki et al., 1999). 
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Class C β-lactamases 

 

Class C enzymes (originally called cephalosporinases) can be distinguished on the 

basis of their primary structure and active site serine (Ambler, 1980). Bush et al. 

(1995) defined class C enzymes as group 1 β-lactamases. Their phenotype is 

characterised by resistance to a variety of penicillins, β-lactamase inhibitors, 

cefoxitin, cefotetan, ceftazidime and most importantly, carbapenems (Stapleton et al., 

1999). They are only produced by Gram-negative bacteria, most commonly by the 

Enterobacteriaceae, but have also been found in Pseudomonas and Aeromonas. The 

genes encoding these enzymes are usually chromosomally encoded (Sanschagrin et 

al., 1995). The main representative of this group is AmpC (Majiduddin et al., 2002). 

 

Class A β-lactamases 

 

Class A, C and D β-lactamases share structural similarities with the target of β-lactam 

antibiotics, the DD-peptidases, and are thought to have emerged from the same 

ancestral enzyme (Koch, 2003). Class A enzymes include the β-lactamases TEM, 

SHV, OHIO, CARB/PSE, ROB-1 and PC1. According to the Bush classification 

scheme (Bush et al., 1995), based on biochemical parameters such as substrate 

profiles and reactions with inhibitors, these enzymes preferentially hydrolyse 

penicillins, cephalosporins or carbenicillins. Genetic dissemination of Class A 

enzymes occurs via plasmids and transposable elements (Sanschagrin et al., 1995). 

 

Four motifs, S70-X-X-K, S130-X-N, K234-T/S-G and the Ω-loop, are commonly found 

in the vacinity of the active-site pocket of Class A β-lactamases. The S70-X-X-K motif 

includes the active site serine at position 70 and a lysine at position 73 (Ambler, 

1980). The mechanism of Class A enzymes involves the nucleophillic attack by Ser70 

after activation by Lys73 or Glu166 on the carbonyl carbon of the β-lactam ring 

resulting in the acyl enzyme intermediate (Majiduddin et al., 2002). Mutagenic 

studies clearly indicate that Ser70 is involved in the hydrolysis of the β-lactam 

antibiotic (Chen et al., 1996). Lys73 is proposed to have a role in acylation of 

penicillin and deacylation of cephalosporins. Glu166 located in the Ω-loop, is proposed 
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to play a role as a general base in both acylation and deacylation (Majiduddin et al., 

2002). 

 

Back donation of the carbonyl proton occurs via a hydrogen bond network involving a 

water molecule, Lys73 and Lys234, a component of the K-T/S-G motif. Lys234 stabilises 

Ser130 (a component of the S-X-N motif) through hydrogen bonding (Matagne et al., 

1998). Deacylation and regeneration of the β-lactamase would occur through the 

activation of a water molecule by Glu166. The activated water molecule would then 

attack the carbonyl carbon of the acyl enzyme intermediate, and back donation of a 

proton to the Ser70 would occur resulting in a regenerated enzyme (Majiduddin et al., 

2002).  

 

Class D β-lactamases 

 

The DNA sequence similarity between the class D β-lactamase and class A and C is 

limited and restricted to three main regions around the active site (Majiduddin et al., 

2002). Class D enzymes belong to the group 2d of the Bush functional classification 

scheme of β-lactamases (Bush et al., 1995). OXA-2 was the first class D enzyme to 

be discovered (Dale et al., 1985). The first characterised class D β-lactamases were 

referred to as oxacillinases because they commonly hydrolyse the 

isoxazolylpenicillins, oxacillin and cloxacillin, two to four times faster than classical 

penicillins such as penicillin G (Sun et al., 2003). The eponym, OXA, of the class D 

β-lactamases, thus, refers to their preferred penicillin substrate (Walther-Rasmussen 

and Høiby, 2006). Currently, 121 different variants of class D β-lactamases have been 

identified on the protein level, and 45 of these exhibit carbapenems-hydrolysing 

activities, which is in contrast to other class D β-lactamases (Walther-Rasmussen and 

Høiby, 2006). They are designated OXA-1, OXA-2 etc. and fall into at least five 

different subgroups on the basis of phylogeny analysis (Barlow and Hall, 2002).  

 

Class D β-lactamases differ significantly from Class A and C enzymes by the 

utilisation of a carboxylated lysine side chain for catalysis (Golemi et al., 2001) and 

exhibiting biphasic burst kinetics (Ledent et al., 1993). Biphasic kinetics is when the 

initial hydrolysis rate of a substrate declines more rapidly than is explicable by 
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substrate depletion, before stabilising at at steady-state rate (Danel et al., 1997). The 

Class D deacylation step of catalysis is much slower than the acylation step because 

the oxacillinases less effectively activate a water molecule for hydrolysis (Sun et al., 

2003). A major clinical problem with Class D β-lactamases is that inhibitors for these 

enzymes are lacking (Huovinen et al., 1988). Unlike Class A enzymes, Class D 

enzymes are not inhibited by the β-lactamase inhibitor, clavulanic acid (Page, 2000). 

Class D β-lactamases have three highly conserved active-site elements in common. 

The first is the tetrad, Ser67-X-X-Lys (where X represents a variable residue 

containing the active site serine). The second, the Ser115-X-Val/Ile, is equivalent to the 

invariable Ser-Asp-Asn motif in Class A β-lactamases and Tyr-Ala/Ser-Asn in AmpC 

β-lactamases. The Lys216 and Tyr/Ser-Gly element is common to most of the serine-

active β-lactamases. Other conserved motifs in Class D β-lactamases are the triad 

Tyr/Phe144-Gly-Asn and the tetrad Trp232-X-X-Gly. These have no analogues in other 

β-lactamase classes (Walther-Rasmussen and Høiby, 2006). The active site serine in 

Class D enzymes reacts with substrate to form an acyl-enzyme intermediate. A 

common feature among Class A and D enzymes is a reactive serine and an oxyanion 

hole to stabilize tetrahedral transition states in both acylation and deacylation. Two 

conserved lysine residues exist in the binding site. However, it is only in Class D 

enzymes that the lysine in the Ser67-X-X-Lys70 is modified by CO2 in a pH-dependent 

manner to provide full activity (Sun et al., 2003).  

 

Class D β-lactamases are the least understood of the β-lactamases because few 

structures of Class D β-lactamases have been solved (Maveyraud et al., 2000, Pernot 

et al., 2001, Sun et al., 2003). OXA-10 is one of the few enzymes that has been 

crystalized and its structure solved by Maveyraud et al., 2000. Its structure is very 

similar to the structures of OXA-1 (Sun et al., 2003) (Figure 1.17, p. 64) and OXA-13 

(Pernot et al., 2001). Each OXA-10 monomer folds as a two-domain protein. The first 

domain includes a seven stranded antiparallel β-sheet and the N- and C-terminal 

helices. The second domain is made of six α-helices connected by loop regions. The 

catalytic site is located at the interface of the two domains. The binding site for β-

lactam substrates in OXA-10 is delineated by strand β5 on one side and by the 

Ser115/Ala116/Val117 loop that connects α4 and α5 on the other side. Ser67, the catalytic 

serine, which is acylated during substrate turnover, is found on the N-terminal portion 
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of α3. Ser67 along with Lys70, Ser115, Lys205 and Gly207 are strictly conserved among 

Class D β-lacamases. These are also the only invariant amino acids between Class A 

and Class D enzymes (Maveyraud et al., 2000). 

 

The Glu166 in the Ω-loop region of Class A β-lactamases is essential for catalysis and 

is responsible for the activation of the water molecule that promotes efficient 

deacylation of the acyl-enzyme intermediate. There is no acidic residue in Class D 

enzymes that would be a counterpart to Glu166. The Ω-loop in OXA-10 is four 

residues shorter than in Class A enzymes and its conformation is not related to those 

in Class A and C enzymes. The residues in the Ω-loop are hydrophobic and include 

the invariant tryptophan residue in Class D enzymes (Maveyraud et al., 2000). The 

same case is true for the β-lactam binding site of OXA-1 which is much more 

hydrophobic than binding sites in Class A and Class C β-lactamases (Sun et al., 

2003). Both Class A, C and Class D enzymes have a conserved hydrophobic side 

chain on the Ω-loop in the binding site. This residue is Leu169 in Class A enzymes and 

Leu/Ile161 in Class C enzymes. This hydrophobic group in Class D enzymes has 

replaced a critical hydrophillic array (Glu166-H2O-Asn170 triad, which activates the 

catalytic water molecule) in the class A catalytic site (Sun et al., 2003). In OXA-1 the 

β9 strand is connected to the β10 strand by a loop. The size of this loop varies in 

length between oxacillinases and is thought to be a determinant in the specificity of 

oxacillinase variants for various β-lactams. Oxacillinases, unlike Class A enzymes, 

have large hydrophillic aromatic residues at position 215 just after the conserved K-T-

G motif on the β9 strand (Sun et al., 2003). 

 

The geometry of the OXA-10 active site is different to that of Class A enzymes, in 

which Lys73 is at polar interaction with Glu166 (general base) and hydrogen bonded to 

Asn132. This residue involved in substrate binding in Class A enzymes is always 

substituted for Val117 in Class D β-lactamases. Carboxylation of Lys70, which converts 

a neutral or positive site into an anionic one is thought to act as a base to activate the 

Ser67 hydroxyl group for enzyme acylation. It therefore is believed to have the same 

function in Class D β-lactamases that Glu166 has in Class A enzymes, i.e., to act as a 

general base to activate a water molecule for hydrolysis of the acyl-enzyme 

intermediate (Maveyraud et al., 2000). A water molecule is thought to bridge from 
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Lys70 to Trp160
 and is claimed to be the water molecule for deacylation. A hydrogen 

bond exists between the carboxylate group and the side chain amide group of the Ω-

loop, an interaction that is common to all known carbamylated oxacillinase structures. 

The carboxylate group forms two other hydrogen bonds with the reactive Ser67 and 

Ser120 (Sun et al., 2003). 

 

It is not yet known how this serine is activated. Unlike Lys73 and Glu166 of class A β-

lactamases, or Tyr150 of the class C enzymes, the general base for the Class D 

enzymes has not been identified. Lys70, which is the structural equivalent of Lys73 in 

class A β-lactamases and Lys67 of class C β-lactamases, appears to be in the optimal 

position to activate a catalytic water molecule for nucleophilic attack of the active site 

serine. (Maveyraud et al., 2000), (Pernot et al., 2001). The Trp154, which positions a 

catalytic water molecule, appears to be an important residue in the substrate 

specificity of oxacillinase enzymes (Poirel et al., 2001 [a]). 

 

Figure 1.17: Tertiary stucture of OXA-1 β-lactamase 

(Sun et al., 2003) 

 

Most of the OXA-type β-lactamases have been discovered in clinical isolates of 

Pseudomonas aeruginosa but some have also been obtained from other Gram-

negative bacteria such as Acinetobacter baumannii and Salmonella typhimurium (Dale 

et al., 1985). Some OXA-type β-lactamases are encoded by chromosomal genes that 

appear to be resident in some microbial genomes such as those in some Aeromonas 

spp., Ralstonia picketti and Pseudomonas aeruginosa (Giuliani et al., 2005). Many of 

these enzymes, however, are encoded by genes associated with mobile elements, 
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integrons in particular (Naas and Nordmann, 1999). These secondary OXA-type β-

lactamase genes have been reported to occur in several pathogenic species, including 

members of the family Enterobacteriaceae, Pseudomonas aeruginosa and 

Burkholderia cepacia, where they can confer β-lactam resistance (Crowley et al., 

2002). 

 

Although many oxacillinases have a narrow substrate spectrum, some are also capable 

of degrading extended-spectrum cephalosporins or carbapenems. As with many β-

lactamases, OXA-2 and OXA-10 have evolved variants, which confer resistance to 

extended-spectrum cephalosporins including ceftazidime and cefotaxime (Huovinen 

et al., 1988).  These variants arise from single amino acid substitutions, which alter 

the substrate specificity of the enzyme (Paetzel et al., 2000). The number of amino 

acid substitutions ranges from one in OXA-15 to nine in OXA-28 (Majiduddin et al., 

2002). 

 

 

1.4 Aims of the project 

 

 

Pseudomonas aeruginosa is difficult to treat in a clinical environment because it is 

resistant to many antibiotics. A number of isolates, presumptive Pseudomonas 

aeruginosa strains, were obtained from two Irish hospitals, the Adelaide and Meath 

National Children’s Hospital, Tallaght, Dublin 24 and the Waterford Regional 

Hospital. It was of interest to study these isolates in order to: 

 

• identify and characterise the strains  

 

• create an antibiotic resistance profile for each isolate 

 

• investigate the mechanisms of antibiotic resistance in the multidrug resistant 

strain, P. aeruginosa PA13. 
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2.0 Materials and methods 

 

2.1 Bacterial Cultures 

 

2.1.1 Source  
 
2.1.1.1 Clinical isolates 

Eighteen bacterial isolates were obtained from two Irish hospitals, the Adelaide and 

Meath National Children’s Hospital, Tallaght, Dublin 24 and the Waterford Regional 

Hospital. They were given the codes PA1-PA18. They were received on nutrient agar 

slants and were transported under cooled conditions.  

 

2.1.1.2 Control Strains 

 
Table 2.1: Characterisics and sources of control strains 

Strain Characteristic Source 

Bacillus stearothermophilus Spore forming control DCU Culture Collection 

Enterococcus faecalis Non-motile control DCU Culture Collection 

Escherichia coli ATCC 25922 β-lactamase negative control 

 

Microbiology Laboratory, 

Coombe Womens’s Hospital 

Escherichia coli ATCC 35218 β-lactamase positive control Microbiology Laboratory, 

Coombe Womens’s Hospital 

Escherichia coli Non-spore forming contol, 

oxidase negative  control 

DCU Culture Collection 

Pseudomonas aeruginosa 

ATCC 27853 

API 20NE control, 

aminoglycoside resistance 

control 

Microbiology Laboratory, 

Coombe Womens’s Hospital 

Pseudomonas aeruginosa PAO1 Gram –ive control, motile 

control, oxidase positive, Tween 

80 positive control 

DCU Culture Collection 

Serratia marcescens Fermentation control, arginine 

hydrolysis negative control 

DCU Culture Collection 

Staphylococcus aureus Gram +ive control, catalase 

positive control 

DCU Culture Collection 

Streptococcus pyogenes Catalase negative control, β-

haemolysis control 

DCU Culture Collection 

Streptococcus viridans α-haemolysis control DCU Culture Collection 
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2.1.1.3 Escherichia coli strains used for molecular studies 

 

Table 2.2: Source and genotype of E. coli strains used in molecular studies 

 

Strain Genotype Source 

E. coli BL21(DE3) F-, ompT, hsdSB (rB
-, mB

-), dcm, gal, 

λ(DE3), Tetr, Lon, ompT 

Novagen 

E. coli XL10-Gold Tetr, ∆(mcrA)183, ∆(mcrCB-

hsdSMR-mrr)173, endA1, supE44, 

thi-1, recA1, gyrA96, relA1, lac Hte 

[F’proAB, lacI
qZ∆M15, Tn10 (Tet

r), 

Camr] 

 

Dr. Michael O’ Connell, 

DCU 

E. coli Rosetta Blue endA1, hsdR17(rK12
-, mK12

+), supE44, 

thi-I, recA1, gyrA96, relA1, lac[F’ 

proA+B+ lacI
qZ∆M15::Tn10(tetR)] 

pRARE(argU, argW, ileX, glyT, 

leuW, proL) (CmR), Lon, ompT 

 

Novagen 

 

 

2.1.2 Maintenance of strains 

 

Protect Beads 

 

The clinical isolates were stored on Protect Beads (Technical Service Consultant, 

UK). The beads were supplied in tubes containing 0.5 ml cryopreservation fluid. To 

prepare the beads from a solid culture, colonies were picked off using a sterile loop 

and were used to inoculate the cryopreservation fluid containing the beads to create a 

thick suspension in the tube. The tube was capped and the suspension was inverted six 

times. The tube was then allowed to stand for 30-40 seconds. As much excess 

suspension as possible was removed from the tube using a sterile pipette leaving the 

culture-coated beads in situ. The tubes were labelled and stored at -80°C. These cells 

can be stored for up to ten years. To resuscitate the cultures, the vial was removed 

from the freezer and a bead removed aseptically and placed on a plate of nutrient agar. 
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The isolates were grown on nutrient agar plates (Section 2.4.6) and stored at 4°C for 

short-term storage. 

 

Glycerol Stocks 

 

Glycerol stocks were prepared for storage of control strains and E. coli strains used in 

molecular studies. For glycerol stock preparation, 2 ml of an overnight culture grown 

in nutrient broth (E. coli strains used in molecular studies were grown in the presence 

of 10 µg/ml tetracycline, E. coli ATCC35218 was grown in the presence of 20 

µg/ml ampicillin and P. aeruginosa ATCC27853 was grown in the presence of 10 

µg/ml gentamicin) was added to 1 ml of sterile 80% (v/v) glycerol solution and mixed 

in a bijoux tube. The glycerol stocks were stored at -80°C immediately, for up to three 

years. The strains were stored at 4°C on LB agar plates for short-term storage. 

 

2.2 Source of Chemicals 

 

Chemicals were obtained from Sigma Aldrich Chemical Company (UK) unless 

otherwise stated.  

 

 

2.3 Buffers and solutions 
 
 

2.3.1 Destaining solution 

 

Destaining solution used for destaining SDS-PAGE gels was made by adding 100 ml 

acetic acid and 450 ml methanol to 450 ml distilled water. 

 

2.3.2 6X DNA Loading Dye 

 

The loading dye was prepared by dissolving bromophenol blue (0.25 g) and sucrose 

(40 g) in 100 ml dH2O and used as required. 
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2.3.3 0.5M EDTA  

 

Ethylenediaminetetraacetic acid disodium salt (93.05 g) was dissolved in 400 ml 

deionised H2O and brought to pH 8 with NaOH pellets. The volume was brought to 

500 ml with distilled H2O and the solution was autoclaved at 121°C for 15 minutes. 

 

2.3.4 1M IPTG (Isopropyl-ββββ-D-thiogalactopyranoside)  
 

IPTG (0.238g) was dissolved in 1ml dH2O. The solution was filter sterilised (using a 

0.2 µm syringe filter) and stored in 5 ml volumes at -20°C. For a working 

concentration of 1mM, 100 µl was added to 100 ml media. 

 

2.3.5 Lysis buffer 

 

Lysis buffer was prepared by dissolving 40mM Tris-acetate (pH 7.8), sodium acetate 

(20mM), EDTA (1mM) and 1% (w/v) SDS in distilled water. 

 

2.3.6 Plasmid Preparation Solutions (Birnboim and Doly, 1979) 

 

Solution 1 

This solution was prepared by adding 10 ml 0.5M glucose, 10 ml Na2-EDTA and 2.5 

ml 1M Tris-HCl to 77.5 ml distilled water. 

 

Solution 2 

This solution was prepared by adding 20 ml 1M NaOH and 10 ml SDS (10% w/v) to 

70 ml distilled water. This solution was prepared fresh every month and stored at 

room temperature 

 

Solution 3 

Solution 3 was 3M Potassium Acetate (pH 4.8). Glacial acetic acid (11.5 ml) and 28.5 

ml distilled water was added to 60ml of 5M potassium acetate. The resulting solution 

is 3M with respect to potassium and 5M with respect to acetate. 
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2.3.7 Ringers Solution  

 

Ringers solution was prepared by adding one tablet (Sigma) to 500 ml of distilled 

water and autoclaving at 121°C for 15 minutes. 

 

2.3.8 5X Running Buffer  

 

5X Running buffer was made by dissolving 15 g Tris base, 72 g glycine and 5 g SDS 

in 1L distilled water. The pH was not adjusted and the solution was stored at room 

temperature. 

 

2.3.9 Sample Buffer 

 

Sample buffer was prepared by adding 1.25 ml 0.5M Tris HCl (pH 6.8), 5ml glycerol, 

2ml SDS (10% w/v), 0.5ml β-mercaptoethanol and 0.5 mg bromophenol blue to 1ml 

of distilled water. All samples were diluted 1:4 and heated to 95°C for 5 minutes, 

prior to loading SDS-PAGE gel. 

 

2.3.10 Sodium Phosphate Buffer  

 

Sodium phosphate buffer (10 mM and 100 mM) was prepared by dissolving 1.55 g/L 

(10 mM) or 15.47g/L (100 mM) Na2HPO4 and 0.584 g/L (10 mM) or 5.84 g/L (100 

mM) NaH2PO4 in distilled water. The pH of the resulting solution was then adjusted 

to pH 7.0 using 1M NaOH. 

 

2.3.11 Staining solution 

 

The staining solution for staining SDS-PAGE gels was prepared by adding 100 ml 

acetic acid, 450 ml methanol and 0.25 g coomassie blue to 450 ml distilled water. 

 

2.3.12 50X TAE 

 

Tris-acetate buffer was prepared by dissolving Tris (2M) and ethylenediaminetetra 

acetic acid  (0.05M) in distilled water and adjusting the pH to 8.0 with glacial acetic 

acid.  The buffer was stored at room temperature and diluted as required. 
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2.3.13 1X TAE – Working Buffer 

 

Dilute 10 ml of 50X TAE to 500ml with 490 ml of dH2O and add 20µl of ethidium 

bromide 10 mg/ml. 

 

2.3.14 TE Buffer 

 

Tris-acetate buffer was prepared by dissolving Tris-HCl (10mM) and Na2-EDTA 

(1mM) in distilled water and adjusting the pH to 8.0 with HCl.  The buffer was stored 

at room temperature and diluted as required. 

 

2.3.15 TFB 1 Buffer 

 

TFB 1 buffer was prepared by dissolving rubidium chloride (100 mM), magnesium 

chloride (50 mM), calcium chloride (30 mM) and 15% (v/v) glycerol in ultrapure 

water. The pH was adjusted to 5.8 using KOH and the buffer was filter sterilised. 

 

2.3.16 TFB 2 Buffer 

 

TFB 2 buffer was prepared by dissolving MOPS (10 mM), rubidium chloride (10 

mM), calcium chloride (75 mM) and 15% (v/v) glycerol. The pH was adjusted to 6.8 

using KOH and the buffer was filter sterilised. 

 

 

2.4 Media 

 

All microbiological media unless otherwise stated were obtained from Oxoid. 

 

2.4.1 Agarose Gel Preparation 

 

An agarose gel (0.8% w/v) was prepared by the addition of 0.4 g agarose (Sigma) to 

50 ml of 1X TAE buffer and boiled until the agarose was sufficiently dissolved. This 

was allowed to cool to ~50°C and 2 µl (10 mg/ml) ethidium bromide (final 

concentration 0.4 µg/µl) was added. The gel was poured and a comb was inserted to 

make the wells. When the gel was set, the comb was removed and the gel was placed 
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in the gel box and immersed in 1X TAE buffer. Samples were prepared by taking 10 

µl of the DNA, 2 µl of loading dye and 10 µl dH2O. 10µl of the λ DNA size standard 

was loaded into the first well of the agarose gel, followed by 20 µl of DNA samples in 

subsequent wells. The nucleic acid ladder (125-21,226 bp) used in all agarose gels 

was obtained from Sigma (Cat. No.: D9281). The gels were run for 60 minutes at 

130V and 100mA using the Hybaid Electrophoresis system (M.A., U.S.). The gels 

were viewed and automatically photographed using the Imagemaster VDS image 

analysis system (Amersham Pharmacia Biotech, N. J., U.S.) 

 

2.4.2 Arginine Agar 

 

Table 2.3: Components of arginine agar 

 

Component Amount/L 

Peptone 1g 

NaCl 5g 

K2HPO4 0.3g 

Phenol red 1.0%  1 ml 

L(+) arginine hydrochloride 10g 

Agar 3g 

Distilled water 1000 ml 

 

 

The medium was dissolved, the pH adjusted to 7.2 and distributed in 3.5 ml volumes 

into glass universals before sterilization (Cowan and Steel’s Manual for the 

Identification of Medical Bacteria, 1993). 

 

 

2.4.3 Blood agar 

 

Blood agar was made by adding 50 ml of sterile defibrinated horse blood to 950 ml of 

nutrient agar. Nutrient Agar was sterilised by autoclaving and allowed cool to 50°C. 

Defibrinated blood was added aseptically. The agar was mixed and distributed into 
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plates. Blood should never be added before autoclaving (Cowan and Steel’s Manual 

for the Identification of Medical Bacteria, 1993). 

 

 

2.4.4 Cetrimide Agar  

 

Dehydrated cetrimide agar powder (Merck) (4.45g) was dissolved in 100 ml of 

distilled water. Glycerol (10 ml/L) was added and the agar was autoclaved at 121°C 

for 15 minutes. The medium was supplemented with 15 µg/ml naldixic acid to select 

for Pseudomonas aeruginosa. 

 

 

2.4.5 Hugh and Liefsons’ Medium  
 
 

Table 2.4: Components of Hugh and Liefsons’ medium used for the oxidation-

fermentation test 

 

Component Amount/L 

Peptone 2g 

NaCl 5g 

K2HPO4 0.3g 

Agar 3g 

Distilled Water 1000 ml 

Bromothymol blue (0.2% w/v) 15 ml 

 

The solids were dissolved by heating in water and the pH was adjusted to 7.1 with 2M 

NaOH. The indicator dye was added and the medium was sterilised. Following 

sterilisation, a sterile solution of glucose was added aseptically to give a final 

concentration of 1% v/v. The medium was mixed and distributed asceptically in 10 ml 

volumes into sterile test tubes (Cowan and Steel’s Manual for the Identification of 

Medical Bacteria, 1993). 
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2.4.6 LB, Mueller-Hinton and Nutrient Media 

 

 

Table 2.5: Amount of dehydrated powder (or tablets) used to make LB, Mueller-

Hinton and Nutrient media 

 

 

Medium Amount/L dH2O 

LB agar (Sigma) 37g 

LB broth (Sigma) 20 tablets 

Mueller-Hinton agar 38g 

Mueller-Hinton broth 21g 

Nutrient agar 20g 

Nutrient broth 13g 

 

All of these media were sterilized by autoclaving for 15 minutes at 121°C. 

 

 

2.4.7 Preparation of Mueller-Hinton Agar for disk susceptibility test 

 

 

Mueller-Hinton agar was prepared as follows. The agar was prepared according to the 

manufacturer’s instructions to a pH of 7.2-7.4. Immediately after autoclaving, the agar 

was allowed to cool to 45-50°C. The freshly prepared agar was poured into plastic, 

flat bottomed petri dishes on a level surface to give a uniform depth of approximately 

4 mm (this corresponded to 25-30 ml of agar in a plate with a diameter of 100 mm). 

The plates were allowed to cool to room temperature and, unless the plates were used 

in the same day, they were stored at 2-8°C in a refrigerator. All plates were used 

within seven days of preparation. A representative sample of each batch of plates was 

examined for sterility by incubating at 37°C for 24 hours. 
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2.4.8 Preparation of cation adjusted Mueller-Hinton Broth for broth dilution 

method 

 

In order to determine the MIC values of aminoglycosides the correct concentrations of 

the divalent cations Ca++ and Mg++ (25mg of Ca++/L and 12.5mg/L of Mg++/L) were 

added to the Mueller-Hinton broth otherwise the MICs of aminoglycosides for P. 

aeruginosa would be much different from those MICs obtained on Mueller-Hinton 

agar. The cation concentration of the Mueller-Hinton broth was adjusted as follows: 

(a) A stock solution of magnesium was prepared by adding 8.36g of MgCl2•6H2O to 

100 ml of deionised water. This solution contains 10 mg of Mg++/ml. 

(b) A stock solution of calcium was prepared by adding 3.68g of CaCl2•2H2O to 100 

ml of deionised water. This solution contains 10 mg of Ca++/ml. 

These stock solutions were filter sterilised using a 0.2 µm syringe filter and stored at 

2-8°C. 

(c) Mueller-Hinton broth was prepared as directed by the manufacturer, and chilled 

overnight at 2-8°C before cation addition. The starting concentration of the cations 

in the media was accounted for when calculating the amount of Ca++ and Mg++ to 

add to the medium. 

(d) 0.1 ml of chilled Ca++ or Mg++ stock solution per litre of broth was added with 

stirring for each desired increment of 1 mg/L in the final concentration in the 

adjusted broth. 

 

2.4.9 Pseudomonas Isolation Agar F  

 

4.64g of dehydrated PIA F agar powder (Difco) was dissolved in 100 ml of distilled 

water. 1g glycerol was added and the medium was autoclaved at 121°C for 15 

minutes. 

 

2.4.10 Pseudomonas Isolation Agar P  

 

Dehydrated PIA P agar powder (Difco) (3.8g) was dissolved in 100 ml of distilled 

water. Glycerol (10 g/L) was added and the agar was autoclaved at 121°C for 15 

minutes. 
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2.4.11 SDS-PAGE resolving gel (12% w/v) 

  

The resolving gel used in SDS-PAGE was prepared by adding 2.5 ml 1.5M Tris HCl 

(pH 8.8), 50 µl SDS (20% w/v), 4 ml acrylamide bisacrylamide (30%/0.8% w/v) and 

50 µl ammonium persulphate (10% w/v) to 3.39 ml distilled water. 10 µl of Temed 

was mixed with the solution to catalyse the polymerization of acrylamide. The 

ammonium persulphate was freshly prepared on the day of use. 

 

 

2.4.12 SDS-PAGE stacking gel (4% w/v) 

 

The stacking gel used in SDS-PAGE was prepared by adding 1.25 ml 0.5M Tris-HCl 

(pH 6.8), 25 µl SDS (20% w/v), 0.67 ml acrylamide bisacrylamide (30%/0.8% w/v) 

and 25 µl ammonium persulphate (10% w/v) to 3.02 ml distilled water. 10 µl Temed 

was mixed with the solution to set the gel. The ammonium persulphate was freshly 

prepared on the day of use. 

 

2.4.13 Tween 80 agar 

 

Table 2.6: Components of Tween 80 agar 

 

Component Amount/L 

Tween 80     10g 

Peptone     10g 

NaCl      5g 

CaCl2.2H2O     0.1g 

Agar      20g 

Distilled Water    1000 ml 

pH  7.4 

 

 

The solids were dissolved in water and sterilised (Cowan and Steel’s Manual for the 

Identification of Medical Bacteria, 1993). 
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2.5 Measurement of pH 

 

The pH was measured using an Orion TriodeTM pH electrode Model 91-57BN 

connected to an Orion benchtop pH/ISE meter (model 920A). 

 

 

2.6 Tests used to identify bacterial isolates 

 

2.6.1 Cell and colony morphology characteristics 

 

The cell and colony morphology of the isolates were observed following growth of 

the organisms on nutrient agar (Section 2.4.6) and incubation for 24 hours at 37°C 

according to Cowan and Steel’s Manual for the identification of Medical Bacteria, 

1993. 

 

2.6.2 Gram reaction 

 

The Gram stain was carried out on 18-24 hour cultures according to the Hucker 

method (Collins and Lyne, 1985). A loopful of an overnight culture was air-dried and 

heat fixed on a glass slide. Crystal violet stain (0.3% w/v) was added and allowed to 

stand for one minute. Excess stain was washed of with a gentle stream of water. 

Grams iodine (0.4% w/v) was added and allowed to stand for 30 seconds before being 

rinsed off. The stain was washed with ethanol (95% v/v) and then stained with the 

secondary stain, safranin (0.4% v/v), for one minute. This was then washed with water 

for 5 seconds. If the bacteria was Gram-negative, it appeared pink under the 

microscope. If the cell was Gram-positive, it appeared purple under the microscope. 

 

Controls: Stapylococcus aureus - positive 

Pseudomonas aeruginosa - negative 

 

 

2.6.3 Spore stain 

 

A smear of the organism was prepared from a 48-hour nutrient broth culture and heat 

fixed. The smear was stained with 5% (w/v) aqueous malachite green and kept 
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steaming for over 5 minutes, renewing the stain as it evaporated. It was washed for 30 

seconds with distilled water and counterstained with 0.25% (w/v) safranin for 1 

minute (Cowan and Steel’s Manual for the identification of Medical Bacteria, 1993). 

 

Controls: positive - Bacillus stearothermophilus  

  negative - Escherichia coli  

 

2.6.4 Motility test 

 

An overnight culture of the organism was examined in “hanging drop” preparations, 

using a 100x magnification and reduced illumination. A “hanging drop” slide was 

prepared by placing a loopful of the bacterial suspension onto the centre of a 

coverslide. A depression slide onto which a ring of Vaseline had been spread around 

the concavity was lowered onto the coverslip, with the concavity facing down over 

the drop. When a seal had formed, the hanging drop slide was turned over and 

examined under a microscope (Cowan and Steel’s Manual for the identification of 

Medical Bacteria, 1993). 

Controls: motile- Pseudomonas aeruginosa  

  non-motile - Enterococcus faecalis 

 

2.6.5 Catalase activity 

 

A loopful of culture was emulsified with a loopful of 3% (v/v) hydrogen peroxide. 

Effervescence, caused by the liberation of free oxygen as gas bubbles, indicated a 

positive result (Cowan and Steel’s Manual for the identification of Medical Bacteria, 

1993). 

Controls: positive - Staphylococcus aureus  

  negative - Streptococcus pyogenes 

 

2.6.6 Oxidase activity 

 

(a) Filter paper was impregnated with a 1% (w/v) aqueous solution of tetramethyl-

p-phenylene-diamine (with 0.1% (v/v) ascorbic acid to prevent auto-oxidation). 

Bacterial cultures were smeared across the filter paper with a glass rod. The 

formation of a purple colour within 5-10 seconds indicated oxidase positive 
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cultures (Cowan and Steel’s Manual for the Identification of Medical Bacteria, 

1993) 

(b) Oxoid oxidase identification sticks were used to take up some bacterial 

culture. A positive reaction was recorded when purple coloration formed within 

30 seconds. 

 

Controls:  positive – Pseudomonas aeruginosa 

  negative – Escherichia coli  

 

2.6.7 Oxidation-Fermentation test 
 
 

Two tubes of Hugh and Liefson’s medium (Section 2.4.5) were stab inoculated with 

the test culture. One tube was covered with sterile mineral oil and both tubes were 

incubated at 37ºC for up to 14 days. Acid production was indicated by a change in the 

colour of the medium from blue-green to yellow. Fermentative organisms produced 

acid in both tubes and oxidative organisms produced acid in only the open tube and 

usually only at the surface (Cowan and Steel’s Manual for the identification of 

Medical Bacteria, 1993). 

 

Controls: Pseudomonas aeruginosa - oxidation 

  Serratia marcescens - fermentation 

 

 

2.6.8 Haemolysin production 

 

A plate of Blood agar (Section 2.4.3) was inoculated by streaking once across the 

surface. Plates were incubated at 37ºC for 24 hours. There were three possible 

outcomes: α-haemolysis (green zones, cell envelopes intact), β-haemolysis (clear, 

colourless zone, cell envelopes disrupted) or γ-haemolysis (no action on red cells). γ-

haemolysis describes a negative result (Cowan and Steel’s Manual for the 

identification of Medical Bacteria, 1993). 

Controls: α-haemolysis – Streptococcus viridans 

  β-haemolysis – Streptococcus pyogenes  

  γ-haemolysis – uninoculated medium 
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2.6.9 Tween 80 hydrolysis 

 

Tween 80 agar plates (Section 2.4.13) were inoculated by streaking once across the 

surface. Plates were incubated at 37ºC for 1-7 days. Plates were checked each day. An 

opaque halo of precipitation around the growth indicated hydrolysis of the Tween. 

Opaque zones surrounding the inoculum consisted of calcium salts of free fatty acids 

and were indicative of Tween 80 hydrolysis (Cowan and Steel’s Manual for the 

identification of Medical Bacteria, 1993). 

 

Controls: positive – Pseudomonas aeruginosa 

  negative – uninoculated medium 

 

2.6.10 Arginine hydrolysis 

 

Arginine agar (Section 2.4.2) was stab-inoculated and a layer of sterile mineral oil on 

the surface was pipetted onto the surface to a depth of about 1 cm. The tubes were 

incubated at 30°C for 5 days. A positive reaction was shown by a colour change of the 

indicator to red (Cowan and Steel’s Manual for the identification of Medical Bacteria, 

1993). 

Controls: positive – Enterococcus faecalis 

  negative – Serratia marcescens 

 

2.6.11 Pigment Production 

 

In order to identify general pigment production, the isolates were streaked on Nutrient 

agar plates (Section 2.4.6). Cultures were streaked onto Difco Pseudomonas isolation 

agar F (PIA F) (Section 2.4.9) to detect fluorescein production and Difco 

Pseudomonas isolation agar (PIA P) (Section 2.4.10) to detect pyocyanin production. 

The isolates were also grown on cetrimide agar (Section 2.4.4) to detect pigment 

production. All of the plates were incubated at 37ºC for 1-2 days. Any colours 

produced by the isolates were recorded. An ultraviotet lamp was used to detect for 

fluorescein production the PIA F (Cowan and Steel’s Manual for the identification of 

Medical Bacteria, 1993). 
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2.6.12 Temperature profiles 

 

The organisms were grown on nutrient agar (Section 2.4.6) and incubated aerobically 

as follows: 

5°C for 7-14 days 

37°C for 1-2 days 

42°C for 1-2 days 

(Cowan and Steel’s Manual for the identification of Medical Bacteria, 1993). 

 

 

2.6.13 API Tests 

 

 

The API identification system API20NE (bioMérieux, Marcy-l’Etoile, France) for 

non-enteric Gram-negative rods was used for identification of the clinical isolates. 

The identification system was used according to the manufacture’s instructions. The 

inocula were prepared as follows: an overnight nutrient broth culture (10 ml) was 

harvested in a Eppendorf 5810R bench-top centrifuge  (4000 X g for 10 minutes) and 

washed once with sterile 10 mM sodium phosphate buffer. The pellet was 

resuspended in 0.85% (w/v) NaCl (10 ml) and the density adjusted to 0.5 McFarland. 

This suspension was used to inoculate a portion of the tests. For assimilation tests, 

200 µl of this suspension was used to inoculate auxiliary medium supplied by the 

manufacturer and this was used to inoculate the remaining tests. Pseudomonas 

aeruginosa ATCC 27853 was used as a control strain. The strips were read and 

interpreted after incubation at 30ºC for 24 hours. Identification was obtained using the 

Analytical Profile Index: the pattern of the reactions obtained was coded into a 

numerical profile. On a results sheet the test were separated into groups of three and a 

number 1, 2 or 4 was indicated for each. By adding the numbers corresponding to 

positive reactions within each group, a 7-digit number was obtained which constituted 

the numerical profile. Identification was then obtained using the identification 

software (API 20NE V6.0 database) by manually entering the 7-digit numberical 

profile. The profile was listed along with the percentage of identification – an estimate 

of how closely the profile corresponded to the taxon relative to all the other taxon in 

the database and the T index – an estimate of how closely the profile corresponded to 
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the most typical set of reactions for each taxon (value between zero and one which 

was inversely proportional to the number of atypical tests). 

 

2.6.14 Biolog Test 

 

Identification was carried out by a Biolog microlog system (BIOLOG Inc., Hayward, 

Calif., USA) according to the manufacturers’ instructions. Biolog GN is a 

commercially available identification kit, recommended for the identification of Gram 

negative bacterial isolates. Biolog GN establishes identification based on the 

exchange of electrons generated during respiration, leading to tetrazolium-based 

colour changes. It tests the ability of an organism to oxidize a panel of 95 different 

carbon sources.  GN microplates for Gram-negative organisms were used. An isolated 

colony was transferred to Biolog inoculating fluid using sterile swabs to give the 

correct cell density required by the system. Cell densities were measured using the 

Biolog turbidometer and were compared against GN-NENT (Gram-negative non-

enteric) turbidity standards supplied by the company. A transmittance level of 

between 53%-59% was required to inoculate Biolog GN microplates. 150 µl of the 

resulting inoculum was added to each of the 96 test wells in the microtitre plate. The 

plates were incubated for 16-24 hours at 37ºC. All purple wells were scored as 

positive and all colourless cells were scored as negative. Cells with an extremely faint 

colour were scored as borderline. The results were interpreted using Biolog automated 

microlog computer software (MicroLogTM 3). The Biolog identification system used a 

multiplicative measure of probability to identify the unknown isolate. This measured 

the goodness of match between a given pattern for the unknown isolate and the known 

pattern for a reference strain. It also allowed for experimental error. A figure for 

similarity was also given. This figure is calculated by multiplying the probability of a 

match given that the unknown organism is one of the organisms in the database by the 

probablity that the unknown organism is in the database. The similarity value went 

from zero to one. The higher the value, the better the identification.  
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2.7 Antimicrobial susceptibility testing 

 

 

2.7.1 Preparation of antibiotics  

 

 

The antibiotics were weighed (taking their purity into account), dissolved with 

distilled water and syringe filtered using a 0.2µm filter. They were stored at 20°C 

until needed (for no longer than one month). 

 

2.7.2 Antimicrobial disk susceptibility tests 

 

Mastring multidisks 

 

Preliminary antibiotic susceptibility testing was performed in triplicate with Mastring-

S M14 antibiotic multidisks (Mast Diagnostics, Merseyside, U.K.). These disks 

contained eight antibiotics including ampicillin (10 µg), cephalothin (5 µg), colistin 

sulphate (25 µg), gentamicin (10 µg), streptomycin (10 µg), sulphatriad 200 µg, 

tetracycline (25 µg) and cotrimoxazole (25 µg). Mueller-Hinton agar was inoculated 

with overnight culture of the strain to be tested. A multidisk was aseptically laid on 

the surface of the agar using a sterile tweezers. The plates were incubated for 24 

hours. The zones of inhibition were observed. 

 

Antibiotic susceptibility testing according to Clinical and Laboratory Standard 

Institute  

 

The tests were conducted according to the approved method of the Clinical and 

Laboratory Standards Institute (CLSI) [M2-A9] (2006). Mueller-Hinton agar (Section 

2.4.7) was used as the growth medium in all the antibiotic disk susceptibility tests. All 

tests were done in triplicate. 

 

To standardize the inoculum density for a susceptibility test, a BaSO4 turbidity 

standard equivalent to a 0.5 McFarland standard was used. The 0.5 McFarland 

standard was prepared as follows: a 0.5 ml aliquot of 0.048 mol/L BaCl2 (1.175% w/v 

BaCl2 . 2H2O) was added to 99.5 ml of 0.18 mol/L H2SO4 (1% v/v) with  constant 



   

84 
 
 

 

stirring to maintain a suspension. The correct density of the turbidity standard was 

verified by using a spectrophotometer with a 1 cm light path and matched cuvette to 

determine the absorbance. The absorbance at 600 nm was between 0.08 and 0.1 for 

the 0.5 McFarland standard. The BaSO4 suspension was transferred in 4 to 6 ml 

aliquots into screw-cap tubes of the same size as those used in growing or diluting the 

bacterial inoculum. These tubes were tightly sealed and stored in the dark at room 

temperature. The BaSO4 turbidity standard was vigorously agitated on a mechanical 

vortex mixer before each use and inspected for a uniformly turbid appearance. If large 

particles appeared, the standard was replaced. The barium sulphate standards were 

replaced or their densities verified monthly. 

 

The direct colony suspension method is the most convenient method for inoculum 

preparation. The inoculum was prepared by making a direct saline suspension of 

isolated colonies selected from an 18- to 24-hour agar plate. This resulted in a 

suspension containing approximately 1 to 2 x 108 CFU/ml. To perform this 

accurately, the inoculum tube and the 0.5 McFarland standard were compared 

visually. A Unicam 8625 spectrophotometer (Cambridge, U.K.) was then used to 

confirm that the inoculum tube was at the required turbidity of between 0.08 and 0.1 

at OD600nm. 

 

A sterile cotton swab was dipped into the adjusted suspension, optimally within 15 

minutes after adjusting the turbidity of the inoculum suspension. The swab was 

rotated several times and pressed firmly on the inside wall of the tube above the fluid 

level to remove the excess inoculum from the swab. The dried surface of the Mueller-

Hinton agar plate was inoculated by streaking the swab over the entire sterile agar 

surface. This procedure was repeated two more times, rotating the plate approximately 

60° each time to ensure an even distribution of inoculum. The rim of the agar was 

then swabbed as a final step. The lid was left ajar for three to five minutes to allow for 

any excess surface moisture to be absorbed before applying the drug-impregnated 

disks. 

 

The predetermined battery of antimicrobial disks (Oxoid, Hampshire, U.K.) was 

dispensed onto the surface of the inoculated agar plate using a dispensing apparatus. 



   

85 
 
 

 

They were distributed evenly so that they were no closer than 24 mm from centre to 

centre. No more than five disks were placed on a plate at a time to avoid overlapping 

of zones. Once placed on the plate, the disks were not relocated because some of the 

antibiotic diffuses almost instantaneously. The plates were then inverted and placed in 

a 37°C incubator within 15 minutes after the disks were applied. The plates were 

examined after 16-18 hours of incubation. The zones were measured to the nearest 

millimetre using a ruler held on the back of the inverted petri dish. The standard error 

of the ruler was ± 0.5 mm. The zone margin was considered to be the area showing no 

obvious, visible growth that can be detected with the unaided eye. The sizes of the 

zones of inhibition were interpreted by referring to CLSI standards (Table 2.7) and 

were reported as being susceptible, intermediate or resistant to the agents that were 

tested. The zones of inhibition diameters of each antibiotic were also obtained for the 

control strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 

and Escherichia coli ATCC 35218 to ensure the method was being performed 

correctly. Their zones of inhibition diameters were measured and compared to the 

expected diameters according to CLSI (Table 2.8). 
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Table 2.7: Zone Diameter Interpretive Standards and Equivilent Minimal Inhibitory 

Concentration (MIC) Breakpoints for Pseudomonas aeruginosa (Clinical and 

Laboratory Standards Institute M100-S16, 2006) 

Zone Diameter Nearest 

whole mm 

Equivalent MIC 

Breakpoints 

(µµµµg/ml) 

Antimicrobial Class Antimicrobial Agent 

(Concentration) 

R I S R S 

PENICILLINS Ticarcillin (75 µµµµg) ≤14 - ≥15 ≥128 ≤64 

ββββ-LACTAM/ββββ-

LACTAMASE 

COMBINATION 

Ticarcillin-clavulanic 

acid (75/10 µµµµg) 

≤14 - ≥15 ≥128/2 ≤64/2 

 Pipercillin-taobactam 

(100/10 µµµµg) 

≤17 - ≥18 ≥128/4 ≤64/4 

CEPHEMS Ceftazidime (30 µµµµg) ≤14 15-17 ≥18 ≥32 ≤8 

 Cefepime (30 µµµµg) ≤14 15-17 ≥18 ≥32 ≤8 

 Cefotaxime (30 µµµµg) ≤14 15-22 ≥23 ≥64 ≤8 

 Ceftriaxone (30 µµµµg) ≤13 14-20 ≥21 ≥64 ≤8 

 Ceftizoxime (30 µµµµg) ≤14 15-19 ≥20 ≥32 ≤8 

 Moxalactam (30 µµµµg) ≤14 15-22 ≥23 ≥64 ≤8 

CARBAPENEMS Imipenem (10 µµµµg) ≤13 14-15 ≥16 ≥16 ≤4 

 Meropenem (10 µµµµg) ≤13 14-15 ≥16 ≥16 ≤4 

MONOBACTAMS Aztreonam (30 µµµµg) ≤15 16-21 ≥22 ≥32 ≤8 

FLUOROQUINOLONES Ciprofloxacin (5 µµµµg) ≤15 16-20 ≥21 ≥4 ≤1 

FOLATE PATHWAY 

INHIBITORS 

Co-trimoxazole* (25 µµµµg)  ≤19 - ≥20 ≥32 <32 

TETRACYCLINES Tetracycline (30 µµµµg) ≤14 15-18 ≥19 ≥16 ≤4 

R = Resistant; I = Intermediate resistance; S = sensitive 

* Those antibiotics for which CLSI have not yet established MIC breakpoints have are represented by 

an asterisk 
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Table 2.8: Actual and expected zones of inhibition for Quality Control Strains used to monitor accuracy of disk diffusion testing (Clinical and 

Laboratory Standards Institute M100-S16, 2006) 

Escherichia coli ATTC 

25922 

Pseudomonas aeruginosa ATCC 

27853 

Escherichia coli ATCC 

35218 

Antimicrobial Agent Disk Content 

Expected 

Zone 

diameter 

(mm) 

Actual 

Zone 

diameter 

(mm) 

Expected 

Zone diameter 

(mm) 

Actual 

Zone diameter 

(mm) 

Expected 

Zone 

diameter 

(mm) 

Actual 

Zone 

diameter 

(mm) 

Aztreonam 30µg 28-36 29 23-29 23 - - 

Cefepime 30µg 31-37 34 24-30 26 - - 

Cefotaxime 30µg 29-35 33 18-22 19 - - 

Ceftazidime 30µg 25-32 32 22-29 27 - - 

Ceftizoxime 30µg 30-36 31 12-17 17 - - 

Ceftriaxone 30µg 29-35 31 17-23 21 - - 

Ciprofloxacin 5µg 30-40 38 25-33 25 - - 

Imipenem 10µg 26-32 32 20-28 22 - - 

Meropenem 10µg 28-34 31 27-33 31 - - 

Moxalactam 30µg 28-35 29 17-25 24 - - 

Piperacillin/ 

tazobactam 

100/10µg 24-30 27 25-33 32 24-30 24 

Ticarcillin 75µg 24-30 24 21-27 23 6 6 

Ticarcillin/ clavulanic 

acid 

75/10µg 24-30 27 20-28 26 21-25 22 
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2.7.3 MIC Determination by Microtitre Broth Dilution Method 

 

In vitro susceptibility testing of all strains was determined by a microdilution method 

according to the guidelines of the Clinical and Laboratory Standards Institute (Clinical 

and Laboratory Standards Institute [M7-A7], 2006). This method is called 

“microdilution” because it involves the use of small volumes of broth dispensed in 

sterile, plastic microdilution trays that have round or conical bottom wells. Cation 

adjusted Mueller-Hinton broth (Section 2.4.8) was the growth medium used in all the 

microdilution tests. All tests were done in triplicate. 

 

The procedure for the microbroth dilution method is illustrated in Figure 2.1. The 

antimicrobial dilutions were prepared at double the desired final concentrations in 

cation adjusted Mueller-Hinton broth to allow for a 1:2 dilution of the antibiotics 

when an equal volume of inoculum was added. 50 µl of 2X the desired antibiotic 

solution was then added to each well. Each tray included a growth control well (no 

antibiotic) and a sterility (uninoculated) well. If the trays were not being used 

immediately, they were sealed in plastic bags and placed in a freezer at -20°C. All 

antibiotics were tested in triplicate. 

 

Within 15 minutes of preparation, a standardised inoculum was prepared using the 

direct colony suspension method as described in Section 2.7.2. The adjusted inoculum 

suspension was diluted in Ringers solution (Section 2.3.7) so that each well would 

contain approximately 5 x 105 CFU/ml. Each well of the microdilution tray was then 

inoculated with 50 µl of the prepared inoculum using a micropipette. A purity check 

of the inoculum suspension was performed by subculturing an aliquot onto a nutrient 

agar plate. The microdilution trays were incubated at 37°C for 16-20 hours. The 

microdilution trays were never stacked more than four high to maintain the same 

incubation temperature for all cultures. 

 

The MIC is the lowest concentration of the antimicrobial agent that completely 

inhibited growth of the organism in the microdilution wells as detected by the unaided 

eye. The amount of growth in the wells containing the antibiotic was compared to the 

amount of growth in the growth-control wells used in each set of tests. For a test to be 

considered valid, acceptable growth (≥ 2 mm button or definite turbidity) had to occur 
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in the growth-control well. The MICs were interpreted by referring to CLSI 

interpretive standards (Table 2.9) and were reported as being susceptible, intermediate 

or resistant to the agents that were tested. The validity of the method was checked 

according to the method of the CLSI (Clinical and Laboratory Standards Institute 

[M7-A7], 2006) using the control strains Escherichia coli ATCC 25922 and 

Pseudomonas aeruginosa ATCC 27853. The MICs were compared to the CLSI 

expected MICs in Table 2.10.  
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Figure 2.1: Schematic of microbroth dilution method 
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Table 2.9: MIC Interpretive Standards (µg/ml) for Breakpoints for Pseudomonas 

aeruginosa (Clinical and Laboratory Standards Institute M100-S16, 2006) 

MIC (µµµµg/ml) 

Interpretive Standard 

Antimicrobial Class Antimicrobial 

Agent 
S I R 

PENICILLINS Penicillin G* ≤128 - ≥512 

 Ampicillin* ≤128 - ≥512 

 Amoxicillin* ≤128 - ≥512 

 Cloxacillin* ≤128 - ≥512 

 Oxacillin* ≤128 - ≥512 

 Carbenicillin ≤128 - ≥512 

 Pipercillin ≤64 - ≥128 

CEPHEMS Cephalothin* ≤8 16 ≥64 

 Cefsulodin* ≤8 16 ≥64 

 Ceftazidime ≤8 16 ≥32 

AMINOGLYCOSIDES Gentamicin ≤4 8 ≥16 

 Amikacin ≤16 32 ≥64 

 Tobramycin ≤4 8 ≥16 

 Netilmicin ≤8 16 ≥32 

 Sisomicin* ≤8 16 ≥32 

 Apramycin* ≤4 8 ≥16 

 Butirosin A* ≤4 8 ≥16 

 Kanamycin* ≤16 32 ≥64 

 Lividomycin A* ≤4 8 ≥16 

 Hygromycin B* ≤4 8 ≥16 

 Neomycin* ≤4 8 ≥16 

 Paramomycin* ≤4 8 ≥16 

 Spectinomycin* ≤4 8 ≥16 

 Streptomycin* ≤4 8 ≥16 

FLUOROQUINOLONES Ofloxacin ≤2 4 ≥8 

PHENICOLS Chloramphenicol ≤8 16 ≥32 

TETRACYCLINES Tetracycline ≤4 8 ≥16 

 

R = Resistant; I = Intermediate resistance; S = sensitive 

 

* Those antibiotics for which CLSI have not yet established MIC breakpoints have are represented by 

an asterisk 
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Table 2.10: Expected and Actual Minimum Inhibitory Concentrations (MICs) 

(µg/ml) of Quality Control strains used to monitor accuracy of MIC testing (Clinical 

and Laboratory Standards Institute M100-S16, 2006) 

 

Escherichia coli ATTC 

25922 

Pseudomonas aeruginosa 

ATCC 27853 

Antimicrobial Agent 

Expected 

MIC 

(µµµµg/ml) 

Actual 

MIC 

(µµµµg/ml) 

Expected 

MIC 

 (µµµµg/ml) 

Actual 

MIC 

 (µµµµg/ml) 

Amikacin 0.5-4 3.9 1-4 1.9 

Ampicillin 2-8 3.9 - - 

Aztreonam 0.06-0.25 0.23 2-8 7.81 

Carbenicillin 4-16 7.81 16-64 31 

Ceftazidime 0.06-0.5 0.475 1-4 3.9 

Chloramphenmicol 2-8 3.9 - - 

Ciprofloxacin 0.004-

0.015 

0.11 0.25-1 0.95 

Gentamicin 0.25-1 0.95 0.5-2 1.9 

Netilmicin 0.5-1 0.95 0.5-8 1.9 

Ofloxacin 0.015-0.12 0.11 1-8 3.9 

Piperacillin 1-4 1.9 1-8 1.9 

Tetracycline 0.5-2 0.95 8-32 15.6 

Tobramycin 0.25-1 0.475 0.25-1 0.95 
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2.8 Vectors used for cloning and expression 

 

Four vectors were used in this study. Two of these, pDrive and pCR®2.1 were 

cloning vectors and two, pET-28a and pPC were expression vectors. The pDrive 

cloning vector was used to clone an amplified 2.2 kbp insert prior to sequencing and 

for the cloning of the bla-OXA gene from P. aeruginosa PA13 prior to its insertion into 

the pPC expression vector. The pCR®2.1 cloning vector was used to clone the bla-OXA 

gene from P. aeruginosa PA13 prior to its insertion into the pET-28a expression 

vector. 

 

2.8.1 pDrive cloning vector 

 

The pDrive cloning vector was obtained from Qiagen, UK. The vector provides 

highly efficient cloning of PCR products through UA hybridisation. It contains a large 

number of unique restriction enzyme sites, universal sequencing primer (M13) sites, 

and promoters for in vitro transcription and also allows both kanamycin and 

ampicillin selection as well as blue/white screening of recombinant colonies (Figure 

2.2). It is supplied in a linear form with a U overhang at each 3' end, which hybridises 

with high specificity to the A overhang of PCR products generated by Taq and other 

non-proofreading DNA polymerases. 

 

 

Figure 2.2: pDrive cloning vector map (Available at www.qiagen.com) 
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2.8.2 pCR2.1 cloning vector 
 

The pCR2.1 cloning vector was obtained from Invitrogen, UK. It contains a large 

number of unique restriction enzyme sites and promoters for in vitro transcription and 

also allows both kanamycin and ampicillin selection as well as blue/white screening 

of recombinant colonies (Figure 2.3). It is supplied in a linear form with a T overhang 

at each 3' end, which hybridises with high specificity to the A overhang of PCR 

products generated by Taq and other non-proofreading DNA polymerases. 

 

 

 

Figure 2.3: pCR2.1 TA cloning vector map (Available at www.invitrogen.com) 
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2.8.3 pET-28a expression vector 

 

The pET-28a was obtained from Novagen, UK. The vector contains a strong 

bacteriophage T7 promoter. It requires a source of T7 RNA polymerase to induce 

expression and therefore has to be introduced into an expression host containing a 

chromosomal copy of the T7 RNA polymerase gene under lacUV5 control such as E. 

coli BL21 (DE3). The pET-28a vector contains a multiple cloning site with many 

unique restriction enzyme recognition sites including NcoI and XhoI restriction sites. 

It also contains a kanamycin resistance gene for the selection of recombinant colonies 

(Figure 2.4). 

 

 

 

 

Figure 2.4: pET-28a expression vector map (Available at www.emdbiosciences.com) 
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2.8.4 pPC expression vector 

 

The pPC expression vector was obtained from Dr. Michael O’Connell, DCU. It was 

constructed from a pQE-60 expression vector. It features the tac transcriptional 

promoter (Ptac). Ptac is a hybrid promoter consisting of the –35 region from the trp 

promoter fused to the –10 region (Pribnow box), operator and RBS (Shine-Dalgarno 

sequence) from Plac. The LacI protein can repress Ptac. pPC also contains an 

ampicillin resistance gene for the selection of recombinant colonies and a multiple 

cloning site containing NcoI and BglII restriction sites (Figure 2.5). 

  

Figure 2.5: pPC expression vector map. 

Generated using pDraw32. 
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2.9 Preparation of DNA 

 

DNA was prepared using three methods. Genomic DNA was prepared using the 

method described in 2.9.1. Plasmid DNA was prepared using either a commercially 

available kit or by the Birnboim and Doly method (1979). These methods are 

described in Section 2.9.2 and 2.9.3 respectively  

 

2.9.1 Rapid preparation of Gram-negative bacterial genomic DNA  

 

This method was modified from that described by Chen and Kuo (1993) and used to 

prepare genomic DNA. A 1.5 ml aliquot of bacterial culture was pelleted at 13,000 X 

g in a Biofuge 13 microfuge (Heraeus Instruments) and the supernatant was removed. 

The cell pellet was resuspended in 200 µl of lysis buffer (Section 2.3.5) and lysed by 

vigorous pipetting. Then 66 µl of a 5M NaCl solution was added, the tube was mixed 

by inversion and the viscous mixture was centrifuged at 13,000 X g for 10 min at 4°C. 

The supernatant was transferred into a fresh tube and an equal volume of phenol 

chloroform was added and mixed gently by inversion 50 times. After centrifugation at 

13,000 X g for 5 min, the supernatant was removed to a fresh tube and double the 

volume of chloroform was added. The tube was again mixed gently by inversion a 

further 50 times. Following centrifugation at 13,000 X g for 3 min, the extracted 

supernatant was transferred to a fresh tube and precipitated with 2.5 volumes of 95% 

(v/v) ice-cold ethanol. The pellet was washed twice with 70% (v/v) ethanol, dried in a 

vacuum dryer and redissolved in 50 µl of TE buffer (2.3.14). 1µl of RNase (5µg/ml) 

was added to the tube and incubated at 37ºC for 1 hour. Genomic DNA was stored at 

4°C. 

 

2.9.2 Plasmid DNA Purification 

 

2.9.2.1 Gen Elute Plasmid DNA extraction kit  

 

Plasmid DNA was isolated using the Genelute Plasmid mini-prep kit (Sigma-

Aldrich). This kit is designed specifically for the efficient isolation of recombinant E. 

coli plasmid DNA. 
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The procedure is a modification of the alkaline-lysis method (Birnboim and Doly, 

1979) and uses a silica membrane contained in a spin column. The silica membrane 

binds up to 20 µg of high copy plasmid DNA per ml of overnight culture. All the 

necessary components are supplied with the kit for isolation of the DNA. 

 

Recombinant E. coli cells were grown overnight at 37°C in 5 ml LB or nutrient broth 

containing the appropriate antibiotic. Cells were harvested by centrifugation and 

resuspended in a resuspension solution containing RNase. Cells were then treated 

with a lysis solution to lyse the bacterial cell walls. A neutralisation step followed, to 

remove contaminants and debris. The DNA binding step followed, in the presence of 

a high salt concentration. The bound DNA was then washed thoroughly with alcohol. 

Plasmid DNA was then recovered by elution with sterile distilled water or TE buffer 

(Section 2.3.14) for further analysis. The recovered plasmid was predominantly in its 

supercoiled form. 

 

2.9.2.2 Plasmid Preparation Method (Birnboim and Doly, 1979) 

 

This method, used for the screening of large numbers of transformants, was described 

by Birnboim and Doly (1979). A 1.5 ml aliquot of a bacterial culture grown in 

selective media was pelleted at 4000 X g in a Biofuge 13 microfuge (Heraeus 

Instruments) and the supernatant removed. The pellet was resuspended by vortexing 

in 200 µl of solution 1 (Section 2.3.6) and was then left for 5 minutes at room 

temperature. Then 200 µl of solution 2 (Section 2.3.6) was added and the tube was 

mixed by inversion and placed on ice for 5 minutes. Then 200 µl of solution 3 

(Section 2.3.6) was added and the tube was mixed by inversion and placed on ice for 

10 minutes. The supernatant (600 µl) was placed into a fresh tube and 400 µl of 

phenol chloroform isoamylalcohol (25:24:1) was added and mixed by vortexing. After 

centrifugation at 13,000 X g for 5 minutes the aqueous layer was removed to a fresh 

tube and an equal volume of isopropanol was added. After 10 minutes at room 

temperature the tube was centrifuged for 10 minutes at 13,000 X g to pellet the 

plasmid DNA. The pellet was washed twice with 70% (v/v) ethanol, dried briefly in a 

vacuum dryer and resuspended in 50 µl of TE buffer (Section 2.3.14). 1µl of RNase 
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(5µg/ml) was added to the tube and incubated at 37ºC for 1 hour. Plasmid preps were 

stored at 4°C. 

 

2.9.3 DNA concentration determination 

 

DNA was diluted 1:50 in Milli-Q water and absorbance readings taken at A260nm. One 

A260nm unit (1cm light path) is equal to 50µg/ml DNA (Sambrook et al., 1989). 

 

2.10 Primers and primer design 

 

Primers for amplifying the 16S rRNA gene were designed by Marchesi et al. (1998). 

Primers were designed for the amplification of all genes encoding aminoglycoside 

modifying enzymes conferring resistance to gentamicin, which were described in 

Shaw et al. (1993). Nucleotide sequences for each of these genes were obtained from 

GenBank. Primer design was achieved by a mixture of manual and computer based 

examination. The primers were designed manually and an analysis of their homology 

was performed using the Megalign package (Dnastar Inc., Madison, WI). All of the 

primers used were synthesised by MWG Biotech, Germany. 

 

 

2.10.1 Primers for the amplification of 16S rRNA 

 

The universal primers in Table 2.11 were used to amplify the 16S rRNA genes from 

the clinical isolates. 

 

 

Table 2.11: PCR amplification primers for 16S rRNA 

 

Primer name Primer sequence Reference 

63f 5’-CAG GCC TAA CAC ATG CAA GTC-3’ Marchesi et al., 1998 

1387r 5’-GGG CGG (AT)GT GTA CAG GC-3’ Marchesi et al., 1998 
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2.10.2 Primers used for screening the clinical isolates for aminoglycoside 

modifying enzyme genes 

 

Genes for enzymes which confer resistance to gentamicin were chosen from Shaw et 

al. (1993). Seventeen pairs of primers (Table 2.12) were designed to screen for the 

presence of aminoglycoside modifying enzyme genes in all of the isolates. In most 

cases the primers were designed in the laboratory from gene sequences available in 

Genbank. Other primers were attained from Heuer et al. (2002). 

 

Table 2.12: PCR amplification primers to screen for genes encoding aminoglycoside 

modifying enzymes in clinical isolates 

 

Primer name Primer sequence Reference 

aac(2’)-Ia F 5’-ATG ATT TTA TTA TTT TCC CTA CAC-3’ Shaw et al., 1993 

aac(2’)-Ia R 5’-ACA GCA TCG CCA GTC AC-3’ Shaw et al., 1993 

aac(3)-Ia F 5’-CAT CAG CGG ACG CAG GGA GGA C-3’ Shaw et al., 1993 

aac(3)-Ia R 5’-ACG GCC ACA GTA ACC AAC AAA-3’ Shaw et al., 1993 

aac(3)-Ib F 5’-CCG CAG TTG CAA ACC CTC AC-3’ Shaw et al., 1993 

aac(3)-Ib R 5’-AAT TGT TAG GTG GCG GTT CTT-3’ Shaw et al., 1993 

aac(3)-IIa F 5’-ATG CGC GTG AGC TTC TTG GTC-3’ Shaw et al., 1993 

aac(3)-IIa R 5’-GGT GCA CGA GCG TCA TTG G-3’ Shaw et al., 1993 

aac(3)-IIb F 5’-CGC GTG TCG GCT TCA TCG TC-3’ Shaw et al., 1993 

aac(3)-IIb R 5’-GAT CCG ATA GGG TCA ACG CC-3’ Shaw et al., 1993 

aac(3)-IIc F 5’-ATA CCC TTT TGA GTT CGT TTT TGT-3’ Shaw et al., 1993 

aac(3)-IIc R 5’-TAA AAA GCA GGG TAT GGG GAA-3’ Shaw et al., 1993 

aac(3)-IIIa F 5’-TGT TGC ACT TGA TTA TTG ATT C-3’ Shaw et al., 1993 

aac(3)-IIIa R 5’-ACC GCT GTG GGA TGA CTG T-3’ Shaw et al., 1993 

aac(3)-IIIb F 5’-GCC GGC GCT CCC AGT CG-3’ Shaw et al., 1993 

aac(3)-IIIb R 5’-TGG ATG CGG ACG ATC AAC CCT-3’ Shaw et al., 1993 

aac(3)-IIIc F 5’-TGC GCG GCC GCT TCC TAC C-3’ Shaw et al., 1993 

aac(3)-IIIc R 5’-AAG CCA ACC GGC GAT CAC ACG A-3’ Shaw et al., 1993 

aac(3)-IVa F 5’-CTC CGC GTT CAG CCA GCA TC-3’ Shaw et al., 1993 

aac(3)-IVa R 5’-GAG CTG CAT CAG GTC GGA GA-3’ Shaw et al., 1993 

aac(3)-VIa F 5’-CCA AGG TAG TCG GCA AAT AAT GT-3’ Shaw et al., 1993 

aac(3)-VIa R 5’-CTT GAG GTC CAT CGG GTT C-3’ Shaw et al., 1993 

aac(3)-Xa F 5’-ACG ATC CGA GCG GTG TTT-3’ Shaw et al., 1993 

aac(3)-Xa R 5’-TCC GCG TGA CCG TTG TGC-3’ Shaw et al., 1993 
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aac(6)-IIa F 5’-TTG CCC TCC CGC ACG ATG A-3’ Shaw et al., 1993 

aac(6)-IIa R 5’-GCT AGA TTT TAA TGC GGA TGT TGC-3’ Shaw et al., 1993 

aac(6)-IIb F 5’-AAC GAG CAA TTG CAG CCC CA-3’ Shaw et al., 1993 

aac(6)-IIb R 5’-GGC AGG TCG GAG AGC AGG ATG-3’ Shaw et al., 1993 

ant(2’’)-I F 5’-TGG GCG ATC GAT GCA CGG CT(AG) G-3’ Heuer et al., 2002 

ant (2’’)-I R 5’-AAA GCG GCA CGC AAG ACC TC(AC) AC-3’ Heuer et al., 2002 

aph(3’)-1 F 5’-GCC ACA AAT GTT AAG GCA ATG A-3’ Heuer et al., 2002 

aph(3’)-I R 5’- GAA TCT CCA AAA TC(AG) AT(AT) AT(GT) CC-3’ Heuer et al., 2002 

aac(6’)-aph(2”) F 5’-AGT AAA AAG GCC ATA TAA CAG TCC-3’ Shaw et al., 1993 

aac(6’)-aph(2”) R 5’-GAA GTA CGC AGA AGA GAA AAG AT-3’ Shaw et al., 1993 

 

 

2.10.3 Primers used for cloning the bla-OXA gene into expression vectors 

 

The primers in Table 2.13 were used to amplify the bla-OXA with restriction sites for 

cloning and expression. The cloning of bla-OXA for expression in the pET-28a vector 

required a NcoI restriction site at the 5’ end and a XhoI restriction site at the 3’ end of 

the gene. The cloning of bla-OXA for expression in the pPC vector required a NcoI 

restriction site at the 5’ end and a BamHI restriction site at the 3’ end of the gene. 

 

Table 2.13: PCR primers to amplify the bla-OXA gene with restriction sites for cloning 

and expression in expression vectors pET-28a and pPC 

 

Primer Name Primer sequence 

pETOXA F 5’-gaa act tac cat ggc aat ccg att cct cac cat-3’ 

                     NcoI 

pETOXA R 5’-gat tga ctc gag gtt ggg cgg caa tgc gtc-g3’ 

                  XhoI 

pPCOXA F 5’-gaa act tac cat ggc aat ccg att cct cac cat-3’ 

                     NcoI 

pPCOXA R 5’-gat tga gga tcc gtt ggg cgg caa tgc gtc g-3’   

                BamHI               
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2.10.4 Primers used for sequencing  

 

Primers were designed to sequence the amplified 16S rRNA from the clinical isolates, 

the integron from P. aeruginosa PA13 and the oxacillinase (bla-OXA) gene from P. 

aeruginosa PA13 cloned into the pET-28a and pPC expression vectors. 

 

2.10.4.1 Primers used to sequence 16S rRNA gene from all of the isolates 

 

Table 2.14: Primers used to sequence 16S rRNA from all of the isolates 

 

Primer name Primer sequence Reference 

63f 5’-CAG GCC TAA CAC ATG CAA GTC-3’ Marchesi et al., 1998 

1387r 5’-GGG CGG (AT)GT GTA CAG GC-3’ Marchesi et al., 1998 

 

2.10.4.2 Primers used to sequence the integron 

 

Table 2.15: Primers used to sequence the integron 

 

Primer Name  Primer sequence 

AAC6F 5’- ttg ccc tcc cgc acg atg a - 3’ 

AAC6R 5’- gct aga ttt taa tgc gga tgt tgc - 3’ 

AAC6intF 5’- gca aga gtc cgt cac tcc - 3’ 

AAC6intR 5’- ata tca tga aag gct ggc t - 3’ 

 

 

2.10.4.3 Primers used to sequence the bla-OXA gene in the expression vectors 

 

Table 2.16: Primers used to sequence the bla-OXA gene in both directions in the 

expression vectors 

 

Primer Name Primer sequence 

OXAseq F 5’ caa gac ttg cga tca gcg atg cga aat 3’ 

OXAseq R 5’ cca gta atc gcc ctt gat tgt cga agg 3’ 

 



 102 

2.11 PCR Amplification  

 

PCR was used to amplify 16S rRNA from all the isolates, to screen for genes 

encoding aminoglycoside modifying enzymes, and to amplify the oxacillinase gene 

(bla-OXA) for cloning into vectors. In all cases the amplified DNA products were 

resolved by conventional electrophoresis through horizontal 0.8% w/v agarose gels at 

130V for 60 minutes, stained with ethidium bromide and the results were visualised 

and photographed using an Imagemaster VDS image analysis system (Amersham 

Pharmacia Biotech, N. J., US).  

 

2.11.1 PCR protocol for the amplification of the 16S rRNA gene using universal 

primers 

 

The 16S rRNA gene was amplified using the universal primers in Table 2.11. A total 

volume of 50µl was used for the amplification. Each reaction contained 5µl of 

template DNA, 10 pmol/µl of each primer forward-63f and reverse-1387r, 5µl 10X 

PCR reaction buffer, 2.5mM of each dATP, dCTP, dGTP and dTTP, 2.5 mM MgCl2 

and 1µl 10X Taq DNA polymerase. All reactions were amplified in a Px2 Thermal 

Cycler (Thermo Electron Corporation, MA, USA) using the following temperature 

profile: Denaturation at 95°C for 2 minutes, followed by 25 cycles of 95°C for 1 

minute, 55.8°C for 1 minute, 72°C for 1.5 minutes and a final extension step at 72°C 

for 5 minutes.  

 

2.11.2 PCR protocol for the amplification of the integron DNA from P. 

aeruginosa PA13  

 

The integron in P. aeruginosa PA13 was amplified using the primers in Table 2.12. A 

total volume of 50µl was used for the amplification. Each reaction contained 5µl of 

template DNA, 10 pmol/µl of each primer forward-aac(6’)-IIa-F and reverse-aac(6’)-

IIa-R, 5µl 10X PCR reaction buffer, 2.5mM of each dATP, dCTP, dGTP and dTTP, 

2.5 mM MgCl2 and 1µl 10X Taq DNA polymerase. All reactions were amplified in a 

Px2 Thermal Cycler (Thermo Electron Corporation, MA, USA) using the following 

temperature profile: Denaturation at 95°C for 3 minutes, followed by 30 cycles of 
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95°C for 30 seconds, 63.4°C for 30 seconds, 72°C for 30 seconds and a final 

extension step at 72°C for 10 minutes 

 

2.11.3 PCR protocol for amplification of bla-OXA gene from P. aeruginosa PA13 

for cloning and expression 

 

The bla-OXA gene was amplified using the primers in Table 2.13. A total volume of 

50µl was used for the amplification. Each reaction contained 5µl of template DNA, 10 

pmol/µl of each primer pETOXA-F and pETOXA-R, 5µl 10X PCR reaction buffer, 

2.5mM of each dATP, dCTP, dGTP and dTTP, 2.5 mM MgCl2 and 1µl 10X Taq 

DNA polymerase. All reactions were amplified in a Px2 Thermal Cycler (Thermo 

Electron Corporation, MA, USA) using the following temperature profile: 

Denaturation at 95°C for 3 minutes, followed by 30 cycles of 95°C for 30 seconds, 

70°C for 30 seconds, 72°C for 30 seconds and a final extension step at 72°C for 10 

minutes.  

 

2.12 Preparation of competent cells 

 

Two methods were used for the preparation of competent cells for transformation. 

These were the calcium chloride method and the rubidium chloride method. These 

procedures are described in Section 2.12.1 and 2.12.2 respectively. 

 

2.12.1 Preparation of competent cells for transformation (calcium chloride 

method) 

 

A modified method of Dagert and Ehrlich (1979) was used for the preparation of 

competent cells for transformation. E. coli XL1-Blue cells required treatment with a 

salt solution, to facilitate the uptake of the pDrive plasmid harbouring the amplified 

PCR product. By treating the cells with calcium chloride solution, the permeability of 

the bacterial cell wall is increased allowing the proficient passage of the plasmid DNA 

across the cell wall into the host vector.  

 

An overnight culture of E. coli XL1-Blue was prepared by suspending a colony from 

a fresh LB agar plate in 100 ml of LB broth. The culture was incubated in a shaking 
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incubator at 200 rpm and 37°C for 24 hours. 10 ml of this culture was then suspended 

in 90ml fresh nutrient broth and grown for 90 minutes to an OD 600nm of 

approximately 0.3. 10 ml aliquots were centrifuged at 4000 X g in a Eppendorf 5180R 

bench top centrifuge for 10 min to pellet the cells. The supernatant was discarded and 

the cells were washed in 5ml ice-cold 10mM NaCl and re-centrifuged. 

 

The supernatant was discarded and cells were resuspended in CaCl2 and 

recentrifuged, twice. Following a third washing with 5 ml 30mM CaCl2, the cells were 

suspended in another 5 ml CaCl2 and chilled in ice for 20 minutes. Cells were then 

recentrifuged and resuspended in 1 ml volumes of ice-cold 30mM CaCl2 + 15% (v/v) 

glycerol. 200 µl aliquots were prepared in pre-chilled microfuge tubes. The cells 

could be used immediately for transformation or stored at -80°C. They were quickly 

frozen by immersion in ethanol that had been cooled to -80°C prior to storage at -

80°C. 

 

2.12.2 Preparation of competent cells for transformation (rubidium chloride 

method) 

 

The method of Hanahan (1985) was used to prepare competent cells for 

transformation. An overnight culture of E. coli XL10-Gold was prepared by 

suspending a colony from a fresh LB agar plate in 100ml of LB broth. The culture 

was incubated in shaking incubator at 200 rpm and 37°C for 24 hours. 1 ml of this 

culture was then added to 100 ml of pre-warmed LB broth and grown at 200 rpm and 

37°C until the O.D. 600nm reached 0.5. It is important that the cells are growing 

actively in the mid-exponential phase to achieve good competence. 

 

The culture was cooled on ice for 20 minutes and then transferred to a cooled sterile 

centrifuge tube. The cells were harvested by centrifugation for 5 minutes at 4000 X g 

in a cooled rotor at 4°C in a Sorval RC-5B centrifuge (Du Pont Instruments, 

Delaware, U.S.). The cells were always kept cold by keeping them on ice. The 

supernatant was discarded carefully and the cells returned to ice quickly. The cells 

were then washed in 50 ml ice-cold 10mM MgCl2 and collected by centrifugation for 

5 minutes at 4000 X g in a cooled rotor at 4°C. The cells were resuspended by gently 
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swirling them in 30 ml of ice-cold TFB1 buffer (Section 2.3.15) and the resuspended 

cells were kept on ice for 90 minutes. The cells were collected by centrifugation for 5 

minutes at 4000g in a cooled rotor at 4°C and then resuspended in 4 ml of ice-cold 

TFB 2 buffer (Section 2.3.16). 200 µl aliquots were prepared in pre-chilled microfuge 

tubes. 

 

The cells could be used immediately for transformation or stored at -80°C. They were 

quickly frozen by immersion in ethanol that had been cooled to -80°C prior to storage 

at -80°C. 

 

2.13 Cloning and ligation 

 

The cloning and ligation of genes was performed using three methods. These were 

cloning using the pDrive cloning vector, cloning using the pCR®2.1 cloning vector 

and ligation using T4 DNA ligase. 

 

2.13.1 Cloning using the Qiagen pDrive vector 

 

The Qiagen pDrive cloning vector was chosen for the cloning and subsequent 

sequencing of the integron amplified from P. aeruginosa PA13. It was also used for 

cloning the bla-OXA gene from P. aeruginosa PA13 prior to insertion into the pPC 

expression vector. The pDrive vector was supplied with a ligation master mix (2x) 

providing all the reagents and cofactors required for efficient ligation of the PCR 

product to the pDrive vector with high specificity. Ligations were prepared as in 

Table 2.17. 

 

Table 2.17: pDrive ligation mix 

 

Component Volume 

pDrive cloning vector 1µl 

PCR product 4µl 

Ligation master mix 5µl 

dH2O variable 
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Following the manufacturer’s instructions, the master mix was added last into the 

reaction. The ligation was mixed and incubated at 4°C for 2 hours. A longer 

incubation time resulted in an increase in the number of recombinants yielded. 

Ligations were then used immediately after incubation or stored at -20°C, until 

required.  

 

2.13.2 Cloning using the pCR2.1 

 

 

The pCR2.1 cloning vector (Invitrogen) was used for cloning the bla-OXA gene from 

P. aeruginosa PA13 prior to its insertion into the pET-28a expression vector. The 

pCR2.1 vector was supplied with a ligation buffer (10x) and T4 DNA ligase 

providing all the reagents and cofactors required for efficient ligation of the PCR 

product to the pCR2.1 vector with high specificity. Ligations were prepared as in 

Table 2.18. 

 

Table 2.18: pCR2.1 ligation mix 

 

 

Component Volume 

PCR product 2 µl 

pCR2.1 cloning vector 2 µl 

10X Ligation Buffer 1 µl 

T4 DNA Ligase 1 µl 

dH2O variable 

 

 

Following the manufacturer’s instructions, the ligation reaction was mixed and 

incubated at 14°C for a minimum of 4 hours. A longer incubation time resulted in an 

increase in the number of recombinants yielded. Ligations were then used 

immediately after incubation or stored at -20°C, until required.  
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2.13.3 Ligation of bla-OXA gene into expression vectors 

 

The bla-OXA gene amplified from P. aeruginosa PA13 was ligated into both the pET-

28a and pPC expression vectors using T4 ligase (New England Biosciences, UK). The 

components in Table 2.19 were mixed and incubated at 4°C overnight.  

 

 

Table 2.19: Components used in ligation reactions 

  

Component  Volume (µµµµl) 

DNA insert 4 

Expression vector 4 

T4 ligase 1 

T4 ligase buffer 1 

Total 10 

 

 

2.14 Transformation 

 

200 µl of E. coli competent cells were thawed on ice. Once thawed, 2 µl of the 

ligation mixture (Table 2.19) was added to the tube and mixed gently. The tubes were 

then left on ice for 30 minutes. The tubes were then incubated for 30 seconds at 42°C 

in a waterbath and placed on ice for a further 5 minutes. 800 µl of LB broth was 

added to the ligations and the tubes were incubated at 37°C, while shaking at 200 rpm 

for 1 hour. After this time, the cells were centrifuged at 6000 X g for 1 minute. The 

pellet was then resuspended in 200 µl of LB broth. 100µl of the cells were plated out 

on LB agar with IPTG (1mM), ampicillin (100µg/ml) and X-gal (50µg/ml). Plates 

were incubated at 37°C for 24 hours. Post-incubation, the plates were screened for 

recombination white colonies, which were selected and streaked onto fresh 

LB/IPTG/agar plates for plasmid purification. 
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2.15 Restriction digests 

 

Restriction digests were used to confirm the insertion of the amplified 2.2 kbp product 

into the pDrive cloning vector prior to sequencing, to remove the cloned bla-OXA gene 

from both the pCR®2.1 and pDrive cloning vectors, to prepare the pET-28a 

expression vector for ligation, to remove the control insert from the pPC expression 

vector, preparing it for ligation, and to confirm the correct orientation of the cloned 

bla-OXA gene in both expression vectors. Both single and double restriction digests 

were used. 

 

2.15.1 Single restriction digests 

 

Single restriction digests were used to confirm the insertion of the amplified 2.2 kbp 

product from P. aeruginosa PA13 in the pDrive cloning vector and also to confirm the 

correct orientation of the bla-OXA gene in both the pET-28a and pPC expression 

vectors. The single restriction digests were performed using the components in Table 

2.20. The restriction enzymes used were EcoR I (for insert confirmation in pDrive), 

Xho I (for confirmation of correct orientation of insert in pET-28a) and Bgl II (for 

confirmation of correct orientation of insert in pPC). 

 

Table 2.20: Components used in single digest restriction reactions 

 

 

Component Volume (µµµµl) 

Plasmid DNA 4 

Restriction enzyme 1 

Reaction Buffer H 2 

dH2O 13 

 

 

All restriction digests were performed in a heating block at 37°C for either 4 hours or 

overnight. 
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2.15.2 Double restriction digests 

 

Double restriction digests were used to remove the cloned bla-OXA gene from both the 

pDrive and pCR2.1 cloning vectors, to prepare the pET-28a expression vector for 

ligation and to remove the control insert from the pPC expression vector, preparing it 

for ligation. The double digests were performed using the components in Table 2.21. 

The restriction enzymes used were Nco I/Xho I (to remove bla-OXA from pCR2.1 and 

to prepare pET-28a for ligation), Nco I/BamH I (to remove bla-OXA from pDrive) and 

Nco I/BglII (to remove the control insert from pPC, preparing it for ligation). 

 

Table 2.21: Components used in double digest restriction reactions  

 

Component Volume (µµµµl) 

Buffer E 6 

Restriction enzyme 1 3 

Restriction enzyme 2 3 

BSA (x10) 6 

DNA 30 

dH2O 12 

Total 60 

 

The restriction reaction was incubated at 37°C for 4 hours. 

 

2.16 Excision and purification of DNA fragments from agarose gel 

 

Restricted DNA fragments from agarose gels were exised and purified using two 

methods. One method used a commercially available kit to exise and purify the 

fragment (Section 2.16.1) and the other is described in Section 2.16.2. 

  

2.16.1 Excision of DNA fragments from agarose gel using extraction kit 

 

The agarose gel slice containing the relevant DNA fragment was excised from the gel 

with a scalpel while viewing the band on a U.V. transilluminator (Vilber Lourmat, 

Tourcy, France). The fragment was then recovered from the gel using a HiYield 
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Gel/PCR DNA fragments extraction kit (Real Biotech Corp., Taiwan) by following 

the manufacturer’s instructions. 

 

The extraction kit is designed to recover or concentrate DNA fragments (50bp-10kb) 

from agarose gels, PCR or other enzymatic reactions. The method uses a chaotropic 

salt, guanidine thiocyanante to dissolve agarose gel and denature enzymes. DNA 

fragments in chaotropic salt solution bind to the glass fibre matrix of the spin column. 

After washing off the contaminants, the purified DNA fragments are eluted by 

addition of low salt elution buffer or water. Salts, enzymes and unincorporated 

nucleotides are effectively removed from reaction mixtures without phenol extraction 

or alcohol precipitation. Typical recoveries are 60-80%. 

 

2.16.2 Excision and purification of restricted DNA fragments from agarose gel 

 

The DNA fragment insert was removed from the agarose gel using the method of 

O’Cuív (2003). The fragment was excised using a scalpel while viewing the band on a 

U.V. transilluminator (Vilber Lourmat, Tourcy, France). The DNA fragment was 

placed in a microfuge tube containing glass wool which was then placed within a 

larger microfuge tube. A hole was made in the bottom of the inner microfuge tube. 

The microfuge tubes were centrifuged at 13,000 X g for 20 minutes in a Biofuge 13 

microfuge (Heraeus Instruments) to liquefy the DNA. 

 

The sample containing the DNA to be precipitated was brought up to 400 µl with 

distilled water. 400 µl of phenol chloroform isoamylalcohol (25:24:1) was added and 

mixed by brief vortexing (5 seconds). Upon centrifugation at 13,000 X g for 5 min the 

mixture is divided into an upper aqueous and lower organic layer. The aqueous layer 

was removed to a new microfuge tube with an equal volume of chloroform and mixed 

by brief vortexing. The tube was centrifuged at 13,000 X g for 5 min and the aqueous 

layer was transferred to a new microfuge tube. A 1/10 volume of 3 M sodium acetate 

was added followed by an equal volume of isopropanol and mixed by inversion. The 

tube was left at room temperature for 60 min and then centrifuged at 13,000 X g for 

20 min to pellet the DNA. The pellet was washed with 70% (v/v) ethanol and then 

dried. The DNA was resuspended in 20-50 µl of TE buffer. 
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2.17 Antarctic Phosphatase treatment 

 

Both expression vectors were treated with antarctic phosphatase before ligation. 

Antarctic Phosphatase (New England Biolabs) catalyzes the removal of 5’ phosphate 

groups from DNA and RNA. Since phosphatase-treated fragments lack the 5’-

phosphoryl termini required by ligases, they cannot self-ligate (Sambrook et al., 

1989). This property was used to decrease the vector background in cloning strategies. 

 

Table 2.22: Components used in the antarctic phosphatase treatment of expression 

vectors 

 

Component Volume (µµµµl) 

Antarctic phosphatase 6 

Antarctic Reaction Buffer 6 

DNA 48 

Total 60 

 

The reaction (Table 2.22) was incubated at 37°C for 2 hours and then heated to 65°C 

for 5 minutes inactivated the enzyme. 

 

2.18 DNA sequencing 

 

DNA gene sequencing was performed by both Qiagen and MWG Biotech sequencing 

services. ABI automated sequence technology was used e.g. the ABI PRISM 377 

DNA Sequencer, which automatically analyses DNA molecules labelled with multiple 

fluorescent dyes based on the principle of the Sanger sequencing method (Sanger et 

al., 1977), which involves chain termination of the nucleotides. 

 

2.19 Bioinformatic sequence analysis 

 

Sequences were verified using the online BLAST searches on the NCBI website 

(www.ncbi/nlm/nih/gov). Amino acid alignments were performed using the ClustalW 

(Thompson et al., 1994) program on the European Bioinformatics Institute website 

(www.ebi.ac.uk). Open reading frames were identified using an open reading frame 
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finder program on the NCBI website. Nucleotide sequences were translated using the 

ExPASy online translation tool (http://www.expasy.ch/tools/dna.html). The 16S 

rRNA phylogenetic tree was drawn using Multiphyl programme (Keane et al., 2007) 

available online at http://distributed.cs.nuim.ie/multiphyl.php and were viewed using 

Treeview software (Version 1.6.6) available online at: 

http://taxonomy.zoology.gla.ac.uk/rod/rod.html.  

 

 

2.20 Graphics for construct maps 

 

The maps of vector constructs were drawn using pDRAW32 software (AcaClone 

software, US) available at http://www.acaclone.com 

 

2.21 Induction and extraction of target protein  

 

5 ml aliquots of LB broth containing 100 µg/ml of selective antibiotic (kanamycin for 

pET-28a and ampicillin for pPC) and 1% (w/v) glucose were inoculated with single 

colonies of the transformed cells. These cultures were incubated overnight at 37°C 

while shaking at 250 rpm. 

 

The following morning, 1 ml of the overnight culture was added to 100 ml of LB 

broth containing the selective antibiotic and 1% (w/v) glucose. The cultures were 

incubated at 37°C while shaking at 250 rpm for 2-3 hours until they reached an 

OD600nm of 0.3-0.4. Once this OD was achieved the culture was divided into two 50 

ml cultures. 50-500 µM IPTG (a non-hydrolyzable lactose analogue) was added to the 

culture to be induced. The other 50 ml culture had no IPTG added to it and was used 

as the non-induced control. The cultures were then incubated while shaking for 4 

hours.  

 

The cells from each culture were then decanted into pre-cooled centrifuge tubes and 

centrifuged at 5000 X g at 4°C in a Sorvall RC-5B centrifuge (Du Pont Instruments, 

Delaware, U.S.) for ten minutes. The supernatant was removed and the cells were 

resuspended in ice-cold 100 ml 100mM sodium phosphate buffer (pH 7) (Section 

2.3.10). The cells were then centrifuged at 5000 X g and 4°C for a further 10 minutes. 
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The supernatant was then removed and the cells were resuspended in 10 ml ice-cold 

100 mM sodium phosphate buffer. The cells were sonicated (Vibracell, Sonics and 

Materials Inc.) (pulses of 2.5 s at amplitude 40) on ice for 30 seconds. The suspension 

was then centrifuged at 4000 X g for 20 minutes. The supernatant (soluble fraction) 

was removed to a sterile universal and stored at 2-8°C until the sample was analysed 

using SDS-PAGE. The pellet (insoluble fraction) was resuspended in 100mM sodium 

phosphate buffer and stored at 2-8ºC until the sample was analysed using SDS-PAGE. 

 

2.22 SDS-Polyacrylamide gel electrophoresis 

 

Proteins were resolved by polyacrylamide gel electrophoresis (SDS-PAGE) 

(Laemmli, 1970), which was performed using 12% (w/v) gradient gels (Section 

2.4.11) overlaid with a 4% (w/v) stacking gel (Section 2.4.12). The gel plates were 

cleaned prior to use with hot soapy water, rinsed with distilled water, rinsed with 

ethanol and allowed to dry. Seals were placed between the gel plates and the plates 

were clamped together. The components for both the separating gels and stacking gels 

were mixed. The resolving gel was poured first, about three-quarters of the way up the 

gel. This gel was overlaid with isopropanol (to prevent air bubbles) and allowed to set 

for 30 minutes. The isopropanol was removed and the stacking gel was poured above 

the resolving gel. A comb was then inserted into the stacking gel and the gel was 

allowed to set for 60 minutes. 

 

Samples (25 µl) from induced and uninduced strains were prepared by boiling in 

sample buffer (Section 2.3.9) were electrophoresed at 15 mA until the tracking dye 

entered the resolving gel, at which time the mA was increased to 30 mA for 3-4 hours. 

A wide range molecular weight standard (6,500-205,000 Da) was obtained from 

Sigma (Cat. No.: M4038) was used as a marker on all SDS-PAGE gels. 

 

Coomassie brilliant blue staining solution (Section 2.3.11) was used to stain the SDS-

PAGE gels. The gels were stained for 3-4 hours at room temperature with gentle 

shaking. The gels were rinsed in milli-Q water and transferred into destaining solution 

(Section 2.3.1), then gently shaken at room temperature until blue bands and a clear 

background were obtained. Fresh destaining solution was added if required. The gels 

were kept in Milli-Q water overnight after destaining.  
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3.0 Results 

 

 

3.1 Identification of clinical bacterial isolates 
 
 

It was of interest to study clinical isolates of Pseudomonas aeruginosa, obtained from 

two Irish hospitals, the Adelaide and Meath National Children’s Hospital, Tallaght, 

Dublin 24 and Waterford Regional Hospital. Preliminary identification tests were 

performed on all the isolates (Gram stain, oxidase and catalase tests). Twelve isolates 

were choosen for further identification. These were PA1, PA3, PA5, PA7, PA8, PA9, 

PA10, PA11, PA12, PA13, PA16 and PA17. Pseudomonas aeruginosa PAO1 was 

used as a control in all tests. The isolates were identified using a variety of techniques. 

These included morphological characteristics, biochemical testing, pigment 

production, API 20NE, Biolog GN and 16S rRNA analysis. 

 

 

 

3.1.1 Morphological characteristics 
 
 

The cell and colony characteristics of the isolates are outlined in Tables 3.1 and 3.2 

respectively. The cell characteristics were noted following cultivation on nutrient agar 

at 37°C.  All the strains were identified as being Gram-negative, non-spore forming, 

motile rods as seen in Table 3.1. With the exception of colour, which was either white 

or creamy, the colony characteristics of twelve of the strains were identical. One 

isolate, PA12, was the only mucoid strain (Table 3.2). 
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Table 3.1: Cell characteristics of the clinical isolates 

 

 

 

 

Table 3.2: Colony characteristics of the clinical isolates strains 

 

Colony Characteristic Strain 

 
Colour Shape Edge Elevation Texture 

PA1 Cream Round Flat Raised Non-mucoid 
PA3 Cream Round Flat Raised Non-mucoid 
PA5 White Round Flat Raised Non-mucoid 
PA7 Cream Round Flat Raised Non-mucoid 
PA8 White Round Flat Raised Non-mucoid 
PA9 Cream Round Flat Raised Non-mucoid 

PA10 White Round Flat Raised Non-mucoid 
PA11 White Round Flat Raised Non-mucoid 
PA12 Cream Round Flat Raised Mucoid 
PA13 White Round Flat Raised Non-mucoid 
PA16 White Round Flat Raised Non-mucoid 
PA17 Cream Round Flat Raised Non-mucoid 
PAO1 White Round Flat Raised Non-mucoid 

 

 

 

 

 

Cell Characteristic Strain 

 
Gram +/- Shape Spores +/- Motility 

PA1 - Rod - + 
PA3 - Rod - + 
PA5 - Rod - + 
PA7 - Rod - + 
PA8 - Rod - + 
PA9 - Rod - + 

PA10 - Rod - + 
PA11 - Rod - + 
PA12 - Rod - + 
PA13 - Rod - + 
PA16 - Rod - + 
PA17 - Rod - + 
PAO1 - Rod - + 
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3.1.2 Identification of isolates using biochemical tests 

 

 

A variety of biochemical tests were performed on all the strains to enable their 

identification and the results are shown in Table 3.3. These tests were selected as 

conventional phenotypic tests used to identify Pseudomonas aeruginosa (Cowan and 

Steel’s manual for the identification of medical bacteria, 1993). 

 

Table 3.3: Biochemical properties of the bacterial isolates 

 

Strain 

 

A B C D E F G H I J 

PA1 Ox + + + + + + - + + 
PA3 Ox + + + + + + - + + 
PA5 Ox + + + + + + - + + 
PA7 Ox + + + + + + - + + 
PA8 Ox + + + + + + - + + 
PA9 Ox + + + + + + - + + 
PA10 Ox + + + + + + - + + 
PA11 Ox + + + + + + - + + 
PA12 Ox + + + + + + - + + 
PA13 Ox + + + + + + - + + 
PA16 Ox + + + + + + - + + 
PA17 Ox + + + + + + - + + 
PAO1 Ox + + + + + + - + + 

 

A – Hugh and Leifson, Oxidative (Ox) and Fermentative; B – Oxidase; C – Catalase; 

D – Haemolysis; E – Growth on Cetrimide agar; F – Tween 80 hydrolysis; G – 

Thornley Arginine Dihydrolase; H – Growth at 5°C; I – Growth at 37°C; J – Growth 

at 42°C 

 

The isolates were all oxidase and catalase positive and were shown to be oxidative 

organisms when grown on Hugh and Liefson’s medium. The strains gave positive 

results for arginine hydrolysis and growth on cetrimide agar. The isolates also were all 

β-haemolytic on blood agar. All strains possessed lipolytic activity (Tween 80 

hydrolysis). The isolates grew well at both 37°C and 42°C but were unable to grow at 

5°C (Table 3.3). On the basis of these results the isolates were identified as 

Pseudomonas aeruginosa. 
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3.1.3 Colour production by the isolates when grown on selective agars 

 

The isolates were grown on a variety of media to investigate pigment production. The 

colours produced by the isolates when they were grown on selective media at 37°C 

were noted. All isolates were grown on Pseudomonas Isolation Agar F, a medium that 

stimulates the production of fluorescein, Pseudomonas Isolation Agar P, a medium 

that stimulates the production of pyocyanin and also on cetrimide agar, a medium that 

stimulates the production of pyocyanin. These pigments are typical of Pseudomonas 

aeruginosa. The isolates were also grown on nutrient agar, which is not a selective 

medium. The colours that diffused into the media from each isolate are described in 

Table 3.4. 

 

The isolates produced yellow/green, indicative of fluorescein production, blue/green, 

indicative of the pyocyanin production, red, indicative of pyorubin and brown, 

indicative of pyomelanin production (Table 3.4). The isolates universally produced 

the fluorescent yellow/green pigment associated with the production of pyoverdin 

(fluorescein) on PIA F agar. Nine of the isolates produced the blue/green pigment that 

is associated with the production of the blue/green pigment, pyocyanin on PIA P agar. 

These same strains also produced this blue/green pigment on cetrimide agar. Three 

isolates (PA3, PA11 and PA12) produced a red pigment associated with the 

production of pyorubin on nutrient agar. One isolate, PA9, produced a brown pigment 

associated with the production of pyomelanin on all four media. This strain also 

produced pyoverdin on PIA F agar and pyocyanin on PIA P agar and cetrimide agar, 

however these pigments were produced along with the brown pyomelanin pigment. 
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Table 3.4: Growth of isolates on agar at 37°C to demonstrate pigment production 

 

 

 

PIA = Pseudomonas isolation agar 

Yellow  = fluorescein (pyoverdin) 

Blue/Green = pyocyanin 

Red = pyorubin 

Brown = pyomelanin 

 

 

 

Strain 

 

 

Colour produced 

PA1 Yellow Blue/Green Blue/Green None 

PA3 Yellow Blue/Green Blue/Green Red 

PA5 Yellow Blue/Green Blue/Green Blue 

PA7 Yellow None Yellow None 

PA8 Yellow Blue/Green Blue/Green Blue 

PA9 Yellow/ 
Brown 

Brown/ 
Blue 

Yellow/ 
Brown 

Brown 

PA10 Yellow Blue/Green Yellow None 

PA11 Yellow Blue/Green 
 

Blue/Green Red 

PA12 Yellow None Yellow Red 

PA13 Yellow None Yellow None 

PA16 Yellow Blue/Green Blue/Green Blue 

PA17 Yellow Blue/Green Blue/Green Blue 

PAO1 Yellow Blue/Green Blue/Green Blue 

Medium PIA F PIA P Cetrimide 

Agar 

Nutrient 

Agar 
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3.1.4 Identification of isolates using API 20NE  

 

In addition to the biochemical tests, identification was performed using the 

commercially available identification kit, API 20NE (BioMerieux). The API 20NE 

system, which was recommended for the identification of Gram-negative bacterial 

isolates, consisted of twenty-one enzymatic and carbon compound assimilation tests 

which were performed in cupules on a plastic strip where desiccated contents were 

reconstituted with a suspension of the test organism. The reaction for each of the 

assimilation tests for each of the isolates is shown in Table 3.5.  

 

All of the isolates were identified as Pseudomonas aeruginosa by the API 20NE 

identification kit. The identifications were excellent (9 strains and control strain), very 

good (3 strains) and good (1 strain), with % i.d. ranging from 91.4% to 99.99% (Table 

3.5). The results of the API 20NE tests showed that although there is great similarity 

among all the strains, they do vary in their ability to produce various enzymes and 

utilize the various carbon sources in the kit. All thirteen strains had the same reaction 

in thirteen of the twenty tests on the API 20NE test strip. However, there were some 

exceptions. PA3 was able to produce indole, it could acidify glucose and it was 

positive for β-galactosidase. PA8, PA9, PA10 and PA16 were all negative for urease. 

PA10 and PA16 could not assimilate N-acetyl-glucosamine, PA10 and PA17 could 

not assimilate adipate and PA10 could not assimilate citrate. The results obtained for 

the Pseudomonas aeruginosa ATCC 27853 control strain were as expected 

(BioMerieux, 1997). 
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Table 3.5: Results of API 20NE identification for Pseudomonas aeruginosa strains 

 

 

Strain PA 1 PA 3 PA 5 PA 7 PA 8 PA 9 PA 10 PA 11 PA 12 PA 13 PA 16 PA 17 PAO1 Control 

i.d. 

(%) 

99.99 99.9 99.99 99.9 99.6 99.99 91.4 99.99 99.99 99.99 99.9 99.99 99.9 99.99 

T 0.90 0.58 0.90 0.90 1.00 0.90 0.60 0.90 0.90 0.90 0.88 0.74 0.90 0.90 

i.d. Ex V.G. Ex Ex V.G. Ex G Ex Ex Ex Ex V.G. Ex Ex 

 

Ex = Excellent = %id ≥ 99.9% and T ≥0.75; V.G.=Very good=%id ≥99% and T ≥0.5; 

G = Good = %id ≥ 90% and T ≥0.25 

 1 3 5 7 8 9 10 11 12 13 16 17 PAO1 Control 

Reduction of nitrates 

Indole production 

Glucose acidification 

Arginine Dihydrolase 

Urease 

Esculin Hydrolysis 

Gelatine hydrolysis 

β-galactosidase 

Glucose assimilation 

Arabinose assimilation 

Mannose assimilation 

Mannitol assimilation 

N-Acetyl-Glucosamine assimilation 

Maltose assimilation 

Gluconate assimilation 

Caprate assimilation 

Adipate assimilation 

Malate assimilation 

Citrate assimilation 

Phenyl-acetate assimilation 

Cytochrome oxidase 

 

 

+ 

- 

- 

+ 

+ 

- 

+ 

- 

+ 

- 

- 

+ 

+ 

- 

+ 

+ 

+ 

+ 
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 -          - 

    -          -          

   +          + 

   +          - 

    -          - 

   +          + 

    -          - 

   +          + 

    -          - 

    -          - 

   +          + 

   +          + 

    -          - 

   +          + 

   +          + 

   +          + 

   +          + 

   +          + 

    -          - 

   +          + 

              

Test Strain (P. aeruginosa) PA 
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3.1.5 Identification of isolates using Biolog GN 

 

All of the isolates were identified as Pseudomonas aeruginosa by the Biolog GN 

identification system. The reactions of each isolate to the various carbon sources are 

shown in Table 3.6.All the strains were identified with a 100% probability of being P. 

aeruginosa except for PA9, which had a 99% probability. The similarity (SIM) values 

of the isolates varied from 0.52 to 0.99. The higher the value the better the 

identification. The SIM value is used as a calling criterion to judge the reliability and 

confidence of the identification. The Biolog results showed that all of the isolates 

have very similar biochemical properties. All of the isolates possessed the same 

ability to utilize or inability to utilize sixty-two of the ninety-six carbon sources on the 

Biolog plates.  However, there were a number of exceptions. These exceptions show 

that no two of the isolates are the same. 

 

PA11 and PA12 were able to use α-cyclodextrin. PA3, PA5, PA7, PA8, PA16, PA17 

were unable to assimilate dextrin. PA5, PA16 and PA17 were unable to use N-acetyl-

D-glucosamine or D-fructose. PA5, PA9, PA11, PA12, PA16 and PA17 were unable 

to utilize L-arabinose. PA5, PA9, PA12, PA13, PA16, PA17 were not able to use D-

arabitol. PA12 had the ability to utilize cellobiose, melibiose and D-glucosaminic 

acid. PA1, PA7, PA11 and PA12 could use β-methyl D-glucoside. PA3, PA5, PA9 

and PA17 were unable to utilize D-psicose. PA7 was able to use L-rhamnose and both 

PA7 and PA8 were able to use sucrose. PA1, PA9 and PA11 had the ability to utilize 

trehalose. PA1 was unable to use α-ketovaleric acid, D, L lactic acid, propionic acid, 

or succinic acid and had the ability to use D-saccharic acid. PA9 was able to utilize L-

phenylamine and unable to utilize D, L carnitine. Neither PA1 nor PA9 were able to 

use quinic acid. Both PA1 and PA3 had the ability to use uridine. PA17 was unable to 

use L-ornithine or L-threonine. PA1, PA7, PA8, PA16 and PAO1 were able to use 

sebacic acid. PA5, PA9, PA13 and PA17 were not able to utilize L-leucine. Both PA7 

and PA10 were able to use D-serine. PA3, PA5, PA8, PA10, PA16 and PA17 were 

unable to use i-erythritol. PA1, PA7, PA8, PA10 and PAO1 were able to utilize D-

mannose. Both PA10 and PA12 were able to use L-alanyl-glycine. PAO1 was able to 

use glycyl-L-glutamic acid. 
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Table 3.6 Results of Biolog GN identification for Pseudomonas aeruginosa strains. 

 

 

 

Carbon Source 

PA

1 

PA

3 

PA

5 

PA

7 

PA

8 

PA

9 

PA

10 

PA

11 

PA

12 

PA

13 

PA

16 

PA

17 

PA

O1 

Water 

α-cyclodextrin 

Dextrin 

Glycogen 

Tween 40 

Tween 80 

N-acetyl-D-galactosamine 

N-acetyl-D-glucosamine 

Adonitol 

L-arabinose 

D-arabitol 

Cellobiose 

D-melibiose 

β-methyl D-glucoside 

D-psicose 

D-raffinose 

L-rhamnose 

D-sorbitol 

Sucrose 

Trehalose 

Turanose 

Xylitol 

Methyl pyruvate 

Mono-methyl succinate 

p-hydroxyphenylacetic acid 

itaconic acid 

α-keto butyric acid 

α-keto glutaric acid  

α-keto valeric acid 

D, L-lactic acid 

Malonic acid 

Propionic acid 

Quinic acid 

D-saccharic acid 

Sebacic acid 

- 
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Succinic acid 

L-histidine 

Hydroxy L-proline 

L-leucine 

L-ornithine 

L-phenylalanine 

L-proline 

L-pyroglutamic acid 

D-serine 

L-serine 

L-threonine 

D, L-carnitine 

γ-amino butyric acid 

i-erythritol 

D-fructose 

L-fructose 

D-galactose 

Gentiobiose 

α-D-glucose 

m-inositol 

α-D-lactose 

Lactulose 

Maltose 

D-mannitol 

D-mannose 

Acetic acid 

cis-aconitic acid 

Citric acid 

Formic acid 

D-galactonic acid lactone 

D-galacturonic acid 

D-gluconic acid 

D-glucosaminic acid 

D-glucuronic acid 

α-hydroxybutyric acid 

β-hydroxybutyric acid 

γ-hydroxybutric acid 

Bromo-succinic acid 

Succinamic acid 

Glucuronamide 

+ 

+ 

+ 

+ 

- 

+ 

+ 

- 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

- 

+ 

- 

- 

- 
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Alaninamide 

D-alanine 

L-alanine 

L-alanyl-glycine 

L-asparagine 

L-aspartic acid 

L-glutamic acid 

Glycyl-L-aspartic acid 

Glycyl-L-glutamic acid 

Urocanic acid 

Inosine 

Uridine 

Thymidine 

Phenyl ethylamine 

Putrescine 

2-amino ethanol 

2,3-butanediol 

Glycerol 

D, L-α-glycerol phosphate 

Glucose-1-phosphate 

Glucose-6-phosphate 

+ 

+ 

- 

+ 

+ 

+ 

- 

- 

+ 

+ 

+ 

- 

- 

+ 

+ 

+ 

+ 

- 

- 

- 

+ 

+ 

- 
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- 

- 

+ 

+ 

+ 

+ 

- 

- 

- 

 

 

 

 

Strain PA 1 PA 

3 

PA 5 PA 7 PA 8 PA 9 PA 10 PA 11 PA 12 PA 13 PA 16 PA 17 PAO1 

PROB 

(%) 

100 100 100 100 100 99 100 100 100 100 100 100 100 

SIM 0.60 0.68 0.81 0.60 0.66 0.89 0.69 0.66 0.64 0.52 0.99 0.87 0.67 
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3.1.6 Identification of isolates using 16S rRNA gene analysis 

 

Genotypic-based identification eliminates the problem of variable phenotype and 

allows for more accurate identification of bacteria. The use of 16S rRNA in the 

classification of bacterial species has now been well established and 16S rRNA gene 

sequencing is now the gold standard of bacterial identification. 16S rRNA genes are 

highly conserved among all organisms. However, all organisms possess various 

unique species-specific regions that allow for bacterial identification. The 16S rRNA 

genes from all of the isolates were amplified and sequenced to confirm their 

identification and were compared to each other and other similar species using 

phylogenetic analysis. 

  

3.1.6.1 Amplification of 16S rRNA gene  

 

The 16S rRNA genes from all the isolates were amplified using the universal primers 

in Table 2.11. The amplified 1300 bp PCR product seen in Figure 3.1 was identical to 

the product produced by all of the isolates 

 

 

 

 

Figure 3.1 Agarose gel showing the (1.3 kbp) 16S rRNA PCR product amplified 

using universal 16S rRNA primers. Lane 1, DNA ladder. Lane 2, 16S rRNA PCR 

product. 

 

1.3kb 

 

21,226 

 

 

 

5148 

4268 

3520 

 

 

2027 
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947 
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The amplified 16S rRNA PCR products from all the isolates were sequenced by 

Qiagen. The 16S rRNA gene sequences of the twelve isolates and P. aeruginosa 

PAO1 were aligned and this is shown in Figure 3.2. These isolates shared 99-100% 

nucleotide similarity with eachother. BLASTN search analysis was used to compare 

the obtained 16S rRNA sequence data form the isolates with other 16S rRNA gene 

sequences available in the GenBank database (www.ncbi.nlm.nih.gov/BLAST). 

Sequences from the isolates showed 99%-100% sequence similarity to a known strain 

of Pseudomonas aeruginosa, P. aeruginosa S8 (Wang et al., 2007), as supported by 

Figure 3.3. 

 
PA3                           TGTCTGATTCACGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 59 

PA10                          TGTCTGATTCACGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 59 

PA16                          T-TCTGATTC-CGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 50 

PA1                           TGTCTGATTC-CGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 57 

PA13                          T-TCTGATTCACGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 54 

PA9                           T-TCTGATTC-CGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 47 

PA5                           T-TCTGATTC-CGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 47 

PA11                          TGTCTGATTCACGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 49 

PA12                          TGTCTGATTCACGATTACTAAGCGATTCCGACTTCACGCAGTCGAG 48 

PA8                           T-TCTGATTC-CGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 47 

PA17                          TTTCTGATTCACGATTACTACGCGATTCCGACTTCACGCAGTCGAG 46 

PAO1                          CTTCTGATTCACGATTACTA-GCGATTCCGACTTCACGCAGTCGAG 46 

PA7                           TTTCTGATTCACGATTACTACGCGATTCCGACTTCACGCAGTCGAG 46 

                                ******** ********* ************************* 

 

PA3             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 119 

PA10            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 119 

PA16            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 110 

PA1             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 117 

PA13            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 114 

PA9             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 107 

PA5             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 107 

PA11            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 109 

PA12            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 108 

PA8             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 107 

PA17            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 106 

PAO1            TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 106 

PA7             TTGCAGACTGCGATCCGGACTACGATCGGTTTTATGGGATTAGCTCCACCTCGCGGCTTG 106 

                ************************************************************ 

 

PA3             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 179 

PA10            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 179 

PA16            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 170 

PA1             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 177 

PA13            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 174 

PA9             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 167 

PA5             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 167 

PA11            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 169 

PA12            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 168 

PA8             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 167 

PA17            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 166 

PAO1            GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 166 

PA7             GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATG 166 

                ************************************************************ 

 

PA3             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 239 

PA10            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 239 

PA16            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 230 

PA1             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 237 

PA13            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 234 

PA9             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 227 

PA5             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 227 

PA11            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 229 

PA12            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 228 
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PA8             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 227 

PA17            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 226 

PAO1            ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 226 

PA7             ACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCAC 226 

                ************************************************************ 

 

PA3             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 299 

PA10            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 299 

PA16            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 290 

PA1             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 297 

PA13            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 294 

PA9             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 287 

PA5             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 287 

PA11            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 289 

PA12            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 288 

PA8             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 287 

PA17            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 286 

PAO1            CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 286 

PA7             CCGAGGTGCTGGTAACTAAGGACAAGGGTTGCGCTCGTTACGGGACTTAACCCAACATCT 286 

                ************************************************************ 

 

PA3             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 359 

PA10            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 359 

PA16            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 350 

PA1             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 357 

PA13            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 354 

PA9             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 347 

PA5             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 347 

PA11            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 349 

PA12            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 348 

PA8             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 347 

PA17            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 346 

PAO1            CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 346 

PA7             CACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTCTGAGTTCCCGAAGGCACCAAT 346 

                ************************************************************ 

 

PA3             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 419 

PA10            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 419 

PA16            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 410 

PA1             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 417 

PA13            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 414 

PA9             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 407 

PA5             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 407 

PA11            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 409 

PA12            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 408 

PA8             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 407 

PA17            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 406 

PAO1            CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 406 

PA7             CCATCTCTGGAAAGTTCTCAGCATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCTTCGAA 406 

                ************************************************************ 

 

PA3             TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCG-GTCAATTCATTTGAGTTTTAACCC 478 

PA10            TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACCC 478 

PA16            TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 468 

PA1             TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCCGTCAATTCATTTGAGTTTTAACC- 476 

PA13            TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 472 

PA9             TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 465 

PA5             TTAAACCACATGCTCCACCGCTTGTGCGGGGCCCCCGTCAATTCATTTGAGTTTTAACC- 466 

PA11            TTAAACCACATGCTCCACCGCTTGTGCCGGGCCCCCGTCAATTCATTTGAGTTTTAACC- 468 

PA12            TTAAACCACATGCTCCACCGCTTGTGC-GGGCCCCCGTCAATTCATTTGAGTTTTAACC- 466 

PA8             TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 465 

PA17            TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 464 

PAO1            TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCCGTCAATTCATTTGAGTTTTAACC- 465 

PA7             TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC-GTCAATTCATTTGAGTTTTAACC- 464 

                *************************** ** ***  ***********************  

 

PA3             TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 534 

PA10            TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 534 

PA16            TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 524 

PA1             TTGCGG-CCGTACTCCCC-AGGCCGGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 533 

PA13            TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 528 

PA9             TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 521 

PA5             TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 522 

PA11            TTGCGG-CCGTACTCCCCCAGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 525 

PA12            TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 522 

PA8             TTGCGG-CCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 521 

PA17            TTGCGGCCCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 521 
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PAO1            TTGCGGGCCGTACTCCCCCAGGC-GGTCGACTTTATCGCGTTAGCTGCGCCACTAAGATC 524 

PA7             TTGCGGCCCGTACTCCCC-AGGC-GGTCGACTT-ATCGCGTTAGCTGCGCCACTAAGATC 521 

                ****** *********** **** ********* ************************** 

 

PA3             TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 592 

PA10            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 592 

PA16            TC-AAGGATCCCCAACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 583 

PA1             TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 591 

PA13            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 586 

PA9             TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 579 

PA5             TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 580 

PA11            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 583 

PA12            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 580 

PA8             TCCAAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 580 

PA17            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 579 

PAO1            TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 582 

PA7             TC-AAGGATCCC-AACGGCTAGTCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAA 579 

                ** ********* *********************************************** 

 

PA3             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 652 

PA10            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 652 

PA16            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 643 

PA1             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 651 

PA13            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 646 

PA9             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 639 

PA5             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 640 

PA11            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 643 

PA12            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 640 

PA8             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 640 

PA17            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 639 

PAO1            TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 642 

PA7             TCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT 639 

                ************************************************************ 

 

PA3             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 712 

PA10            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 712 

PA16            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 703 

PA1             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 711 

PA13            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 706 

PA9             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 699 

PA5             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 700 

PA11            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 703 

PA12            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 700 

PA8             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 700 

PA17            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 699 

PAO1            CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 702 

PA7             CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCAC 699 

                ************************************************************ 

 

PA3             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGGAT 772 

PA10            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGGAT 772 

PA16            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 762 

PA1             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 770 

PA13            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 765 

PA9             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 758 

PA5             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 759 

PA11            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGAAT 763 

PA12            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGA-T 759 

PA8             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 759 

PA17            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 758 

PAO1            CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 761 

PA7             CCTCTACCGTACTCTAGCTCAGTAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGG-AT 758 

                *********************************************************  * 

 

PA3             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 832 

PA10            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 832 

PA16            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 822 

PA1             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 830 

PA13            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 825 

PA9             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 818 

PA5             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 819 

PA11            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 823 

PA12            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 819 

PA8             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 819 

PA17            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 818 

PAO1            TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACG 821 

PA7             TTCACATCCAACTTGCTGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCCATTAACG 818 
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                **************************************************** ******* 

 

PA3             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTACCCGGTGCTTATTCTGTT 891 

PA10            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 891 

PA16            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 881 

PA1             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 889 

PA13            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 884 

PA9             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 877 

PA5             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 878 

PA11            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 882 

PA12            CTTGCACCCTTCGTATTACCGCGGCTGCTGGGCACGAAGTTAGCCGGTGCTTATTCTGTT 879 

PA8             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 878 

PA17            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 877 

PAO1            CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 880 

PA7             CTTGCACCCTTCGTATTACCGCGGCTGCTGG-CACGAAGTTAGCCGGTGCTTATTCTGTT 877 

                ******************************* ********** ***************** 

 

PA3             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 951 

PA10            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 951 

PA16            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 941 

PA1             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 949 

PA13            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 944 

PA9             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 937 

PA5             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 938 

PA11            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 942 

PA12            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 939 

PA8             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 938 

PA17            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 937 

PAO1            GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 940 

PA7             GGTAACGTCAAAACAGCAAGGTATTAACTTACTGCCCTTCCTCCCAACTTAAAGTGCTTT 937 

                ************************************************************ 

 

PA3             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1011 

PA10            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1011 

PA16            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1001 

PA1             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1009 

PA13            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1004 

PA9             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 997 

PA5             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 998 

PA11            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1002 

PA12            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 999 

PA8             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 998 

PA17            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 997 

PAO1            ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 1000 

PA7             ACAATCCGAAGACCTTCTTCACACACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTC 997 

                ************************************************************ 

 

PA3             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1071 

PA10            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1071 

PA16            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1061 

PA1             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1069 

PA13            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1064 

PA9             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1057 

PA5             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1058 

PA11            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1062 

PA12            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1059 

PA8             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1058 

PA17            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1057 

PAO1            CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1060 

PA7             CAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGAC 1057 

                ************************************************************ 

 

PA3             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCAACCAACT 1131 

PA10            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCAACCAACT 1131 

PA16            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1121 

PA1             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1129 

PA13            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1124 

PA9             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1117 

PA5             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1118 

PA11            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1122 

PA12            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1119 

PA8             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1118 

PA17            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1117 

PAO1            TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1120 

PA7             TGATCATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACT 1117 

                **************************************************** ******* 
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PA3             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1191 

PA10            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1191 

PA16            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1181 

PA1             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1189 

PA13            AGCTAATCCGACCTAGGCTCATC-GATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1183 

PA9             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1177 

PA5             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1178 

PA11            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1182 

PA12            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1179 

PA8             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1178 

PA17            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1177 

PAO1            AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1180 

PA7             AGCTAATCCGACCTAGGCTCATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCC 1177 

                *********************** ************************************ 

 

PA3             TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1251 

PA10            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1251 

PA16            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1241 

PA1             TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1249 

PA13            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1243 

PA9             TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1237 

PA5             TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1238 

PA11            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1242 

PA12            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1239 

PA8             TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1238 

PA17            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1237 

PAO1            TCAGGACGTATGCGGTATTAGCGCCCGTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1240 

PA7             TCAGGACGTATGCGGTATTAGCGCCCCTTTCCGGACGTTATCCCCCACTACCAGGCAGAT 1237 

                ************************** ********************************* 

 

PA3             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1296 

PA10            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1296 

PA16            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1285 

PA1             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1293 

PA13            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1288 

PA9             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1283 

PA5             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1284 

PA11            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1293 

PA12            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1281 

PA8             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1289 

PA17            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1281 

PAO1            TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1291 

PA7             TCCTAGGCATTACTCACCCGTCCGCCGCTGAATCCAGGAGC---------- 1281 

                *****************************************           

 

Figure 3.2: Nucleotide alignment of the 16S rRNA gene sequences from all the 

isolates and P. aeruginosa PAO1. 

 

3.1.6.2 Phylogenetic analysis 

 

Phylogenetic analysis of the sequences was performed following alignment of the 

1,300 bp consensus sequences using ClustalW software. The phylogenetic tree was 

generated using the Multiphyl program (Keane et al., 2007) and visualised using 

Treeview software package. The Multiphyl program chose a general time reversible 

model as the best model for comparing the strains. With this substitution model the 

relative frequencies of each character do not change. For a time reversible model, 

there is no assumption that substitutions preferentially change in certain directions 
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over time. For example, A→C→G is the same as G→C→A. The tree search used was 

the nearest neighbour interchange.  

 

The phylogenetic tree in Figure 3.3 illustrated the relationship between the 16S rRNA 

sequences of the bacterial isolates (PA1-PA17) and a known strain of P. aeruginosa, 

Pseudomonas aeruginosa S8 (Wang et al., 2007). It also compared the isolates to 

other members of the Pseudomonads which have many phenotypic characteristics 

common to P. aeruginosa, making them difficult to differentiate using conventional 

identification techniques. These were Pseudomonas fluorescens, Pseudomonas putida 

and Pseudomonas stutzeri. The sequences were also compared to those of species that 

were previously members of the Pseudomonads: Xanthomonas spp. and Burkholderia 

cepacia. The phylogenetic tree revealed a very high degree of relatedness between all 

of the isolates and the known strain of Pseudomonas aeruginosa. The isolates were 

closely related to the other members of the Pseudomonads which were located on 

different neighbouring branches and less closely related to the Xanthomonas and 

Burkholderia cepacia strains. The percentage of nucleotide similarity between all of 

these strains is shown in Figure 3.3. 
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Figure 3.3: Phylogenetic tree showing the taxanomic classification of all the isolates and a comparison 

with other Pseudomonad strains and closely related species based on their 16S rRNA sequences. The 

strains used were P. aeruginosa S8 (EF362637) (Wang et al., 2007), Xanthomonas spp. SVUB8 

(AM401582) (El-Deeb et al., 2006), Xanthamonas spp. AY088 (AF385546) (Paster et al., 2001), P. 

fluorescens PC37 (DQ178234)(Merimaa et al., 2006), P. fluorescens P69 (AY973267) (Heinaru et al., 

2000), P. putida PC15 (AY973267) (Heinaru et al., 2000), P. putida SH41 (AJ833919) (Heiss et al., 

2004), P. stutzeri CLN100 (AJ544240) (Cladera et al., 2004), P. stutzeri PSSU2 (AJ310484) (Nunez et 

al., 2001), B. cepacia (EF113108) (Zhao and Chen, 2006) and B. cepacia AB9 (AB272341) (Kobashi 

et al., 2007). 0.1 = nucleotide differences. Bold figures indicate percentage similarity. 
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3.2 An evaluation of the antibiotic sensitivities of the isolates 

 

 

The ability of the isolates to grow in the presence of antibiotics was tested. The two 

approaches used were the disk diffusion method and broth microdilution method 

according to the CLSI guidelines. The isolates were initially screened using 

commercially available multidisks (Mast Diagnostics, Merseyside, U.K). They were 

subsequently tested for their sensitivities to a wider range of antibiotics and the 

minimum inhibitory concentrations (MICs) of each of these antibiotics for all of the 

isolates were obtained. The minimum inhibitory concentration (MIC) is the minimum 

concentration of the antibacterial agent below which bacterial growth is not inhibited. 

In all, the isolates were screened against forty-one antibiotics from eleven classes of 

antibiotics. 

 

 

3.2.1 Preliminary screening 

 

Preliminary susceptibility screening of the isolates was performed using Mastring-S 

M14 multidisks (Mast Diagnostics, Merseyside, U.K.) which included eight antibiotic 

agents from five antibiotic classes effective against Gram-negative bacteria. They 

were chosen for their diversity of antibiotic classes. The multidisks were used as a 

quick screening method to identify which classes of antibiotics the isolates were 

susceptible/resistant to. The results (Table 3.7) showed that the isolates were 

universally resistant to ampicillin and cephalothin (β-lactams), sulphatriad and 

cotrimoxazole (folate pathway inhibitors) and tetracycline. All of the strains were 

susceptible to the lipopeptide antibiotic, colistin sulphate. However, the most 

interesting finding from this screening was that all of the isolates were susceptible to 

the aminoglycoside antibiotics, gentamicin and streptomycin, except for P. 

aeruginosa PA13, which showed resistance to both of these antimicrobial agents. 
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Table 3.7: Pseudomonas aeruginosa strains grown on Mueller-Hinton agar with 

antibiotic susceptibility discs at 37°C 

 

 

+ = resistant, - = susceptible 

 

 

 

3.2.2 Definitive susceptibility screening 

 

Definitive antibiotic susceptibility testing was performed using either the disk 

diffusion method or the broth microdilution method according to the methods of the 

CLSI (Section 2.7). Antibiotic susceptibility disks (Oxoid, Hampshire, U. K.) were 

generally used when antibiotic powders were either unavailable or expensive. The 

aminoglycosides were the first class of antibiotics to be tested. This was because of 

the result obtained during preliminary screening (Table 3.7) showing that P. 

aeruginosa PA13 was resistant to the clinically important aminoglycosides, 

gentamicin and streptomycin. After the aminoglycosides were tested, other antibiotic 

classes commonly used to treat Gram-negative bacteria were also screened to build up 

a comprehensive antibiotic resistance profile for all of the isolates. These included 

antibiotics from the β-lactam, the fluoroquinolone, folate sythesis inhibitor, 

tetracycline and phenicol classes.  

 

 

 

Strain (PA) 1 3 5 7 8 9 10 11 12 13 16 17 PA01 

 

Disk conc. (µµµµg) 

 

Ampicillin (10) + + + + + + + + + + + + + 
Cephalothin (5) + + + + + + + + + + + + + 
Colistin Sulphate 

(25) 

- - - - - - - - - - - - - 

Gentamicin (10) - - - - - - - - - + - - - 
Streptomycin (10) - - - - - - - - - + - - - 
Sulphatriad (200) + + + + + + + + + + + + + 
Tetracycline (25) + + + + + + + + + + + + + 
Cotrimoxazole 

(25) 

+ + + + + + + + + + + + + 
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Aminoglycosides 

 

The MIC values of antibiotics from the aminoglycoside class for all of the isolates are 

shown in Table 3.8. In all, fourteen aminoglycosides were screened using the broth 

microdilution method. The isolates were universally susceptible to four 

aminoglycosides: amikacin (1-8 µg/ml), apramycin (2-4 µg/ml), butirosin A (2-4 

µg/ml) and lividomycin A (0.5-2 µg/ml). However, all of the isolates except P. 

aeruginosa PA13 were susceptible to another five of the aminoglycosides: gentamicin 

(1-2 µg/ml), netilmicin (4-8 µg/ml), sisomicin (2 µg/ml), streptomycin (2-4 µg/ml) 

and tobramycin (1-2 µg/ml). All of the strains were resistant to kanamycin, 

hygromycin B, paramomycin and spectinomycin with low-level resistance to 

paramomycin (16-64 µg/ml), spectinomycin (32 µg/ml) and hygromycin B (32-64 

µg/ml) and higher level of resistance to kanamycin (128 µg/ml). The MIC values of 

kanamycin, spectinomycin and neomycin were identical for all the isolates. P. 

aeruginosa PA13 stood out from the other isolates because in addition to having high-

level resistance to the latter four antibiotics, it also had a very high level of resistance 

to netilmicin (1024 µg/ml), a high level of resistance to gentamicin and sisomicin 

(128 µg/ml) and a lower level of resistance to tobramycin (32 µg/ml), neomycin (32 

µg/ml) and streptomycin (64 µg/ml). 
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Table 3.8: Minimum Inhibitory Concentration values of aminoglycoside antibiotics for all the isolates 

 
AMK, amikacin; APR, apramycin; BUT, butirosin A; GEN, gentamicin; HYG, hygromycin B; KAN, kanamycin; LIV, lividomycin A; NEO, neomycin; NET, netilmicin; 
PAR, paromomycin; SIS, sisomicin; SPEC, spectinomycin; STR, streptomycin; TOB, tobramycin (Grey shading indicates resistant strain). 

Minimum Inhibitory Concentration (µµµµg/ml) Strain 

 
P. aeruginosa AMK APR BUT GEN KAN HYG LIV NEO NET PAR SIS SPEC STR TOB 

PA1 2 2 4 2 128 64 1 32 8 32 2 32 2 1 

PA3 2 4 2 2 128 64 0.5 32 8 16 2 32 2 1 

PA5 2 4 4 2 128 64 1 32 8 16 2 32 2 2 

PA7 2 4 4 1 128 64 1 32 8 16 2 32 2 2 

PA8 2 2 4 2 128 64 1 32 4 16 2 32 2 2 

PA9 1 2 2 2 128 64 0.5 32 4 16 2 32 2 1 

PA10 2 4 4 2 128 64 1 32 4 16 2 32 2 2 

PA11 2 4 4 2 128 64 1 32 4 16 2 32 2 1 

PA12 2 4 4 2 128 64 1 32 4 16 2 32 4 1 

PA13 8 4 4 128 128 64 2 32 1024 64 128 32 64 32 

PA16 2 2 2 2 128 32 1 32 4 16 2 32 2 1 

PA17 2 2 2 2 128 64 1 32 8 16 2 32 2 1 

PAO1 2 4 2 2 128 32 1 32 4 16 2 32 2 1 
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ββββ-lactams 

 

All the isolates were tested for their sensitivities to twenty-one β-lactams. They were 

screened using both the broth microdilution method and the disk diffusion method. 

The MIC values of ten β-lactam antibiotics for all the isolates obtained using the broth 

microdilution method are shown in Table 3.9. The zones of inhibition for twelve β-

lactam antibiotics using the disk diffusion method are shown in Table 3.10. The β-

lactam ceftazidime was tested using both methods. 

The isolates were universally susceptible to six β-lactams: ceftazidime (1-2 µg/ml), 

piperacillin-tazobactam (≤64/4 µg/ml), cefepime (≤8 µg/ml), ceftriaxone (≤8 µg/ml), 

meropenem (≤4 µg/ml) and aztreonam (≤8 µg/ml). However, all of the isolates except 

P. aeruginosa PA13 were susceptible to another seven of the β-lactams: cefsulodin 

(4-8 µg/ml), piperacillin (2-4 µg/ml), carbenicillin (16-64 µg/ml), ticarcillin (≤64 

µg/ml), ticarcillin-clavulanic acid (≤64/2 µg/ml), ceftizoxime (≤8 µg/ml) and 

imipenem (≤4 µg/ml). 

The isolates were universally resistant to eight β-lactams, having high-level resistance 

to cephalothin (≥1024 µg/ml), cloxacillin (512-1024 µg/ml), oxacillin (128-1024 

µg/ml), amoxicillin (≥1024 µg/ml), penicillin G (≥1024 µg/ml), ampicillin (≥1024 

µg/ml) and intermediately resistant to cefotaxime (≥8 µg/ml) and moxalactam (≥8 

µg/ml). In addition to the latter antibiotics, P. aeruginosa PA13 was also resistant to a 

further seven β-lactams including high-level resistance to piperacillin (256 µg/ml), 

carbenicillin (512 µg/ml), ticarcillin (≥128 µg/ml), ticarcillin-clavulanic acid (≥128/2 

µg/ml) and intermediately resistant to imipenem (≥16 µg/ml) and cefsulodin (32 

µg/ml) and ceftizoxime (≥8 µg/ml) 

 

Although P. aeruginosa PA13 was resistant to piperacillin, neither it nor any of the 

other isolates were resistant to the β-lactam/β-lactamase inhibitor combination of 

piperacillin and tazobactam. P. aeruginosa PA13 was also the only strain with 

resistance to ticarcillin with an MIC of ≥128 µg/ml. Interestingly, it was also resistant 

to the β-lactam/β-lactamase inhibitor combination of ticarcillin and clavulanic acid, 

indicating that it was also resistant to the β-lactamase inhibitor, clavulanic acid.  
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The susceptibility testing of the isolates for carbapenems showed that all of the 

isolates were sensitive to meropenem. Although also sensitive to this antibiotic, P. 

aeruginosa PA13 grew at higher concentrations than the other strains, as was shown 

by a much smaller zone of inhibition (Table 3.10). 
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Table 3.9: MICs values of ß-lactams for P. aeruginosa strains 

 

CEFS, cefsulodin; CEFT, ceftazidime; CEPH, cephalothin; CLX, cloxacillin; PIP, piperacillin; OXA, oxacillin; CAR, carbenicillin; AMX, 

amoxicillin; PEN, penicillin G; AMP ampicillin (Grey shading indicates resistant strain) 

 

 

Strain 

Minimum Inhibitory Concentration (µg/ml) 

P. aeruginosa CEFS CEFT CEPH CLX PIP OXA CAR AMX         PEN      AMP 

PA1 4 1 1024 512 4 128 16 1024 1024 1024 

PA3 4 1 1024 512 4 128 32 1024 1024 1024 

PA5 4 1 1024 512 4 256 64 1024 1024 1024 

PA7 4 1 1024 512 4 128 64 1024 1024 1024 

PA8 4 1 1024 512 4 256 64 1024 1024 1024 

PA9 4 1 1024 512 4 128 64 1024 1024 1024 

PA10 4 1 1024 512 4 256 32 1024 1024 1024 

PA11 4 1 1024 512 4 256 32 1024 1024 1024 

PA12 8 1 1024 512 4 256 64 1024 1024 1024 

PA13 32 2 >1024 1024 256 1024 512 >1024 >1024 >1024 

PA16 8 1 1024 512 4 256 64 1024 1024 1024 

PA17 8 1 1024 512 4 128 64 1024 1024 1024 

PAO1 2 1 1024 512 2 256 16 1024 1024 1024 
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Table 3.10: Zone diameters and equivalent MICs (µg/ml) of β-lactam antibiotics for the P. aeruginosa strains 

(Grey shading indicates resistant strain) 

PA1 PA3 PA5 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA16 PA17 PAO1 Antimicrobial Agent 

(Disk content) Zone Diameter (mm) / equivalent MIC (µµµµg/ml) 

Ticarcillin (75µµµµg) 28 25 23 25 22 25 22 27 25 7 

(≥128µg/ml) 

23 25 25 

Ticarcillin-clavulanic 

acid (75/10µµµµg) 

28 25 23 26 23 25 23 27 25 7 

(≥128/2 

µg/ml) 

23 26 25 

Pipercillin-taobactam 

(100/10µµµµg) 

31 30 30 27 26 28 30 28 29 25 30 31 30 

Ceftazidime (30µµµµg) 30 24 22 26 22 22 28 24 25 23 24 22 22 

Cefepime (30µµµµg) 31 29 28 29 27 29 23 25 27 20 29 28 28 

Cefotaxime (30µµµµg) 18 

≥8µg/ml 

18 

≥8µg/ml 

19 

≥8µg/ml 

19 

≥8µg/ml 

19 

≥8µg/ml 

18 

≥8µg/ml 

18 

≥8µg/ml 

19 

≥8µg/ml 

19 

≥8µg/ml 

17 

≥8µg/ml 

18 

≥8µg/ml 

19 

≥8µg/ml 

19 

≥8µg/ml 

Ceftriaxone (30µµµµg) 24 23 19 23 22 23 23 23 23 23 23 24 23 

Ceftizoxime (30µµµµg) 

 

21 22 22 22 21 22 22 22 22 15 

(≥8µg/ml) 

21 22 22 

Moxalactam (30µµµµg) 

 

23 

≥8µg/ml 

23 

≥8µg/ml 

22 

≥8µg/ml 

23 

≥8µg/ml 

22 

≥8µg/ml 

22 

≥8µg/ml 

20 

≥8µg/ml 

20 

≥8µg/ml 

22 

≥8µg/ml 

18 

≥8µg/ml 

23 

≥64µg/ml 

20 

≥64µg/ml 

23 

≥64µg/ml 

Imipenem (10µµµµg) 20 22 22 23 22 23 23 22 23 15 

(≥16 µg/ml) 

21 23 22 

Meropenem (10µµµµg) 31 32 32 34 30 32 35 31 34 17 33 30 30 

Aztreonam (30µµµµg) 28 26 26 25 24 26 25 26 24 24 24 26 25 

Standard error = ± 0.5 mm in all cases
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Fluoroquinolones 

 

The isolates were tested for their sensitivities to two fluoroquinolone antibiotics: 

ofloxacin and ciprofloxacin. The sensitivities of the isolates to ofloxacin were tested 

using the microbroth dilution method and the sensitivities of the isolates to 

ciprofloxacin were tested using the disk diffusion method. The results obtained are 

shown in Tables 3.11 and 3.12 respectively. 

 

All of the isolates were sensitive to ofloxacin (0.5-1 µg/ml) except for P. aeruginosa 

PA13 which was resistant to the antibiotic (16 µg/ml) (Table 3.11). Likewise, all of 

the isolates were sensitive to ciprofloxacin (≤1 µg/ml) except for P. aeruginosa PA13 

which was resistant to the antibiotic (≥4 µg/ml) (Table 3.12). 

 

Table 3.11: MIC values (µg/ml) of ofloxacin (fluoroquinolone) for P. aeruginosa 

strains 

 

(Grey shading indicates resistant strain) 

 

Strain MIC of Ofloxacin (µµµµg/ml) 

PA1 1 

PA3 0.5 

PA5 1 

PA7 1 

PA8 1 

PA9 1 

PA10 1 

PA11 1 

PA12 1 

PA13 16 

PA16 1 

PA17 1 

PAO1 0.5 

 

 

 



 142 

Table 3.12: Zone diameters and equivalent MIC values (µg/ml) of ciprofloxacin 

(fluoroquinolone) for P. aeruginosa strains. 

 

(Grey shading indicates resistant strain) 

 

Strain MIC of ciprofloxacin 

Zone Diameter (mm)/equivalent 

MIC (µµµµg/ml) 

PA1 31 

PA3 32 

PA5 32 

PA7 32 

PA8 33 

PA9 32 

PA10 32 

PA11 32 

PA12 33 

PA13                   12 (≥4 µg/ml) 

PA16 32 

PA17 31 

PAO1 32 

 

Standard error = ± 0.5 mm in all cases 

 

Tetracycline 

 

The isolates were screened for their sensitivity to tetracycline, a member of the 

tetracycline class of antibiotics. The sensitivities of the isolates to the antibiotic were 

tested using the disk diffusion method. The results obtained are shown in Table 3.13. 

They were all found to be resistant to the antibiotic with MIC values of ≥16 µg/ml. 
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Table 3.13: Zone diameters and equivalent MIC value of tetracycline for P. 

aeruginosa strains  

(Grey shading indicates resistant strain). 

 

Strain MIC of tetracycline 

Zone Diameter 

(mm)/equivalent MIC (µµµµg/ml) 

PA1 3 (≥16 µg/ml) 

PA3 4 (≥16 µg/ml) 

PA5 3 (≥16 µg/ml) 

PA7 7 (≥16 µg/ml) 

PA8 3 (≥16 µg/ml) 

PA9 5 (≥16 µg/ml) 

PA10 4 (≥16 µg/ml) 

PA11 4 (≥16 µg/ml) 

PA12 4 (≥16 µg/ml) 

PA13 2 (≥16 µg/ml) 

PA16 4 (≥16 µg/ml) 

PA17 3 (≥16 µg/ml) 

PAO1 4 (≥16 µg/ml) 

 

Standard error = ± 0.5 mm in all cases 

 

 

Folic acid synthesis inhibitor 

 

The strains were screened for their sensitivity to co-trimoxazole, a member of the 

folic acid synthesis inhibitors class of antibiotics. The sensitivities of the isolates to 

the antibiotic were tested using the disk diffusion method. The results obtained are 

shown in Table 3.14. They were all found to be resistant to the antibiotic with MIC 

values of ≥32 µg/ml. 
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Table 3.14: Zone diameters of co-trimoxazole (folate synthesis inhibitor) for P. 

aeruginosa  

(Grey shading indicates resistant strain). 

 

 

Strain MIC of co-trimoxazole 

Zone Diameter (mm)/equivalent 

MIC (µµµµg/ml) 

PA1 15 (≥32 µg/ml) 

PA3 16 (≥32 µg/ml) 

PA5 16 (≥32 µg/ml) 

PA7 15 (≥32 µg/ml) 

PA8 15 (≥32 µg/ml) 

PA9 15 (≥32 µg/ml) 

PA10 16 (≥32 µg/ml) 

PA11 15 (≥32 µg/ml) 

PA12 15 (≥32 µg/ml) 

PA13 15 (≥32 µg/ml) 

PA16 16 (≥32 µg/ml) 

PA17 16 (≥32 µg/ml) 

PAO1 16 (≥32 µg/ml) 

 

Standard error = ± 0.5 mm in all cases 

 

Phenicols 

 

The isolates were screened for their sensitivity to chloramphenicol, a member of the 

phenicol class of antibiotics. The sensitivities of the isolates to the antibiotic were 

tested using the broth microdilution method. The results obtained are shown in Table 

3.15. All of the isolates were found to be resistant to the antibiotic with MIC values of 

128-256 µg/ml. 
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Table 3.15: MICs of chloramphenicol for P. aeruginosa strains  

(Grey shading indicates resistant strain). 

 

 

Strain MIC of Chloramphenicol 

(µµµµg/ml) 

PA1 256 

PA3 256 

PA5 256 

PA7 128 

PA8 256 

PA9 128 

PA10 128 

PA11 256 

PA12 256 

PA13 256 

PA16 256 

PA17 256 

PAO1 128 

 

 

 

3.2.3 Overall antibiotic resistance profiles (ARPs) for the clinical isolates 

 

 

The overall antibiotic resistance profiles of the isolates are summarised in Table 3.16. 

All of the antibiotics tested fell into seven classes. There was considerable uniformity 

in the results, showing a similar response by all the isolates except P. aeruginosa 

PA13. This strain was distinguished by its resistance to the clinically important 

aminoglycosides, gentamicin, netilmicin and tobramycin and to the β-lactam 

antibiotics piperacillin, ticarcillin and the β-lactam-β-lactamase inhibitor combination, 

ticarcillin-clavulanic acid. Importantly, it also had intermediate resistance to the third 

generation cephalosporins: ceftizoxime and cefsulodin and to the carbapenem, 

imipenem. Therefore, P. aeruginosa PA13 was a multiresistant strain and was chosen 

for further study. 
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Table 3.16: Sensitivities of P. aeruginosa strains to antibiotic agents from various antibiotic classes 

 

Antimicrobial class Agent PA1 PA3 PA5 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA16 PA17 PAO1 

ββββ-lactams               
Penicillin R R R R R R R R R R R R R 
Amoxicillin R R R R R R R R R R R R R 
Ampicillin R R R R R R R R R R R R R 
Pipercillin S S S S S S S S S R S S S 
Carbenicillin S S S S S S S S S R S S S 
Ticarcillin S S S S S S S S S R S S S 
Cloxacillin R R R R R R R R R R R R R 
Oxacillin R R R R R R R R R R R R R 

Penicillins 

              
Ticarcillin-clavulanic 
acid 

S S S S S S S S S R S S S ββββ-lactam/ββββ-lactamase 

inhibitor 

combinations Pipercillin-tazobactum S S S S S S S S S S S S S 

Cephalothin R R R R R R R R R R R R R 
Ceftazidime S S S S S S S S S S S S S 
Cefotaxime I I I I I I I I I I I I I 
Ceftizoxime S S S S S S S S S I S S S 
Cefsulodin S S S S S S S S S I S S S 
Moxalactam I I I I I I I I I I I I I 
Cefepime S S S S S S S S S S S S S 

Cephems 

Ceftriaxone S S S S S S S S S S S S S 
Monobactams Aztreonam S S S S S S S S S S S S S 

Imipenem S S S S S S S S S I S S S Penems 

Meropenem S S S S S S S S S S S S S 
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Antimicrobial class Agent PA1 PA3 PA5 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA16 PA17 PAO1 

Aminoglycosides Amikacin S S S S S S S S S S S S S 
 Gentamicin S S S S S S S S S R S S S 
 Kanamycin R R R R R R R R R R R R R 
 Netilmicin S S S S S S S S S R S S S 
 Spectinomycin R R R R R R R R R R R R R 
 Streptomycin S S S S S S S S S R S S S 
 Tobramycin S S S S S S S S S R S S S 
 Apramycin S S S S S S S S S S S S S 
 Butirosin A S S S S S S S S S S S S S 
 Hygromycin B R R R R R R R R R R R R R 
 Lividomycin A S S S S S S S S S S S S S 
 Neomycin R R R R R R R R R R R R R 
 Paromomycin R R R R R R R R R R R R R 
 Sisomicin S S S S S S S S S R S S S 
               
Quinolones Ciprofloxacin S S S S S S S S S R S S S 
 Ofloxacin S S S S S S S S S R S S S 
               
Folate pathway 

inhibitors 

Co-trimoxazole R R R R R R R R R R R R R 

               
Tetracyclines Tetracycline R R R R R R R R R R R R R 
               
Phenicols Chloramphenicols R R R R R R R R R R R R R 
               
Lipopeptides Colistin S S S S S S S S S S S S S 
               
 

R = Resistant, S = Sensitive, I = Intermediate resistance. Grey shading indicates resistant strain



 148 

3.3 Molecular analysis of antibiotic resistance 

 

 

Aminoglycosides are commonly the first-line antibiotics used to treat P. aeruginosa 

infections. It was of interest to understand a mechanism, or mechanisms that 

conferred aminoglycoside resistance on P. aeruginosa PA13, which was able to grow 

in the presence of high concentrations of aminoglycoside antibiotics such as 

gentamicin, netilmicin and tobramycin. There are many mechanisms that confer 

resistance to the aminoglycosides. These include decreased permeability of the 

bacterial cell membrane, increased efflux of the antibiotic from the cell, modification 

of the antibiotic target and modification of the antibiotic by aminoglycoside 

modifying enzymes. However, aminoglycoside modifying enzymes are the most 

common mechanism for conferring resistance to aminoglycosides. There are three 

families of aminoglycoside modifying enzymes, classified as N-acetyltransferases 

(AACs), O-nucleotidyltransferases (ANTs) and O-phosphotransferases (APHs). 

Genes encoding these enzymes were investigated. Primers to amplify aminoglycoside 

resistance genes that conferred resistance to gentamicin were designed from 

sequences available in Genbank and from the literature. 

 

 

3.3.1 Screening for aminoglycoside modifying enzymes 

 

 

All of the isolates were screened for aminoglycoside modifying enzymes (AMEs) 

using the primers in Table 2.12. In all, the isolates were screened for seventeen AME 

genes. From all of these genes, only one product was amplified for one of the isolates. 

The primers for the aac(6’)-IIa gene amplified a 2.2kb product in P. aeruginosa PA13 

and this product is shown in Figure 3.4.  
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Figure 3.4: Agarose gel showing the 2.2 kb product amplified in P. aeruginosa 

PA13. Lane 1 - DNA ladder, Lane 2 – amplfied product from P. aeruginosa PA13 
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3.3.2 Cloning and sequencing of the 2.2 kbp product  

 

The amplified 2.2 kbp product (Figure 3.4) was cloned into a Qiagen pDrive cloning 

vector to allow for the sequencing and analysis of the cloned PCR product. The 

plasmid construct was transformed into the host E. coli strain XL1 Blue. Positive 

clones were identified by blue/white colony screening, from which positive plasmid 

DNA was purified using the Sigma Genelute plasmid purification kit. A plasmid from 

a positive clone is shown in Figure 3.5a. The plasmid DNA from the positive clone 

was digested with the restriction enzyme EcoR1 (a restriction site on both ends of the 

multiple cloning site within the pDrive vector) to confirm the insertion of the 

amplified product. The agarose gel of the restricted plasmid shows a band 

corresponding to the 3.85 kb vector and a band corresponding to the restricted 2.2 kb 

insert (Figure 3.5b). The 2.2 kb insert was then fully sequenced and analysed. Three 

consensus sequences were used to make the consensus sequence. The complete 

sequence was submitted to the EMBL/GenBank database and was assigned the 

Accession number (DQ767903). 

 

 

 (a)    (b) 

 

Figure 3.5: (a) An agarose gel showing purified, undigested, plasmid DNA, containing the 2.2 kbp 

product isolated from positive white colonies of E. coli XL1 Blue (b) an agarose gel showing the 

restriction digest of plasmid DNA from a positive clone with Eco R1, verifying the insertion of the 2.2 

kbp PCR product. Lanes 1 (a+b) – DNA ladder, Lane 2(a) – pDrive vector  containing the 2.2 kb insert, 

Lane 2 (b) – empty. Lane 3 (b) - the upper band corresponds to the pDrive cloning vector, while the 

bottom bands corresponds to the size of the inserted PCR product. 
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3.3.3 Sequence analysis of amplified product 

 

 

The complete sequence of the amplified 2.2 kb product is shown in Figure 3.6. An 

open reading frame search of the sequenced 2.2 kb product using an ORF finder 

programme on the NCBI website (www.ncbi/nlm/nih/gov) identified four open 

reading frames (ORFs), which are highlighted by four colours in Figure 3.6. These 

were ORF1 (pink), ORF2 (green), ORF3 (blue) and ORF4 (purple).  

 

 

 

   1 GATCGAATCC AGATCCTTGA CCCGCAGTTG CAAACCCTCA CTGATCCGCA TGCCCGTTCC 

  61 ATACAGAAGC TGGGCGAACA AACGATGCTC GCCTTCCAGA AAACCGAGGA TGCGAACCAC 

 121 TTCATCCGGG GTCAGCACCA CCGGCAAGCG CCGCGACGGC CGAGGTCTTC CGATCTCCTG 

 181 AAGCCAGGGC AGATCCGTGC ACAGCACCTT GCCGTAGAAG AACAGCAAGG CCGCCAATGC 

 241 CTGACGATGC GTGGAGACCG AAACCTTGCG CTCGTTCGCC AGCCAGGACA GAAATGCCTC 

 301 GACTTCGCTG CTGCCCAAGG TTGCCGGGTG ACGCACACCG TGGAAACGGA TGAAGGCACG 

 361 AACCCAGTGG ACATAAGCCT GTTCGGTTCG TAAGCTGTAA TGCAAGTAGC GTATGCGCTC 

 421 ACGCAACTGG TCCAGAACCT TGACCGAACG CAGCGGTGGT AACGGCGCAG TGGCGGTTTT 

 481 CATGGCTTGT TATGACTGTT TTGTTGTACA GTCTATGCCT CGGGCATCCA AGCAGCAAGC 

 541 GCGTTACGCC GTGGGTCGAT GTTTGATGTT ATGGAGCAGC AACGATGTTA CGCAGCAGGG 

 

 601 CAGTCGCCCT AAAACAAAGT TAGGCATCAC AAAGTACAGC ATCGTGACCA ACAGCAACGA 

 

 661 TTCCGTCACA CTGCGCCTCA TGACTGAGCA TGACCTTGCG ATGCTCTATG AGTGGCTAAA 

 721 TCGATCTCAT ATCGTCGAGT GGTGGGGCGG AGAAGAAGCA CGCCCGACAC TTGCTGACGT 

 781 ACAGGAACAG TACTTGCCAA GCGTTTTAGC GCAAGAGTCC GTCACTCCAT ACATTGCAAT 

 841 GCTGAATGGA GAGCCGATTG GGTATGCCCA GTCGTACGTT GCTCTTGGAA GCGGGGACGG 

 901 ATGGTGGGAA GAAGAAACCG ATCCAGGAGT ACGCGGAATA GACCAGTCAC TGGCGAATGC 

 961 ATCACAACTG GGCAAAGGCT TGGGAACCAA GCTGGTTCGA GCTCTGGTTG AGTTGCTGTT 

1021 CAATGATCCC GAGGTCACCA AGATCCAAAC GGACCCGTCG CCGAGCAACT TGCGAGCGAT 

1081 CCGATGCTAC GAGAAAGCGG GGTTTGAGAG GCAAGGTACC GTAACCACCC CAGATGGTCC 

 

1141 AGCCGTGTAC ATGGTTCAAA CACGCCAGGC ATTCGAGCGA ACACGCAGTG ATGCCTAACC 

Pant 

P2 

ORF2 

ORF1 

attI site 
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1201 CTTCCATCGG AGGGGGACGT CCAAGGGCTG GCGCCCTTGG CCGCCCCTCA TGTCAAACGT 

 

1261 TAGGCGTCAA AGGAAACTTA ATGGCAATCC GATTCCTCAC CATACTGCTA TCTACTTTTT 

1321 TTCTTACCTC ATTCGTGCAT GCGCAAGAAC ACGTGCTAGA GCGTTCTGAC TGGAAGAAGT 

1381 TCTTCAGCGA CCTCCGGGCC GAAGGTGCAA TCGTTATTTC AGACGAACGT CAAGCGGAGC 

1441 ATGCTTTATT GGTTTTTGGT CAAGAGCGAG CAGCAAAGCG TTACTCGCCT GCTTCAACCT 

1501 TCAAGCTTCC ACACACACTT TTTGCACTCG ATGCAGACGC CGTTCGTGAT GAGTTCCAGG 

1561 TTTTTCGATG GGACGGCGTT AAACGGAGCT TTGCGGGCCA TAATCAAGAC CAAGACTTGC 

1621 GATCAGCGAT GCGAAATTCT GCGGTCTGGG TTTATGAGCT ATTTGCAAAA GAGATCGGAG 

1681 AGGACAAAGC AAGACGCTAT TTAAAGCAAA TTGATTATGG CAACGCCGAC CCTTCGACAA 

1741 TCAAGGGCGA TTACTGGATA GATGGCAATC TTGAAATCTC AGCGCACGAA CAGATTTCGT 

1801 TTCTCAGAAA ACTCTATCGA AATCAGCTGC CATTTCAGGT GGAACATCAG CGCTTGGTCA 

1861 AAGATCTCAT GATTACGGAA GCCGGGCGCA ACTGGATACT ACGCGCAAAG ACCGGCTGGG 

1921 AAGGCAGGTT TGGCTGGTGG GTAGGGTGGG TGGAGTGGCC AACCGGTCCC GTATTCTTCG 

1981 CACTGAATAT TGATACGCCA AACAGAACGG ATGATCTTTT CAAAAGAGAG GCAATCGCGC 

2041 GGGCAATCCT TCGCTCTATC GACGCATTGC CGCCCAACTAA TCAATCCAG CGGACGCCTT 

 

2101 CGGCGCCGCT GATTTCAACG TTAGATGCAC TAAGCACATA ATTGCTCACA GCCAAACTAT 

2161 CAGGTCAAGT CTGCTTTTAT TATTTTTAAG CGTGCATAAT AAGCCCTACA CAAATTGGGA 

2221 GATATATCAT GAAAGGCTGG CTTTTTCTTG TTATCGCAAT AGTGGCGAAG AATC 

 

 

 

Figure 3.6: The overall sequence of the integron from P. aeruginosa PA13. The four 

open reading frames are indicated by different colours: ORF1 (pink), ORF2 (green), 

ORF3 (blue) and ORF4 (purple). The integron promoters Pant and P2 are indicated 

with horizontal arrows. The attI and attC recombination sites are underlined. 
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ORF1 

 

ORF1 was found at the 5’-end of the sequence (Figure 3.6). BLASTN analysis 

identified that it was 99-100% similar to previously published integrase (IntI) genes 

(Figure 3.7). When translated, the open reading frame encoded a partial protein of 133 

amino acids (Figure 3.8) that was 100% homologous to previously published Intl1 

integrase enzyme sequences in P. aeruginosa (AAS20532) (Aubert et al., 2004), P. 

aeruginosa (CAA11470) (Laraki et al., 1999), Salmonella typhimurium (AAS18383) 

(Daly et al., 2005) and Corynebacterium diphtheriae (BX248359) (Cerdeno-Tarraga 

et al., 2003). The integrase was translated in the 3’→ 5’ direction. This integrase gene 

was typical of class 1 integrons where integrases are found on the 5’ conserved 

segment. Integrons are genetic elements capable of the acquisition, rearrangement and 

expression of genes contained in gene cassettes.  

 
 

P.aeruginosa_AAS20532         GATCCTTGGAGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAA 538 

Pseudom_CAA11470              GATCCTTGGAGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAA 538 

Salmonella_AAS18383           GATCCTTGGAGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAA 643 

PA13                          ------------------------------------------GATCGAA- 7 

Corynebacterium_BX248359      GATCCTTGGAGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAA 190 

                                                                        *******  

 

P.aeruginosa_AAS20532         TCCAGATCCTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCCCGT 588 

Pseudom_CAA11470              TCCAGATCCTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCCCGT 588 

Salmonella_AAS18383           TCCAGATCCTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCCCGT 693 

PA13                          TCCAGATCCTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCCCGT 57 

Corynebacterium_BX248359      TCCAGATCCTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCCCGT 240 

                              ************************************************** 

 

P.aeruginosa_AAS20532         TCCATACAGAAGCTGGGCGAACAAACGATGCTCGCCTTCCAGAAAACCGA 638 

Pseudom_CAA11470              TCCATACAGAAGCTGGGCGAACAAACGATGCTCGCCTTCCAGAAAACCGA 638 

Salmonella_AAS18383           TCCATACAGAAGCTGGGCGAACAAACGATGCTCGCCTTCCAGAAAACCGA 743 

PA13                          TCCATACAGAAGCTGGGCGAACAAACGATGCTCGCCTTCCAGAAAACCGA 107 

Corynebacterium_BX248359      TCCATACAGAAGCTGGGCGAACAAACGATGCTCGCCTTCCAGAAAACCGA 290 

                              ************************************************** 

 

P.aeruginosa_AAS20532         GGATGCGAACCACTTCATCCGGGGTCAGCACCACCGGCAAGCGCCGCGAC 688 

Pseudom_CAA11470              GGATGCGAACCACTTCATCCGGGGTCAGCACCACCGGCAAGCGCCGCGAC 688 

Salmonella_AAS18383           GGATGCGAACCACTTCATCCGGGGTCAGCACCACCGGCAAGCGCCGCGAC 793 

PA13                          GGATGCGAACCACTTCATCCGGGGTCAGCACCACCGGCAAGCGCCGCGAC 157 

Corynebacterium_BX248359      GGATGCGAACCACTTCATCCGGGGTCAGCACCACCGGCAAGCGCCGCGAC 340 

                              ************************************************** 

 

P.aeruginosa_AAS20532         GGCCGAGGTCTTCCGATCTCCTGAAGCCAGGGCAGATCCGTGCACAGCAC 738 

Pseudom_CAA11470              GGCCGAGGTCTTCCGATCTCCTGAAGCCAGGGCAGATCCGTGCACAGCAC 738 

Salmonella_AAS18383           GGCCGAGGTCTTCCGATCTCCTGAAGCCAGGGCAGATCCGTGCACAGCAC 843 

PA13                          GGCCGAGGTCTTCCGATCTCCTGAAGCCAGGGCAGATCCGTGCACAGCAC 207 

Corynebacterium_BX248359      GGCCGAGGTCTTCCGATCTCCTGAAGCCAGGGCAGATCCGTGCACAGCAC 390 

                              ************************************************** 

 

P.aeruginosa_AAS20532         CTTGCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGA 788 

Pseudom_CAA11470              CTTGCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGA 788 

Salmonella_AAS18383           CTTGCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGA 893 

PA13                          CTTGCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGA 257 

Corynebacterium_BX248359      CTTGCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGA 440 

                              ************************************************** 

 

P.aeruginosa_AAS20532         CCGAAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCG 838 

Pseudom_CAA11470              CCGAAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCG 838 
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Salmonella_AAS18383           CCGAAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCG 943 

PA13                          CCGAAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCG 307 

Corynebacterium_BX248359      CCGAAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCG 490 

                              ************************************************** 

 

P.aeruginosa_AAS20532         CTGCTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGC 888 

Pseudom_CAA11470              CTGCTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGC 888 

Salmonella_AAS18383           CTGCTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGC 993 

PA13                          CTGCTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGC 357 

Corynebacterium_BX248359      CTGCTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGC 540 

                              ************************************************** 

 

P.aeruginosa_AAS20532         ACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAACTGTAATGCAAGT 938 

Pseudom_CAA11470              ACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAACTGTAATGCAAGT 938 

Salmonella_AAS18383           ACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCTGTAATGCAAGT 1043 

PA13                          ACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCTGTAATGCAAGT 407 

Corynebacterium_BX248359      ACGAACCCAGTGGACATAAGCCTGTTCGGTTCGTAAGCTGTAATGCAAGT 590 

                              ************************************ ************* 

 

P.aeruginosa_AAS20532         AGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGT 988 

Pseudom_CAA11470              AGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGT 988 

Salmonella_AAS18383           AGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGT 1093 

PA13                          AGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGT 457 

Corynebacterium_BX248359      AGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGT 640 

                              ************************************************** 

 

P.aeruginosa_AAS20532         GGTAACGGCGCAGTGGCGGTTTTCAT------------------------ 1014 

Pseudom_CAA11470              GGTAACGGCGCAGTGGCGGTTTTCAT------------------------ 1014 

Salmonella_AAS18383           GGTAACGGCGTAGTGGCGGTTTTCAT------------------------ 1119 

PA13                          GGTAACGGCGCAGTGGCGGTTTTCAT------------------------ 507 

Corynebacterium_BX248359      GGTAACGGCGCAGTGGCGGTTTTCAT------------------------ 666 

 

 

Figure 3.7: Clustal W alignments of the nucleotide sequences of IntI genes. The 

compared integrase genes were from Pseudomonas aeruginosa (AAS20532), 

Pseudomonas aeruginosa (CAA11470), Salmonella typhimurium (AAS18383), 

Pseudomonas aeruginosa PA13 and Corynebacterium diphtheriae (BX248359). 

Nucleotides that are identical in all strains are underlined with an asterisk. 
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P.aeruginosaAAS20532          MKTATAPLPPLRSVKVLDQLRERIRYLHYSLRTEQAYVHWVRAFIRFHGV 50 

PseudomCAA11470               MKTATAPLPPLRSVKVLDQLRERIRYLHYSLRTEQAYVHWVRAFIRFHGV 50 

SalomonellaAAS18383           MKTATAPLPPLRSVKVLDQLRERIRYLHYSLRTEQAYVHWVRAFIRFHGV 50 

PA13                          MKTATAPLPPLRSVKVLDQLRERIRYLHYSLRTEQAYVHWVRAFIRFHGV 50 

Corynebacterium_BX248359      MKTATAPLPPLRSVKVLDQLRERIRYLHYSLRTEQAYVHWVRAFIRFHGV 50 

                              ************************************************** 
 
P.aeruginosaAAS20532          RHPATLGSSEVEAFLSWLANERKVSVSTHRQALAALLFFYGKVLCTDLPW 100 

PseudomCAA11470               RHPATLGSSEVEAFLSWLANERKVSVSTHRQALAALLFFYGKVLCTDLPW 100 

SalomonellaAAS18383           RHPATLGSSEVEAFLSWLANERKVSVSTHRQALAALLFFYGKVLCTDLPW 100 

PA13                          RHPATLGSSEVEAFLSWLANERKVSVSTHRQALAALLFFYGKVLCTDLPW 100 

Corynebacterium_BX248359      RHPATLGSSEVEAFLSWLANERKVSVSTHRQALAALLFFYGKVLCTDLPW 100 

                              ************************************************** 
 
P.aeruginosaAAS20532          LQEIGRPRPSRRLPVVLTPDEVVRILGFLEGEHRLFAQLLYGTGMRISEG 150 

PseudomCAA11470               LQEIGRPRPSRRLPVVLTPDEVVRILGFLEGEHRLFAQLLYGTGMRISEG 150 

SalomonellaAAS18383           LQEIGRPRPSRRLPVVLTPDEVVRILGFLEGEHRLFAQLLYGTGMRISEG 150 

PA13                          LQEIGRPRPSRRLPVVLTPDEVVRILGFLEGEHRLFAQLLYGTGMRISEG 150 

Corynebacterium_BX248359      LQEIGRPRPSRRLPVVLTPDEVVRILGFLEGEHRLFAQLLYGTGMRISEG 150 

                              ************************************************** 
 
P.aeruginosaAAS20532          LQLRVKDLDFDHGTIIVREGKGSKDRALMLPESLAPSLREQLSRARAWWL 200 

PseudomCAA11470               LQLRVKDLDFDHGTIIVREGKGSKDRALMLPESLAPTLREQLSRARAWWL 200 

SalomonellaAAS18383           LQLRVKDLDFDHGTIIVREGKGSKDRALMLPESLAPSLREQLSRARAWWL 200 

PA13                          LQLRVKDLD----SI----------------------------------- 161 

Corynebacterium_BX248359      LQLRVKDLDFDHGTIIVREGKGSKDRALMLPESLAPSLREQLSRG--LCC 198 

                              *********    :*                                    

 

 

Figure 3.8: Clustal W alignments comparing the partial amino acid sequences of the 

integrase enzymes, IntI. The compared integrase genes were from Pseudomonas 

aeruginosa (AAS20532), Pseudomonas aeruginosa (CAA11470), Salmonella 

typhimurium (AAS18383), Pseudomonas aeruginosa PA13 and Corynebacterium 

diphtheriae (AAS18383). Residues that are identical in all strains are underlined with 

an asterisk. 

 

 

ORF2 

 

ORF2, which was 519 bp in length, was located downstream of the integrase gene 

(Figure 3.6). BLASTN analysis of the ORF showed 100% nucleotide identity with 

several aminoglycoside acetyltransferases (AAC(6’)-Ib) encoded products from many 

species including Pseudomonas aeruginosa (AAD02244) (Mugnier et al., 1998), P. 

aeruginosa (CAE48335) (Mendes et al., 2004) and Burkholderia cepacia 

(AAK55331) (Crowley et al, 2002) (Figure 3.9). When translated it encoded a 172 

amino acid protein (Figure 3.10).  

 

However, the aminoglycoside resistance phenotype of P. aeruginosa PA13 suggested 

production of AAC(6’)-IIa enzyme and not AAC(6’)-1b enzyme, due the fact that the 

strain was resistant to gentamicin and not resistant to amikacin. AAC(6’)-IIa confers 
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resistance to gentamicin, tobramycin, netilmicin and sisomicin (but not to amikacin), 

whereas AAC(6’)-Ib confers resistance to amikacin, tobramycin, kanamycin, 

netilmicin, and sisomicin (but not to gentamicin). The most similar enzymes (Figure 

3.10) to the AAC(6’)-Ib in P. aeruginosa PA13 also conferred resistance to 

gentamicin and not to amikacin. The sequences of these aac(6’)-Ib genes were 

compared with an aac(6’)-Ib gene from a Vibrio cholerae strain, which was known to 

confer resistance to amikacin and not to gentamicin (Figure 3.9). The Vibrio cholerae 

gene differed by one nucleotide from the sequence of the other genes. P. aeruginosa 

PA13 and its most similar genes had a cytosine at position 276, whereas the aac(6’)-

Ib gene from Vibrio cholerae had a thymine at this position. When translated this 

nucleotide difference changed the amino acid at position 119 from a leucine in the 

AAC(6’)-Ib enzyme from Vibrio cholerae to a serine in the AAC(6’)-Ib enzyme in P. 

aeruginosa PA13 and its most similar enzymes (Figure 3.10). This suggested that P. 

aeruginosa PA13 possessed a mutant form of the AAC(6’)-Ib enzyme.  

 

 

 

 
B.cepaciaAAK55331                                                           ATGACT 6 

PseudoCAE48335                                                              ATGACT 6 

PA13                                                                        ATGACT 6 

P.aerAAD02244                                                               ATGACT 6 

VirioABC54722                                                               ATGACT 6 

                                                                            ****** 
 
B.cepacia_AAK55331    GAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGG 66 

Pseudo_CAE48335       GAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGG 66 

PA13                  GAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGG 66 

P.aerAAD_02244        GAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGG 66 

Vibrio_ABC54722       GAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGG 66 

                      ************************************************************ 
 
B.cepacia_AAK55331    GGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTT 126 

Pseudo_CAE48335       GGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTT 126 

PA13                  GGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTT 126 

P.aer AAD02244        GGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTT 126 

Vibrio ABC54722       GGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTT 126 

                      ************************************************************ 
 
B.cepacia_AAK55331    TTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTAT 186 

Pseudo_CAE48335       TTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTAT 186 

PA13                  TTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTAT 186 

P.aer_AAD02244        TTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTAT 186 

Vibrio_ABC54722       TTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTAT 186 

                      ************************************************************ 
 
B.cepacia_AAK55331    GCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCA 246 

Pseudo_CAE48335       GCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCA 246 

PA13                  GCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCA 246 

P.aer_AAD02244        GCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCA 246 

Vibrio_ABC54722       GCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCA 246 

                      ************************************************************ 
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B.cepacia_AAK55331    GGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGA 306 

Pseudo_CAE48335       GGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGA 306 

PA13                  GGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGA 306 

P.aer_AAD02244        GGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGA 306 

Vibrio_ABC54722       GGAGTACGCGGAATAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGA 306 

                      ********************** ************************************* 
 
B.cepacia_AAK55331    ACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATC 366 

Pseudo_CAE48335       ACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATC 366 

PA13                  ACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATC 366 

P.aer_AAD02244        ACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATC 366 

Vibrio_ABC54722       ACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATC 366 

                      ************************************************************ 
 
B.cepacia_AAK55331    CAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTT 426 

Pseudo_CAE48335       CAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTT 426 

PA13                  CAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTT 426 

P.aer_AAD02244        CAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTT 426 

Vibrio_ABC54722       CAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTT 426 

                      ************************************************************ 
 
B.cepacia_AAK55331    GAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGC 486 

Pseudo_CAE48335       GAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGC 486 

PA13                  GAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGC 486 

P.aer_AAD02244        GAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGC 486 

Vibrio_ABC54722       GAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGC 486 

                      ************************************************************ 
 
B.cepacia_AAK55331    CAGGCATTCGAGCGAACACGCAGTGATGCCTAA 519 

Pseudo_CAE48335       CAGGCATTCGAGCGAACACGCAGTGTTGCCTAA 519 

PA13                  CAGGCATTCGAGCGAACACGCAGTGATGCCTAA 519 

P.aer_AAD02244        CAGGCATTCGAGCGAACACGCAGTGATGCCTAA 519 

Vibrio_ABC54722       CAGGCATTCGAGCGAACACGCAGTGATGCCTAA 519 

                      ************************* ******* 

 

 

Figure 3.9: Clustal W alignments comparing the nucleotide sequences of the aac(6’)-

Ib. The compared aac(6’)-Ib were from, Burkholderia cepacia (AAK55331), P. 

aeruginosa (CAE48335), P. aeruginosa PA13, P. aeruginosa (AAD02244) and 

Vibrio cholerae (ABC54722). The single nucleotide mutation from the wildtype TTA 

(serine) in Vibrio cholerae (ABC54722) can be seen aligned to the mutant TCA 

(leucine) in Burkholderia cepacia (AAK55331), P. aeruginosa (CAE48335), P. 

aeruginosa PA13, P. aeruginosa (AAD02244). Residues that are identical in all 

strains are underlined with an asterisk. 

                           

 

                                                     
 

Vibrio_ABC54722    MTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPI 60 

PA13               MTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPI 60 

B.cepacia_AAK55331 MTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPI 60 

P.aer_AAD02244     MTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPI 60 

Pseudo_CAE48335    MTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPI 60 

                   ************************************************************ 

 

Vibrio_ABC54722    GYAQSYVALGSGDGWWEEETDPGVRGIDQLLANASQLGKGLGTKLVRALVELLFNDPEVT 120 

PA13               GYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVT 120 

B.cepacia_AAK55331 GYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVT 120 

P.aer_AAD02244     GYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVT 120 

Pseudo_CAE48335    GYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVT 120 

                   ***************************** ****************************** 
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Vibrio_ABC54722    KIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSDA 172 

PA13               KIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSDA 172 

B.cepacia_AAK55331 KIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSDA 172 

P.aer_AAD02244     KIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSDA 172 

Pseudo_CAE48335    KIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSDA 172 

                   **************************************************** 

 

Figure 3.10: Clustal W alignments comparing the amino acid sequences of AAC(6’)-

Ib enzymes. The compared sequences were from P. aeruginosa PA13, Vibrio 

cholerae (ABC54722), P. aeruginosa (AAD02244), Burkholderia cepacia 

(AAK55331), and P. aeruginosa (CAE48335). The serine residue at position 119 in 

P. aeruginosa PA13, Burkholderia cepacia (AAK55331), P. aeruginosa (AAD02244) 

and P. aeruginosa (CAE48335) can be seen, aligned with the more typical leucine 

residue of the wild-type gene in Vibrio cholerae (ABC54722) (highlighted and 

underlined). Residues that are identical in all strains are underlined with an asterisk. 

 

ORF3 

 

ORF3 was identified 82 bp downstream from the aac(6’)-Ib gene (Figure 3.6). ORF3 

encoded a 266 amino acid polypeptide. This ORF showed 99% nucleotide sequence 

identity with an oxacillinase (β-lactamase) gene from an unidentified bacterium from 

a wastewater treatment plant in Germany (AAN41427) (Tennstedt et al, 2003), 99% 

sequence identity with an oxacillinase gene from a clinical isolate of Burkholderia 

cepacia (AAK55330) isolated in Cork (Crowley et al., 2002) and 92% sequence 

identity with OXA-46 from a Pseudomonas aeruginosa (AAN63499) strain isolated 

in Italy (Giuliani et al., 2005) (Figure 3.11). It also showed 82% amino acid sequence 

similarity to OXA-2 from Acinetobacter baumannii (ABN48512) (Yum et al., 2007), 

82% similarity to OXA-53 from Salmonella enterica (AAP43641) (Mulvey et al., 

2004), 82% similarity to OXA-3 from P. aeruginosa (PSEBLA) (Sanschagrin et al., 

1995) and 71% similarity to OXA-20 from Acinetobacter baumannii (CAC85643) 

(Gombac et al., 2002) (Figure 3.11). 

  

Analysis of β-lactamase sequences allows them to be divided into four molecular 

classes according to their amino acid content, classes A, B, C and D. Oxacillinase 

enzymes belong to the Class D β-lactamases. Following sequence alignment using the 

CLUSTALW algorithm (Thompson et al., 1994) several conserved motifs typically 
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found in Class D enzymes were identified (Figure 3.12). These included a serine-

threonine-phenylalanine-lysine (S-T-F-K) tetrad located at position 72-75, an S-X-V 

motif at positions 118 to 120, Y-G-N at position 146-148, a modified W-X-E-X-X-L-

X-I-S motif at positions 159-167 where aspartate, glutamine and glutamate replaced 

the more common residues glutamate, serine and alanine (at positions 161, 163 and 

165 respectively), Q-X-X-X-L at position 171-175, K-T-G at positions 210-212 and 

W-W-V-G-W at positions 219-223 (Couture et al., 1992). The amino acids in Class D 

enzymes are numbered using the DBL numbering system (Couture et al., 1992). 

These numbers are shown in parenthesis below the alignment in Figure 3.12.  

 

 

 
OXA2_ABN48512       ATGGCAATCCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGCAT 60 

OXA3_PSEBLA         ATGGCAATCCGAATCTTTGCAATACTTTTCTCCACTTTTGTTTTTGGCACGTTCGCGCAT 60 

OXA53_AAP43641      ATGGCAATCCAAATCTTCGCAATACTTTTCTCCACTTTTGTTCTTGCCACTTTTGCACAT 60 

PA13                ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCAT 60 

Bcepacia_AAK55330   ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCAT 60 

Uncultured_AAN41427 ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCAT 60 

OXA46_AAN63499      ATGGCAATCCGATTCTTCACCATACTGCTATCCACCTTCTTTCTTACCTCATTCGTGTAT 60 

OXA20_CAC85643      TTGATAATCCGATTTCTAGCACTGCTTTTCTCAGCTGTTGTACTTGTCTCTCTTGGTCAT 60 

                    **  ***** * *  *  *  * **  * **     *     **  * *  * *   ** 
 
OXA2_ABN48512       GCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCC 120 

OXA3_PSEBLA         GCACAAGAAGGCATGCGCGAACGTTCTGACTGGCGGAAGTTTTTCAGCGAATTTCAAGCC 120 

OXA53_AAP43641      GCGCAAGATGGCACGCTGGAACGTTCTGACTGGGGGAAATTTTTCAGCGATTTTCAGGCC 120 

PA13                GCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCC 120 

Bcepacia_AAK55330   GCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCC 120 

Uncultured_AAN41427 GCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCC 120 

OXA46_AAN63499      GCGCAAGAACATGTGGTAATCCGTTCGGACTGGAAAAAGTTCTTCAGCGACCTCCAGGCC 120 

OXA20_CAC85643      GCACAAGAAAAAACGCATGAGAGCTCTAATTGGGGGAAATACTTTAGTGATTTCAACGCT 120 

                    ** *****      *       * **  * ***   ** *  ** ** **  *    **  

 

OXA2_ABN48512       AAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTAAT 180 

OXA3_PSEBLA         AAAGGCACGATAGTTGTGGCAGACGAACGCCAAACAGATCGTGTCATATTGGTTTTTGAT 180 

OXA53_AAP43641      AAAGGTACGATAGTTGTGGCAGACGAACGCCAAGCGGATCATGCGATATTGGTTTTTGAT 180 

PA13                GAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGT 180 

Bcepacia_AAK55330   GAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGT 180 

Uncultured_AAN41427 GAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGT 180 

OXA46_AAN63499      GAAGGTGCAATCGTTATTGCAGACGAACGTCAAGCGAAGCATACTTTATCGGTTTTTGAT 180 

OXA20_CAC85643      AAAGGTACAATAGTTGTAGTAGATGAACGCACAAACGGTAATTCCACATCGGTTTATAAT 180 

                     ****  * ** *** *   *** *****   *        *      * ***** *  * 
 
OXA2_ABN48512       CCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTT 240 

OXA3_PSEBLA         CAGGTGCGGTCAGAGAAACGCTACTCGCCGGCCTCGACATTCAAGATTCCACATACACTT 240 

OXA53_AAP43641      CAAGCACGGTCAATGAAACGCTACTCGCCTGCGTCGACATTCAAGATTCCACATACACTT 240 

PA13                CAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTT 240 

Bcepacia_AAK55330   CAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTT 240 

Uncultured_AAN41427 CAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTT 240 

OXA46_AAN63499      CAAGAGCGAGCGGCAAAGCGTTACTCGCCAGCTTCAACCTTCAAGATACCCCACACACTT 240 

OXA20_CAC85643      GAATCCCGGGCTCAGCAGCGCTATTCGCCTGCGTCCACATTCAAGATTCCGCATACCCTT 240 

                          **  *     * ** ** ***** ** ** ** ****** * ** ** ** *** 
 
OXA2_ABN48512       TTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTT 300 

OXA3_PSEBLA         TTTGCACTTGACGCAGGCGCTGCACGTGATGAGTTTCAAGTTTTCCGATGGGACGGCATC 300 

OXA53_AAP43641      TTTGCACTTGATGCAGGCGCCGTTCGCGATGAGTTTCAGATTTTCCGCTGGGACGGCGTC 300 

PA13                TTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTT 300 

Bcepacia_AAK55330   TTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTT 300 

Uncultured_AAN41427 TTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTT 300 

OXA46_AAN63499      TTTGCACTTGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTT 300 

OXA20_CAC85643      TTTGCGCTGGATGCAGGGGCGGTTCGCGATGAGTTTCATGTTTTTCGATGGGACGGCGCT 300 

                    ***** ** ** ****  ** *  ** ******** **  **** ** *********    
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OXA2_ABN48512       AACAGGGGCTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATTCT 360 

OXA3_PSEBLA         AAAAGAAGCTTTGCAGCTCACAACCAAGACCAAGACTTGCGATCAGCAATGCGGAATTCT 360 

OXA53_AAP43641      AAAAGGAGCTTTGCAGGTCACAATAAAGACCAAGATTTGCGATCAGCAATGCGAAATTCT 360 

PA13                AAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCT 360 

Bcepacia_AAK55330   AAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCT 360 

Uncultured_AAN41427 AAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCT 360 

OXA46_AAN63499      AACCGAAGCTTTGCAGGTCACAATCAAGACCAAGATTTGCGATCAGCGATGCGAAATTCT 360 

OXA20_CAC85643      AAAAGAAGCTTTGCAGGTCACAATCAAGACCAAAACCTACGATCGGCAATGCGCAATTCT 360 

                    **  *  ******* *  ** **  ******** *  * ***** ** ***** ****** 
 
OXA2_ABN48512       ACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTAT 420 

OXA3_PSEBLA         ACTGTCTGGATTTATGAGCTATTTGCAAAAGAGATCGGTGAAGACAAGGCTCGACGCTAT 420 

OXA53_AAP43641      ACTGTCTGGGTTTATGAGCTATTTGCAAAGGAAATCGGTGATGGCAAGGCTCGACGCTAT 420 

PA13                GCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAAGCAAGACGCTAT 420 

Bcepacia_AAK55330   GCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAAAGGACAAAGCAAGACACTAT 420 

Uncultured_AAN41427 GCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAAGCAAGACGCTAT 420 

OXA46_AAN63499      ACGGTTTGGGTTTATGAGCTGTTTGCAAAAGATATCGGAGAGGACAAAGCAAGACGTTAT 420 

OXA20_CAC85643      ACCGTTTGGGTCTATCAACTATTCGCAAAAGAAATAGGCGAAAACAAAGCACGAAGCTAC 420 

                          * ** *** * *** * ** ** ***** ** ** **  *   *** **  *    **  

 

OXA2_ABN48512       TTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATA 480 

OXA3_PSEBLA         TTGAAGCAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATA 480 

OXA53_AAP43641      TTGAAGCAAATCGGCTATGGCAACGCCGATCCTTCGACAAGTCATGGCGATTACTGGATA 480 

PA13                TTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATA 480 

Bcepacia_AAK55330   TTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATA 480 

Uncultured_AAN41427 TTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATA 480 

OXA46_AAN63499      TTAAAGCAAATTGATTATGGCAACGTCGATCCTTCGACAATCAAGGGCGATTACTGGATA 480 

OXA20_CAC85643      CTAGAAAAATTAAACTACGGCAATGCAGACCCCTCGACCAAGAGCGGTGACTACTGGATA 480 

                     *  *  ** *    ** ***** *  ** ** ***** *     ** ** ********* 
 
OXA2_ABN48512       GAAGGCAGCCTTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGT 540 

OXA3_PSEBLA         GATGGCAATCTTGCTATCGCGGCACAAGAACAGATTGCATTTCTCAGGAAGCTCTATCAT 540 

OXA53_AAP43641      GAAGGCAGCCTTGCAATCTCAGCACAGGAACAGATCGCGTTTCTCAGAAAGCTCTATCAA 540 

PA13                GATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGA 540 

Bcepacia_AAK55330   GATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGA 540 

Uncultured_AAN41427 GATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGA 540 

OXA46_AAN63499      GATGGAAATCTTAAAATCTCAGCGCACGAACAGATTTTGTTTCTCAGAAAACTCTATCGA 540 

OXA20_CAC85643      GATGGAAATCTTGCAATTTCAGCAAATGAACAAATTTCCATCCTAAAGAAGCTTTATCGA 540 

                    ** ** *  ***   **  * **  * ** ** **     * ** *  ** ** ****   

 

OXA2_ABN48512       AACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAA 600 

OXA3_PSEBLA         AACGAGTTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGACCTCATGATTGTGGAA 600 

OXA53_AAP43641      AACGATCTGCCCTTTAGGGTGGAACATCAGCGCTTGGTCAAGGATCTGATGATTGTGGAA 600 

PA13                AATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAA 600 

Bcepacia_AAK55330   AATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAA 600 

Uncultured_AAN41427 AATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAA 600 

OXA46_AAN63499      AATCAGTTACCATTTAAGGTGGAGCACCAGCGCTTGGTGAAAGATCTCATGATTACGGAA 600 

OXA20_CAC85643      AATGAGCTTCCTTTTAGGGTAGAGCACCAACGCTTGGTTAAAGACTTGATGATTGTCGAA 600 

                    **  *  * ** ***  *** ** ** ** ******** ** **  * ******   *** 
 
OXA2_ABN48512       GCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGG 660 

OXA3_PSEBLA         GCCGGTCGCAACTGGATACTGCGCGCAAAGACGGGCTGGGAAGGCCGCATTGGTTGGTGG 660 

OXA53_AAP43641      GCGGGACGCAACTGGATTCTGCGCGCGAAGACGGGCTGGGAAGGCAGCATGGGTTGGTGG 660 

PA13                GCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGG 660 

Bcepacia_AAK55330   GCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGG 660 

Uncultured_AAN41427 GCCGGGCGCAATTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGG 660 

OXA46_AAN63499      GCCGGGCGCAGTTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGG 660 

OXA20_CAC85643      GCCAAACGTGATTGGATACTACGTGCCAAAACAGGCTGGGATGGTCAAATGGGTTGGTGG 660 

                    **    **    ***** ** ** ** ** ** ******** **     * ** ****** 
 
OXA2_ABN48512       GTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCA 720 

OXA3_PSEBLA         GTAGGATGGGTTGAGTGGCCGACTGGCCCCGTATTCTTCGCACTGAATATTGATACGCCA 720 

OXA53_AAP43641      GTGGGGTGGGTTGAATGGCCAACCGGTCCCGTATTCTTTGCCTTGAATATCGATACGCCA 720 

PA13                GTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCACTGAATATTGATACGCCA 720 

Bcepacia_AAK55330   GTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCA 720 

Uncultured_AAN41427 GTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCA 720 

OXA46_AAN63499      GTAGGGTGGATTGAATGGCCAACAGGCCCCGTATTCTTTGCGCTGAATATTGATACGCCA 720 

OXA20_CAC85643      GTCGGTTGGGTAGAGTGGCCTACAGGCCCAGTATTTTTTGCGTTAAATATCGACACGCCA 720 

                    ** ** *** * ** ***** ** **  * ***** ** **  * ***** ** ****** 
 
OXA2_ABN48512       AACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTTCGCTCTATT 780 

OXA3_PSEBLA         AACAGGATGGATGACCTTTTCAAAAGGGAGGCAATAGTGCGGGCAATCCTTCGCTCTATC 780 

OXA53_AAP43641      AACAGAATGGACGATCTTTTCAAGAGGGAAGCAATAGCGCGAGCGATACTTCTCTCTATC 780 

PA13                AACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATC 780 

Bcepacia_AAK55330   AACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATC 780 
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Uncultured_AAN41427 AACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATC 780 

OXA46_AAN63499      AACAGAACGGACGATCTTTTCAAAAGAGAGGCCATCGCACGGGCAATCCTTCGTTCTATT 780 

OXA20_CAC85643      AACAGGATGGAAGACCTTCATAAACGAGAGGCAATTGCGCGTGCTATTCTTCAATCCGTC 780 

                    ***** * *** ** ***   **  * ** ** ** *  ** ** ** ****  **  *  

 

OXA2_ABN48512       GAAGCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAA 828 

OXA3_PSEBLA         GAAGCGTTGCCGCCCAACCCGGCAGTCAACTCGGACGCAGCGCGATAA 828 

OXA53_AAP43641      GAAGCGTTGCCGCCCAACCCGGCAGTCCACTCGGACGCTGCGCGATGA 828 

PA13                GACGCATTGCCGCCCAACTAA--------------------------- 801 

Bcepacia_AAK55330   GACGCATTGCCGCCCAACTAA--------------------------- 801 

Uncultured_AAN41427 GACGCATTGCCGCCCAACTAA--------------------------- 801 

OXA46_AAN63499      GACGCATTGCCACCCAACTAA--------------------------- 801 

OXA20_CAC85643      AATGCTTTGCCACCCAACTAG--------------------------- 801 

                     * ** ** ** ******        

 

 

Figure 3.11: Clustal W alignments comparing the nucleotide sequences of 

oxacillinase enzymes. The compared genes are from P. aeruginosa PA13 with OXA 

genes from A. baumannii (ABN48512), P. aeruginosa (PSEBLA), S. enterica 

(AAP43641), Burkholderia cepacia (AAK55330), an unidentified bacterium from a 

wastewater treatment plant in Germany (AAN41427), P. aeruginosa (AAN63499) 

and A. baumannii (CAC85643). Nucleotides that are identical in all strains are 

underlined with an asterisk. 

 

 
OXA53_AAP43641       MAIQIFAILFSTFVLATFAHAQDGTLERSDWGKFFSDFQAKGTIVVADERQADHAILVFD 60 

OXA2_ABN48512        MAIRIFAILFSIFSLATFAHAQEGTLERSDWRKFFSEFQAKGTIVVADERQADRAMLVFN 60 

OXA46_AF317511       MAIRFFTILLSTFFLTSFVYAQEHVVIRSDWKKFFSDLQAEGAIVIADERQAKHTLSVFD 60 

OXA3_Q51429          MAIRFFTILLSTFFLTSFVYAQEHVVIRSDWKKFFSDLQAEGAIVIADERQAKHTLSVFD 60 

PA13                 MAIRFLTILLSTFFLTSFVHAQEHVLERSDWKKFFSDLRAEGAIVISDERQAEHALLVFG 60 

Uncultured_AAN41427  MAIRFLTILLSTFFLTSFVHAQEHVLERSDWKKFFSDLRAEGAIVISDERQAEHALLVFG 60 

B.cepacia_AF371964   MAIRFLTILLSTFFLTSFVHAQEHVLERSDWKKFFSDLRAEGAIVISDERQAEHALLVFG 60 

OXA20_AJ319747       MIIRFLALLFSAVVLVSLGHAQEKTHESSNWGKYFSDFNAKGTIVVVDERTNGNSTSVYN 60 

                     * *:::::*:* . *.:: :**: .   *:* *:**::.*:*:**: ***   .:  *:. 

 

 
 
OXA53_AAP43641       QARSMKRYSPASTFKIPHTLFALDAGAVRDEFQIFRWDGVKRSFAGHNKDQDLRSAMRNS 120 

OXA2_ABN48512        PVRSKKRYSPASTFKIPHTLFALDAGAVRDEFQIFRWDGVNRGFAGHNQDQDLRSAMRNS 120 

OXA46_AF317511       QERAAKRYSPASTFKIPHTLFALDADAVRDEFQVFRWDGVNRSFAGHNQDQDLRSAMRNS 120 

OXA3_Q51429          QERAAKRYSPASTFKIPHTLFALDADAVRDEFQVFRWDGVNRSFAGHNQDQDLRSAMRNS 120 

PA13                 QERAAKRYSPASTFKLPHTLFALDADAVRDEFQVFRWDGVKRSFAGHNQDQDLRSAMRNS 120 

Uncultured_AAN41427  QERAAKRYSPASTFKLPHTLFALDADAVRDEFQVFRWDGVKRSFAGHNQDQDLRSAMRNS 120 

B.cepacia_AF371964   QERAAKRYSPASTFKLPHTLFALDADAVRDEFQVFRWDGVKRSFAGHNQDQDLRSAMRNS 120 

OXA20_AJ319747       ESRAQQRYSPASTFKIPHTLFALDAGAVRDEFHVFRWDGAKRSFAGHNQDQNLRSAMRNS 120 

                       *: :*********:*********.******::*****.:*.*****:**:******** 

     (70-73)  
 
 
OXA53_AAP43641       TVWVYELFAKEIGDGKARRYLKQIGYGNADPSTSHGDYWIEGSLAISAQEQIAFLRKLYQ 180 

OXA2_ABN48512        TVWVYELFAKEIGDDKARRYLKKIDYGNADPSTSNGDYWIEGSLAISAQEQIAFLRKLYR 180 

OXA46_AF317511       TVWVYELFAKDIGEDKARRYLKQIDYGNVDPSTIKGDYWIDGNLKISAHEQILFLRKLYR 180 

OXA3_Q51429          TVWVYELFAKDIGEDKARRYLKQIDYGNVDPSTIKGDYWIDGNLKISAHEQILFLRKLYR 180 

PA13                 AVWVYELFAKEIGEDKARRYLKQIDYGNADPSTIKGDYWIDGNLEISAHEQISFLRKLYR 180 

Uncultured_AAN41427  AVWVYELFAKEIGEDKARRYLKQIDYGNADPSTIKGDYWIDGNLEISAHEQISFLRKLYR 180 

B.cepacia_AF371964   AVWVYELFAKEIGKDKARHYLKQIDYGNADPSTIKGDYWIDGNLEISAHEQISFLRKLYR 180 

OXA20_AJ319747       TVWVYQLFAKEIGENKARSYLEKLNYGNADPSTKSGDYWIDGNLAISANEQISILKKLYR 180 

                     :****:****:**..*** **:::.***.****  *****:*.* ***:*** :*:***: 

  (118-120)       (144-146) (164-172)   (176-180) 
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OXA53_AAP43641       NDLPFRVEHQRLVKDLMIVEAGRNWILRAKTGWEGSMGWWVGWVEWPTGPVFFALNIDTP 240 

OXA2_ABN48512        NELPFRVEHQRLVKDLMIVEAGRNWILRAKTGWEGRMGWWVGWVEWPTGSVFFALNIDTP 240 

OXA46_AF317511       NQLPFKVEHQRLVKDLMITEAGRSWILRAKTGWEGRFGWWVGWIEWPTGPVFFALNIDTP 240 

OXA3_Q51429          NQLPFKVEHQRLVKDLMITEAGRSWILRAKTGWEGRFGWWVGWIEWPTGPVFFALNIDTP 240 

PA13                 NQLPFQVEHQRLVKDLMITEAGRNWILRAKTGWEGRFGWWVGWVEWPTGPVFFALNIDTP 240 

Uncultured_AAN41427  NQLPFQVEHQRLVKDLMITEAGRNWILRAKTGWEGRFGWWVGWVEWPTGPVFFALNIDTP 240 

B.cepacia_AF371964   NQLPFQVEHQRLVKDLMITEAGRNWILRAKTGWEGRFGWWVGWVEWPTGPVFFALNIDTP 240 

OXA20_AJ319747       NELPFRVEHQRLVKDLMIVEAKRDWILRAKTGWDGQMGWWVGWVEWPTGPVFFALNIDTP 240 

                     *:***:************.** *.*********:* :******:*****.********** 

     (216-218) (225-229) 

 

OXA53_AAP43641       NRMDDLFKREAIARAILLSIEALPPNPAVHSDAAR 275 

OXA2_ABN48512        NRMDDLFKREAIVRAILRSIEALPPNPAVNSDAAR 275 

OXA46_AF317511       NRTDDLFKREAIARAILRSIDALPPN--------- 266 

OXA3_Q51429          NRTDDLFKREAIARAILRSIDALPPN--------- 266 

PA13                 NRTDDLFKREAIARAILRSIDALPPN--------- 266 

Uncultured_AAN41427  NRTDDLFKREAIARAILRSIDALPPN--------- 266 

B.cepacia_AF371964   NRTDDLFKREAIARAILRSIDALPPN--------- 266 

OXA20_AJ319747       NRMEDLHKREAIARAILQSVNALPPN--------- 266 

                     ** :**.*****.**** *::*****     

 

Figure 3.12: Clustal W alignments comparing the amino acid sequences of 

oxacillinase enzymes. The compared amino acid sequences are from P. aeruginosa 

PA13 with OXA-53 (AAP43641), OXA-2 (ABN48512), OXA-46 (AF317511), 

OXA-3 (Q51429), an OXA-type enzyme from unidentified bacterium from a 

wastewater treatment plant in Germany (AAN41427), an OXA-type enzyme from 

Burkholderia cepacia (AF371964) and OXA-20 (AJ319747). All these enzymes are 

representative of the OXA-2 lineage. The conserved motifs of OXA-type enzymes 

conserved structural regions are highlighted and underlined. DBL numbering is in 

parenthesis below the alignments. Residues that are identical in all strains are 

underlined with an asterisk. 

 

 

 

ORF4 

 

 

Downstream from the oxacillinase gene cassette, ORF4 was identified (Figure 3.6). 

ORF4 encoded a partial sequence that shared 100% nucleotide similarity to previously 

published qacE∆1 genes located on integrons from many strains including E. coli 

(U12441) (Sundstrum et al., 1988) and P. aeruginosa (U63835) (Danel et al., 1997) 

and P. aeruginosa (AJ620678) (Castanheira et al., 2004) which confer resistance to 

quaternary ammonium compounds (Figure 3.13). This quaternary ammonium 

compound resistance gene is typical of class 1 integrons where they are found in the 

3’ conserved segment (Daly and Fanning, 2000). 
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Paer_U63835        ------------ATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCT 119 

PA_AJ620678        ------------ATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCT 118 

E.coli_U12441      ------------ATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCT 119 

PA13               ------------ATGCACTAAGCACATAATTGCTCACAGCCAAACTATCAGGTCAAGTCT 91 

                               ************************************************ 
 
Paer_U63835        GCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 179 

PA_AJ620678        GCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 178 

E.coli_U12441      GCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 179 

PA13               GCTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 151 

                   ************************************************************ 
 
Paer_U63835        ACTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 239 

PA_AJ620678        ACTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 238 

E.coli_U12441      ACTTTTATTATTTTTAAGCGTGCATAATAAGCCCTACACAAATTGGGAGATATATCATGA 239 

PA13               AAGGCTGGCTTTTTCTTGTTATCGCAATAGTGGCGAAG--AATC---------------- 193 

                   *    *    ****   *    *  ****    * *    ***                  

 

 

Figure 3.13: Clustal W alignments comparing the partial nucleotide sequences of 

quaternary ammonium compound resistance genes, qacE∆1. The compared qacE∆1 

genes are from Pseudomonas aeruginosa (U63835), Pseudomonas aeruginosa 

(AJ620678), E. coli (U12441) and Pseudomonas aeruginosa PA13. Residues that are 

identical in all strains are underlined with an asterisk. 

 

3.3.4 The Integron 

 

The presence of both the integrase gene (intI) and the quaternary ammonium 

compound resistance gene (qac∆E1) (Figure 3.6) indicated that the resistance genes in 

P. aeruginosa PA13 were on an integron. The complete nucleotide sequence of the 

integron amplified from P. aeruginosa PA13 was compared to organisms containing 

integrons with the most similar sequences using the GenBank database (Figure 3.14). 

Analysis of the sequence showed that the integron was 95% similar to an integron 

found in a Pseudomonas aeruginosa strain in Italy (Giuliani et al, 2005), 92% similar 

to an integron found in a Vibrio cholerae strain in Argentina (Soler Bistué et al., 

2006), 92% similar to an integron described in a Morganella morganii strain in 

Argentina (Power et al., 2005), and 88% similar to an integron found in a 

Pseudomonas aeruginosa strain in France (Naas et al., 1998). 

 
Morganii_AJ621187    -AGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAATCCAGATC 491 

Paeruginosa_AF024602 -AGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAATCCAGATC 491 

Vibrio_DQ310703      -AGCCCTTGCCCTCCCGCACGATGATCGTGCCGTGATCGAAATCCAGATC 5719 

PA13                 ----------------------------------GATCGAA-TCCAGATC 15 

Paeruginosa_AF317511 TAGCAGATGCGGCATAACAAATCGTTGGAGCGGGACTTTTGCTACGCAGG 1035 

                                                         *     * *  *   
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Morganii_AJ621187    CTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCC---CGTTCCA- 537 

Paeruginosa_AF024602 CTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCC---CGTTCCA- 537 

Vibrio_DQ310703      CTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCC---CGTTCCA- 5765 

PA13                 CTTGACCCGCAGTTGCAAACCCTCACTGATCCGCATGCC---CGTTCCA- 61 

Paeruginosa_AF317511 CTGCGCCTACT-CCGCAAAAGCCCCTCAACTCAGGCGTTAGGCATCACAA 1084 

                     **   **  *    *****  * *    *  *    *     * *  **  

 

Morganii_AJ621187    --TACAGAAGCTGGGCGAACA--AACGATGC--TCGCCTT---CCAGAAA 578 

Paeruginosa_AF024602 --TACAGAAGCTGGGCGAACA--AACGATGC--TCGCCTT---CCAGAAA 578 

Vibrio_DQ310703      --TACAGAAGCTGGGCGAACA--AACGATGC--TCGCCTT---CCAGAAA 5806 

PA13                 --TACAGAAGCTGGGCGAACA--AACGATGC--TCGCCTT---CCAGAAA 102 

Paeruginosa_AF317511 AGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATG 1134 

                       ***** * *  * * ****  ****** *  ** *  *   **  *   

 

Morganii_AJ621187    ACCGAGGATG----CGAACCACTTCATCCGGGGTCAGCAC-------CAC 617 

Paeruginosa_AF024602 ACCGAGGATG----CGAACCACTTCATCCGGGGTCAGCAC-------CAC 617 

Vibrio_DQ310703      ACCGAGGATG----CGAACCACTTCATCCGGGGTCAGCAC-------CAC 5845 

PA13                 ACCGAGGATG----CGAACCACTTCATCCGGGGTCAGCAC-------CAC 141 

Paeruginosa_AF317511 ACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATAT 1184 

                     ** *** ***     *     **  **  * **  *   *        *  

 

Morganii_AJ621187    CGGCAAGCGCCGCGACGGCCGAGGT---CTTCCGAT--CTCCTGAAGC-C 661 

Paeruginosa_AF024602 CGGCAAGCGCCGCGACGGCCGAGGT---CTTCCGAT--CTCCTGAAGC-C 661 

Vibrio_DQ310703      CGGCAAGCGCCGCGACGGCCGAGGT---CTTCCGAT--CTCCTGAAGC-C 5889 

PA13                 CGGCAAGCGCCGCGACGGCCGAGGT---CTTCCGAT--CTCCTGAAGC-C 185 

Paeruginosa_AF317511 CGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTAC 1234 

                     ** * ** *  * * ***   **     *  ****    * **** *  * 

 

Morganii_AJ621187    AGGGCAGATCCGTGCACAGCACCTTGCCGTAGAAGAACAGCAAGGCCGCC 711 

Paeruginosa_AF024602 AGGGCAGATCCGTGCACAGCACCTTGCCGTAGAAGAACAGCAAGGCCGCC 711 

Vibrio_DQ310703      AGGGCAGATCCGTGCACAGCACCTTGCCGTAGAAGAACAGCAAGGCCGCC 5939 

PA13                 AGGGCAGATCCGTGCACAGCACCTTGCCGTAGAAGAACAGCAAGGCCGCC 235 

Paeruginosa_AF317511 AGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATAC 1284 

                     ***     * * ***  ***   **  ** *  **  *  **   *   * 

 

Morganii_AJ621187    AATGCCTGACGATGCGTGGAGA-CCGA------------AACCTTGCGCT 748 

Paeruginosa_AF024602 AATGCCTGACGATGCGTGGAGA-CCGA------------AACCTTGCGCT 748 

Vibrio_DQ310703      AATGCCTGACGATGCGTGGAGA-CCGA------------AACCTTGCGCT 5976 

PA13                 AATGCCTGACGATGCGTGGAGA-CCGA------------AACCTTGCGCT 272 

Paeruginosa_AF317511 ATTGC--AATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTT 1332 

                     * ***   * * **  ****** ****            *  * * ** * 

 

Morganii_AJ621187    -CGTTCGCCAGCCAGGACAGA---------AATGCCTCGACTTCGCTGCT 788 

Paeruginosa_AF024602 -CGTTCGCCAGCCAGGACAGA---------AATGCCTCGACTTCGCTGCT 788 

Vibrio_DQ310703      -CGTTCGCCAGCCAGGACAGA---------AATGCCTCGACTTCGCTGCT 6016 

PA13                 -CGTTCGCCAGCCAGGACAGA---------AATGCCTCGACTTCGCTGCT 312 

Paeruginosa_AF317511 GCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGT 1382 

                      *  * *  ***  **** **          * *   *   * *     * 

 

Morganii_AJ621187    GCCCAAGGTTGCCGGGT----GACGCACACCGTGGAAACGGATGAAGGCA 834 

Paeruginosa_AF024602 GCCCAAGGTTGCCGGGT----GACGCACACCGTGGAAACGGATGAAGGCA 834 

Vibrio_DQ310703      GCCCAAGGTTGCCGGGT----GACGCACACCGTGGAAACGGATGAAGGCA 6062 

PA13                 GCCCAAGGTTGCCGGGT----GACGCACACCGTGGAAACGGATGAAGGCA 358 

Paeruginosa_AF317511 ACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCT 1432 

                      * *    * * *  **    * ** *  *     **  **   *****  

 

Morganii_AJ621187    CG--AACCCAGTTGACATAAGCCT--GTTCGGTTCGTGAACTGTAATGC- 879 

Paeruginosa_AF024602 CG--AACCCAGTTGACATAAGCCT--GTTCGGTTCGTGAACTGTAATGC- 879 

Vibrio_DQ310703      CG--AACCCAGTTGACATAAGCCT--GTTCGGTTCGTAAACTGTAATGC- 6107 

PA13                 CG--AACCCAGTGGACATAAGCCT--GTTCGGTTCGTAAGCTGTAATGC- 403 

Paeruginosa_AF317511 TGGGAACCAAGCTGGTTCGAGCACTGGTTGAGTTGCTGTTCAATGATCCC 1482 

                      *  **** **  *     ***    ***  ***  *   *  * ** *  

 

Morganii_AJ621187    -AAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCA 928 

Paeruginosa_AF024602 -AAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCA 928 

Vibrio_DQ310703      -AAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCA 6156 

PA13                 -AAGTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCA 452 

Paeruginosa_AF317511 GAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGAT 1532 

                      * **  *  *    *  *** * * *   * ** *      *** **   

 

Morganii_AJ621187    GCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTA---TGACTGT 975 

Paeruginosa_AF024602 GCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTA---TGACTGT 975 

Vibrio_DQ310703      GCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTA---TGACTGT 6203 

PA13                 GCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTA---TGACTGT 499 

Paeruginosa_AF317511 CCGATGCTA-CGAGAAAGCGG-GGTTTGAGAGGCAAGGTACCGTAACCAC 1580 

                      ** ** ** **    ** ** *****    ***  * **   * **    
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Morganii_AJ621187    TTTT--TTGTACAGTC-----TATGCCTCGGGCAT-CCAAGCAG-CAAGC 1016 

Paeruginosa_AF024602 TTTT--TTGTACAGTC-----TATGCCTCGGGCAT-CCAAGCAG-CAAGC 1016 

Vibrio_DQ310703      TTTT--TTGTACAGTC-----TATGCCTCGGGCAT-CCAAGCAG-CAAGC 6244 

PA13                 TTTG--TTGTACAGTC-----TATGCCTCGGGCAT-CCAAGCAG-CAAGC 540 

Paeruginosa_AF317511 CCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGC 1630 

                           * ** *** *      ***  **   **  *** ***  * *** 

 

Morganii_AJ621187    GCGTTACGCCGTGG-GTCGATGTTTGATGTTATGGAGCAACAACGATGTT 1065 

Paeruginosa_AF024602 GCGTTACGCCGTGG-GTCGATGTTTGATGTTATGGAGCAACAACGATGTT 1065 

Vibrio_DQ310703      GCGTTACGCCGTGG-GTCGATGTTTGATGTTATGGAGCAGCAACGATGTT 6293 

PA13                 GCGTTACGCCGTGG-GTCGATGTTTGATGTTATGGAGCAGCAACGATGTT 589 

Paeruginosa_AF317511 GAAC-ACGCAGTGATGCCTAACCCTTCCATCGAGGGGGACGTCCAAGGGC 1679 

                     *    **** ***  * * *    *    *   ** * *    * * *   

 

Morganii_AJ621187    ACGCAGCAG-----------TAAAACAAA-GTTAGGCATCACAAAGTACA 1103 

Paeruginosa_AF024602 ACGCAGCAG-----------TAAAACAAA-GTTAGGCATCACAAAGTACA 1103 

Vibrio_DQ310703      ACGCAGCAG-----------TAAAACAAA-GTTAGGCATCACAAAGTACA 6331 

PA13                 ACGCAGCAGGGCAGTCGCCCTAAAACAAA-GTTAGGCATCACAAAGTACA 638 

Paeruginosa_AF317511 TGGCGCCCTTGGCCGCCCCTCATGTCAAACGTTAGGCATCACAAAGTACA 1729 

                       **  *              *   **** ******************** 

 

Morganii_AJ621187    GCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAG 1153 

Paeruginosa_AF024602 GCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAG 1153 

Vibrio_DQ310703      GCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAG 6381 

PA13                 GCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAG 688 

Paeruginosa_AF317511 GCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAG 1779 

                     ************************************************** 

 

Morganii_AJ621187    CATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGA 1203 

Paeruginosa_AF024602 CATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGA 1203 

Vibrio_DQ310703      CATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGA 6431 

PA13                 CATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGA 738 

Paeruginosa_AF317511 CATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGA 1829 

                     ************************************************** 

 

Morganii_AJ621187    GTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAAC 1253 

Paeruginosa_AF024602 GTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAAC 1253 

Vibrio_DQ310703      GTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAAC 6481 

PA13                 GTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAAC 788 

Paeruginosa_AF317511 GTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAAC 1879 

                     ************************************************** 

 

Morganii_AJ621187    AGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCA 1303 

Paeruginosa_AF024602 AGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCA 1303 

Vibrio_DQ310703      AGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCA 6531 

PA13                 AGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCA 838 

Paeruginosa_AF317511 AGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCA 1929 

                     ************************************************** 

 

Morganii_AJ621187    ATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGG 1353 

Paeruginosa_AF024602 ATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGG 1353 

Vibrio_DQ310703      ATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGG 6581 

PA13                 ATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGG 888 

Paeruginosa_AF317511 ATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGG 1979 

                     ************************************************** 

 

Morganii_AJ621187    AAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAA 1403 

Paeruginosa_AF024602 AAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAA 1403 

Vibrio_DQ310703      AAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAA 6631 

PA13                 AAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAA 938 

Paeruginosa_AF317511 AAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAA 2029 

                     ************************************************** 

 

Morganii_AJ621187    TAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACC 1453 

Paeruginosa_AF024602 TAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACC 1453 

Vibrio_DQ310703      TAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACC 6681 

PA13                 TAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACC 988 

Paeruginosa_AF317511 TAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACC 2079 

                     ********* **************************************** 

 

Morganii_AJ621187    AAGCTGGTCCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCAC 1503 

Paeruginosa_AF024602 AAGCTGGTCCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCAC 1503 

Vibrio_DQ310703      AAGCTGGTCCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCAC 6731 

PA13                 AAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCAC 1038 

Paeruginosa_AF317511 AAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCAC 2129 

                     ******** ***************************************** 
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Morganii_AJ621187    CAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCT 1553 

Paeruginosa_AF024602 CAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCT 1553 

Vibrio_DQ310703      CAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCT 6781 

PA13                 CAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCT 1088 

Paeruginosa_AF317511 CAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCT 2179 

                     ************************************************** 

 

Morganii_AJ621187    ACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGT 1603 

Paeruginosa_AF024602 ACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGT 1603 

Vibrio_DQ310703      ACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGT 6831 

PA13                 ACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGT 1138 

Paeruginosa_AF317511 ACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGT 2229 

                     ************************************************** 

 

Morganii_AJ621187    CCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAG 1653 

Paeruginosa_AF024602 CCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAG 1653 

Vibrio_DQ310703      CCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAG 6881 

PA13                 CCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAG 1188 

Paeruginosa_AF317511 CCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAG 2279 

                     ************************************************** 

 

Morganii_AJ621187    TGATGCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTT 1702 

Paeruginosa_AF024602 TGATGCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTT 1702 

Vibrio_DQ310703      TGATGCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTT 6930 

PA13                 TGATGCCTAACCCTTCCATCGGAGGGGGACGTCCAAGGGCTGGCGCCCTT 1238 

Paeruginosa_AF317511 TGATGCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTT 2328 

                     ********************* **************************** 

 

Morganii_AJ621187    GGCCGCCCCTCATGTCAAACGTTGGGCATTAAGGAAAAGTTAATGGCAAT 1752 

Paeruginosa_AF024602 GGCCGCCCCTCATGTCAAACGTTGGGCATTAAGGAAAAGTTAATGGCAAT 1752 

Vibrio_DQ310703      GGCCGCCCCTCATGTCAAACGTTGGGCATTAAGGAAAAGTTAATGGCAAT 6980 

PA13                 GGCCGCCCCTCATGTCAAACGTTAGGCGTCAAAGGAAACTTAATGGCAAT 1288 

Paeruginosa_AF317511 GGCCGCCCCTCATGTCAAACGTTGGGCATCAAAGGAAATTTAATGGCAAT 2378 

                     *********************** *** * ** * *** *********** 

 

Morganii_AJ621187    CCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGC 1802 

Paeruginosa_AF024602 CCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGC 1802 

Vibrio_DQ310703      CCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGC 7030 

PA13                 CCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGC 1338 

Paeruginosa_AF317511 CCGATTCTTCACCATACTGCTATCCACCTTCTTTCTTACCTCATTCGTGT 2428 

                     **** ** ** * *****  * ** *  ** * **** ** * **** *  

 

Morganii_AJ621187    ATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGC 1852 

Paeruginosa_AF024602 ATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGC 1852 

Vibrio_DQ310703      ATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGC 7080 

PA13                 ATGCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGC 1388 

Paeruginosa_AF317511 ATGCGCAAGAACATGTGGTAATCCGTTCGGACTGGAAAAAGTTCTTCAGC 2478 

                     ***********     * **   ***** *******  ***** ****** 

 

Morganii_AJ621187    GAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGA 1902 

Paeruginosa_AF024602 GAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGA 1902 

Vibrio_DQ310703      GAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGA 7130 

PA13                 GACCTCCGGGCCGAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGA 1438 

Paeruginosa_AF317511 GACCTCCAGGCCGAAGGTGCAATCGTTATTGCAGACGAACGTCAAGCGAA 2528 

                     **  * *  *** ****  * ** *** *  ********** ****** * 

 

Morganii_AJ621187    TCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGC 1952 

Paeruginosa_AF024602 TCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGC 1952 

Vibrio_DQ310703      TCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGC 7180 

PA13                 GCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACTCGC 1488 

Paeruginosa_AF317511 GCATACTTTATCGGTTTTTGATCAAGAGCGAGCGGCAAAGCGTTACTCGC 2578 

                      * * *  * * ******** **  * **** *    ** ** ******* 

 

Morganii_AJ621187    CTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGC 2002 

Paeruginosa_AF024602 CTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGC 2002 

Vibrio_DQ310703      CTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGC 7230 

PA13                 CTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGAC 1538 

Paeruginosa_AF317511 CAGCTTCAACCTTCAAGATACCCCACACACTTTTTGCACTTGATGCAGAC 2628 

                     * ** ** ** ****** * ** ** ************** ******* * 

 

Morganii_AJ621187    GCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGG 2052 

Paeruginosa_AF024602 GCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGG 2052 

Vibrio_DQ310703      GCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGG 7280 

PA13                 GCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAAACGGAG 1588 

Paeruginosa_AF317511 GCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAACCGAAG 2678 

                     ** ****************** **********************  *  * 
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Morganii_AJ621187    CTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATT 2102 

Paeruginosa_AF024602 CTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATT 2102 

Vibrio_DQ310703      CTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATT 7330 

PA13                 CTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATT 1638 

Paeruginosa_AF317511 CTTTGCAGGTCACAATCAAGACCAAGATTTGCGATCAGCGATGCGAAATT 2728 

                     ****** ** ** ************** *********** ***** **** 

 

Morganii_AJ621187    CTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAA 2152 

Paeruginosa_AF024602 CTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAA 2152 

Vibrio_DQ310703      CTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAA 7380 

PA13                 CTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAA 1688 

Paeruginosa_AF317511 CTACGGTTTGGGTTTATGAGCTGTTTGCAAAAGATATCGGAGAGGACAAA 2778 

                     ** * ** ***** ******** ******** ** ** ** ** ****** 

 

Morganii_AJ621187    GCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGAC 2202 

Paeruginosa_AF024602 GCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGAC 2202 

Vibrio_DQ310703      GCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGAC 7430 

PA13                 GCAAGACGCTATTTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGAC 1738 

Paeruginosa_AF317511 GCAAGACGTTATTTAAAGCAAATTGATTATGGCAACGTCGATCCTTCGAC 2828 

                     **  * ** ***** *** **** ** ********** *** ******** 

 

Morganii_AJ621187    AAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGG 2252 

Paeruginosa_AF024602 AAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGG 2252 

Vibrio_DQ310703      AAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGG 7480 

PA13                 AATCAAGGGCGATTACTGGATAGATGGCAATCTTGAAATCTCAGCGCACG 1788 

Paeruginosa_AF317511 AATCAAGGGCGATTACTGGATAGATGGAAATCTTAAAATCTCAGCGCACG 2878 

                     **  ** ***************** ** *  ***  ****** ***** * 

 

Morganii_AJ621187    AGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGG 2302 

Paeruginosa_AF024602 AGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGG 2302 

Vibrio_DQ310703      AGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGG 7530 

PA13                 AACAGATTTCGTTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAG 1838 

Paeruginosa_AF317511 AACAGATTTTGTTTCTCAGAAAACTCTATCGAAATCAGTTACCATTTAAG 2928 

                     * ** ***   ******** ** ******** **  ** * ** ***  * 

 

Morganii_AJ621187    GTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCG 2352 

Paeruginosa_AF024602 GTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCG 2352 

Vibrio_DQ310703      GTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCG 7580 

PA13                 GTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAAGCCGGGCG 1888 

Paeruginosa_AF317511 GTGGAGCACCAGCGCTTGGTGAAAGATCTCATGATTACGGAAGCCGGGCG 2978 

                     ** ** ** *********** ** ************  ********* ** 

 

Morganii_AJ621187    CAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGT 2402 

Paeruginosa_AF024602 CAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGT 2402 

Vibrio_DQ310703      CAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGT 7630 

PA13                 CAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGT 1938 

Paeruginosa_AF317511 CAGTTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGT 3028 

                     **  ******** ** ******** ************ *  * ** **** 

 

Morganii_AJ621187    GGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAAT 2452 

Paeruginosa_AF024602 GGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAAT 2452 

Vibrio_DQ310703      GGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAAT 7680 

PA13                 GGGTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCACTGAAT 1988 

Paeruginosa_AF317511 GGGTAGGGTGGATTGAATGGCCAACAGGCCCCGTATTCTTTGCGCTGAAT 3078 

                     ******* *** * ** ***** ** **  ********** ** ****** 

 

Morganii_AJ621187    ATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGT 2502 

Paeruginosa_AF024602 ATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGT 2502 

Vibrio_DQ310703      ATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGT 7730 

PA13                 ATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGC 2038 

Paeruginosa_AF317511 ATTGATACGCCAAACAGAACGGACGATCTTTTCAAAAGAGAGGCCATCGC 3128 

                     ******************* *** *********** ** ***** ****  

 

Morganii_AJ621187    GCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCA 2552 

Paeruginosa_AF024602 GCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCA 2552 

Vibrio_DQ310703      GCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCA 7780 

PA13                 GCGGGCAATCCTTCGCTCTATCGACGCATTGCCGCCCAACTAATCAATCC 2088 

Paeruginosa_AF317511 ACGGGCAATCCTTCGTTCTATTGACGCATTGCCACCCAACTAACCAATCC 3178 

                      ************** ***** ** ** ** ** ******    ** **  

 

Morganii_AJ621187    ACTCGGACGCTGCGCGATAAAACCGCGCAGCGCCGGTTACTTCAA-CGTT 2601 

Paeruginosa_AF024602 ACTCGGACGCTGCGCGATAAAACCGCGCAGCGCCGGTTACTTCAA-CGTT 2601 

Vibrio_DQ310703      ACTCGGACGCTGCGCGATAAAACCGCGCAGCGCCGGTTACTTCAA-CGTT 7829 

PA13                 AG-CGGACGCCTT--------------CGGCGCCGCTGATTTCAA-CGTT 2122 

Paeruginosa_AF317511 AGCCG-ACGCCTT--------------CGACGCGGCTGATTTCAAACGTT 3213 

                     *  ** ****                 *  *** * * * ***** **** 
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Morganii_AJ621187    AGTACCACTGAAACCCTCCTTTATTTCGCCCATGTTTATTCAAACGGCAT 2651 

Paeruginosa_AF024602 AGTACCACTGAAACCCTCCTTTATTTCGCCCATGTTTATTCAAACGGCAT 2651 

Vibrio_DQ310703      AGTACCACTGAAACCCTCCTTTATTTCGCCCATGTTTATTCAAACGGCAT 7879 

PA13                 AGATGCACTAAGCACATAATTGCTCACAGCCAAACTA--TCAGGTCAAGT 2170 

Paeruginosa_AF317511 AGATGCACT-AAGCACATAATTGCT------------------------- 3237 

                     **   **** *         *                              

 

Morganii_AJ621187    TCAGTTTCTCAAACGCTGTGCAGCGCTGGGTTTGCCGTTTCTCTGGGCTT 2701 

Paeruginosa_AF024602 TCAGTTTCTCAAACGCTGTGCAGCGCTGGGTTTGCCGTTTCTCTGGGCTT 2701 

Vibrio_DQ310703      TCAGTTTCTCAAACGCTGTGCAGCGCTGGGTTTGCCGTTTCTCTGGGCTT 7929 

PA13                 CTGCTTTTATTATTTTTAAGC-GTGCATAATAAGCC----CTACACAAAT 2215 

Paeruginosa_AF317511 -------------------------------------------------- 

                                                                              

 

Morganii_AJ621187    CGCCTGGTGGCGTTACGCTGGTTTGTGGTCTTTTTGGCCTCTGGCCCTTG 2751 

Paeruginosa_AF024602 CGCCTGGTGGCGTTACGCTGGTTTGTGGTCTTTTTGGCCTCTGGCCCTTG 2751 

Vibrio_DQ310703      CGCCTGGTGGCGTTACGCTGGTTTGTGGTCTTTTTGGCCTCTGGCCCTTG 7979 

PA13                 TGGGAGATA-TATCATGAAAGGCTGGCTTTTTCTTG--TTATCGCAATAG 2262 

Paeruginosa_AF317511 -------------------------------------------------- 

                                                                              

 

Morganii_AJ621187    TGTAGCAAGCGCGAGCAGCTATTTTTTTCGTAGTGCTGTGCCGCCTCGGT 2801 

Paeruginosa_AF024602 TGTAGCAAGCGCGAGCAGCTATTTTTTTCGTAGTGCTGTGCCGCCTCGGT 2801 

Vibrio_DQ310703      TGTAGCAAGCGCGAGCAGCTATTTTTTTCGTAGTGCTGTGCCGCCTCGGT 8029 

PA13                 TGGCGAAGAATC-------------------------------------- 2274 

Paeruginosa_AF317511 -------------------------------------------------- 

 

Figure 3.14: A comparison of the integron nucleotide sequence from P. aeruginosa 

PA13 with similar integron sequences from Morganella morganii (AJ621187), P. 

aeruginosa (AF024602), Vibrio cholerae (DQ310703) and P. aeruginosa 

(AF317511).  Residues that are identical in all strains are underlined with an asterisk. 

 

Integrons possess two essential elements, located at the 5’ conserved segment (CS), 

which are able to mobilize and insert gene cassettes. These are an intI gene encoding a 

site-specific recombinase belonging to the integrase family and its associated primary 

recombination site, attI (Collis and Hall, 1995). Captured genes (usually antibiotic 

resistance genes) are part of discrete mobile cassettes that contain the protein-coding 

region and a 3’-associated integrase-specific recombination site known as attC, 

belonging to the family of sites known as 59-base elements (Recchia and Hall, 1995). 

The outer boundaries of the 59-base element contain the conserved seven base pair 

core site GTTRRRY at the recombinant cross-over point, and an inverse core site 

RYYYAAC at the 3’ end of the inserted gene cassette (where Y = pyrimidine [T or C] 

and R = purine [A or G]). 

 

Located downstream of the aac(6’)-Ib (ORF2) gene cassette and upstream of bla-OXA 

gene (ORF3) was a short imperfect repeat element which matched the consensus 59-

base element (attC) which is associated with fused ORFs within gene cassettes 

(GTTAGGC [Figure 3.5] located between nucleotide position 1259 and 1265). The 
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attC recombination site (59-base element) of the the aac(6’)-Ib gene cassette was 73 

base pairs long and includes all the elements typical of the attC sites (Figure 3.15). 

The sequence of this attC site was compared with the most similar attC site sequences 

from other integrons containing aac(6’)-Ib genes using information in the Genbank 

database (Figure 3.15.  It shared to be 99% similarity with attC sites found in two 

Pseudomonas aeruginosa isolates (Mugnier et al., 1998) (Mendes et al., 2004) and 

96% similar to attC sites from a Burkholderia cepacia strain and a Pseudomonas 

aeruginosa strain (Crowley et al., 2002) (Danel et al., 1997).  

 

 
PA13               GCCTAACCCTTCCATCGGAGGGGGACGTCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATG 60 

P.aerug_AAD02244   GCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATG 59 

P.aer_AF043381     GCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATG 59 

B.cepacia_AAK55331 GCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATG 59 

Ps.aer_AJ584652    GCCTAACCCTTCCATCG-AGGGGGACGTCCAAGGGCTGGCGCCCTTGGCCGCCCCTCATG 59 

                   ***************** ****************************************** 
 
 
 
 
PA13               TCAAACGTTAGGC 73 

P.aerug_AAD02244   TCAAACGTTAGGC 72 

P.aer_AF043381     TCAAACGTTAGGC 72 

B.cepacia_AAK55331 TCAAACGTTAGAT 72 

Ps.aer_AJ584652    TCAAACGTTAAAC 72 

                   **********    

 

 

 

Figure 3.15: Comparison of the attC recombination sites (59-base elements) from 

aac(6’)-Ib gene cassettes.The compared attC sites include the aac(6’)-Ib gene from P. 

aeruginosa PA13, P. aeruginosa (AAD02244), P. aeruginosa (AF043381) and 

Burkholderia cepacia (AAK55331) and P.aeruginosa (CAE48335). The sequences 

are shown from the inverse core site to the core site, as they would appear on a 

circular cassette. The core and inverse core sites are highlighted and underlined. The 

aac(6’)-Ib stop codons are in white letters on a black background. The vertical arrow 

represents the recombination point. Residues that are identical in all strains are 

underlined with an asterisk. 

 

 

The attC recombination site (59-be) of the bla-OXA gene cassette in P. aeruginosa 

PA13 was 55 base pairs long and comprises all the elements typical of the attC sites 

(Figure 3.16). The sequence of this attC site was compared with the most similar attC 
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site sequences from other integrons containing oxacillinase genes using information in 

the Genbank database (Figure 3.16).  It appears to be the same size and closely related 

to those of gene cassettes encoding the most similar oxacillinase enzymes (OXA-type 

enzyme from an unidentified wastewater bacterium [Tennstedt et al, 2003], OXA-

type enzyme from B. cepacia [Crowley et al, 2002] and OXA-46 from P. aeruginosa 

[Giuliani et al., 2005]) with a sequence identity of 100%, 96% and 90% respectively. 

They were also consistently divergent in size and sequence from those of the cassettes 

encoding less similar oxacillinase enzymes.  

 
OXA53_AAP43641       GCCCAACCCGGCAGTCCACTCGGACGCTGCGCGATGAGGCA-GCGCAGCGCCGGTAACTT 59 

OXA2_NP511223        GCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAAAACC-GCGCAGCGCCGGTTACTT 59 

PA13                 GCCCAACTAATCAATCCAG-CGGACGCCTT---------------CGGCGCCGCTGATTT 44 

uncultured_AY139598  GCCCAACTAATCAATCCAG-CGGACGCCTT---------------CGGCGCCGCTGATTT 44 

B.cepacia_AF3719598  GCCCAACTAATCAATCCAG-CGGACGCCTT---------------CGGCGCCGCTGATTT 44 

OXA46_AF317511       ACCCAACTAACCAATCCAG-CCGACGCCTT---------------CGACGCGGCTGATTT 44 

OXA20                GCCTAACAAGGCGCTCAAGTCGGACAGCCCAAACCGGCGCATGCTTCGCATTATGCGCGC 60 

                      ** ***    *  ** ** *****                       *            

 

 

 

 

OXA53_AAP43641       CTA--CGTTAGGC 70 

OXA2_NP511223        CAA--CGTTAGAT 70 

PA13                 CAA--CGTTAGAT 55 

uncultured_AY139598  CAA--CGTTAGAT 55 

B.cepacia_AF3719598  CAA--CGTTAGGC 55 

OXA46_AF317511       CAAA-CGTTAGAT 56 

OXA20                CGGTTCGGTACGT 73 

                     *    ** **     

 

 
 

 

Figure 3.16: Comparison of the attC recombination sites (59-base elements) from 

bla-OXA gene cassettes. The attC sites are from the oxacillinase gene from P. 

aeruginosa PA13 compared to its most similar genes including OXA-53 

(AAP43641), OXA-2 (AJ295229), an OXA-type enzyme from unidentified bacterium 

from a wastewater treatment plant in Germany (AY139598), an OXA-type enzyme 

from Burkholderia cepacia clinical isolate (AF371964), OXA-46 (AF317511) and 

OXA-20 (AJ319747). The sequences are shown from the inverse core site to the core 

site, as they would appear on a circular cassette. The core and inverse core sites are 

highlighted and underlined. The stop codons are in white letters on a black 

background. The vertical arrow represents the recombination point. Residues that are 

identical in all strains are underlined with an asterisk. 
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Promoters 

 

Gene cassettes are generally promoterless. Therefore, most gene cassettes are 

expressed from a common promoter located in the 5’-CS region of integrons. Two 

promoters were identified on the integron and are highlighted in Figure 3.6. The first, 

known as Pant (also known as PC and P1), was found in the 5’ conserved segment 194 

bp downstream of the attI recombination site and within the integrase gene (Figure 

3.6). It had the sequence TTGTTA N17 TAAGCT. The second was P2 

(TTGTTA/TACAGT). This promoter was found 75 bp downstream of the 

recombination site (attI).  

 

A schematic representation of the Class 1 integron structure from P. aeruginosa PA13 

is shown in Figure 3.17. 

 

 

 

 

 

 

ORF1      ORF2   ORF3   ORF4 

 

    = attC site ( 59-be recombination site) 

 

    = attI site 

 

Figure 3.17: A schematic representation of the class 1 integron structure from P. 

aeruginosa PA13. The intI1 integrase gene, which encodes the integrase, is contained 

in the 5’-conserved segment. The promoters Pant and P2 are located within the 

integrase gene. The 3’-conserved segment is found downstream of the integrated gene 

cassette contains the disinfectant resistance determinant qacE∆1. The inserted gene 

cassettes, aac(6’)-Ib and bla-OXA are indicated by shaded boxes and the arrows 

indicate their transcriptional orientation. The attI and attC recombination sites are 

represented by the black triangle and circles respectively. 

 

aac(6′′′′)-Ib bla-OXA qacE∆∆∆∆1 intI1 
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3.4 Investigation of the oxacillinase gene, bla-OXA, from P. aeruginosa PA13 

 

In addition to aminoglycoside resistance, P. aeruginosa PA13 was also resistant to 

many β-lactam antibiotics that are commonly used to treat P. aeruginosa infections 

including penicillins, cephalosporins and penems (Section 3.2.2). The most common 

mechanism of resistance to β-lactam antibiotics is the production of β-lactamase 

enzymes (Dajani, 2002). It was of interest to study the oxacillinase (β-lactamase) gene 

located on the integron from P. aeruginosa PA13, in order to characterise it further 

because unlike the aac(6’)-Ib gene also found on the integron, this oxacillinase gene 

had not been previously reported in a P. aeruginosa strain. Other similar enzymes 

have been previously expressed and characterised by cloning the genes encoding them 

into an expression vector (Girlich et al., 2004), (Héritier et al., 2005), (Voha et al., 

2006). In pursuing a method to express the enzyme from P. aeruginosa PA13, a 

number of vectors were available. Two expression vectors were chosen to investigate 

the oxacillinase gene. One was a commercially available vector, pET-28a (Novagen) 

and the other was an in-house vector, pPC, from the Laboratory of Dr. Michael O’ 

Connell, DCU.  

 

 

3.4.1 Studies of the oxacillinase gene using the pET-28a vector 

 

The first vector chosen for the expression of the bla-OXA gene was the commercially 

available vector, pET-28a. This vector was chosen because of its strong promoter and 

because its expression could be tightly controlled. The strategy used for cloning the 

bla-OXA gene into the pET-28a expression vector is illustrated in Figure 3.18. The 

cloning strategy involved: (1) the amplification (by PCR) of the gene using specific 

primers designed to add restiction sites, Nco I and Xho I, to the ends of the gene, (2) 

cloning of the gene into a TA cloning vector and transformation of this construct into 

E. coli XL10 Gold for blue white screening, (3) restriction of the gene at the added 

restriction sites from the TA vector and excision and purification of the restricted gene 

from the agarose gel, (4) restriction of the pET-28a vector and treatment of the 

restricted vector with Antarctic phosphatase, (5) ligation of the restricted gene into the 

pET-28a vector, (6) transformation of this construct into E. coli XL10 Gold for 
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analysis. The correct orientation of the gene was then checked and finally (7) the 

transformation of the construct into E. coli BL21 (DE3) for induction was performed. 
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Figure 3.18: Diagram illustrating the steps used for cloning the bla-OXA gene into the expression vector, pET-28a 
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3.4.1.1 Amplification of the bla-OXA using specific primers with Nco1 and Xho1 

restriction sites 

 

 

The bla-OXA gene for expression was amplified using the primers in Table 2.13. 

pETOXA F (forward primer) was designed to include the NcoI restriction site at the 

5’ end of bla-OXA and pETOXA R (reverse primer) to add an XhoI restriction site at 

the 3’ end, replacing the stop codon. An ~800 bp product was amplified and can be 

seen in Figure 3.19. 

 

 

 

  

 

 

Figure 3.19: Agarose gel showing the ~800bp PCR product amplified from P. 

aeruginosa PA13, used for expression in the pET-28a expression vector. Lane 1 – 

DNA ladder, Lane 2 - PCR product. 
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3.4.1.2 Cloning of bla-oxa gene into the pCR2.1 TA cloning vector  

 

 

TA cloning is one of the most popular methods of cloning an amplified PCR product. 

When amplified using Taq polymerase, this enzyme adds a single 3’-A overhang to 

each end of the PCR product. This PCR product can be directly cloned into a 

linearized cloning vector containing single base 3’-T overhangs on each end. 

pCR2.1 (Novagen) is a TA cloning vector. The amplified bla-OXA product (Figure 

3.19) was first ligated into a pCR2.1 TA vector. The resulting construct was called 

pDF1. pDF1 was transformed into E. coli XL10 Gold cells. Positive clones were 

selected by blue/white screening. Plasmids were purified using the Gen Elute Plasmid 

DNA extraction kit (Sigma). The vector containing the inserted gene (pDF1) can be 

seen in Figure 3.20. 

 

 

 
 
 

 
 
 

 

Figure 3.20: Agarose gel showing the pCR2.1 TA vector containing the inserted 

bla-OXA gene (pDF1). Lane 1 – DNA ladder, Lane 2 - the TA vector containing the 

inserted gene, Lane 3 - the TA vector without the bla-OXA gene. 
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3.4.1.3 Restriction and excision of the cloned bla-oxa gene from pDF1 

 

 

pDF1 (Figure 3.20) was restricted using the restriction enzymes Nco I and Xho I, 

which cut the cloned gene at the resitriction sites added to its 5’ and 3’ ends 

respectively. The restriction reaction was run on an agarose gel (Figure 3.21) and the 

fragment containing the restricted bla-OXA gene was excised using the protocol 

outlined in Section 2.16.1.  

 

 
 

 
 
Figure 3.21: Agarose gel showing the excision of the bla-OXA gene from the pDF1 

using Nco I and Xho I. Lane 1 - DNA ladder, Lane 2 – restricted bla-OXA gene (lower 

band) and TA vector (upper band). 

 
 

3.4.1.4 Cloning of the bla-OXA gene into the pET-28a expression vector 

 

The pET-28a expression vector was restricted with Nco I and Xho I in preparation for 

ligation with the excised bla-OXA gene. It was then treated with Antarctic phosphatase. 

Antarctic Phosphatase (New England Biolabs, UK) catalyzes the removal of 

5’ phosphate groups from DNA. Since phosphatase-treated fragments lack the 5’-

phosphoryl termini required by ligases, they cannot self-ligate. This property was used to 

decrease the vector background when cloning. 

 

The excised bla-OXA gene (Figure 3.21) was cloned into the pET-28a expression vector 

using the ligation protocol in Section 2.13.3. The resulting product was named pDF2. 
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pDF2 was transformed into E. coli XL10 Gold cells in order to analyse the construct. 

Clones were selected for on kanamycin LB plates. Positive clones were screened using 

the Birnboim and Doly plasmid preparation method described in Section 2.9.2.2. The 

plasmid from a positive clone can be seen in Figure 3.22. Single and double restriction 

analysis was performed using the restriction enzymes Nco I and Xho I to confirm the 

presence of the gene in the vector. This can be seen in Figure 3.23.  

 

 

 

 
 

 
 

Figure 3.22: Agarose gel showing the plasmid DNA from a positive pDF2 clone. 

Lane 1 – DNA ladder, Lane 2 - the pET-28a vector without an insert, Lane 3 - the 

pET-28a with the bla-OXA gene inserted (pDF2). 
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Figure 3.23: Agarose gel showing double and single restriction digest of pDF2. Lane 

1 - DNA ladder, Lane 2 - the construct digested with Nco I, Lane 3 - the construct 

digested with Xho I, Lane 4 - a double digestion of the construct with Nco I and Xho I, 

Lane 5 - the uncut DNA, Lane 6 - the vector with no insert, Lane 7 – empty, Lane 8 - 

the amplified bla-OXA gene. 

 

 

3.4.1.5 Orientation of oxacillinase gene in pDF2  

 

The correct orientation of the oxacillinase gene in pDF2 was confirmed by restricting 

the construct with Bgl II. There was a Bgl II restriction site 107 bp upstream of the 

bla-OXA start codon. There was also a Bgl II restriction site 582 bp into the oxacillinase 

gene. When the gene was in the correct orientation, the restriction reaction produced a 

689 bp fragment and ~5.4 kbp fragment. If the gene was in an incorrect orientation the 

restriction reaction produced a 329 bp fragment and a ~5 kbp fragment. The 

restriction reaction of the vector with the inserted gene in the correct orientation can 

be seen in Figure 3.24. 
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Figure 3.24: Agarose gel of restriction digest of pDF2 with Bgl II confirming the 

correct orientation of the bla-OXA gene. Lane 1 - DNA ladder, Lane 2 – pDF2 

restricted with Bgl II. 

 

 

 

3.4.1.6 Sequencing of pDF2  

 

 

Following the analysis of the pDF2 for correct orientation, the construct was 

sequenced by MWG Biotech using specifically designed primers (Table 2.16). The 

sequence can be seen in Figure 3.25. The sequence showed that the bla-OXA gene 

inserted correctly into the pET-28a expression vector without any mutations. The 

promoter, ribosome binding site, restriction sites, start codon, His tags, stop codon 

and resistance gene were all in their correct locations. The positions of the insert gene, 

restriction sites etc. are illustrated in Figure 3.26. 
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CGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAA

ATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTC

TTACCTCATTCGTGCATGCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGG

GCCGAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGC

AGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGACGCCGTTCG

TGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGC

GATCAGCGATGCGAAATTCTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAAGCAAGA

CGCTATTTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATAGATGGCAAT

CTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAGGTGGAA

CATCAGCGCTTGGTCAAAGATCTCATGATTACGGAAGCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCT

GGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATAT

TGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATCGACG

CATTGCCGCCCAACCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTT

TTTTGCTGAAAGGAGGAACTATATCCGGAT 

 

 

Figure 3.25: The sequence of pDF2. Start and stop codons, restriction sites, RBS, 

transcription start site and His tag are either highlighted or underlined. The inserted 

gene is highlighted in blue. 
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Figure 3.26: pDF2 Plasmid Map. The bla-OXA gene fragment shown in blue which is 

under the control of the T7 promoter. His tag fusion and the kanamycin resistance 

gene (Kan
R) are also shown. See Figure 2.4 for map of parent vector pET-28a. 

Generated using pDRAW32. 

 

 

3.4.1.7 Induction of pDF2 

 

The sequenced pDF2 was transformed into E. coli BL21 (DE3) cells as described in 

Section 2.14. Target genes cloned in pET plasmids are under the control of a strong 

bacteriophage T7 transcription. Expression is induced by providing a source of T7 

RNA polymerase in the host cell. E. coli BL21 (DE3) cells were used to provide a 

source of T7 RNA polymerase. These cells were induced and their protein was 

extracted using the protocol in Section 2.21. The extracted proteins (soluble fraction) 

were separated on a SDS-PAGE gel (Figure 3.27). The predicted 31 kDa (30.97 kDa) 

oxacillinase protein was not detected. The molecular weight of the putative enzyme 

was calculated using an online molecular weight calculator 
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(http://www.sciencegateway.org/tools/proteinmw.htm).  The same bands that were 

identified for the induced cells were also identified in the non-induced cells. 

 

 

 

 

 

 

 

 

Figure 3.27: SDS-PAGE gel showing protein (soluble fraction) extracted from 

induced and non-induced E. coli BL21 (DE3) cells transformed with pDF2. Lane 1 – 

wide-range protein marker, Lanes 2 and 3 - proteins from induced and non-induced 

cells are respectively.  

 

 

When the protein of interest was not found in the soluble fraction of the gel, the 

insoluble fraction (pellet) from the induced and non-induced cells was extracted using 

the protocol in Section 2.21. This fraction would contain the protein if it had been 

expressed in insoluble inclusion bodies, which sometimes occurs with the 

overexpression of proteins using T7 promoters. The extracted proteins were separated 

on a SDS-PAGE gel and can be seen in Figure 3.28. The putative 31 kDa protein was 

not seen on the gel. 
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Figure 3.28: SDS-PAGE gel showing the protein (insoluble fraction) extracted from 

induced and non-induced E. coli BL21 (DE3) cells transformed with pDF2. Lane 1 – 

wide-range protein marker, Lanes 2 and 3 - the proteins from the induced and non-

induced cells respectively.  

 

 

3.4.2 Studies of the oxacillinase gene using the pPC vector 

 

 

The second expression vector used was an in-house vector called pPC. This is a pQE-

60-derived expression vector. It was chosen for the strength of its tac promoter and 

unlike pET vectors it was compatibile with a wide range of host cells. 

 

The strategy used for cloning the bla-OXA gene into the pPC expression vector is 

illustrated in Figure 3.29. The cloning strategy involved: (1) the amplification of the 

gene using specific primers designed to add restriction sites to the ends of the gene, 

(2) cloning of the gene into a UA cloning vector (pDrive) and transformation of this 

construct into E. coli XL10 Gold cells, (3) restriction of the gene from the UA vector 

at the added restriction sites and excision and purification of the restricted gene from 

an agarose gel, (4) restriction of the pPC vector to remove the 635 bp control insert, 

excision and purification of the restricted pPC vector from an agarose gel and 

treatment of the pPC vector with Antarctic phosphatase, (5) insertion of the restricted 

gene into the pPC expression vector, (6) transformation of this construct into E. coli 

XL10 Gold for analysis checking for the correct orientation of the gene and 

sequencing and induction. 
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3.4.2.1 Amplification of the bla-OXA gene using specific primers with Nco1 and 

BamH1 restriction sites 

 

The bla-OXA gene for expression was amplified using the primers in Table 2.13. pPCOXA 

F (forward primer) was designed to include the Nco I restriction site at the 5’ end of bla-

OXA and pPCOXA R (reverse primer) to add a BamH I restriction site at the 3’ end, 

replacing the stop codon. The expected ~800bp product was amplified and can be seen in 

Figure 3.30. 

 

 

 

 

 
 

 

 

Figure 3.30: Agarose gel showing the ~800bp PCR product amplified from P. 

aeruginosa PA13, used for expression in the pPC expression vector. Lane 1 - DNA 

ladder, Lanes 2 and 3 – PCR product. 
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3.4.2.2 Cloning of the bla-OXA gene into the pDrive cloning vector 

 

 

The pDrive cloning vector (Qiagen) is a cloning vector containing U-overhangs. As in 

TA cloning, the PCR product can be directly cloned into a linearized cloning vector 

containing single base 3’-U overhangs on each end. The amplified bla-OXA product 

(Figure 3.30) was first ligated into the pDrive cloning vector. The resulting construct was 

called pDF3. pDF3 was transformed into E. coli XL10 Gold cells. Positive clones were 

selected by blue/white screening. Plasmids were purified using the Gen Elute Plasmid 

DNA extraction kit (Sigma) (Section 2.9.2.1). The vector containing the inserted gene 

can be seen in Figure 3.31. 

 

 
 
 

 
 

 

 

 

Figure 3.31: An agarose gel showing the pDrive cloning vector with the cloned bla-OXA 

gene (pDF3). Lane 1 – DNA ladder, Lane 2 - the cloning vector with the bla-OXA gene, 

Lane 3 - vector without the bla-OXA gene. 
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3.4.2.3 Restriction and excision of cloned gene from pDF3  

 

 

The cloned bla-OXA gene was restricted from the pDF3 using the restriction enzymes Nco 

I and BamH I which cut the cloned gene at its 5’ and 3’ ends respectively. The restriction 

reaction was run on an agarose gel (Figure 3.32) and the fragment containing the 

restricted bla-OXA gene was excised. 

 

 

 

 
 
 

 
 
 

 

Figure 3.32: Agarose gel showing the restriction of the bla-OXA gene from the pDF3 

vector using Nco I and BamH I. Lane 1 – DNA ladder, Lane 2 – pDF3 restricted with Nco 

I and BamH I. 
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3.4.2.4 Removal of the 635 bp control insert from the pPC expression vector  

 

The pPC expression vector used contained a 635 bp insert. This vector was used as a 

control in expression studies. However, in order to clone the bla-OXA gene into pPC 

expression vector, it was neccesary to remove the 635 bp insert from the pPC vector. The 

vector was restricted with Nco I and Bgl II to remove the 635 bp insert (Figure 3.33). The 

restricted vector was excised and purified using the protocol in Section 2.16.2. The 

restricted vector was treated with Antarctic phosphatase to remove the 5’ phosphate 

groups from the DNA and reduce the vector background during cloning. 

 

 
 

 

 

Figure 3.33: An agarose gel of the restriction digest of the pPC vector showing the 635 

bp insert restricted with Nco I and Bgl II. Lane 1 – DNA ladder, Lane 2 – pPC vector 

restricted with Nco I and Bgl II. 

 

 

3.4.2.5 Ligation of the bla-OXA gene into the pPC expression vector 

 

The excised bla-OXA gene was ligated into the pPC expression vector. The resulting 

construct was named pDF4. The ligation reaction was transformed into E. coli XL10 
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Gold cells. Clones were selected for on LB plates containing ampicillin. Positive clones 

were screened using the Birnboim and Doly plasmid preparation method described in 

Section 2.9.2.2. The plasmid from a positive clone can be seen in Figure 3.34. Even 

though the vector was restricted with NcoI and BglII and the bla-OXA gene was restricted 

with NcoI and BamHI, the BamHI and BglII restrictions were compatible with each other. 

The BglII enzyme could not have been used as a restriction site at the 3’ end of bla-OXA 

gene because it contains a BglII restriction site within it.  

 

 

 

 

 

 

 

 

 
 

 

Figure 3.34: Agarose gel showing the plasmids from pPC with the bla-OXA gene insert 

(pDF4). Lane 1 – DNA ladder, Lanes 2 and 3 - The pPC vector containing the insert, 

Lane 4 - the pPC vector without the bla-OXA gene. 
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3.3.2.6 Orientation of the bla-OXA gene in pDF4 

 

 

The correct orientation of the bla-OXA gene in pDF4 was confirmed by restricting the 

construct with Hind III. There was a Hind III restriction site 333 bp downstream of the 

bla-OXA start codon. There was also a Hind III restriction site at the stop codon just 

downstream of the 6X His tag. When the gene was in the correct orientation, the 

restriction reaction produced a 599 bp fragment and ~4.8 kbp fragment. If the gene was 

in an incorrect orientation the restriction digest produced a 250 bp fragment and a ~5.2 

Kbp fragment. The restriction reaction produced two fragments, 4.8kbp and 599bp 

(Figure 3.35). Therefore the gene was in the correct orientation in the vector. 

 

 

 
 

 
 
 
 
Figure 3.35: Agarose gel showing the restriction digest of pDF4 with Hind III to confirm 

correct orientation of the bla-OXA gene. Lane 1 – DNA ladder, Lane 2 – pDF4 restricted 

with Hind III. 
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3.3.2.7 Sequencing of pDF4 

 

Following the analysis of the pDF4 for correct orientation, the construct was sequenced 

by MWG Biotech using specifically designed primers (Table 2.15). The sequence can be 

seen in Figure 3.36. The sequence showed that the bla-OXA gene inserted correctly into the 

pPC expression vector without any mutations. The promoter, ribosome binding site, 

restriction sites, start codon, His tags, stop codon and resistance gene were all in their 

correct locations. The positions of the insert gene, restriction sites etc. are illustrated in 

Figure 3.37. 

 

 

 

TCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACAGG

AAACAGAATTCATTAAAGAGGAGAAATTAACCATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACC

TCATTCGTGCATGCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCCGAAGGT

GCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACT

CGCCTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTT

CGATGGGACGGCGTTAAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCTGCG

GTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAAGCAAGACGCTATTTAAAGCAAATTGATTATGGC

AACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATAGATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCG

TTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGG

AAGCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGGTGGAG

TGGCCAACCGGTCCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAA

TCGCGCGGGCAATCCTTCGCTCTATCGACGCATTGCCGCCCAGGATCTCATCACCATCACCATCACTAAGCTTCTGTTT

TGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAA 

 

 

Figure 3.36: The sequence of the pDF4. Start and stop codons, restriction sites, RBS, 

transcription start site and His tag are either highlighted or underlined. The inserted gene 

is highlighted in blue. 
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Figure 3.37: pDF4 Plasmid Map. The bla-OXA gene fragment insert is shown in blue 

which is under the control of the Ptac promoter. His tag fusion and ampicillin resistance 

gene (amp
R) are also shown. See Figure 2.5 for map of parent vector. Generated using 

pDraw32. 

 

 

3.3.2.8 Induction of pDF4 in E. coli XL10-Gold 

 

After sequencing, pDF4 transformed E. coli XL-10 Gold cells were induced and their 

proteins were extracted using the protocol in Section 2.21. The extracted proteins were 

separated on a SDS-PAGE gel (Figure 3.38). Although some bands were identified, none 

of them corresponded to the putative 31 kDa bla-OXA protein. The same bands that were 

identified for the induced cells were also identified in the non-induced cells. Successful 

induction was seen with the control vector, pPC, which expressed a 23 kDa protein. 
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Figure 3.38: SDS-PAGE gel showing protein extracted from induced and non-induced E. 

coli XL10 Gold cells transformed with pDF4. Lane 1 – wide-range protein marker, Lane 

2 - the 23 kDa protein induced in the control strain, Lanes 3 and 4 - the proteins from 

induced and non-induced respectively. 

 

3.3.2.9 Induction of pDF4 in E. coli XL10-Gold at 28°°°°C 

 

When genes from one organism are expressed in another inclusion bodies are sometimes 

formed. Inclusion bodies are major protein aggregates, commonly occurring in 

recombinant bacteria upon targeted gene overexpression (Carrio et al., 2000). To reduce 

the expression of proteins in inclusion bodies the E. coli XL-10 Gold cells were induced 

using gentler culture conditions. The cells were grown at 28°C and shaken at 150 rpm. 

The extracted proteins from both the soluble and insoluble fractions of the induced and 

non-induced cultures were separated on SDS-PAGE gels (Figure 3.39 and 3.40 

respectively). Even with the gentler culture conditions, the predicted 31 kDa protein was 

not expressed by the E. coli XL-10 Gold cells transformed with pDF4. The 23 kDa 

protein of the contol vector was expressed. 

1 2 3 4

   

 

97000 

84000 

66000 

55000 

45000 

 

 

36000 

 

29000 

 

24000 

 

 

20100 

 

 

 

 

14200 

 

 



 195 

 

 

 
 
 

 
 

 

 

Figure 3.39: SDS-PAGE gel showing protein extracted from induced and non-induced E. 

coli XL10 Gold cells transformed with pDF4 cultivated at 28°C and 150 rpm. Lane 1 – 

wide-range protein marker, Lane 2 - the 23 kDa protein induced in the control strain, 

Lane 3 and 4 - the proteins from induced and non-induced cells respectively. 
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Figure 3.40: SDS-PAGE gel showing protein (insoluble fraction) extracted from induced 

and non-induced  E. coli XL10 Gold cells transformed with pDF4 which were grown at 

28°C and 150 rpm. Lane 1 – wide-range protein marker, Lane 2 - the proteins from the 

insoluble fraction of the control strain, Lanes 3 and 4 - the proteins from the induced and 

non-induced cells respectively.  

 

 

3.3.2.10 Induction of pDF4 in E. coli RosettaBlue
TM

  

 

A subset of codons, namely AGG/AGA, CGA/CGG, AUA, CUA, GGA and CCC are 

rarely expressed in E. coli and appear to cause problems from a translational point of 

view. If the recombinant protein being expressed contains several of these rare codons the 

protein may not be expressed due to this translational limitation. The E. coli 

RosettaBlueTM
 strain (Novagen) has been engineered to provide the tRNAs for these 

rarely expressed codons on a chloramphenicol resistant plasmid, pRARE.  

 

Thirteen rare codons were identified in the bla-OXA gene. pDF4 was transformed into E. 

coli RosettaBlueTM cells. These transformants were induced and their proteins were 

 
 

84000 

66000 

55000 

 

45000 

 

36000 

 

 

29000 

 

24000 

 

 

 

20100 

 

 

 

 

 

14200 

 

 

6500 

1            2          3          4  



 197 

extracted. The extracted proteins were separated on a SDS-PAGE gel (Figure 3.41). None 

of the proteins on the SDS-PAGE gel corresponded to the predicted 31 kDa bla-OXA 

protein. The same bands that were identified for the induced cells were also identified in 

the non-induced cells. Successful induction was seen with the control vector, pPC, which 

expressed a 23 kDa protein. 

 

 
 

 

 

Figure 3.41: An SDS-PAGE gel showing proteins extracted from the soluble fraction 

from the induced and non-induced E. coli RosettaBlueTM cells transformed with pDF4. 

Lane 1- wide-range DNA marker, Lanes 2 and 3 - the proteins from induced and non-

induced cells respectively, Lane 4 - the 23 kDa protein induced in the control strain 

 
 

When the protein of interest was not found in the soluble fraction of the gel, the insoluble 

fraction (pellet) from the induced and non-induced cells was extracted using the protocol 

in Section 2.21. This fraction would contain the protein if it had been expressed in 

insoluble inclusion bodies. The predicted 31 kDa bla-OXA protein was not expressed in the 

cell (Figure 3.42). 
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Figure 3.42: An SDS-PAGE gel showing proteins extracted from insoluble fraction from 

both the induced and non-induced E. coli RosettaBlueTM cells transformed with pDF4. 

Lane 1 - the wide-range protein marker, Lane 2 – the proteins produced in the control 

strain, Lanes 3 and 4 - the proteins from induced and non-induced cells respectively.  
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4.0 Discussion 

 

One of the most fundamental aspects of microbiology is the identification of bacterial 

species. Differential biochemical profiling and molecular methods such as the analysis of 

16S rRNA genes are among the best available techniques, which can be utilised to both 

detect and provide epidemiological analysis of bacteria (Boettger, 1996), (Drancourt et 

al., 2000), (Woo et al., 2000), (Clarridge III, 2004). 

 

Analytical techniques for identification of microorganisms have evolved due to the 

advancement of molecular diagnostics. These techniques particularly combined with 

conventional analyses have enabled rapid and definitive identification of unknown 

isolates (Wiedmann et al., 2000). These techniques were employed to identify the clinical 

isolates obtained from both hospital environments. 

 

The identification of bacteria in the clinical microbiology laboratory was traditionally 

performed by isolating the organism and studying it phenotypically by means of Gram 

staining, culture, and biochemical methods, which were once the gold standard of 

bacterial identification (Woo et al., 2000). The phenotypic and morphological 

characteristics of the isolates were consistent with the description of typical 

Pseudomonads according to Cowan and Steel’s manual for the identification of medical 

bacteria (1993) and Bergey’s Manual for Systematic Bacteriology (2001) which define 

the genus as being Gram-negative, non spore-forming, motile, unicellular rods, with the 

long axis straight or slightly curved. All of the isolates had these characteristics. The cell 

characteristics of the isolates were also consistent with those of Pseudomonads. All of the 

colonies produced large non-mucoid colonies, with the exception of P. aeruginosa PA12, 

which produced large mucoid colonies. This colony type, which is often obtained from 

respiratory and urinary tract infections, has a mucoid appearance that is attributed to the 

production of alginate slime (Todar, 2004). The mucoid colonies are presumed to play a 

role in colonisation and virulence (Bergey’s Manual for Systematic Bacteriology, 2001). 
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One classic result shared by all the isolates including the reference strain P. aeruginosa 

PAO1 is the positive reaction for oxidase. This is due to the presence of cytochrome c 

oxidase in the electron transport chain. Cytochrome oxidase is an enzyme found in some 

bacteria that transfers electrons to oxygen, the final acceptor in some electron transport 

chains (Michel et al., 1989). This is one of the distinguishing characteristics that 

differentiate the pseudomonads from enteric bacteria (Hampton and Wasilauskas, 1979). 

All of the isolates were also catalase positive, which is typical of Pseudomonas strains 

(Bergey’s Manual for Systematic Bacteriology, 2001). There are other physiological 

properties that are common to all species of the genus Pseudomonas. These include 

aerobic metabolism, chemoorganotrophic nutrition, the absence of fermentation, and the 

capacity to grow using a large variety of organic substrates (Bergey’s Manual for 

Systematic Bacteriology, 2001). The division of bacteria into fermenters and oxidisers is 

one of the most heavily weighted primary tests used for bacterial identification. All the 

isolates were aerobic and oxidizers i.e., they attacked carbohydrates by oxidation, which 

is consistent with results expected for P. aeruginosa strains according to Bergey’s 

Manual for Systematic Bacteriology (2001).  

 

Pseudomonas aeruginosa is the type species of the genus Pseudomonas (Bergey’s 

Manual for Systematic Bacteriology, 2001). It can be preliminarily identified from its 

grape-like odour (aminoacetophenone) in vitro (Samer, 2005). Definitive clinical 

identification includes identifying the production of the pigments pyocyanin and 

fluorescein, β-haemolysis on blood agar and also its ability to grow at 42°C (Figure 3.3) 

(Cowan and Steel’s Manual for the Identification of Medical Bacteria, 1993). All of the 

isolates were tested for these characteristics and the results obtained were consistent with 

those for Pseudomonas aeruginosa. 

 

Pigment production is a contributory phenotypic characteristic in the classification of P. 

aeruginosa (Bergey’s Manual for Systematic Bacteriology, 2001). Pseudomonas 

aeruginosa has an innate ability to produce specific fluorescent phenazine pigments, 

genetically encoded by two operons for the production of metabolites such as pyocyanin 

(blue-green) (Kanner et al., 1978), (Mavrodi et al., 2001), pyoverdin or fluorescein 
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(greenish-yellow), pyomelanin (red-brown) (Yabuuchi and Ohyama, 1972) and pyorubin 

(red) (Kandela et al., 1997). 

 

Growth medium has the biggest effect on the development of pigment. Various media are 

required to encourage different pigment production by pseudomonads. On chemically 

defined media, the pigments may exhibit a wide variety of colours depending on the 

carbon source used for growth (Cowan and Steel’s Manual for the Identification of 

Medical Bacteria, 1993). 

 

Nine of the twelve isolates studied were found to produce the phenazine pigment, 

pyocyanin, when grown on Pseudomonas isolation agar P, a medium that stimulates the 

production of this pigment (Table 3.4). Pyocyanin is a low molecular weight, water- and 

chloroform-soluble, non-fluorescent, blue pigment characteristically produced by more 

than half of all clinical isolates of P. aeruginosa (Samer, 2005). This redox-active 

secondary metabolite is synthesized from chromate due to the action of the 

phzABCDEFG operon and is regulated by quorum sensing (Mavrodi et al., 2001), (Fuqua 

et al., 2001). Production of pyocyanin enhances the virulence of P. aeruginosa (O’Malley 

et al., 2004). The pigment exerts a proinflammatory effect on phagocytes, impairs the 

normal function of the human nasal cilia and inhibits the proliferation of human 

epidermis and lymphocytes. This is probably due to inhibition of electron transport 

(Smeal et al., 1987). Pyocyanins have been reported to have antifungal properties that 

give P. aeruginosa an obvious selective advantage to these organisms in their natural 

environment (Kaleli et al., 2006), (Kerr et al., 1999). It also induces rapid apoptosis of 

human neutrophils (Allen et al., 2005), directly oxidises glutathione and decreases its 

levels in airway epithelial cells (O’Malley et al., 2004). Human cells possess several key 

mechanisms to limit their exposure to reactive oxygen species such as superoxide (O2
-) 

and hydrogen peroxide. The thiol compound glutathione is one of the major components 

of cellular antioxidant defences (Dickenson and Forman, 2002). When cells are exposed 

to reactive oxygen species, reduced glutathione is oxidised to a dimer by the action of 

glutathione peroxidase. This dimer is then reduced back to reduced glutathione by 

glutathione reductase. This cycling of glutathione is thought to be an important means of 
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limiting cellular exposure to and cytotoxicity from hydrogen peroxide (Griffith, 1999). 

Pyocyanin directly accepts electrons from either NADH or NADPH. Under aerobic 

conditions it passes those electrons to O2, leading to the generation of reactive oxygen 

species. Therefore, the addition of pyocyanin to cellular systems places them under 

increased oxidative stress (Hassan and Fridovich, 1980). 

 

Significantly, pyocyanin has been identified in sputum samples from patients with 

chronic pulmonary infections, especially CF patients (Lau et al., 2004), (Lee et al., 2005), 

and thus is considered to be an infection-associated virulence factor. Pseudomonas 

aeruginosa is the only known organism of the pseudomonads and other glucose 

fermenting Gram-negative bacteria capable of producing pyocyanin (Cowan and Steel’s 

Manual for the Identification of Medical Bacteria, 1993). Although some Streptomyces 

species can produce cyanomycin, which is said to be identical to pyocyanin, the colonial 

and Gram stain morphologies of the Streptomyces is radically different to that of P. 

aeruginosa (Alberto Pichardo Reyes, 1981). 

 

All thirteen clinical isolates produced pyoverdin, also known as fluorescein, when grown 

on Pseudomonas isolation agar F, a medium that stimulates the production of this 

pigment (Table 3.4). Pyoverdin is a yellow-green pigment that fluoresces when exposed 

to ultra-violet light (254 nm). This characteristic can be used to detect P. aeruginosa 

infection in burn patients.  Pyoverdin, which is encoded by the pvd genes (Lamont and 

Martin, 2003), acts as a siderophore, involved in a complex iron acquisition system 

tightly binding and transporting soluble iron (Fe III) from the environment under iron-

deficient conditions. Although iron is an essential nutrient for most bacteria, the low 

solubility and bioavailability of this element in nature complicates bacterial iron 

acquisition. Many bacteria deal with this by producing high affinity iron-chelating 

molecules known as siderophores, which transport iron into the cell (Stintzi et al., 1999). 

No role in virulence is known for pyoverdin (Thi-Dao et al., 1999). Although it is 

characteristic of P. aeruginosa, pyoverdin also is produced by three other pseudomonads, 

P. putida, P. fluorescens and P. chlororaphis, so it cannot be used as a definitive test for 

P. aeruginosa (Bergey’s Manual of Systematic Bacteriology, 2001). 
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Strain P. aeruginosa PA9 was the only strain that produced a brown pigment thought to 

be pyomelanin (Table 3.4). Pyomelanin is another phenazine pigment. This pigment, in 

common with other melanins, is produced from aromatic amino acids such as tyrosine or 

phenylalanine (Sanchez-Amat et al., 1998). This pigment is not commonly produced, but 

where it is, it is usually associated with isolates from urinary tract infections (Yabuuchi 

and Ohyama, 1972) (Ogunnariwo and Hamilton-Miller, 1975) and patients in burn units 

(De Vos et al., 1997), (Masahisa et al., 2005). Pyomelanin production is due to 

extracellular accumulation and polymerisation of homogentisate (Hegedus, 2000). The 

function of pyomelanin is unknown but it is thought to confer benefits including 

protection against oxidative stress (Nosanchuk and Casadevall, 2003). A potential side 

effect of this pigment on human hosts is tissue inflammation (Hegedus, 2000). 

 

A red pigment was produced in P. aeruginosa PA3, PA11 and PA12 (Table 3.4). This 

pigment is thought to be pyorubin. Pyorubin has been reported to have antimicrobial 

activity, which would give the strain producing it a selective advantage over other 

microbes in its natural environment (Kandela et al., 1997). Like other phenazines, 

pyorubin is also believed to be involved in protection of the organism against oxidative 

stress (Nosanchuk and Casadevall, 2003). 

 

Pseudomonas aeruginosa strains are typically β-haemolytic on blood agar plates (Alberto 

Pichardo Reyes, 1981). There are three possible outcomes from the test for haemolysis on 

blood agar. The first is known as α-haemolysis. This can be identified from a green 

envelope that surrounds intact cells. The second is known as β-haemolysis. This can be 

identified from the clear colourless zones that surround the cells where the blood cells 

have been completely lysed. Finally, there is γ-haemolysis. This describes a negative 

result for haemolysis where there has been no action on the red blood cells (Cowan and 

Steel’s Manual for the Identification of Medical Bacteria, 1993). All of the P. aeruginosa 

isolates were β-haemolytic on blood agar (Table 3.3).  
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Haemolysins are just one of the many virulence factors with which P. aeruginosa is 

equipped (Wilson and Dowling, 1998). Haemolysins contribute to host invasion through 

their cytotoxic effects on eukaryotic cells. Their normal function is to lyse red blood cells 

(Beecher and Wong, 2000). P. aeruginosa  produces two main haemolysins that are 

involved in cell invasion. One is a phospholipase and the other is a lecithinase. They 

appear to act synergistically to break down lipids and lecithin (Liu, 1976). Several other 

types of haemolysins have been described. A heat-stable haemolytic glycopeptide 

consisting of two molecules each of L-rhamnose and 1-b-hydroxydecenoic acid has been 

identified that is not toxic to human cells but which is toxic to alveolar macrophages. It 

has also been discovered that P. aeruginosa strains isolated from respiratory tract 

infections produce more haemolysin than other strains, which suggests that haemolysin 

may play an important role in P. aeruginosa pulmonary infections (Iglewski, 1996). A 

heat-labile haemolysin has been described that is very similar to another P. aeruginosa 

virulence factor, Phospholipase C, which hydrolyses lecithin (Iglewski, 1996). 

 

The temperature range for growth and the optimal temperature for growth are 

characteristic of different bacteria (Cowan and Steel’s Manual for the Identification of 

Medical Bacteria, 1993). The optimal temperature for medically important bacteria is 

usually between 35-40°C. All of the isolates grew abundantly at 42°C but could not grow 

at 5°C (Table 3.3). The ability to grow at 42°C is one of the defining characteristics of P. 

aeruginosa. Other strains of fluorescent pseudomonads such as P. putida and P. 

fluorescens are incapable of growth at this temperature. However, P. fluorescens and P. 

putida are able to grow at 5°C, also differentiating them from P. aeruginosa (Bergey’s 

Manual of Systematic Bacteriology, 2001). 

 

Cetrimide (cetyltrimethylammonium bromide) agar is a selective medium for 

Pseudomonas aeruginosa. It is a modification of Tech agar, which was developed by 

King et al. (1954) that improved pyocyanin production by Pseudomonas species. The 

selectivity of the medium is due to the presence of cetrimide. Cetrimide acts as a 

quaternary ammonium cationic detergent causing nitrogen and phosphorus to be released 

from bacterial cells other than Pseudomonas aeruginosa. According to Lowbury and 
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Collins (1955), a cetrimide concentration of 0.3 g/litre inhibits the accompanying 

organisms satisfactorily and minimizes interference with the growth of Pseudomonas 

aeruginosa. However, P. putida and P. fluorescens can show a small amount of growth in 

the presence of cetrimide (Brown and Lowbury, 1965). So, to guarantee that only 

Pseudomonas aeruginosa strains grew on cetrimide agar, 15 µg/ml of the antibiotic 

nalidixic acid was added to the medium as was recommended by Goto and Enomoto 

(1970). The medium also contains magnesium chloride and potassium sulphate, which 

are cationic salts that act as activators and co-activators to intensify the luminescence of 

pyocyanin and fluorescein. All the strains were found to grow on cetrimide agar with 

nalidixic acid and produced fluorescein (Table 3.3). 

 

Tween 80 is the oleic acid ester of a polyoxyalkylene derivative of sorbitan. It was added 

to nutrient medium. Opaque haloes were identified around the growth of each strain. This 

opacity is due to crystal formation, which indicates lipolytic activity. Lipase production is 

a useful characteristic in identifying Pseudomonas aeruginosa (Cowan and Steel’s 

Manual for the Identification of Medical Bacteria, 1993). The isolates were positive for 

lipase production (Table 3.3). This characteristic differentiates Pseudomonas aeruginosa 

from similar species such as P. fluorescens and P. putida, which are negative for lipase 

production. (Bergey’s Manual of Systematic Bacteriology, 2001). 

 

The utilization of the amino acid arginine by the pseudomonads has attracted the interest 

of microbiologists for many years. The degradative pathway, the arginine dihydrolysed 

pathway system, has been used for differentiating species (Bergey’s Manual of 

Systematic Bacteriology, 2001). The reactions catalysed by this system are the 

conversion of arginine to citrulline and of citrulline to ornithine with liberation of 

ammonia (Slade, 1954). A rise in the pH of the medium with arginine degradation, 

because of ammonia liberation, indicates the presence of the dihydrolase system 

(Thornley, 1960). Not all species of Pseudomonas possess arginine dihydrolyase 

(Bergey’s Manual of Systematic Bacteriology, 2001). All of the isolates tested were 

positive for this enzyme (Table 3.3). Although P. aeruginosa is positive for arginine 

dihydrolase, this characteristic cannot be used as a definitive characteristic of the species 
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because other species such as P. fluorescens and P. putida possess this enzyme. 

However, it does differentiate the species from other pseudomonads such as P. stutzeri 

and P. cichorii. 

 

Molecular methods offer the most precise source identification, but are limited by 

expense, detailed and time-consuming procedures, and are not yet suitable for assaying 

large numbers of samples in a reasonable time frame. Biochemical methods, for example, 

nutritional patterning (BIOLOG, API, Miniteck) and fatty acid methyl ester analysis 

(MIDI) are simpler, quicker, less costly and allow numbers of samples to be assayed in a 

short period of time (Mandaville, 2002). The commercial identification systems API 

20NE and Biolog were used to confirm the identification of the strains. The Biolog 

system in particular was also useful in identifying the substrates on which the isolated 

strains could grow. The API 20NE system consists of twenty-one enzymatic and carbon 

compound assimilation tests which were performed in cupules on a plastic strip where 

desiccated contents were reconstituted with a suspension of the test organism. Some tests 

had to be overlaid with mineral oil to obtain the correct gaseous conditions. Results were 

available in 24-48 hours and were represented as a seven-digit profile number, which 

could be read from the Analytical Profile Index. API 20NE provides a quick and simple 

identification system that is capable of correctly identifying the majority of Pseudomonas 

species. The isolates were identified as Pseudomonas aeruginosa strains by the API20NE 

kit, with identifications ranging from good to excellent and % i.d. ranging from 91.4% to 

99.99% (Table 3.5). Studies carried out by Costas et al. (1992) showed the correct 

identification of 90.4 % of 146 Pseudomonas strains used. 5.5 % were not identified, 

while 4.1 % were incorrectly identified.  

 

The Biolog identification system establishes identification based on the exchange of 

electrons generated during respiration, leading to tetrazolium-based colour changes. It 

tests the ability of organisms to oxidize a panel of 95 different carbon sources. The 

Biolog GN system identified all the isolates with 99-100% probability of being 

Pseudomonas aeruginosa (Figure 3.6). Studies carried out by Costas et al. (1992) showed 

the correct identification of between 74 % and 79 % of 114 Pseudomonas or 
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Pseudomonas-like species depending on whether results were read using an automated 

plate reader or read manually (manual reading was more accurate). The application of 

API 20NE and Biolog GN identification systems in combination with a range of 

biochemical tests provided good to excellent identification of all the strains as being 

Pseudomonas aeruginosa and also showed that the strains differed in their biochemical 

characteristics. However, the high rate of incorrect identifications with both the API 

20NE and the Biolog systems GN (Costas et al., 1992) showed that there was a need for a 

more precise method of identification. 

 

Pseudomonads are nutritionally versatile, and can use a wide range of simple organic 

compounds as sole sources of carbon and energy (Palleroni, 1986). Pseudomonas 

aeruginosa can utilize over 80 organic compounds for growth, giving it an important role 

in nature (Wick et al., 1990). This nutrional versatility was borne out by the ability of all 

the Pseudomonas aeruginosa strains to use a large number of substrates tested for 

growth. The Biolog results showed that ≥ 90% of the isolated strains were able to use 49 

of the 95 substrates. The utilisation of the other compounds was strain specific. The 

central core of universal substrates included several amino acids notably alanine, aspartic 

acid, asparagine, serine, histidine, threonine and proline. They also included several 

carboxylic acids such as gluconic acid, itaconic acid, valeric acid, acetic acid, formic acid 

and several fatty acids including propionic acid and α-keto butyric acid. Of the thirty-two 

acids available on the Biolog plate twenty-four of them were practically universal 

substrates for all the strains. In a taxonomic study of pseudomonads Stanier et al. (1966) 

also found that the central core of universal substrates utilised by the Pseudomonas 

aeruginosa strains in their taxonomic study were amino acids, acids and fatty acids. 

 

In general, P. aeruginosa strains cannot use an extensive range of carbohydrates and 

polyalcohols (Prieto et al., 2004). Most of the isolates were able to use common 

monosaccharides such as glucose, fructose, galactose and L-arabinose. P. aeruginosa 

degrades most hexoses by the Entner-Doudoroff pathway (Bergey’s Manual for 

Systematic Bacteriology, 2001). However, the strains in general were unable to use more 

complex carbohydrates such as disaccharides and trisaccharides. This was also the case 
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for the twenty-nine P. aeruginosa strains used by Stanier et al. (1966). The inability of P. 

aeruginosa to use most sugars was partly explained by Stover et al. (2000), who 

completed the sequencing of the P. aeruginosa genome. The complete genome sequence 

showed that it has nearly 300 cytoplasmic membrane transport systems. About one third 

of these are involved in the transport of nutrients and other molecules. It has a large 

amount of transporters for mono-, di- and tri-carboxylates but appears to be deficient in 

sugar transporters. It only possesses just two sugar transporters whereas E. coli has more 

than twenty (Stover et al., 2000).  

 

In general, carbon sources utilised by the isolates in this study are comparable to the 

carbon sources used by Pseudomonas aeruginosa strains in the taxonomic study of 

pseudomonads by Stanier et al. (1966), the expected results published in Cowan and 

Steel’s manual for the identification of medical bacteria (1993) and in Bergey’s Manual 

for Systematic Bacteriology (2001). No two of the thirteen strains were able to utilise 

exactly the same range of carbon sources indicating that no two of the strains are the 

same strain. 

 

To complement the conventional phenotypic analysis, 16S rRNA gene sequences were 

analysed for all the “Pseudomonas aeruginosa” isolates for definitive identification. 

Phylogenetic analysis based on 16S rRNA has been proven to be the one of the most 

powerful tools for the identification and classification of organisms (Pace, 1997), 

(Kolbert and Persing, 1999), (Drancourt et al., 2000). Sequencing the 16S rRNA gene 

after amplification by PCR is now universally used as the basis for assignment of species 

to the genus Pseudomonas (Bergey’s Manual for Systematic Bacteriology, 2001). 16S 

rRNA genes are conserved among all organisms. However, all organisms possess various 

unique species-specific regions that allow for bacterial identification (Gobel et al., 1987). 

Advances in molecular analysis and DNA manipulation have facilitated the development 

of rapid identification systems in clinical analyses. Broad-range primers that recognize 

16S rRNA gene sequences conserved among a wide variety of bacteria are used to 

amplify species-specific variable regions of interest (Marchesi et al., 1998). Specific 

oligonucleotide probes have enabled the development of efficient diagnostic 
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methodologies, especially where pathogenic organisms are difficult to type and culture. 

Cystic fibrosis is one such area where bacterial identification systems were previously 

difficult. Some strains of Pseudomonas aeruginosa, particularly isolates from cystic 

fibrosis patients, can present difficulties in identification with commercial tests and other 

phenotypic-based identification methods due to exopolymeric polysaccharide production 

and loss of pigment production (Lyczak et al., 2002).  However, the advancement in 16S 

rRNA gene analysis has resulted in the development of rapid diagnostic techniques for 

the identification of P. aeruginosa (Spikler et al., 2004), (Li Puma et al., 1999), 

(O’Callaghan et al., 1994). 

 

Sometimes to distinguish between particular taxa or strains it is necessary to sequence the 

entire 1550 bp of the 16S rRNA gene. However, sequencing of the whole gene is not 

always required for identifying most clinical isolates. In many cases the first 500 bp 

sequence provides satisfactory differentiation for the identification of these strains and 

can actually show greater percentage difference between strains because the region shows 

slightly more diversity per kilobase sequenced (Clarridge III, 2004).  

 

The close relationship between the isolates was indicated by the results from classical 

identification techniques and biochemical profiling results. This close relationship was 

also illustrated by the close proximity of the branching on the phylogenetic tree (Figure 

3.3) and the lack of nucleotide differences between the strains. The isolates had 99-100% 

similar 16S rRNA nucleotide sequence with the known Pseudomonas aeruginosa strain, 

Pseudomonas aeruginosa S8 (Wang et al., 2007). For a more comprehensive analysis, 

the isolates were genetically compared with other validated strains in the Genbank 

database, including those species that are very closely related to Pseudomonas 

aeruginosa: Pseudomonas stutzeri, Pseudomonas putida and Pseudomonas fluorescens. 

These species have very similar phenotypic characteristics to P. aeruginosa and can 

therefore be difficult to differentiate using classical identification techniques (Bergey’s 

Manual for Systematic Bacteriology, 2001). These strains were located on separate 

branches close to the Pseudomonas aeruginosa strains indicating the close genetic 

relationship between the species. The strains were also compared to species which were 
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previously members of the Pseudomonads: Xanthomonas and Burkholderia (Figure 3.3) 

(Bergey’s Manual for Systematic Bacteriology, 2001). The latter strains were located on 

the farthest branches from the Pseudomonas aeruginosa strains indicating the 

evolutionary distance of the species.  

 

16S rRNA gene sequencing was useful for identifying the isolates at the species level. 

Sequencing of the 16S/23S spacer region, sequencing of housekeeper genes (e.g. DNA 

gyrase gene), whole cell protein fingerprinting, plasmid profiling or outer membrane 

protein profile could be used to further differentiate the isolates (Bergey’s Manual for 

Systematic Bacteriology, 2001). 

 

A key point in laboratory tests for Pseudomonas aeruginosa involves determining its 

susceptibility to antibiotics and identification of its resistance mechanisms (Todar, 2004). 

Rolinson (1971) described two criteria for judging an organism to be resistant to an 

antibiotic. The first is that the concentration of the drug required to inhibit growth is at a 

level that cannot readily be achieved at the site of infection. For example, if a strain of P. 

aeruginosa requires a concentration of gentamicin of 10 µg/ml for inhibition it is 

regarded as being resistant. However, if a strain requires a concentration of 50 µg/ml of 

carbenicillin for inhibition it is regarded as sensitive. The reason for this is toxicity. 10 

µg/ml of gentamicin cannot be safely maintained in the body, whereas 50 µg/ml of 

carbenicillin can. The second is that the minimum inhibitory concentration is 

significantly higher than that of most strains of that particular species. The minimum 

inhibitory concentration is the minimum concentration of the antibacterial agent below 

which bacterial growth is not inhibited. 

 

It is important to know whether an organism is likely to respond to a particular antibiotic 

treatment. Infections caused by resistant strains are a matter of great concern in hospitals 

worldwide because they are associated with a three-fold higher rate of mortality, a nine-

fold higher rate of secondary bacteraemia, a two-fold increase in the length of hospital 

stay and therefore an increase in healthcare costs (Giamarellou, 2002). For this reason it 

is essential to establish the breakpoint between a susceptible and resistant population of 
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bacteria. Minimum inhibitory concentration (MIC) breakpoint values are determined by 

reviewing each drug’s pharmacokinetics, pharmacodynamics, population distributions, 

and clinical efficacy at different MICs (Clinical and Laboratory Standards Institute 

M100-S16, 2006). There are many committees around the world involved in establishing 

breakpoints. The Clinical and Laboratory Standards Institute (CLSI) publishes such 

guidance in the USA. In Europe there are six different groups: the Comite de 

l’Antibiogramme de la Societe Francaise de Microbiologie (CA-SFM) (France), the 

Norwegian Working Group on Antibiotics (NWGA) (Norway), the German Institute for 

Standardisation (DIN) (Germany), Swedish Reference Group for Antibiotics (SRGA) 

(Sweden), the Commissie Richtlijenen Gevoeligneids Depalingen (CRG) (Holland) and 

the British Society for Antimicrobial Chemotherapy (BSAC) Working Group (UK) 

(MacGowan and Wise, 2001). There is ambiguity when it comes to MIC breakpoints in 

the literature. Cockerill (1999) stated that when the MIC for a particular antibiotic 

reaches or exceeds 8 µg/ml, the organism might be classified as moderately resistant to 

the antibiotic. Organisms for which MICs are above 32 µg/ml are generally viewed as 

clinically resistant to the antibiotic. However, different antibiotics have different MICs. 

For example, ticarcillin typically has a MIC of ≥ 128 µg/ml whereas the MIC for 

tobramycin is ≥ 16µg/ml (Clinical and Laboratory Standards Institute M100-S16, 2006). 

Also, the MIC of a particular antibiotic may vary for different microorganisms. For 

example, the MIC of ampicillin for E. coli is ≥ 32 µg/ml whereas the MIC for 

Enterococcus spp. is ≥16 µg/ml (Clinical and Laboratory Standards Institute M100-S16, 

2006). There seems to be a lack of standardisation between both the methodologies and 

the MIC values from these different standards agencies (Mesaros et al., 2007). Recently, 

the CLSI has approved a MIC breakpoint value of ≥16 µg/ml of gentamicin for 

Pseudomonas aeruginosa (Clinical and Laboratory Standards Institute M100-S16, 2006). 

The British Society for Antimicrobial Chemotherapy (BSAC) has set a much lower 

breakpoint of 4 µg/ml of gentamicin for Pseudomonas aeruginosa (BSAC, 2006). In 

general, the CLSI breakpoints tend to be higher than those of the BSAC. However, the 

Irish Health Protection Surveillence Centre recommends that all surveillence laboratories 

use the Clinical and Laboratory Standards Institute (CLSI) methodologies when 

performing antimicrobial susceptibility (Health Protection Surveillence Centre, 2006). 
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Complete sequencing of its genome revealed that the P. aeruginosa possesses ten genes 

encoding described and predicted drug efflux systems (Stover et al., 2000). This 

compares to only four in E. coli. Furthermore, given its capacity to metabolize a wide 

variety of organic substrates, it is possible that P. aeruginosa possesses greater potential 

for enzymatic modification and degradative drug resistance mechanisms (Stover et al., 

2000). 

 

Pseudomonas aeruginosa strains are generally less susceptible to a number of antibiotics 

than other Gram-negative bacteria. It is naturally resistant to many antibiotics. This 

phenomenon is known as intrinsic resistance (Hancock and Brinkman, 2002). The 

intrinsic resistance of a microorganism to antimicrobials varies according to the nature of 

the antimicrobial, the microbial species and the prevailing growth environment (Russell 

and Chopra, 1990). Pseudomonas aeruginosa is generally resistant to hydrophobic 

antibiotics for the same reason as other Gram-negative bacteria i.e. the presence of LPS 

(lipopolysaccharide) in the outer leaflet of the outer membrane (Todar, 2004). It shows 

intrinsic resistance to many β-lactam antibiotics and also to lipophilic antibiotics which 

are able to cross the outer membranes of other Gram-negative bacteria to reach their 

targets, such as tetracycline, chloramphenicols and some fluoroquinolones (Li et al., 

1994[a]).  

 

Intrinsic resistance was long attributed to the low outer membrane permeability of P. 

aeruginosa. For example, the permeability of the outer membrane of P. aeruginosa to 

small hydrophilic antibiotics is reduced compared to E. coli (Yoshimura and Nikaido, 

1982). Pseudomonas aeruginosa outer membranes show about 100-fold lower 

permeability to cephalosporins such as cephaloridine than other Gram-negative bacteria, 

in part because of porins with small pores to reduce inward passage of the antibiotics into 

the periplasmic space (Nikaido, 1998). Although the low outer membrane permeability is 

an important factor, it cannot be the entire explanation for intrinsic resistance. The influx 

of these antibiotics into P. aeruginosa across its membrane is still quite rapid even with 

the low permeability of the outer membrane (Li et al., 1994[b]). It has been shown that 
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even relatively susceptible P. aeruginosa strains pump out tetracycline, chloramphenicol, 

fluoroquinolones and some β-lactams using the efflux pump MexC-MexD-OprM in 

synergy with the low permeability of its outer membrane barrier (Li et al., 1994[a]), (Li 

et al., 1994[b]). The combination of these mechanisms is the most likely explanation for 

the universal resistance of the isolates in this study to tetracycline and chloramphenicol, 

as P. aeruginosa has not been reported to modify these antibiotics. The combination of 

these mechanisms is also the most likely explanation for the universal resistance of the 

isolates to the narrow spectrum β-lactams such as penicillin G and cephalothin. Intrinsic 

resistance of P. aeruginosa to the folic acid synthesis inhbitor, co-trimoxazole has been 

attributed to its impermeability and the expression of the efflux pump MexAB-OprM 

(Köhler et al., 1996). P. aeruginosa also has an inducible chromosomal AmpC β-

lactamase and is inherently resistant to those β-lactams that induce this enzyme and are 

hydrolysed by it such as the aminopenicillins, ampicillin and amoxicillin and cephalothin 

(Livermore, 2002). These mechanisms of intrinsic resistance also confer resistance to 

some third-generation cephalosporins such as cefotaxime and moxalactam (Vedel, 2005). 

This could explain the universal intermediate resistance of the isolates to these two 

antibiotics 

 

All of the isolates were resistant to the aminoglycoside antibiotics: kanamycin, neomycin, 

paramomycin, spectinomycin and hygromycin B. The well-known chromosomally 

encoded aminoglycoside 3’-phosphotransferase II (APH(3’)-II), occurs universally in P. 

aeruginosa and naturally provides it with resistance to kanamycin, neomycin and 

parmomycin (Okii et al., 1983). In fact, it is this enzyme that has effectively removed 

these aminoglycosides from clinical use. The MexXY-OprM has been reported to confer 

spectinomycin resistance in P. aeruginosa in addition to tetracycline resistance (Jeannot 

et al., 2005). This could explain the resistance of all the isolates in this study to 

spectinomycin. Resistance to hygromycin B is generally attributed to the production of 

the aminoglycoside 4’-phosphotransferase I (APH (4’)-I). This gene has been cloned and 

used as a useful genetic marker in molecular microbiology (Wright and Thompson, 

1999). All the isolates tested were resistant to this antibiotic. 
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P. aeruginosa PA13 was considered to be a multidrug resistant strain. Multidrug 

resistance is defined as showing resistance to at least three main classes of 

antipseudomonal agents i.e., β-lactams, carbapenems, aminoglycosides and 

fluoroquinolones (Obritsch et al., 2005). P. aeruginosa PA13 was resistant to all of these 

classes. In addition to the antibiotics that all of the isolates were intrinsically resistant to, 

P. aeruginosa PA13 was also resistant to the β-lactams: carbenicillin, piperacillin and 

ticarcillin, the β-lactam/β-lactamase combination ticarcillin-clavulanic acid, the cephems: 

ceftizoxime and cefsulodin (intermediate resistance), the carbapenem, imipenem 

(intermediate resistance), the aminoglycosides: gentamicin, netilmicin, tobramycin, 

sisomicin, streptomycin and the fluoroquinolones: ciprofloxacin and ofloxacin. 

 

Permeability mutations are widely blamed for increased resistance to fluoroquinolones 

and β-lactams (Livermore, 2002). These mutations have been reported to be important in 

resistance to the carbapenems. This is due to the loss of OprD, a porin which forms 

narrow transmembrane channels that are accessible to carbapenems but not to other β-

lactams (Studemeister and Quinn, 1988). Loss of OprD is associated with resistance to 

imipenem and reduced susceptibility to meropenem. OprD is coregulated with MexEF-

OprN. The MexEF-OprN confers resistance to fluoroquinolones. Thus, the nfxc (MexT) 

mutants that are selected for by fluoroquinolones have up-regulated MexEF-OprN and 

reduced OprD and consequently have resistance to both fluoroquinolones and imipenem. 

There is also a reduced susceptibility to meropenem (Livermore, 2002). Although not 

investigated in this study, this combination of mechanisms could explain P. aeruginosa 

PA13’s resistance to the fluoroquinolones and carbapenems. P. aeruginosa PA13 is 

resistant to ciprofloxacin and ofloxacin (fluoroquinolones) and to imipenem 

(carbapenem). Although it is not resistant to meropenem, it has reduced susceptibility to 

this antibiotic. The difference between the MIC values of imipenem and meropenem for 

the imipenem-resistant strain, P. aeruginosa PA13, has been previously attributed to the 

poorer β-lactamase-inducing ability of meropenem, improved β-lactamase stability of 

meropenem and the possibility that meropenem diffuses through the outer membrane by 

non-specific pathways (Bonfiglio, 1998). 
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Streptomycin resistance in Pseudomonas aeruginosa is conferred either by the 

aminoglycoside adenyltransferase, ANT(3’’) or by a 16S rRNA methylase gene (Poole, 

2005). Although this 16S rRNA methylase gene has recently been discovered in P. 

aeruginosa isolates (Yokoyama et al., 2003), it is rarely seen in clinical isolates and is 

generally found in aminoglycoside-producing actinomycetes conferring high-level 

resistance to streptomycin. It is therefore more likely that it was the ANT(3’’) 

adenyltransferase enzyme that conferred low-level streptomycin resistance on P. 

aeruginosa PA13, although the gene for this enzyme was not screened for in this study.   

 

Preliminary antibiotic susceptibility tests showed that all of the isolates had similar 

susceptibilities to the eight antibiotics with the exception of P. aeruginosa PA13, which 

was resistant to the aminoglycosides, gentamicin and streptomycin. Following this 

discovery, susceptibilty tests were performed using a range of other antibiotics from the 

aminoglycoside class.  P. aeruginosa PA13 was found to be resistant to many of these 

aminoglycosides. The ability of Pseudomonas aeruginosa to grow in the presence of high 

concentrations of clinically important aminoglycoside antibiotics such as gentamicin, 

netilmicin and tobramycin suggested the presence of an aminoglycoside-modifying 

enzyme. These enzymes are the most common mechanism of conferring resistance to 

aminoglycosides (Vakulenko and Mobashery, 2003). They are present worldwide and are 

detected in up to 20% of clinical isolates in Europe and Latin America (Poole, 2005). 

Primers were designed specifically to amplify a range of aminoglycoside modifying 

enzyme genes that confer resistance to gentamicin. A product was amplified from P. 

aeruginosa PA13 using the primers for the aac(6’)-IIa gene. This product was sent for 

sequencing and analysis of the sequence identified an aac(6’)-Ib gene and not the 

expected aac(6’)-IIa gene. The aminoglycoside resistance phenotype of P. aeruginosa 

PA13 suggested low-level production of AAC(6’) type IIa and not AAC(6’) type Ib , due 

the fact that the strain was resistant to gentamicin as well as to tobramycin, kanamycin, 

netilmicin and sisomicin and was not resistant to amikacin. AAC(6’)-IIa is commonly 

found in Pseudomonas aeruginosa. It confers resistance to gentamicin, tobramycin, 

netilmicin and sisomicin (but not to amikacin), whereas AAC(6’)-Ib confers resistance to 

amikacin, tobramycin, kanamycin, netilmicin, and sisomicin (but not to gentamicin). 
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These two enzymes are highly similar and their amino acid sequences demonstrate 74% 

similarity (Shaw et al., 1993). There are two regions where differences occur between the 

proteins, at amino acid 53 and between amino acids 115 and 130. The latter region is 

slightly hydrophobic in AAC(6’)-Ib and relatively hydrophillic in AAC(6’)-IIa (Rather et 

al., 1992).  

 

Although, three potential start codons were identified on aac(6’)-Ib open reading frame, 

only two were located downstream from the recombination site. However, initiation from 

the ATG codon at position 680 would yield a protein of 19.13 kDa, which is in good 

agreement with previous values of 20 kDa and 19.5 kDa estimated from immunoblotting 

experiments (Galimand et al., 1993), (Casin et al., 1998). The stop codon for this open 

reading frame was found at posititon 1196 and it was also found downstream of the 

recombination site Figure 3.7. This ambiguity with the start codons is not uncommon and 

has been reported in many species including Pseudomonas fluorescences (Lambert et al., 

1994), Burkholderia cepacia (Crowley et al., 2002), Enterobacter cloacae and 

Citrobacter freundii (Casin et al. 1998). No typical ribosome binding site was found 

upstream of the potential start codons.  

 

The aac(6’)-Ib open reading frame of P. aeruginosa PA13 encodes a serine residue 

instead of the typical leucine residue at position 119. This resulted from a single 

nucleotide mutation (thymine to cytosine at position 269 [Figure 3.9]) which replaced 

leucine (TTA) for serine (TCA) (Figure 3.10). This substitution has previously been 

reported by (Giuliani et al., 2005), (Mendes et al., 2004), (Crowley et al. 2002), (Casin et 

al. 1998), (Mugnier et al., 1998), (Lambert et al. 1994) and (Rather et al. 1992). In all of 

these cases the substitution from leucine to serine has been associated with a shift from 

amikacin resistance to gentamicin resistance. The same case is true for the AAC(6’)-Ib 

from P. aeruginosa PA13 as the strain is resistant to gentamicin and susceptible to 

amikacin. This mutant version of the AAC(6’)-Ib enzyme can also be referred to as 

AAC(6’)-Ib9 or AAC(6’)-Ib’. 
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Research by Rather et al. (1992) suggested that a single amino acid substitution Leu119Ser 

conferred an altered substrate profile, where the AAC(6’)-Ib conferred resistance to 

gentamicin instead of the amikacin resistance seen in the wild-type gene. Rather et al., 

1992 reported that the amino acid at position 119 in AAC(6’)-Ib was critical to the 

functioning of the enzyme. Casin et al., 1998 studied naturally occurring variants of 

AAC(6’)-Ib that had a serine residue instead of a leucine residue at position 119 

(numbering of the reference AAC(6’)-Ib sequence [Tran Van Nhieu and Collatz, 1987]). 

A change from leucine to serine at this position conferred an altered substrate profile, 

where the mutant AAC(6’)-Ib conferred resistance to gentamicin instead of the amikacin 

resistance seen in the wild-type enzyme. Although the enzyme variants had different 

substrate specificities, both the variants were fully functioning enzymes which would 

suggest that the amino acid substitution from leucine to serine at this position does not 

fundamentally alter global protein folding (Casin et al., 1998).   

 

The amino acid substitution from leucine to serine has been reported to cause a slight 

reduction in local hydrophobicity in the aminoglycoside binding domain. (Rather et al., 

1992). Casin et al. (1998) reported that the region around the leucine at position 119 is an 

α helix in AAC(6’)-Ib and stated that there was a strong possibility that the N-terminal 

portion of this α helix is shortened in variants with serine instead of leucine. Miller et al. 

(1995) suggested that the presence of a free amino group in gentamicin compared to the 

presence of a hydroxy-amino-butyl group in amikacin at position 1 may be involved in 

the different substrate specificities of AAC(6’)-I and AAC(6’)-II and that both amino 

acid groups could interact with serine. Casin et al. (1998) predicted the secondary 

structure of these enzymes and suggested that the binding domain contains an α helical 

structure. They believed that the substitution of leucine by serine residue reduced the 

possibility of this secondary structure. They also stated that serine, a small polar amino 

acid capable of establishing hydrogen bonding, or leucine, a larger hydrophobic amino 

acid at position 119, conditioned the conformation of the aminoglycoside binding domain 

in these enzymes. 
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Following sequencing, it was noted that this aac(6’)-Ib gene was located on a Class I 

integron because it was surrounded by an integrase gene (intI) and a quaternary 

ammonium compound resistance gene (qacE∆1). These genes are typical of Class 1 

integrons. Integrons are mechanisms for the acquisition and dissemination of genetic 

determinants of antimicrobial resistance (Daly and Fanning, 2000). They are genetic 

elements capable of the acquisition, rearrangement and expression of genes contained in 

gene cassettes (Collis and Hall, 1995). Class 1 integrons, which are most commonly 

found in antibiotic-resistant clinical isolates, possess two conserved segments located on 

either side of the integrated gene cassettes (Fluit and Schmitz, 1999). The 5’ conserved 

segment encodes an integrase gene (Int1) and contains attI1, the cassette integration site, 

the promoter Pant, which is found in the integrase gene and is responsible for the 

expression of downstream-located integrated gene cassettes. It sometimes also contains 

the secondary promoter P2 (Fluit and Schmitz, 2004). The 3’ conserved segment contains 

the disinfectant (qacE∆1) and sulphonamide (sul1) resistance genes (Fluit and Schmitz, 

1999). Gene cassettes generally consist of a promoterless gene associated with a 

recombination site known as a 59-base element (59-be) (Fluit and Schmitz, 2004). 

Multiple insertion events can lead to the assembly of large integron-associated cassette 

arrays. The gene cassettes are located between these two conserved regions (Daly and 

Fanning, 2000). 

 

Almost all aac(6’)-Ib genes described to date exist as gene cassettes carried by class 1 

integrons (Casin et al., 2003). The BLAST searches of genetic databases identified that 

the integron from P. aeruginosa PA13 contained two gene cassettes fused in a head-to-

tail arrangement. The first was the 516 bp gene encoding a 172 amino acid protein, 

known as AAC(6’)-Ib (an aminoglycoside modifying enzyme) as described above. The 

aac(6’)-Ib gene found in the gene cassette within the integron in P. aeruginosa PA13 was 

100% similar to aac(6’)-Ib genes found in several Pseudomonas aeruginosa strains 

(Petroni et al., 2002), (Mendes et al., 2004) and in a Burkholderia cepacia strain 

(Crowley et al., 2001). All of these aac(6’)-Ib genes were also found on class 1 integrons.  
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The aac(6’)-Ib gene was located at the proximal side of this integron with a 798 bp open 

reading frame encoding a protein of 266 amino acids that displayed similarity with a 

number of previously identified Class D β-lactamase (oxacillinase) genes on its distal 

side. The most common mechanism of resistance to β-lactam antibiotics is the production 

of a β-lactamase (Petroni et al., 2002). Integrons with similar gene cassettes in P. 

aeruginosa have been reported previously by (Poirel et al., 2002), (Lambert et al., 1994) 

and (Mugnier et al., 1998). Crowley et al. (2002) identified an integron in a Burkholderia 

cepacia isolate in which the aac(6’)-Ib gene was located distal to bla-OXA gene and 

adjacent to the 3’ region of the Class 1 integron. However, these enzymes occur 

predominantly in Pseudomonas aeruginosa (Crowley et al., 2002). These gene cassettes 

are most likely located together on integrons because a combination of an 

aminoglycoside and a β-lactam antibiotic are commonly used to treat P. aeruginosa 

infections rather than a single antibiotic class on its own.  

 

Class D β-lactamases (oxacillinases) are characterised by a strong oxacillinase activity 

but differ widely in their genetic backgrounds and functional features (Bush et al., 1995). 

Oxacillin-hydrolysing enzymes are mostly narrow-spectrum β-lactamases. They usually 

confer resistance to most penicillins and narrow-spectrum cephalosporins (cephalothin) 

(Naas and Nordmann, 1999). OXA-type enzymes hydrolyse cloxacillin and oxacillin 

faster than benzylpenicillin and are generally not inhibited by clavulanic acid (except 

OXA-18 and OXA-45) (Philippon et al., 1997), (Toleman et al., 2003). Potentiation by 

clavulanate is often poor and many oxacillinase producers are resistant to β-lactamase 

inhibitor combinations that include this inhibitor. The oxacillinase enzymes however 

remain susceptible to the β-lactamase inhibitor combination piperacillin-tazobactam 

(Naas and Nordmann, 1999). They are frequently found in Pseudomonas aeruginosa. 

Most oxacillinase genes that have been identified to date have been located on the 

variable regions of integrons. The reason for this is unknown but it provides an excellent 

means for their selection upon β-lactam treatment (Naas and Nordmann, 1999).  

 

BLAST searches showed that an OXA-type enzyme from an uncultured bacterium 

isolated from activated sludge in Germany (Tennstedt et al, 2003) and an OXA-type 



 220 

enzyme from a Burkolderia cepacia strain (Crowley et al., 2002) had the most similar 

nucleotide sequence to the oxacillinase gene from P. aeruginosa PA13 with 99% 

similarity. The oxacillinase gene also shared 92% sequence identity to the OXA-46 

enzyme located on an integron in a clinical isolate of Pseudomonas aeruginosa in 

Belgium (Giuliani et al., 2005). All of these enzymes are members of the OXA-2 

sublineage.  The oxacillinase was also similar at the level of primary structure with other 

Class D β-lactamases belonging to the OXA-2 sublineage of oxacillinases (Naas and 

Nordmann, 1999). Oxacillinases are divided into sublineages depending on their degree 

of amino acid identity. The largest of these sublineages are OXA-2 and OXA-10. The 

oxacillinase from P. aeruginosa PA13 is a new member of the OXA-2 lineage.  It shared 

81% amino acid sequence identity with OXA-2 (Rossolini et al., 2000). However, the 

protein is shorter by nine residues at the carboxy terminus. It also contains identical 

residues at positions 150 and 164, unlike in OXA-15 and OXA-32 (variants of OXA-2 

with extended spectrum activities), which have mutations at these residues. Considering 

the molecular similarity with the OXA-2 sublineage the oxacillinase from P. aeruginosa 

PA13 may also be assigned to oxacillinases belonging to Group II according to the 

classification of Sanschagrin et al. (1995). 

 

Members of the OXA-2 lineage exhibit a narrow-substrate specificity that is generally 

limited to penicillins and narrow spectrum cephalosporins. This is similar to the substrate 

specificities of other narrow-spectrum oxacillinases (Bush et al., 1995). At the genetic 

level, the similarity between the lineages was not just limited to their coding sequences 

but also to the attC recombination sites (59-be) of the gene cassettes, which suggests a 

common ancestory for these bla-OXA cassettes (Figure 3.16). 

 

The deduced amino acid sequence of the oxacillinase enzyme from P. aeruginosa PA13 

(Figure 3.12) contained a motif characteristically found in serine β-lactamases (Couture 

et al., 1992) with the serine-threonine-phenylalanine-lysine tetrad (S-T-F-K) motif found 

at positions DBL 70 to 73. This conserved region is characteristic of β-lactamases which 

possess a serine at their active site (Couture et al., 1992). DBL is the system used for 

numbering Class D β-lactamases (Couture et al., 1992). The oxacillinase gene from P. 
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aeruginosa PA13 also included the conserved serine and lysine amino acid residues 

characteristic of β-lactamases possessing a serine active site (Couture et al., 1992). The 

five structural elements characteristic of Class D β-lactamase were also found: S-X-V at 

position 118 to120 Y-G-N at position 176 to 180, W-X-E-X-X-L-X-I-S at DBL 164 to 

172, Q-X-X-X-L at DBL 176 to 180 and K-T-G at position 216 to 218.  

 

The oxacillinase genes from an uncultured bacterium isolated from activated sludge in 

Germany (Tennstedt et al, 2003) and from a Burkolderia cepacia strain (Crowley et al., 

2002) were not characterised and were only screened against basic antibiotics. OXA-46 is 

the most similar characterised oxacillinase to the oxacillinase from P. aeruginosa PA13.  

OXA-46 conferred resistance to most penicillins and the narrow-spectrum cephalosporin, 

cephalothin. P. aeruginosa PA13 had a narrow-spectrum resistance profile that included 

most penicillins (penicillin G, ampicillin, amoxicillin, oxacillin, cloxacillin, carbenicillin, 

piperacillin, ticarcillin) the narrow-spectrum cephalosporin, cephalothin. It was also 

resistant to the β-lactam-β-lactamase inhibitor combination of ticarcillin and clavulanic 

acid, which is typical of a strain producing an oxacillinase enzyme (Toleman et al., 

2003). Although the other isolates were resistant to some of these antibiotics, P. 

aeruginosa PA13 had a higher-level of resistance. In particular it had much higher levels 

of resistance to oxacillin and cloxacillin, which is typical of strains producing an 

oxacillinase enzyme (Toleman et al., 2003). It also had an intermediate resistance to the 

extended-spectrum cephalosporins, ceftizoxime and cefsulodin. The most frequent 

mechanisms of resistance to extended-spectrum cephalosporins in P. aeruginosa are 

derepression of the chromosomal AmpC β-lactamase (a Class C cephalosporin) and up-

regulation of multi-drug efflux (Chen et al., 1995). However, the absence of inhibition by 

cloxacillin (a Class C cephalosporin inhibitor) argued against the presence of an AmpC 

type β-lactamase (Danel et al., 1997). Extended-spectrum variants of OXA-2 type 

oxacillinases have been identified (OXA-15 and OXA-32) (Danel et al., 1997) (Poirel et 

al., 2002), which confer high-level resistance to the extended-spectrum cephalosporins 

such as, cefpirome, ceftriaxome aztreonam and ceftazidime. The oxacillinase from P. 

aeruginosa PA13 may be an extended-spectrum of the OXA-2 β-lactamase. However, 

kinetic studies would be required to confirm this. P. aeruginosa PA13 has also a low 
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susceptibility to the β-lactamase inhibitor clavulanic acid but not to the other inhibitor, 

tazobactam. This is a typical characteristic of strains producing oxacillinase enzymes 

(Bush et al., 1995). 

 

The gene cassettes, aac(6’)-Ib and the oxacillinase, were surrounded by all of the 

characteristics typical of a Class 1 integron (Collis and Hall, 1995). The gene cassette 

containing the aac(6’)-Ib gene was preceded by a 5’ coding sequence containing a Class 

1 integrase gene (IntI1) (Figure 3.7) and a recombination site, attI1 (Figure 3.6). The 

aac(6’)-Ib gene cassette had a core site (5’-GCCTAAC-3’), a perfect inverse core site 

(5’-GTTAGGC-3’) and a 59-be site made up of 73 base pairs starting inside the 3’-end 

coding sequence of the gene (Figure 3.15). The oxacillinase gene had a core site (5’-

GCCCAAC-3’), an imperfect core site (5’-GTTAGGC-3’) and a 59-be site made up off 

55 base pairs starting inside the 3’-end coding sequence of the gene (Figure 3.16). 

Downstream of the latter 59-be site was the 3’ conserved segment characteristic of Class 

1 integrons which contained the ethidium bromide and quaternary ammonium resistance 

determinant, qac∆E1 gene (Figure 3.13). Paulsen et al. (1993) described qacE∆1 as a 

defective version of qacE, a gene said to encode resistance to quaternary ammonium 

compounds (QAC) and dyes like ethidium bromide. qacE was also found as part of 3’-CS 

in some integrons in Gram-negative bacteria. This could mean that bacteria harbouring 

integrons are also resistant to disinfectants like QACs (Kücken et al., 2000). QACs, 

which contain benzalkonium chloride as the most widely used agent, are employed as 

wound and skin antiseptics and as disinfectants in hospitals. In the same way that the 

problem with antibiotic resistant bacteria has been increasing in hospitals, bacterial 

resistance to disinfectants and antiseptics is also on the increase (McDonnell and Russell, 

1999). Genes determining resistance to QACs are generally located on plasmids 

(Kaulfers and Brandt, 1987). 

 

The overall sequence of the integron amplified from P. aeruginosa PA13 was compared 

to other integrons in the GenBank database (Figure 3.14). The most similar integron was 

found to be 95% similar to an integron in a Pseudomonas aeruginosa strain from Italy 

(Giuliani et al., 2005). This integron contained both the aac(6’)-Ib gene and the 
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oxacillinase gene, bla-OXA-46. The integron shared 92% similarity with integrons found in 

a Vibrio cholerae and a Morganella morganii strain, both isolated in Buenos Aires, 

Argentina (Soler Bistué et al., 2006) (Power et al., 2005). Both these integrons contained 

the aac(6’)-Ib and bla-OXA-2 genes. The integron was also 88% similar to an integron 

found in a Pseudomonas aeruginosa strain in France (Naas et al., 1998), which contained 

the aac(6’)-Ib gene and the bla-OXA-20 genes. 

 

Expression of gene cassettes in class 1 integrons is not uniform. Expression depends on a 

number of factors such as gene copy number, promoter strength and distance of the gene 

cassette from the promoter (Martinez-Freijo et al., 1998). The promoter is usually found 

upstream of the gene cassette. The order of a cassette in the integron is related to the level 

of resistance observed. The relative distance between a gene cassette and the promoter is 

important regarding expression. Gene cassettes that are closest to the promoter, Pant, are 

more highly and effectively expressed than distal cassettes (Collis and Hall, 1995). 

Therefore distal genes may be poorly expressed and have very little effect on the 

susceptibility of the bacterium to relevant antibiotics (Martinez-Freijo et al., 1998). The 

expression of downstream cassettes can also be affected by the nature of of upstream 

cassettes. For a higher level of expression, a second promoter adjacent to the first 

promoter or multiple copies of the same gene is required (Martinez-Freijo et al., 1998).  

 

Gene cassettes are generally promoterless. Therefore most gene cassettes are expressed 

from a common promoter located in the 5’-CS region of integrons. This region contains 

two potential promoter sites, Pant and P2 (Fluit and Schmitz, 2004). At least five versions 

of the Pant (also called PC or P1) promoter have been identified and classified according to 

their activity (Fluit and Schmitz, 2004). They differ in the sequences of the –35 and/or –

10 hexamers and in their strength. There is a weak promoter TGGACA N17 TAAGCT, a 

strong promoter TTGACA N17 TAAACT, and hybrid promoters including TGGACA N17 

TAAACT and TTGACA N17 TAAGCT which have an intermediate activity (Bunny et 

al., 1995). The weak promoter has been found to have 20-fold less activity than the 

strong promoter (Collis and Hall, 1995). The weaker version of the promoter may be 

found together with a secondary, compensatory promoter, which increases their 
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combined activity to expresssion levels which are just threefold lower than the strong Pant 

promoter (Rowe-Magnis and Mazel, 2002). However, the second potential promoter, P2, 

is frequently inactive because only 14 out of the optimal 17 nucleotides are present (i.e., 

TTGTTA-N14-TACAGT instead of TTGTTA-N17-TACAGT) (Fluit and Schmitz, 2004). 

The second promoter only arises from the insertion of three guanosine residues to 

increase the spacing between the –10 and –35 sequences to 17 (Levesque et al., 1994). 

Sequence analysis of the integron from P. aeruginosa PA13 revealed that it contained 

both these promoters (Figure 3.6). The Pant contained the sequence associated with weak 

promoters (TGGACA N17 TAAGCT). The P2 promoter (-35 region, TTGTTA; -10 

region, TACAGT) had only 14 nucleotides out of the optimal 17 present making it 

inactive. Therefore expression of the antibiotic resistance genes in this integron was 

driven by Pant. 

 

Interestingly, the origin of these gene cassettes within the integron in P. aerginosa PA13 

may not be Pseudomonas aeruginosa. Analysis of the genes determined that the G + C 

content of both is closer to those found in Enterobacteriaceae. The %GC content of 

Pseudomonas aeruginosa is around 67% and the %GC content of Escherichia coli is 

around 50% (Bergey’s Manual for Systematic Bacteriology, 2001). The %GC content of 

the oxacillinase gene from Pseudomonas aeruginosa PA13 is 49.6%. The %GC content 

of aac6’-Ib gene from Pseudomonas aeruginosa PA13 is 54.3%. This further underlines 

the mobility of gene cassettes. 

 

It was of interest to clone the oxacillinase gene from P. aeruginosa PA13 in order to 

study its biochemical and kinetic properties. Protein expression is governed by many 

factors including those that affect transcription, mRNA processing and stability and 

initiation of translation (Gustafsson et al., 2004). With the creation of cloning vectors that 

contain assorted regulatory elements such as promoters, ribosome binding sites and 

terminators, these factors have been largely optimized (Gustafsson et al., 2004). 

Escherichia coli remains the most attractive strain for heterologous protein production 

because of its ability to grow rapidly, at high density on inexpensive substrates, its well-

characterised genetics and the availability of an increasingly large number of cloning 
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strains and mutant host strains (Baneyx, 1999). However the fate of foreign proteins 

expressed in E. coli is determined in part by the degradative activities of the host cells 

(Hanning and Makrides, 1998). 

 

The pET vector, pET-28a, was used for the cloning and expression of the oxacillinase 

gene. The pET vectors were originally constructed by Studier and Moffatt (1986). The 

more recent pET vectors have been developed by Novagen and offer enhanced features to 

allow easier cloning, detection and purification of target proteins. The pET system is the 

most powerful system yet developed for the cloning and expression of recombinant 

proteins in E. coli. Target genes are cloned in pET plasmids under the control of a strong 

bacteriophage T7 transcription. Expression is induced by providing a source of T7 RNA 

polymerase in the host cell. T7 RNA polymerase is so selective and active that, when 

fully induced, almost all of the cells resources are converted to target gene expression 

(Novagen, 2005). The desired protein can comprise more than 50% of the total cell 

protein a few hours after induction (Baneyx, 1999). Although this system is extremely 

powerful, it is also possible to attenuate the expression level simply by lowering the 

concentration of inducer. Decreasing the expression level may enhance the soluble yield 

of some target proteins. Another important benefit of this system is the ability to maintain 

target genes transcriptionally silent in the uninduced state. Target genes are initially 

cloned using hosts that do not contain the T7 RNA polymerase gene, thus eliminating 

plasmid instability due to the production of proteins potentially toxic to the host cell. 

Once established in a non-expression host, target protein expression may be initiated by 

transferring the plasmid into an expression host containing a chromosomal copy of the T7 

RNA polymerase gene under lacUV5 control, such as E. coli BL21 (DE3). Expression is 

induced by the addition of IPTG or lactose to the bacterial culture (Novagen, 2005).  

 

Many of the previously discovered oxacillinase genes including OXA-50 (Girlich et al., 

2004), OXA-46 (Giuliani et al., 2005), OXA-69 (Héritier et al., 2005) and OXA-85 

(Voha et al., 2006) have been successfully expressed in pET vectors. The oxacillinase 

gene (OXA-57) from Burkholderia pseudomallei was successfully expressed using a 
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pET-28a expression vector (Keith et al., 2005). This vector was one expression vector 

chosen for the study the of the oxacillinase gene from P. aeruginosa PA13. 

 

When expression of the oxacillinase protein could not be detected in the soluble fraction 

of the induced E. coli BL21 (DE3) cells containing the pET-28a vector with the 

oxacillinase insert (pDF2) (Figure 3.27), the insoluble fraction was analysed. 

Overexpression of foreign proteins in the cytoplasm of E. coli is often accompanied by 

their misfolding and segregation into insoluble aggregates known as inclusion bodies. 

Cellular accumulation of misfolded or unfolded proteins in E. coli can result for a number 

of reasons: spontaneous mutations affecting the folding pathway, exposure of the cells to 

environmental stress such as high temperatures or expression of recombinant proteins 

(Hunke and Betton, 2003). In these situations, the polypeptide chain can associate to form 

unordered aggregates known as inclusion bodies instead of folding into a biologically 

active state (Betts and King, 1999). Inclusion bodies can accumulate in the cytoplasm or 

periplasm depending on whether or not a recombinant protein has been engineered for 

secretion. The target usually accounts for 85-95% of the inclusion body material and is 

contaminated by outer membrane proteins, ribosomal components and a small amount of 

phospholipids and nucleic acids (Valax and Georgiou, 1993). Even when the protein is 

present in a biologically inactive state (in inclusion bodies), it can be detected by 

analysing the insoluble protein fraction using SDS-PAGE. The oxacillinase protein could 

not be detected in the insoluble fraction (Figure 3.28). 

 

The pET vectors require a host cell containing a chromosomal copy of the T7 RNA 

polymerase gene to induce expression. Therefore, the vector is limited to very few host 

strains such as E. coli BL21 (DE3), which carries a chromosomal copy of the T7 RNA 

polymerase gene under lacUV5 control. When expression of the oxacillinase gene could 

not be detected using the pET-28a vector, a new vector was chosen. The second 

expression vector chosen for the study of the oxacillinase gene from P. aeruginosa PA13 

was an in-house vector called pPC. The pPC expression vector contains the Ptac 

promoter. DeBoer et al. (1983) reported on the high efficiency of Ptac in expressing 
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foreign genes in E. coli as opposed to the parental promoters. Unlike the pET-28a vector, 

it could be introduced to many host cells. 

 

When expression of the oxacillinase protein was not detected in the induced E. coli XL-

10 Gold cells containing the oxacillinase gene in the pPC expression vector (pDF4) at 

37°C (Figure 3.38), the cells were induced at 28°C. A traditional approach to reduce 

protein aggregation (inclusion bodies) is most commonly to decrease the cultivation 

temperature, as protein folding is often favoured under low temperature cultivation 

conditions (Baneyx, 1999). The aggregation reaction is usually favoured at higher 

temperatures due to the strong temperature dependence of hydrophobic interactions that 

determine the aggregation reaction (Kiefhaber et al., 1991). The lower temperature has 

the combined advantages of slowing down transcription and translational rates and of 

reducing the strength and rates of hydrophobic reactions that contribute to protein 

misfolding (Baneyx and Mujacic, 2004). The cells with pDF4 were also cultivated at 150 

rpm instead of the usual 200 rpm to provide gentler growth conditions. Both the soluble 

and insoluble protein fractions were analysed by SDS-PAGE (Figure 3.39 and Figure 

3.40). Even at this low temperature the oxacillinase protein was not detected suggesting 

that the protein was not being expressed in inclusion bodies. 

 

Expression of recombinant proteins in E. coli is difficult when the codon usage in the 

recombinant gene differs from the codon usage in the host cells (Gustafsson et al., 2004). 

Most amino acids are encoded by more than one codon, and each organism carries its 

own bias in the usage of the 61 available amino acid codons. Not all of the mRNA 

codons are used equally. The degeneracy of the genetic code allows many alternative 

nucleic acid sequences to encode the same protein. The so-called major codons are those 

that occur in highly expressed genes, whereas the minor or rare codons tend to be in 

genes expressed at a low level (Zahn, 1996). Forced high-level expression of a gene with 

codons that are rarely used by E. coli causes depletion of the internal tRNA pools. 

Insufficient tRNA pools can lead to translational stalling, premature translational 

termination, translation frameshifting, amino acid misincorporation or inhibition of 

protein syntheis and cell growth (Novy et al., 2001). A subset of codons, namely 
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AGG/AGA (Arg), CGA/CGG (Arg), AUA (Ile), CUA (Leu), GGA (Gly) and CCC (Pro) 

are rarely expressed in E. coli and appear to cause problems from a translational point of 

view (Kane, 1995). If the recombinant protein being expressed contains several of these 

rare codons the protein may not be expressed due to this translational limitation. The E. 

coli RosettaBlueTM
 strain (Novagen) has been engineered to provide the tRNAs for these 

rarely expressed codons on a chloramphenicol resistant plasmid, pRARE (Section 

2.1.1.3). The use of the E. coli RosettaBlueTM strain (Novagen) as an expression host 

facilitates the expression of proteins that would otherwise be limited by codon bias in E. 

coli. The oxacillinase gene from Pseudomonas aeruginosa PA13 contained thirteen of 

these rare codons. The pPC expression vector containing the oxacillinase gene (pDF4) 

was transformed into an E. coli RosettaBlueTM
 strain. When these cells were induced and 

the proteins produced were analysed the oxacillinase protein was not detected in either 

the soluble or insoluble fractions (Figure 3.41 and Figure 3.42).  

 

The cloned oxacillinase gene and the expression vectors were sequenced and were found 

to have no errors. The oxacillinase enzyme did not appear to be expressed in inclusion 

bodies as was shown by reducing the induction temperature and by analysing the 

insoluble protein fraction of the induced cells. Codon bias did not appear to be the reason 

why the oxacillinase enzyme was not being expressed as it was induced in a E. coli 

RosettaBlueTM
 strain, which provides the tRNAs for rarely expressed codons.  Therefore, 

it is possible that the enzyme was unstable in E. coli cells and degraded by proteolysis. 

One of the difficulties associated with the expression of heterologous proteins is 

inefficient export, which manifests itself by the degradation or aggregation of preproteins 

in the cytoplasm (Baneyx and Mujacic, 2004). The degradation of misfolded proteins by 

host proteases guarantees that abnormal polypeptides do not accumulate within the cell 

and allows amino acid recycling. Targets for degradation include prematurely terminated 

polypeptides, proteolytically vulnerable folding intermediates that are kinetically trapped 

off-pathway and partially folded proteins that have failed to reach a native conformation 

after multiple cycles of interactions with folding modulators (Baneyx and Mujacic, 

2004). Although, the host strains, E. coli BL21 (DE3) and E. coli RosettaBlueTM used 

were deficient in two proteases, Lon and ompT, these are only two of many proteases in 
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the cytoplasm. In the cytoplasm, proteolytic degradation is initiated by five heat shock 

proteases (Lon, ClpYQ/HslUV, ClpAP, ClpXP and FtsH) and completed by peptidases 

that hydrolyze sequences that are 2-5 residues in length (Baneyx and Mujacic, 2004).  

 

In order to overcome the problem of proteolytic degradation, recombinant proteins can be 

targeted to the periplasmic space in a Sec-dependent or SRP-dependent fashion by fusing 

naturally occuring signal sequences, such as PelB to their N-terminus. In E. coli cells, the 

vast majority of proteins destined for export are secreted by the Sec-dependent pathway 

(Baneyx and Mujacic, 2004). The Sec pathway translocates polypeptides post-

translationally, whereas the SRP pathway translocates polypeptides cotranslationally. 

These two pathways converge at the Sec translocon which transports the polypeptides in 

an unfolded state across the cytoplasmic membrane (Steiner et al., 2006). There are fewer 

proteases in the periplasm compared to the cytoplasm and many have specific substrates. 

It may be necessary to add a PelB leader sequence to the N-terminal region of the 

oxacillinase gene from P. aeruginosa PA13. This pelB leader sequence is a sequence of 

amino acids which when attached to a protein, directs the protein to the periplasmic 

membrane of E. coli, where the sequence is removed by pelB peptidase, which may 

promote proper folding and protect against proteolytic breakdown (Lee and Raines, 

2003). The protein would then be folded into its native conformation by the periplasmic 

folding helpers, Skp or DsbC (Baneyx and Mujacic, 2004). 
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5.0 Conclusions 

 

 

� Thirteen clinical isolates from two Irish hospitals were identified as 

Pseudomonas aeruginosa strains. The methods used included classical 

methods, API 20NE, Biolog GN and 16S rRNA gene sequencing. 

 

� All of the isolates had similar antibiotic profiles when screened against forty-

one antibiotics from eleven antibiotic classes.  

 

� One of the isolates, P. aeruginosa PA13, however was much more resistant to 

the antibiotics tested than the other strains. This isolate was resistant to the 

same antibiotics as the other isolates but was also resistant to many more 

antibiotics including: the β-lactams - pipercillin, ticarcillin, carbenicillin, 

ticarcillin/clavulanic acid, ceftizoxime, cefsulodin, imipenem, the 

aminoglycosides-gentamicin, netilmicin, streptomycin, tobramycin, sisomicin 

and the quinolones-ciprofloxacin and ofloxacin. P. aeruginosa PA13 was 

therefore a multiresistant strain. 

 

� Two genes, aac(6’)-Ib and an oxacillinase gene, conferring antibiotic 

resistance were located on a Class 1 integron. 

 

� aac(6’)-Ib was a mutant version of gene. The acetyltransferase aac(6’)-Ib 

gene contained the mutant type of the enzyme with a leucine substitution for 

serine at position 119. This mutation confers gentamicin resistance instead of 

amikacin resistance. 

 

� A novel oxacillinase gene was identified. The gene was successfully cloned 

using both the pET-28a and the pPC vectors, however expression of the 

protein was not detected. 
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6.0 Future Work 

 

 

A number of findings have been identified for further study including: 

 

� An aggregative response by P. aeruginosa PA13 to high concentrations of 

gentamicin. This response is thought to contribute to the considerable 

resistance of the organism to antibiotics.  

 

� Further investigation of the oxacillinase enzyme from P. aeruginosa PA13. 

This would involve adding a pelB leader sequence to the N-terminal region of 

the oxacillinase gene. This pelB leader sequence is a sequence of amino acids 

which when attached to a protein, directs the protein to the periplasmic 

membrane of E. coli, where the sequence is removed by pelB peptidase. This 

modification of the gene may promote proper folding and protect against 

proteolytic breakdown, thus enhancing protein expression. 

 

� Identification of the location of the integron containing the aac(6’)-Ib and 

oxacillinase genes from P. aeruginosa PA13. 

 

� If the oxacillinase gene from P. aeruginosa PA13 is located on a plasmid then 

it may be studied by transferring the plasmid to a recipient strain such as 

Pseudomonas aeruginosa PU21 by conjugation. 
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