Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marina Duffy, ${ }^{\text {a }}$

John F. Gallagher ${ }^{\text {a }}$ and
Alan J. Lough ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ${ }^{\mathbf{b}}$ Department of Chemistry, 80 St George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: john.gallagher@dcu.ie

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.079$
Data-to-parameter ratio $=10.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions in (2S,4S,5R)-(-)-2-(4-propoxyphenyl)-3,4-dimethyl-5-phenyl-1,3-oxazolidine

The title compound, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$, a condensation product of 1-ephedrine and 4-propoxyaldehyde, is of interest in studies on weak interactions. It crystallizes with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ (arene) intermolecular interactions as a one-dimensional chain $\left[\mathrm{C} \cdots \mathrm{O}=3.3745\right.$ (19) \AA, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=139^{\circ}$; C$\mathrm{H} \cdots C g 1=3.6987(16) \AA, \mathrm{C}-\mathrm{H} \cdots C g 1=161^{\circ}$, where $C g 1$ is the centroid of the symmetry-related 4-propoxy-substituted aromatic ring].

Comment

The general principles underlying recognition processes are reasonably well understood, and interactions involving guesthost systems can usually be rationalized in terms of preferred combinations of hydrogen-bond donors and acceptors (Etter et al., 1990; Bernstein et al., 1995). Such studies, and especially those related to the structure and reactivity of biological molecules, are central to understanding drug behaviour in medicinal chemistry. Amino acid derivatives constitute the most notable class of chiral systems, with studies in asymmetric synthesis, catalysis and medicinal chemistry. The chiral aminoalcohol $(1 R, 2 S)-(-)$-ephedrine, (I), has previously been reacted with aromatic aldehydes, e.g. bromobenzaldehyde (Just et al., 1983), and heteroaromatic systems, e.g. pyrrole (III a) (Gallagher \& Fitzsimons, 1999).

The title compound, (IV), a derivative of $(1 R, 2 S)-(-)$ ephedrine, (I), and para-propoxybenzaldehyde, (II), is of current interest as a model compound for studies of weak interactions in systems lacking strong hydrogen-bond donors and acceptors, as well as for alkoxyaromatic derivatives which are frequently used in liquid crystal applications (Bruce, 1993; Cromhout \& Hutton, 2000). The reactions of (I) with heteroaromatic aldehydes and related structural studies have been reported (Just et al., 1983; Bourne et al., 1997), as have pyrrole (III a) (Gallagher \& Fitzsimons, 1999), imidazole (IIIb) (Gallagher et al., 1998) and thiazole (IIIc) relatives (Fitzsimons \& Gallagher, 1999).

Two views of (IV) are depicted with the atomic numbering scheme in Figs 1 and 2. Bond lengths and angles are unexceptional and in accord with anticipated values (Allen, 2002). The absolute configuration is based on and deduced from that of (I), in combination with NMR data. The oxazolidine ring

Received 14 November 2003 Accepted 15 December 2003 Online 17 January 2004

Figure 1
A view of (IV) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines indicate the C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions. Atoms with suffix ' a ' are at the symmetry-related site $\left(1-x, \frac{1}{2}+y,-z\right)$.

Figure 2
A stereoview of the interactions between molecules, with atoms drawn as their van der Waals spheres.
adopts an envelope conformation, with atom N3 0.602 (2) \AA from the O1/C2/C4/C5 plane. This conformation compares favourably with that for (III a), in which N3 deviates by 0.609 (6) and 0.623 (6) \AA in two independent molecules, (III b) [0.566 (3)-0.615 (3) $\left.\AA\left(Z^{\prime}=4\right)\right]$ and (IIIc) [0.623 (2) \AA], suggesting that the nature of the aromatic ring has little effect on the envelope conformation of the five-membered $\mathrm{C}_{3} \mathrm{NO}$ central ring, this being a favourable energy conformation for these systems. The distortion in the central five-membered $\mathrm{C}_{3} \mathrm{NO}$ ring can also be analysed by the internal torsion angles: in the propoxyphenyl system (IV) the range is from 11.71 (15) ${ }^{\circ}$ for $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$ to $44.92(14)^{\circ}$ for $\mathrm{O} 1-\mathrm{C} 2-$ $\mathrm{N} 3-\mathrm{C} 4$, so that a description of N 3 being out of the plane of the other four atoms is obvious and the $\mathrm{C}_{3} \mathrm{O}$ four-atom plane is defined as $\mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 5 / \mathrm{C} 4$. The $\mathrm{C}_{6} \mathrm{H}_{5}$ ring is at an angle of $79.23(5)^{\circ}$ to this $\mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 5 / \mathrm{C} 4$ plane, which is oriented at 79.14 (5) ${ }^{\circ}$ to the 1,4 -disubstituted $\mathrm{C}_{6} \mathrm{H}_{4}$ ring. The propoxy OC_{3} chain is also co-planar with the $\mathrm{C}_{6} \mathrm{H}_{4}$ ring, with a dihedral angle of $6.7(2)^{\circ}$.

There are two intermolecular interactions of note, involving $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene). These are relatively long and involve a symmetry-related molecule at the position (1 $\left.-x, \frac{1}{2}+y,-z\right)$. They generate a one-dimensional chain along
the a-axis direction, as depicted (as dashed lines) in Fig. 1; the $\mathrm{C} 23-\mathrm{H} 23 \cdots \pi(\mathrm{C} 21-\mathrm{C} 26)^{\mathrm{i}}$ interaction is shown with the three closest $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ (arene) interactions. A stereoview with the atoms drawn as their van der Waals spheres (Fig. 2) reveals the two primary hydrogen-bonding interactions and several contacts between the two molecules as they stack along the 2_{1} axis.

A search for 4-propoxy aromatic derivatives (as $\mathrm{CH}_{3}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{2}$) in the Cambridge Structural Database (CSD; Version 5.24, July 2003; Allen, 2002) reveals a total of 19 derivatives (with coordinates available and with $R<0.10$). Analysis of the geometry of the propoxy moiety in (IV) reveals the common distortion at the O31-C24-C23/25 angle (Table 1) with $\mathrm{O} 31-\mathrm{C} 24-\mathrm{C} 23=124.58(13)^{\circ}$, $\mathrm{O} 31-$ $\mathrm{C} 24-\mathrm{C} 25=115.60(13)^{\circ}$ and $\mathrm{C} 24-\mathrm{O} 31-\mathrm{C} 32-\mathrm{C} 33=$ $-179.33(13)^{\circ}$. The structure CIBCOF \{1-(1,3-dioxaindan-5-yl)-2-[(4-phenyl-1,3-oxazolidin-2-on-3-yl)carbonyl]-2-(3-propoxybenzoyl)ethene\} is representative of the CSD entries and contains a similar propoxy deformation, with $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles of $114.2 / 124.9^{\circ}$ and a $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle of 20.3° (Pridgen et al., 1999). Examination of the structure with PLATON (Spek, 2003) showed that there are no solvent-accessible voids in the crystal structure.

Experimental

The title compound was prepared by refluxing 4-propoxybenzaldehyde $(1.58 \mathrm{~g}, 0.01 \mathrm{mmol})$ and $(1 R, 2 S)$-(- --ephedrine $(1.65 \mathrm{~g}$, 0.01 mmol) in 20 ml of acetonitrile for 4 h . On cooling, the product was filtered and recrystallized from ethanol, yield $2.84 \mathrm{~g}(88 \%)$, m.p. 343-345 K. IR (KBr): v 1615, 1512, 1455, 1391, $1243 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \delta, \mathrm{CDCl}_{3}\right): 0.80\left(d, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.09\left(t, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85(m$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 2.18\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.97(m, 1 \mathrm{H}, \mathrm{MeCH}), 3.97(t, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}\right), 4.67[s, 1 \mathrm{H}, \mathrm{OC}(\mathrm{N}) \mathrm{H}], 5.15(d, 1 \mathrm{H}, \mathrm{PhCH}), 6.97(d, 2 \mathrm{H}$, aromatic $\left.\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.30,7.36\left(m, 1 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.46(d, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.59\left(d, 2 \mathrm{H}\right.$, aromatic $\left.\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$
$M_{r}=311.41$
Monoclinic, $P 2_{d}$
$a=9.2962$ (2) A
$b=8.2755$ (2) \AA
$c=11.4267$ (3) \AA
$\beta=91.0830(11)^{\circ}$
$V=878.91$ (4) \AA^{3}
$Z=2$

Data collection

Nonius KappaCCD diffractometer φ and ω scans with κ offsets Absorption correction: none 8081 measured reflections 2136 independent reflections 1988 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.079$
$S=1.04$
2136 reflections
212 parameters
H -atom parameters constrained
$D_{x}=1.177 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14364
\quad reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Block, colourless
$0.36 \times 0.30 \times 0.20 \mathrm{~mm}$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-9 \rightarrow 10$
$l=-13 \rightarrow 14$

[^0]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C2	$1.4305(18)$	C24-O31	$1.3731(17)$
O1-C5	$1.4373(17)$	O31-C32	$1.4386(17)$
C2-N3	$1.4635(18)$	C32-C33	$1.507(2)$
N3-C4	$1.4676(18)$	C33-C34	$1.514(2)$
C4-C5	$1.552(2)$		
C2-O1-C5	$107.60(11)$	O31-C24-C25	$115.60(13)$
O1-C2-N3	$103.03(11)$	C23-C24-C25	$119.82(13)$
C2-N3-C4	$102.71(11)$	C24-O31-C32	$117.55(12)$
N3-C4-C5	$102.30(11)$	O31-C32-C33	$107.64(13)$
O1-C5-C4	$104.80(12)$	C32-C33-C34	$112.06(15)$
O31-C24-C23	$124.58(13)$		
C5-O1-C2-N3	$-35.09(14)$	N3-C4-C5-O1	$15.80(15)$
O1-C2-N3-C4	$44.92(14)$	C4-C5-C11-C12	$71.67(18)$
C2-N3-C4-C5	$-36.61(14)$	O1-C2-C21-C26	$62.48(17)$
C2-O1-C5-C4	$11.71(15)$	C24-O31-C32-C33	$-179.93(13)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.60	$3.3745(19)$	139
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.95	2.79	$3.6987(16)$	161

Symmetry code: (i) $1-x, \frac{1}{2}+y,-z . C g 1$ is the centroid of the symmetry-related 4 -propoxy-substituted aromatic ring.

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering, the Flack (1983) parameter, with a value of -0.1 (8), was inconclusive (Flack \& Bernardinelli, 2000); the Friedel equivalents were merged prior to the final least-squares refinement cycles. The absolute configuration was deduced from that of the starting material and NMR data.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure:

SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WordPerfect macro PREP8 (Ferguson, 1998).

AJL thanks the University of Toronto for funding a diffractometer and computer systems. JFG thanks the School of Chemical Sciences, Dublin City University, for funds for undergraduate research.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davies, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bourne, S. A., Fitz, L. D., Kashyap, R. P., Krawiec, M., Walker, R. B., Watson, W. H. \& Williams, L. M. (1997). J. Chem. Crystallogr. 27, 35-44.

Bruce, D. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2983-2989.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cromhout, N. L. \& Hutton, A. T. (2000). Appl. Organomet Chem. 14, 66-74.
Etter, M. C., McDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Fitzsimons, L. M. \& Gallagher, J. F. (1999). Acta Cryst. C55, 472-474.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1448.
Gallagher, J. F., Briody, J. M. \& Cantwell, B. P. (1998). Acta Cryst. C54, 13311335.

Gallagher, J. F. \& Fitzsimons, L. M. (1999). Acta Cryst. C55, 1000-1003.
Just, G., Potvin, P., Uggowitzer, P. \& Bird, P. (1983). J. Org. Chem. 48, 29232924.

Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Pridgen, L. N., Huang, K., Shilcrat, S., Tickner-Eldridge, A., DeBrosse, C. \& Haltiwanger, R. C. (1999). Synlett, pp.1612-1614.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0392 P)^{2}\right.$ $+0.0616 P$]
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }=0.001$
 $\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
 $\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.068 (15)

