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Abstract

Cellular Information Processing Networks (CIPNs) are chemical networks of inter-

acting molecules occurring in living cells. Through complex molecular interactions,

CIPNs are able to coordinate critical cellular activities in response to internal and

external stimuli. We hypothesise that CIPNs may be abstractly regarded as subsets

of collectively autocatalytic (i.e., organisationally closed) reaction networks. These

closure properties would subsequently interact with the evolution and adaptation of

CIPNs capable of distinct information processing abilities. This hypothesis is moti-

vated by the fact that CIPNs may require a mechanism enabling the self-maintenance

of core components of the network when subjected to internal and external pertur-

bations and during cellular divisions. Indeed, partially replicated or defective CIPNs

may lead to the malfunctioning and premature death of the cell.

In this thesis, we evaluate different existing computational approaches to model

and evolve chemical reaction networks in silico. Following this literature review,

we propose an evolutionary simulation platform capable of evolving artificial CIPNs

from a bottom-up perspective. This system is a novel agent-based Artificial Chem-

istry (AC) which employs a term rewriting system called the Molecular Classifier

System (MCS.bl). The latter is derived from the Holland broadcast language for-

malism.

Our first series of experiments focuses on the emergence and evolution of self-

maintaining molecular organisations in the MCS.bl. Such experiments naturally

relate to similar studies conducted in ACs such as Tierra, Alchemy and α-universes.

Our results demonstrate some counter-intuitive outcomes, not indicated in previous

literature. We examine each of these “unexpected” evolutionary dynamics (including

an elongation catastrophe phenomenon) which presented various degenerate evolu-

tionary trajectories. To address these robustness and evolvability issues, we evaluate



several model variants of the MCS.bl. This investigation illuminates the key prop-

erties required to allow the self-maintenance and stable evolution of closed reaction

networks in ACs. We demonstrate how the elongation catastrophe phenomenon can

be prevented using a multi-level selectional model of the MCS.bl (which acts both at

the molecular and cellular level). Using this multi-level selectional MCS.bl which

was implemented as a parallel system, we successfully evolve an artificial CIPN to

perform a simple pre-specified information processing task. We also demonstrate

how signalling crosstalk may enable the cooperation of distinct closed CIPNs when

mixed together in the same reaction space. We finally present the evolution of closed

crosstalking and multitasking CIPNs exhibiting a higher level of complexity.
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Chapter 1

Introduction

Complex Adaptive Systems (CAS) are dynamical networks of interacting agents

which as a whole determine the behaviour, adaptivity and cognitive ability of the

system (Holland, 1992b). CAS are ubiquitous and occur in a variety of natural and

artificial systems (e.g., biological cells, stock markets, the biosphere). Realising and

evolving CAS in silico may provide new critical tools for understanding, predicting

and building CAS.

However modelling and evolving CAS remains problematic as the traditional an-

alytical and statistical approaches (which may be coupled with Evolutionary Com-

putation techniques) appear to limit the study of CAS (Holland, 2006). Indeed no

computational techniques have to date successfully supported open-ended evolution

as occurring in natural CAS. Achieving open-ended evolution is a critical prob-

lem which is related to many other grand challenges in the field of Artificial Life

(Bedau et al., 2000; Gershenson and Lenaerts, 2008).

This thesis addresses one aspect of this issue on the evolutionary growth of

complexity by examining the significance of autocatalytic closure for the evolution

of CAS complexity. A specific subclass of CAS is addressed in this investigation:

Cellular Information Processing Networks (CIPNs) which are chemical networks

occurring in living cells capable of information processing. This thesis examines the

evolution of organisationally closed CIPNs in-silico.
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The remainder of this chapter is organised as follows. A presentation of auto-

catalytic closure (a concept originating from Kaufffman’s autocatalytic set theory)

is first provided. A brief description of CIPNs is then given. Finally the potential

applications, aims, objectives and layout of this thesis are enumerated.

1.1 Autocatalytic set theory

The autocatalytic set theory was proposed by Kauffman (1993) to explain the emer-

gence and early evolution of life. An autocatalytic set is a collection of molecular

species where each is capable of supporting the catalysis of another species in the

set. It is argued that given a critical mass of molecular species, the spontaneous

emergence and self-organisation of an autocatalytic set may occur.

Although individual species are not capable of self-replication, a contrario to

RNA world models (Gilbert, 1986; Gesteland et al., 2005) or hypercycles (Eigen,

1971; Eigen and Schuster, 1977), the set of species as a whole is able to catalyse its

own production. Such a molecular set or reaction network is said to be collectively

autocatalytic/self-replicating, see Fig. 1.1.

Figure 1.1: A: A simple collectively autocatalytic reaction network. The species
x1 catalyses the production of x2. Similarly the production of x3 and x1 can be
catalysed by x2 and x3 respectively, forming/closing the autocatalytic loop. B: A
three element hypercycle, in contrast to collectively autocatalytic reaction networks,
individual molecular species are capable of self-production in hypercycles.

An autocatalytic set is organisationally closed when the production of each

species contained in the set may be catalysed by another member of the set. This

virtuous catalytic cycle enables a “closed set” to self-maintain/repair when subjected
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to internal and external perturbations and during cellular divisions (e.g., molecular

mutations, removal/addition of molecular species through diffusion) given a contin-

uous inflow of “food molecules”.

Kauffman argued that self-organisation and autocatalytic closure are key princi-

ples allowing the spontaneous emergence and maintenance of order given an original

chaotic system. When subjected to a Darwinian evolutionary regime where natu-

ral selection and variation/heredity of phenotypic traits may occur, closed reaction

networks may evolve and gradually grow in structural and functional complexity

leading to higher-order organisms.

Although the autocatalytic set theory was initially proposed to address biological

organisations, it has also been metaphorically extended to the study of social and

economic systems (Gabora, 2008; Kauffman, 1995).

1.2 Cellular Information Processing Networks

Cellular Information Processing Networks (CIPNs) are biochemical systems of in-

teracting molecules occurring in living cells. CIPNs are responsible for coordinating

the cellular activities in response to internal and external stimuli.

As signal processing systems, CIPNs can be regarded as special purpose com-

puters (Bray, 1995). In contrast to conventional silicon-based computers, the infor-

mation processing in CIPNs is not realised by electronic circuits, but by chemically

reacting molecules in the cell. There is an almost infinite variety of potential molec-

ular species, each of which would have distinct chemical functionality and could

engage in interactions with other molecules with varying degrees of specificity.

An example of CIPN are Cell Signalling networks1 (Helmreich, 2001; Krauss,

2003) such as the chemotaxis signalling pathway (Stock et al., 1992) which may

1The work presented in this thesis was funded by the ESIGNET project (Evolving Cell Signalling
Networks in silico, a European Integrated Project in the EU FP6 NEST initiative, contract no.
12789). The ESIGNET project aimed at realising and evolving artificial cell signalling networks
to perform computational functions.
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occur in simple organisms (e.g., bacteria). This CIPN enables bacteria to move

toward higher concentrations of specific chemicals or flee from toxic chemicals in

their surroundings. this

In the simplest cases, CIPNs can be approximately modelled by systems of con-

tinuous differential equations, where the state variables are the concentrations of

the distinct species of interacting molecules. As an “information processing” device,

this is most naturally compared to a traditional analog computer. Analog comput-

ers are precisely designed to model the operation of a target dynamical system, by

creating an “analogous” system which shares (approximately) the same dynamics.

Electronic analog computers (based on the “operational amplifier” as the core com-

putational device) have long been displaced by digital computers, programmed to

numerically solve the relevant dynamical equations, due to their much greater ease

of programming and stability.

While CIPNs are typically treated in this “aggregate” manner, where the infor-

mation is carried by molecular concentration, one can also consider the finer grained

behaviours of individual molecules which are computational in nature. Thus a sin-

gle enzyme molecule can be regarded as carrying out pattern matching to identify

and bind target substrates, and then executing a discrete computational operation

in transforming these into the product molecule(s). This has clear parallels with a

wide variety of so-called “rewriting systems” in computational theory. However, it

also clearly differs in important ways, such as:

• Operation is stochastic rather than deterministic.

• Operation is intrinsically reflexive in that all molecules can, in principle, func-

tion as both “rules” (enzymes) and “strings” (substrates/products).

Dittrich (2004) provides a more extended discussion of the potential of such “chem-

ical computing”.
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In this thesis, we hypothesise that CIPNs can be considered as subsets of or-

ganisationally closed reaction networks. A motivation for this hypothesis is that

closure properties may be necessary to ensure the self-maintenance and robustness

of CIPNs when subjected to internal and external perturbations and during cellular

divisions.

Moreover by exploiting the principles of Darwinian evolution, it is intended to

evolve closed chemical networks of higher complexity which are capable of perform-

ing information processing tasks distinctive of CIPNs.

1.3 Applications

The potential applications of realising and evolving CIPNs include:

• Engineering crosstalk: A natural phenomenon occurring in CIPNs called

“crosstalk” and its potential contributions to engineering are discussed.

Crosstalk occurs when signals from different pathways become mixed together.

This arises very naturally in CIPNs due to the fact that the molecules from all

pathways may share the same physical reaction space (the cell). Depending on

the relative specificities of the reactions there is then an automatic potential for

any given molecular species to contribute to signal levels in multiple pathways.

In traditional communications and signal processing engineering, crosstalk is

regarded as a defect: an unintended interaction between signals, that there-

fore has the potential to cause system malfunction. This can also clearly be

the case with crosstalk in real biochemical networks, for example cells may

become cancerous due to undesired crosstalk connections (Mukai et al., 2005;

Yee and Lee, 2000). However, in the specific case of CIPN’s, crosstalk also has

additional potential functionalities, which may actually be constructive:

– Even where an interfering signal is, in effect, adding uncorrelated “noise”

to a functional signal, this may sometimes improve the overall system

12



behaviour. This is well known in conventional control systems engineer-

ing in the form of so-called “dither” (Korn and Korn, 1956). Molecular

biologists indicated that noise is an inevitable by-product of inherent

molecular interactions, and that in fact noise is essential for development

(Volfson et al., 2005).

– The crosstalk mechanism may also provide a very generic way of creating

a large space of possible modifications or interactions between chemical

pathways. Thus, although many cases of crosstalk may be immediately

negative in their impact, crosstalk may still be a key mechanism in en-

abling incremental evolutionary search for more elaborate or complex

CIPNs. For example, Genoud and Metraux (1999) presented a number

of crosstalk connections between real biochemical networks occurring in

plants in which these “interferences” provided a relatively rapid and ef-

ficient mechanism for optimizing non-cognitive behaviour in response to

various combinations of stimuli. Crosstalk may also provide the necessary

signal that enables desired outcome to occur, an example of this could

be coordinating the cell cycle (Goto et al., 2005).

Both above cases of crosstalk may give new insights on the use of crosstalk in

control engineering.

• CIPNs as information processing devices : Nature is a source of inspiration for

information processing techniques which have been successfully applied to a

wide variety of complex application domains. In keeping with this we examine

the possibility of utilising CIPNs for information processing purposes. Realis-

ing and evolving artificial CIPNs may provide new computational paradigms

for a variety of application areas. Early work conducted by Bray (1995)

showed that molecules could be regarded as information processing devices,

these molecules would perform simple computational tasks. Examples of such

13



information processing functions are: signal acceleration (Mangan and Alon,

2003), signal amplification (Binder and Heinrich, 2004) or decision making

(Xiong and Ferrell, 2003). A review on the computational abilities of signalling

networks can be found in Sauro (2004). Identified information processing pro-

cesses occurring in CIPNs indicate that complex operational features have

been designed in CIPNs through natural evolution. Moreover, there may be

applications where a molecular level analog computer, in the form of a CIPN,

may have distinct advantages. Specifically, CIPNs may offer high speed and

small size that cannot be realised with solid state electronic technology. More

critically, where it is required to interface information processing with chemi-

cal interaction, a CIPN may bypass difficult stages of signal transduction that

would otherwise be required. This could have direct application in so-called

“smart drugs” and other bio-medical interventions.

• Open-ended evolution: Our project finally addresses the conditions allowing

open-ended evolution to occur. Achieving an open-ended growth of complexity

is a long-standing grand challenge related to the evolution of artificial systems

(Bedau et al., 2000). Although many computational evolutionary techniques

have been proposed to evolve artificial systems, no systems have to date man-

aged to support the open-ended evolutionary growth of complexity as occurring

in the real world. Evolutionary systems would typically plateau and avert the

perpetual emergence of complex behaviours (Groß and McMullin, 2002).

Understanding the key components2 enabling open-ended evolution may en-

2Example key components are the fitness functions devised in evolutionary systems. Two prin-
cipal approaches to fitness functions are distinguished: 1) Explicit fitness functions which are
explicitly defined/engineered and govern the agents’ genotype/phenotype mapping. These func-
tions are usually fixed and do not evolve over time. Systems which rely on explicit fitness functions
(and similar engineered elements) are declared as “top-down” evolutionary approaches. 2) Implicit
fitness functions which, in contrast, are not engineered/explicitly devised in the system. Here,
agents determine “by themselves” their fitness according to their intrinsic properties and inter-
actions with the environment/other agents. Systems which rely on implicit fitness functions are
declared as “bottom-up” evolutionary approaches.
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able one to apply this knowledge to real-world domains such as solving optimi-

sation problems. Traditional Evolutionary Computation techniques are ulti-

mately limited by the capabilities of human engineers. A genuine open-ended

and artificial evolutionary system (Pattee, 1973) would abolish this barrier

and allow for the perpetual creation of novel solutions in an ever-changing

environment.

1.4 Aims and objectives

We first enumerate the principal research questions of this thesis:

1. What are the minimal conditions necessary to obtain the open-ended evolu-

tionary growth of complexity?

2. What is the significance of autocatalytic closure to the evolution of complexity?

3. Can CIPNs be considered as subsets of closed chemical reaction networks?

4. Can we evolve closed CIPNs, of higher complexity, to achieve pre-specified

information processing tasks?

To address more specifically the above singular research questions, we investigate

the following research workpackages and objectives which are identified as follows:

• Modelling Chemical Networks: To identify the state of the art in the multi-

disciplinary field of scientific modelling applied to the study of biochemical

networks. A review of the main existing families of modelling techniques ac-

cording to a range of selected and relevant criteria will be provided.

• Evolving CIPNs: To determine a satisfactory evolutionary framework to exam-

ine autocatalytic closure and the evolution of Cellular Information Processing

Networks. A selection of techniques applied to evolving and examining closure

dynamics of chemical networks will be evaluated. Two families of evolutionary
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methods are distinguished: top-down/Evolutionary Computation techniques

and bottom-up/Artificial Chemistries methods. A comparison between top-

down and bottom-up evolutionary approaches will be conducted.

• Evolutionary simulation platform: To propose a novel evolutionary simula-

tion platform capable of evolving closed reaction networks to carry-out pre-

specified information processing tasks. This stochastic system will account for

the reflexive nature of molecular species which are regarded as condition/ac-

tion rules. A novel agent-based Artificial Chemistry will be constructed. This

system is termed the MCS.bl and employs a term-rewriting formalism (the

broadcast language which was devised by Holland, 1975, 1992a) to specify the

molecular species and reactions.

• Closure in reaction networks: To provide complementary insights on the evo-

lutionary dynamics (e.g., spontaneous emergence, self-maintenance) of closed

reaction networks in Artificial Chemistries. A series of experiments focusing

on the emergence, self-maintenance and evolution of closed reaction networks

using the MCS.bl will be carried out.

• Parallelism in Artificial Chemistries: To address the concurrent nature of

chemical processes in the MCS.bl. The effects of parallelism upon evolutionary

dynamics in Artificial Chemistries will be explored. A parallel version of the

MCS.bl using distributed computing facilities will be implemented.

• Evolutionary capability: To contribute to the understanding of evolutionary ca-

pability in Artificial Chemistries. The effects of compartmentalisation, molec-

ular diffusion and cellular division over the system’s evolutionary capability

will be examined. A series of evolutionary experiments will be performed using

the parallel version of the MCS.bl in which compartmentalisation, molecular

diffusion and cellular division features are introduced.
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• Evolution of closed reaction networks: To demonstrate the evolution of closed

reaction networks capable of performing pre-specified information processing

tasks. An additional series of evolutionary experiments will be conducted using

the cellular model of the MCS.bl. A novel cellular division criterion is devised

to drive the evolution of the closed reaction networks.

• Crosstalk and the evolution of complexity: To demonstrate the constructive

role of crosstalk in enabling the evolutionary growth of complexity in closed

reaction networks. A series of evolutionary experiments will be carried out in

which crosstalking networks are evolved to carry-out pre-specified multitasking

functions.

1.5 Structure of the thesis

The chapters of this thesis are summarised as follows:

Chapter 2 A review of the main computational techniques (i.e., deterministic,

stochastic, probabilistic, algebraic and agent-based) to model chemical

networks is given. Based on this evaluation, a suitable framework is

identified to represent, simulate and analyse chemical networks in this

project.

Chapter 3 An evaluation of several evolutionary techniques to evolve Cellular

Information Processing Networks (CIPNs) is presented. Two families

of evolutionary techniques are distinguished: top-down/Evolutionary

Computation approaches and bottom-up/Artificial Chemistries. The

outcome of this review is to identify an adequate framework to examine

closure and the evolution of CIPNs.
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Chapter 4 A novel Artificial Chemistry (AC) termed the Molecular Classifier

System - broadcast language (MCS.bl) is described. The latter is an

agent-based AC which employs the Holland broadcast language, a

term-rewriting formalism, to specify the molecular species and reac-

tions.

Chapter 5 A first series of experiments which focuses on the spontaneous

emergence and self-maintenance of closed reaction networks in the

MCS.bl is presented. Unexpected degenerative evolutionary dynamics

caused by the emergence of parasitic and elongator molecular species

are also examined.

Chapter 6 To address the evolutionary degeneration issues of the MCS.bl, two

multi-level selectional model variants which introduce compartmen-

talisation are presented. These novel MCS.bl implementations exploit

distributed computing facilities. A static reactor model with molecu-

lar diffusion and a cellular model are independently evaluated.

Chapter 7 The cellular model of the MCS.bl is employed to evolve closed reac-

tion networks to carry-out a pre-specified information processing task.

The potential role of crosstalk in enabling the evolutionary growth of

complexity in chemical networks is investigated. This chapter demon-

strates the evolution of crosstalking closed reaction networks of higher

complexity.

Chapter 8 Finally, the contributions and the future work of this thesis are dis-

cussed.
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Chapter 2

Modelling Chemical Reaction Networks

In Section 1.3 we outlined the potential applications of realising and evolving CIPNs

in silico as information processing devices. In order to evolve such CIPNs it is nec-

essary to specify, represent, simulate and analyse these chemical reaction networks

through the use of modelling techniques. In this chapter a review of different exist-

ing techniques for modelling chemical reaction networks is conducted. The outcome

of this review is to select a suitable approach to model CIPNs in our project. This

multi-disciplinary review results from the collaborative effort that we initiated with

the bio-analysis group at the Friedrich Schiller University of Jena (UJ) in Germany

(an ESIGNET partner). The survey on Markov chains, chemical master equations

and SBML/CellML was conducted by the UJ group (which includes Dr. Thomas

Hinze, Thorsten Lenser and Dr. Peter Dittrich). Bayesian networks, term rewriting

systems, Petri nets, cellulat and agent-based/learning classifier systems techniques

were reviewed by myself. Differential equations and π-calculus were examined by

both the UJ group and myself. The evaluation criteria and comparison table were

equally devised and realised by the UJ and Dublin City University based group

(including Dr. George G. Mitchell and myself). This chapter combines some of the

materials published in several ESIGNET deliverables and at various international

conferences (ESIGNET, 2006a,b; Decraene et al., 2006, 2007b, 2008a).
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2.1 Introduction

A variety of modelling techniques for biological reaction networks have been estab-

lished in recent years (Alon, 2007). We identify several main branches of modelling

techniques:

• Deterministic: Chemical reactions are approximated as continuous deter-

ministic processes at the macroscopic/system level. The system’s vari-

able states are uniquely determined by the pre-specified parameters de-

scribing the reactions (e.g., molecular concentration, reaction rates, etc.)

and initial states of these variables. Given an initial set of pre-

specified parameters, deterministic models enable one to monitor, pre-

dict and describe the dynamics of the system over time and/or space.

Examples of deterministic modelling techniques include: ordinary/par-

tial differential equations (Zwillinger, 1992; Polyanin and Zaitsev, 2002;

Eungdamrong and Iyengar, 2004; Huang and Ferrell, 1996), Michaelis-Menten

models (Heinrich and Schuster, 1996) and power-law models (Vera et al.,

2007).

• Stochastic: In contrast with deterministic approaches, stochastic models ex-

plicitly account for the uncertainty that is involved in molecular processes.

The system’s variable states are determined by the pre-specified system’s pa-

rameters and through the use of random variables. By addressing randomness

or variability, stochastic models provide a more detailed representation of the

system’s potential dynamics (and not only the average behaviour as in de-

terministic approaches). Multiple executions of a stochastic model generate

unique (from one another) dynamics/observations. The latter can be used to

estimate probability distributions of the system’s potential states (assisting in

the construction of probabilistic models, see below). Examples of stochastic
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modelling techniques include: Markov chains (Gomez et al., 2001) and chem-

ical master equations (Gillespie, 2001).

• Probabilistic: Here, the description of stochastic processes/data is addressed

in terms of probability. Probabilistic modelling techniques are determinis-

tic approaches which may infer probabilistic relationships between molecular

species/system’s states from empirical observations. In contrast with stochas-

tic approaches, a probabilistic model is a statistical inference and description

technique which does not represent the underlying stochastic molecular me-

chanics. Given the initial states of the molecular species, these approaches

provide a probability-based description of the system’s states. The predictive

power of these techniques relies on the probabilistic distributions inferred by

the model upon a range of in vivo/silico experimental observations (i.e., the

training set). An example of probability modelling technique include: Bayesian

networks (Sachs et al., 2002) and hidden Markov models (Goutsias, 2006).

• Algebraic: Modelling discrete characteristics of chemical reaction networks

is principally achieved with algebraic approaches. A common basic assump-

tion for these approaches is a finite or recursive enumerable number of el-

ementary objects. Each object is considered as the smallest unit that can

be processed by the system model. In particular, a definition of objects de-

termines the granularity and abstraction level of corresponding models (hier-

archically composed of objects, classes of objects, and temporal interaction

rules). Both biomolecules and processes can form these objects. Interaction

between these objects is usually specified by a relationship between system

configurations. The whole system description is based on discrete transi-

tions. This allows structural and comparative analysis of both system compo-

sition and behaviour, independent of numerical simulation results. Examples

of algebraic modelling techniques include: P-systems (Paun and Rozenberg,

21



2002; Paun et al., 2006), broadcast language (Holland, 1992a), Alchemy

(Fontana and Buss, 1994a), Boolean networks (Genoud and Metraux, 1999),

π-calculus (Regev et al., 2001) and Petri nets (Reddy et al., 1993).

• Agent-based : Agent-based models (ABMs) extend the algebraic framework by

introducing richer features in the computational units (i.e., agents). ABMs are

commonly implemented with Object-Oriented programming environments in

which agents are instantiations of object classes. The latter is a collection of

properties (e.g., size, location, concentration, etc.) and methods (e.g., move,

die, react, etc.). Agent-based simulations typically involve a large number of

molecular and/or cellular agents which are executed in a concurrent or pseudo-

concurrent manner. Each agent possesses its own distinct state variables, can

be dynamically created/deleted and is capable of interacting with the other

agents. The agents’ computational methods may include stochastic processes

resulting in a stochastic behaviour at the system level. Examples of agent-

based modelling techniques include: Stochsim (Le Novère and Shimizu, 2001),

Cellulat (Gonzalez et al., 2003) and AgentCell (Emonet et al., 2005). A review

of agent-based techniques is given by Chavali et al. (2008).

Deterministic and stochastic approaches are the most frequently employed and

studied approaches in the field, whereas the attention given to the use of probabilis-

tic, algebraic and agent-based approaches is more recent but rapidly growing.

Our review of modelling techniques is not exhaustive. We select and review

a limited number of techniques which exemplify the above families of modelling

approaches. Following on from this we propose a model comparison table. We

finally relate this evaluation with the requirements of our project to select a suitable

technique with regard to the modelling, simulating and analysing of organisationally

closed CIPNs.
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2.2 Survey of modelling approaches

We review a selection of modelling techniques used in the study of CIPNs: dif-

ferential equations, Markov chains, chemical master equations, Bayesian networks,

Term Rewriting Systems, Petri nets, π-calculus, Cellulat and Agent-based Learning

Classifier Systems. We then present the Systems Biology Markup Language (SBML)

and CellML which allow one to specify and disseminate biochemical network models

using a standardised language. These markup languages also permit the migration

of reaction network models between differing modelling approaches.

2.2.1 Differential equations

Chemical reactions are approximated as continuous deterministic processes at the

macroscopic level. Differential equations provide a global understanding of a system

and are commonly employed to model chemical reaction networks (Zwillinger, 1992;

Polyanin and Zaitsev, 2002; Eungdamrong and Iyengar, 2004; Huang and Ferrell,

1996). Given an initial set of pre-specified properties describing the reactions (e.g.,

molecular concentration, reaction rates, etc.), this modelling approach enables one

to monitor, predict and describe the dynamics of the system over time and/or space.

Here, state variables represent the concentrations of molecular species occurring

in a well-stirred reactor with no in/out-flows. The following equation governs the

dynamics of each species S whose rate of change in concentration [S] depends on

the production and consumption rates vp and vc:

d[S](t)

dt
= vp([S](t)) − vc([S](t)). (2.1)

In mass-action kinetics, these rates result from the reactant concentrations, their

stoichiometric factors a{i,j} ∈ N (reactants), bi,j ∈ N (products) and kinetic con-

stants kj ∈ R+ assigned to each reaction quantifying its speed. For a reaction

system with a total number of n species and r reactions
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a11S1 + a12S2 + . . . + a1nSn
k1−→ b11S1 + b12S2 + . . . + b1nSn

a21S1 + a22S2 + . . . + a2nSn
k2−→ b21S1 + b22S2 + . . . + b2nSn

...

ar1S1 + ar2S2 + . . . + arnSn
kr−→ br1S1 + br2S2 + . . . + brnSn

the corresponding ordinary differential equations (ODEs) read:

d [Si]

d t
=

r
∑

j=1

(

kj · (bji − aji)
n
∏

h=1

[Sh]
ajr

)

In order to obtain a concrete trajectory, all initial concentrations [Si](0) ∈ R+,

i = 1, . . . , n have to be specified. Solving this ODE system together with given

initial values allows us to describe the temporal behaviour of the reaction system

(Dittrich et al., 2001).

Reaction-diffusion models take into account the spatial location of molecules and

allow species concentrations in different spatial locations to vary continuously. These

models are specified with sets of Partial Differential Equations (PDEs) (Fritz, 1982).

Solutions to PDEs derived from reaction-diffusion models provide an approximation

of the species concentrations as a function [S](t, x) of both time t and space x:

∂[S](t, x)

∂t
= D

∂2[S](t, x)

∂x2
− v([S](t, x))

∂[S](t, x)

∂x
+ vp([S](t, x))− vc([S](t, x)) (2.2)

Equation 2.2 is an example PDE where the variables and functions represent:

[S] concentration of species S, D ∈ R+ diffusion coefficient, v([S](t, x)) convective

velocity, and vp([S](t, x)), vc([S](t, x)) production and consumption rates.

Differential equations (especially ODEs) are the most commonly employed tech-
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niques to model biochemical systems due to their strong establishment in the sci-

ences. Nevertheless using these methods (particularly PDEs) may also represent a

significant mathematical challenge when attempting to solve large systems of non-

linear differential equations. Moreover, it has been argued that the main challenge of

this approach is the limited ability to describe biochemical systems with low species

concentrations (Fontana and Buss, 1996). Chemical kinetic models specify the cell

with limited structural descriptions. Biological systems are made of collections of

objects whose identities are maintained and continuously evolve. These evolving

properties may include the activation state, concentration, or the location.

2.2.2 Markov chains

Another method to examine biochemical systems is to express them as Markov

chains (Gomez et al., 2001), in which the state of the chain represents either

approximations or exact number of the molecules present. Reactions are mod-

elled as transitions between these states. The system is memoryless (“Marko-

vian”) since the future development only depends on the present, not on the past.

Therefore, the term Markov chain denotes time-discrete systems which are defined

as a sequence of random variables X1, X2, X3, ... with the Markov property, i.e.,

P (Xt+1 = x|Xt = xt, Xt−1 = xt−1, ..., X1 = x1) = P (Xt+1 = x|Xt = xt).

Provided there is no feedback in the system, the analysis of Markov chains is

well developed, and the steady-state probability distribution of the process can be

derived. Feedback, which is an inherent feature of many reaction networks, poses

problems for analysis since a steady-state distribution of the system does not have

to exist in this case.

Many straightforward, yet interesting simulation techniques which utilise the

Markov property are based on explicit collisions between randomly selected

molecules. This technique has the advantage of being easy to implement in a non-

spatial case, and yet simple to extend to spatial simulations. A representative exam-
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ple of this type of algorithm is given by StochSim (Le Novère and Shimizu, 2001).

2.2.3 Chemical master equation

Where the model’s time is continuous rather than discrete, the Markov chain is

replaced by a “continuous-time Markov process”. Here, the system again has a

finite, discrete set of states, but now a continuous time index t exists. For simplicity,

we focus on the case in which each state is given by the number of molecules per

molecular species (i.e., a vector x ∈ N
k). At any given point in time, the system

occupies each state with a certain probability, yielding a probability distribution over

all the states. The Chemical Master Equation (CME) provides a means to describe

the temporal change of this distribution exactly for the case of a well-stirred and

homogeneous reactor space (Van Kampen, 2007). Since chemical systems can be

considered as Markovian, the CME approach is a special case of the continuous-

time Markov chains.

Gillespie (1976); Gillespie et al. (1977) proposed two precise “Stochastic Simula-

tion Algorithms” (SSA) to simulate instances of the random process defined by the

CME. These algorithms are widely used in the stochastic simulation of biochemical

reactions (Meng, 2004) due to their significant efficiency in terms of computational

cost. The principal factors in SSAs are reaction propensities fµ, i.e., the likelihood

of a reaction µ to occur in the next (small) time step dt. These are computed from

the mesoscopic rate constants and the number of molecules available as substrates

to the reaction. From these, the next reaction and the time for that reaction have

to be decided. This is done by using two random numbers. From the CME, it can

be shown that the probability density function for reaction µ to occur as the next

reaction after time τ is P (µ, τ) = fµexp(−τ
∑

j fj), which is the basic equation SSAs

are built on.

Gillespie’s original work has been extended several times, most notably by the

“Next Reaction Method” (Gibson and Bruck, 2000). This reduces the complexity
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from linear to logarithmic time in the number of reactions. Another technique is

given by the “tau-leap methods” (Gillespie, 2001; Chatterjee et al., 2005), which ap-

proximates the exact solutions obtained from SSAs. For larger numbers of molecules

and reactions, however, these algorithms still suffer from high computational re-

quirements. Bernstein (2005) extended the Gillespie algorithm to reaction-diffusion

equations by dividing the reaction volume into several compartments and modelling

diffusion between them.

2.2.4 Bayesian networks

A Bayesian network (BN) is a directed acyclic graph commonly used as a proba-

bilistic modelling tool (Pearl, 1988). Modelling chemical networks with BNs was

introduced by Sachs et al. (2002). In a BN, variables (a molecular property) are

represented as nodes in the graph. Directed edges express the dependence relation

between nodes. A variable can be either discrete or continuous and may form a

hypothesis, a known value (e.g., a concentration) obtained by experimental mea-

surement or a latent variable. Variables which are not connected by edges are

“conditionally independent”.

If the state of a variable is known then the state of other variables can be pre-

dicted. This is accomplished through the use of:

p(x) =
∑

yp(x, y) (2.3)

This formula sums the probabilities of all routes through the graph, thus allowing

one to predict, with some probability distributions, the state of an unknown variable

x. Continuous values for probabilities could be specified with a probability density

function (e.g., Needham et al., 2006 employs Gaussian distributions).

BNs have been used to reverse-engineer and infer the structure of biochemical

networks (Sachs et al., 2002; Kim et al., 2003; Needham et al., 2006). However, the

setting of probabilities (learning) of BNs requires static experimental data, oth-
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erwise this may result in increasing the complexity of the task (Li and Lu, 2005;

Chickering, 1996). The solid foundation of BNs in statistics enables the handling

of the stochastic behaviour of real chemical networks and noisy experimental mea-

surements (de Jong, 2002). Another attribute of using BNs is that they can be

employed when incomplete or only steady-state data on the reaction network are

available. In this common case, kinetic models have been found to be less use-

ful (Woolf et al., 2005). Pe’er (2005) discussed the various techniques to infer BN

models from experimental data.

2.2.5 Term rewriting systems

Regulated term rewriting is a basic principle of information processing.

Biomolecules, their polymeric subunits or groups of similar biomolecules are inter-

preted as objects encoded by character strings (terms). Sets of term rewriting rules

describe possible interactions among objects and system components (e.g., pathways

or membrane structures). Each application of a rule performs a discrete step of a

process. The terms as a whole contain all information about the system status. Term

rewriting systems can run in a massively parallel manner considering nondeterminis-

tic recombinations. Classes of grammar systems, P-systems (Paun and Rozenberg,

2002), broadcast language (Holland, 1975, 1992a) and Alchemy based on the lambda

calculus fall into this category (Fontana and Buss, 1994a). We demonstrate this

modelling approach with the broadcast language (BL).

Holland originally proposed the BL formalism to assist his research on the “adap-

tive plan”. Holland argued that the BL provides a straightforward representation

for a variety of natural models such as biochemical networks.

The BL basic components are called broadcast units which are strings formed

from the set of “monomers” Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′}. Molecular

species are broadcast units which can be viewed as condition/action rules. Whenever

a broadcast unit conditional statement (pattern matching expression) is satisfied,
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the computational action statement is executed, i.e., when an enzyme broadcast

unit detects, in the environment, the presence of one or more specific substrate

signal(s) then the broadcast unit broadcasts an output product signal. General

signal processing can also be performed with broadcast units: e.g., a broadcast unit

may detect a signal I and broadcast a signal I ′, so that I ′ is some modification of

the signal I. The broadcast monomers/symbols encode for the pattern matching

and computational/enzymatic functions of molecular species. In addition, broadcast

symbols may act as both operators and operands addressing the reflexive nature of

molecular species (i.e., a molecule may act as both an enzyme and/or substrate).

Limited stochastic elements are involved in the computational functions of broad-

cast units which result in a semi-stochastic behaviour at the system level. The mod-

elling of a genetic regulatory networks (which addressed only the regulatory/qual-

itative aspects of CIPNs) using the BL was proposed by Decraene et al. (2007b).

Although possible, no quantitative studies have been previously reported to have

been conducted with the BL prior to the work described in this thesis. Finally the

BL formalism does not account for spatial information.

2.2.6 Petri nets

Petri nets (PNs) are a graph-oriented formalism originally from formal software

engineering. Developed in the early 1960s (Petri, 1962; Peterson, 1981), Petri nets

provide a means to model and analyse systems, which comprise of properties such

as concurrency and synchronisation. Petri nets consist of “places”, “transitions”,

and “arcs”. “Arcs” are used to connect the “transitions” and “places”, “input arcs”

connect “places” with “transitions”, while “output arcs” start at a “transition” and

end at a “place”.

The modelling of biochemical networks with Petri nets was introduced by

Reddy et al. (1993). Here, place nodes are used to represent molecular species (en-

zymes, compounds, ions etc.) and transition nodes to denote chemical reactions.
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Other elements can be defined to specify in detail the chemical reactions to occur

(Pinney et al., 2003).

Ordinary Petri nets provide an accessible modelling tool with well-established

analysis techniques. For this reason, the use of Petri nets for qualitative analysis of

biochemical network is growing. However, due to their timeless nature, Petri nets

are limited regarding dynamic network analysis.

2.2.7 π-calculus

The π-Calculus is a process calculus, which is a formal method for modelling con-

current communicating processes (Hoare, 1983; Milner, 1999). The π-Calculus pro-

vides a framework for the representation, simulation, analysis and verification of

such systems. The π-calculus allows the application of algebraic reasoning in order

to determine the equivalence between processes.

When modelling biochemical networks using π-Calculus, molecules and their in-

dividual domains are treated as computational concurrent processes (Regev et al.,

2001). Complementary structural and chemical determinants correspond to com-

munication channels. Chemical interactions and subsequent modifications coincide

with communication and channel transmission.

The π-Calculus provides a highly detailed description of network nodes. How-

ever, the basic π-Calculus gives only a semi-quantitative view. A significant factor

to be considered is the lack of an associated temporal dimension and as a result

all interactions can occur with the same probability/rate. Extensions of the basic

π-calculus address this limitation (Regev and Shapiro, 2004; Blossey et al., 2008).

2.2.8 Agent-based models

In an agent-based model (ABM), several computational objects called agents

are simulated to reproduce real phenomena within an artificial environment.

ABMs originate from the late forties with the development of Cellular Automata
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(von Neumann, 1949) and have been extensively used in the following fields: complex

systems, multi-agent systems, and evolutionary programming (Luck et al., 2004;

Winikoff and Padgham, 2004). An ABM is typically implemented with an object-

oriented framework (Rumbaugh et al., 1991; Bersini, 2008). Each agent or class

is defined with particular properties and methods. Agents are situated in space

and time, interactions between with each other may occur following rules. Global

and complex behaviour may emerge from these local agent-agent interactions and

properties.

ABMs provide a flexible framework to: specify and refine with ease rules gov-

erning agent behaviours and interactions (e.g., using production rules or Boolean

logic), secondly, to model emergent system or global behaviours (Ausk et al., 2006).

Preliminary works to model bio-chemical networks using ABMs appeared in the late

nineties (Schwab and Pienta, 1997; Fisher et al., 1999). ABMs consider the cell and

its components as agents with cognitive capabilities. Two distinct ABM approaches

are presented:

1. In Cellulat, which was developed by Pérez et al. (2002); Gonzalez et al. (2003),

a cell is seen as a collection of adaptive autonomous agents. Communica-

tion between agents is performed via propagating signals on a shared data

structure, named “blackboard” referring to the blackboard architecture (Nii,

1986a,b). An agent receives a signal or a combination of signals from a des-

ignated blackboard level and transduces these into another signal (or set of

signals) on the same or different blackboard level. Transduction mechanisms

of the signal depend of the cognitive capabilities of the agent. A blackboard

level could represent extracellular, membrane, cytosol or nucleus region, this

enables the modelling of spatial organisation.

2. A second ABM is described where Learning Classifier Systems (LCS) are used

to specify the agents’ behaviour and interactions. LCS are systems constructed
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from condition-action rules called classifiers. LCS can be seen as a simplifica-

tion of the broadcast language where classifiers are binary strings that can be

viewed as IF/THEN statements. Holland’s initial work was modified a number

of times and at present many different varieties of learning classifier systems

are available (Lanzi et al., 2002; Bull and Kovacs, 2005).

LCS are commonly used as a machine learning technique. However Holland

(2001) proposed an agent-based model where the agents’ behaviour and adap-

tation are determined by the use of LCS. This work argued that LCS could be

used to evolve a simple repertoire of condition-action rules to a more complex

goal directed set of rules.

In typical biochemical networks, interactions between molecules follow the

same condition-action mechanisms. Thus Holland suggested that this ap-

proach could be used to model and simulate CIPNs. His proposition to design

chemical networks was to start with a LCS-based “over-general” model of

a biological phenomenon (e.g., transformation of a healthy cell to a cancer

cell). Then this general phenomenon could be refined through several itera-

tions. At each iteration, the details (e.g., compartment level) of the occurring

interactions can be specified. These iterations were continued until the de-

sired network level/granularity was reached, where the submolecular objects

are specified (e.g., protein ligand, receptor, ions etc.). This refining process

highlights the top-down/hierarchical approach and descriptive power of LCS

to model and simulate complex CIPNs. Moreover this approach can be natu-

rally coupled with Genetic Algorithms. This evolutionary feature may allow

one to examine phylogenetic relationships between different reaction networks

(where the signalling differences may be due to random molecular mutations).

However no actual implementation and experimental examination of this sys-

tem have ever been reported, therefore this proposal and associated potential
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benefits remain conjectural.

2.2.9 SBML & CellML

Modelling techniques may be employed in conjunction with a markup language to

store generated models. The use of a standard format facilitates the analysis, visuali-

sation, simulation and exchange of biochemical network models within the modelling

community, providing opportunities for refinement and incorporation of new knowl-

edge. So far, two approaches have emerged, resulting in the model-description lan-

guages SBML (Systems Biology Markup Language) (Hucka et al., 2004) and CellML

(Lloyd et al., 2004), both based on the XML markup language (Bray et al., 2000).

• In SBML, a biochemical network is described in terms of the molecules taking

part in it - termed species - and the reactions taking place between them.

The present amount of each species can be expressed either in terms of its

concentration or of the number of molecules present. Each reaction has an

associated kinetic law, which defines the rate of the reaction depending on the

present amount of its substrates. Additionally, the model can be subdivided

into a fixed set of well-stirred compartments to include a non-hierarchical

spatial component. Nevertheless SMBL models cannot specify fluxes between

compartments at present (i.e., in SBML level 2 version 4 release 1).

• In CellML, a more general approach is taken, in which a model consists of com-

ponents and connections between components. Each component can contain

variables and a reaction between them, and connections are used to transfer

the value of variables from one component to another.

Although CellML is following a slightly more general approach, it is not as

widely used as SBML, for which a large collection of software tools is available (see

www.sbml.org for a list of these tools). Additionally, the first model repositories

have started to use SBML as a representation language, e.g., see the BIOMODELS
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database at www.ebi.ac.uk/biomodels. Therefore, SBML can be seen as the first

emerging specification standard for biological models at the cellular level. Finally

the use of such a common language provides the ability to analyse and complement

intersecting information on differing compatible modelling techniques.

2.3 Comparison of approaches

In this section, we compare the previously introduced methods to model CIPNs by

using a set of defined criteria. Following this, a comparison table is presented to sum-

marise this review. The intention is to determine a suitable modelling technique to

be employed in our project. This selection will be discussed after the presentation of

this comparison table. We identify evaluation criteria with regards to stochasticity,

time, granularity, space, topology and modularity.

2.3.1 Evaluation criteria

Relevant criteria are outlined here in order to compare the modelling techniques

presented in Section 2.2:

• Stochasticity: This property reflects the range of possible processing scenar-

ios that may be identified by the model.

– Deterministic: The system behaviour purely depends on inherent data.

No external or statistical fluctuation may occur and influence the system’s

dynamics. The system may only operate along one known path.

– Nondeterministic: A number of alternative paths for system processing

may exist which can be completely explored by the model. All possible

scenarios are taken into account by the model in which no unanticipated

events may affect the system’s dynamics.

– Stochastic: In contrast, stochastic models select one possible path in a

random manner that can be based on a given probability distribution.
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This implies uncertainty (external and statistical fluctuation may be ac-

counted for) and inhibits repeatability of systems runs.

• Time: This property describes how time is represented within the model.

– Atemporal : When executed, the model remains static and introduces no

temporal consideration.

– Events : A sequence of pre-identified events defines the granularity of

time. An event is an action within the system which characterises the

progress of the system processing. Events are not necessarily equidis-

tant in time. Dependencies between processes, their synchronization and

concurrency may also be based on the interplay of events.

– Discrete: Temporal changes are characterized by fixed periodic intervals.

A discrete time interval defines the smallest unit measuring the system’s

dynamic behaviour. Discrete time points allow one to express recursive

formulation of the system processing. Discrete time may be referred as a

global clock for the system.

– Continuous : Infinitesimal time intervals allow the finest granularity for

measuring time represented by real numbers. Computer-based simula-

tion techniques, by their nature, require an approximate discretisation of

points in time.

• Granularity: This property designates how the molecules or particles are

represented in the model. It refers to the abstraction level of their specification.

The finer the granularity the more detailed the system that can be described.

Granularity also constrains the level of monitoring capabilities.

– Submolecular : This level allows one to compose molecules by atomic

specifiers or functional units (e.g., protein domains).
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– Molecular : Molecules are considered as the smallest expressible unit. A

mapping between the chemical substance and the assigned identifier (e.g.,

symbol) is either assumed or abstracted.

– Species : An enumerable amount of molecules having the same chemical

substance is regarded as a species. This level of granularity enables one

to quantify a molecular species as a whole within the system, however

one cannot isolate an individual molecule of a given species.

– Concentration: Allows one to quantify the relative amount of a particular

molecular species existing in a system. As represented by real numbers,

transforming absolute molecular amounts into concentrations can require

an approximation. Concentrations can be viewed as an approximation of

the molecular species quantities.

• Space: When handling molecules of given granularity within a model, a sys-

tem component which is analogous to a reactor is assumed. This component

can provide space if the positioning of the molecules (within the reaction sys-

tem) is taken into consideration.

– Implicit : Particle or molecule identifiers include spatial information, e.g.,

using an index. System components that control the evolution can be

equipped with regulation schemes for updating this information. Here, a

homogeneous distribution of the molecules within the reactor is assumed.

In this “well-stirred” reactor, no boundaries are specified, and there is no

explicit definition of space in the model.

– Compartmental : A hierarchically nested or graph-based number of ex-

plicit compartments is distinguished. Each molecule is assigned to one

of the specified compartments and can move from one compartment to

another. Within each compartment, no further specification of molecular

positioning is defined.
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– Grid : Apart from the compartmental structure, a spatial geometry is

used to locate molecules more precisely. This way, discrete spatial distri-

butions of molecules can be mapped using the model.

– Continuous : The finest granularity of defining space is given by continu-

ous values. Here, each molecule can be positioned arbitrarily within the

reactor. Analogous to continuous time, computer-based simulations may

require discretisation which would imply approximation.

• Topology: This designates the ability of the model to dynamically modify its

structural components (e.g., pathway structure, dependencies between com-

partments, active membranes, receptor dynamics).

– Fixed : A static system structure is assumed.

– Dynamic: Principles or rules are defined that allow the system structure

to change over time and space. These rules are a part of the model

description.

• Modularity: This refers to the ability of the model to subdivide a given bio-

logical reaction system into functional sub-units (i.e., modules). The subdivi-

sion process is carried out through algorithmic strategies applied on the model.

Modules are determined/classified according to specific properties (e.g., net-

work topology/clusters, functions) across these sub-units. Modularity may

facilitate the study of a system by examining sub-units independently instead

of the system as a whole.

– No: The whole reaction system is regarded as a monolithic entity which

currently prevents the identification of sub-units.

– Hierarchical structure: The sub-units are represented as nodes forming

a tree-based structure. Modules communicate with each others (e.g.,
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transmission of molecules from one sub-unit to another) via specified

interfaces, typically through diffusion over transduction/communication

channels.

– Graph-based structure: These structures are a generalisation of tree-based

structures which does not necessarily account for a hierarchical organisa-

tion.

2.3.2 Comparison table and discussion

As a summary of previous sections, a comparison table is presented (Table 2.1)

which uses the criteria that were discussed above. The table provides an immediate

comparison of differing modelling techniques and allows one to identify desirable

attributes which may be necessary for modelling a specific biochemical system.
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Based on our review of modelling techniques which is summarised in Table 2.1,

we discuss and relate this evaluation with the requirements of this project identified

as follows:

• The specification and development of a software platform capable of modelling

and simulating artificial CIPNs.

• The examination/traceability of the individual behaviour of molecular

species/instances.

• The possibility to conduct both qualitative and quantitative analysis of the

CIPN system’s dynamics.

• The inclusion of stochastic processes reflecting the random nature of molecular

collisions/reactions.

• The specification of submolecular properties (e.g., monomers).

• The ability to dynamically change the CIPN’s topology over time (e.g., cre-

ation/modification or removal of molecular reactions due to molecular muta-

tions).

Probabilistic models are employed to infer the model from experimental obser-

vations which conflicts with our attempt to construct a simulation platform. Ex-

amining organisational closure in CIPNs implies that the monitoring/tracing of the

individual molecules is required. However deterministic and stochastic techniques

treat the molecular species in an aggregate manner. As a result algebraic and agent-

based approaches are more appropriate for the current endeavour.

On the other hand, the main drawback of algebraic and agent-based approaches

is the fact that they may not always permit a detailed (i.e., both qualitatively and

quantitatively) analysis of biochemical processes’ dynamics. The latter is a key

feature of deterministic and stochastic approaches. Moreover, these mathematically
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grounded approaches have a strong theoretical scientific foundation associated with

a plethora of analytical and simulation tools available.

Nevertheless we may also consider that we intend to realise and evolve artificial

CIPNs. In other words, we do not intend to provide a simulation platform of real bio-

chemical networks, in which case a precise account for the temporal dimension would

have been necessary. Thus the semi-quantitative and discrete approach of algebraic

and agent-based techniques is sufficient. Moreover, exporting algebraic/agent-based

models into the SBML format allows us to conduct further analyses of the systems’

dynamics using complementary SBML tools. In Chapter 7, we employ the SBML

to generate and analyse the deterministic dynamics of reaction networks employed

and generated in our evolutionary experiments.

Finally agent-based approaches offer most flexibility: ABMs provide a detailed

and adaptable description of molecular species (including submolecular components)

and of the system as a whole. Secondly it is possible to utilise existing algebraic

methods (and exploit associated features) to specify molecular species and reactions

within an ABM. Most ABMs account for the dynamic nature of biochemical systems

in which the relationships between molecular species/modules may change over time

due to internal or external perturbations (e.g., molecular mutations). Stochastic

elements may also be involved in the specification of the agents’ interactions with

other species/systems’ elements.

According to the requirements of this project, ABMs appear to represent a suit-

able and flexible technique to model, simulate and analyse CIPNs and their evolu-

tion.

2.4 Conclusion

We introduced the overall concepts associated with the main CIPN modelling

branches: deterministic, stochastic, probabilistic, algebraic and agent-based ap-

proaches. To best illustrate each of these classes of modelling techniques, we pre-
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sented and reviewed a selection of techniques.

We also identified two markup languages: SBML and CellML which are widely

used to specify, disseminate and exchange CIPN models within the scientific commu-

nity. These languages also permit the migration of specifications between differing

modelling techniques. This migration capability allows one to widen the range of an-

alytical studies of a given modelling technique. We noted that the SBML possesses

a longer history than CellML and has subsequently become the standard language

for storing CIPN models. We will therefore employ the SBML as a means to migrate

and disseminate our generated CIPN models.

Following this, a model comparison table was presented and highlighted the

modelling capabilities of the different techniques. We outlined the requirements of

this project with regards to the modelling of CIPNs. We related and discussed these

requirements with the review conducted in this chapter. We finally distinguished

ABM approaches as a suitable and flexible modelling technique. We consequently

select the ABM framework to model, simulate and analyse CIPNs in this thesis.
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Chapter 3

Evolving Cellular Information Processing Networks

In the previous chapter we reviewed several computational techniques for mod-

elling chemical reaction networks. We identified agent-based approaches as suitable

methods to model, analyse and simulate Cellular Information Processing Networks

(CIPNs) according to the requirements of our project. Following on from this, we

now present a literature review which focuses on the evolution of CIPNs in silico.

This review is composed of two main parts. We first examine Evolutionary Com-

putation (EC) techniques applied to the artificial evolution of reaction networks.

Secondly we present Artificial Chemistry based approaches which address the emer-

gence and evolution of collectively autocatalytic (organisationally closed) reaction

networks.

This chapter is tightly coupled with Chapter 2 as the evolutionary methods

presented here rely on modelling frameworks presented earlier. Based on both ex-

aminations conducted in the previous and current chapter, we intend to identify an

adequate evolutionary simulation framework to examine closure and the evolution

of artificial CIPNs.

3.1 Introduction

At present no previous work directly related to closure and the evolution of CIPNs

has been reported in the literature. Nevertheless we distinguish two related fields
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of study: Evolutionary Computation (EC) (Fogel, 2007) and Artificial Chemistry

(AC) based studies (Dittrich et al., 2001). Both EC and AC models address com-

plementary aspects of our research:

• The EC approach: Several investigations have been conducted on the evo-

lution of artificial biochemical networks capable of performing computational

tasks. This area of research focuses on the development of novel computational

paradigms. EC techniques (e.g., Genetic Algorithms, Genetic Programming)

are commonly utilised to evolve models of simplified reaction networks. The

objective fitness function of these approaches is typically to mirror a computa-

tional function. Within a given reaction network, distinct arbitrary molecular

species are designated as input and output signals. Properties of the reaction

network (e.g., topology, kinetic rates, etc.) are subjected to mutations which

ultimately affect the signal-processing and response level of output signal(s).

Here the reaction network’s computational function is modelled as a traditional

information processing system involving an input-process-output relationship.

The explicit definition of the fitness function directs the evolutionary process

of the system, which we regard as a top-down evolutionary approach. No EC-

based approaches have addressed closure properties in reaction networks nor

the “cellular” nature of CIPNs: These investigations aim at evolving reaction

networks without any consideration about the container/reactor space.

• The AC approach: Another distinctive approach to the evolution of biochem-

ical networks is addressed through the use of Artificial Chemistries (ACs).

In contrast to the computation-oriented EC approaches, AC-based research

focuses on the self-organisation, emergence and evolution of molecular organ-

isations. ACs are an abstraction of chemical organisations which attempt to

understand and engineer the conditions for life (as it could be) and open-ended

evolutionary growth of complexity. No explicit fitness function is devised in
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ACs, the system’s dynamics are driven by the intrinsic properties of the molec-

ular species (e.g., enzymatic function, binding specificity). These properties

may provide the system with the ability to self-sustain/maintain. These abili-

ties are the implicit fitness function driving an AC’s (evolutionary) dynamics.

Moreover, typical ACs aim at evolving minimalist molecular organisations to-

wards networks of higher complexity where novel phenomena may occur at

the system level. We thus regard ACs as a bottom-up evolutionary approach.

Limited AC-based researches (Tominaga et al., 2007) have been conducted to-

wards implementing molecular computing devices compared to the EC coun-

terpart. The computational function of ACs is modelled as a perturbation of

the closed system’s dynamics, without any designated input/output signals.

Nevertheless, ACs have intensively focused on organisational closure, which

according to our hypothesis, may be a property of CIPNs.

We present a selection of evolutionary systems which illustrate both top-down

and bottom-up approaches.

3.2 Evolutionary Computation

Evolutionary Computation techniques are non-deterministic search algorithms in-

spired by neo-Darwinian principles. Within the EC field, three major families of

computational techniques may be identified: Genetic Algorithms (GA, Holland

1992a), Genetic Programming (GP, Cramer 1985) and Evolution Strategy (ES,

Rechenberg 1973). These techniques differ on the specification and implementa-

tion of common system properties: representation, recombination, mutation and

selection. These methods have been successfully applied to a wide range of optimi-

sation problems. Such techniques have been combined and employed in evolutionary

systems applied to the evolution of biochemical networks in silico. We review a se-

lection of three distinct EC-based systems.
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3.2.1 Bray and Lay

Bray and Lay (1994) proposed the first significant investigation on evolving reac-

tion networks through EC. A simple computational and idealised signalling pathway

model (Fig. 3.1) was proposed to investigate the evolution of biomolecular recep-

tors found in real cells. This model includes two cellular receptors R1 and R2, an

extracellular ligand L (the input signal), an intracellular target molecular species T

and a phosphorylated target species Tp (the output signal).

Figure 3.1: Artificial signalling pathway model adapted from Bray and Lay (1994).

Seven chemical reactions could occur between these molecular species and are
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governed by mass-action kinetics:

R1 + L ⇔ R1L (3.1)

R1L + T ⇔ R1LT (3.2)

R1LT ⇒ R1L + Tp (3.3)

R2 + L ⇔ R2L (3.4)

R2L + T ⇔ R2LT (3.5)

R2LT ⇒ R2L + Tp (3.6)

Tp ⇒ T (3.7)

The model was trained to exhibit a specified response to pulses of stimulus

species L. The topology of the reaction network was fixed, i.e., no creation or

removal of reactions could occur. An ES approach was employed in which mutations

were applied upon the seven variable reaction rates. This mutation operator was

utilised to generate offspring of the unique, initial seed reaction network (where

initial reaction rates are equal and set arbitrarily). Selection was conducted as

follows:

• The numerical integration of the differential equations (i.e., the network’s geno-

type) generated from the above reactions was carried-out.

• The results of this integration (i.e., the network’s phenotype) provided the

time course and concentration level of output signal. This information was

used to determine the network’s fitness value.

• The fittest offspring network (i.e., which best exhibited the specified and de-

sired behaviour) was selected and used for the next iterative generation.

Using the above ES algorithm, Bray and Lay successfully trained this model to

exhibit a specified response, see Fig. 3.2 .
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Figure 3.2: Results of an example simulation, taken from Bray and Lay (1994), in
which the network was trained to exhibit a specified time course and concentra-
tion level of Tp (this target response is here represented by the shaded gray area).
Each individual curve depicts the concentration of Tp produced in response to a
squarewave pulse of stimulus L, applied for 40 seconds. The response of the net-
work evolved from a square wave pulse that matches the stimulus level, to one that
remains elevated for a longer period after the stimulus was applied, thus matching
the pre-specified target response. This evolved reaction network behaves as an “ON
switch”.

In this approach, mutation and structural effects were limited, only the kinetic

parameters were subjected to variations. The evolutionary process led to the adapta-

tion of the given model to mirror a specified behaviour. Bray and Lay demonstrated

that under an evolutionary regime, it was possible to evolve an artificial reaction

network to perform a simple computational task (i.e., a switch). However it was also

reported that the current model could not be evolved to perform other computa-

tional functions such as a sigmoidal or first derivative function. Following this work,

Bray (1995) later discussed the analogy of molecular species as computational units

occurring in living cells. Such in-silico evolutionary experiments, aiming at realising

computational functions in chemical networks, have to date not been reported to be

conducted/validated in wet lab conditions.

3.2.2 Lakhesis

The computational capabilities of Bray and Lay’s approach were limited with re-

gards to performing mathematical operations. However this work was extended and

involved more elaborated EC techniques. Deckard and Sauro (2004) proposed the
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Lakhesis system as a modelling and evolutionary simulation platform. The moti-

vation to this work was to investigate computational properties and capabilities of

biochemical reaction networks.

Similarly to Bray and Lay’s system, chemical reactions are governed by mass-

action kinetics and are modelled as differential equations. Input and output molecu-

lar species were identified and fixed within reaction networks modelled with Lakhesis.

However, a number of EC related specifications differ between Lakhesis and Bray

and Lay’s system:

• The initial population contains a multitude of randomly generated reaction

networks (where the initial number of molecular species and associated reac-

tions are set at random). In each of these networks, input and output signal(s)

are designated and fixed.

• The number of molecular species n may vary throughout the initial reaction

networks. However within a given reaction network, this number is fixed and

may not vary through mutational changes.

• The number of chemical reactions r within a reaction network is subjected

to variation. However a reaction network may not contain more than rmax

reactions.

• The networks’ fitness values are obtained by computing the steady state solu-

tion of the systems’ set of ODEs. Networks that exhibit steady states and the

least deviant behaviour (according to the objective function) are the fittest.

• During each iteration, the subset containing the fittest network candidates

is selected and remains within the population for the next iteration. The

unselected reaction networks are removed from the population.

• Mutation operators are devised and introduce variations upon the network’s

topology and reaction rates, see Fig. 3.3.
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Figure 3.3: Mutation operators in Lakhesis adapted from Deckard and Sauro (2004).
A: Change of reaction rate, B: addition/removal of reaction, C: new reaction type.
These mutations occur with different probabilities, A mutations occurring the most
often as their effects are less disruptive than B and C mutations.

The above EC approach extends Bray and Lay’s work by introducing richer

mutation operators. As a result, a greater variety of reaction networks could be

evaluated during the evolutionary process.

Using this system, Deckard and Sauro successfully evolved reaction networks to

perform a range of mathematical functions such as: multiplication by constants,

square roots, cube roots and natural logarithms. Such computations could not

be evolved using Bray and Lay’s approach which appeared to be limited due to

the restricted number of signalling molecular species and lack of feedback loops

(Bray and Lay, 1994).

Moreover, in particular reaction networks capable of performing the square root

function, a subpart or module of the network was identified as being able to solve

quadratic equations. Such a modular structure is of interest as it is a common

feature of CIPNs. This work may thus provide further insights on the evolution of

modularity in CIPNs.

Deckard and Sauro’s approach was recently adopted and developed by

Lenser et al. (2007). A multi-level Evolutionary Algorithm (EA) was proposed to
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conduct similar studies on the evolution of reaction networks capable of signal-

processing functions.

3.2.3 Learning Classifier Systems

In previous top-down evolutionary approaches, molecular species were treated in an

aggregate manner at the system level. The internal structure and intrinsic properties

of molecular species were not specified and did not affect the reaction network’s

topology nor dynamics.

We present an alternative top-down approach in which the individual behaviour

of molecules is considered. As previously presented in Section 2.2.8, Holland (2001)

proposed an agent-based model where the agents’ behaviour and adaptation are

determined through the use of Learning Classifier Systems. Holland suggested this

ABM as a suitable modelling framework for the study of CIPNs. The modelling of

CIPNs was conducted in a top-down fashion, where an iterative refinement process

was employed to specify the different levels of CIPN interactions. No implementation

of this system was performed, nevertheless Holland proposed a toy model to illustrate

this evolutionary approach. This toy model provided an existence proof that his

system could be used to evolve a simple repertoire of condition-action rules to a

more complex goal directed set of rules. We describe the application of this ABM

approach to evolve CIPNs.

Cells are autonomous agents which possess five principle components:

1. A set of detectors : Cellular agents are situated in space and may probe their

surrounding environment to detect input messages (e.g., nutrients, hormone

molecules, toxic molecules). This sensor apparatus (i.e., cellular receptor)

constrains the agent to only interact with its local environment. Detected

messages are stored in the list of messages.

2. A list of messages : Messages (i.e., input signals or stimuli molecules) are

received from the environment as binary encoded data. Input signals are then
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stored in an internal data structure termed the message list.

3. A list of classifiers : Enzymatic operations are addressed with classifiers which

are strings formed over the ternary alphabet {0,1,#}. Classifiers are con-

dition/action rules. The condition statement refers to the “binding” condi-

tions where input messages are evaluated. This binding condition (a pattern

matching expression) determines the network’s topology, i.e., the reactions/-

connections between the molecular species. The action statement describes

the enzymatic/computational function which results in the production of an

output signal (i.e., intra-cellular signalling molecule). The latter may interact

with the agent’s effectors (see below). When the character # occurs in the

condition part of a classifier, # acts as a single character wildcard which allows

for the potential matching of a greater number of input strings, e.g., the string

10# can match both inputs 100 or 101. When occurring in the action part of a

classifier, # may also copy the matched character into the output signal, e.g.,

let us consider the rule IF 1#0 THEN 00# and the input 110, the condition

1#0 is satisfied by 110, the # occurring in the action part 00# is here equal to

the third character of 110, as a result the product molecule 000 is generated.

This character may thus provide for string/signal processing capabilities.

4. A set of effectors : Similarly to classifiers, effectors are conditional rules. When

effectors (e.g., flagella) are satisfied by output messages generated by classifiers,

an action causing some changes to the environment is performed (e.g., move,

produce inter-cellular signalling molecules).

5. A set of reservoirs: When a classifier evaluates a binding input signal, an ap-

propriate response is determined. This response is indicated by the classifier’s

action expression. If this action exhibits a specified desired behaviour then a

reward mechanism is implemented through the use of a scalar reinforcement

algorithm. Each classifier has an associated fitness measure, quantifying the
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usefulness of the rule in attracting external reward. The rewards are resources

which fill the reservoir. These resources, which deplete over time, are needed

by the cell to persist in its environment.

Fig. 3.4 provides a schematic view of Holland’s system where a cellular agent is

depicted.

Figure 3.4: Schematic of Holland’s agent-based Learning Classifier System

A credit assignment algorithm (such as the bucket brigade algorithm) is em-

ployed to reward and strengthen efficient classifiers/rules. Moreover a rule discovery

mechanism is specified which is responsible for generating potentially more efficient

rules. GAs are employed to generate new classifiers where selection is carried out

upon the classifiers’ fitness measure. Both algorithms are pre-specified and do not

evolve. Similarly to Bray and Deckard’s approach, these explicit fitness functions

are used to drive the evolution of the agent. This ABM is therefore a top-down

evolutionary approach.

Although Holland addressed the inner structure and behaviour of individual
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molecules through the use of messages and classifiers, Holland distinguished a demar-

cation between substrate/signalling molecules (messages) and enzymatic molecules

(classifiers). However, molecular species are reflexive by nature and may act as both

substrates and enzymes.

Nevertheless, in contrast to Bray and Deckard, Holland addressed certain dis-

tinctive features of CIPNs:

• CIPNs are reaction networks capable of signal-processing which are contained

within a cellular structure. The cellular membrane marks the distinction be-

tween the environment and the intra-cellular milieu in which CIPNs occur.

• The network’s topology is determined by the intrinsic properties of molecular

species, here modelled as pattern matching expressions.

• The hierarchical organisation of the cell/CIPN couple is considered. CIPNs

do not directly interact with the environment but only operate within the

cell. Whereas the cell may interact with the environment through the use of

detectors (e.g., membrane receptors) and effectors (e.g., flagella). Two levels

of interaction, i.e., molecular and cellular are identified which characterise

CIPNs/cells.

Holland’s proposal complements Bray and Deckard’s approaches by introducing

characteristic features of CIPNs. However some aspects of CIPNs are still not con-

sidered in this approach, e.g., reflexive nature of molecular species, cellular division

and a potential mechanism enabling the (self)-maintenance of CIPNs.

3.3 Artificial Chemistries

The above EC-based research did not address closure dynamics in reaction networks.

We present Artificial Chemistry based investigations which consider both closure dy-

namics and individual behaviour of molecular species. Artificial Chemistries (AC)
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are an abstraction of real chemical processes which aim at understanding the dy-

namics of complex molecular organisations (Dittrich et al., 2001). An AC typically

consists of a set of computational “molecules” and of a set of rules. The rules de-

scribe the reactions that may occur between the simulated molecules. The rules are

applied according to an AC-specific algorithm which also characterises the reaction

space. Artificial reactions lead to the production, modification or destruction of

molecules.

During an AC simulation, several phenomena of interest may arise such as the

emergence and evolution of closed biochemical organisations. Although most ACs

have been employed to investigate artificial/simplified models of chemical reaction

networks, some AC systems have been specifically devised to study chemical reaction

networks from a more biologically realistic perspective (Lenaerts and Bersini, 2009;

Tominaga et al., 2009).

Nevertheless there is, to our knowledge, no ACs which were specifically developed

to examine closure and the evolution of CIPNs. We review a number of selected and

related ACs in which the spontaneous emergence and evolution of organisationally

closed reaction networks were examined.

3.3.1 Alchemy

Fontana and Buss (1994a,b) developed Alchemy to study the emergence of self-

maintaining organisations in biochemical systems. Alchemy employs the λ-calculus

(Church, 1932) formalism to specify molecular species and reactions.

Molecules are specified as λ-expressions which upon reacting with each other

may generate product molecules. Reactions occur in a well-stirred flow reactor

where molecules may collide with each other at random. A collision between the

molecules A and B generates a function A(B) which is then subjected to a reduction

process. The latter produces the normal form C of A(B), C is the product molecule.

The reduction process involves a number of necessary reduction steps. If the normal
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form is not obtained after k reduction steps then the reaction is elastic, i.e, no

product molecules are generated. This reduction to normal form determines the

possible reactions between the molecular species. Therefore, as in LCS, the intrinsic

properties of molecular species identify the reaction network’s topology.

Elastic reactions may also occur when the following condition is satisfied: Let

us consider the molecular species X and B, if the normal form X(B) is directly

obtained without any reduction steps, then the reaction X(B) is elastic. In other

words, molecular species which are not capable of enzymatic/computational trans-

formations are not allowed in Alchemy. This filter applies when molecules are ran-

domly generated in Alchemy simulations.

As no mutations may occur in Alchemy, the molecular diversity is determined

by the initial randomly generated molecular population and subsequent catalytic

reactions that may occur between the molecules.

Moreover, in contrast to EC-based systems, no explicit fitness function is defined.

The dynamics of the system are only driven by the individual behaviour of the

molecular species.

A series of experiments was conducted in which different forms and levels of

organisation could be distinguished:

1. Level 0 organisations : At the simplest level, the system is initialised with

random and unique molecular species. When executed, this system quasi-

deterministically converges to a state where a single autocatalytic molecular

species dominates the whole population. These molecules can self-replicate

when colliding with a copy of themselves, i.e., if we consider two instances

(molecules) A1 and A2 of species A, we have A1(A2) = A3. This phenomenol-

ogy where molecular species can replicate themselves is referred to as level 0

(L0). The self-replicase species are called L0-objects. An example L0-object

is λx.x. L0-organisations have the form of hypercycles which were introduced

by Eigen (1971); Eigen and Schuster (1977). A three-element hypercycle is
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presented in Fig. 3.5. Under perturbation/mutation effects (e.g., addition/re-

moval of molecules), such organisations are known to be fragile and collapse

to a single replicase molecular species (i.e., a single-element hypercycle).

2. Level 1 organisations : At the next level, an additional filter is defined to

prevent self-replication reactions (where the product molecule is syntactically

identical to the substrate and/or enzyme molecules) from occurring. When

this filter is applied in Alchemy simulations, the emergence of a novel form

of organisation can be observed: a collectively autocatalyctic set of molecular

species. This form of organisation is referred to as an L1-organisation. In

this type of reaction network, a distinct molecular species is not capable of

self-replicating, but is capable of catalysing the production of another species.

A closed cycle of complementary productions enables the maintenance of each

molecular species present in the reaction network. Each molecular species is

thus necessary for the production of another species and ultimately responsi-

ble for the maintenance of this virtuous self-maintaining cycle. An example

L1-organisation is depicted in Fig. 3.5. In contrast to L0-organisations, it has

been reported that L1 sets are relatively more robust to perturbations, hav-

ing the ability to self-repair. L1-organisations are examples of autocatalytic

sets (Kauffman, 1993), i.e., L1-sets are no longer hypercycles but collectively

autocatalytic (organisationally closed) reaction networks.

3. Level 2 organisations : In the last series of experiments, the system is seeded

with two distinct L1 organisations (obtained from previous independent L1

experiments) in which two phenomena may be observed:

• If no molecular species may interact between both L1 sets then one of

the two L1 organisations displaces the other one.

• If some molecular interactions occur between both L1 sets then a level

2 organisation emerges. An L2 set is a metaorganisation which contains

57



both L1 organisations as subnetworks (i.e., modules). In addition a set

of molecular species is generated as a result of the molecular interactions

occurring between the L1 sets. These molecular species do not belong to

the closed cycles of both L1 sets. Moreover, these species do not form a

closed cycle and thus cannot self-maintain. However the metaorganisa-

tion containing both L1 sets and these extra molecular species is closed.

The L2 set is therefore able to maintain all molecular species present

in the network. These molecular species, occurring outside the L1 sets,

enabled the stabilisation and integration of both L1 sets into a higher

order L2 organisation.

Figure 3.5: A: Level 0 organisation (a three-element hypercycle). B: Level 1 organ-
isation. C: Level 2 organisation containing two Level 1 organisations

The above phenomena resulted only from self-organisation dynamics. Contrary

to EC-based research, this work did not attempt to perform or investigate compu-

tation in reaction networks. Nevertheless some CIPN aspects can be identified in

this investigation:

• The L2 experiments exhibited reaction networks where a modular structure

can be observed. Modules (i.e., L1 sets) can be identified and are contained

within a higher structure or metamodule. This hierarchical organisation is
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characteristic of CIPNs where each module may possess a distinctive function.

• The signalling pathway formed by the“glue” molecular species (which resulted

from the molecular interactions occurring between the L1 sets) may be acting

as a control or regulation function. These molecular species prevent the L1

sets from displacing each other by regulating the reactions occurring in each

L1 set. For example let us consider the L2 set C, A and B are L1 sets, and

G the set of glue molecules so that A ∪ B ∪ G = C. If A grow faster than B

then this has an affect on G which would subsequently grows faster. However

if G grows faster then B would also benefit from this growth. As a result, A

and B are stabilised.

In this approach, only catalytic molecular species are allowed. Fontana and Buss

reported that if molecular species acting only as substrate molecules are not filtered

out then no spontaneous emergence of closed organisations could be obtained. When

allowed, an accumulation of such inert molecular species is observed. These molec-

ular species being inert, cannot contribute to the production of other molecular

species. Fontana and Buss argued that this accumulation of “waste” molecular

species disrupts the metabolic processes and prevents self-maintaining metabolic

cycles from emerging.

Although the Alchemy system presented significant results related to closure in

reaction networks. The introduction of non-catalytic molecular species prevents au-

tocatalytic closure from emerging. However CIPNs typically involve such molecular

species during signal transduction. Finally no random variations at the molecular

level were devised in Alchemy. Fontana and Buss’s work did not address the evo-

lution but the emergence of self-maintaining organisations in initially unorganised

reaction networks. The Alchemy approach may thus not be directly applicable to

the study of closure and the evolution of CIPNs.
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3.3.2 α-universes

α-universes are a class of AC which were proposed by Holland (1976) to investigate

the spontaneous emergence of life. Holland aimed at demonstrating that emergence

of self-replicating systems was possible given an initial unorganised system state.

This investigation was addressed through a quantitative analysis of the emergence

time of autocatalytic systems/reaction networks. In this investigation, a specific α-

universe was described by Holland and is presented in the remainder of this section.

The model is specified as a one dimensional and circular linear string of “nodes”.

The latter may be empty or contain an “atom” from the set {0, 1, :, N0, N1}. This

instance of α-universe is a mass conservation model, i.e., the number of existing

atoms is fixed, atoms cannot be created or removed, they are simply rearranged in

space.

Adjacent atoms may be bonded to constitute structures (i.e., molecules) which

are separated from each other by empty nodes. Each atom is associated with a level

of bonding (i.e., weak or strong) to the adjacent atom, if any, at its right. A bond

between an atom and an empty node is weak by convention.

Two classes of operator, respectively called “primitive” and “emergent”, are

distinguished and operate stochastically:

1. Two primitive operators are devised allowing the spontaneous stochastic re-

combination of the molecules’ structures: the EXCHANGE operator produces

diffusion-like movements of atoms whereas the BOND-MODIFICATION operator

causes random changes in the strength of bonding between atoms. These op-

erators are context-insensitive and allow for random variations to occur at the

molecular level (i.e., acting like mutation operators). A feature which was not

devised in Alchemy.

2. Two emergent operators are defined and are sequences over {0, 1, :}. The

latter are regarded as functional elements whereas {N0, N1} are viewed as
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“nucleotides”. The colon symbol is employed to separate the sequences into

the operator’s arguments. The latter designate the type of the operator (i.e.,

COPY or DECODE) and the prefix of the “substrate molecule”. These operators

are context-sensitive, i.e., these operators/functional molecules “emerge” ac-

cording to the specific arrangement of atoms in the sequences. The DECODE

operator translates sequences over {N0, N1} into sequences in the alphabet

{0, 1, :} through the use of a mapping table. The COPY produces copies of

sequences over {N0, N1}.

A distinction is thus made between molecules that can only act as substrates

and those which possess functional capabilities. Non-functional molecules were not

present in Alchemy as it would have prevented the emergence of self-maintaining

organisations (Section 3.3.1).

The molecular computational operations can be viewed as a simplification of

Learning Classifier Systems (i.e., production rules). As in the agent-based LCS

approach, the network’s topology is determined by the binding/pattern matching

conditions of the functional molecules. However the collision rule differs and ac-

counts for space (favouring collisions between molecules that are nearest to each

other). A reaction occurs if the functional molecule’s binding condition (as devised

in the molecule/operator’s arguments) is satisfied by the structure of the substrate

molecule.

As proposed, this system does not allow for the implementation of individually

autocatalytic/self-replicating molecular species. However Holland argued that an

infinite class of collectively autocatalytic reaction networks could be identified in α-

universes. Although no experiments were conducted, Holland presented a theoretical

analysis of the expected emergence time of such closed reaction networks.

Actual experiments (McMullin, 1992) demonstrated that closed reaction net-

works could not self-maintain due to side reactions not predicted by Holland. It was
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also observed that necessary “food molecules” (i.e., nutrients) would rapidly deplete

and prevent any further reactions from occurring. It has however been suggested

that under flow conditions (providing an inflow of nutrients), it could be envisaged

to obtain such closed reaction networks to self-maintain (McMullin, 2000).

3.3.3 Tierra

Alchemy and α-universes focused on the spontaneous emergence of organisations

given an initial unorganised system. In contrast to these approaches, Ray (1991)

did not focus on prebiotic conditions but on the requirements allowing for the spon-

taneous evolutionary process of increasing diversity and complexity of organisms.

To assist this research, Ray proposed Tierra and intended to explore open-ended

evolution using this system.

In the Tierra metaphor, a virtual computer is employed to represent the universe.

The computer memory designates the universe’s one-dimensional space. Within the

virtual computer memory, we may distinguish patterns of computer codes which

identify the digital organisms/agents. The latter are represented as concurrent com-

puter programs which compete with each other for CPU time (energy) and access to

memory (nutrients). Interactions between these computer processes may lead to the

creation, modification or destruction of processes. These evolvable digital organism-

s/processes can be regarded as molecules which may interact/react with each other

leading to the production/destruction of molecules/computer processes. These re-

actions occur under flow conditions. The molecular computational processes also

follow the virtual computer metaphor and consist of computer instruction operators

(32 distinct operators/atomic elements are devised). The agents are evolvable in

the sense that they can be modified through the use of stochastic operators (e.g.

error-prone replications, spontaneous mutations).

Parallelism is simulated in the Tierra virtual computer where the number of

CPUs is equal to the number of existing agents. Each of these CPUs execute a
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small time slice in turn as devised by the time-slicing algorithm. CPUs perpetually

carry out a “fetch, decode, execute, increment instruction pointer” cycle where the

instruction pointer indicates a memory address in the virtual computer memory.

When an agent is interpreted for computation, specific operators may be em-

ployed to point at specific regions of the computer memory. In particular cases

these pointers may jump to memory areas where another agent (or raw material)

is already present. In such cases, interactions (i.e., chemical reactions) between the

enzyme and substrate species may occur. These instruction pointer mechanisms

identify the reactions that may occur between species, and therefore determine the

reaction network’s topology.

In the Tierra system, it was necessary to construct and feed the system with

at least a single autocatalytic/self-replicator molecule called the “ancestor”. This

introduction of an ancestor species was necessary as no spontaneous emergence of

such species could be observed (a variant of the Tierra system called Amoeba was

specifically developed by Pargellis, 2001 to address this issue).

The reaction space’s size is fixed and may contain up to 60000 instructions.

When 80% of the space if filled up, then a reaper is activated and kills molecules

(by deallocating their memory) in a particular order specified in the reaper’s queue.

This mechanism introduces mortality and prevents the saturation of the reaction

space, in which case no further reactions could occur.

Example evolutionary dynamics observed when a single ancestor molecule (which

contains 80 instructions) is inserted in this reaction space are as follows:

• The self-replicator species would rapidly fill up the reaction space. Then

through mutations, mutants of the self-replicator species would emerge and

were potentially more efficient (having a faster reaction speed) than the an-

cestor molecules. In such cases, the mutants possessed a selective advantage

and displaced the original ancestor molecular species. Series of such selective
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displacements involving mutant species could be observed.

• A second more complex phenomenon includes the emergence of pseudo-

collectively autocatalytic sets of molecules. This phenomenon was due to the

emergence of mutant species which were acting as “parasites”. These parasites

were not able to self-replicate, but relied on “host” species to be replicated.

Thus the replication of each molecular species, including both the parasitic

and the self-replicator species, was possible in such reaction networks. The

latter can therefore be considered as organisationally closed. However as au-

tocatalytic species are still present, the term collectively autocatalytic cannot

be rigorously applied here.

• Another dynamic of interest is distinguished with the emergence of “social

hyper-parasites”. In reaction networks composed of such entities, no auto-

catalytic molecular species were present. An aggregation of molecules was

observed in which each of them supported the production of another molecule

in this set. Therefore these social hyper-parasite species constituted a collec-

tively autocatalytic reaction network. It has been reported that such organ-

isations possessed a selective advantage which would drive the extinctions of

self-replicators, parasistes and hyper-parasites. The latter are not described

here, Ray (1992) provides further details about these species.

Other emerging phenomena were observed such as the emergence of immunity

to parasitism, circumvention of immunity to parasitism, hyper-parasitism, Lotka-

Volterra cycles and cheaters with hyper-hyper-parasites. This set of behaviour

demonstrates the capability of Tierra to exhibit intricate evolutionary dynamics

and phenomena. An increase in complexity and diversity was observed, which was

potentially facilitated by the mutation operators and the rich set of enzymatic/com-

putational operators.
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On top of exhibiting the emergence of closed reaction networks, this work is of

interest to the evolution of CIPNs as it demonstrates that under an evolutionary

regime, complex behaviours at the macroscopic level, e.g., emergence of ecologies,

exhibition of punctuated equilibrium dynamics (Gould, 2002), may emerge. Sim-

ilarly to the Tierran societies, cells may exhibit complex behaviours that are not

predictable.

Nevertheless we may also argue that the set (and nature) of the instruction

operators is already quite complex. Indeed machine instructions that are equivalent

to the Tierra operators are capable of universal computation. However the set of

enzymatic operators occurring in CIPNs may not share such a level of computational

capability.

3.4 Other systems

Our review of evolutionary approaches applied to biochemical networks is far from

exhaustive. Many other systems have been developed and address various aspects

of the emergence, self-organisation, self-maintenance and evolution of biochemical

organisations. Examples of related studies include:

• Kauffman (1986); Farmer et al. (1986a) conducted an early study on the spon-

taneous emergence of autocatalytic sets. A simplified protein-network model

was proposed in which only cleavage and condensation reactions could occur.

This work focused on the reaction graph’s connectivity as the key feature en-

abling the emergence of autocatalytic sets. Given a well-stirred prebiotic soup

containing such simplified proteins generated from the random assembly of

monomers, Kauffman et al. demonstrated that as the diversity of molecu-

lar species increases (which indirectly affects the reaction network’s level of

connectivity), the probability of an autocatalytic set to spontaneously emerge

increases accordingly. Kauffman’s work thus suggests that the emergence of

such autocatalytic sets is feasible under relatively reasonable conditions.
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• Typogenetics is a simplified model of DNA replication presented as a typo-

graphical formal system (Hofstadter, 1979). The novelty of this system re-

lied on the introduction of a primary/informational and secondary/functional

structures. Codons of “nucleotides” would code for specific functional opera-

tors though the use of a mapping table. It was proposed that Typogenetics

was a suitable approach to investigate Artificial Life (Morris, 1987). Stud-

ies on self-replicators and hypercycles were also conducted using this system

(Kvasnicka and Pospichal, 2001; Wee and Lee, 2005; Gwak and Wee, 2007)

• Avida (Adami and Brown, 1994) is a popular variant of the Tierra system.

In contrast to Ray’s system, the update rules (as devised by the time-slicing

algorithm) are not fixed and may vary according to the nature of the organisms’

genomes. Avida agents are executed on individual virtual CPUs whose “speed”

may vary from one another. As Tierra, Avida was also employed to investigate

open-ended evolution (Lenski et al., 1999, 2003).

• Echo (Holland, 1990, 1994, 1996) is an agent-based system proposed to inves-

tigate the abstract class of Complex Adaptive Agents (which may be applied

to a wide variety of artificial and natural systems). Echo employs simplified

LCS-like rules to determine the agents’ behaviour. This model was inspired by

ecological research in which typical agent interactions include combat, trade

and mating.

• Farmer et al. (1986b) proposed a dynamic network model of Artificial Immune

Systems (AIS) based on the network theory of Jerne (1974). Farmer et al.

demonstrated a strong analogy between their proposed model and Holland’s

LCS in which molecular (antibody) species are classifiers, the latter’s condi-

tions and actions are respectively epitopes and paratopes, finally the classifiers’

fitness/strength designate the molecular species’ concentration. This work on

adaptable/evolvable biochemical networks differs from other LCS-based inves-
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tigations by explicitly addressing the molecular species’ concentration with the

classifiers’ fitness as devised by the credit assignment algorithm (Section 3.2.3).

This algorithm (e.g., the bucket brigade algorithm) governs the changes in con-

centration of the different molecular species and can be thus regarded as the

reactor model. However, in contrast with above presented systems, AIS-based

research has focused on problem-solving applications using AIS as adaptive

machine learning techniques (Bersini and Varela, 1990; Bersini and Carneiro,

2006).

Although the specification and implementation of the above models may vary sig-

nificantly compared to selected reviewed EC and AC models, the observed evo-

lutionary dynamics are essentially equivalent (e.g., emergence of closed networks,

increase in diversity and complexity of species, emergence of complex behaviours

at the molecular population level). However the evolution of reaction networks us-

ing these systems would always plateau (where no further increase in complexity

nor emerging behaviour would be observed) during long term evolution. To date,

no evolutionary system has managed to demonstrate an open-ended evolutionary

growth of complexity.

In the following section we evaluate the strengths and weaknesses of EC/top-

down and AC/bottom up evolutionary approaches.

3.5 Top-down versus bottom-up approaches

We discuss the pros and cons of the above top-down and bottom-up evolutionary

approaches. We distinguish several evaluation criteria that are related to closure

and the evolution of CIPNs:

• Granularity : EC models (excluding Holland’s agent-based LCS) consider

molecular species in an aggregate manner at the system level. Bray and

Deckard’s approaches employed differential equations to model the artificial
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reaction networks. As reviewed in Chapter 2, these modelling techniques do

not allow for the examination of the individual behaviour of molecular species.

However examining closure and the evolution of CIPNs requires the ability to

trace the behaviour (subjected to an evolutionary process) of distinct species.

Presented AC models rely on modelling techniques which address the indi-

vidual and inner structure (including submolecular elements and/or reflexive

nature) of molecular species.

• Cell-level interactions : Bray and Deckard’s approaches evolved reaction net-

works in which the nature of the container (e.g., a cell) was not considered.

By contrast, Holland’s approaches considered cell-level properties leading to

systems possessing two distinct levels of interaction. However further key prop-

erties of cells were still not addressed. For example no systems implemented

cellular division where molecular species are randomly selected and distributed

to offspring cells. This stochastic process may therefore dramatically affect the

behaviour/performance of offspring cells/agents. EC models did not attempt

to examine self-maintenance properties of biochemical networks. On the other

hand, ACs addressed the self-organisation and self-maintenance properties of

reaction networks. However the potential functions of the system itself (i.e.,

the cell) and cell-level interactions were not investigated.

• Computation: In terms of traditional computational/signal processing func-

tions, EC models were successfully employed to evolve a range of mathematical

functions (e.g., square/cubic root, normal logarithm, etc.). Artificial reaction

networks were also evolved with success to solve quadratic equations. Such

results have not been obtained using ACs. Evolving mathematical functions in

EC models is facilitated by the explicit definition of an objective function. The

latter allows one to specify precise computational functions to be mirrored.

No ACs have to date been devised to evolve reaction networks capable of
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distinct signal-processing functions. ACs are mainly employed to investigate

the emergence and evolution of behaviours exhibited by living systems. How-

ever these targeted natural behaviours exclude signal-processing functions that

some natural systems are capable of (e.g., CIPNs, neural networks).

Nevertheless some AC models are computational universal, therefore such ACs

should be able to generate computational functions of any complexity. Al-

though the evolution of computational functions using ACs has not been in-

vestigated, the modelling of molecular computing devices using ACs has been

addressed (Tominaga et al., 2007). This work supports the suggested ability

of AC systems to perform computational functions.

• Closure: According to Kauffman (1993), the network’s topology is a critical

property which may allow or not the spontaneous emergence of collectively au-

tocatalytic reaction networks. Given a randomly generated reaction network,

a level of connectivity/reactions between the molecular species is necessary to

obtain spontaneously a collectively autocatalytic reaction network.

In ACs, the inner structure (binding rules) of molecular species determines

the reaction network’s topology. As the structure of species is dynamic, the

network’s topology may also change over time. Varying these properties dy-

namically allows ACs to exhibit such spontaneous phenomena involving closure

in reaction networks.

Although in some EC models, the network’s topology may be dynamic, no

consideration for organisational closure was given. However this could have

been addressed in these models where the objective fitness function could be

modified to account for closure properties. This engineered top-down trick

remains hypothetical as further examinations would be necessary.

• Evolution: In EC models, the evolutionary process is driven by explicitly

devised fitness functions. These fitness functions are pre-specified and do
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not evolve. As discussed by Groß and McMullin (2002), these attributes may

stifle the occurrence of “perpetual novelty” during evolution. Therefore the

performance of the system (as defined by the fitness function) may be limited

during long term evolution.

An alternative would be to define a meta Evolutionary Algorithm (EA) that

would evolve these mechanisms, however this would present one with yet an-

other problem: how to specify the EA fitness function? The latter is fixed

and is potentially another point where novelty may be stifled, recreating this

credit assignment problem.

To avoid this infinitely recursive problem, ACs rely on implicit fitness functions

that the agents devise themselves. Nevertheless, in any given ACs, the evolu-

tion of complexity appears to plateau during long-term evolution. Although

the use of implicit fitness functions seems more appropriate, further conditions

for open-ended evolution exist. The identification and understanding of these

conditions remain, to date, critical and challenging problems in both artificial

and natural systems (Gershenson and Lenaerts, 2008).

Based on the above evaluation, we do not identify a clear suitable evolutionary

framework to investigate closure and the evolution of CIPNs. However complemen-

tary desired features are present in these systems. AC-based/bottom-up evolution-

ary frameworks appeared to present essential features with regards to granularity,

evolution and closure.

Moreover ACs that are modelled as agent-based systems, and implemented us-

ing an object-oriented programming environment (Bersini, 1999, 2000), offer flex-

ibility. The latter allows us to propose a novel AC which would also account for

CIPN-specific properties and information processing capabilities. This novel AC is

described in the next concluding section.
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3.6 Conclusion

We reviewed a selection of top-down and bottom-up evolutionary systems which

addressed complementary aspects with regards to computational abilities, emer-

gence, self-organisations, self-maintenance and evolution of CIPNs. However, this

review revealed that no existing evolutionary frameworks can be directly applied to

investigate closure and the evolution of CIPNs.

Nevertheless we identified agent-based ACs as a relatively more promising and

flexible evolutionary approach. We thus propose the development of a novel agent-

based AC which is inspired by, and combines features of, the ACs previously evalu-

ated. This AC will incorporate the following features:

• This AC will be modelled through the use of an algebraic/agent-based ap-

proach. The inner structure of molecular species will be thus specified. This

modelling approach will allow for the examination of individual behaviour of

molecular species.

• A production rule (i.e., condition/action rules) formalism will be adopted to

implement the molecular computational processes (binding conditions and en-

zymatic operations). However no demarcation between operands and opera-

tors will be distinguished addressing the reflexive nature of molecular species.

• The set of primitive computational operators will be constructed in a minimal-

ist fashion (a contrario to Tierra which involved computer-like instructions).

This will allow us to minimise the initial complexity of the model, and poten-

tially not bias emerging phenomena that may occur.

• Reactions will occur in a well stirred reactor.

• Molecular collisions and enzymatic/computational operations will involve

stochastic elements resulting in a stochastic behaviour at the system level.
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• In accordance with traditional ACs, we will examine CIPNs from a bottom-up

approach in which no explicit fitness function will be devised.

• Molecular species will be subjected to random changes (mutations) introducing

greater genotypic/phenotypic diversity during evolution.

• Mutations will affect the binding conditions/structures of molecular species.

As a result the reaction network’s topology will be dynamic which may facili-

tate the emergence of closed reaction networks.

• Molecular species will be contained within a single reactor which will ulti-

mately be evolved to carry-out signal-processing functions. This single reactor

model is presented and evaluated in Chapter 4 and 5 respectively.

• Compartmentalised containers will be introduced. Diffusion/exchange of

molecules between these multiple compartments will be devised. This static

reactors model with molecular diffusion is investigated in Chapter 6.

• Similarly to biological cells, compartmentalised containers (i.e., cells) will be

able to “grow and divide”. This cellular model is also examined in Chapter 6.

In the next chapter, we present in detail our novel proposed AC, called the

Molecular Classifier Systems (MCS.bl), specifically devised to address closure and

the evolution of CIPNs.
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Chapter 4

The Artificial Chemistry

We present our Artificial Chemistry (AC) called the Molecular Classifier System

(MCS.bl) which is derived from the Holland broadcast language (BL). This evolu-

tionary simulation platform is implemented as an agent-based system in which the

agents are artificial molecules. Chemical reactions between the artificial molecular

species refer to the interactions between agents. In this chapter, we introduce our

motivations for utilising the MCS.bl. We then present the class of Molecular Classi-

fier Systems and our implementation of the Holland broadcast language. We finally

describe the system’s algorithm and summarise this chapter.

4.1 Motivations

In chapter 2, we concluded that algebraic and agent-based frameworks provide most

flexibility. Because of their discrete composition of structural entities, they can

act at different levels of abstraction ranging from sub-molecular interactions up to

summarised system global function. Moreover, introducing analytical or stochastic

information is enabled through the use of transformation techniques. Based on

this review we propose to use an agent-based approach in which agents (molecular

species) and interactions (chemical reactions) are modelled as algebraic expressions.

In chapter 3, we argued that bottom-up evolutionary approaches (i.e., Artificial

Chemistries) offer the most adequate framework to study the evolution of molecular
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organisations. These systems, a contrario to top-down approaches, do not rely on

explicitly defined fitness functions which may stifle the occurrence of “perpetual nov-

elty” during evolution (Groß and McMullin, 2002). Furthermore ACs are commonly

implemented as agent-based systems, these approaches may thus benefit from the

advantages, as highlighted earlier, of agent-based modelling techniques. Therefore

we propose to employ an agent-based AC to model and evolve artificial molecular

organisations.

To specify the molecular species and reactions, we employ the broadcast lan-

guage. The latter is a term rewriting system which was proposed by Holland but

has never been implemented nor evaluated (Section 2.2.5). The benefits of using the

broadcast language here are twofold:

1. The broadcast language, being a term-rewriting approach, provides a flexible

modelling tool addressing the discrete and reflexive nature of molecular species.

The development of complementary tools enables the translation of BL models

to the SBML format. Through the use of this standard format, it is possible

to transform the BL models into ODE systems, which allows us to conduct

further analytical studies and make the generated models widely accessible.

2. We provide the first implementation and evaluation of the broadcast language.

This study complements the proposal originally made by Holland in the mid-

seventies (Holland, 1992a). Our implementation may also provide a starting

point for conducting further studies in allied areas such as in Evolutionary

Computation and Genetic Programming.

The above points suggest that the BL is a suitable modelling technique to be

utilised in our investigation. However the original Holland broadcast language con-

tained a number of features which posed some semantic ambiguities (Decraene,

2006). To facilitate our investigation, we propose a simplification of the broadcast

language in which we remove the problematic features (Decraene et al., 2007b).
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These system modifications are summarised in Appendix B.

Finally to address the stochastic nature of molecular reactions, we integrate

the BL within the Molecular Classifier System (MCS) approach, a class of string-

rewriting based ACs. In keeping with the conclusions of our literature review, we

propose an agent-based AC where the agents and interactions are specified in the

broadcast language. This novel AC is derived from the MCS and (simplified) BL

formalisms which are both now presented.

4.2 The Molecular Classifier Systems

We define the Molecular Classifier System (MCS) as a class of string-rewriting based

Artificial Chemistries. This approach is inspired by Holland’s Learning Classifier

Systems (LCS). Both the MCS and LCS formalisms rely on the IF THEN metaphor:

IF a condition is satisfied (e.g., some molecules collide and bind with each other)

THEN an action is executed (e.g., a product molecule is generated). In LCS, a

demarcation is distinguished between rules and messages, however operations in

biochemical networks are intrinsically reflexive in the sense that all molecules can

function as both rules (enzymes) and messages (substrates). The MCS addresses

these issues by removing this rule/message demarcation found in the LCS.

The behaviour of the condition/binding properties and action/enzymatic func-

tions is specified by a “chemical” language defined in the MCS. The chemical lan-

guage defines and constrains the complexity of the chemical reactions that may be

represented and simulated with the MCS. For example, a MCS model using a lim-

ited number of computational functions may only faithfully represent very simplistic

chemical reactions.

Before describing the nature of the enzymatic functions (action part of a

molecule), the binding properties of the molecules must be identified. In the MCS

approach, a reaction between molecules may only occur if the informational string of

a substrate molecule satisfies/binds with the conditional part (“binding site”) of an
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enzyme molecule. The condition part refers to the binding properties of a molecule

whereas action refers to the computational (“enzymatic”) function. This pattern

matching implies a notion of binding specificity. A molecule’s binding site having

a high specificity would significantly limit the range of molecular species that may

bind to it. Whereas a greater range of species would bind to binding sites exhibiting

low specificity.

Reactions initially occur within a single reactor whose carrying capacity is limited

(i.e., a reactor may contain a fixed maximum number of nmax molecules). When

two molecules can bind and consequently react with each other, the action part of

one of the molecules is used to carry out the enzymatic operations upon the binding

molecule (substrate). The symbols contained in the MCS action part are processed

in a sequential order (parsed from left to right). This operation results in producing

an offspring molecule whose nature depends on the symbols’ functionality. This is

analogous to the action part of a LCS rule used by Holland (Holland, 2001).

When a successful catalytic reaction occurs, a product species is inserted into

the reactor. If the latter is full (i.e., if the reactor contains nmax molecules) then

a molecule is selected at random (other than the reactants) and removed from the

reactor. Moreover all reactants are catalytic in the sense that they are not consumed

during reactions.

A differing implementation of the MCS was proposed to investigate protocell

computation (McMullin et al., 2007). In that study, a protocell is modelled as a

container for artificial molecules. The latter may interact with each other to gen-

erate new molecular offspring. The chemical language used in that instance of the

MCS employs a minimal set of computational components which only allows the

modelling of replicase molecules. To represent, simulate and evolve CIPNs, more

computational functions are necessary. To allow a richer repertoire of chemical re-

actions, we employ here a simplification of the Holland BL to specify and model

the artificial molecular species and reactions. In the remainder of this chapter, we
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first present some system features which are generic to the MCS. Following this, our

version of the BL and the MCS.bl system are described.

4.2.1 The single reactor model

In the MCS class, the alphabet of the employed chemical language is denoted by Λ.

S = {s1, . . . , si, . . . , sα} is the set of strings (with string length L and a maximal

fixed length Lmax) over Λ, α =
∑Lmax

L=1 |Λ|L. S also constitutes the set of all possible

molecular species that may appear in the MCS. R = {r1, . . . , rj, . . . , rβ} is the set of

all reactions that may occur between molecular species si ∈ S, β ≤ α2 with α2 being

the total number of species-pair combinations. Chemical reactions are bimolecular

(i.e., involve the interaction of two distinct molecules) and are noted as follows:

rj = x + y → z (4.1)

Eq. 4.1 depicts an example reaction rj where x, y and z are molecular species

in S. In this notation, the order of the reactants is considered, i.e., the first term

x always designates an active broadcast device species (enzyme), the second term y

an input broadcast device species (substrate molecule) and z an output broadcast

device species (product molecule).

Chemical reactions are asymmetric in the sense that commuting x and y desig-

nates a different reaction, for example:

r1 = s1 + s2 → s3 (4.2)

r2 = s2 + s1 → s4 (4.3)

r1 and r2 are two distinct chemical reactions, where s1 is employed as an enzyme

and s2 as a substrate in Eq. 4.2. Whereas in Eq. 4.3, s2 is utilised as an enzyme and

s1 is the substrate. s3 and s4 are two different product species.
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r′j = x + y → ∅ (4.4)

Eq. 4.4 describes an example elastic reaction (i.e., a reaction which does not

lead to the production of an output broadcast device).

The system’s state U can be described by its finite collection of molecular in-

stances denoted by mk at time t. For example U(t) = (m1, . . . ,mk, . . . ,mnmax
)

describes the list of molecules occurring in U at time step t, nmax is finite. A dis-

tinct/molecule of the species class si is denoted by mi
k. Multiple molecules which

are syntactically identical belong to the same molecular species class.

All molecules are contained in a single reactor in which they are “competing”

with each other. Reactions result from successful molecular interactions which occur

at random. During these random molecular collisions, two molecules me and ms are

identified where me is treated as the enzyme molecule and ms as the substrate

molecule.

If me can bind/react with ms then a reaction successfully occurs: A product

molecule mp is inserted in the reactor whereas another molecule mx (where x 6=

e ∧ x 6= s) selected at random is removed from the reactor space (designating the

system outflow). In a MCS simulation, reactions may thus be described as follows:

me + ms + mx → me + ms + mp

Figure 4.1 depicts the flow of a MCS simulation.

This single reactor model was inspired by the Alchemy system in which a similar

approach was employed.

4.2.2 Mutation

We define the different operators which allow molecular variations to occur in the

MCS. Two types of “mutation” are identified:
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Figure 4.1: Program flow of a MCS simulation

1. Molecular mutations :

• When a new molecule is produced, a mutation is applied with probability

psym to each of its symbols. Therefore, the longer the molecule, the higher

the probability of one or more mutations occurring.

• Three subtypes of molecular mutation are distinguished and are applied

with equal probabilities at each symbol position:

– Symbol flipping: The current symbol is replaced with a symbol picked
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uniformly at random from Λ in which the current symbol is excluded.

– Symbol insertion: A symbol is picked uniformly at random from Λ

and inserted after the current symbol.

– Symbol deletion: The current symbol is removed.

2. Spontaneous mutations : To maintain diversity in the event of low ongoing reac-

tion activity, a spontaneous mutation mechanism occurring every x timesteps

is also available. A subset rmut of the population is selected at random and

one of the three types of mutation mutation (chosen as above) is then applied

to a single symbol picked uniformly at random in each molecule of this subset.

4.3 The broadcast language

Prior to the development of the MCS.bl, we investigated the original broadcast lan-

guage proposed by Holland1. As no implementation of the broadcast language was

publicly available, we proposed the first complete specification and implementation

of this formalism (Decraene, 2006). Using this system, we successfully constructed a

NAND gate (Decraene et al., 2007a) and a static Genetic Regulatory Network model

(Decraene et al., 2007b). In the remainder of this section we present our simplified

version of the broadcast language which is utilised to specify the molecular species

and reactions in our agent-based Artificial Chemistry.

4.3.1 Introduction

We present our simplification of the Holland broadcast language. Artificial molecules

(broadcast language strings) are referred to as broadcast devices, see Figure 4.2. A

1The broadcast language is a programming formalism devised by Holland in 1975, which aimed
at allowing Genetic Algorithms (GAs) to use an adaptable representation. A GA may provide
an efficient method for adaptation but still depends on the efficiency of the fitness function used.
During long-term evolution, this efficiency could be limited by the fixed representation used by the
GA to encode the problem. When a fitness function is very complex, it may be desirable to adapt
the problem representation employed by the fitness function. By adapting the representation, the
broadcast language intended to overcome the deficiencies caused by fixed problem representation
in GAs.
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broadcast device is parsed into zero, one or more broadcast units, where each unit

represents a single condition/action rule. When an action statement is executed, a

new molecule is generated or “broadcast” in the reaction space. A broadcast device

containing no broadcast units is called a null broadcast device and can function only

as a substrate molecule (i.e., possessing no enzymatic/computational functions).

Figure 4.2: An example broadcast device

Whenever a broadcast unit conditional statement is satisfied, the action state-

ment is executed. This is analogous to an enzyme which would form a product

molecule upon the binding of a specific substrate molecule to its binding region. In

this metaphor the active site (where catalysis occurs) of the enzyme can be thought

of as a broadcast unit, a substrate molecule would be a binding/input broadcast

device, the active site’s binding region would refer to the broadcast unit conditional

statement, the product molecule is the output broadcast device and finally the envi-

ronment would be the reaction space (e.g., the cell). Figure 4.3 depicts an example

chemical reaction in the BL.

Some broadcast units may generate an output broadcast device that may itself

contain zero, one or more broadcast units. Similarly, a broadcast device can be

interpreted as a substrate molecule that can be catalysed by another broadcast

device. As a result, a broadcast unit may produce an output broadcast device
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Figure 4.3: Example reaction

which results from some modifications of the input broadcast device (i.e., signal

processing).

Biology Broadcast language
sequence of amino acids from
{A,R,N,D,C,E, . . .}

string of symbols from Λ =
{0, 1, ∗, :, ♦,▽, , △, ′}

substrate molecule input broadcast device
product molecule output broadcast device
molecule with no enzymatic func-
tion

null broadcast device

enzyme’s active site broadcast unit
enzyme molecule broadcast device
cellular milieu list of strings from Λ

Table 4.1: Comparison of biological and broadcast language terminology

As a summary, Table 4.1 presents a comparison between the biological and the

broadcast system terminology. A detailed description of the broadcast language’s

syntax and semantics follows.

4.3.2 The syntax

Our specification of the broadcast language partially adheres to the original pro-

posal presented by Holland. As mentioned earlier, a number of features have been

removed to facilitate the evaluation of this system. Moreover additional details have

been introduced to complement Holland’s proposal and resolve some identified am-

biguous issues. We now describe the different structures constituting the broadcast

language: the symbols, broadcast units and broadcast devices. The interpretation
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of the symbols, broadcast units and broadcast devices will follow.

The broadcast language alphabet Λ is finite and contains eight symbols. The

symbols constitute the atomic elements of the language.

Λ = {0, 1, ∗, :, ♦, ▽, △, ′}

Let si be an arbitrary string (i.e., a molecular species) from S. A symbol occur-

ring in si is said to be quoted if it is preceded by the symbol ′. A ⊆ S is the set of

strings over Λ which do not contain unquoted occurrences of symbol : and ∗. The

set A does not contain null strings. S∗ ⊆ S is the set of strings over Λ which are

of the form ∗a1 : a2, where a1 ∈ A ∧ a2 ∈ A. The broadcast device’s active sites

are called broadcast units which are arbitrary strings from S∗ = {u1, . . . , ul, . . . , uo},

o is finite. The minimal length to realise a broadcast unit is BDLmin = 4 where

length(∗a1 : a2) = BDLmin ∧ length(a1) = length(a2) = 1. Several broadcast

units may be concatenated within a single broadcast device. BDLmax is the fixed

maximum string length of broadcast devices. A broadcast device mk may contain

0 ≤ nu ≤ BDLmax

BDLmin
broadcast units.

If nu = 0 then mk does not contain any broadcast units and mk is then called

a null broadcast device. A null broadcast device may only be interpreted as an

input broadcast device and is not capable of any enzymatic/computational functions.

A broadcast device which is not null is said to be active and may generate an

output broadcast device (resulting from the computational function specified in

the broadcast unit’s action statement) upon the binding of an appropriate input

broadcast device.

Some example broadcast devices are shown in Figure 4.4. We may note that m3

is a null broadcast device.

A broadcast device mk is parsed into broadcast units as follows:

• Any prefix symbols occurring to the left of the leftmost unquoted ∗ are ignored
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m1 = 10 ∗ 11′ ∗ △0 : 1△∗ : 11▽ : 11▽

m2 = 011′ ∗ ∗▽ : ♦1011△

m3 = 11′ ∗ △0 : 1△′∗ : 11△ : 0001♦

Figure 4.4: Example broadcast devices

(junk string).

• The first broadcast unit is designated from the leftmost unquoted ∗ to (not

including) the next unquoted ∗ on the right if any.

• Following broadcast units are obtained by repeating the above procedure for

each successive unquoted ∗ from the left.

For example the broadcast device m1:

m1 = 10∗11′ ∗ △0 : 1△ ∗△00∗11▽ : 11△ : 1

designates two distinct broadcast units u1 and u2:

u1 = ∗11′ ∗ △0 : 1△

u2 = ∗11▽ : 11△

4.3.3 The semantics

We describe the interpretation of the broadcast units and symbols.

Broadcast Units

Let us consider the broadcast unit ul = ∗11′ ∗△0 : 1△. The string ulIN
= ∗11′ ∗△0

stands for the broadcast’s unit conditional statement (binding region) and may be

translated into a pattern matching expression. Whereas the string ulOUT
= 1△

refers to the broadcast unit’s action statement and encodes for the computational

function of ul.
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When a broadcast unit’s action expression is interpreted for producing an output

broadcast device, a quote is removed from each quoted symbol. This quote mech-

anism allows one to prevent symbols from interpretation and to be passed into the

output broadcast device (see next section for an example).

In some cases, despite a broadcast unit ul being syntactically correct, its action

statement may not be executed. This inability to generate a product broadcast

device (leading to an elastic reaction) may result from the nature of symbols present

in the action expression. These cases are described in detail in the following section.

The symbols

The interpretation of each symbol in Λ = {0, 1, ∗, :, ♦, ▽, △, ′} is now presented.

Within active broadcast devices, we may identify ignored symbols. These symbols do

not hold any functions in the binding and enzymatic operations of a given broadcast

device. These substrings are analogous to non-coding DNA strings (junk strings).

We illustrate the usage of each symbol through the depiction of example reactions:

• The quote symbol ′ is used to “quote” a symbol in the arguments of a broad-

cast unit. The specific function of a quoted symbol is ignored when inter-

preted, regardless of the exact position of the quoted symbol in ulIN
or ulOUT

.

Nevertheless quoting 1s or 0s does not affect the function of these particular

symbols.

For example:

r1 = ∗11′△0 : 1′1 + 11△0 → 11

r2 = ∗11′△0 : 11 + 1100 → ∅

whereas

r3 = ∗11△0 : 1′△ + 1100 → 1△
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In the above examples, quoting the symbol △ prevents the interpretation of

its specific function (described below) when occurring in either ulIN
or ulOUT

.

• The star symbol * is the broadcast unit separator. This symbol, when un-

quoted, indicates that the following symbols until the next unquoted ∗ (if

any) may be interpreted as a broadcast unit. If a broadcast device species si

does not contain any unquoted ∗ then si is a null broadcast device.

• The colon symbol : is used as a punctuation mark to separate the parts (con-

dition and action expressions) of a broadcast unit. Similarly to *, the colon

is a structural symbol which is necessary to constitute a broadcast unit. If

a string of symbols following an unquoted * does not contain any unquoted

occurrences of :, then this string cannot be interpreted as a broadcast unit. If

more than one unquoted : is found in a broadcast unit then the second : and

anything to the right of it are ignored.

A broadcast unit is identified by the pattern ∗ulIN
: ulOUT

where ulIN
and

ulOUT
are arbitrary strings from A. If ulIN

/∈ A ∨ ulOUT
/∈ A then the string

∗ulIN
: ulOUT

is not a broadcast unit. ulIN
refers to the conditional statement

of ul or pattern matching expression whereas ulOUT
is the computational or

enzymatic function of ul. ulIN
and ulOUT

are also called the “arguments” of ul.

For example:

r4 = ∗10111 : 00 + 10111 → 00

r5 = 10111 : 00 + 10110 → ∅

r6 = ∗1011100 + 10110 → ∅

r7 = ∗ : 1011100 + 10110 → ∅

In r4, the species ∗10111 : 00 conforms to the pattern ∗ulIN
: ulOUT

and is

therefore an active broadcast device which contains a single broadcast unit.
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The condition statement ulIN
= 10111 matches the substrate species 10111. As

a result, the action statement ulOUT
= 00 generates the product species 00. In

r5, r6 and r7, the enzyme species do not conform to the pattern ∗ulIN
: ulOUT

.

These species are thus null broadcast devices resulting in r5, r6 and r7 being

elastic reactions.

• The symbols 0 and 1 possess different functions when located in either the

condition or action statements of a broadcast unit. When 1 (or 0) occurs in

ulIN
at the position pos, a substrate species sk would bind to ulIN

if sk presents

a 1 (or 0) at the relative position pos. If 1 or 0 occurs in the action statement,

a 1 or 0 is generated in the product species string accordingly.

A string such as 010110 can be regarded as the tag of a particular broadcast

device. This tag can be employed by a broadcast unit to react with specific

broadcast devices.

For example:

r8 = ∗10111 : 100 + 10111 → 100

r9 = ∗10111 : 100 + 10110 → ∅

• Ordinarily the lozenge symbol ♦ acts as a single character wildcard. When this

symbol is met in the conditional statement of a broadcast unit, it indicates that

an input broadcast device “colliding” with the broadcast unit may present any

single symbol at this position. This symbol occurring in the input broadcast

device does not affect its acceptance or rejection by the broadcast unit. In no

circumstances, ♦ may match a null substring.
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For example:

r10 = ∗10♦11 : 00 + 10011 → 00

r11 = ∗10♦11 : 00 + 10 : 11 → 00

r12 = ∗10♦11 : 00 + 11 : 11 → ∅

r13 = ∗10♦ : 00 + 10 → ∅

In r10, the enzyme species s1 = ∗10♦11 : 00 would successfully react with any

input broadcast devices of the form 10♦11 where ♦ indicates a single arbitrary

symbol from Λ.

However, ♦ may in some cases act as a multiple character wildcard. If ♦ occurs

at the rightmost position of ulIN
, then it indicates that an input broadcast

device reacting with ul may present any suffix (i.e., any string of symbols from

Λ) without affecting its acceptance or rejection by ul.

For example:

r14 = ∗1011♦ : 100 + 1011000 → 100

r15 = ∗1011♦ : 100 + 1011010101010 → 100

Underlined strings designate the input broadcast device’s substring that is

matched by the multiple/single character wildcard. If an unquoted occurrence

of ♦ occurs in ulOUT
then this symbol is ignored when ulOUT

is executed.

• The reversed triangle symbol ▽ is a multiple character wildcard which may

also act as a variable holder. If this symbol occurs at the leftmost or rightmost

position of ulIN
, then an input broadcast device may present any arbitrary

initial (prefix) or terminal (suffix) string of symbols and will successfully bind

to ulIN
.
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If ▽ occurs in both ulIN
and ulOUT

then ▽ holds for value the string of matched

prefix or suffix substring. When the computational function ulOUT
is inter-

preted for execution, any occurrence of ▽ is replaced with its value. This

allows one to pass a string of symbols from the input broadcast device to the

output broadcast device (i.e., signal processing).

For example:

r16 = ∗10▽ : ▽ + 10011 → 011

with ▽ = 011 whereas

r17 = ∗10▽ : ▽▽ + 100100101 → 01001010100101

with ▽ = 0100101.

r18 = ∗10▽ : ▽▽ + 110100101 → ∅

If ▽ does not occur at the first or last position of ulIN
then ▽ is ignored. If

two ▽ symbols simultaneously occur at the first and last position of ulIN
then

the rightmost occurrence is ignored.

• The triangle symbol △ is employed in the same manner as ▽ but designates

a single arbitrary symbol whose position can be anywhere in both arguments

of a given broadcast unit. For example:

r19 = ∗11△0 : 1△ + 1100 → 10

with △ = 0 whereas

r20 = ∗11△0 : 1△ + 1110 → 11
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with △ = 1.

Moreover, if a broadcast unit contains more than one (unquoted) △ symbol

then only the leftmost occurrence of △ is operative and is to be interpreted

by the broadcast unit. The other occurrences of △ found in ulIN are ignored.

A △ symbol may occur anywhere within ulIN .

If ulOUT contains an unquoted occurrence of △ or ▽ which is not present in

ulIN , then this symbol cannot be interpreted and is ignored.

Table 4.2 presents a number of example reactions that can be realised with the

MCS.bl.

Enzyme Substrate Product Reaction
∗▽1 : ▽0 1 : 0 ∅ elastic reaction
∗▽1 : ′ ∗ ▽ 0 : 1 ∗0 : 1 activation
∗ ′ ∗ 0▽ : 0▽ ∗0 : 1 0 : 1 inhibition
∗▽ : ▽ ∗00 : 11 ∗00 : 11 replication
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0 self-replication
∗▽1 : ▽10 ∗0 : 1 ∗0 : 10 concatenation
∗▽1 : ▽ ∗0 : 1 ∗0 : cleavage

Table 4.2: Example reactions realised with the MCS.bl

Finally, to clarify the relationship between the MCS.bl, MCS, LCS, broadcast

language and Alchemy, an overview is provided and depicted in Fig. 4.5.

Figure 4.5: Overview of the MCS.bl and related systems. Alchemy and the Learning
Classifier System (LCS) are inspirational methods to the MCS.bl, whereas the latter
is based on the Molecular Classifier System (MCS) and Holland’s broadcast language

.
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4.4 Summary

We enumerated our motivations to devise and employ the MCS.bl. The latter is an

agent-based Artificial Chemistry which is derived from both the class of Molecular

Classifier Systems and the Holland broadcast language. The MCS class was intro-

duced and its generic system features (i.e., the MCS reactor model and mutational

operators) were described. Our simplification of the Holland broadcast language was

finally presented and illustrated with a range of example reactions. In the following

chapter we explore the emergence and self-maintenance of closed-reaction networks

in the MCS.bl formalism.
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Chapter 5

Emergence and Self-Maintenance of Closed

Reaction Networks

In the previous chapter we presented an agent-based Artificial Chemistry: the

MCS.bl. We employ this system to investigate organisational closure and the evo-

lution of Cellular Information Processing Networks. Using this formalism we now

present our first series of experiments. These experiments examine both the sponta-

neous emergence and the self-maintenance of closed reaction networks in the MCS.bl.

The content presented in this chapter was published (Decraene et al., 2008b) at the

Eleventh International Conference on the Simulation and Synthesis of Living Sys-

tems (Alife’08) .

5.1 Introduction

In keeping with our bottom-up approach to investigating closure in artificial CIPNs,

we first examine the conditions required for the spontaneous emergence and self-

maintenance of minimal closed reaction networks in the MCS.bl1. This key initial

step is necessary to examine and understand the evolutionary dynamics of simple

closed reaction networks in our AC. This fundamental knowledge will allow us to

1The MCS.bl implementation is object-oriented and was conducted using the
C++ language. The MCS.bl software package and sources can be downloaded at
http://esignet.net/dokumente/upload/WP13
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study later the emergence and evolution of artificial CIPN functions in these closed

reaction networks.

According to our definition of closure, the simplest form of closed reaction net-

work that can be identified in the MCS.bl are autocatalytic organisations of the

following form:

rj = 2 si → 3 si

s1 is an autocatalytic molecular species also called a self-replicase. If we consider

a reaction network C containing only the molecular species s1 then C is organisa-

tionally closed. As reactions are bimolecular in the MCS.bl, this reaction involves a

trans-acting replicase (requiring the interaction of two distinct molecules to achieve

replication). This self-replication scheme differs from the more traditional si → 2 si

with si growing exponentially. Here, a “survival of the common” dynamics applies

in which the growth of si is hyperbolic (Szathmáry and Maynard Smith, 1997). The

domination of a given species is dependent on both its intrinsic fitness and its rela-

tive concentration in the molecular population. For another species to displace the

dominant one, a significant difference in intrinsic fitness and/or a high/higher initial

concentration is necessary.

Both the spontaneous emergence and self-maintenance of such individually au-

tocatalytic molecular species were reported as easily obtained in Alchemy. In the

original Tierra system, where autocatalytic reactions are first order (exponential)

and not hyperbolic, the spontaneous emergence of autocatalytic molecular species

was not expected or reported; however it did arise in the related Amoeba system,

specifically devised for this purpose (Pargellis, 2001).

In this chapter, we first present a series of evolutionary experiments focusing

on the spontaneous emergence of autocatalytic molecular species. Following this,

we identify the minimal self-replicase sR0 that can be specified in the MCS.bl. We

examine the system’s dynamics when sR0 is manually introduced in a population of
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randomly generated molecular species. We then investigate the effects of the self-

replicases’ binding specificity over the system’s dynamics. Finally, we describe the

system’s evolutionary dynamics when a hand-designed self-replicase having a high

binding specificity is employed.

5.2 Spontaneous emergence of self-replicases

To examine the spontaneous emergence of autocatalytic species, we perform a first

experiment in which the molecular species are generated from the random assem-

bly of monomers. An artefact of the BL’s syntax is that it is moderately difficult

to observe the spontaneous emergence of an individually autocatalytic molecule.

Specifically, there are 48 (65, 536) distinct molecules of length 4 symbols (the min-

imal length to construct a functional/enzymatic molecule), of which only a single

one (sR0
= ∗▽ : ▽) is autocatalytic.

Although the probability of spontaneously obtaining such autocatalytic

molecules from random assembly of monomers is therefore quite low in MCS.bl,

the intuition is that, once such a molecular species does appear, it should be able to

rapidly fill the reaction space. This phenomenon was indeed observed in Alchemy

and is expected to occur in MCS.bl.

An evolutionary experiment is conducted and uses the following parameters:

• Each simulation run is initialised with 100 randomly generated, 10-symbol

long, molecules.

• nmax = 1000 (i.e., the population initially grows without any displacement; but

once the total number of molecules reached 1000 it is limited to this value, by

displacing one random molecule for each new molecule generated, as previously

described).

• 30 simulation runs are performed, each for 5000000 molecular interactions (i.e.,

collisions).
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• Molecular mutations, as presented in Section 4.2.2, occur with psym = 0.001

and rmut = 0.001.

To identify spontaneously emerging self-replicases, every molecule was tested at

each timestep for self-replication functionality. The spontaneously emerging self-

replicases identified in these 30 simulation runs are listed in Table 5.1.

Self − replicases
00′△ ∗ ▽ : △▽▽ ∗ 0
1▽0 ∗ ▽ : ▽

00′△ ∗ ▽ : △▽♦▽ ∗ 0
1△▽0 ∗ ▽ : ▽

: 1 ∗ ▽ : ▽♦ : 1 ∗ ▽ : ▽♦

: 0▽▽ ∗ ▽ : △△▽

: ∗ ▽ : ▽▽ ∗ 01
∗▽ ∗ ▽ : ▽△▽△△

1♦▽ : ∗ ▽▽ : ▽ :
∗▽ : ∗ ▽ : ▽△▽△△

∗ ▽ : ▽

∗ ▽▽ : ▽

∗ ▽0▽▽ : ▽0
♦▽ ∗ ▽ ∗ ▽ : ♦▽▽

△1 ∗ ▽ : ▽♦

Table 5.1: Spontaneously emergent self-replicases in MCS.bl

Table 5.1 shows that 15 syntactically distinct self-replicases appeared. In the

30 experimental runs, the highest molecular count achieved by any of these sponta-

neously occurring self-replicases was just a single isolated molecule.

Although these self-replicases are syntactically different, note that it is a property

of the BL syntax that some symbols are ignored when functionally interpreted (they

are, in a certain sense, “junk” symbols). Thus, although 15 distinct self-replicases

were identified, it turns out that the core broadcast units (the “active sites”, after

discarding “junk” symbols) are, in fact, identical for 14 of these; and are all equiv-

alent to the self-replicase, sR0
= ∗▽ : ▽. Only the broadcast device ∗▽0▽▽ : ▽0

possesses a core broadcast unit of a different form, namely ∗▽0 : ▽0. This is an
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alternate form of sR1
, having just the minimal binding specificity of one symbol, i.e.,

sR1
may only replicate molecules whose sequence finishes with the symbol 0.

The spontaneous appearance of self-replicases was expected. Results indicated

that (self-)replicases do emerge, however they never manage to grow in concentration

and would quasi-deterministically be displaced by other molecules. As mentioned

earlier, the highest molecular count achieved by any of these spontaneously emerging

self-replicases was just a single instance. Nevertheless for a self-replication reaction

to occur in the MCS.bl, the collision of two distinct instances of a self-replicase

species is required. Therefore self-replication dynamics could not be observed.

We also propose the following potential underlying phenomena which may have

discouraged the emergence and self-maintenance of autocatalytic molecular species

in the MCS.bl:

• As already noted, the BL syntax does not strongly facilitate the spontaneous

emergence of self-replicases. This syntactical constraint may discourage the

spontaneous emergence of such species. The BL syntax may also have an

impact on the robustness of these self-replicases against mutation effects. For

example, a mutation may lead to the removal or replacement of a structural

symbol such as * or : in a given active broadcast device. As a result, this

molecule would lose its enzymatic function and become a null broadcast device.

• Secondly, if we consider that multiple concurrent instances of a self-replicase

species successfully emerge, such molecular species are likely to possess a low

molecular concentration when occurring. This low concentration diminishes

the capacity of these molecular species to persist against side reactions and

mutation events.

• Finally although molecular species with the ability to self-replicate do emerge,

these species may also function as replicases being able to catalyse the replica-

tion of other species. The latter may be viewed as parasites if these species do
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not contribute, in return, to the replication of the replicases. In this case the

replicases’ binding specificity (i.e., the range of species that can be replicated

by the replicases) may affect the ability of the replicases to self-maintain in

the population.

These three factors, when combined, may significantly have lowered the proba-

bility of having a self-replicase spontaneously emerge and self-sustain in the MCS.bl.

To investigate the above propositions, we conduct a second series of experiments

in which we manually design and introduce a minimalist self-replicase. Following

this, we will explore the role of the replicases’ binding specificity upon the system’s

dynamics.

5.3 No selective advantages for universal replicases

We present a second experiment in which a minimal self-replicase is devised and

manually introduced in a reactor in addition to randomly generated molecules.

The behaviour of the minimal self-replicase sR0
, which recurrently emerged in

the previous experiment, is as follows. The matching condition is defined by a single

symbol, ▽, which designates a multiple character wildcard. This indicates that sR0

may bind to any molecular species. In addition when reactions occur between sR0

and substrate species si, ▽ is assigned a value, being the matched substring of si.

In this case, this will be the complete string si. A unique symbol ▽ also constitutes

the action part of sR0
. This specifies that the output string of sR0

is exactly the

string bound by the ▽ in the condition part, i.e., a copy of si’s string. Therefore the

broadcast device sR0
is actually a “universal” replicase; which, by definition, means

that it is also a self-replicase (in the special case that it binds to another instance

of itself, i.e., si = sR0
). The “specificity” of sR0

is said to be null.

Figure 5.1 presents a first experiment examining the behaviour of sR0
averaged

over 30 simulation runs. In this experiment, the following parameters are employed:
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• The reactor is seeded with 900 randomly generated molecules, each of length

10 symbols. These initial molecules are independently and randomly generated

for each simulation run.

• In addition, 100 instances of sR0
are inserted.

• nmax designates the fixed maximum number of molecules that may be con-

tained in the universe, nmax = 1000.

• Molecular interactions occur as follows: two molecules me and ms are picked

at random. me is considered as an enzyme and ms as a substrate. If me

can bind and react with ms then a molecule mp is produced and added to

the population. A molecule mx (other than the me, ms and mp) is picked at

random and removed from the population.

• No mutation may occur in these experiments in order to facilitate our investi-

gation on replicases.

A high initial molecular amount (100 instances) of sR0
was chosen to satisfy the

trans-replication constraint (i.e., at least two distinct molecules are required to

achieve self-replication) and minimise early extinction due simply to stochastic fluc-

tuation.

From Figure 5.1 it is clear that the species sR0
never grows to take over the

population; rather, it consistently diminishes, contrary to the original, informal,

prediction. A formal explanation of this outcome is given by modelling the system

with the (approximate, continuous) catalytic network equation (Stadler et al., 1993).

The state of the system is described by the concentration vector x = (x1, . . . , xn)

with x1 + . . .+xn = 1 and xi > 0, where xi refers to the concentration of a molecular

species (or collection of “chemically equivalent” species) si. The general dynamic

behaviour is then given by:
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Figure 5.1: Relative population growth of replicators sR0
averaged over 30 simulation

runs. Solid line is average concentration; error bars denote standard deviation.

ẋk =
n
∑

i=1

n
∑

j=1

αk
ijxixj − xk

n
∑

i,j,l=1

αl
ijxixj (5.1)

with k = 1, . . . , n

In Eq. 5.1, the second term represents the dilution flow: A molecule may be

removed (at random) when a successful reaction occurs in the single reactor model

(Section 4.2.1). αk
ij are the rate constants for each reaction si + sj → si + sj + sk.

In this experiment, these simplify to:

αk
ij =











1 if si + sj → si + sj + sk

0 otherwise
(5.2)

To explain the results presented in Fig.5.1, we propose a simplified analysis

which focuses on the dynamics of universal replicases. Consider the case where only

universal replicases (sR0
) and the set of all non-enzymatic molecular species (SNE)

(that may only act as substrates) are present. This is clearly the most favourable
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case for the growth of sR0
. Denote the molecular concentrations of sR0

and SNE by

x1 and x2 respectively. Then α1
ij = 1 if i = 1, j = 1; otherwise α1

ij = 0. Similarly,

α2
ij = 1 if i = 1, j = 2; otherwise α2

ij = 0. Inserting into Eq. 5.1, we obtain:

ẋ1 = x2
1 − x1(x

2
1 + x1x2) (5.3)

But given that x2 = 1 − x1:

ẋ1 = x2
1 − x3

1 − x2
1 + x3

1

ẋ1 = 0 (5.4)

whereas the growth rate of molecules SNE is:

ẋ2 = x1(1 − x1) − (1 − x1)[x
2
1 + x1(1 − x1)] (5.5)

ẋ2 = x1 − x2
1 − (1 − x1)(x

2
1 + x1 − x2

1)

ẋ2 = x1 − x2
1 − x1 + x2

1

ẋ2 = 0 (5.6)

Thus, both molecular species sR0
and SNE share a common zero “expected”

growth. Under the stochastic conditions of the reactor this would yield a random

drift in relative concentrations—as opposed to a quasi-deterministic growth of the

sR0
species.

In such systems driven by random drift dynamics, only two possible outcomes

may be observed where the system reaches steady state. If both species sR0
and

SNE are initialised with a common concentration, then both outcomes would deter-

ministically occur with equal chances:

1. The universal replicase species eventually displaces all SNE molecules in the

reactor.
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2. All replicases sR0
but one are displaced by SNE molecules. This single repli-

case molecule remains and cannot be displaced since: 1) Reactants are not

consumed during reactions in the MCS.bl. 2) No side reactions, involving SNE

molecules only, may occur.

Qualitatively the above phenomenon is due to the fact that any (self-)replicase

having low or zero specificity, such as sR0
, will not only replicate itself but also repli-

cate any other molecules; and therefore cannot selectively displace these molecules.

But recall that this was the best case situation for growth of sR0
, where none of the

other molecules had any enzymatic activity. In the practical case of Figure 5.1 the

collection of such additional side reactions will give a nett negative growth rate for

sR0
, which therefore, quasi-deterministically, decays until x1 = 0.

With regards to the spontaneous emergence and domination of self-replicases

given a set of randomly generated molecular species, this analysis is consistent with

the results described in Section 5.2. Self-replicases of very low specificity (which do

spontaneously occur) cannot grow to significant concentrations and would therefore

be commonly displaced by other molecules.

In Section 5.2, we also mentioned that the replicases’ binding specificity may

potentially affect the system’s dynamics. We examine the role of binding specificity

in the following section.

5.4 Specificity and domination of the replicases

To investigate the role of binding specificity, we proceed to a series of experiments

in which we incrementally increase the specificity of the (self-)replicases. Table 5.2

shows the different replicases employed in these experiments. sR1
designates a molec-

ular species that would only react with molecules whose strings end with the symbol

“1”. As the latter occurs at the rightmost position of sR1
, it may react with itself,

producing another instance of sR1
. Similarly, sR2

only binds to molecular strings

containing the suffix 01. This tag forms a constraint on the replicases, allowing them
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Figure 5.2: Population growth of replicators sR0
, sR1

, sR2
, sR3

and sR4
. Each line

represents the average concentration of corresponding replicase over 30 simulation
runs.

to react only with a progressively more restricted set of substrate molecular species.

This impacts directly on these molecules’ binding specificity.

Replicase Broadcast device
sR0

∗▽ : ▽

sR1
∗▽1 : ▽1

sR2
∗▽01 : ▽01

sR3
∗▽101 : ▽101

sR4
∗▽0101 : ▽0101

Table 5.2: (self-)replicases with increasing binding specificity

The results depicted in Figure 5.2 suggest the potential role of binding specificity

in encouraging the domination of replicase species. The ability of a (self-)replicase

to dominate the reaction space, in which a random initial population of molecules

is generated, increases progressively with its binding specificity. Fig.5.3 depicts the

growth of the replicases in each of the 30 simulation runs conducted independently

in the 5 experimental series.

Fig.5.3 shows that as the replicases’ binding specificity increases, the number

of simulation runs in which x1 reaches 1 increases accordingly. When non-universal
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Figure 5.3: 5 series of experiment in which the binding specificity of the seed replicase
molecules was incrementally increased using sR0

, sR1
, sR2

, sR3
and sR4

. For each
experiment, 30 simulation runs were conducted.

replicases are employed, an initial increase of x1 is commonly observed. However this

increase in x1 appears, in particular simulation runs, to be followed by a random

drift dynamics (observed at different x1 level), preventing the replicases to fully

dominate the reaction space, echoing the results presented in Section 5.3.

As in the previous section, we examine and explain this phenomenon through

the use of an ODE model. To facilitate our investigation, this analysis employs

a simplified model illustrating a best case scenario. Although being less intricate,
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this model contains the core elements of the system employed in one of the above

experiments (where sR1
species are employed). In this model, we consider a reactor

containing only the following molecular species:

• Replicases sR1
which only replicate molecules terminating with the symbol “1”

(which includes sR1
molecules themselves).

• A variety of non-enzymatic molecules SNE which are randomly generated.

SNE1
⊆ SNE is the subset of molecules whose strings terminate with the

designated symbol. These molecules contained in SNE1
can be replicated by

molecules sR1
.

The concentration vector is given by x = (x1, x2, . . . , xn) with x1+x2+. . .+xn = 1

where x1 is the concentration of sR1
and x2 is the sum of concentrations of molecules

in SNE1
. The growth rate of the different molecular species in this reactor are as

follows:

ẋ1 = x2
1 − x1(x

2
1 + x1x2) (5.7)

ẋ1 = x2
1 − x3

1 − x2
1x2

ẋ1 = x2
1(1 − x1 − x2) (5.8)

The growth rate of molecules SNE1
is:

ẋ2 = x1x2 − x2(x
2
1 + x1x2) (5.9)

ẋ2 = x1x2 − x2
1x2 − x1x

2
2

ẋ2 = x1x2(1 − x1 − x2) (5.10)

Since x1 + x2 + . . . + xn = 1, we have x1 + x2 < 1 and therefore ẋ1 > 0 and ẋ2 > 0.

SNE2
= SNE − SNE1

is the set of non-enzymatic molecules species that cannot

be replicated by sR1
. Let us set x3 =

∑n

i=3 xi, ẋ3 is the growth rate of species SNE2
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and is given by:

ẋ3 = 0 − x3(x
2
1 + x1x2) (5.11)

In Eq. 5.11, we note that any given molecules si ∈ SNE2
possess a negative growth

rate which indicate that these molecules would deterministically be displaced by

molecules sR1
and SNE1

.

The displacement of SNE2
molecules allows both sR1

and SNE1
to increase in

concentration. However when SNE2
molecules are fully displaced, we then obtain

x1 +x2 = 1 (in contrast to the initial x1 +x2 < 1 condition). The system’s dynamics

are now equivalent to those described in Section 5.3 where both species have a

common null growth rate. In this case where a random drift dynamics applies, the

species having the highest relative concentration is more likely to displace the other

one.

The replicases’ binding specificity limited the initial concentration of SNE1

species (resulting from the random initialisation of the molecular population). As

the replicases’s binding specificity increased, the initial concentration of SNE1
de-

creased. Consequently the replicases having a higher relative specificity possessed

a higher chance to displace the parasitic species (once SNE2
species were first fully

displaced).

The replicases’ binding specificity conditioned the initial concentration of para-

sitic species which explains the behaviour observed in Figure 5.2, in which replicases

with higher specificity are more likely to take over the reactor space. Therefore in

this system, for replicase molecules to successfully dominate a randomly generated

molecular population, a significant binding specificity is required.

Regarding the related spontaneous emergence and domination of autocatalytic

species in the MCS.bl, given a set of randomly generated molecular species, it is

progressively more difficult for self-replicases of higher specificity to spontaneously
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arise by chance (due to their greater length, and relatively rare frequency as defined

by the BL syntax). The spontaneous emergence of a “sustainable” self-replicase (i.e.,

of sufficient specificity to establish itself) remains theoretically possible in MCS.bl.

However, both the experimental results and the analysis presented here suggest that

the expected emergence time would be extremely (perhaps infeasibly) long. While

we have not formally quantified this, it appears that MCS.bl therefore shares this

property with the Tierra system.

It is conjectured that this binding specificity property may have been impli-

cated in the dynamics of a variety of previously reported artificial chemistries. For

example, Fontana and Buss reported (in level 0 Alchemy experiments) the recur-

rent emergence and domination of the universal replicase λx.x (Fontana and Buss,

1994a). Nevertheless Fontana and Buss also mentioned that if non-enzymatic species

are not filtered out then an accumulation of such inert species would occur. This

observation suggests that the lack of binding specificity may have, as well, affected

the system’s dynamics where non-enzymatic species prevented the domination of

emerging universal replicases. As suggested, this underlying phenomenon has po-

tentially been involved in previous AC-based research. Nevertheless it has never

been examined and explicitly isolated in the manner presented here.

Finally, we may also consider the potential effects of molecular mutations. Even

though replicase species having a significantly high binding specificity are employed,

mutations may lead to the emergence of non-enzymatic mutant species possessing

the replicases’ tag (enabling these mutants to be replicated by the replicases). The

replicases’ binding specificity, which was originally high, would thus become again

relatively low or null. As a result, the replicases’ binding specificity may not pre-

vent potentially disruptive effects from occurring. To test this hypothesis, we carry

out a final evolutionary experiment “a la Tierra” in which a hand-designed self-

replicase (i.e., an ancestor molecule) having a “high” binding specificity capable of

self-sustaining is employed. This experiment is presented in the next section.
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5.5 Rise and fall of the fittest

In the Tierra system, a hand-designed molecule called the “ancestor” is manually

introduced into the space. This initially grows to saturate the available core mem-

ory. The population subsequently evolves into a variety of collectively autocatalytic

reaction networks (where Tierra “creatures” or programs are here considered anal-

ogous to “molecules”). Accordingly, our next step is to mirror this methodology,

and introduce a hand-designed self-replicase of relatively high specificity into the

MCS.bl system.

Figure 5.4 presents an example of such an experiment in which ancestor molecules

are manually introduced. The results indicate that MCS.bl does not exhibit an

evolutionary dynamic at all comparable to Tierra in this case. This evolutionary

dynamic was moreover systematically observed in repeated simulation runs. The

ancestor self-replicators do, at first, quickly dominate the reaction space, just as ex-

pected. However, this population immediately collapses again. The average molecu-

lar length then increases dramatically, while the overall reaction rate (indicating the

average rate of binding between random molecules in the population) also collapses.

In this particular run, molecules are arbitrarily limited to a maximum length of

BDLmax = 1.0 × 106.

As with the experiments discussed earlier, these results were not expected. In

fact, certain mutants of the original autocatalytic molecule developed a distinct

advantage over the ancestor. That is, these mutants could be replicated by the

ancestor molecules but only to the cost of these ancestors, i.e., an asymmetric re-

lationship. Moreover, some of these mutants also lose their ability to self-replicate,

explaining the rapid decrease in the global number of self-replicases. By exploiting

their molecular tag and the ancestors, these non-autocatalytic molecules succeed in

displacing the dominant ancestors.

To illustrate this phenomenon, we present a simple example of such a case in
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Figure 5.4: Effects of molecules length growth upon overall system reactions rates.
In this experiment, an ancestor (sR4

= ▽0101 : ▽0101) is inserted (with initial
concentration [sR4

] = 0.1) in addition to randomly generated molecules. Moreover
mutation per molecule and per symbol is turned on with psym = 0.001 and rmut =
0.001.

which we define two molecules: sR4
= ∗▽0101 : ∗▽0101 and s′R4

= ∗▽0101 :

∗▽00101. The latter is a readily accessible mutant of sR4
. Once it appears, the

mutant s′R4
allows for a runaway degenerative scenario to occur. The possible reac-

tions between species sR4
and s′R4

are as follows:

sR4
+ sR4

−→ 3sR4

sR4
+ s′R4

−→ sR4
+ 2s′R4

s′R4
+ sR4

−→ sR4
+ 2s′R4

s′R4
+ s′R4

−→ 2s′R4
+ s′′R4

The product s′′R4
is of the form ∗▽0101 : ∗▽000101 and similarly has a selective

advantage over both sR4
and s′R4

. The reaction s′′R4
+ s′′R4

would result in the pro-

duction of a molecule s′′′R4
of the form ∗▽0101 : ∗▽00000101 and clearly shows the
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potential for unlimited elongation in molecule length. Of course, as molecule length

increases, the per-molecule mutation rate also increases, leading to progressively

more frequent disruptive changes to molecular structure. The observed consequences

of these mutation effects are twofold:

• Molecules may become inactive (i.e., lose all enzymatic activity). This is a

direct consequence of the BL syntax. A mutation leading to the removal

or insertion of structural symbols such as ∗ or : would “break” the active

site. This degenerative effect may be regarded as a consequence of syntactic

“brittleness” of BL.

• The binding specificity may be increased. This arises when mutations lead to

the insertion of informational symbols such as 0s and 1s. As a result, although

some molecules may still possess an active site capable of some enzymatic

function, their high specificity decreases the variety of target molecules that it

can bind to; ultimately meaning there may be few, if any, functional targets

for it left in the population.

Both of these phenomena result in a continual decrease in the overall reaction

rate until reactions effectively cease completely (i.e., system death). Figure 5.5 sum-

marises this cascade of events. Note that this system level degeneration (the “elon-

gation catastrophe”) occurs precisely because of the stepwise emergence of molecules

which are progressively “fitter” at the molecular level. Nevertheless this notion of

fitness differs from its meaning usually implied in Artificial Chemistries. In typical

ACs, molecular species or more specifically “digital organisms” improve in fitness by

evolving their intrinsic properties. Such agents become fitter by incrementally ame-

liorating their ability to perform a target task, e.g., competing for CPU resources

in Tierra. Here the molecules are fitter, not due to their intrinsic functionality, but

due to their ability to exploit their interactions with the other molecules. This in-

terpretation of fitness applies specifically in the case of catalytic reaction networks
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in contrast with the more general class of self-replicating multi-agent systems.

Figure 5.5: Elongation catastrophe in MCS.bl

5.6 Solving the elongation catastrophe problem

In this section, we describe different qualitative modifications conducted on the

MCS.bl, which are aimed at preventing the elongation catastrophe from occurring.

These various technical modifications are directed at limiting the string length of

product molecules. Following this, the different outcomes are briefly presented.

1. The multiple symbol wildcard ▽ was altered so that it would not be able to

pass an unlimited number of symbols from the input molecule (substrate) to

the output molecule (product). An integer parameter 1 ≤ c ≤ cmax represents

the number of symbols that can be matched and passed by ▽, i.e., the capacity

of the wildcard. This capacity may be subjected to a form of “parametric”

mutation, where its value would change randomly in [1, cmax] over time.

2. Similarly to (1), a finite total number of “free” symbol objects (monomers)

available in the reactor was defined. This reservoir of (untyped) monomers is
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reduced when new molecules are produced, and increased when molecules are

destroyed. If insufficient monomers are available to complete a reaction, the

reaction fails. This should favour smaller molecules over longer ones suffering

from elongation catastrophe.

3. Proposal (2) was extended, further constraints were defined to limit the num-

ber of particular symbols available in the universe. Different arbitrary symbol

distributions were employed (e.g. structural and informational symbols such

as ∗,:,1,0 could be made more common than multiple symbol wildcards such

as ▽).

4. Another extension to (3) was to introduce a probability of successful reaction

which would depend on the product’s length. Smaller molecules could then be

given a selective advantage over the longer ones.

In summary, the above system changes generally produced one of the following

outcomes:

• Did not prevent the elongation catastrophe.

• The system evolved towards a population of inactive and relatively small ([1−4]

symbols long) molecules. The system’s global success reaction rate was also

close to zero. Such an accumulation of inactive or inert molecules was also

reported to occur in Alchemy when inert molecules were not filtered out.

• The system converged towards a population where enzymatic molecules were

still present but could not react with any other molecules present in the re-

action space. The specificity continuously increased until no further reactions

occurred.

Thus, although a range of modifications were implemented, the different out-

comes do not differ substantially from the degenerative cases presented above (Sec-

tion 5.5).
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5.7 Conclusion

We conducted a series of experiments using the MCS.bl system. These experiments

focused on the emergence, self-maintenance and evolution of closed molecular or-

ganisations.

We first reported an experiment focusing on the spontaneous emergence of au-

tocatalytic species in the MCS.bl. The results showed that, autocatalytic species do

emerge but cannot significantly grow in concentration and eventually get displaced

by other molecules. To explain this phenomenon, a number of potential explanations

were proposed and developed in following experiments.

The second experiment introduced minimalist self-replicases that were manually

inserted in the reaction space in addition to randomly generated molecular species.

Using a simplified model, we showed that these species being universal replicases do

not possess any selective advantages over non-enzymatic species. Under the stochas-

tic conditions of the reactor this would yield a random drift in relative concentrations

of universal replicases and non-enzymatics species.

We then exposed the effects of the replicases’ binding-specificity over the system’s

dynamics. We showed that this binding specificity conditioned the capability of the

replicases to displace the other molecular species present in a randomly generated

molecular population. As the replicases’ binding specificity increased, the capability

of the replicases to displace the other species increased accordingly.

Similarly to the Tierra system, we hand-designed an ancestor molecular species,

which possessed a high binding specificity ensuring its ability to self-maintain. We

described the results obtained from an evolutionary experiment in which these an-

cestor molecules were employed. Our results presented unexpected degenerate evo-

lutionary dynamics in which the closed reaction networks were not able to self-

maintain. This degenerate scenario was due to an elongation catastrophe phe-

nomenon. To address this robustness issue, we explored several model variants
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which all failed to prevent the degenerate outcomes to occur. These results indi-

cated counter-intuitive outcomes when compared with a variety of other AC systems

in the literature.

In the next chapter, we explore additional models of the MCS.bl which are im-

plemented on a parallel architecture. These models aim at enhancing the robustness

and subsequently the evolvability of the MCS.bl system. On top of providing com-

putational benefits, a distributed implementation allows us to explore novel system

models. These modifications introduce a second level of selection at the reactor

level. These extended MCS.bl systems are thus multi-level selectional models where

selection occurs at both the molecular and reactor level.
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Chapter 6

Evolutionary Capability in Multi-Level Selectional

Models

The preliminary experiments presented in Chapter 5 suggested that the MCS.bl can-

not support the self-maintenance of closed reaction networks when subjected to

perturbations (i.e., mutations). Consequently, this lack of robustness prevented us

from evolving closed reaction networks using the MCS.bl. Although several model

variants were proposed to address these robustness and evolvability issues, none of

these attempts inhibited the degenerative evolutionary dynamics.

In keeping with this effort to improve the MCS.bl framework, we propose fur-

ther system modifications. However, contrary to previous proposed variants which

focused on modifications at the molecular level, we suggest a novel MCS.bl imple-

mentation which introduces new features at the container level. This MCS.bl variant

is implemented as a parallel system using distributed computing facilities. The lat-

ter were provided by both the ESIGNET project and the Irish Center for High-End

Computing (ICHEC). The material presented in this chapter was partially published

in several conference articles (Decraene et al., 2008b,a; Decraene, 2009).
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6.1 Introduction

We present a novel implementation of the MCS.bl which exploits distributed com-

puting facilities. On top of providing benefits in terms of experimental scalabil-

ity (i.e., we can simulate more molecular species), employing high-computing re-

sources enables us to explore a wider repertoire of AC models. Particularly, we

identify two approaches involving compartmentalisation. In these models, molec-

ular species are contained in compartments which result in multi-level selectional

dynamics (Hogeweg and Takeuchi, 2003). Selection applies at both the molecular

and compartment levels. These models presented significant results with regards to

the self-maintenance of closed reaction networks when subjected to perturbations:

1. Static reactors with molecular diffusion. McCaskill et al. (2001) addressed evo-

lutionary degeneration issues in a spatially resolved stochastic system in which

molecular species are contained in distinct compartments. The migration or

diffusion of molecules between compartments could occur given a specified

diffusion coefficient.

This model considered the effects of mutant species which relied on the host

(non-mutant) autocatalytic species to be replicated. This form of parasitism

destabilises the system’s dynamics and prevents the self-maintenance of the

closed reaction network. This degenerative phenomenon is similar to the elon-

gation catastrophe described in Section 5.5, which was also caused by the

emergence of such parasitic species. McCaskill et al. demonstrated analyt-

ically that for such a compartmentalised system, according to the level of

mutation rate, a range of diffusion coefficients exists which enables stable co-

operation to occur between the molecular species.

2. Cellular model. Similarly to McCaskill et al.’s approach, molecular species

are contained in distinct compartments. However in cellular models, com-
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partments have the ability to “grow and divide”. A compartment grows (i.e.,

molecules are produced within the compartment) until a condition (specific

to the cellular model) is satisfied. This condition triggers the division of the

compartment. Half of the molecules are selected at random and transferred

into another newly created compartment.

This division process is analogous to cellular division, i.e., we regard com-

partments as biological cells. It has been demonstrated that such cellular

models enable the stabilisation and self-maintenance of closed reaction net-

works when subjected to parasitic phenomena (Szathmary and Demeter, 1987;

Cronhjort and Blomberg, 1997; Hogeweg and Takeuchi, 2003). Here, para-

sitised compartments ultimately decay and may be replaced by non-parasitised

ones which would result from the division of neighbouring compartments. Cel-

lular models allow the isolation of parasited cells and prevents the invasion of

parasite species over the whole cellular population.

We propose to investigate compartmentalisation and its potential benefits upon

evolutionary capability in the MCS.bl system. Our distributed implementation of

the MCS.bl will consequently incorporate compartmentalisation properties. Never-

theless we introduce a supplementary feature which addresses the concurrent nature

of biochemical processes. Operations at the compartment level will be executed in

a genuine parallel manner in contrast to traditional ABMs which rely on a synchro-

nisation mechanism. Implementing the MCS.bl as a distributed/parallel system

enables us to explore further selectional models which may resolve the lack of ro-

bustness presented in previous chapter. This work will also provide complementary

insights on the effects of compartmentalisation and parallelism upon evolutionary

capability in agent-based Artificial Chemistries.

In the remainder of this chapter, we present the details of our parallel architecture

and its immediate effects on the MCS.bl. We then evaluate our compartmentalised
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MCS.bl system in which molecular diffusion and cellular division are independently

applied.

6.2 A parallel architecture

Agent-based models typically implement the computational agents on serial com-

puters. Although being conceptually concurrent computational units, agents are not

generally executed simultaneously in ABMs. A discrete clock mechanism is usually

employed to synchronise the agents’ interactions and state updates. The MCS.bl,

presented in Chapter 4 and utilised in Chapter 5, employs a similar clock technique.

Ray (1992), Adami and Brown (1994) attempted to address parallelism by de-

vising models in which agents are executed by multiple virtual CPUs. In Avida,

each agent possessed its own memory space and was executed by its own virtual

CPU (which speed may vary from other agents’ CPUs). Whereas in Tierra, the

multiple virtual CPUs executed, in turn, the code (the agents’ genotypes) present

in the virtual computer memory shared by the different agents. Nevertheless, as in

most ABMs, a time-slicing algorithm was employed to simulate the parallel com-

putational processes in both systems. Lenski et al. (2003) also conducted a series

of experiments using Avida on a grid computer; but Lenski et al. still relied on a

pseudo-parallel system where parallelism was only simulated.

We propose a parallel approach to ABMs, applied here to the MCS.bl model.

A major difference between this extended MCS.bl and Tierra/Avida is that multi-

ple compartments (each of which contains a population of molecular species) are

introduced. This compartmentalisation is the key feature by which parallelism is

addressed in the extended and distributed version of the MCS.bl:

• Molecular species are contained in distinct compartments each of which pos-

sesses a fixed maximum carrying capacity of nmax molecules. Within the com-

partments, molecular interactions are processed in a sequential manner (as in

traditional ABMs) through the use of a time-slicing algorithm. Each com-
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partment (conceptually regarded as a meta-agent) is executed on individual

distinct CPUs in a parallel fashion.

• At the compartment level, we do not introduce any synchronisation mecha-

nisms. Meta-agents are executed in parallel on separate CPUs. These meta-

agents may interact with each other by communicating signals (the effects

and nature of these signals are dependent of the specific compartment model

utilised and will be presented later).

As introduced earlier, devising these compartment properties enables us to in-

vestigate further models which may resolve the MCS.bl’s evolutionary degeneration

issues.

6.2.1 Implementation

Simulations using the distributed/compartmentalised MCS.bl are run for a pre-

specified length of time (defined in seconds). In a given simulation run, the number

of molecular collisions/interactions occurring in each compartment may vary signif-

icantly. This variance depends on the level of computations and communications

occurring in the compartments during the run.

The integer number N of compartments (i.e., CPUs) used in a simulation is fixed.

Compartments are identified by a unique ID number (1 ≤ ID ≤ N). C = c1, . . . , cN

is the finite set of all compartments occurring in the universe. Each compartment

initialises simultaneously their respective random number generator1. These random

number generators rely on random seeds which are determined by using the server

local time value multiplied by the unique compartment ID.

The Message Passing Interface (MPI) is employed to handle the communications

between the different CPU nodes/compartments. A simplex topology is utilised to

1The MCS.bl implementation employs the GNU Scientific Library random number gen-
erator. The latter is by default based on the Mersenne twister (MT19937) generator of
Matsumoto and Nishimura (1998) and has a cycle length of 219937 − 1.
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condition the interactions between compartments, i.e., the distance between any

two-compartments is equal.

Compartments may communicate signals to other compartments. Signals are

composed of a vector of molecules. Given a compartment c1, if a condition (specific

to the compartment model utilised) is satisfied then a communication occurs. c1

selects the target compartment c2 at random. Following this, c1 sends a non-blocking

signal to c2 (i.e., c1 continues to operate without having to wait for c2 to receive the

signal; this prevents communication deadlocks from happening). The exact nature

and effects of the signals will be identified in the models’ descriptions below.

When a compartment checks its “mailbox” for incoming signals, several signals

may have been received. MPI buffers the incoming signals in an orderly manner

(first in first out queue). At each timestep, a single incoming signal is processed by

the compartment. Fig. 6.1 depicts this algorithm which is run simultaneously on

each compartment processes.

6.2.2 Introducing chemical kinetics

In the non-parallel version of the MCS.bl, all reactions occurred in a sequential

manner. A clock mechanism was utilised to sequence the processing of molecular

interactions. At each discrete time step a single molecular collision/interaction oc-

curred. Elastic and catalytic reactions would be equivalent from a temporal point

of view. The computational time necessary to process a reaction was not accounted

for and did not affect the system’s dynamics. Although occurring in a simplified

and constrained form, chemical “kinetics” were present in the original MCS.bl and

dictated all reaction rates to be equal. This constraint is now being relaxed as

follows.

In the distributed implementation of the MCS.bl, several reactions may be oc-

curring simultaneously. Although molecular interactions are processed sequentially

within a compartment, N reactions may potentially be processed at the same time
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Figure 6.1: N compartments/processes running in parallel
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throughout the N compartments. Catalytic reactions may result in the modification

of the compartments’ states. According to the state of a given compartment, a signal

can be emitted and addressed to another compartment. These signals may further

change the states of both the emitter and receiver compartments. Consequently the

speed of chemical reactions occurring in the compartments may indirectly alter the

system’s dynamics at the compartment level.

Parallelism in this distributed implementation of the MCS.bl altered the system’s

chemical kinetics and introduced variations in the reaction rates.

6.3 Static reactors with molecular diffusion

We evaluate a first extended MCS.bl model in which both compartmentalisation and

molecular diffusion are addressed.

6.3.1 Introduction

An analytically tractable model was proposed to address the inhibition of degener-

ative effects due to parasitism in closed reaction networks (McCaskill et al., 2001).

McCaskill et al. demonstrated that given a compartmentalised model where migra-

tions/diffusions of molecular species occur between the compartments, there exists,

according to some parameters (i.e., the replication error rate and decay rate), an

optimal diffusion coefficient which allows for the cooperation of molecular species

and subsequently stabilises the self-maintaining cycle of the closed reaction network.

The following minimalist model (in which such disruptive parasitic effects are

occurring) was employed by McCaskill et al. to examine the effects of compartmen-
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talisation:

2X
Q

−→ 3X

2X
R

−→ 2X + Y

X + Y
2r
−→ X + 2Y

X, Y
d

−→ ∅

X is an autocatalytic species which is being parasitised by Y . The latter is a

mutant species of X whose replication can only be catalysed by X. Q is the fidelity

rate of replication of X. R = 1−Q is the replication error (mutation) rate leading to

the production of mutant species Y . r is the recognition coefficient which determines

the rate of successful bindings between X and Y . The spontaneous decay rate of X

and Y is denoted by d. This decay rate is fixed and independent of the production

rate Q. The compartments possess a maximal carrying capacity of n molecules.

The diffusion coefficient between the compartments is denoted by m. The latter is

the key parameter enabling the inhibition of parasitic effects. However m depends

on the above various parameters for which minimal and maximal threshold values

exist (e.g., the mutation rate has to be tolerable).

Through the use of a stochastic modelling technique (Master equation) which

accounted for space, McCaskill et al. showed that a range of diffusion coefficients

existed and permitted the survival of the catalyst X, despite being parasitised by

Y . This range was dependent on the mutation and decay rates. As the mutation or

decay rate increases, the range of diffusion coefficient decreases until it disappears.

A number of significant differences exist between McCaskill et al.’s stochastic

model and the MCS.bl:

• The MCS.bl is a constructive AC where a rich variety of molecular species

exists. If we consider a maximal species string length of molecular species of
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BDLmax = 500, then there are 8500 possible combinations of molecular species,

the nature of whose interactions may vary greatly. In McCaskill et al.’s model,

only two species and five reactions are considered.

• The parasites involved in the degenerative evolutionary dynamics (Section 5.5)

are capable of enzymatic functions. When these particular parasites react with

copies of themselves, a further new enzymatic species is generated. We showed

that this newly created species is also capable of parasitising both the parent

parasite species and ancestor/seed catalysts. Whereas in McCaskill et al.’s

model, the replication of mutant species Y can only be catalysed by X.

• Mutations are implemented differently in the MCS.bl. A per-symbol mutation

probability is employed. As the length of a species increases, the probability of

a mutation to occur increases accordingly. McCaskill et al. employed a fixed

mutation rate which is not affected by the nature of the molecular species.

• Further differing details exist between the MCS.bl and McCaskill et al.’s

model. These points will be addressed in the description of the extended

MCS.bl model (Section 6.3.2).

Although significant differences exist between both models, the parasitic effects

and degenerative phenomena studied in the original non-compartmentalised models

are essentially similar: The exploitation of catalytic species by mutant parasitic

species disrupts the self-maintaining cycle of the closed reaction network.

Using McCaskill et al.’s work on compartmentalisation and evolutionary capabil-

ity as an inspiration, we propose an extended version of the MCS.bl which accounts

for these compartmentalisation and diffusion properties. This extended MCS.bl will

then be employed to conduct a set of evolutionary experimentations which will

illuminate the effects of compartmentalisation and molecular diffusion upon the sys-

tem’s evolutionary capability.
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6.3.2 The model

We present an extended MCS.bl model which accounts for compartmentalisation and

molecular diffusion:

• In contrast to the model employed in Chapter 5, successful molecular reactions

(generating new molecules) do not lead to the removal of another molecule at

random when the reactor is full. Here, a molecular reaction creating a new

molecule occurs only if the carrying capacity nmax of the reactor has not been

reached. Reactors may frequently be filled when the molecular production rate

is higher than the decay rate.

• Moreover a decay probability d is defined, this parameter addresses the con-

tinuous decay rate defined in McCaskill et al.’s approach. At each discrete

timestep, a molecule is selected at random and may be removed, with the

probability d, from the compartment. This spontaneous decay of molecules

enables further reactions to occur in filled (i.e., saturated) reactors.

• In McCaskill et al.’s model, molecular diffusions occurred continuously in time

according to the diffusion coefficient m. However time is discretised in the

MCS.bl. Consequently exchanges of molecules occur in a sequential fashion

according to the time-slicing algorithm. A probability of molecular diffusion

pm is introduced. At each timestep, an exchange of molecules between two

compartments may occur with the probability pm. Devising a probability

instead of a fixed time interval was decided to avoid all compartments diffusing

at the same time (in which cases the traceability of the system would not have

been facilitated). Although the compartments are executed in parallel, all

compartments could simultaneously diffuse in some cases, e.g., during the early

phase of a simulation run where seed molecules and the nature of computations

are equivalent in all compartments.
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• When a compartment ci ∈ C diffuses, some molecules contained in ci are se-

lected at random. These selected molecules are removed from ci and constitute

the diffusion initiation signal. The size of this signal/vector of molecules is

determined by the integer division of the container’s current size cin by the

diffusion coefficient m, denoted by
⌊

cin

m

⌋

. This signal is then sent from ci to

another compartment cj ∈ C which is selected at random. ci continues to op-

erate following this signal emission. When cj receives the diffusion initiation

signal from ci, cj similarly selects and removes a number of molecules according

to
⌊

cin

m

⌋

(with cin and cjn
being potentially different). The molecules received

from ci are then inserted in the cj compartment. The molecules removed from

cj constitutes the response signal which is sent back to ci. Upon receiving this

response signal from cj, the molecules contained in this signal are similarly

inserted into ci. This concludes the exchange of molecules between ci and cj.

• The number of molecules exchanged between compartments is not fixed. More-

over this exchange of molecules may be asymmetric in some cases. Molecular

exchanges are symmetric only when the two “communicating” compartments

contain the same number of molecules. If we consider a molecular exchange

between ci and cj with cin > cjn
then ci would emit a higher number of

molecules than cj with
⌊

cin

m

⌋

>
⌊ cjn

m

⌋

. If cin > 0 and cjn
= 0 then molecules

would be diffused only from ci to cj. Diffusion equilibrium may be reached

during subsequent molecular exchanges when cin = cjn
.

In the following section, we conduct a series of evolutionary experiments using

the above extended MCS.bl model.

6.3.3 The experiments

We present a series of experiments using the extended parallel version of the MCS.bl.

These experiments aim at demonstrating the effects of compartmentalisation and

molecular diffusion upon the system’s evolutionary capability.
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The differences outlined earlier prevent us from mapping directly the various

parameters into the MCS.bl. As a result we cannot determine analytically the range

of suitable parameters, if any, which may allow for the stabilisation of evolution in

the MCS.bl. Nevertheless we attempted to select parameter values that would not

clearly facilitate the disruptive parasitic effects to occur, e.g., psym was deliberately

set to a relatively low value to diminish the frequency of emergence of potentially

parasitic mutant species. The following set of fixed parameters is proposed and

utilised in all experiments:

• 30 compartments are utilised and executed in parallel using 30 AMD Opteron

270 (2.0 GHZ) CPUs.

• Experiments are run for 3600 seconds (1 hour of “wall clock” time).

• The maximal compartment carrying capacity is nmax = 1000.

• The diffusion probability is set to pm = 0.05.

• The spontaneous decay probability is set to d = 0.1.

• Similarly to experiences conducted in Chapter 5, the maximal species string

length is set to BDLmax = 500.

• The per-symbol mutation is set to psym = 1.0 × 10−5.

• The global spontaneous mutation rate is set to rmut = 0.

• As in the evolutionary experiments presented in Section 5.5, each compartment

is seeded/initialised with the sR4
= ▽0101 : ▽0101 molecular species. However

we completely fill each compartment with 1000 instances of sR4
species.

Considering the MCS.bl experiments conducted in Chapter 5, McCaskill et al.’s

investigation and the specification of the extended MCS.bl, we propose the following

ideal scenario/prediction where degenerative evolutionary outcomes may be inhib-

ited due to compartmentalisation and molecular diffusion in the extended MCS.bl:
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1. In this model, compartments which are infected by parasites would present a

lower rate of successful catalytic reactions (as shown in Section 5.5).

2. As a result the molecular production rate would decrease accordingly.

3. If the production rate becomes lower than the decay rate then the compartment

would start depleting.

4. Molecular diffusions occurring between non parasitised compartments (in

which no depletion occurs) and infected/depleting ones would lead to asym-

metric molecular exchanges, i.e., infected compartments would import more

non-parasitic species and export less or no parasitic species (limiting the spread

of parasites throughout the compartments).

5. Consecutive molecular exchanges would allow for the persistence and spreading

of the non-parasitic catalysts throughout the compartment population.

In this idealised scenario, compartmentalisation would allow for the isolation of

infected compartments. Consequently the closed reaction networks would be able

to self-maintain when subjected to disruptive parasitic effects.

To test the above prediction, we conduct three series of experiment (where 5

simulations were run in each series) in which the following diffusion coefficients are

employed: m1 = 0.01, m2 = 0.05 and m3 = 0.1.

Fig. 6.2 present an overview of the dynamics of an example simulation run where

the diffusion coefficient is set to m1 = 0.01. We identify the following chain of events:

1. We first note an initial phase where the system is stable with an average

species length of 12 symbols (i.e., the length of sR4
species) and the average

population size stagnating at nearly 1000 molecules. Most compartments are

thus full during this phase (i.e., the molecular production rate is higher than

the decay rate).
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2. However from t ≈ 950 we note that the average length of species starts to

increase rapidly. This behaviour suggests that the elongation phenomenon is

occurring.

3. Then 150 seconds later, at t ≈ 1100, we observe a rapid decrease in the

average population size throughout the 30 compartments. This indicates that

the production rate has now become smaller than the decay rate, i.e., the

compartments are depleting.

4. Nevertheless this decrease does not apply to the species length which continues

to increase until t ≈ 1270, where the species length reaches its peak with an

average length of 278 symbols. During the phase 950 < t < 1270, successive

species having an increasing length emerged and displaced each other. As a
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Figure 6.2: Dynamics of the compartments’ average population size and molecular
species string length (averaged over the species length averages of each compartment)
with diffusion coefficient m1 = 0.01. We depict the dynamics of the molecular popu-
lation size as it provides an approximate indication about the molecular production
rate against the decay rate. For example if the production rate is higher than the
decay rate then the occupancy compartments would be maximised and would only
fluctuate due to molecular diffusion. On the contrary if the production rate is lower
than the decay rate then we would perceive a decrease in the average population
size.
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result we observe a linear increase in the average species length throughout all

compartments.

5. Following the peak of the species length observed at t ≈ 1270, the average

species length is then rapidly decreasing (similarly to the average population

size) until t ≈ 1310 where the system becomes extinct, i.e., all molecules have

decayed.

In Fig. 6.3, we focus on the extinction phase and present the standard deviations

of the compartments’ population size and species string length.

 0

 200

 400

 600

 800

 1000

 1000  1050  1100  1150  1200  1250  1300  1350

N
um

be
r 

of
 m

ol
ec

ul
es

Time (seconds)

Standard deviation of population size

 0

 100

 200

 300

 400

 500

 1000  1050  1100  1150  1200  1250  1300  1350

M
ol

ec
ul

ar
 s

tr
in

g 
le

ng
th

Time (seconds)

Standard deviation of species length

Figure 6.3: Extinction phase of example simulation 1 with diffusion coefficient m1 =
0.01. For clarity purposes, both curves were plotted using a point interval of 3.

Fig. 6.3 complements the current analysis by providing more detailed information

about the dynamics of each compartment:

1. During the early stable phase, we note that the molecular string length is

relatively homogeneous throughout the 30 compartments with little variance

occurring. This assertion applies for both the average population size and

species string length.

2. However when t ≈ 1100, we observe a divergence in the composition of the

compartments (i.e., compartments with different population sizes exist). This

variance is maintained until close to the end of the extinction phase.
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3. Although the composition of compartments starts diverging at t ≈ 1100, the

average species length (which is globally increasing) is more or less homoge-

neous throughout the compartments until t ≈ 1230. Thus during the phase

1000 < t < 1230, the mutant species (here classified by their string length) are

well diffused throughout the compartments. However as the average molecular

population size is already decreasing (since t > 1100), it indicates that these

mutant species have a production rate lower than the decay rate.

4. When t > 1230, a significant range of variances is observed in the species

string length. This phenomenon suggests that only a few reactions leading to

the creation of much longer species are succeeding in some compartments.

The above degenerative scenario is characteristic of the elongation catastrophe

phenomenon. We first observed the successive emergence of mutant species hav-

ing an increasing length. We distinguished successive displacements which led the

system to a state where successful catalytic reactions occurred less often. However

a decay rate is applied in the current system, and consequently the compartments

started to deplete as the production rate became lower than the decay rate. As a

result, we ultimately obtained the extinction of the system where all species have

decayed.

The behaviour reported above was exhibited in all 5 simulation runs in which

m1 was employed. Moreover this degenerative dynamic was also observed in the

supplementary experiments in which we set the diffusion coefficient to m2 and m3.

The distinctive extinction phases of example simulation runs are shown in Fig. 6.4.

All remaining simulation runs are presented in Appendix C.

In Fig. 6.4, we distinguish that the range of variances in the average molecular

population size actually decreases in contrast to the increase trend reported ear-

lier. Little variance of average molecular string length is observed over the whole

simulation runs excepting during a few seconds where the systems collapse. These
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Figure 6.4: Example simulation runs 2 and 3 using the diffusion coefficients m2 =
0.05 (top graphics) and m3 = 0.1 (bottom graphics) respectively.

results suggest that higher diffusion coefficients allowed for the diffusion equilibrium

to be achieved more rapidly. Consequently we identify a homogeneous molecular

composition throughout all compartments over time.

Moreover we note a second trend related to the speed of the extinction phases

which seems to be correlated with the coefficient diffusions. Table 6.1 presents the

duration of the extinction phase for all experiments.

Series 1 2 3 4 5 Avg.

m1 279 243 223 266 202 242.6
m2 145 189 149 176 129 122.4
m3 95 120 103 112 78 101.6

Table 6.1: Duration in seconds of extinction phases for the 3 series of experiments
conducted with parameters m1, m2 and m3. We devise an arbitrary threshold (i.e.,
when the average molecular string length is higher than 20) for determining the
start of the extinction phases. This string length criterion is employed as it is a
clear symptomatic evidence of the elongation catastrophe phenomenon.
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In Table 6.1, we observe that as the diffusion coefficient increases, the duration

of the extinction phase decreases. A higher diffusion coefficient accelerates the nec-

essary duration for reaching diffusion equilibrium, which in this case has facilitated

the spreading of mutant parasites throughout the compartments. Consequently the

elongation catastrophe phenomena occurred at a faster pace. These results also

suggest that if we were to decrease the key parameter (i.e., diffusion coefficient),

this may only extend the duration of the extinction phase which would still occur

quasi-deterministically upon the emergence of mutant-parasitic species.

The above results obtained using the static reactors MCS.bl model with molecular

diffusion contradict the prediction that we proposed earlier. The selected range of

parameters did not allow for the isolation of infected compartments.

Nevertheless according to our prediction, for an effective isolation and inhibition

of the degenerative phenomenon to occur, we require the depletion of the infected

compartments. This depletion is here happening globally at a late stage where

the parasites have already invaded all compartments (through the exploitation of

molecular diffusion). At that stage no healthy compartments remain which prevents

any attempts to regulate and stabilise the system via diffusion.

For a rapid depletion to occur locally in infected compartments, we suggest

that additional experiments should focus on modifying the diffusion probability

which affects indirectly the diffusion coefficient and speed of diffusion equilibrium.

A significant decrease of this diffusion probability may result in the partial depletion

of infected compartments. This depletion would occur before the mutant species

have the opportunity, through molecular diffusion, to spread over all compartments.

Nevertheless if this probability of diffusion is set too low, we would obtain a model

where infected compartments would first decay entirely before being subjected to

molecular diffusion. In such cases, there would be no exchange of molecules, the mi-

gration would only be one way. Such a model would then less account for molecular

diffusion and the nature of the reactor model would not be as continuous (i.e., we
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would observe the successive depletions and growths of molecular species in the com-

partments). This resulting model would become more similar to the cellular model

approach (which will be described later) than McCaskill et al.’s original proposed

model.

Further experiments are necessary to identify a potentially suitable range of

parameters where the degenerative effects of parasitism can be controlled, whilst

exchanges of molecules still occur between compartments.

6.3.4 Conclusion

We introduced the static reactors with molecular diffusion model which was exam-

ined by McCaskill et al. The latter demonstrated that for such models, according

to the mutation and decay rates, there exists a range of diffusion coefficients which

allow for the stabilisation of the self-maintaining cycle of closed reaction networks

in which parasitic effects are occurring.

We presented the extended model of the MCS.bl which accounted for compart-

mentalisation and molecular diffusion. Using this system we conducted a series of

evolutionary experiments to examine evolutionary capability.

Our experiments suggested that according to the parameters used, compartmen-

talisation and molecular diffusion do not allow for the inhibition of degenerative

evolutionary phenomena.

However as we did not conduct a systematic evaluation of parameters due to

time constraints and the multi-dimensional nature of the search space (example

dimensions are the mutation and decay rate, diffusion probability and coefficient).

We only explored one area of this vast search space where it may still be possible

to find a suitable set of parameters which would stabilise evolution in the MCS.bl.

More specifically we discussed the potential role of the diffusion probability, a

feature introduced in the extended MCS.bl but not present in McCaskill et al.’s con-

tinuous model. We argued that decreasing this parameter may allow for the local de-
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pletion of infected compartments to occur. This isolation of infected compartments

would prevent the parasitic species from invading the remaining non-parasitised

compartments through molecular diffusion. Therefore this alternate solution may

lead to the inhibition of degenerative dynamics due to parasitism.

Nevertheless, although this model with a low diffusion probability may control

the elongation catastrophe phenomenon, this resistance against parasistism would

not be directly due to molecular diffusions. In McCaskill et al.’s model, molecular

diffusion was the key regulator where the number of molecules, contained in the re-

actors, remained more or less static. In this proposed model, degenerative outcomes

would be prevented by allowing the parasitised compartments to deplete/decay be-

fore integrating species incoming from neighbouring and non-parasitised compart-

ments. Parasitised compartments would first decay and molecular diffusion would

occur in one direction, from non-decayed compartments to decayed ones. Follow-

ing this unidirectional molecular exchange, the received species would increase in

number in the formerly parasitised compartment. In such cases, the resulting model

would thus be more adequately captured as a dynamic reactors model with unidi-

rectional molecular diffusions. Such a model is, to some extent, quite analogous to

the cellular model presented in the next section.

6.4 A cellular model

We present a second multi-level selectional model applied to the MCS.bl in which,

similarly to biological cells, compartments may grow and divide. This version of the

MCS.bl is independent from the previously extended model and does not include the

properties (complementary to compartmentalisation) introduced in Section 6.3.

6.4.1 Introduction

Cronhjort and Blomberg (1997) proposed a deterministic model (using PDEs) where

dynamic clusters (regarded here as compartments) of molecules would spontaneously
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arise, grow, divide and die in a two-dimensional space.

In Cronhjort and Blomberg’s model, molecules would aggregate spontaneously

and form compartments without possessing a complex membrane structure. As

mentioned earlier, compartments have also the ability to divide spontaneously. It

was shown that, when parasites are introduced in a compartment, they rapidly

destabilise the self-maintaining cycle of closed reaction networks contained in the

compartment. This destabilisation ultimately leads to the decay of all molecules.

Moreover when a compartment is infected with parasites, the latter spread to other

compartments through parasitising the molecular species which are present between

the compartments. By exploiting this propagation/diffusion technique, the parasites

can invade and “kill” all remaining compartments.

However Cronhjort and Blomberg introduced a cut-off rule which restricted the

spread of parasites throughout the compartments. This rule sets to zero (with a

defined cut-off probability) the concentration of the molecular species which oc-

cur between the compartments (without affecting the molecular concentration in

the compartments). Using a suitable cut-off value, infected compartments may be-

come isolated in space. As a result, parasitic species decay locally without invading

the rest of the compartments. Following this, an empty space emerges which may

be occupied by a new compartment resulting from the division of a neighbouring

“healthy” non-parasitised compartment.

In this model, compartmentalisation isolated the infected compartments which

successfully prevented the invasion of parasitic species over the rest of the compart-

ments. Cronhjort and Blomberg demonstrated that this cellular model may provide

resistance against disruptive parasitic effects. We utilise this work as an inspiration

and implement compartmentalisation and cellular division features in the MCS.bl.

The goal is to realise a sufficiently robust MCS.bl system which would prevent the

degenerative evolutionary dynamics from occurring.

Finally McCaskill et al. and Cronhjort and Blomberg’s models share common
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properties (e.g., definition of continuous production and decay rates, nature and in-

teractions of catalytic/parasitic, etc) which differ from the MCS.bl. These differences

are presented and addressed in the following section.

6.4.2 The model

In the remainder of this section, compartments which can grow and divide are

referred to as “cells”. We present an extended MCS.bl model which accounts for

compartmentalisation and cellular division:

• In contrast to Cronhjort and Blomberg’s model, we define clear compartmental

boundaries. Molecular species are contained in distinct compartments/cells

which are simulated on individual CPUs. The cells possess a maximal carrying

capacity of nmax molecules.

• We employ a simplex topology to condition the interactions between cells as

opposed to the two-dimensional space utilised by Cronhjort and Blomberg.

• Similarly to McCaskill et al.’s approach, catalytic reactions creating new

molecules do not lead to the removal of another one in the cell. However, these

reactions may occur only if the cell is not full (i.e., iff ci ∈ C, cin < nmax).

• When a cell ci becomes full (i.e., cin = nmax), a cellular division occurs as fol-

lows. ci selects nmax

2
molecules at random. These molecules are removed from

the cell and constitute the signal to be sent to a target cell cj ∈ C. The latter

is selected at random. ci continues to operate with no further interactions

(directly associated with the current division event) with cj. When cj receives

the signal sent by ci, all molecular species contained in cj are removed. Fol-

lowing this, cj inserts the molecules included in the signal into its own reaction

space. This step concludes the cellular division process of ci which offspring

effectively displaced cj.
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• In contrast to both McCaskill et al. and Cronhjort and Blomberg’s models,

we do not define a decay rate or decay probability as we did in the previous

extended MCS.bl model. In the static reactors model with molecular diffusion,

reactions could occur in a given reactor only if the latter was not saturated.

In such a saturated compartment, the spontaneous decay of molecules enabled

further reactions to occur. In Cronhjort and Blomberg’s model, the decay of a

parasitised compartment led to the creation of a vacant space which then al-

lowed for the formation of a new compartment (resulting from the division of a

neighbouring non-parasitised compartment). Both the saturation of compart-

ments and the displacement of decayed ones are dealt with by our specification

of our cellular division mechanism. The latter prevents compartments from

becoming saturated (i.e., half all of the molecules are “diffused” when nmax

is reached) and also triggers the displacement of potentially decayed com-

partments. Consequently the specification of a spontaneous decay rate is not

required in the current extended MCS.bl model.

• Finally, in contrast to Cronhjort and Blomberg’s model, any cells (including

parasitised ones) may still divide upon producing nmax molecules. Therefore

even though parasites have invaded a given cell, the latter may still spread the

parasitic species through cellular division.

In the following section we present and examine a series of experiments using the

above extended MCS.bl model. Following this, we analyse the effects of chemical

kinetics in this particular extension of the MCS.bl.

6.4.3 Cell-level mutations

During cellular divisions, molecules are randomly selected and transferred into the

offspring cells. Due to the stochastic nature of these processes, some molecular

species may not be transmitted to the offspring cells. Moreover, the concentration

of the transmitted molecular species may also significantly vary.
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Such “mutant” cells would contain novel reaction networks exhibiting differing

dynamics. We refer to these error-prone transmissions as cell-level mutations.

Note that the term “mutation” is here relaxed and does not specifically refer to

the commonly known phenomenon where variance may be introduced over strings of

monomers. We nevertheless use this notion to capture the stochastic recombination

involved in this process which may affect the dynamics/phenotype of the cellular

species.

6.4.4 The experiments

We present a series of experiments using the extended parallel version of the MCS.bl.

These experiments aim at investigating the effects of compartmentalisation and

cellular division upon the system’s evolutionary capability.

We propose the following set of fixed parameters which is utilised in all experi-

ments:

• 30 compartments are utilised and executed in parallel using 30 AMD Opteron

270 (2.0 GHZ) CPUs.

• The maximal compartment carrying capacity is nmax = 1000.

• The maximal species string length is set to BDLmax = 500.

• The global spontaneous mutation rate is set to rmut = 0.

• Each compartment is seeded/initialised with 250 instances of the sR4
=

▽0101 : ▽0101 molecular species.

As mentioned in the conclusion of Section 6.3, we predict that in such com-

partmentalised models, infected compartments should ultimately decay. However in

the current model no spontaneous decay is implemented. Infected cells would here

present a low or null growth rate which would prevent the cell from dividing, as

opposed to non-parasitised cells which may still grow, divide and displace any cells.
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As shown by Cronhjort and Blomberg, this isolation of parasitised cells prevents

parasitic species from spreading over the rest of the cells. Compartmentalisation

and cellular division may then inhibit the degenerative phenomena from occurring

in the MCS.bl. However a mutation error rate threshold may still exist. Indeed, if

the mutation rate is too high, then parasitic species may emerge too rapidly in the

cells and potentially kill all cells.

We conduct three series of 5 simulation runs each. In each of these series,

we decrease the per-symbol mutation probability using the following parameters:

psym1 = 1.0×10−4, psym2 = 5.0×10−5 and psym3 = 1.0×10−5. As the mutation rate

is decreased in the successive experiments, the execution time of the simulation runs

is increased as follows: 3600, 7200 and 36000 seconds in series 1, 2 and 3 respectively.

In the first series of experiment (where psym1 is employed, see Fig. 6.5) we note

that the degenerative dynamics occur in the simulation runs 1, 3 and 4. The “ex-

tinction phases” observed in these simulation runs are all associated with a sud-

den increase in the molecular species’ length, suggesting the elongation catastrophe

phenomenon. However in runs 2 and 5, no extinction phenomena occur. In both

simulation runs, we observe little variance in the reaction networks’ level of catalytic

activity which is described here by the average reaction success rate.

Nevertheless, in all simulation runs, we identify a comparable level of variance in

the average species string length. This indicates that, as expected, parasitic species

emerged and invaded a number of cells, as shown in Fig. 6.6 with the sporadic

presence of cells containing species with a higher average string length (which causes

the high variances/peaks in the average species length). Moreover we distinguish

a clear initial lineage of cells where the average species length vary around 12 (the

length of the seed species sR4
).

In the second series of experiments, the mutation rate is decreased to psym2 =

5.0×10−5, see Fig. 6.7. Here, we distinguish the survival of the cells in all simulation

runs. Moreover, we observe a phenomenon which was not present in the first series:
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Figure 6.5: 5 example simulation runs with psym1 = 1.0×10−4. The average reaction
success rate represents the average number of catalytic reactions divided by the
number of molecular interaction per second, e.g, if the reaction network is complete
then the ratio is 1. In the contrary if only elastic reactions occur then the ratio is 0.
As the cells are seeded with species sR4

, the initial reaction networks are complete.

• In all runs we identify the emergence of cellular lineages in which the molecular

species have a longer average string length (two example lineages are depicted

in Fig. 6.8). However we do not observe an exponential growth of the species’

string length as commonly observed.

• These species remain stable and self-maintain for a period of time after which
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Figure 6.6: Classification and evolution of cellular lineages from simulation run 1.
The cells are classified by the average length of molecular species at a given timestep.
We employ a crude classification criterion to discriminate the parasitised cells from
the non-parasitised ones.

they may eventually be displaced by other species having, similarly, a longer

average string length.

• These cellular lineages are due to mutant species which were able to gain

catalytic support from the ancestor species. However in contrast to the para-

sites involved in the elongation catastrophe phenomena, those species do not

catalyse the production of further parasite species. Those species can in fact

catalyse the production of species which are equivalent to the ancestors species

from a phenotypic point of view.

• However an additional function of those species is also to elongate the sub-

strate species. This elongation occurs in a linear fashion as opposed to the

exponential string growth observed in the elongation catastrophe phenomenon.

• This slow/linear growth of species length had no immediate negative effects

for the cells (in contrast to an exponential string growth which would rapidly

cause the cell to degenerate) and therefore permitted the diffusion of these

slightly longer species throughout the cellular population.
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Figure 6.7: 5 example simulation runs with psym2 = 5.0 × 10−5.

• Nevertheless as the species length increased, it soon became a selective disad-

vantage for cells to contain such “elongator” species. As a result, these cells

were selected against and the increase in the average string length ceased. This

fitness penalty did not apply to the cells from the start, when these elongators

emerged (and shortly after), as the difference in the average molecular species

length was then not significant from a computational point of view.

The difference in average string length in both lineages is due to the nature of
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Figure 6.8: Evolution of cellular lineages in simulation run 1 (left) and 2 (right). A
level of homogeneity in the molecular composition of most cells is observed at any
given timesteps.

the patterns that were concatenated to substrate molecules. This pattern is longer

in simulation runs 2 and 5 and explains the higher average molecular string length.

Note that the reproduction rate of the cells containing molecular species with a

significantly longer string length should be lower (due to a higher computational de-

mand) than the reproduction rate of cells containing shorter molecules. We may thus

hypothesise that over time, these cell lineages containing longer molecular species

might be displaced if a mutant molecular species emerges and possesses the following

intrinsic properties:

1. The molecular string length is short enough to exhibit a significant difference

in fitness as autocatalysis is here hyperbolic (Section 5.1).

2. The ability to counter-act the exploitation of the elongators by developing

an immunity to these pseudo-parasites or being similarly able to exploit the

elongators to be replicated/or produce smaller molecules.

The emergence of such molecular species has not been observed in any of the simu-

lation runs.

Table 6.2 compares example elongators species triggering the elongation catas-

trophe (with exponential increase of string length) with those present in the above

experiment (with linear increase of string length). Both species are mutants (result-
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ing from a single mutation) of the self-replicase sR4 = ∗▽0101 : ▽0101.

Elongator species s1 with exponential length growth
s0
1 = ∗▽0101 : ▽00101

2 s0
1 → 2 s0

1 + s1
1 with s1

1 = ∗▽0101 : ▽000101
2 s1

1 → 2 s1
1 + s2

1 with s2
1 = ∗▽0101 : ▽00000101

2 s2
1 → 2 s2

1 + s3
1 with s3

1 = ∗▽0101 : ▽000000000101
. . .
length(si

1) = length(s0
1) + i2

Moreover if we consider the reaction between two differing s1 species

generations with i 6= j then: si
1 + sj

1 → si
1 + sj

1 + si+j
1

Elongator species s2 with linear length growth
s0
2 = ∗▽0101 : 0▽0101

2 s0
2 → 2 s0

2 + s1
2 with s1

2 = 0 ∗ ▽0101 : 0▽0101
2 s1

2 → 2 s1
2 + s2

2 with s2
2 = 00 ∗ ▽0101 : 0▽0101

2 s2
2 → 2 s2

2 + s3
2 with s3

2 = 000 ∗ ▽0101 : 0▽0101
. . .
length(si

2) = length(s0
2) + i

si
2 + sj

2 → si
2 + sj

2 + sj+1
2

Table 6.2: Example elongator species s1 and s2 with exponential and linear string
length growth respectively. Both s0

1 and s0
2 represent the first generation of s1 and

s2 species, whereas si
1 and si

2 are the (i + 1)th generation.

Fig. 6.9 presents the final series of experiments where the mutation probability

psym3 is employed. We note that all cells successfully resisted against the disruptive

parasitic effects. We also distinguish a net decrease in the density of parasitised cells

(see Table 6.3) which consequently affected the average reaction success rate. The

latter remained stable with little variance occurring (when compared with previous

experiments) throughout the simulation runs.

Series 1 2 3 4 5 Avg.

psym1 0.141 0.145 0.204 0.165 0.145 0.160
psym2 0.060 0.029 0.056 0.071 0.020 0.047
psym3 0.021 0.016 0.012 0.021 0.013 0.017

Table 6.3: Density of high variances in the average molecular species length, i.e.,
number of peaks where the species length increased significantly (where the average
species length at time t is 1.5 times higher than at t − 1) per second.

The probability of mutation psym3 employed in this final series of experiment also
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Figure 6.9: 5 example simulation runs with psym3 = 1.0 × 10−5.

allowed for the self-maintenance of closed reaction networks in all cells throughout

the simulation runs. Similarly to the second series of experiment, the emergence of

non-lethal “elongator” species increasing the average string length is observed but

no degenerative outcomes occur.

As the mutation rate decreased, the probability of emergence of mutant para-

sitic molecules decreased. As the latter diminished, the number of cells where the

elongation phenomenon may occur simultaneously reduced, as shown in Table 6.3
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with the number of peaks (high variance in average species length). These results

suggest that a minimal number of infected cells is necessary to spread (rapidly)

enough parasites throughout the cellular population, and consequently to provoke

extinction at the system level. Moreover these results indicate that a mutation error

threshold may exist in the range psym < 1.0 × 10−4 in the MCS.bl/cellular model.

This final series of experiment suggests that the cellular model of the MCS.bl is

able to provide the closed reaction networks with resistance against parasites and

associated degenerative effects. However this control in evolutionary degeneration

is possible given a tolerable rate of mutation.

In the next section, we analyse how chemical kinetics may also have con-

tributed to this control of parasitic effects by providing a selective advantage to

non-parasitised cells over the parasitised ones in specific cases.

6.4.5 Effects of chemical kinetics

We examine the effects of chemical kinetics upon the system’s evolutionary dynam-

ics. A side effect of the parallel implementation of the MCS.bl is the alteration of

chemical kinetics, as presented in Section 6.2.2. We discuss here the potential role

of chemical kinetics in improving resistance against parasites in particular cases.

As mentioned earlier, parasitised cells may still divide as they may even con-

tain reaction networks that are still complete (i.e., all molecular collisions lead to

successful creations of new parasitic molecules). Let us consider the cells ci ∈ C

and cj ∈ C which both contain complete reaction networks. The cell ci contains

non-parasitic species only, as opposed to cj in which we insert parasites only.

If all reaction rates are equal, then both ci and cj would exhibit an equal growth

rate. As any reactions occurring in both cells would occur at the same pace, both

cells would thus possess an equivalent growth rate and may ultimately divide simul-

taneously. Both cellular species would have equal chances to displace each other,

this scenario applies until the parasitised cell has started to decay (with the reaction
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success rates decreasing).

However, if we consider variations in the reaction rates, which is addressed here

by the necessary computational time to process a reaction in the parallel version

of the MCS.bl, then we argue that non-parasitised cells possess a selective advan-

tage. In Section 5.5, we showed that the elongation catastrophe was due to mutant

parasitic species which had the effect of increasing their string length repeatedly.

However in the parallel system, as the length of species increases, the computation

necessary to process reactions between these species increases accordingly. Reac-

tions involving parasite species as the reactants would therefore be computationally

more demanding. As time matters in this parallel system, the growth/production

rate of parasitised cells would be lower than the rate of non-parasitised cells.

Therefore we hypothesise that, in the current extended version of the MCS.bl,

parallelism improves resistance against parasitism where the elongation catastrophe

phenomena occur.

To test the above hypothesis, we present a simple experiment in which we employ

the following set of parameters:

• 30 compartments are utilised and executed in parallel using 30 AMD Opteron

270 (2.0 GHZ) CPUs.

• Experiments are run for 60 seconds.

• The maximal compartment carrying capacity is nmax = 1000.

• The maximal string length is set to BDLmax = 500.

• A single cell c1 is seeded with 2 instances of sR0
= ▽0 : ▽0.

• The remaining 29 cells c2, . . . , c30 are seeded with 2 instances of s′R0
= ▽0 :

▽00. s′R0
triggers the elongation catastrophe.
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Figure 6.10: Dynamics of average number of non-parasitised cells (averaged over 5
independent experiments. The error-bars denote the minimal and maximal number
of non-parasitised cells throughout all experiments at a given timestep. The reaction
success rate, not described here, was maintained to one during all simulation runs
(due to the completeness of the reaction networks.

• Both the global spontaneous mutation rate rmut and mutation per symbol

probability psym are set to 0.

Mutation is turned off in order to restrict the diversity of species to only sR0
and

the lineage of parasites species s′R0
.

Only the single healthy cell c1 was specified against 29 parasitised cells, which is

clearly the most disadvantageous situation for the survival of c1. In a non-parallel

system, ci would have only a 1
30

chance not to be displaced during the first “round”

of cellular divisions.

5 distinct simulations are run. The results are shown in Fig. 6.10.

In Fig. 6.10, an early phase is observed where the average species length is in-

creasing, suggesting that the elongation catastrophe is occurring in the cells. How-

ever this trend diminishes (down to 6, i.e., the length of sR0
) in contrast to the

average number of non-parasitised cells which increases until all parasitised cells

have been displaced. This displacement occurred due to the fast reproduction rate

of non-parasitised cells which were provided here with a selective advantage over the
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parasitised cells. Fast reactions permitted the non-parasitised cells to divide more

rapidly and were subsequently given the opportunity to displace the parasitised cells.

This experiment demonstrates the potential improvement in evolutionary capa-

bility due to the new chemical kinetics properties introduced in the parallel MCS.bl.

Nevertheless, this experiment was an ideal scenario where no mutation could occur

and all cells where initiated at the same time. Consequently, the non-parasitised

cell was always the first to trigger its cellular division and successive ones over the

rest of the parasitised cells.

6.4.6 Conclusion

We introduced Cronhjort and Blomberg’s cellular model in which compartmentali-

sation and cellular division prevented degenerative effects due to parasistism from

occurring. Using this work as an inspiration, we proposed an extended parallel

implementation of the MCS.bl which accounts for these cellular features.

Using this extended version of the MCS.bl , we conducted and examined a series of

evolutionary experiments in which we varied the mutation rates. Our results showed

that as the mutation rate decreased, the emergence and density of parasitised cells

decreased. We showed that a level of parasitised cells is necessary for the parasites

to spread rapidly enough throughout the cellular population and to eventually cause

extinction at the system level. If no such rapid diffusions occur, then the parasitised

cell(s) would decay locally and will be replaced by non-parasitised cells resulting

from the division of other cells.

We also showed how chemical kinetics may improve, in particular cases, resis-

tance against parasites. This feature resulted from the parallel implementation of

the MCS.bl.

This cellular model successfully improved the MCS.bl’s evolutionary capability

and, according to the level of mutation rates, prevented the degenerative elongation

catastrophe phenomena from occurring.
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6.5 Summary

We presented two distinct multi-level selectional models applied to the MCS.bl. This

work aimed at resolving the evolutionary degeneration issues of the MCS.bl.

We first examined a parallel implementation of the MCS.bl which was inspired by

the static reactors model with molecular diffusion investigated by McCaskill et al.

Our result suggested that the range of parameters selected in our experiments could

not allow for the self-maintenance of closed reaction networks when subjected to

perturbations. Nevertheless we mentioned that future work could illuminate further

on the application of this model upon the MCS.bl to improve evolutionary capability.

Our second attempt addressed compartmentalisation and cellular division. These

features were present in a model previously examined by Cronhjort and Blomberg.

We conducted a series of evolutionary experiments using a novel parallel imple-

mentation of the MCS.bl where we introduced compartmentalisation and cellular

division properties. Our results indicated that this cellular model was able to im-

prove the resistance of closed reaction networks against the disruptive effects due to

parasitism, including the elongation catastrophe phenomena.

The above investigations provide complementary insights on the potential ef-

fects of compartmentalisation over evolutionary capability in agent-based Artificial

Chemistries (ACs). As no analytically tractable methods are currently available

for the study of such complex ACs, empirical investigations are necessary and may

provide guidance on the construction and analysis of future evolutionary systems.

The conclusive outcomes obtained with the cellular model provided us with a

novel and robust MCS.bl system which we may now employ to conduct further

evolutionary experiments. The latter will focus on the evolution of closed reaction

networks to carry-out pre-specified information processing tasks. This follow-up

investigation is presented in the next chapter.
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Chapter 7

Evolving Closed Reaction Networks

In Chapter 6, we evaluated a cellular model applied to the parallel implementation

of the MCS.bl. Our results indicated that this multi-level selectional model pro-

vided the MCS.bl system with the necessary robustness to control the degenerative

effects due to parasitism. This control of evolutionary degenerations permitted the

closed reaction networks to self-maintain when subjected to perturbations. This

novel MCS.bl system enables us to conduct further experiments in which we aim at

evolving closed reaction networks to carry out pre-specified information processing

tasks. These evolutionary experiments are presented in this chapter which combines

some of the material published at several international conferences (Decraene, 2009;

Decraene et al., 2009).

7.1 Introduction

We examine the evolution of closed reaction networks to carry out pre-specified

information processing tasks. This chapter is composed of two main sections:

1. We first describe an experiment in which we evolve closed reaction networks

to perform a signal-amplification function. To drive the evolution of the closed

reaction networks to achieve a specified task, we introduce and discuss a novel

cellular division criterion.
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2. We then examine the evolution of crosstalking closed reaction networks capable

of multitasking. We aim at demonstrating the potential constructive role of

crosstalk in enabling the evolution and realisation of closed reaction networks

of higher complexity.

Both investigations are assisted with the parallel and cellular model of the

MCS.bl which was presented and evaluated in Section 6.4.

7.2 Evolving a signal amplification closed reaction network

We introduce a novel cellular division criterion which aims at driving the evolution

of closed reaction networks towards the achievement of a pre-specified task. We

then summarise preliminary experiments in which self-replication reactions occur.

Following this, we describe an experiment in which collectively autocatalytic reaction

networks (where no self-replication reactions may occur) are evolved to carry out a

simple target information processing task.

7.2.1 Introduction

In the experiments conducted with the cellular model of the MCS.bl in Section 6.4, a

cell would divide only when nmax molecules have been produced (i.e., when the cell

is full). These cellular divisions occurred regardless of the nature of the molecular

species.

In order to evolve closed reaction networks to carry out pre-specified information

processing tasks, we propose to modify the conditions triggering the cellular divi-

sions. The latter determine the implicit fitness of the cellular species. In contrast

to fitness functions explicitly devised in top-down evolutionary approaches, implicit

fitness functions do not directly specify the genotype/phenotype mapping of the

candidate species. Here, the cellular agents determine, by themselves, their own ac-

tions and ultimately their fitness with regards to the realisation of the target task.

Defining new cellular division criteria allows one to indicate the desired target tasks,
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but not the actual computations, that the reaction networks have to perform.

In the remainder of this section, we present a series of experiments in which

we utilise a new cellular division criterion devised as follows. A cell divides when

the amount of a specific target molecular species, denoted by sT , reaches ntarget.

The cellular reproduction rate now depends on the molecular growth rate of sT .

The ability of the closed reaction network to both promote the growth of sT and

maintain closure defines the cell’s fitness. The pre-specified task assigned to these

closed reaction networks is to amplify the “signal” sT . Similar in-vivo experiments

were conducted to maximise the production of target molecular species which had

for effect to increase the growth rate of the E.coli bacterium (Palsson, 2006). We

may also interpret sT as a necessary molecular species (e.g., a membrane species) to

allow the cellular division to occur.

Using the above cellular division criterion, we conducted a series of preliminary

experiments where self-replication reactions (i.e., reactions in which the product is

syntactically identical to the enzyme and substrate molecules) occur. These self-

replication reactions were allowed in the experiments conducted in Chapters 5 and

6. In the current evolutionary simulations (described in Appendix D.1), the cells

were seeded with the self-replicase sR4
species, the latter was also designated as the

target species sT . Our results indicated that the networks would converge toward

molecular organisations which are n-element hypercycles where n would typically

be lower than 5. As these networks of limited complexity were hypercycles, they

were fragile and subsequently could not self-maintain under perturbations. These

closed reaction networks would typically collapse to the single autocatalytic and

target species sR4
.

The above phenomenon was also encouraged by the objective task which was

devised to optimise the production of sR4
, thus reaction networks containing only sR4

were already the optimal catalytic networks to produce the target species. As these

experiments presented a limited interest with regards to the evolutionary growth
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of complexity, we propose to conduct a similar experiment where self-replication

reactions may not occur.

This second series of experiment involving collectively autocatalytic reaction net-

works employs a hand-designed seed reaction network which is presented in the next

section.

7.2.2 The seed reaction network

As self-replication reactions are now disabled, we cannot seed the cells with an an-

cestor autocatalytic molecular species as in previous experiments. We also demon-

strated that the spontaneous emergence of closed reaction networks was unlikely to

occur in the MCS.bl given a randomly generated population of molecular species.

We thus propose to hand-design a minimalist collectively autocatalytic reaction net-

work which will be used as the seed network in the experiment.

The construction and exploitation of this seed reaction network are clearly char-

acteristic of “top-down” approaches (Section 3.5). Although we advocate for min-

imising the use of top-down/engineered elements, this remains necessary as no al-

ternative is currently available to explore the evolution of closed reaction networks

using the MCS.bl.

We attempted to construct this seed collectively autocatalytic reaction network

in a minimalist manner with regards to the complexity at both the molecular (i.e.,

using simplest/shortest molecular species) and network level (i.e., involving the least

number of both molecular species and reactions). Moreover, we include additional

constraints to the realisation of this reaction network:

• The reaction network is not, by design, the optimal catalytic network to realise

the target task.

• Molecular species which can perpetually generate new species (such as elon-

gator species) are not allowed. This filter was necessary as such molecular
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Figure 7.1: Bipartite reaction network of the seed closed network.

species trigger the spontaneous growth of the reaction network’s topology/-

complexity by default. Although a natural limitation in the growth of the

molecular length would be observed (Section 6.4.4), these molecular species

are filtered out as they do not facilitate and bias the current investigation on

the evolutionary growth of complexity.

The construction of this reaction network is documented in Appendix D.2. This

informal investigation suggested that the reaction network (depicted in Fig.7.1) is

potentially the minimalist collectively autocatalytic reaction network, satisfying the

above requirements, that can be realised in the MCS.bl. The molecular species

composing this reaction network are listed in Table 7.1.

Figure 7.2 presents the deterministic dynamics (neglecting mutation) of the seed

closed reaction network when the initial amount of each molecular species is set to 10.

This graph was obtained by solving the ODE system generated from the SBML spec-

ification of the seed reaction network using the SBML ODE solver (Machné et al.,
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Molecular species
s1 = ∗▽0 : ▽1
s2 = ∗▽0 : ▽0
s3 = ∗▽1 : ▽0
s4 = ∗▽1 : ▽1

Table 7.1: Molecular species present in the seed reaction networks.

2006). We also conducted a series of 100 simulation runs to measure in real time

(i.e., in seconds) the growth of the different molecular species. In each of these

independent simulation runs, a single reactor containing the seed reaction network

was executed, with no mutations occurring, until 200 s1 molecules were produced.

Moreover as the nature (i.e., genotype and phenotype) of the molecular species s1,

s2, s3 and s4 is quite similar (i.e., only the symbols 1 and 0 are permuted with each

other in the different molecular species) the variations in reaction rates are negligible

in these simulation runs. In the latter, the growth dynamics of the molecular species

approximately match the deterministic dynamics depicted in Figure 7.2. The end

simulation time was averaged over the 100 runs. This averaged measurement was

then employed to rescale the deterministic time course of the different molecular

species’ growth. This scaling operation is also conducted in the next related Figures

7.6 and 7.7.

In the remainder of this chapter, cellular species are classified by the specific

reaction network contained in the cells. The above collectively autocatalytic reaction

network or cellular species is denoted by c0 and employed as the seed cellular species

in the evolutionary experiment presented in the next section.

7.2.3 Experiment

An evolutionary experiment is presented in which c0 is employed as the seed reaction

network and evolved to promote the growth of sT = s1. A prediction regarding this

experiment is proposed as follows. We may first consider the existence of non-closed

reaction networks that are more efficient than c0 at producing sT . Nevertheless,
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Figure 7.2: Deterministic dynamics of seed closed reaction network, the species S1
and S4 are overlapping (top line). S2 and S3 are similarly overlapping. Time was
rescaled using experimental data.

in such networks, as the production of the molecules species required to generate

sT molecules cannot be maintained through closure, these molecular species would

thus deplete over time. These networks, being not organisationally closed, would

therefore not be able to self-maintain over successive cellular reproductions.

As a result, such non-closed reaction networks would possess a clear selective

disadvantage against c0. We may then predict that c0 cannot be displaced by cellular

species which contain non-closed reaction networks. In other words, if selective

displacements occur, they would necessarily involve novel and organisationally closed

reaction networks.

To test this prediction, an evolutionary experiment is conducted using c0 and

the following set of parameters:

• 31 cells are utilised and executed in parallel using 31 AMD Opteron 270 (2.0

GHZ) CPUs.

• Simulations are run for 3600 seconds.
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• The maximal compartment carrying capacity is nmax = 1.0 × 106.

• The target molecular species division threshold is set to ntarget = 200.

• The maximal species string length is set to BDLmax = 500.

• The global spontaneous mutation rate is set to rmut = 0.

• The per-symbol mutation probability is set to psym = 1.0 × 10−5.

• Each compartment is seeded/initialised with 10 instances of each species s1,

s2, s3 and s4.

• The target molecular species is sT = s1.
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Figure 7.3: Dynamics of dominant cellular species. A spline function was employed
to approximate the different curves.

During this experiment the average number of interactions per cell per hour was

over 4.0 × 107. 1235 different and unique reaction networks were generated due to

molecular and cellular mutations. The latter refer to mutations occurring at the

cell-level which may result from the stochastic nature of cellular divisions (i.e., some

molecular species may not be transferred into the offspring cells, resulting in mutant
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Figure 7.4: Successive displacements that occurred in simulation run 1.

cellular species). In Fig.7.3, we can distinguish that three successive displacements

occurred (Figure7.4). The reaction networks contained in these three consecutive

cellular species are listed in Table 7.2.

c0 c1 c2 c3

s1 = ∗▽0 : ▽1 s1 s1 s1

s2 = ∗▽0 : ▽0 s2 s2 s2

s3 = ∗▽1 : ▽0 s5 = ∗▽⋄ : ▽0 s7 = ∗▽⋄ : ▽△0 s9 = ∗▽△ : ▽0
s4 = ∗▽1 : ▽1 s6 = ∗▽⋄ : ▽1 s8 = ∗▽⋄ : ▽△1 s10 = ∗▽△ : ▽1

Table 7.2: Molecular species contained in successive dominant closed reaction net-
works denoted by c1, c2 and c3.

We first observe that, as predicted earlier, the successive dominant closed reac-

tion networks successfully maintained closure. We first investigate the displacement

that occurred between c0 and c1. We examine the reaction network contained in c1

which is depicted in Figure 7.5. The dynamics of the different molecular species’

growth are shown in Fig.7.6.
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Figure 7.5: Evolved closed reaction network c1 promoting growth of molecular
species s1.

In c1, we note that both species s3 and s4 have been replaced by the new molec-

ular species s5 and s6. These new molecular species increased the total number

of possible reactions from 6 to 9 (see Fig.7.5), suggesting a higher overall catalytic

activity. We compare the dynamics of this evolved closed reaction network against

the seed closed reaction network, see Figure 7.6.

In Figure 7.6, it can be seen that s1 reaches the division threshold at t ≈ 0.155

whereas in the seed closed reaction network s1 attains this threshold at t ≈ 0.280.

By producing the target species s1 at a faster rate, the evolved network gained a

selective advantage over the seed network. The emergence of the molecular species

s5 and s6 had the effect of promoting the growth of s1 whilst maintaining closure.

The network closure properties evolved and permitted the network to promote the

growth of species s1.

Finally Figure 7.7 compares the different growth dynamics of s1 using the differ-
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Figure 7.6: Dynamics of the evolved closed reaction network, the species s5 and s6

are overlapping (middle line), s1 is the top line and s2 is the bottom line. Each
molecular species amount is initialized to 10.
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ent networks and a common initial number of molecules. This comparison highlights

the improvement in the networks’ fitness (i.e., hastened the production of molecular

species sT ).

We now examine the displacements that occurred between c1, c2 and c3. Al-

though the molecular species contained in c1, c2 and c3 are different from a genotypic

point of view, their phenotypes are similar. The symbols ⋄ and △ act in the same

manner when occurring in the condition statement. The symbols △ occurring in

the action statement of c2 are ignored. Moreover, the genotypic differences yield

negligible effects upon the reaction rates (△ and ⋄ are computationally equivalent

and the ignored symbol △ occurring in c2 has little computational impact). As a

result the species contained in c1, c2 and c3 are phenotypically equivalent. These

cellular species are thus likely to possess an equivalent fitness.

This common level of fitness suggests that the displacements that occurred be-

tween the cellular species c1, c2 and c3 are due to drifts. However, the abrupt tran-

sitions between these cellular lineages are symptomatic of selective displacements.

Whereas displacements due to drift dynamics would take place at a slower speed.

All displacements in this simulation run took between 5 and 10 seconds to occur.

According to Figure 7.6, a cell may reproduce at least 6 times per second. At the

population level (× 30 cells), this would increase to 180 cellular reproductions per

second1. If we consider the approximate number of cellular reproductions that may

occur in 5 to 10 seconds (between 800 and 1800) and the relatively small cellular

population size employed (30 cells), then it may be envisaged that drift dynamics, as

proposed by the neutral theory of molecular evolution formulated by Kimura (1983),

only could result in those displacements (which would then appear to be abruptly

occurring due to the employed timescale) between c1, c2 and c3.

1In real experimental conditions, the cellular reproduction rate would usually be higher than
180 reproductions per second as the initial molecular amounts would differ from those employed
in Fig.7.6. Through successive cellular reproductions, the molecular amount distribution may vary
mechanically and lead to a faster reproduction speed, being typically twice faster with an initial
molecular amount of 100 s1 and fewer molecules s2, s5 and s6.
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Also note in Figure 7.4 that these displacement are associated with a relative

increase in the cellular species diversity. This suggests that other cellular species,

which are potentially mutants of the pair of dominant cellular species, may have

contributed to these displacements.

Another possible explanation of those displacements, is that c2 and c3 may have

incrementally increased their capacity to resist against potentially disruptive mu-

tation effects (mutations occurring at both the cellular and molecular level). This

hypothesis, where the networks have improved their robustness (Wagner, 2005),

could be tested in future work where each cellular lineage would be isolated and

examined in details when subjected to mutational perturbations.

Finally with regards to the evolutionary of growth complexity, we note that in

this evolutionary experiment, the number of molecular reactions was increased from

6 to 9 when comparing the seed and evolved reaction networks. Nevertheless the

complexity of the molecular species remains equivalent with an average string length

of 6. Moreover both the seed and evolved reaction networks contain the same number

of molecular species. Although the seed reaction network was successfully evolved

and optimised to achieve the pre-specified task, we did not observe a significant

growth of complexity in this experiment.

10 additional repetitions of the above experiment were conducted and are de-

scribed in Appendix D.3. In four of these runs, we observed the emergence and

domination of either c1 or c3. In four other runs, the emergence of reaction networks

containing the molecular species of either c1 or c3 in addition to some other molecu-

lar species were noted. However these additional molecular species did not improve

the fitness of the cellular species. It is thus conjectured that, given enough time,

these reaction networks would displace these extra molecular species and collapse to

c1 or c3. In the remaining two runs, the emergence of c0 mutants with no phenotypic

differences was observed.
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7.2.4 Conclusion

We introduced a novel cellular division criterion as a means to drive the evolution

of closed reaction networks to accomplish a pre-specified task. The latter was de-

vised to promote the growth of a target molecular species (i.e., signal amplification).

Preliminary experiments, where self-replication reactions were enabled, showed evo-

lutionary dynamics of limited interest with regards to the evolutionary growth of

complexity. We then proposed to conduct further experiments in which we disabled

self-replication reactions. A hand-designed minimalist collectively autocatalytic re-

action network was presented and used as the seed/ancestor network. A series of

evolutionary experiments were conducted in which we identified the common emer-

gence of a “fitter” reaction network. We examined this evolved reaction network

and demonstrated its ability to produce the target species at a faster rate whilst

maintaining closure. Although the seed closed reaction reaction was successfully

evolved and optimised to achieve the pre-specified task, a significant evolutionary

growth of complexity was not observed in this experiment. In the next section, we

extend this work and explore further avenues for evolving closed reaction network

of higher complexity.

7.3 Crosstalk and the evolution of complexity

In Section 7.2 , we successfully evolved a simple signal processing ability in a closed

reaction network using the cellular and parallel implementation of the MCS.bl. This

resulted in the optimisation of a minimalist closed Cellular Information Processing

Network capable of a distinct signal-processing function.

Nevertheless, the previous experiment failed at exhibiting a clear evolutionary

growth of complexity. In this section, we extend this preliminary work on the evolu-

tion of closed reaction networks and intend to evolve networks of higher complexity.

To assist this research on the evolutionary growth of complexity, we examine
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a phenomenon occurring in real biochemical networks: crosstalk. Crosstalk phe-

nomena arise very naturally in such networks due to the fact that molecules from

different signalling pathways may share the same physical reaction space (the cell).

Depending on the relative specificities of the reactions there is then an automatic

potential for any given molecular species to contribute to signal levels in multiple

pathways.

In Section 1.3, we proposed a potential benefit of crosstalk in chemical networks:

Crosstalk is a key mechanism in enabling incremental evolutionary search for more

complex closed reaction networks.

We argue that the above benefit may be achieved through crosstalk by allowing

distinct closed reaction networks to cooperate with each other when occurring in

the same reaction space. We thus propose that crosstalk may enable the merging of

distinct crosstalking closed reaction networks to form a new closed reaction network

of higher complexity.

This work is thus naturally related to the symbiogenesis theory which was orig-

inally postulated by Mereschkowsky (1910). According to this theory, separate

organisms may merge with each other to form new organisms of higher complex-

ity (Margulis, 1981; Margulis and Sagan, 2002). Barricelli was the first to con-

duct computer-based experiments in which symbiogenetic organisms were artificially

evolved (Barricelli, 1957, 1963).

More specifically, the work presented in this chapter is inspired by seminal re-

lated experiments conducted in Alchemy (Fontana and Buss, 1994a). Based on this

preliminary work, we hypothesise that crosstalk enables the cooperation and subse-

quently, the evolutionary growth of complexity of biochemical networks. We develop

further this hypothesis using the MCS.bl.
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7.3.1 Introduction

This investigation on crosstalk and complexity was inspired by specific experiments

carried out by (Fontana and Buss, 1994a) with the Alchemy system. When mixing

two collectively autocatalytic reaction networks (which were obtained from previous

independent experiments) in the same reaction space, two outcomes could be ob-

served according to the level of interaction (i.e., crosstalk) between the two reaction

networks:

1. If no molecular interaction (i.e., no crosstalk) exist between the two networks

then one would displace the other network.

2. If, on the contrary, some molecular interactions occur between the two

crosstalking networks then a “meta” hierarchical closed reaction network

emerges which contains and maintains both seed closed reaction networks.

These observations suggest that crosstalk may be responsible for the emergence of

molecular organisations of higher complexity. To develop further this hypothesis

we extend this seminal investigation using the MCS.bl. However a number of key

differences exist between Alchemy and the MCS.bl:

• Alchemy is based on the λ−calculus formalism, whereas the MCS.bl em-

ploys the broadcast language. Although both agent-based ACs employ term-

rewriting systems, the specification of molecular species and reactions (binding

rules and enzymatic capabilities) varies greatly. For example, there is only a

single level of enzymatic/computational transformation that can be defined in

molecular reactions within the MCS.bl. Whereas in Alchemy, the analogous

maximum number of reduction steps was set to 10000.

• We define mutation operators at both the molecular and cellular level. No

evolutionary operators were specified in Alchemy. In Alchemy the molecular
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diversity resulted from the initial randomly generated molecular population

and subsequent catalytic molecular reactions. The MCS.bl introduces a greater

space exploration of molecular species by implementing molecular mutations.

This molecular and cellular variance allows for evolutionary dynamics to occur

in the MCS.bl.

• Similarly to Alchemy, molecular species may interact and compete with each

others. In addition to this first level of selection we introduced a higher level

of selection: Molecules are contained in multiple reactors (i.e., cells) which are

capable of competing with each others through cellular divisions. As demon-

strated in Chapter 6 this second level of selection was necessary to allow closed

reaction networks to self-maintain in the MCS.bl. As no mutations could occur

in Alchemy, no evolutionary degenerations were observed in this system where

only a single level selection was implemented.

• In our approach we evolve closed reaction networks to carry out pre-specified

tasks. In Alchemy, the reaction networks were not driven to perform any target

functions. Introducing a target task in the MCS.bl affects the implicit fitness

function devised in this system. In addition to performing self-maintenance

(as in Alchemy), closed reaction networks in the MCS.bl have to carry out

a pre-specified task. Both the ability to perform self-maintenance and the

pre-specified task affect the fitness of a given closed reaction network in the

MCS.bl. The fitness landscape in the MCS.bl is thus multi-dimensional where

the dimensions are:

1. The cellular reproduction rate which depends on the ability of the cell to

achieve the target task.

2. The ability to maintain closure which is required to control potentially

disruptive mutational effects. Note that closure properties may them-

selves evolve to better control evolutionary degenerations.
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We now report three series of experiments addressing crosstalk and the evolution-

ary growth of complexity in closed reaction networks. Although these experiments

may be directly related to level 2 organisation experiments conducted in Alchemy,

they partially diverge from the Alchemy experiments as molecular and cellular mu-

tations occur and introduce the potential for evolutionary dynamics. The first and

second series of experiments involve non-crosstalking and crosstalking closed reac-

tion networks respectively. In the first two experiments, only cell-level mutation

applies2. Therefore the diversity of molecular species in these two experiments is

limited. The only molecular species that may appear in the simulation runs, involv-

ing non-crosstalking networks, are the initial molecular species contained in the seed

networks. Molecular-level mutations are disabled to facilitate the comparison with

the Alchemy system in which no mutations were implemented. α being the total

number of molecular species that may appear and ν the number of initial molecular

species, we have α = ν. The crosstalking networks based experiment includes fur-

ther molecular species which may result from novel reactions occurring between the

crosstalking molecular species, therefore α ≤ ν2

2
. Cell-level mutations may produce

mutant cellular species in which only the specific assortment of molecular species

(given this limited set of molecular species) may vary. The third experiment ex-

amines systems of crosstalking closed reaction networks where both cellular and

molecular mutations occur. The potential diversity of molecular species in this final

experimental series is thus significantly increased to α =
∑BDLmax

L=1 |λ|L.

7.3.2 The seed reaction networks

In the following experiments, no self-replication reactions (i.e., reactions in which the

product is syntactically identical to the enzyme and substrate molecules) are allowed

(as was the case in analogous Alchemy experiences). As briefly discussed in Sec-

2Cell-level mutations occur during cellular reproductions where the stochastic distribution of
molecules may result in mutant cells. Cell-level mutations are an inherent feature of the compart-
mentalised MCS.bl and cannot be disabled.
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tion 7.2.1, enabling self-replication would prevent any relatively complex molecular

organisations from emerging. However we showed that the spontaneous emergence

of closed reaction networks was unlikely to occur given a randomly generated pop-

ulation of molecular species. Thus, similarly to Section 7.2, we employ seed closed

reaction networks to initialise the molecular populations in the experiments.

We define the different reaction networks X,Y and Z which are utilised through-

out these series of experiments, see Table 7.3.

X Y Z
s1 = ∗▽00 : ▽01 s5 = ∗▽10 : ▽11 s9 = ∗▽10 : ▽00
s2 = ∗▽00 : ▽00 s6 = ∗▽10 : ▽10 s10 = ▽1 ∗ ▽00 : ▽10
s3 = ∗▽0⋄ : ▽00 s7 = ∗▽1⋄ : ▽10 s11 = ∗▽10 : ▽10
s4 = ∗▽0⋄ : ▽01 s8 = ∗▽1⋄ : ▽11 s12 = ▽1 ∗ ▽00 : ▽00

Table 7.3: Molecular species contained in seed closed reaction networks X, Y and
Z

No molecular species from X interact with any molecular species from Y and

vice versa. X and Y are declared as non-crosstalking reaction networks. The species

s1, s2, s3 and s4 from X may interact with species s9 and s12 from Z, whereas species

s10 and s12 may interact with s2 and s3 from X. X and Z are declared as crosstalking

reaction networks.

X,Y and Z were obtained from previous experiments in which they were evolved

to maximise the production of molecular species s1, s5 and s9 respectively. Fig. 7.8

depicts the bipartite reaction network graphs of networks X,Y and Z. Note that

X and Y possess the same network topology. The number of instances of a given

molecular species sj ∈ S contained in a cell ci ∈ C is denoted as ni
j. All simulations

are run for a pre-defined amount of time tmax = 3600 (seconds in real time) using

thirty AMD Opteron 270 (2.0 GHZ) CPUs.

7.3.3 Non-crosstalking networks

In this first series of experiment, we investigate the dynamics of a system in which

the non-crosstalking closed reaction networks X and Y are used. 30 concurrent cells
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Figure 7.8: Bipartite reaction network graphs of networks X/Y and Z. The topology
of molecular interactions of X and Y are equivalent, e.g., the reaction R4 would
involve the molecular species s2 and s3 in X, whereas R4 would involve the molecular
species s6 and s7 in Y .

are employed and initialised with 10 molecules from each species from both X and

Y .

As previously mentioned, X and Y were evolved to optimise the production of

species s1 and s5 respectively. We devise a new cellular division criterion which ac-

counts for both molecular species. The motivation to this criterion is to encourage

the maintenance of both networks X and Y . Ultimately we aim at evolving/obtain-

ing a more complex network capable of “multitasking”, i.e., a network which is able

to carry out the pre-specified tasks of both X and Y . Therefore, a cell ci divides if

ni
1 ≥ 200 ∧ ni

5 ≥ 200. In this experiment, only mutations at the cellular level occur

(i.e., mutations at the molecular level are excluded at present and α = 8).

Fig. 7.9 depicts the growth of s1 and s5 and number of cellular reproductions

at the cell population level in a single simulation run. Five additional simulation

runs were conducted to explore any significantly differing dynamics. The dynamics
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Figure 7.9: Growth of molecular species s1 and s5 (left) and number of cellular
reproductions (right). Both graphics depict dynamics at the cellular population
level in an example simulation run.

described here were found to be exhibited in all of these runs.

The number of cellular reproductions provides an approximate indication of the

cells’ fitness, i.e., an absence of cellular reproduction would suggest that the cells

are not producing both s1 and s5 sufficiently to trigger their division. In such cases

the cells would thus possess a relatively low fitness.

In Fig.7.9, we first observe an early phase where both the number of s1 and s5

molecules vary between 10000 and 11000. Moreover this phase is associated with

recurrent cellular reproduction events.

At t ≈ 32 we note that the number of s5 is now rapidly increasing, reaching up

to 1.0 × 105 when t ≈ 80 whereas s1 increases up to 5.0 × 104. From t > 400, no

further cellular reproductions occur.

Throughout this simulation run, 12 different and unique reaction networks were

generated due to cell-level mutations. The growth dynamics of these cellular species

are depicted in Fig.7.10.

In this run, we distinguish the following chain of events at the cell population

level (Fig.7.10):

• We note that the early phase 0 ≤ t ≤ 32 mentioned earlier, where repeated

cellular reproductions are observed, is driven only by the cellular species c1
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Figure 7.10: Growth dynamics of the 12 cellular species (left) and saturated cells
(right). The two dominant cellular species, the red and blue curves, are denoted
by c1 and c2 respectively. c1 includes the molecular species from both X and Y ,
c1 = X + Y . Whereas c2 is a mutant cellular species of c1 which does not include
the molecular species s3, c2 = {s1, s2, s4} + Y . All reaction networks contained in
remaining cellular species are subsets of X+Y . A cell ci is considered as “saturated”
if ni

1 > 2000 ∨ ni
5 > 2000.

(which contains both closed reaction networks X and Y ). From t ≥ 32, we

distinguish the emergence of various mutant cellular species which contain

reaction networks being subsets of X + Y . This emergence of mutant species

is associated with the sudden decline in the number of cellular reproductions.

• Moreover we observe that the number of “saturated” cells increases rapidly

when t ≈ 32 which correlates with previous observations reported in Fig. 7.9

where the number of s1 and s5 molecules starts to increase rapidly.

• This cellular saturation suggests that although some c1 cells are still present

(which are capable of producing both molecular species s1 and s5), these cells

are overpopulated/saturated with either species s1 or s5. As a result, this

cellular saturation and the “survival of the common” dynamics (Section 5.1)

occurring here, cause the production rate of s1 and s5 to become highly asym-

metric (as depicted in Fig.7.11).

• When 200 < t < 400 we note that the number of saturated cells decreases,

resulting from the cellular reproduction events occurring sporadically during
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this period (Fig.7.9). Nevertheless, from t > 600 the number of saturated cells

starts to increase again, indicating that either the species s1 or s5 are being

produced despite no further cellular reproductions occur.
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Figure 7.11: Growth of molecular species s1 and s5 in an example cell containing
the network c1 when 24 ≤ t ≤ 80.

A complementary investigation revealed that some of the non-saturated cells con-

tained reaction networks in which no successful reaction could occur. These reaction

networks were essentially composed of target species s1 and s5 only. Therefore no

chemical interaction could occur within these reaction networks which resulted from

cell-level mutations (as defined in Section 6.4.2).

During the successive cellular reproduction events, the numbers of molecules s1

and s5 contained in a given cell increasingly deviated from each other until one

of these two species started to take over the cell. As a result the production rate

of s1 and s5 molecules in the reaction networks (including closed ones) was highly

asymmetric. In such cells saturated by s1 or s5, further divisions (if any) resulted in

offspring cells which were likely to contain a majority of, or only, s1 or s5 molecules.

Such resulting mutant cellular species did not contain all molecular species nec-

essary to maintain closure for both X and Y . As the closure of X and Y was

not maintained in these cells, this consequently penalised the production of further
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molecules s1 or s5. As a result, the cellular division threshold became increasingly

more difficult and ultimately impossible to reach in these cellular lineages.

Although based on a significantly different Artificial Chemistry, these experi-

ments essentially exhibited the same dynamics as in related experiments conducted

in Alchemy: the different reactors were rapidly and quasi-deterministically domi-

nated by one of the seed closed reaction networks. In other words, when two non-

crosstalking closed reaction networks are mixed together, one displaces the other

one.

This above experiment also relates to results obtained with the stochastic correc-

tor model proposed by Szathmary and Demeter (1987). In Szathmary and Deme-

ter’s cellular model, the survival of the cells depended on the concentration of two

distinct self-replicases having differing growth rates. The difference in growth rate

was due to the ability of one the self-replicases to parasite the other one. Cells in

which the concentration of the replicases deviated too importantly from each other

were selected against.

Although major differences exist between our model and Szathmary and Deme-

ter’s one (e.g., we do not employ self-replicase species but collectively autocatalytic

reaction networks each of which possesses an initial common growth rate), these

models share similarities where the survival of the cells depends on the concentra-

tion of two distinct molecular species.

Using the stochastic corrector model, Szathmary and Demeter demonstrated that

multi-level selection in such a cellular model was capable of controlling parasitism.

However the regulation of the degenerative outcomes due to stochastic variations,

occurring during the transmission of molecular species into offspring cells, was pos-

sible only when the number of self-replicases was small. This limitation may be

involved in the current experiment where: 1) 8 distinct molecular species were nec-

essary to maintain closure. 2) The cellular division threshold required 200 molecular

instances of both s1 and s5. This may subsequently have affected the survival of the
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cells over successive cellular divisions.

Therefore, we may argue that given two distinct non-crosstalking collectively

autocatalytic reaction networks containing fewer molecular species and a cellular

division threshold requiring less molecules, the current cellular model would theo-

retically be able to select against cells in which significant deviations occur between

both target molecular species. As a result, this model may potentially regulate the

degenerative effects due to stochastic variations occurring during successive cellular

divisions. However, this hypothesis could not be applicable in Alchemy since the

latter lacks the multi-level selectional regime specific to the MCS.bl and stochastic

corrector model.

7.3.4 Crosstalking networks

We investigate the effects of crosstalking closed reaction networks upon the system’s

dynamics. In this experiment, the cells are initialised with molecular species from the

crosstalking reaction networks X and Z. A cell ci divides if ni
1 ≥ 200∧ni

9 ≥ 200. The

number of molecular species that may appear in the simulation runs is α ≤ 82

2
= 32.

Any other experimental conditions are identical to those described in the previous

section.

Our results showed that the interactions between molecular species from X and

Z led to the production of new molecular species s13, s14, s15 and s16 (which may

engage in novel reactions with existing molecular species). This new cellular species,

denoted as c1, contains both networks X and Z, and presents an increased level of

complexity (the reaction network now contains 12 molecular species and 55 reactions,

see Fig. 7.12). Moreover these c1 cells were able to self-maintain for a sustained

period of time (≈ 400 seconds). This first observation also applied in analogous

experiments conducted in Alchemy, in which a meta-reaction network emerged and

had the ability to self-sustain and maintain both seed closed reaction networks.

However, an additional phenomenon occurred which was not observed in the
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Alchemy system. We distinguish a selective displacement event between c1 and a

new cellular species. In this simulation run, a level of diversity (see Fig. 7.13) was

maintained due to cell-level mutations (27 unique reaction networks appeared during

this run), a feature specific to the MCS.bl. At t ≈ 380 we note the emergence of a

new cellular species, denoted as c2 and shown in Fig. 7.14, which later displaced

c1 at t ≈ 400. During this displacement phase, we note that the cell diversity also

increased suggesting that other cellular species may also have contributed to the

displacement of c1 cells.
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Figure 7.12: Reaction network of cellular species c1 which contains all molecular
species from networks X and Z in addition to new molecular species s13, s14, s15 and
s16.

In Fig. 7.15 we compare the fitness of reaction networks c1 and c2. The fitness of
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Figure 7.13: Cellular species displacement between c1 and c2. The cellular species
diversity refers to the number of different (from a qualitative - topological point of
view) reaction networks present at a given timestep.

a given cell ci is reciprocal of time, where both the condition ni
1 ≥ 200∧ni

9 ≥ 200 and

the necessary time tci
to satisfy this condition are accounted for. With the present

parallel system, as the speed of production of species s1 and s9 increases (augmenting

the reproduction rate of the cell), the fitness of the cell increases accordingly.

We note in Fig. 7.15 that c2 cells produce molecular species s1 and s9 at a faster

rate than c1 cells (i.e., tc2 < tc1). According to our definition of fitness, c2 cells are

fitter than c1 cells. Both the evolved qualitative properties of c2 and the exploitation

of crosstalk led to the maximisation of the production of molecular species s1 and s9.

We also identify this increase in fitness in Fig. 7.16, in which we distinguish a net

increase in the overall cellular reproduction rate following the displacement event.

The multitasking c2 cells were able to self-maintain throughout the entire simulation

while cell-level mutations continued to occur. This clear selective displacement event

occurred as a direct consequence of both:

• The cell-level mutations which increased cellular diversity.
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Figure 7.14: Reaction network present in cellular species c2 in which molecular
species s2, s10 and s12 from c1 are absent.
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• The more elaborate implicit fitness function which affected the fitness land-

scape. This multi-dimensional fitness landscape allowed for an incremental

evolutionary improvement to occur.

The above properties are specific to the MCS.bl and were not present in Alchemy.

As a result, comparable evolutionary dynamics described in this section have not

previously been reported using Fontana and Buss’s system.
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Figure 7.16: Crosstalking networks with no molecular mutation - Dynamics of cel-
lular reproductions and diversity. A spline function was employed to approximate
the number of cellular reproductions and cellular species diversity curves.

We also note that the complexity (i.e., the number of molecular species and

reactions) actually decreased in c2 (9 species and 32 reactions) when compared with

c1 (12 species and 55 reactions). This observation suggests that the increased level of

complexity of c1 did not provide any beneficial features, but on the contrary, reduced

the speed of reproduction (i.e., fitness) of c1. The lower level of complexity of c2 led

to a lower computational cost (and consequently a faster reproduction speed) whilst

maintaining closure. This ultimately provided c2 with a selective advantage over c1.

Finally, as some molecular species from X and Z have been removed in c2, the

latter was thus no longer maintaining the seed original reaction networks X and Z.
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As we cannot identify X and Z in c2, a natural open-question follows: Does c2 still

contain crosstalking closed reaction networks? Such a question could be addressed

if we employ an adequate formalism and identify distinct closed reaction networks

as subsystems in c2. This issue is nevertheless beyond the scope of this investigation

but the reader may find further details in Wolkenhauer and Hofmeyr (2007), where

an abstract cell model is proposed to investigate such issues.

7.3.5 Crosstalking networks with molecular mutations

We finally examine the effects of molecular mutation in systems where the crosstalk-

ing reaction networks X and Z are used. Molecular mutations introduce a higher

level of both molecular and cellular diversity, which may potentially lead to more

complex molecular organisations and richer evolutionary dynamics. Molecular mu-

tations occur with the following probability: psym = 5.0 × 10−5. Complementary

experimental parameters are identical to those presented in Section 7.3.4. Using

these conditions, we conduct an experiment in which we identify the following dis-

tinctive behaviour.

We first note in Fig. 7.17 that the dynamics of the cellular reproduction rate

shares some similarities with analogous dynamics shown in the previous experiment

(Fig. 7.16). Indeed we observe a common early phase where the cellular activity is

approximately equal to 16 cellular reproductions per second, then at t ≈ 250 the

cellular reproduction rate starts to increase. This common early dynamic is driven

by the same cellular species c1 (i.e., the meta-reaction network containing both seed

reaction networks X and Z) which was also able to self-maintain for a period of

time. However due to molecular mutations occurring, a significant difference exists

in the cellular species diversity. Here a higher average level of cellular diversity per

second is observed, being roughly 20 times higher than in the previous experiment,

and is maintained throughout the evolutionary simulation. During this run, 37863

unique reaction networks appeared.

180



 0

 5

 10

 15

 20

 25

 30

 35

 0  500  1000  1500  2000  2500  3000  3500N
um

be
r 

of
 c

el
lu

la
r 

re
pr

od
uc

tio
ns

/c
el

lu
la

r 
sp

ec
ie

s

Time (seconds)

Cellular reproductions
Cellular species diversity

Figure 7.17: Crosstalking networks with molecular mutations - Dynamics of cellular
reproduction rate and diversity when molecular mutations occur. A spline function
was employed to approximate the cellular reproductions and cellular species diversity
curves

In Fig. 7.18, we note that two cellular species displacements occurred at t ≈ 475

and t ≈ 2500. The cellular species c1 is similarly displaced by a mutant cellular

species, denoted by c2 which contains a reaction network that is phenotypically

equivalent to c2 described in previous experiment (Section 7.3.4). The third emer-

gent dominant cellular species is denoted by c3. The cellular species c3 shares an

equivalent level of complexity (containing 13 molecular species and 66 reactions)

with c1 cells.

In addition, it can be observed that the cellular species’ subpopulation rarely

exceeded half of the total population. The dominating cellular species have not

once succeeded at fully displacing the other species for a sustained period of time.

In typical evolutionary simulations it is usually expected to observe incremental

improvements in the species’ fitness. However when comparing the fitness of the dif-

ferent successive dominant cellular species (Fig. 7.19), we note that this incremental

evolutionary improvement did not occur according to our definition of fitness. As
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Figure 7.18: Dynamics of the major cellular species. Only the cellular species which
invaded, at least once, one third of the cellular population during the simulation run
are shown (14 cellular species are plotted).

tc2 < tc3 < tc1 , it may be argued that the cellular species c3 is fitter than c1 and less

fit than c2. We would thus expect the cellular species c2 to be the dominant species

and not c3). Therefore our definition of fitness is unsatisfactory here.

When comparing the overall cellular reproduction rate depicted in Fig. 7.16 and

Fig. 7.19, we identify a roughly equivalent level of cellular reproduction rate (≈22

cellular reproductions per second). This would thus indicate that although c2 are

fitter (producing molecular species s1 and s9 more rapidly) than c3, the latter (or

potentially the cell population as a whole) may have developed other features which

maintained a similar cellular reproduction rate.

The details of these particular evolutionary dynamics remain unclear and have

not been examined within the timeframe of this thesis. Nevertheless we formulate

a number of potential explanations that might merit future investigation:

• Our simplistic view of fitness may not be appropriate in the current exper-

iment. As molecular mutation is now occurring, the cellular species or the

cellular population as a whole may have developed new features to cope with
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Figure 7.19: Comparison of molecular growth of species s1 and s9 in c1, c2 and c3.

negative mutation effects. These features may have enabled the cellular pop-

ulation to maintain a competitive overall cellular reproduction rate while mu-

tations occur. Such features improving the cellular reproduction rate and ro-

bustness (Wagner, 2005) should then be accounted for in the cellular species’

fitness. This reflects the complex multi-level nature of fitness in chemical re-

action networks (Bersini, 2002).

• Our classification of cellular species may not expose the dominant cellular

species adequately. A different classification scheme may be defined which

would be based on some key properties of the cell’s reaction network (and not

only on the molecular species being present in the cell).

• The chaotic nature of the dominant cellular species dynamics (Fig. 7.18)

may also suggest that the observed displacements might not only be due to

selection. This chaotic behaviour may have resulted from the relatively small

cellular population size employed here. This parameter may have increased the

sensitivity of the cellular population to statistical fluctuations. Note that the
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choice of population size was essentially driven the number of CPUs available

in the experimental cluster.

• Finally we note that in the different closed networks employed and evolved in

Appendix D.2, Section 7.2 and in the current section, the number of molec-

ular species necessary to maintain closure was successively increased. When

comparing the dynamics observed in these experiments, we remark that, as

this diversity of molecular species increased, the maintenance and domination

of cellular species became more chaotic. For example, drift dynamics only

appeared in the experiments, conducted in Section 7.2, in which the closed

reaction networks were composed of four distinct molecular species.

We propose that this diversity of molecular species may have been im-

plicated in the different dynamics described in this chapter. Indeed,

Szathmary and Demeter (1987) demonstrated, using the stochastic corrector

model, that variations due to the stochastic transmission of molecular species

during cellular divisions may result in degenerative outcomes (i.e., the cellular

species cannot self-maintain over time) when the number of both the molecular

species and molecules required for the survival of the cells is too important.

If this constraint is in effect implicated in the experiments presented in

this chapter, then dealing with more molecular species and instances (i.e.,

more complex information) would increasingly become more difficult using

the MCS.bl, averting any significant evolutionary growth of complexity. This

would ultimately suggest the limitations of the MCS.bl to encode and process

more complex information using autocatalytic networks only. To overcome

this limit, it may be conjectured that a complementary mechanism enabling

the stable storing and subsequently processing of more complex information

might be required in the current model. A genetic subsystem could for example

address this requirement and potentially lead to the evolution of higher forms
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of digital organisms. This would thus naturally relate to a major evolutionary

transition as proposed by Smith and Szathmáry (1997).

This experiment presented a range of interesting and unexpected issues which

resulted directly from the key differences existing between Alchemy and the

MCS.bl system. Further analytical work using adequate tools such as Organisation

Theory (Dittrich and Speroni, 2007) may also illuminate these complex evolutionary

dynamics.

7.3.6 Conclusion

Inspired by specific experiments related to crosstalk conducted with Alchemy by

Fontana, we investigated a potential constructive role of crosstalk: To allow distinct

closed reaction networks to cooperate with each other when occurring in the same

reaction space. This cooperation would then lead to the emergence of molecular

organisations of higher structural and functional complexity. We indicated the sim-

ilarities and key differences between the Alchemy system and the MCS.bl. Three

series of experiments were then detailed:

1. Two non-crosstalking closed reaction networks were employed. Although sig-

nificant differences exist between the MCS.bl and Alchemy, we essentially iden-

tified a similar behaviour: one reaction network would displace the other.

2. Two crosstalking closed reaction networks were utilised. We first noted a

phenomenon (which also occurred in the corresponding Alchemy experiments),

in which a meta-reaction network emerged and contained both seed closed-

reaction networks. This new cellular species was able to self-maintain for

a sustained period of time. However a second phenomenon occurred (which

was not observed in Alchemy), in which a selective displacement took place. A

mutant cellular species emerged and displaced the meta-reaction network. This

mutant cellular species was no longer maintaining the seed reaction networks
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but was in fact fitter at performing the pre-specified tasks. This resulted in

a faster cellular reproduction rate which provided the mutant species with a

selective advantage.

3. Two crosstalking closed reaction networks were used and molecular mutations

were applied. We identified a common selective displacement as reported in

previous experiment. However an additional cellular species displacement was

observed and presented evolutionary dynamics which are not fully understood.

We discussed some of the possible pitfalls of our analysis and outlined potential

explanations.

These experiments demonstrated the constructive role of crosstalk in enabling co-

operation to occur between closed reaction networks. The evolutionary process was

also able to optimise the reaction networks and their crosstalk properties to carry

out the pre-defined multitask function.

The resulting evolved networks presented a higher level of functional and struc-

tural complexity which supports our initial hypothesis: Crosstalk is a key mechanism

enabling the evolutionary growth of complexity in biochemical networks. More pre-

cisely, crosstalk enabled the symbiogenesis of separate closed reaction networks to

occur, leading to the emergence of novel closed reaction networks of higher com-

plexity. However future work remains necessary as the final series of experiments

presented very complicated and difficult to interpret evolutionary dynamics.

7.4 Summary

Using the extended version of the MCS.bl where a cellular model is employed, we

conducted a series of experiments focusing on the evolution of closed reaction net-

works to carry out pre-specified information processing tasks. We first presented

a simple experiment in which a closed reaction network was evolved to perform a

signal amplification function. Following this, we extended this work and examined
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networks of higher complexity. We hypothesised the constructive role of crosstalk

to allow the evolution of more complex closed reaction networks. This work was

inspired by the symbiogenesis theory and preliminary experiments conducted by

Fontana and Buss. We demonstrated that crosstalk was in fact necessary for the

cooperation of distinct closed reaction networks. This cooperation subsequently

permitted the evolutionary growth of complexity of crosstalking closed reaction net-

works. This chapter demonstrated the possibility of evolving closed reaction network

which are capable of performing information processing tasks.
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Chapter 8

Conclusion

This final chapter first summarises and discusses the research contributions of this

thesis. Following this, future work that has been identified to extend the work

reported in this thesis is outlined.

8.1 Research contributions

The research contributions of this thesis are summarised and discussed as follows:

• Modelling chemical reaction networks: A state of the art review on compu-

tational techniques applied to the modelling of chemical networks was pro-

posed. Several families of modelling techniques were distinguished: determin-

istic, stochastic, probabilistic, algebraic and agent-based techniques. For each

of these modelling approaches, specific techniques were individually presented

and evaluated. A comparison table was provided to highlight the strengths

and weaknesses of the different approaches. This evaluation showed that al-

gebraic and agent-based techniques, both families originating from the field

of computer science, are the most flexible modelling techniques. This flex-

ibility is essentially due to the high descriptive power of these techniques

which allows one to model the hierarchical and intricate nature of chemi-

cal networks and molecular species. Moreover, transformation techniques and

standardised formats (i.e., SBML, CellML) permit the partial translation of
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algebraic/agent-based models into deterministic ones. The latter complements

the range of analysis that can be conducted given an original algebraic/agent-

based model. Although deterministic and stochastic approaches remain the

most employed techniques within the modelling community, the rapidly grow-

ing field of algebraic/agent-based modelling suggests the limitations of tradi-

tional techniques and the need for flexible and more accurate modelling tools.

• Evolving Cellular Information Processing Networks: A review on evolution-

ary techniques applied to the evolution of organisationally closed Cellular In-

formation Processing Networks (CIPNs) was presented. Although no meth-

ods directly applied to evolving closed CIPNs were identified, two comple-

mentary and indirectly related families of evolutionary methods were distin-

guished: top-down/Evolutionary Computation (EC) techniques and bottom-

up/Artificial Chemistry (AC) approaches. Individual techniques from both

evolutionary approaches were selected, presented and evaluated. In terms

of realising and evolving computational functions using reaction networks,

this evaluation showed that EC techniques have successfully demonstrated

the feasibility of evolving chemical networks to perform computational func-

tions. Nevertheless no EC techniques have to date addressed closure and

self-organisation dynamics in chemical networks. On the other hand, we

showed that ACs have extensively been used to examine the emergence, self-

maintenance and evolution of closed reaction networks with little focus on

signal-processing capabilities.

A comparison of both complementary evolutionary approaches was conducted.

This comparison identified the explicit definition of fitness functions as the

major drawback of EC techniques. Explicit fitness functions constrain the

evolutionary process and prevent, by design, an open-ended evolution from

occurring. Moreover such explicit fitness functions determine the genotype-
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/phenotype mapping which ultimately defines the complexity/hardness of the

EC algorithm. As a result the quality of evolved solutions is dependent on the

specific design of the employed EC algorithm.

Our evaluation suggested that AC approaches are adequate to evolve CIPNs

as these methods rely on implicit fitness functions. In ACs, agents determine

by themselves their own fitness and collectively determine the system’s fitness

as a whole. Although no ACs have so far demonstrated an open-ended evo-

lutionary growth of complexity, as occurring in the biosphere, we concluded

that agent-based AC methods are a suitable technique to study the evolution

of organisationally closed CIPNs.

• Evolutionary simulation platform: A novel simulation platform capable of

evolving organisationally closed reaction networks was implemented. This

stochastic agent-based system termed the MCS.bl employs the Holland broad-

cast language to specify the molecular reaction and species. The novelty of

this string-based Artificial Chemistry relies on the use of the broadcast lan-

guage which addresses the reflexive nature of molecular species regarded here

as condition/action rules. Since Holland’s original proposal in the 1970s, no

studies on the broadcast language formalism have been reported in the liter-

ature. The work presented in this thesis and related publications constitute

the first published evaluation of the broadcast language.

Prior to the development of the MCS.bl, an implementation of the original

broadcast language was also conducted. This system is the first publicly avail-

able implementation of the broadcast language and may assist in the evalua-

tion of the broadcast language in allied fields (e.g., Genetic Programming and

Genetic Algorithms).

• Emergence and self-maintenance of closed reaction networks: A first series of

experiments was conducted focusing on the spontaneous emergence and self-
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maintenance of closed reaction networks in the MCS.bl. These experiments

first demonstrated the role of binding specificity in the dynamics of repli-

case species. This binding specificity affected the capability of the replicases

to displace other molecular species. Although this property may have been

previously implicated in the dynamics of a variety of ACs, it has not been

explicitly exposed in the manner presented in these experiments.

Additional evolutionary experiments suggested that the spontaneous emer-

gence of autocatalytic species/organisations, being able to self-maintain in the

MCS.bl, was unlikely to occur. We suggested a number of factors which may

have contributed to this phenomenon which has also been reported in other

ACs such as Tierra. These experiments provided supplementary insights on

the potential conditions necessary for the spontaneous emergence and self-

maintenance of closed reaction networks in ACs.

Following the Tierra system, further evolutionary experiments were conducted

in which an ancestor species was employed. These experiments presented

unexpected evolutionary dynamics in which a degenerative elongation catas-

trophe phenomenon was identified. This phenomenon was due to a form of

parasitism which prevented replicase species from self-maintaining over time.

These results indicated counter-intuitive outcomes when compared with the

evolutionary dynamics reported in other ACs.

These results are potentially artefacts of the broadcast language which could

have been avoided by utilising a different AC. Nevertheless this remains hy-

pothetical as these degenerative evolutionary dynamics may be due to specific

system properties which were desired in this project (e.g., variable molecular

length, reflexive structure, pattern matching based reaction scheme).

• Evolutionary capability in multi-level selectional models: A parallel implemen-

tation of the MCS.bl using distributed computing facilities was conducted.
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This extended MCS.bl addressed the concurrent nature of chemical processes

and introduced compartmentalisation and multi-level selection. Using this

novel version of the MCS.bl, two model variants were evaluated to improve the

system’s evolutionary capability and prevent the degenerative evolutionary

phenomena from occurring.

The first model explored the effects of molecular diffusion between static reac-

tors. This model was inspired by the analytical study conducted by McCaskill

et al. which demonstrated that such a model, according to a range of parame-

ters, can stabilise the self-maintenance of closed reaction networks when sub-

jected to disruptive parasitic effects. A series of evolutionary simulations was

conducted using a limited range of parameters where the molecular diffusion

coefficient was varied. Our results indicated that the elongation catastrophe

phenomenon could not be averted in any of these simulations. Although these

results suggest that molecular diffusion cannot control the degenerative effects

due to parasitism, we cannot infer that there exists (or not) a range of pa-

rameters that could provide the autocatalytic species with resistance against

parasites in the MCS.bl. These results highlighted the limitations of agent-

based systems that are not analytically tractable.

Following this, a cellular model where compartments/cells can grow and di-

vide was evaluated. Similarly to previous experiments, only a limited range of

parameters was examined in which the mutation rate was varied. These evolu-

tionary experiments demonstrated that a mutation rate threshold exists where

the parasitic effects can be controlled. Moreover, the introduction of chemi-

cal kinetics (due to the parallel nature of the model) improved the system’s

robustness and evolutionary capability in particular cases.

Both experimental investigations provide complementary insights on the po-

tential effects of compartmentalisation over evolutionary capability in Artificial
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Chemistries. As no analytically tractable method is currently available for the

examination of complex ACs, such empirical investigations are necessary and

may provide guidance on the construction and analysis of future evolutionary

systems.

• Evolution of closed reaction networks: Using the cellular model of the MCS.bl,

further evolutionary experiments were conducted. To drive the evolution of

the closed reaction networks, a novel and simple cellular division criterion

was introduced. A series of evolutionary experiments was performed in which

self-replication reactions were disabled. The target objective of the reaction

networks was to promote/amplify a designated molecular species/signal. The

modification of the cellular division criterion affected the fitness landscape

which became multi-dimensional. The reaction networks’ fitness was deter-

mined by their ability to both maintain closure and to amplify the production

of target species. In these experiments, we observed the evolution of reaction

networks in which the ability to grow the target molecular species was en-

hanced whilst maintaining closure. These results indicated the feasibility of

evolving closed reaction network to perform pre-specified information process-

ing tasks. To our knowledge, this work is the first attempt to evolve closed

reaction networks capable of distinct information processing functions to be

reported in the literature.

• Crosstalk and the evolution of complexity: The role of crosstalk in closed re-

action networks was investigated. Inspired by the symbiogenesis theory and

preliminary experiments conducted by Fontana and Buss, three series of evo-

lutionary experiments were conducted to explore the effects of crosstalk on the

evolutionary growth of complexity in closed reaction networks. In these evolu-

tionary experiments, the cellular division criterion was modified to account for

the pre-specified functions of both seed reaction networks. These experiments
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thus aimed at evolving multitasking reaction networks. In the first two series

of experiments, only cell-level mutations occurred.

We first examined the dynamics of non-crosstalking closed reaction networks

when mixed in the same reaction space. Although significant differences be-

tween the MCS.bl and Alchemy were identified, a common phenomenon was

observed: Non-crosstalking closed reaction networks cannot cooperate and

would quasi-deterministically displace each other.

In the second experiment, crosstalking closed reaction networks were exam-

ined. First observed was a phenomenon which also occurred in the analo-

gous Alchemy experiments. A meta-reaction network emerged which con-

tained both seed closed-reaction networks. This cellular species was able to

self-maintain for a sustained period of time. However a second phenomenon

occurred (which was not reported in any Alchemy-based studies), in which a

selective displacement took place. A mutant cell emerged and displaced the

meta-reaction network species. This mutant cellular species was no longer

maintaining both seed reaction networks but was in fact fitter at performing

the pre-specified tasks. The emergence of this mutant cell was due to variations

introduced by cell-level mutations.

Finally, the third experiment extended the previous one by introducing mu-

tations at the molecular level. A common selective displacement reported in

the previous experiment was observed. However additional cellular species

displacements were also observed and presented evolutionary dynamics which

have not been fully understood. We discussed some of the possible pitfalls of

our analysis and outlined potential explanations which may be addressed in

future work.

These experiments demonstrated that crosstalk was necessary in enabling co-

operation to occur between distinct closed reaction networks. The evolution-
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ary process was also able to optimise the reaction networks and their crosstalk

properties to carry out the objective multitask function. These evolved reac-

tion networks presented a higher level of functional and structural complexity.

These experiments suggest the constructive role of crosstalk to contribute to

the evolutionary growth of complexity in CIPNs.

• The open-ended evolutionary growth of complexity: Our evolutionary experi-

ments demonstrated the feasibility to evolve organisationally closed CIPNs to

achieve pre-specified information processing tasks. Through this evolutionary

process, we observed a relative growth of complexity in CIPNs. More par-

ticularly, the crosstalk based experiments suggested an interesting avenue of

research in investigating the evolutionary growth of complexity in biochemical

networks.

Nevertheless, when compared with the evolutionary dynamics reported in

other ACs such as Tierra or Avida, a significant difference exists in terms

of the evolutionary growth of complexity. Where Tierra exhibited numerous

complex emerging phenomena (Section 3.3.3), our MCS.bl based experiments

hardly presented any comparable evolutionary dynamics at both the molecular

and population/system levels.

As discussed earlier, a potential reason for this limitation is the specification

of the broadcast language which may not provide a robust method to support

evolvability. Future work may illuminate on these system properties which are

critical to the realisation of an open-ended evolutionary system.

In the following section, we outline and discuss future research directions that

may further develop some of the above contributions.
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8.2 Future work

To extend the work reported in this thesis, two axes of research have been identified

and are developed as follows:

1. Building a better analytical and theoretical framework: The experi-

mental work conducted in this thesis presented unexpected and complex evo-

lutionary dynamics that have not been fully understood (e.g., Section 5.5 and

7.3.5). These observations highlight the lack of appropriate analytical and

theoretical tools which limits the study of Artificial Chemistries and, more

generally, Complex Adaptive Systems (CAS). Several directions are suggested

to address these limitations.

(a) A formal Artificial Life: Future work would benefit from further theoret-

ical research such as the development of a formal method for the study

of ACs. Employing a common/unified formal framework may enable one

to compare differing ACs or to map a given AC into another one. Expos-

ing the common properties or differences may suggest potential research

directions for examining and understanding the effects of specific AC fea-

tures (e.g., molecular folding, space, etc.) upon the system’s evolutionary

dynamics. Such a formal approach could be addressed by extending the

AC formalism to account for further molecular and environmental prop-

erties.

(b) Developing analytical frameworks: Developing and extending analytically

tractable models such as McCaskill et al.’s may provide a valuable tool

for evaluating ACs. As discussed in Section 6.3, major differences existed

between the MCS.bl and McCaskill et al.’s model. Extending the lat-

ter with a richer repertoire of molecular species and reactions may offer

a critical tool for predicting evolutionary dynamics in ACs. Although
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this extension may constitute an intricate and tedious enterprise, such a

mathematical approach remains a key tool to examine complex chemi-

cal systems. Chemical organisation theory is another promising research

avenue which was initiated by Fontana and Buss (1994a) and later en-

riched by Dittrich and Speroni (2007). This algebraic approach proposes

a theoretical foundation to describe closed chemical organisations and

their dynamics. Organisation theory could thus be naturally employed

to examine the MCS.bl’s evolutionary dynamics. Such “conventional”

mathematical techniques may assist in the analysis and understanding of

complex chemical organisations using ACs.

2. Examining the conditions for the evolutionary growth of complexity

in CIPNs: We propose a number of system modifications that could lead to

the emergence and evolution of CIPNs of higher complexity. This proposed

research direction aims at understanding the conditions for the evolutionary

growth of complexity in CIPNs.

(a) Cellular division criteria: In Chapter 7, two simple cellular division cri-

teria were devised in which the objective was to promote the production

of specific molecular species. Further cellular division criteria could be

designed to investigate the emergence of more complex information pro-

cessing functions. For example, the conditions to trigger the cellular di-

vision could be dynamic. In this proposal, the cellular division criterion

may vary according to the states of several molecular species. Similarly

to experiments conducted in Chapter 7, a cell divides if ntarget molecules

of species sT are produced. However this condition is here modulated by

the presence of an additional species ssw acting as a switch operator. An

additional target species sU is identified. When ssw is present in a given

cell, the latter has to generate ntarget sU molecules to trigger the cellu-
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lar division. If ssw is not present, the cellular division criterion remains

the production of ntarget molecules sT . The insertion and removal of

ssw species are carried out manually over time. The evolutionary process

may encourage the emergence of cellular species which are able to rapidly

process this switching condition and promote the growth of appropriate

target species. A cellular division probability can also be introduced to

specify further constraints, e.g., to penalise cellular species which simul-

taneously promote the growth of both target species sT and sU regardless

of ssw being present or not.

(b) Detectors and effectors: Following Holland’s LCS/agent-based approach

(Section 2.2.8), introducing a set of detectors and effectors is proposed to

encourage the emergence of a chemotactic behaviour. In this extended

MCS.bl model, cells are situated in a two-dimensional space in which de-

tectors may probe the cell’s surrounding environment for chemicals. De-

tectors and effectors are implemented as broadcast devices that, similarly

to molecular species, may be subjected to evolution. The environment

is populated with gradients of food molecules (again specified as broad-

cast devices) that are necessary for the cells to grow and divide; this

growth condition is addressed by the cellular division criterion. Upon

detecting the required food species, detectors generate signalling molec-

ular species within the cell. In contrast to detectors, effectors do not

produce further molecular species upon binding to signalling species. In

this chemotactic model, effectors may activate “flagella” which affect the

cell’s movement in space. The flagella’s actions vary according to the

nature of the effectors’s action statement (a coding scheme is devised to

specify this function). Such an extended MCS.bl model may potentially

give rise to the emergence of regulatory/control feedback which is dis-

tinctive of the bacterial chemotaxis signalling pathway. In this approach,
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a clear input/output signal demarcation is introduced by the detectors

and effectors.

Additional more “realistic” properties such as mass conservation, molecular fold-

ing, a genetic subsystem or advanced chemical kinetics could be introduced. These

complementary properties would certainly broaden the complexity of an already dif-

ficult investigation. However there would be no guarantee of improved results, i.e.,

exhibiting a more interesting evolutionary growth of complexity. A first reason for

this assertion is that the impact of environmental constraints on the evolution of

complexity still remains to date an open question (Gershenson and Lenaerts, 2008).

Moreover, developing a unified theoretical framework may simply not be feasible

using mathematical methods that are currently available. As a result we believe

that further empirical investigations need to be performed to assemble a set of

key observations. By integrating these observations we may be able to formulate

further theories with regards to the evolution of complexity in CAS. Nevertheless

this development will only be feasible if the employed models are not burdened with

unnecessary complex features which may distract and prevent the thorough analysis

of CAS.

Therefore we suggest that minimalist approaches to CAS, where the system

is still analytically tractable and examined using available mathematical methods,

should be adopted. In keeping with this final suggestion, our thesis contributed, to

some extent, to the understanding of the evolutionary growth of complexity of CAS

using ACs.

8.3 Summary

In this concluding chapter, we summarised and discussed the main research con-

tributions of this thesis with regards to autocatalytic closure and the evolution of

CIPNs. Following this, we enumerated a number of future directions that may di-
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rectly extend the work presented in this thesis. A series of system modifications

was proposed to encourage the evolutionary growth of complexity in the MCS.bl.

Additional proposed research investigations advocated the development of further

analytical and theoretical frameworks to study Complex Adaptive Systems. However

we also mentioned that the development of such a theoretical foundation may not

be feasible given the mathematical methods currently available and the complexity

of studied systems. We consequently and finally argued that supplementary empir-

ical investigations should be conducted using minimalist and analytically tractable

approaches to examine CAS. Such minimalist CAS approaches, as the one presented

in this thesis, may facilitate the comparison and analysis of differing systems and

lead to the formulation of critical theories in the field of complex systems.
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Appendix B

Simplifying the broadcast language

The original broadcast language, as devised by Holland (1975, 1992a), differs from

the MCS.bl by including the following and additional system properties. The broad-

cast language alphabet Λ contains ten symbols, Λ∗ is the set of strings over Λ. The

symbols constitute the atomic elements of the language.

Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′}

Broadcast units

Four types of broadcast unit can be distinguished, any other broadcast units that do

not follow one of those four schemes are null units. An arbitrary string from Λ∗ which

contains neither unquoted ∗ nor unquoted : is denoted by In, with n = {1, 2, 3}.

Broadcast units may engage in the following interactions based on discrete timesteps:

1. ∗I1 : I2

If a signal of type I1 is detected at time t then the signal I2 is broadcast at

time t + 1.

2. ∗ : I1 : I2

If there is no signal of type I1 present at time t then the signal I2 is broadcast

at time t + 1.
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3. ∗I1 :: I2

If a signal of type I1 is detected at time t then a persistent string (preceded

by the p symbol) of type I2 (if any) is removed from the environment at the

end of time t.

4. ∗I1 : I2 : I3

If a signal of type I1 and a signal of type I2 are both present at time t then the

signal I3 is broadcast at same time t unless the string I3 contains unquoted

symbols {▽,H,△} or singly quoted occurrence of ∗, in which case the string

I3 is broadcast at time t + 1.

For broadcast units of type 1 and 2, the string I2 refers to the output signal. Whereas

I1 is said to be a broadcast unit argument, and this applies to any types of broad-

cast unit. Nevertheless, we also have additional broadcast unit arguments I2 for

broadcast units of type 3 and 4. Finally, in the case of type 4 broadcast unit, I3

corresponds to the output signal.

When a broadcast unit of type 2 is fired at time t, this implies the deletion

of a persistent signal. Persistent signals include signals starting with an unquoted

occurrence of p but also active broadcast devices.

Also when an output signal is interpreted for broadcast, one quote is removed

from each quoted symbol. This allows one to use the quote symbol to “protect”

special symbols to be passed into the output signal. A broadcast unit may broadcast

only once at each time step.

The symbols

The interpretation of the symbols {H, p} is now presented.

H This symbol is similar to ▽ but can concatenate different input signals.

For example, with S(t) = {∗10▽ : 11H : 000▽H, 10111, 1100} we obtain at

t + 1: S(t + 1) = {∗10▽ : 11H : 000▽H, 10111, 1100, 00011100}. In this case ▽
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designates the suffix 111 occurring in the input signal 10111 and H designates

the suffix 00 found in the detected signal 1100. The format of the broadcast

signal is 000▽H, therefore we replace and concatenate ▽ and H accordingly

and we obtain the output signal 00011100.

p When this symbol occurs at the first position of a string, it designates a

persistent string which persists over time until deleted even if the string is

not an active broadcast unit. A null device occurring at time t which is not

persistent exists only for a single timestep and is removed at the end of time

t.

The modifications

It was demonstrated that the broadcast language can model Genetic Regulatory

Networks (Decraene et al., 2007b). This was due to the ability of the broadcast

language to mirror Boolean networks which illustrates the wide ranging processing

power that broadcast systems are capable of. Nevertheless, it was also highlighted

that the broadcast language is limited regarding the representation and simulation

of biochemical networks. To address this issue, we propose to combine the Molcu-

lar Classifier System concept with the broadcast language in a new system termed

MCS.bl. The MCS.bl complements the broadcast language and extends it by in-

cluding the following refinements:

• Instead of processing all broadcast devices sequentially and deterministically

during a time step, the MCS.bl processes as follows: At each time step t, we

pick a pair of broadcast devices at random. For each pair of devices, one of

the broadcast devices is designated (at random) as the enzyme device and the

second one as the substrate device. If the conditional statement of the enzyme

device is satisfied by the informational string of the substrate device, then the

action statement of the enzyme is executed upon the substrate.
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• In the broadcast language specification given by Holland, additional rules were

required to resolve some ambiguities raised by the interpretation of broadcast

devices. To facilitate this, the MCS.bl simplifies the interpretation of broadcast

units by preserving broadcast units of type 1 only (i.e., we remove broadcast

units of type 2, 3 and 4).

• The “black reversed triangle” H is removed. This symbol was used to concate-

nate matched strings occurring in type 4 broadcast units. As type 4 broadcast

units are removed, this symbol may no longer function.

• Similarly the notion of non-persistent devices is removed: By default all broad-

cast devices are considered as persistent molecules. Therefore the p symbol is

removed.

• As type 3 broadcast units and non-persistent devices no longer exist in this

proposal, no molecule can be deleted from the population. However the dele-

tion/dilution of molecules is needed to obtain a selective mechanism at the

molecular level. Our suggestion is as follows, each time a successful reaction

occurs, we pick a molecule at random and delete it from the population.
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Appendix C

Static Reactors with Molecular Diffusion - Results

We describe three series of experiment (where 5 simulations were run in each series)

in which the static reactors model with molecular diffusion is employed (Section

6.3). The following diffusion coefficients are employed: m1 = 0.01, m2 = 0.05 and

m3 = 0.1 in respective series.

The following set of fixed parameters is utilised in all simulations:

• 30 compartments are utilised and executed in parallel using 30 AMD Opteron

270 (2.0 GHZ) CPUs.

• Experiments are run for 3600 seconds.

• The maximal compartment carrying capacity is nmax = 1000.

• The diffusion probability is set to pm = 0.05.

• The spontaneous decay probability is set to d = 0.1.

• Similarly to experiences conducted in Chapter 5, the maximal species string

length is set to BDLmax = 500.

• The per-symbol mutation is set to psym = 1.0 × 10−5.

• The global spontaneous mutation rate is set to rmut = 0.
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• As in the evolutionary experiments presented in Section 5.5, each compartment

is seeded/initialised with sR4
= ▽0101 : ▽0101 molecular species. However the

initial amount differs, we seed/fill the compartments with 1000 instances of

sR4
species.

We present an overview of the dynamics of all simulation runs where the diffusion

coefficient is set to m1 = 0.01, m2 = 0.05 and m3 = 0.1. The following chain of

events were observed in all runs:

1. We note an initial phase where the system is stable with an average species

length of 12 symbols (i.e., the length of sR4
species) and the average population

size stagnating at nearly 1000 molecules. Most compartments are thus full

during this phase (i.e., the molecular production rate is higher than the decay

rate).

2. However at some stage, we note that the average length of species starts to

increase rapidly. This behaviour suggests that the elongation phenomenon is

occurring.

3. Shortly after, we observe a rapid decrease in the average population size

throughout the 30 compartments. This indicates that the production rate has

now become smaller than the decay rate, i.e., the compartments are depleting.

4. Nevertheless this decrease does not apply to the species length which continues

to increase for a period of time, where the species reach a peak in string length.

During this period, successive species having an increasing length emerged and

displaced each others. As a result we observe a linear increase in the average

species length throughout all compartments.

5. Following the observed peak in the species length, the average species length

is then rapidly decreasing (similarly to the average population size) until the

system becomes extinct, i.e., all molecules have decayed.
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Figures C.2 and C.3 complement the current analysis by providing more detailed

information about the dynamics of each compartment when m1 = 0.01:

1. During the early stable phase, we note that the molecular string length is

relatively homogeneous throughout the 30 compartments with little variance

occurring. This assertion applies for both the average population size and

species string length.

2. Following this, we observe a divergence in the composition of the compartments

(i.e., compartments with different population sizes exist). This variance is

maintained until close to the end of the extinction phase.

3. Although the composition of compartments start diverging at some point in

time, the average species length (which is globally increasing) is more or less

homogeneous throughout the compartments for a period of time. Thus during

this phase, the mutant species (here classified by their string length) are well

diffused throughout the compartments. However as the average molecular

population size is already decreasing, it indicates that these mutant species

have a production rate lower than the decay rate.

4. Finally, a significant range of variances is observed in the species string length.

This phenomenon suggests that only few reactions leading to the creation of

much longer species are succeeding in some compartments.

Figures C.5 and C.6 detail the extinction phases of the simulation runs with

m2 = 0.05 whereas the extinction phases of the runs with m3 = 0.1 are depicted in

Figures C.8 and C.9. In these figures, we distinguish that the range of variances in

the average molecular population size actually decreases in constrast to the increase

trend reported earlier in the first experiment where m1 = 0.01. Little variance

of average molecular string length is observed over the whole simulation runs ex-

cepting during a few seconds where the systems collapse. These results suggest that
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higher diffusion coefficients allowed for the diffusion equilibrium to be achieved more

rapidly. Consequently we identify a homogeneous molecular composition throughout

all compartments over time.

C.1 5 example simulations with diffusion coefficient m1 = 0.01
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Figure C.1: 5 example simulations with m1 = 0.01.
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Figure C.2: Extinction phases of simulation runs 1, 2 and 3 - from top to bottom,
with diffusion coefficient m1 = 0.01.
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Figure C.3: Extinction phases of simulation runs 4 and 5 with diffusion coefficient
m1 = 0.01.
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C.2 5 example simulations with diffusion coefficient m2 = 0.05
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Figure C.4: 5 example simulations with m2 = 0.01.
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Figure C.5: Extinction phases of simulation runs 1,2 and 3 with diffusion coefficient
m2 = 0.05.
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Figure C.6: Extinction phases of simulation runs 4 and 5 with diffusion coefficient
m2 = 0.05.
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C.3 5 example simulations with diffusion coefficient m3 = 0.1
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Figure C.7: 5 example simulations with m3 = 0.1.
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Figure C.8: Extinction phases of simulation runs 1,2 and 3 with diffusion coefficient
m3 = 0.1.
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Figure C.9: Extinction phases of simulation runs 4 and 5 with diffusion coefficient
m3 = 0.1.
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Appendix D

Evolving Closed Reaction Networks - Results

A series of experiments are reported in which closed reaction networks are evolved

to promote the growth of a target species st.

D.1 Two example simulation runs with self-replication reac-

tions enabled

Two evolutionary simulations are conducted and utilise the following set of param-

eters:

• 30 cells are utilised and executed in parallel using 31 AMD Opteron 270 (2.0

GHZ) CPUs.

• self-replications reactions are allowed.

• Simulations are run for 3600 seconds.

• The maximal compartment carrying capacity is nmax = ∞.

• The target molecular species division threshold is set to ntarget = 200.

• The maximal species string length is set to BDLmax = 500.

• The global spontaneous mutation rate is set to rmut = 0.
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• The per-symbol mutation probability is set to psym = 0.00005.

• Each compartment is seeded/initialised with 10 instances of the species s1.

• The target molecular species is st = s1.

All reactors are seeded with a common closed reaction network which contains the

species s1 only (Fig.D.1).

s1

R1

Figure D.1: Bipartite reaction graph of seed closed reaction network containing the
self-replicase species s1 only.
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Figure D.2: Example simulation runs 1 (left) and 2 (right)

In Fig. D.2, it is first observed that no displacement occurred in both simulations.

A level of cellular species diversity is observed averaging at ≈ 5 throughout the

simulation runs. The seed closed reaction network remained the dominant cellular

species throughout the simulations.
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D.2 Constructing a minimalist collectively autocatalytic reac-

tion network

In this section we present the construction of a minimalist collectively autocatalytic

reaction network. We aim at realising the simplest collectively reaction network in

terms of complexity at both the molecular (i.e., using the shortest molecular species)

and network level (i.e., involving the least number of species and interactions between

the latter). In this reaction network, no self-replication reaction may occur.

We showed that the simplest autocatalytic species that can be built in the

MCS.bl is sR0
= ∗▽ : ▽. Indeed the length of sR0

is equal to BDLmin and ▽ is

the only single enzymatic operator that can both match and output multiple char-

acters (as required to produce an enzymatic molecule having at least 4 symbols).

As self-replication reactions are now disabled then the minimalist closed reaction

network would thus contain at least two distinct molecular species. Both of these

molecular species would mutually contribute to the maintenance of each other. We

first attempt to build such a closed network composed of two distinct molecular

species denoted by s1 and s2.

In this first attempt, s1=sR0
. The second molecular species s2 is required to be

as well a replicase species being able to replicate s1. Therefore, in this minimalist

approach, s2 is to be equivalent to s1 from a enzymatic function point of view with

s2 = ∗▽ : ▽ as a starting point. Nevertheless as we cannot decrease the length of

s2, an additional symbol is to be inserted to differ s2 from s1.

If we insert an executable symbol in the binding condition or action statement

of s2, excluding the structural symbols * or : and the quote symbol as this would

inhibit the s2’s enzymatic function, then we would obtain an elongator or “reductor”

species which by definition cannot replicate s1.
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For example:

∗′ ▽0 : ▽ + ∗▽ : ▽ → ∅ (D.1)

∗▽0 :′ ▽ + ∗▽ : ▽ → ∅ (D.2)

∗ ⋄ ▽0 : ▽ + ∗▽ : ▽ → ▽ : ▽ (D.3)

∗▽0 : ⋄▽ + ∗▽ : ▽ → ∗▽ : ⋄▽ (D.4)

As a result we are left with the option to insert a non-executable symbol in s2. In

this case we may obtain a closed network containing two distinct species. However

this also implies that both molecular species are equivalent from a phenotypic point

of view. Let s2 = ∗ ∗ ▽ : ▽. We present an example simulation run in which this

reaction network is employed and where the cellular division criterion is to promote

the growth of st = s1.
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Figure D.3: Two example simulation runs where the seed reaction contained 10
instances of both s1 = ∗▽ : ▽ and s2 = ∗ ∗▽ : ▽ with psym = 0.00005. and rmut = 0

Fig.D.3 depicts two simulation runs where the two replicase species s1 and s2

are employed. Although a level of cellular diversity was maintained throughout the

simulation runs, no cellular species with a significant difference in fitness emerged.

As a result no displacements between cellular species occurred. These results suggest

that the employed seed reaction network is already the optimal catalytic network to

produce st.
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In contrast with the above proposal, we now attempt to build a minimalist closed

network where the molecular species are phenotypically different from each other and

no universal replicases are employed.

If we were to employ 5 executable symbols to specifiy the molecular species, we

would, again, be confronted with that asymmetric relationship between the binding

and action statements leading to the elongation/trimming enzymatic functions. We

thus propose to relax the minimal molecular string length to 6. The following two

molecular species are proposed:

s1 = ▽0 : ▽1

s2 = ▽1 : ▽0

However reactions between the molecular species s1 and s2 lead to the production

of further molecular species as follows:

s1 + s2 → s3

s2 + s1 → s4

with s3 = ▽1 : ▽ and s4 = ▽0 : ▽0.

We enumarate all possible reactions (with α = 42) that may occur between s1,

s2, s3 and s4:
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s1 + s1 → ∅

s1 + s2 → s3

s1 + s3 → ∅

s1 + s4 → s1

s2 + s1 → s4

s2 + s2 → ∅

s2 + s3 → s2

s2 + s4 → ∅

s3 + s1 → s1

s3 + s2 → ∅

s3 + s3 → ∅

s3 + s4 → ∅

s4 + s1 → ∅

s4 + s2 → s4

s4 + s3 → ∅

s4 + s4 → ∅

No further molecular species have been produced in the above reactions.

The above informal investigation suggests that the above set of molecular species

c0 = {s1, s2, s3, s4} is potentially a minimalist collectively autocatalytic reaction

network that can be constructed in the MCS.bl given the following condition:

• The reaction network is not, by design, the optimal catalytic network to realise

the target task. Evolutionary experiments using this reaction network as the

seed networks are presented in the next section.
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• Molecular species which can perpetually generate new species (such as elon-

gator species) are not allowed.

D.3 10 simulation runs with self-replication reactions disabled

10 evolutionary simuations are executed using c0 and the following set of parameters:

• 31 cells are utilised and executed in parallel using 31 AMD Opteron 270 (2.0

GHZ) CPUs.

• Simulations are run for 3600 seconds.

• The maximal compartment carrying capacity is nmax = ∞.

• The target molecular species division threshold is set to ntarget = 200.

• The maximal species string length is set to BDLmax = 500.

• The global spontaneous mutation rate is set to rmut = 0.

• The per-symbol mutation probability is set to psym = 1.0 × 10−5.

• Each compartment is seeded/initialised with 10 instances of each species s1,

s2, s3 and s4 (as presented in the previous section).

• The target molecular species is st = s1.

In four of these runs, we observed the emergence and domination of reaction

networks which are phenotipically equavalent to c1 = {s1, s2, s5, s6} with s5 = ∗▽△ :

▽0 and s6 = ∗▽△ : ▽1.

In four other runs, the emergence of reaction networks containing the molecular

species of either c1 or c3 in addition to some molecular species were noted. However

these additional molecular species did not improve the fitness of the cellular species.

It is thus conjectured that, given enough time, these reaction networks would dis-

place these extra molecular species and collapse to c1 or c3. In the remaining two

runs, the emergence of c0 mutants with no phenotypic differences was observed.
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Figure D.4: Simulation runs 1 to 5 with self-replication reactions disabled

c1 c2 c3

∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1
∗▽1 : ▽1 ∗▽1 : ▽1 ∗▽1 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0
∗▽1 : ▽0 ∗▽1 : ▽0 ∗▽1 : ▽0

1 ∗ ▽0 : ▽1 ∗ ∗ ▽0 : ▽0 ∗0 : ▽0
∗0 : ▽1

Table D.1: Molecular species contained in successive dominant closed reaction net-
works in simulation run 1.
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Figure D.5: Simulation runs 6 to 10 with self-replication reactions disabled

c1 c2 c3

∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0
∗▽1 : ▽0 ∗▽1 : ▽0 ∗▽△ : ▽1
∗▽1 : ▽1 ∗▽1 : ▽1 ∗▽△ : ▽0
∗▽1▽1 ∗▽0 : ▽00 ∗▽▽0 : ▽0

∗▽▽0 : ▽1

Table D.2: Molecular species contained in successive dominant closed reaction net-
works in simulation run 2.
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c1

∗▽0 : ▽1
∗▽0 : ▽0
∗▽△ : ▽1
∗▽△ : ▽0
∗0 : ▽1
∗0 : ▽0

Table D.3: Molecular species contained in successive dominant closed reaction net-
works in simulation run 3.

c1

∗▽0 : ▽1
∗▽0 : ▽0
∗▽△ : ▽1
∗▽△ : ▽0

Table D.4: Molecular species contained in successive dominant closed reaction net-
works in simulation run 4.

c1 c2

∗▽0 : ▽1 ∗▽0 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0
∗▽1 : ▽1 1
∗▽1 : ▽0 0
∗ ∗ ▽0 : ▽1 ∗▽△ : ▽0

∗▽△ : ▽1
∗▽△ : 1

Table D.5: Molecular species contained in successive dominant closed reaction net-
works in simulation run 5.

c1

∗▽0 : ▽1
∗▽0 : ▽0
∗▽△ : ▽1
∗▽△ : ▽0

Table D.6: Molecular species contained in successive dominant closed reaction net-
works in simulation run 6.
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c1 c2 c3

∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0
∗▽1 : ▽1 ∗▽△ : ▽0 ∗10 : ▽1
∗▽1 : ▽0 ∗▽△ : ▽1 ∗10 : ▽0
∗▽01 : ▽1 ∗▽0 : ▽△0 ∗▽△ : ▽1
∗▽01 : ▽0 ∗▽0 : ▽△1 ∗▽△ : ▽1

Table D.7: Molecular species contained in successive dominant closed reaction net-
works in simulation run 7.

c1 c2 c3 c4

∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0
∗▽1 : ▽△1 ∗▽△ : ▽1 0 ∗ ▽△ : ▽1 0 ∗ ▽△▽ : ▽1
∗▽1 : ▽△0 ∗▽△ : ▽0 0 ∗ ▽△ : ▽0 0 ∗ ▽△▽ : ▽0

Table D.8: Molecular species contained in successive dominant closed reaction net-
works in simulation run 8.

c1 c2 c3

∗▽0 : ▽1 ∗▽0 : ▽1 ∗▽0 : ▽1
∗▽0 : ▽0 ∗▽0 : ▽0 ∗▽0 : ▽0
: ∗▽1 : ▽0 ∗▽△ : ▽0 ∗▽△△ : ▽1
: ∗▽1 : ▽1 : ∗▽△ : ▽1 ∗▽△△ : ▽0

Table D.9: Molecular species contained in successive dominant closed reaction net-
works in simulation run 10.
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O’Neill, M., Ekárt, A., Vanneschi, L., and Esparcia-Alcázar, A., editors, EuroGP,

volume 4445 of Lecture Notes in Computer Science, pages 361–370. Springer.

Dittrich, P. (2004). Chemical Computing. In Banâtre, J.-P., Fradet, P., Giavitto,
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