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ABSTRACT

In recent years, spatiotemporal synchronisation within systems with multiple interacting
component§Complex Systems), such as financial data, electroencephalographic (EEG)
recordings and magnetoencephalographic (MEG) recordings, has been studied extensively,
using the equal-time cross-correlation matrix. These Complex Systems are characterised
by events such as Market Crashes or Seizures, which are associated with periods of hyper-
synchronisation.

In this Thesis, the Risk Characterisation and Reduction of Complex Systems is studied,
using the Cross-Correlation matrix to condense the system complexity. The systems stud-
ied display interactions between multivariate time series of varying granularities, including
low frequency (Hedge Fund returns), medium frequency (Daily Stock returns) and high
frequency (Intraday Stock returns & EEG seizure data).

The information content of the correlation matrix between low-frequency Hedge Fund
returns is investigated for the first time using Random Matrix Theory (RMT). The RMT
filtered correlation matrix is shown to improve the risk-return profile of a portfolio of Hedge
Funds. Through the use of the Wavelet transform, scaling properties of correlations are then
investigated, with correlations calculated over longer horizons found to result in a better
risk-return profile for a portfolio of Hedge Funds.

Characterisation of market risk is then assessed, through the dynamics of the correlation
structure and associated eigenspectrum for daily equity returns (medium frequency data),
using a moving window approach. This novel characterisation, dependent on both large and
small eigenvalue behaviour, is shown to be consistent across different time scales. Further,
frequency dependent correlations were examined for medium and high-frequency intra-day

stock returns using Wavelet multiscaling.



Investigation of a comparative system example, specifically correlation scdlargc-
teristics of high-frequency EEG Seizure data, revealed novel frequency dependent changes
in the correlation structure between channels, which may be indicative of seizures. Large
correlations were found between channels at high frequencies and conversely, smaller cor-
relations at low frequencies during Seizures, with a corresponding switch in system energy.

Our findings suggest that, even for the limited set of examples chosen, diverse appli-
cations demonstrate commonality, in terms of the interpretative power of time-series corre-
lation structure. Through the integration of tools such as Random Matrix Theory, Wavelet
multiscaling and eigenvalue analysis, we have shown the importance of the correlation ma-
trix in risk characterisation and reduction. The potential for wider application of these
methods in the detection of subtle triggers, giving advance warning of risky events, has also

been demonstrated.



CHAPTER1

INTRODUCTION

1.1 Motivation

Vast losses across multiple markets, spanning various countries, sectors and instruments
over the past two years have resulted in a necessary focus on Financial Risk Management.
By Risk Management, we refer to theantitative assessment and mitigat@funnecessary

risks. However, Risk Management is not limited to financial applications. In fact, there

is a need to reduce risk associated with many so-called Complex Systems, including but
not limited to the risk of deaths arising from natural disasters such as earthquakes and
hurricanes, the risk of injury during epileptic seizures and the risk of financial loss from
trading.

These systems, although diverse, have many common features, including multiple in-
teracting components, dynamical system changes and an emergence of new properties as
the system evolves. In all cases, itis possible to use the principle of diversification to reduce
the risk of the system, due to the multiple components present. In the case of earthquakes
and hurricanes, relocating people to many different locations makes it possible to reduce the
risk of massive loss of life in one location; equally, the use of medicines and surgical treat-
ments for seizures can reduce the chances of hypersynchronisation between channels, said
to be the underlying cause of seizures. Financial risks can also be mitigated by investing in
a number oluncorrelatedassets.

In order to achieve this diversification it is necessary to measure the common dynam-

ical properties between the various interacting components. One simple measure of this



synchronisation is the Pearson cross-correlation coefficient betweearttfponents. How-

ever, there are a number of problems with the calculation of this coefficient. The data
available may be sparse, which increases the influence of noise in the correlations. Also,
the interactions between the components may occur at frequencies other than that at which
they are measured, resulting in hidden correlations.

In addition to its contribution to diversification, the synchronisation between various
components may, itself, be a characteristic of changes in the risk profile of a system. Fur-
ther, there may also be subtle changes in the synchronisation structure that may be used as
an early warning to possible adverse changes in the system, such as the occurrence of an

earthquake or a financial crash.

1.2 Objectives

The purpose of the research presented here is twofold. First, to demonstrate the use of the
correlation matrix for diversification purposes, in particular for sparse data. Second, to show
how the correlation matrix can be used to characterise the risk of extreme events through
the analysis of the associated eigenspectrum. Throughout the research we analyse data
with varying granularity, from low-frequency Hedge Fund data to high-frequency equity
data. To demonstrate the cross-applicability of risk management methods to other complex
problems, we also study high-frequency EEG seizure data. To achieve our objective of
improving risk-management within Complex Systems, we set out the following specific

objectives:

e To demonstrate the application of the correlation matrix for diversification purposes

in a low-frequency environment, using Hedge Fund returns data.

e To investigate the effects of granularity on the calculation of the cross-correlation
matrix, by testing the effects on risk-management for a portfolio of hedge-funds over

different scales.

e To test the use of the correlation matrix as a technique to characterise changes in

risk within complex interacting systems. To this end, we examine dynamics of the

4



eigenspectrum associated with the correlation matrix for medium-frequency equity

returns.

e To examine the dependence of dynamic correlation changes on the granularity of the

data used in the calculation of the matrix.

e To investigate the use of a combination of the above techniques, such as correlation
dynamics and scaling to an alternative system, that of high-frequency EEG seizure
data. We seek to characterise the behaviour of the system over different frequencies

to manage the risk inherent in epileptic seizures and explore early warning potential.

1.3 Outline of Thesis

The thesis is organised as follows:@mapter 2, we outline the background to the research,
review previous work and introduce some of the ideas followed in the thesis. The methods,
both known and developed, which are used throughout are introduc&thioter 3.

In Chapter 4, we investigate the use of the correlation matrix in the risk management
of a portfolio of Hedge Funds. Random Matrix theory is applied to filter noise from the cor-
relation matrix and the information present in the large eigenvalues is investigated. Using
a classical portfolio optimisation, the benefits of filtering a correlation matrix, constructed
using low-frequency Hedge Fund data, are determined.

Wavelet multiscaling techniques are applieddhapter 5, to establish the effects of
coarse/fine graining on the correlation matrix. Using low-frequency Hedge Fund returns,
we examine changes in the correlation structure between funds and the0B&ker dif-
ferent time frames. The scaled correlation matrices are then used as inputs to a portfolio
optimisation, to judge the effect of time granularity on Risk Management.

The dynamical changes in correlation between medium frequency financial returns are
studied inChapter 6, to investigate whether changes in the correlation structure can be
applied in risk characterisation. The relationship between index returns and relative eigen-

value size is examined, to provide insight on tudlective behaviour of traders. A simple



‘toy model’ of correlations is proposed to shed light on the formation of correlatiare-
ture.

The effects of coarse/fine graining on dynamical changes in correlation structure are
examined inChapter 7, to determine risk characteristics of scaling. This provides insight
on the time horizons which apply to the numerous constituents involved in the interactions
and gives some understanding of the scales involved during financial crashes.

In Chapter 8 we examine a broadly comparative non-financial system made up of inter-
acting components, specifically EEG Seizure data. Using a combination of methods applied
in previous Chapters, such as correlation dynamics and wavelet multiscaling, we seek to
identify frequency dependent changes in the correlation structure between EEG channels.
The characteristic changes found may, potentially, then be used in the Risk Management of
seizure events.

Finally, in Chapter 9 we provide a summary of the work, our conclusions and discuss

future improvements.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A well known adage among traders refers to diversification as the only “Free Lunch” in
finance. By this, it is meant that by spreading one’s available capital among a number of
different assets it is possible to reduce the risk of a portfolio. Consider an economy with
only two companies, an umbrella company and a suncream company. When the weather is
wet the umbrella company performs well; conversely, when the weather is sunny, it will per-
form badly. As the suncream company will have the reverse performance, one can minimise
the weather dependent risk by splitting the investment between the two companies.

Given time-series data of company returns, one measure of the synchronisation between
the performance of two companies is the Pearson correlation coefficient, [Crawley, 2005].
The Pearson correlation is mereliaear measureof the synchronisation and takes no
account of any higher order relationships. However, as demonstrated below, methodology
based upon this measure provides a firm basis for the risk management of financial assets
and other complex interactions such as Neurological systems.

In this Chapter, we first introduce the scientific field of Complex Systems by describing
some of the common characteristics found in nature, society and science. We then provide
evidence of the interdisciplinary nature of Complex Systems research, by focusing on the
application of ideas from Statistical Physics to Economic systems, nafcelyophysics.

The noise reduction of correlation matrices, using Random Matrix Theory, is described in

combination with Eigenvalue analysis to demonstrate how genuine correlation information



can be separated from noise in the cross-correlation matrix. The use of the cross-correlation
matrix to characterise the risk of a Complex System is subsequently considered for both
financial and EEG Seizure data. Risk decomposition provides a critical assessment of the
scaling effects within financial systems and we review its potential using Multiscale Wavelet
analysis. Finally, we discuss in detail properties associated with one of the datasets exam-
ined in this study, Hedge Fund returns data. In the current financial climate Hedge Funds
are of particular interest, due to their optimistic claincapital preservation in all market

conditions.

2.2 Complex Systems

In this Section, we attempt to elucidate the idea of a Complex Dynamic System. One of the
difficulties with this is the sheer number of definitions of Complex Systems that exist. To
overcome this problem, we define a Complex Dynamical System as one that displays many
if not all of the following properties, [Bar-Yam, 2003; Johnsatral., 2003; Corning, 2003;

Miller and Page, 2007]:

e Agent-Based

The basic building blocks are the characteristics and activities of individual agents
e Dynamic
Properties change over time, often in a nonlinear way

e Interactions

Agents interact, often in a non-linear fashion

e Organisation

Group or Hierarchical structures are displayed

e Feedback

Changes are often as a result of feedback from the environment



e Heterogeneous

Agentsmay differ in significant characteristics

e Emergence

The arising of novel and coherent structures, patterns and properties during the pro-

cess of evolution and/or self-organisation

Systems with the above characteristics are found in diverse disciplines, including Seis-
mology, Neuroscience, Economics, Meteorology, Molecular Biology and Social Sciences,
[Aki and Richards, 1997; Kelso, 1997; Bouchaud and Potters, 2003; Holton, 2004; Kaneko,
2006; Miller and Page, 2007]. The cross-fertilisation of ideas between these disparate fields
means that the interdisciplinary nature of Complex System analysis is well established. In
this thesis, we examine two particular examples of Complex System, arising respectively in
Economics and Neuroscience where many of the characteristics outlined above are evident.
We focus, in particular, on Risk Management, associated with Financial markets, and EEG
seizures, through the measurement of the level of interaction between ‘agefasthis
end, we examine the use of the linear cross-correlation matrix as a measure of the degree of

synchronisation within complex interacting systems.

2.3 Econophysics

The application of theories and methods developed by Physicists to other disciplines is not
a new idea. The fields of Biophysics and Geophysics, for example, are mature and well-
researched areas where physical processes are studied in Geological or Biological systems
[Lowrie, 1997; Glaser, 2000Econophysicss an interdisciplinary research field, applying
physical methods to problems in Economics. The first explicit use of the word dates to a
“Workshop on Econophysics” held in Budapestin 1997, [Kertesz and Kondon, 1998]. In the
relatively short time since this conference a variety of books have been written on the topic

[Roehner, 2002; Voit, 2003; Bouchaud and Potters, 2003; McCauley, 2004; Mantegna and

YIn this context of this thesis, the term ‘agents’ refers either to the various participants or traders involved
in financial markets or to the neurons of the brain



Stanley, 2005; Malevergne and Sornette, 2005; Kleinert, 2006], with manyimpreprint.
A simple google search for ‘Econophysics’ (30th January 2009) brind$&@00 results,
[Google Search, 2009].

To consider the underpinning Mathematical theory of finance in more detail, we go
back much earlier, [Davis, 2001]. As early as 1900, Bachelier, [Bachelier, 1900], attempted
to explain the fluctuations of financial markets by introducing the theory of random walks,
an idea later developed by Einstein to explain Brownian motion. This idea was revisited
by Mandelbrot in 1963, when it was shown that fluctuations in cotton prices followed a
distribution that differed from a Gaussian. Mandelbrot's 1963 paper, [Mandelbrot, 1963],
is now regarded as one of the crucial precursors to the field of Econophysics. Physicists,
working in the field of Statistical Mechanics, first began publishing papers in Econophysics
in the early 1990’s. One of the driving forces behind the application of ideas from statistical
physics to Economic systems was the large amount of financial data available, starting from
the 1980’s. A general treatise of the origin and a basic introduction to some of the ideas
pursued to date in Econophysics can be found in [Gligor and Ignat, 2001; Bouchaud, 2002;
De Liso and Filatrella, 2002; Yakovenko, 2003; Buretaal., 2003; Wanget al., 2004;
Vasconcelos, 2004].

While Economists start with a few fundamental assumptions and construct a model to
explain observations, Econophysicists tend to begin with the empirical evidence and extract
perceived patterns from the data. The applicability of power law distributions to Economic
data is probably the most studied example of this. Physicists observe and have reported on
power law distributions in many problems in statistical mechanics as well as phenomena as
varied as city populations, internet sites and the levels of ocean tides, [Blank and Solomon,
2000; Barbosat al., 2006]. Power laws have been applied, with very interesting results,
to financial data also. The distribution of relative price changes has, for example, been
shown to be non-Gaussian and various authors have attempted to characterise these using
distributions such as Truncated Levy and the Student’s-t [Bouchaud and Potters, 2003].

The fact that relative price changes are non-Gaussian distributed has a profound effect on

10



the pricing of option$, [Bouchaud2002]. The Black-Scholes theory of option pricing is
underpinned by the assumption of Gaussian returns, while behaviour unexplained by this
model, such as the ‘volatility smilé, may be described by power laws, [Bouchaud, 2002].
The distribution of returns for financial crashes associated with speculative bubbles has also

been studied in some detail, [Sornette, 2002; Rotundo and Navarra, 2007]

2.4 Correlation Matrices and Noise Reduction

A further early application of ideas from Physics to Finance, was that of noise reduction
in the correlation matrix between asset returns. Correlations of returns between financial
assets play a central role in Finance, particularly as inputs to Markowitz's classical port-
folio optimisation problem, (Chapter 3.3.1), [Markowitz, 1958; Elton and Gruber, 2002].
However, the calculation of a correlation matrix for a large portfolio of #¥zis poorly de-
termined unless the length of the time-seriEsis much greater thafv. The finite length

of the sample of returns data used in the calculation of correlation matrices means that these
are ‘Noise Dressed’, [Lalougt al., 1999], implying that care needs to be taken in applica-
tions. Various methods have been suggested to construct a pure correlation matrix with no
measurement noise, such as the Single-Index Model and the Multi-Index Model, [Elton and
Gruber, 2002]. Another approach, which has recently been explored by Physicists working
in the area of Econophysics, involves the application of Random Matrix Theory.

Random matrix theory (RMT) was developed by Wigner, Dyson, Mehta and others
during thel960’s, [Dyson, 1962; Dyson and Mehta, 1963; Edelman, 1988; Mehta, 2004], in
an effort to understand the energy levels of complex atomic nuclei, which previous theories
failed to explain. For these systems, RMT predictions represent an average over all possible
interactions. Deviations from the universal predictions of RMT are of interest, as they

describe specific non-random properties of the system studied. RMT was later found to

2An option gives the holder the right, but not the obligation, to buy, (for a call option) or sell, (for a put
option), a specific amount of a given stock, commaodity, currency, index, or debt, at a specified price, (the strike
price), during a specified period of time.

%In finance, the Volatility Smile is the empirical observation that at-the-money options tend to have lower
implied volatilities than in- or out-of-the-money options for the same underlying asset and expiry.

11



have applicability to a wide range of problems, from quantum chaos and gthxitygh
mesoscopic and random systems. In the application of RMT, the spectral properties of an
empirical correlation matrix are compared to those of a ‘random’ Wishart Matixere
eigenvalues that are outside the theoretical bounds of Wishart matrix are said to deviate
from RMT. These deviating eigenvalues are said to contain information about the system
under consideration, which can be uncovered through eigenvector analysis, [Gopikrishnan
et al., 2000].

One of the earliest applications of RMT to finance demonstrated that the optimisation
of a margin account in futures markets, (where the constraint on the weights is nonlinear),
is equivalent to finding the ground state configuration of a spin glasstatistical physics,
[Galluccioet al., 1998]. This problem is known to be NP-complete, with an exponentially
large number of solutions.

Two papers, published simultaneously, used RMT methods to analyse the properties
of financial cross-correlation matrices (C) and showed that4d% of the eigenvalues of
C agree with the predictions of RMT, [Lalowet al., 1999; Plerowet al., 1999]. The re-
maining~ 6% of eigenvalues were shown to deviate from RMT predictions. Later studies,
[Gopikrishnanret al., 2000; Pleroet al., 2000a,b, 2002], compared statistical properties of
the eigenvalue spectrum with the predictions of RMT in greater detail and found these to be
in very good agreement. Further analysis, of the deviating eigenvalues, revealed clustering
corresponding to distinct business sectors

More recently RMT has been shown to improve risk management of a portfolio of equi-
ties. By incorporating the information contained in the deviating eigenvalues, [Let@lx
2000], the difference between the predicted and realised risk of an optimal portfolio was re-
duced substantially. The correlations between stock fluctuations were compared to those
of Random Magnets, [Rosenost al., 2002a,b]. In this case, the Random Magnets were
shown to provide a framework to explain the origin of the correlations, together with the

occurrence of power-law correlations in the time-series of highly correlated eigenmodes.

4The Wishart matrixi¥’ can be obtained frorfi’ = ﬁGGT, whereG is a N x M random matrix with
independent, zero mean and unit variance elements.

5A spin glass is a disordered material exhibiting high magnetic frustration. Frustration refers to the inability
of the system to remain in a single lowest energy state (the ground state).
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Additionally, RMT was used to improve the correlation estimate, compared to the standard
form. The dynamics of the average cross-correlation and the index volatility were compared
to those of the largest eigenvalue, [Roserdwal., 2003], for moving time-windows. It was
demonstrated that the fluctuations in the average correlation, (and largest eigenvalue), are
themselves correlated with the volatility of the index. The information contained, in the
eigenvalues deviating from the RMT predictions, was then used to forecast future correla-
tions between assets.

Given the level of noise apparent in empirical correlation matrices, highlighted previ-
ously, this leads to some concern over the validity of correlation matrices used by industry
in the calculation of optimal portfolios and in risk management. Some of these concerns
were alleviated, [Pafka and Kondor, 2002], where it was shown that, in the case of a linear
portfolio optimisation, solutions are determined by the large stable eigenvalues, hence the
disturbance due to noise is of the ordes6f to 15%. This was reinforced by the demon-
stration, [Pafka and Kondor, 2003], that noise depended on the ratio of time-series length,
T, to portfolio size,N, (Q = £;). For small values of; thelevels of noise were found to
be rather modest. A simulation based approach was subsequently used, [Pafka and Kondor,
2004], to demonstrate the usefulness of various correlation estimators such as the Single-
Index Model and the RMT filtered matrix. Additionally, exponential weighting applied to
financial returns, [Pafkat al., 2004], demonstrated its superiority for calculating the RMT
spectrum in comparison with uniformly weighted RMT based filtering.

These early studies on RMT applications in finance led to a proliferation of activity. The
memory effect in financial time-series was investigated using lagged time-series, [Drozdz
etal., 2001a], and was shown to be shorter than previously found from autocorrelation anal-
ysis, due to increasing market efficiency. The study of stock market correlation dynamics,
[Kwapienet al., 2002], through RMT have shown that two periods of synchronous bursts
of activity exist in the DAX index and further that consecutive returns carry essermially
common information. A more recent paper, [Kwapé&tl., 2005], proposed that even the
bulk of the spectrum of the correlation matrix contains correlations, (possibly non-linear),

that are masked by measurement noise due to short time-series. The evidence provided was

13



based on the multi-fractal character of the eigensignals, (even in the noisyzBiW), and
the fat-tailed distributions of returns.

These initial studies focused predominantly on the application of RMT to US stock
markets. RMT was further shown to hold for the Japanese market, [Usswadi, 2004],
where the authors also studied the effect of randomness on deterministic correlations. They
found that randomness causepulsionbetween deterministic and random eigenvalues,
which explains the deviations from RMT sometimes found for small eigenvalues. The
South African market was also shown, unexpectedly, to conform to RMT predictions in
the bulk, [Wilcox and Gebbie, 2004]. For an emerging market such as South Africa, the
stock liquidity is an issue, (since stocks trade at very different frequencies), and it was
shown that greater conformity with RMT predictions can be achieved, if correlations are
only calculated when data exist for all stocks, (Measured-data correlations).

Further, the cleaning technique, [Laloeial., 2000; Bouchaud and Potters, 2003], was
shown, [Sharifiet al., 2004], to decrease the stability of the cross-correlation matrix. Sub-
sequently, an alternative technique, [Krzanowski, 1984], was shown to eliminate the noise
but preserve the stability of the matrix, while reducing the overall risk of the portfolio. This
work was extended, [Dalgt al., 2008], with the Krzanowski stability based filter applied
to the correlation matrix, the covariance matrix and to an exponentially weighted covari-
ance matrix between S&B0 stocks. Results showed that RMT filtering, while reducing
realised risk out-of-sample, on average, actually increased realised risk on a significant
number of days.

A ‘group model’ for correlations in stock markets proposed [Noh, 2000], assumes that
the returns of companies in the same sector are highly correlated. The spectral properties of
the empirical correlation matrix were explained by this model, together with the behaviour
of the Inverse Participation Ratio distribution, [Gopikrishretnal., 2000; Plerotet al.,
2000a]. The identification of group behaviour in stock markets was further examined, [Kim
and Jeong, 2005], with market and random noise filtered from the correlation matrix using
RMT. Stock groups were found to be identifiable (without additional knowledge of indi-

vidual stocks), both by optimising the representation of the group correlation matrix and

14



by use of a percolation approach. An interesting treatise of some of the creseits in
RMT can be found, [Pottemst al., 2005], which includes discussions on the stability of the
top eigenvalue and its associated eigenvector, together with implications of insights from

analysis of exponentially weighted and frequency dependent correlation matrices.

2.5 Eigenvalue Analysis and Correlation Dynamics

The work, previously described, reviews techniques to improve the amount of genuine cor-
relation information found in the equal-time cross-correlation matrix. The possible uses
of a cross-correlation matrix are many, with applications in finance, [La&wad., 1999;
Plerouet al., 1999; Gopikrishnaet al., 2000; Plerowet al., 2000a; Lalowet al., 2000;
Bouchaud and Potters, 2003; Utsegial., 2004; Wilcox and Gebbie, 2004; Shasefial.,

2004; Podobnik and Stanley, 2008], electroencephalographic (EEG) recordings, [Schindler
et al., 2007a,b] and magnetoencephalographic (MEG) recordings, [Kwapadn 2000],
amongst others. Additional approaches to filter the large volumes of data in the correlation
matrix have been explored, in particular ideas from network theory such agitliraum
Spanning Treand thePlanar Maximally Filtered Graph, [Onnelet al., 2004; Tumminello

etal., 2007; Pozzet al., 2007]. In a financial context, alternative relationships such as those
between stock price changes and liquidity or trading volume, [Ying, 1966; Karpoff, 1987;
LeBaronet al., 1999], have also been studied.

Several authors have recently suggested that there may, in fact, be some real correlation
information hidden in the RMT defined ‘random part’ of the eigenvalue spectrum. A tech-
nique, involving the use of a power mappfrtg identify and estimate the noise in financial
correlation matrices, has been described, [Guhr altét, 2003]. This allows the suppres-
sion of those eigenvalues, associated with the noise, in order to reveal different correlation
structures buried underneath. Derivation of the relationship, between the eigenvalue density
of the true correlation matrix;, and that of the empirical correlation matriX, showed that

correlations can be measured in the random part of the spectrum, [BLaila2004; Burda

®The Correlation matrixC' is mapped to the matrix'?, with q +ve and Cf, = sign(Ci) |Cwi|? for
elementk.
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and Jurkiewicz, 2004] and was used, [Papl., 2005], in the case of portfolio optimi-
sation of financial portfolios. Here, the Authors reconstructed the true correlation matrix
using the cleaned eigenvalues and the empirical eigenvectors for shrinkage models, both for
the ‘one factor’ and a ‘market plus sectors’ models

A Kolmogorov test was applied, [Malevergne and Sornette, 2004], to demonstrate that
the bulk of the spectrum is not in the Wishart RMT class. In this paper, the authors demon-
strate that the existence of factors such as an overall market effect, firm size and industry
type is due to collective influence of the assets. More evidence that the RMT fit is not
perfect was provided, [Kwapieet al., 2006], where it was shown that the dispersion of
“noise” eigenvalues is inflated, indicating that the bulk of the eigenvalue spectrum contains
correlations masked by measurement noise.

The behaviour of the largest eigenvalue of a cross-correlation matrix for small windows
of time, has been studied, [Drozdtal., 2000], for the DAX and Dow Jones Industrial Av-
erage Indices (DJIA). Evidence of a time-dependence between ‘drawdowns’ (‘draw-ups’)
and an increase (decrease) in the largest eigenvalue was obtained, resulting in an increase
of the information entrop§of the system. Similar techniques were used, [Drogdal.,
2001b], to investigate the dynamics between the stocks of two different markets (DAX and
DJIA). In this case, two distinct eigenvalues of the cross-correlation matrix emerged, cor-
responding to each of the markets. By adjusting for time-zone delays, the two eigenvalues
were then shown to coincide, implying that one market leads the dynamics of the other.

A new technique, applying the equal-time cross-correlation matrix, to characterise dy-
namical changes in nonstationary multivariate time-series was describédefldt al.,

2005]. It was shown that, as the synchronisatioh tine-series within ar/ —dimensional
multivariate time-series increases, this causes a repulsion between eigenstates of the correla-
tion matrix, in whichk levels participate. Through the use of artificially created time-series

with pre-defined correlation dynamics, it was demonstrated that there exist situations, where

"The'one factor’ model assumes that the co-movement between stocks is due to a single common factor or
index. The ‘market plus sectors’ model assumes that the co-movement between stocks is due to both market
and industry/sector factors

8In information theory, the Shannon or Information Entropy is a measure of the uncertainty associated with
a random variable.
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the relative change of eigenvalues from the lower edge of the spectrum is dheatehat
of the large eigenvalues, implying that information drawn from the smaller eigenvalues is
also highly relevant.

A first application of this technique, [Mler et al., 2005], was to the dynamic analysis of
the eigenvalue spectrum of the equal time cross-correlation matrix of multivariate epileptic
seizure time-series, using sliding windows. The authors demonstrated that information
about the correlation dynamics is visible in both the lower and upper eigenstates. A further
detailed study of equal-time correlations between EEG signals, [Schieidédr, 20073a],
investigated temporal dynamics of focal onset epileptic sei2urtsvas shown that the
zero-lag correlations between multichannel EEG signals tend to decrease during the first
half of a seizure and increase gradually before the seizure ends. This work was extended
to the case o$tatus epilepticus, [Schindlet al., 2007b], where the equal-time correlation
matrix was used to assess neuronal synchronisation prior to seizure termination.

An alternative form of the correlation measure, proposedl[df et al., 2006b], was
shown to be more sensitive for weak cross-correlations. For particular examples, informa-
tion on cross-correlations was shown to be found in the RMT bulk of eigenvalues, with
the information extracted at the lower edge statistically more significant than that extracted
from the larger eigenvalues, [Mer et al., 2006a]. The authors introducedreethod of
unfolding the eigenvalue level densftythrough the normalisation of each of the level
distances by its ensemble average, and used this to calculate the corresponding individual
nearest-neighbour distance. Through this unfolding, those parts of the spectrum, dominated
by noise, could be distinguished from those containing information about correlations. Ap-
plication of this technique to multichannel EEG data showed the smallest eigenvalues to be

more sensitive to detection of subtle changes in the brain dynamics than the largest.

%A partial or focal onset seizure affects only a part of the brain at onset. They may often be a precursor to a
larger seizure, such as a generalised seizure.

%" one dimension, unfolding is a local rescaling of the eigenvalue density, such that the density on the
unfolded scale is equal to unity
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2.6 EEG Correlation Dynamics

As discussed in the previous Section, the equal-time cross-correlation matrix has been
applied to measure the linear synchronisation in many diffuse Complex Systems such as
the financial systems described previously and electroencephalographic (EEG) recordings
[Quian Quirogeet al., 2002; Seba, 2003;Mer et al., 2005; Ansari-Astt al., 2006; Miller
etal., 2006a; Schindleat al., 2007a,b], as well as magnetoencephalographic (MEG) record-
ings [Kwapienet al., 1998, 2000] and others. The dynamics of such systems are charac-
terised by a continuously varying level of synchronisation between different subsets of the
system. The degree of synchronisation is dependent on the length of time-series studied,
the granularity or time-interval length of the data and the amount of noise in the system,
amongst other things. Hence, in the case of EEG seizure data for example, the equal-time
correlation matrix has been used to analyse the changes in the synchronisation structure,
prior to seizure events, with the aim jpfedicting epileptic seizures.

The predictability of these seizures has been studied in great detail by many authors.
A comparative analysis df0 different measures, both univariate and bivariate, provided
evidence for a preictél, state, [Mormanret al., 2005]. Univariate analysis such as vari-
ance, skewness and kurtosis showed preictal chainge$) minutes before seizures, while
bivariate analysis showed changes ug46 minutes prior to seizure events. Interestingly,
linear techniques for seizure prediction were found to perform comparably or better than
non-linear techniques. Application of the linear cross-correlation to a small number of EEG
channels, [Wendlingt al., 2003], led to the conclusion EEG signals decorrelate at seizure
onset at high frequencies, followed by an abnormal level of recoupling as the seizure devel-
ops.

The use of Wavelet techniques, (Section 2.7), in the analysis of EEG data is widespread,
allowing a time-frequency decomposition of these non-stationary signals. The Wavelet
transform, [Clarket al., 1995; Senhadji and Wendling, 2001; Adetlial., 2003; Indirdevi

et al., 2008], has been used, for example, to determine localisation of transient signals

"The preictal state is the period prior to the start of an epileptic seizure, while the ictal state refers to the
period during the seizure
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(spikes) during ictal period$, vital in preoperative evaluation of the foci and propagation

of ictal events. A technique, based upon the evolution of the accumulated energy at each
wavelet scale, [Gigolat al., 2004], was shown to predict epileptic seizure onset accurately
in 12 out of 13 cases.

Wavelet energy analysis, [Ursiret al., 2004], of changes in scalp EEG signals dur-
ing epileptic seizures, showed significant changes in energy distribution at seizure incep-
tion. The redistribution of energy was, however, found to be inconsistent across patients
and channels. Further, wavelet energies and entropies were used to characterise EEG sig-
nals from Secondary generalised tonic-clonic seiZdrgRossoet al., 2006]. The authors
demonstrated that the epileptic recruitment rhythm, [Gastaut and Broughton, 1973], is de-
scribed by the relative wavelet energy. Furthermore, a wavelet-based similarity method
across frequencies was described, [Ouyahgl., 2007], using ideas from nonlinear dy-
namics to predict epileptic seizures.

Various authors have also attempted to measure the interdependencies between different
regions of the brain. A number techniques were compared, [Quian Quétogla 2002;
Ansari-Aslet al., 2006], with relative performance shown to be dependent on the form of
the underlying signals. In the case of Magnetoencephalographic (MEG) signals, [Mizuno-
Matsumotoet al., 2005], a limited study consisting of three patients was performed, using
wavelets to determine cross-correlations over different frequencies and calculate the time
lag between different brain regions. @dherence functioand cross-correlation between
different frequency bands, defined by a continuous filter bank, [Ansare®al., 2005],
enabled exploration of the time-frequency dependence of epileptic seizure data.

The EEG and MEG data, used in the above studies has many properties common to that
studied in a financial context, such as non-stationarity, numerous interacting constituents,
(traders versus neurons), and a continuously changing degree of synchronisation. How-
ever, real differences also exist. Recordings of Brain activity are continuous unlike equity
prices, (as Markets are not continuously open). Moreover, financial data is available in non-

synchronous ‘ticks’, while EEG data is recorded synchronously. The availability of large

2Formerlyknown as grand mal seizures, tonic-clonic seizures are a type of generalised seizure affecting the
entire brain
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guantities of data in both fields, allows a detailed comparison of the applicability of the

techniqueslescribed above to varied data types, (as discussed later).

2.7 Multiscale Analysis

Scaling laws play a vital role across a range of Complex Systems and disciplines, with
scaling effects found across Biological, Physical, Social and Economic systems. The im-
portance of time-scale information in a financial context arises from the view that stock
markets consist of heterogeneous investors operating at different intervals and looking to-
wards different time horizons. Through examination of financial data at different granu-
larities, more insight into the nature of volatility and correlation dynamics can be gained.
In the context of EEG time-series, for example, interactions between various neurons nat-
urally occur at different frequencies, depending on the neuronal functions involved. While
time-scale dependence can be examined using a Fourier Analysis, [Bracewell, 1999], it is
unsuitable for the study afion-stationarydata such as financial time-series. In examin-
ing scale features, the Wavelet Transform, localised in both time and frequency, is more
appropriate for non-stationary signals.

The expression “Wavelet” evolved froomdeletteneaning “Small Wave”. Applications
using wavelets in disciplines other than finance are extensive, with many papers published
in Astronomy, Medicine, Forensics, Engineering and Physics, [Aldroubi and Unser, 1996;
Jaffardet al., 2001; Mix and Olenjniczak, 2003]. While rooted in Fourier Theory, there are
important differences. Fourier Analysis uses a combination of sine and cosine functions at
different wavelengths to represent a given function. Such periodic functions are non-local,
(ie. go to plus and minus infinity), and can not be used to deal with localised time-series,
whereas wavelets are localised in both time and scale. Scaling in Fourier Analysis is typ-
ically expressed in terms of frequency, whilst in wavelet analysis, is typically referred to
in terms of time. Moving along the signal, the spectrum of a scalable modulated window
is calculated for every position. The process results in a collection of time-scale represen-

tations of the function, all with different resolutions. This collection of representations is
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known as anultiresolution analysisAn introduction to the mathematical theory with some
examples of applications of wavelets, can be found in [Daubechies, 1992; Kaiser, 1994;
Bruce and Gao, 1996; Burres al., 1998].

The wavelet transform has been applied to many distinct problems in finance and eco-
nomics, [Gencagt al., 2001b; Ramsey, 2002; Schleicher, 2002; Crowley, 2005], allowing
a time frequency decomposition of the underlying function. This multiresolution analy-
sis allows the decomposition of a time-series into seMeasadrs of orthogonal sequences
corresponding to different frequencies. Each of these scales can then be analysed individ-
ually and, also, compared across different series, allowing comprehensive characterisation,
analysis and comparison of Market dynamics and types.

The characterisation of stock markets into Emerging and Mature Markets has been stud-
ied by various authors. Using eigenvalue analysis, [Shakaal., 2006a], showed that
Mature Markets respond in a different way to Emerging Markets during crashes. It was
also shown that the second largest eigenvalue contains information about market dynamics,
in addition to the largest. The Wavelet transform has also been applied to measure the re-
covery time of both emerging and mature markets, [Shaetasi, 2006b], by studying the
ratio of the largest eigenvalues for time-series reconstructed from selected wavelet compo-
nents. This analysis, over different time scales, has confirmed that Mature Markets recover
more quickly from crashes and that they exhibit antipersistent behaviour, while Emerging
Markets display persistent behavidtir

By breaking a time-series down into constituent components, it is possible to remove
high-frequency ‘noise’ and characterise scale-dependent properties. The wavelet multiscal-
ing approach was used, [Gengatyal., 2001c], to decompose a time-series by frequency
scale, in order to remove seasonalities in Foreign Exchange data, (the dominant source of
problems in various volatility models). Scaling laws in Foreign Exchange markets were also
identified, [Gencayet al., 2001a], using this approach, with exchange rate volatility shown

to have different scaling properties at different time horizons and the correlation between

13The persistence of a time-series is a description of the bias in fractional Brownian motion and can be
measured using the Hurst Exponent, with= 0.50 for Brownian motion0.50 < H < 1.00 for persistent, or
trend-reinforcing series ard< H < 0.50 for an anti-persistent, or mean-reverting system.
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two volatility series also shown to be considerably stronger at longer time scales.

Usingunfiltered time-series to measure the cross-correlation can lead to a misunder-
standing of the true correlation structure. In an investigation of correlation for equity mar-
kets at longer frequencies, application of wavelets showed that even when high correlation
between markets was expected, (Bombay and National stock exchanges), in fact correlation
varied markedly, depending on the scale considered, demonstrating that unfiltered data may
mask the correlation structure, Razdan [2004].

The Bet&® of an asset, [Gencast al., 2003, 2005], at different scales has been exten-
sively studied. By calculating the wavelet variance and covariance, the Beta of an asset was
estimated at each scale. For various markets, including the US, Germany and the United
Kingdom, it was shown that the relationship between the return of a portfolio and its Beta
was stronger for longer wavelet scales. This connection between asset returns and the re-
turns on the market portfolio was further examined, [Norswoehwl., 2000], where it
was shown that the markets’ influence on asset returns was principally in high frequency
movements. In an examination of the scale dependency of Japanese stocks, Yamada [2005],
showed that the standard Beta estimate is an “average” of the wavelet based multiscale es-
timates.

Scaling phenomena have also been found to have application in both Macroeconomics
and Economic contagion. A non-orthogonal variant of the discrete wavelet transform, the
maximal overlap discrete wavelet transform (MODWT), was used, [Gallegati and Gallegati,
2007], to decompose the variance of the industrial production index of G-7 countries. Sim-
ilar techniques, applied to emerging markets, [Gallegati, 2005], demonstrated their level
of integration with developed markets. Wavelet variance and cross-correlation analysis be-
tween Middle East and North African (MENA) stock markets, (Egypt, Israel, Jordan, Mo-
rocco and Turkey), as well as S&P and Eurostoxx indices were studied and it was shown that
emerging markets are neither regionally nor internationally integrated. Through wavelet

decomposition of data for stock markets, evidence was found for intra-continental rela-

¥Theoriginal data, before a filtering technique, such as wavelets, is applied to decompose it into constituent
frequencies.

5The Beta of an asset is a measure of the volatility, or systematic risk, of a security or a portfolio in com-
parison to the market as a whole, see Chapter 3.3.2
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tionships with an increase in market contagion since the mid-1990s.

Themeasurement of variance and covariance over different time frames, [Getrelay
2001b], is not restricted to the discrete wavelet transform. Two different technigues to
measure variance were described, [Percival, 1995], using both the discrete wavelet trans-
form and one of the first applications of the maximal overlap discrete wavelet transform
(MODWT). Through Monte Carlo simulations it was shown that the MODWT estimator
is reasonable even for small sample sizes of 128 observations. An early application of the
technique involved observations of vertical shear in the ocean. A mathematical framework
providing central limit theorems for MODWT estimators of the wavelet covariance and
correlation was established, [Whitchedral., 1996].

An extensively studied characteristic of stock market behaviour, is the increase of stock
return cross-correlations as the sampling time scale increases, a phenomenon known as the
Eppseffect, [Epps, 1979]. More recently, analysis of time-dependent correlations between
high-frequency stocks, fth and Kerész, 2006], demonstrated, however, that market re-
action times have increased due to greater efficiency. A diminution of the Epps effect
with time is one consequence of increased market efficiency. Trading asynchronicity was
demonstrated to be not solely responsible for the effeétHand Kerész, 2007b], with the
characteristic time apparently independent of the trading frequency. Further analysis using
a toy model of Brownian motion and memoryless renewal procesgh[at al., 2007],
found an exact expression for the Epps frequency dependence, with reasonable fitting also
for empirical data. In fact, the effect was shownpffi and Kerész, 2007a], not to scale
with market activity but to be due to reaction times, rather than market activity. A new

description of the Epps effect was provided, based on decomposition of cross-correlations.

2.8 Hedge Funds

The core initial data, studied in this thesis, are low-frequency financial time-series, namely
Hedge Fund returns. Given the huge growth in this area and the historical evidence that

managers can help to preserve capital in adverse markets, Hedge Funds are of particular
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interest given the current difficult market conditions. A brief overvienHeidge Funds,

their strategies and some of the issues surrounding their data is provided in what follows. A
Hedge Fund is a lightly-regulated private investment vehicle that may utilise a wide range
of investment strategies and instruments. These funds may use short positions, derivatives,
leverage and charge incentive-based fees. Normally, they are structured as limited partner-
ships or offshore investment companies. Hedge Funds pursue positive returns in all markets
and hence are described as “absolute return” strategies.

Hedge Funds are utilised by pension funds, high net-worth individuals and institutions,
due to their low correlation to traditional long-only investment strategies. The incentive-
based performance fees, earned by Hedge Fund managers, align the interest of the Hedge
Fund manager with that of the investor. The performance of Hedge Funds has been impres-
sive, with the various Hedge Fund indices providing higher returns, with lower volatility,
than traditional assets over many years. As of the end of the third quarter of 2008 the to-
tal assets managed by Hedge Funds world wide was estimated at $1.72 trillion, [Barclays,
2009]. Hedge Funds generally only report their returns on a monthly basis, however, and
this means that very limited amounts of data are available for study, as databases of Hedge
Fund returns have only been in operation for about 15 years. This is in keeping with the
highly secretive, proprietary nature of Hedge Fund investing. The amount of information
reported by a Hedge Fund about how and where it is producing its returns is often lim-
ited to sectoral overviews and strategy allocations. For an introduction to hedge funds see
[Lhabitant, 2002, 2004]; for an overview of their strategies see Appendix A.

In addition to attractive returns, many Hedge Funds claim to provide significant di-
versification benefits when combined with traditional assets such as equities and bonds.
Moderate correlations between Hedge Funds and traditional asset classes, using monthly
returns data, have been reported, [Schneeweis and Martin, 2001; Liang, 2001]. Hence, the
market exposure of Hedge Funds to traditional assets classes has also been found to be
low, although these results were based upon monthly returns data and may be misleading.

Hedge Funds may hold illiquid exchange traded assets or over the cSU@&LC) secu-

18An over the counter security is one that is not listed or traded on an organised exchange and instead is
traded directly between parties
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rities, which may be priced using the last traded price, (which may not have teaded

even near the end of the month), resulting in non-synchronous pricing. Furthermore, OTC
securities may not have publicly available prices but instead rely on broker prices. Due to
the large performance fees charged by hedge funds, using stale or non-synchronous data
may be of great benefit to the manager, at the expense of the investor.

Additional diversification benefits may be gained by investing in a variety of Hedge
Fund strategies, due to the presence of low and even negative correlations between differ-
ent strategies. Such strategies can be broken up into two general catedaogesonal
andmarket neutral. Directional strategies, (for example Long/Short Equity, Emerging mar-
kets, Macro and Managed Futures), have a high risk, high return profile and act as return
enhancers to a traditional portfolio. Market Neutral strategies, (for example Convertible
Arbitrage, Equity Market Neutral and Fixed Income Arbitrage), deploy a low risk profile
and act as a substitute for some proportion of the fixed income holdings in an investor's
portfolio, [Lhabitant, 2002, 2004]. However, as mentioned, the inter-strategy correlations,
calculated using the original data, may be misleading.

A Fund of Hedge Funds is a strategy that invests in other funds, rather than investing
directly in Stocks, Bonds or other securities. These allow investors to have access to a large
and diverse portfolio of Hedge Funds without having to carry out due diligence on each
individual manager. The diversification benefits provided by Fund of Funds are brought
about by investing in a number of funds that have a low correlation to each other with a view
to spreading risk across many different strategies. These correlations, however, are often
calculated by using equally weighted fund returns and can contain a significant amount of
noise, due to the very small amount of returns data available for hedge funds, [Lhabitant,
2004].

Risk control techniques for portfolios of hedge funds have been studied by various
authors. The threshold point sélf-organised criticalityvas used as a control parameter of
risk exposure, [Nishiyama, 2001], for a portfolio of Hedge Funds. The correlation matrix
between the returns of Hedge Funds was used, [Miceli, 2004], to characterise Hedge Fund

strategies using Random Matrix Theory (RMT) and a minimum spanning tree. A downside-
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risk!’ framework was used, [Perello, 2007], for the study of Hedge Fund risk, taking into
account the inherent asymmetry in Hedge Fund return distributions. Survivorship bias in
Hedge Funds was studied for the perid®d0 — 1999, where it was found that the level of

survivorship bias was significantly positive, [Liang, 2001].

2.9 Summary

In this Chapter, we have given a broad introduction to Complex Systems, with particular
emphasis on previous research in two sample systems of particular interest to us, that is
Financial and Neurological. Common to these systems is a need to characterise and reduce
risk associated with behaviour under ‘stresses’, such as seizures and market crashes. In the
following, we show that the risk involved is associated with interactions between agents

and look at ways to characterise, reduce and predict the level of risk.

Downside-risk measures look at how much money an investor stands to lose during adverse market condi-
tions
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CHAPTER3

METHODOLOGY

3.1 Introduction

In this chapter, we present some of the techniques used in the analysis of the equal-time
cross-correlation matrix between time-series. The calculation of the cross-correlation for
general time-series is introduced and the issue of noise reduction in the cross-correlation
matrix, using Random Matrix Theory (RMT), is then addressed, with financial applications
in Portfolio Optimisation and Sector Identification. In order to build up a methodology
suitable for risk characterisation, we then discuss an approach that allows us to study the
dynamics of correlations over time. In developing a framework for the group structures
found in complex interacting systems, we propose an ‘ab-initio’ model for the correlation
structure between Equities. Finally, we discuss the use of Wavelet multiscale analysis, to

investigate the effect of granularity on the cross-correlation matrix.

3.2 The Cross-Correlation Matrix and Eigenvalues

Correlation is a statistical measure of the strength and direction of a linear relationship
between two random variables. The most common form of correlation iBe¢aesonor
Product-Momentorrelatiort, which is obtained by dividing the covariance of two variables
by the product of their standard deviations.

Given a series of measuremenisf), t = 1,2,...,7T of a random variableé, we first

The concept was actually first introduced by Francis Galton, a half-cousin of Charles Darwin, Bulmer
[2003]
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normalise each (¢) with respect to the series standard deviatiaas follows:
z(t) = ——— (3.1)

Whereo andz arethe standard deviation and time average: ¢f) over all the measure-
mentst =1,2,...,T.
Then, the equal-time cross-correlation matrix between measurements of two such ran-

dom variablesX andY can be expressed in termsaft) andy (¢),t = 1,2,...,T

Cij = (& (1) 5 (1)) (3.2)

The elements of the cross-correlation matti;, are limited to the domain-1 < Cj; <
1, where(C;; = 1 defines perfect positive correlatiof; = —1 corresponds to perfect
negative correlation and@;; = 0 corresponds to no correlation. In matrix notation, the

correlation matrix can be expressed as

1
C=-7Z7" 3.3
= (3:3)

WhereZ isan N x T matrix with elements;;.
The N eigenvalues\; and eigenvectors; of the correlation matrixC are found from
the following

Céi=)\v;, i=1,...,N. (3.4)

The eigenvalues are then ordered according to size, suchitkat\, < ... < Ay.

3.3 Modern Portfolio Theory

Modern portfolio theory is concerned with models of security and portfolio analysis, in
particular with how rational investors use diversification to optimise their portfolios and a
risky asset should be priced. Given the importance of mean-variance portfolio theory and

the Capital Asset Pricing Model (CAPM), we describe briefly their assumptions and form.
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3.3.1 Portfolio Optimisation

The diversificationof an investment into independently fluctuating assets reduces its risk.
However, since cross-correlations between asset prices exist, accurate calculation of the

cross-correlation matrix is vital. The return on a portfolio withassets is given by

N

=1

whereG;(t) is the return on Fund, w; is the fraction of wealth invested in asseand

Zi]\il w; = 1. The risk of holding this portfolio is then given by

N N

QQ == Zzwichijgigj (36)

i=1 j=1

whereo; is the volatility (Standard Deviation) @f;, andC;; are the elements of the cross-
correlation matrix. In order to find an optimal portfolio, using the Markowitz theory of
portfolio optimisation [Markowitz, 1958; Elton and Gruber, 2002; Bouchaud and Potters,
2003], we minimis&2? under the constraint that the return on the portfalipis some fixed
value. This minimisation can be implemented by using two Lagrange multipliers, which
leads to a set oV linear equations which can be solved foy. If we minimise(? for a
number of different values @b, we obtain a region bounded by an upward-sloping curve,
called theefficient frontier, which reflects the highest level of expected return possible for
a given amount of risk.

In the special case of optimisation with a portfolio containing only Hedge Funds, the
additional constraint of nshort-selling is natural due to the difficulties involved; (note
that short-selling may be achievable by the use of sivapsis uncommon), [Lhabitant,
2002, 2004].

Throughout this thesis, we focus on the standard deviation of returns as a measure of

The selling of a security not currently owned by the seller, where the security is ‘borrowed’ from a third
party. The seller benefits if the price of the security falls.

3A derivative security in which two counterparties agree to exchange one stream of cashflows against an-
other stream.
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financial portfolio risk. However, other methods of calculating the risk of a portfnié
available such as expected semi-variance (a measure of the variation in risk below certain
threshold value), the shortfall risk measure (this measure the probability of an asset dipping
below a certain target) and the maximum drawdown (the maximum loss that an investor
could suffer within a specific time horizon), [Lhabitant, 2004]. These various methods
capture different aspects of risk and may be more appropriate in particular cases. However,
these techniques do not lend themselves to simple portfolio optimisation (in particular using
the correlation matrix) and so, we choose the standard deviation of returns as a measure of

risk.

3.3.2 The Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) was developed, [Sharpe, 1964], building on ear-
lier work, [Markowitz, 1958], as a model for pricing an individual asset or a portfolio. The
derivation of the standard CAPM is based upon a number of assumptions, (summarised see

[Elton and Gruber, 2002]), and including:
e Risk-averse investors who aim to maximize economic utility

Infinite divisibility of financial assets

Absence of personal income tax

Unlimited short sales

Unlimited borrowing and lending at the risk free rate

Axiom that all assets are marketable

All information is available to all investors at the same time

The CAPM states that the expected return of a security or a portfolio equals the rate
on a risk-free security plus a risk premium. The latter depends linearly on the market risk

exposure (i.e. the Beta of an asset, Equation 3.8) and the market risk premium. Hence, the
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expected return on a risky asset is given by:
E(R;) = Ry + Bi[E(Rm) — Ryl i=1,...,N (3.7)

whereE(R;) is the expected return on each/éfrisky assetsE (R, ) is the expected return
of the market,R; denotes the risk free rate apgis the Beta of each asset with respect to
the market portfolial/, (in excess of the risk free rate return), and is given by

_ Cou(Ri, Rm)

= . i=1,...,N. 3.8
Var(Ry) ! (3.8)

A full derivation of the CAPM and the Beta of a portfolio, is given, [Elton and Gruber,
2002].
Equation 3.7 can be rewritten in terms of the risk premium by simply subtracting the

risk-free rate from both sides of the equation giving,
E(R;) — Ry = Bil[E(Rm) — Ry, i=1,...,N. (3.9)

The empirical version of equation 3.9 is given by
R; — Ry = a;j + Bi[Rm — Ry| + €, i=1,...,N (3.10)

whereq; is the expected firm-specific return aadis a random error term. For a more
detailed treatise of the CAPM see [Sharpe, 1964; Elton and Gruber, 2002; Bouchaud and
Potters, 2003; Gencat al., 2003, 2005] .

3.4 Random Matrix Theory

Random Matrix Theory originates from work by Wigner in nuclear Physics in the 1950's
and later developed by Dyson and Mehta, and many theoretical and empirical results are
known [Dyson, 1962; Dyson and Mehta, 1963; Edelman, 1988; Mehta, 2004]. In the orig-

inal application of the theory, the problem was to explain the observed structures of the
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energy levels of heavy nuclei, when model calculations failed to explain the experimental
data. Wigner made the bold assumption that the complexity of the interactions between
constituents of the nucleus was such that these could, in fact, be modelled as random.
The spectral properties of a correlation matfix,may be compared to those of a “ran-
dom” Wishart correlation matrix or Laguerre ensemlig, [Plerouet al., 2000a; Laloux
et al., 2000],
1

R=—-AA" 3.11
= (3.11)

whereA isan N x T matrix with each random element having zero mean and unit variance.
Statistical properties of random matrices have been known for many years in the Physics
literature, [Mehta, 2004], and have been applied to financial problems relatively recently
[Laloux et al., 1999; Plerowet al., 1999; Gopikrishnast al., 2000; Plerowet al., 2000a;
Laloux et al., 2000; Rosenowt al., 2002a; Bouchaud and Potters, 2003; Wilcox and Geb-
bie, 2004; Sharifet al., 2004; Burd&t al., 2004; Burda and Jurkiewicz, 2004; Coné&iral.,
2007].

In particular, the limiting property for the sample si2é — oo and sample length
T — oo, providing thatQ) = % > 1 is fixed, has been examined to show analytically,

[Sengupta and Mitra, 1999], that the distribution of eigenvaluie$ a random correlation

matrix R is given by:

P () = 52y VR Z A, 312

for A within the region\_ < \; < A, where\_ and\ are given by

Ai—02@+w;iz¢g>, (3.13)

Whereo? is the variance of the elements &, (for G normalised this is equal to unity).
A+ are the bounds of the theoretical eigenvalue distribution. Eigenvalues that are out-
side this region are said to deviate from Random Matrix Theory. Hence, comparing the

empirical distribution P(\), of the eigenvalues of the correlation matrix to the distribution
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for a random matrix,P..,(\), Eqn. 3.12, deviating eigenvalues can be identified. These
deviating eigenvalues are said to contain genuine correlation information about the system

under consideration and we can use eigenvector analysis to identify this in a given case.

3.4.1 Eigenvector Analysis

The deviations of the empirical eigenvalue distributiét{(,\), from the theoretical RMT
result, P.,, (), implies that these deviations should also be displayed in the statistics of
the corresponding eigenvector components, [Laleual., 2000]. In order to interpret the
meaning of the deviating eigenvectors, we note that the largest efgenvalues is of an
order of magnitude larger than the others, which constrains the remaihing, since the

trace of the correlation matrif;r [C] = N. Thus, to analyse the contents of the remaining
eigenvectors, we first remove the effect of the largest eigenvalue. To do this we use linear

regression, [Pleroat al., 2002]
G; (t) :ai+ﬁiGlarge (t)—|—€l' (t), i=1,....N (3.14)

WhereGlaree — S~V le79¢q; (1) and N is the number of different times-series in our

(2

large
[

sample. Here; corresponds to the components of the eigenvector associated with the
largest eigenvalue. We then calculate the correlation matrix using the residuals; =
1... N. This matrix then takes the place of matéixin porfolio optimisation. If we quan-
tify the variance of the part not explained by the largest eigenvalué as1 — Narge /N,
[Laloux et al., 2000], we can use this value to recalculate our valugs. of

Using techniques for group/sector identification, [Gopikrisheaml., 2000], we at-
tempt to analyse the information contained in the eigenvectors. We first partition the time-
series into predefined groups= 1,... M, (for example, in the case of Hedge Funds we
use strategies such as Equity Long/Short, Managed Futures, Convertible Arbitrage. See
Appendix A for a complete strategy breakdown and description). We define a projection
matrix P; = n% if seriesi belongs to group and P;; = 0 otherwise. For each deviating

eigenvecton*, k = (N — d), ..., N andd the number of deviating eigenvalues, we then
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compute the contribution,

(2

N
Xt =Y Bt [u’?r, k=(N—-d),...,N (3.15)
=1

of each grouping, where this represents the product of the projection matrix and the square
of the eigenvector components. This allows us to measure the contribution of the different

groupings or sectors to each of the eigenvalues.

3.4.2 Inverse Patrticipation Ratio

As suggested, [Pleroet al., 2002], we also aim to assess how random properties diminish
as we move further from the RMT upper boundaky,. To do this, we use the Inverse
Participation Ratio (IPR). The IPR allows quantification of the number of components that
participate significantly in each eigenvector and reveals more about the level and nature of

deviation from RMT. The IPR of the eigenvectd is given by

r=y (uf)4 (3.16)

and allows us to compute the inverse of the number of eigenvector components that con-
tribute significantly to each eigenvector. There are two limiting cases for the(IPRthen

the eigenvector has identical componenfts= \/% thenlPR = &, (i) If one component

u¥ = 1 and all others zero, then IPR 1. The IPR quantifies theciprocal of the number

of eigenvector componerttsat contribute significantly to each eigenvalue.

3.4.3 RMT and Portfolio Optimisation

One patrticular application of Random Matrix Theory is in the reduction of noise in the
correlation matrix calculated for returns of financial assets, ([Bouchaud and Potters, 2003;
Sharifiet al., 2004] and references therein), a vital input in financial portfolio optimisation.

In order to examine randomness effects on the cross-correlation matrix between financial
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assets, we first divide the time-series of returns into two equal parts. We atisainmee
haveperfect knowledgef the future average returms; by taking the observed returns on

the second sub-period. We calculate

1. the predicted efficient frontier using the correlation matrix for the first sub-period and

the expected returng;

2. the realised efficient frontier using the correlation matrix for the second sub-period

and the expected returns;
The portfolio risk due to the noise in the correlation matrix can then be calculated using

02— 2

Where()? is the risk of the realised portfolio arfd% is the risk of the predicted portfolio.

It was shown, [Burdat al., 2004; Burda and Jurkiewicz, 2004], that correlations may
also be measured in the random part of the eigenvalue spectrum. However, since our aim
here is to demonstrate how Random Matrix Theory can be used to improve the risk/return
profile for a portfolio of Hedge Funds, we assume in our early work that the eigenvalues
corresponding to the noise band in RMX[, < A\ < A4, are not expected to correspond
to real information, (following [Rosenowt al., 2002a; Shariet al., 2004] and references
therein). We then use this assumption to remove some of the noise from the correlation
matrix. Although the technique used in [Laloakal., 2000; Bouchaud and Potters, 2003]
has been shown to lead to problems withgtability of the correlation matrix, [Shariét al.,

2004], we apply it here as a simple test case to demonstrate how noise can be removed from
the cross-correlation matrix formed from Hedge Fund returns. This technique involves
separating the noisy and non-noisy eigenvalues and keeping the non-noisy eigenvalues the
same. The noisy eigenvalues are then replaced by their average and the correlation matrix
is reconstructed using

Celean = ‘A’TAclean‘A’ (318)
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where) ..., are the cleaned eigenvalues andre the eigenvectors of the original correla-
tion matrix. After this, we can calculate the efficient frontiers and compare the risk of both
the predicted and realised portfolios for the original and cleaned correlation matrices.
Conventionally, RMT has been applied, in a financial context to high and medium-
frequency data, such as equity returns, [Bouchaud and Potters, 2003]. There is little reported
in the literature on attempts to subject sparse data, such as Hedge Fund returns data, to
such rigors, a common perception being that such data are unlikely to yield a great deal of
information. In fact, due to the level of noise inherent in sparse data sets, the application of

filtering techniques such as RMT is of paramount importance.

3.5 Correlation Dynamics

The correlations between non-stationary multivariate time-series are characterised by an
ever-changing degree of synchronisation within the system. By considering the eigenspec-
trum of the cross-correlation matrix, we are able to reduce the complexity of the various
synchronisations within a system. Then, through the study of the eigenvalue dynamics, we
can consider the temporal evolution of the system correlations.

The sum of the diagonal elements of a matrix, (the Trace), must always remain constant
under linear transformation, [Jolliffe, 2002]. Thus, the sum of the eigenvalues must always
equal the Trace of the original correlation matrix. Hence, if some eigenvalues increase then
others must decrease, to compensate, and vice versa (Eigenvalue Repulsion).

There are two limiting cases for the distribution of the eigenvalues)igvlet al., 2005;
Schindleret al., 2007a]. When all the time-series are perfectly correlat&dss 1, the
largest eigenvalue is maximised with a value equaVtavhile for time-series consisting of
random numbers with average correlation= 0, the corresponding eigenvalues are dis-
tributed around, (where any deviation is due to spurious random correlations, Figure 3.1).

For cases between these two extremes, the eigenvalues at the lower end of the spectrum

can be much smaller thay,,,. To study the dynamics of each of the eigenvalues, using a
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Fig. 3.1: Limiting Cases for eigenvalue distributions

sliding window, we normalise each eigenvalue in time using

(3.19)

where);(7) ando?() are the mean and standard deviation of the eigenvatver a par-

ticular reference period,. This normalisation allows us to visually compare eigenvalues at
both ends of the spectrum, even if their magnitudes are significantly different. The refer-
ence period, used to calculate the mean and standard deviation of the eigenvalue spectrum,
can be chosen to be either a low volatility sub-period, (which helps to enhance the visibility

of high volatility periods), or the full time-period studied.

3.5.1 One-factor Model

The behaviour of the largest eigenvalue of the correlation matrix can be accurately described
by a simple one-factor correlation model, Section 2.5. Indhe-factor modebf stock
returns, we assumeglobal correlationwith the cross-correlation between all stocks the
same,pg, [Elton and Gruber, 2002]. The spectrum of the associated correlation matrix
consists of only two values, a large eigenvalue of of@ér 1)p, + 1, associated with the

market, and afiN — 1)—fold degenerate eigenvalue of sile— py) < 1. Any deviation
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from these values is due to the finite length of time-series used to calculate the correlations.
In the limit N — oo, (even forsmall correlation, i.e.p — 0), a large eigenvalue appears,

which is associated with the eigenvector= <L> (1,1,1,...,1), and which dominates

VN
the correlation structure of the system.

3.5.2 ‘Market plus sectors’ model

To expand the above to a ‘market plus sectors’ model, Section 2.5, we perturb a number of
pairsN of the correlationgg + p,,, where—1—pg < p, < 1—po. Additionally, we impose
a constraintz pn = 0, ensuring that the average correlation of the system remains equal
to po. These]\éjerturbations allow us to introdwgreups of stocksvith similar correlations,
(corresponding to Market Sectors).

Using the correlation matrix from the “one-factor model” and the “market plus sectors
model”, we can construct correlated time-series using the Cholesky decompdsitiba
correlation matrixC = A A, [Presset al., 2007]. We can then generate finite correlated

time-series of lengtft’,
Tt — Z Aijyjt t= 1, e ,T (320)
J

wherey;; is a random Gaussian variable with mean zero and variance unity at tidseng

Egn. 3.2, we can then construct a correlation matrix using the simulated time-series. The
finite size of the time-series introduces ‘noise’ into the system and hence empirical corre-
lations will vary from sample to sample. This ‘noise’ can be reduced through the use of

longer simulated time-series or through averaging over a large number of series.

In order to compare the eigenvectors from each of the model correlation matrices to
those constructed from the equity returns time-series, we can use the Inverse Participation
Ratio (IPR), (Section 3.4.2).

Consideration of the above techniques in isolation will unmask changes in correlation
dynamics for the system in question, an idea not previously examined in the literature for

financial time-series. Additionally, by first decomposing the signal into component frequen-
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cies, further dynamical features may emerge, allowing a multivariate time anchsedysis
of correlations for the first time. In order to first break the signal up, wavelet multiscaling

techniques are applied.

3.6 Wavelet Multiscaling

The characteristics of a time-series may be decomposed into different frequency compo-
nents, a process known as multiscaling. Wavelets provide an efficient means of studying
these multiresolution properties, as they can be used to decompose a signal into different
time horizons or frequency components. The Discrete Wavelet Transform (DWT), [Bruce
and Gao, 1996; Burrust al., 1998; Percival and Walden, 2000], in particular, allows the
decomposition of a signal into components of different frequency. There are two basic
wavelet functions, the father waveletand the mother wavelet. The formal definitions of

the father and mother wavelets are the functions:

Gi (1) = 236 (27t — k) (3.21)
ik (£) = 229 (2t — k) (3.22)
wherej = 1,,...,J in a J-level decomposition ané ranges froml to the number of

coefficients in the specified level. The father wavelet integrates to unity and reconstructs
the longest time-scale component of the series, whereas the mother wavelet integrates to
zero and is used to describe the deviations from the trend. The wavelet representation of a

discrete signaf (¢) in L?(R) is given by:

flt) = Z SykGIkE(t) + Z dirdrr(t)+, ...,
k k
+ Z d1 1 01,k(t) (3.23)
s

where J is the number of multiresolution levels (or scales) angnges from unity to the

number of coefficients in the specified level. The coefficiantsandd s are the smooth
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and detail component coefficients respectively and are given by

S‘]’k = /¢J7kf(t)dt (324)
b= [ttt G=1....0) (3.25)
Each of the coefficient sets;, dy,dy_1,,...,d; is called acrystal.

The Maximum Overlap Discrete Wavelet Transform (MODWT), [Percival and Walden,
2000; Gencayt al., 2001b], is a linear filter that transforms a series into coefficients related
to variations over a set of scales. Like the Discrete Wavelet Transform (DWT), it produces a
set of time-dependent detail and scaling coefficients with basis vectors associated with a lo-
cationt and a unitless scalg = 27=1 for each decomposition level,= 1,,...,,.Jy . The
MODWT, unlike the DWT, has a high level of redundancy, however, and is nonorthogonal.
It retains downsamplédralues at each level of the decomposition that would be discarded
by the DWT. The MODWT can also handle any sample size N, whereas the DWT restricts
the sample size to a multiple @f. One of the benefits of the redundancy present in the
MODWT is the ability to line up features in a multiresolution analysis with the original
time-series, something not possible using the DWT. In this study, we apply the MODWT
as it helps reduce the errors associated with the calculation of the Wavelet Correlation at
different scales, (due to the availability of greater amounts of data at longer scales).

Decomposing a signal using the MODWT Jfolevels theoretically involves the appli-
cation of J pairs of filters, [Percival and Walden, 2000]. The filtering operation agjthe

level consists of applying a re-scaled father wavelet to yield a sitail coefficients

Lj—1
Djy= > jufii (3.26)
1=0

and a re-scaled mother wavelet to yield a sedazling coefficients

Li—1
Sie=>_ bjufim (3.27)
=0

“Downsampling or decimation of the wavelet coefficients retains half of the number of coefficients that were
retained at the previous scale. Downsampling is applied in the Discrete Wavelet Transform
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foralltimest =,...,—1,0,1,..., wheref is the function to be decomposed [Percival and
Walden, 2000]. The rescaled mother, = “!, andfather,¢;, = %, wavelets for the

jt" level are a set of scale-dependent localised differencing and averaging operators and can
be regarded as rescaled versions of the originals.jThievel equivalent filter coefficients

have a widthZ; = (2 — 1)(L — 1) + 1, whereL is the width of thej = 1 base filter. In
practice the filters foj > 1 are not explicitly constructed because the detail and scaling
coefficients can be indirectly calculated, (using an algorithm that involves tha filters
operating recurrently on thé" level scaling coefficients, to generate the 1 level scaling

and detail coefficients), [Percival and Walden, 2000].

The MODWT is also an energy conserving decomposition, [Percival and Walden, 2000]:
J ) o
117 = D2 1851 + || (3.28)
j=1

This decomposition allows the measurement of the contribution to the total energy due to
changes at scal¥—!. A fractional energij, associated with each scale can be calculated

using

J

B

= Etit’ with By = Y _ Ej. (3.29)
j=1

forscalesi=1,,...,,J.

3.6.1 Wavelet Variance

The wavelet variance]%(rj) is defined as the expected valuefbj’t, if we consider only
the non-boundary coefficients. Ambiasedestimator of the wavelet variance is formed by

removing all the coefficients that are affected by the boundary conditamsis given by:

1 N-1 ~
y]%(Tj):ﬁ > D}, (3.30)
Jt=1,;—-1

*The MODWT treats the time-series as if it were periodic using “circular boundary conditions”, so prevent-
ing double-counting in the calculation. There drewavelet and scaling coefficients that are influenced by the
extension, which are referred to as the boundary coefficients.
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whereM; = N — L; + 1 is the number of non-boundary coefficients at e level,
[Percival and Walden, 2000]. The wavelet variance decomposes the variance of a process
on a scale by scale basis and allows us to explore how a signal behaves over different time

horizons.

3.6.2 Wavelet Covariance and Correlation

The wavelet covariance between functigfig) andg(t) is similarly defined to be the co-
variance of the wavelet coefficients at a given scale. Uritgasedestimator of the wavelet
covariance at thg'" scale is given by

N—

1 - -
violm) = 3 D DI DI (3.31)
tZLj—].

—_

where all the wavelet coefficients affected by the boundary are removed, [Percival and
Walden, 2000], and/; = N — L; + 1.

The MODWT estimate of the wavelet cross-correlation, between functf¢hsand
g(t), may then be calculated using the wavelet covariance and the square root of the wavelet
variance of the functions at each scgleThe MODWT estimator, [Gencast al., 2001b],

of the wavelet correlation is then given by:

Vrg(T5)
pfg(Ti) = —F——— (3.32)
19 = ()
In the CAPM model, Section 3.3.2, the wavelet Beta estimator, at g¢dfdencay
et al., 2001b], is defined as

Bim(Tj) = ”;‘? (f-? (3.33)
m\']

wherevy,,(7;) is the covariance between an asgeind the marketn, andv,,(7;) is the

variance of the return on the market portfolio at sgale
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3.7 Summary

In this chapter, we outlined the use of the cross-correlation matrix as a measure of syn-
chronisation between time-series. We then introduced a number of techniques designed to
increase the amount of information gleaned from, as well as detect changes in the structure
of the correlation matrix. While these methods are known, the techniques have not been
previously integrated or used to explore the correlation structure in data sets from diverse
applications such as Hedge Fund returns and Brain signals. A combination of techniques
allows us to demonstrate the use of the correlation matrix for diversification purposes, even
in sparse data-sets. It also provides a test of robustness of the methodologies considered
in, for example, the characterisation of extreme events in Complex Systems through the

analysis of the eigenspectrum.
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CHAPTER4

RANDOM MATRIX THEORY AND FUNDS OF

FUNDS PORTFOLIO OPTIMISATION

As described, (Section 2.4), Random Matrix Theory (RMT) has been applibe correla-

tion matrix between returns of stocks from markets of various countries. The data examined
in these studies varied from medium frequemdgrdayreturns [Lalouxet al., 1999; Plerou

etal., 1999; Lalowet al., 2000; Pleroet al., 2002; Utsugét al., 2004; Sharifét al., 2004;
Conlonet al., 2007], to high frequenciyntraday, [Plerouet al., 2000a, 2002]. Here, we
extend the application of Random Matrix Theory in financial markets through the study of
sparse, low-frequency Hedge Fund returns. The purpose is to demonstrate the application
of the correlation matrix to portfolio diversification, even in a low-frequency data environ-
ment. Given the current difficulties facing financial markets, perhaps the Hedge Fund focus
is particularly relevant due to their stated aimatisolute returns.

The proprietary nature of Hedge Fund investing means that it is common practise for
managers to release minimal information about their returns, often reporting only once per
month. The construction of a Fund of Hedge Funds portfolio, (Section 2.8), thus requires
correlation matrix estimation, typically based on a relatively small sample of monthly re-
turns data and this means that high levels of noise can have significant impact on portfolio
optimisation.

In this Chapter, we establish that information is retained within the correlation matrix
for low-frequency Hedge Fund returns. Further, through the application of Random Ma-

trix Theory, (Section 3.4), we test the ability of RMT-based filtering to clean a correlation
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matrix constructed from low-frequency data. We investigate, in a financial xtonteat
diversification benefits can be found using the information contained in eigenvalues of the
cross-correlation matrix deviating from Random Matrix Theory. Using classical portfolio
optimisation theory, (Chapter 3.3.1), we consider how the cleaned correlation matrix can
be used in Hedge Fund risk management, specifically to improve the risk-return profile of

a portfolio of Hedge Funds.

4.1 Data and Implementation

The dataset studied here is a collection of 49 Hedge Funds with varying strategies, over a
synchronous period from January 1997 to September 2005, 105). The original dataset

was much larger, (approximately 1500 funds), but since the length of data series available
was much less than the number of funds we were forced to choose a subset. The subset
chosen contained the 49 funds with the longest track records giving us a fund to data ratio
@ = 2.143. Reducing the dataset in this way is not unrealistic as a typical fund of hedge
funds would monitor a subset of funds and choose a portfolio from these, [Lhabitant, 2002,
2004]. Often, one of the criteria used in choosing this subset of investable funds would be
the completion of a minimum track record. (Other data sets, such as a portfolio made up of
Hedge Fund strategy indices, were also studied with similar although less obvious results.
The smaller number of strategies available means the amount of correlation information
available decreases and there are fewer deviating eigenvalues than will be shown below for
Fund returns).

In order to explore the information content of a correlation matrix, we calculated the
empirical Correlation Matrixbetween the funds using equally weighted returns and from
this found the spectrum of eigenvalues, (Section 3.2). This was then compared with the
theoretical spectrum for random Wishart matrices, (as per Eqn. 3.12). To demonstrate the
stability of the returns across different time periods and for different series lengths, we
divided the data into two segments and reperformed the above experiment. The information

found in the deviating eigenvalues was subsequently analysed using eigenvector analysis
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and the inverse participation ratio. Finally, the RMT filtered correlation matrix wasased

an input to a portfolio optimisation for a collection of Hedge Funds, (Section3.4.3).

4.2 Results
4.2.1 Equally weighted Correlation Matrix

The minimum and maximum theoretical eigenvalues of the correlation matrix correspond-
ing to the full data set were found to e = 0.1 and\;. = 2.83, respectively, (Section3.4).

As can be seen, from Fig. 4.1, the bulk of the eigenvalues conformed to those of the random
matrix. There were three deviating eigenvalued,0a2886, 8.2898 and2.944, correspond-

ing to spikes outside the bulk envelope. This means(thét of eigenvalues deviated from

the RMT prediction, consistent with the findings of [Laloebal., 2000] for equity markets,

where the authors argue thattmost6% of eigenvalues are non-noisy.

Eigenvalue Density 49 funds, 105 months data
25 T T T

T
—— Empirical Density
Theoretical Density

15 =

Density

0.5 -

Eigenvalues

Fig. 4.1: Spectral density for equally weighted Hedge Fund correlation matrix
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4.2.2 Bootstrapping

Dividing the time-series into two segments, we found just two eigenvalues that deviated
from the RMT prediction, for both time periods. As can be seen in Fig. 4.2, the anomalous
eigenvalue contributions are very similar for both periods chosen, which implies these are
independent of the choice of time period, (ie. stationarity of the data). The values of the

deviating eigenvalues are shown in Table 4.1.

| Eigenvalue RanK 105 Months Returns 1°/ 53 Months | 2”7 52 Months |

1 10.9886 11.334 11.6874
2 8.2898 8.1375 8.9312
3 2.944

Tab. 4.1: Eigenvalues deviating from RMT predictions

A. Eigenvalue Density, 49 Funds using 1st 53 months data months Data
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—— Empirical Density
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B. Eigenvalue Density, 49 Funds using 2nd 52 months data months Data
6 T T T T T
—— Empirical Density

5 — Theoretical Density|
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2
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Fig. 4.2: Bootstrapped spectral density for consecutive periods.
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4.2.3 Eigenvector Analysis

Fig. 4.3 shows the density of the components of the largest eigenvector and also the compo-
nents of a typical eigenvector from the region predicted by RMT. As can be seen from this
graph, the distribution of the components of the largest eigenvector is significantly different
from that of an eigenvector chosen from the random region. The average value is greater
and the variance of the components much smaller for the largest eigenvector, which is in
agreement with [Pleroet al., 2002; Shariféet al., 2004], where the largest eigenvector was
interpreted as the ‘market’. A Kolmogorov-Smirnov test rejected the hypothesis that the
two eigevectors came from the same distribution, wWith: e~8. In this case the ‘market’

is the set of external stimuli that affect most Hedge Funds, (eg. Interest rate changes, large

market (ie S&P 500 etc) moves, margin changes etc).

Eigenvector Components

Number of Occurences

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Eigenvector Components

Fig. 4.3: Comparison of Eigenvector Components, showing the largest Eiggen{Red),
Eigenvector from the bulk (Blue)

We then removed the effects of the largest eigenvalue, (using techniques described in
Section 3.4.1). This caused a shiftAp,,, from 2.8329 to 2.1975 which means that 4 of
the remaining largest eigenvalues are now outside the RMT region, (Fig. 4.4).

The distribution of the components of largest remaining deviating eigenvector showed
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Eigenvalue Density, 49 Funds, 105 months data months Data
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Fig. 4.4: Eigenvalue spectrum after the removal of the effects of the |Eigestvalue

distinctive clustering, (Fig. 4.5). In particular Managed Futures, Emerging Markets and
European Long/Short Equity strategies were major contributors here.

A similarly-clustered distribution also featured for other deviating eigenvalues. An anal-
ysis of the eigenvector components for the 2nd largest remaining eigenvector, after remov-
ing the effects of the market eigenvector, (Fig. 4.6), showed distinctive sectoral grouping,
especially for managed futures and long/short equity. However, the components corre-
sponding to the managed futures strategy did not deviate much from zero and contribute
little. These findings for clustering of the deviating eigenvalues are in agreement with those
of Sharkasket al. [2006b], where the authors showed that, in addition to the largest, other
deviating eigenvalues of the correlation matrix of asset returns also contain information

about the risk associated with these assets.
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Fig. 4.5: Density of eigenvector components, largest remaining eigenvalue
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Fig. 4.6: Density of eigenvector components, 2nd largest remaining eigenvalue
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4.2.4 Strategy ldentification

Following on from the analysis described in Section 4.2.3, we looked also at the contribu-
tion of each strategy grouping} = S | P} [uﬂQ to each of the deviating eigenvalues

from the different strategies employed, (Section 3.4.1). Fig. 4.7 squ’WB)r the largest
remaining Eigenvector once the effects of the market eigenvalue was removed. The largest
contributors were clearly Managed Futures and Emerging Markets, although the strategy
contribution for Managed Futures was only around twice that for many of the other sec-
tors. Hence, Managed Futures and Emerging Markets clearly seemed to be the dominant
strategies. However, care in interpretation is needed, since neither contributor was domi-
nant overall and there may be overlaps. In particular, as Managed Futures managers may
trade the currencies of Emerging Markets, it may also be that there is a closer relationship

between these two strategies than is obvious.

Sector
Contribution
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04
Asia  Convertible Currency Emerging European Fixed Global Macro Managed Self-

& Equity Markets  Long/Short  Income Equity Futures  Invested

Arbitrage Equity Fund of

Strategy

Fig. 4.7: Strategy Contribution, largest eigenvalue

Fig. 4.8 shows the strategy contributions for the second largest eigenvalue. These are
interesting, since three of the four dominant strategies (Asia, Global E§uEyropean
Long/Short Equity) areequity strategies and are all affected by events in world equity

markets. As funds appearing in the same eigenvaludighdy correlated, this means that
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it is difficult to diversify by investing in equity funds addition, the fourth strategy, Self
Invested Fund of Funds, may well also consist of equity funds. However, information
is limited on exactly what type of funds the managers were invested, although there is
reason to believe that a majority of them would be equity based, (as equity based funds
account for the largest proportion of Hedge Fund assets under management, [Barclays,
2009; CreditSuisse, 2009]). This implies, albeit tentatively, that this eigenvalue contains

information primarily on equity funds.
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Arbitrage Equity Fund of

Strategy

Fig. 4.8: Strategy Contribution, 2nd largest eigenvalue

Fig. 4.9 contains the strategy contributions for the third largest remaining eigenvalue.
Clearly, the dominant strategy here was Currency. It was notable in the above, that analysis
of the eigenvalues frorwithin the random matrix regioappeared to reveal no dominant
strategies. The evidence of strategy information in the deviating eigenvalues, coupled with
a lack of dominant strategies within the RMT region, strongly supports the idea that infor-
mation in the correlation matrix is chiefly contained within the deviating eigenvalues. Addi-
tionally, as these are orthogonal to each other, diversification is accomplished by investing
in funds from each of the deviating eigenvalues. Focus on the deviating eigenvalues, enables
the creation of a portfolio with an improved risk-return profile, (described section 4.2.6).

An alternative method of investigating strategy clustering was also examined through the
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Fig. 4.9: Strategy Contribution, 3rd largest eigenvalue

minimumspanning tree, [Miceli, 2004], but given the small amount of data available within

each cluster the results were found to be unstable.

4.2.5 Inverse Participation Ratio

The value of the inverse participation ratio (IPR) for Hedge Fund data is the additional
insight into the number of components contributing to the eigenvectors of both large and
small eigenvalues. Fig. 4.10 shows the IPR calculated for the eigenvectors of the Hedge
Fund cross-correlation matrix studied. The average IPR value was around 0.06, larger than
would be reasonably expectec}&(z 0.02) if all components contributed to each eigen-
vector. The IPR of the largest eigenvector is smaller, as expected, since it’s corresponding
eigenvalue reflects the Market or the influences that affect all Funds. However, the devi-
ating eigenvalues, highlighted earlier, are not obvious in the eigenvector components, as is
found for equity markets, [Pleroet al., 2002]. The small sample size, may mean that the
IPR was not particularly effective in terms of assessing by how much larger eigenvectors
deviate from the random region, due to finite size limitations, (expected IPR relies on a

sample size that tends to infinity).
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A significant deviation from this average IPR value was found for the fivgteigen-
vectors. In particular, for the IPR of the smallest eigenvector this was due to the inclusion of
two funds, identical apart from being in different base currencies, with correspondingly high
correlation, (=1). This lends support, even for sparse data, to the decoupling of funds with

a correlation coefficient much greater than the average, as described &latd@2002].
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Fig. 4.10: Inverse Participation Ratio as a function of eigenvalue

4.2.6 Noise Removal and Portfolio Optimisation

It was noted earlier that where the time-series available to estimate cross-correlation ma-
trices are of limited length, noise effects can be exaggerated. This problem is particularly
prevalent with sparse Hedge Fund data, since only monthly returns are available. The return
of a portfolio of N Hedge Funds is given given by

N

=) wGi, (4.1)

i=1
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whereG;(t) is thereturn on asset, w; is the fraction of wealth invested in asseand

Zf\il w; = 1. The risk of holding this portfolio is then given by

N N

QQ = ZZwiijijamj (42)

i=1 j=1

whereo; is the volatility of G;, andC;; are the elements of the cross-correlation matrix.

Using the methodology described in Section 3.4.3, we found realised risk to be, on
average, 292%f the predicted risk, Fig. 4.11. This large difference between predicted
and realised risk has obvious and serious consequences for risk management. Cleaning the
correlation matrix reduced the difference by more than a third, (realised risk was 190%
of predicted risk). This huge improvement was brought about by limiting the correlation
matrix to the information band prescribed by RMT. Some efforts to enhance the cleaning
techniques have been reported by [Shaifal., 2004; Dalyet al., 2008], however these
methods may be less effective on Hedge Fund data due to the difficulty in fitting given the

small number of eigenvalues.
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It can be seen in Fig. 4.11 that, for some return values, the predicted risk, tosifil
tered correlation matrix), was actually less than that of the original correlation matrix. This
may have been due to the constraints imposed on the portfolio, in particular the restriction
of no ‘short-selling’, (Section 3.3.1). This constraint is natural in the context of Hedge
Funds since, given their illiquid nature, it may be difficult to secure the borrow necessary to
implement the short-sale.

The use of the cleaned correlation matrix, led @ba; improvement in the difference
between the realised risk and the predicted risk for the optimal portfolio, even with the
imposed ‘short-selling’ restrictions. This demonstrates that, even for sparse Hedge Fund

data the correlation matrix has a role in risk reduction through diversification.

4.3 Conclusions

We have illustrated that, even with limited low-frequency Hedge Fund data (105 months
of returns data for 49 Hedge Funds), useful information can be extracted from the cross
correlation matrix constructed. Significant deviations from Random Matrix Theory predic-
tions were observed, while further analysis showed that there was real strategy information
contained within the deviating eigenvalues. Eigenvector analysis revealed distategy
clusteringin the deviating eigenvectors. These strategy effects included Emerging Markets
and Managed Futures in the largest eigenvector, Equity funds in the second, Currency and
Fund of Funds in the final two deviating eigenvectors. The strategy information in the de-
viating eigenvalues was then used to clean the correlation matrix, to alleviate noise effects
due to the small sample. Construction of a portfolio using classical portfolio optimisation
techniques, (Section 3.3.1), demonstrated that diversification benefits could be found using
the correlation matrix, even for low-frequency data. Further, application of the RMT filter-
ing technique, showed how financial risk management of a portfolio of Hedge Funds can be
addressed, with 35% improvement achieved between the risk of the predicted and realised

portfolios.
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CHAPTERS

WAVELET MULTISCALE ANALYSIS FOR

HEDGE FUNDS: SCALING AND STRATEGIES

In Chapter 4, we demonstrated that an equal-time cross-correlation matrix constrsicted

ing low-frequency Hedge Fund returns, contains real strategy information. We also showed,
using Random Matrix Theory, that it is possible to clean the correlation matrix in order to
create a portfolio with an improved risk-return profile, [Conktral., 2007]. However, as
mentioned earlier (Chapter 2), the diversification benefits found from Hedge Funds with
low or negative correlation to more traditional investments such as equities, may be mis-
leading. This is due to the fact that Hedge Funds may hold illiquid exchange traded assets
or over-the-counter (OTC) securities, which are difficult to price accurately. Problems may
also arise with intra-strategy correlations for Hedge Fund portfolio optimisation, due to
misleading correlations calculated using unfiltered data.

In this Chapter, we develop a novel methodology to overcome this difficulty. Applica-
tion of the Wavelet Transform to the correlation between Hedge Funds and the Market and,
also, to inter-strategy correlations across different time-scales is presented. The Wavelet
Transform allows the study of scaling in the correlation matrix, (see remarks on emergence
in Complex Systems, Section 2.2). By examining scaling properties, we demonstrate how
the correlation matrix can be used to improve the risk management for portfolios of Hedge

Funds.
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5.1 Data

To enable us to study the market risk and correlations of Hedge Funds at different time
scales, we examine returns from the Credit Suisse/Tremont Hedge Fund indices from April
1994 to October 2006, a total of 151 months, [CreditSuisse, 2009]. These indices use the
Credit Suisse/Tremont database, which tracks over 4500 funds and consists only of funds
with a minimum USD 50 million under management, a 12 month track record and audited
financial statements. The indices are calculated and rebalanced on a monthly basis and
are net of all performance and management fees. The data used here differs from that
in Section 4, as Index data was available over a longer time-frame and the helps in the
calculation of wavelet coefficients to longer scales.

The funds in the Credit Suisse/Tremont database are separated into 10 primary cate-
gories based on their investment style. From this universe, Credit Suisse/Tremont selects
a subset of funds for inclusion in the sub-indices such that each sub-index represents at
least 85% of the assets under management in that respective category. The sub-indices are
Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Equity Market Neutral,
Event-Driven, Fixed Income Arbitrage, Global Macro, Long/Short Equity, Managed Fu-
tures and Multi-Strategy, (in Appendix A we give a full description of each strategy). Each
of these strategies is distinct both in the instruments used and the types of markets traded
and detailed descriptions of each can be found in Lhabitant [2002, 2004]; CreditSuisse
[2009].

The S&P 500 index is chosen to represent the “Matki@lerou et al., 2002]. The
S&P 500 is a cap-weighted equity index consisting of large publicly held companies that
generally trade on major US stock exchanges such as the New York Stock Exchange and
NASDAQ. Monthly returns data for the S&P 500 are available to download publicly on the
internet, [Yahoo, 2009].
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5.2 Methods

Forthe present study, we selected the least asymmetric (LA) wavelet (knownSgrtthel

which exhibits near symmetry about the filter midpoint. LA filters are available in even
widths, with optimal filter width dependent on the characteristics of the signal and the
length of the data. The filter width chosen for this study was the LA8 (where the 8 refers to
the width of the scaling function), since it enabled us to accurately calculate wavelet Betas
and Correlations to thé!" scale, given the length of data series available. Although the
MODWT, Section 3.6, can accommaodate any leXglin practise the largest level is chosen

S0 as to prevent decomposition at scales longer than the total length of the data series, hence
the choice of thet’” scale. The MODWT was implemented using "W TSA Wavelet

Toolkit for Matlab, also featured in Percival and Walden [2000].

5.3 Results
5.3.1 Scalogram

In order to demonstrate graphically the dependence of the S&P 500 and the Credit Su-
isse/Tremont indices on both scale and time, we examine a scalogram produced using the
wavelet transform, Fig. 5.1. The Scalogram shows the size of each wavelet detail coeffi-
cient across both scale and time. Examination of the scalogram also helps to reveal infor-
mation about the scale dependence of features in the time-series examined. For example,
Fig. 5.1(a), shows a scaleogram of the S8 for the period studied, Section 5.1, with
distinct behaviour found across the scales studied. In particular at time-periaig] cor-
responding to market behaviour after the events of Septemniber2001, coefficients up
to the 12" cofficient are raised. This means that the events of Septembeinfluenced
market movements for a period & months after.

Looking at the returns of the Credit Suisse/Tremont Composite Index over the same pe-
riod, coefficients are found to be raised at much longer scales, with little evidence of raised

coeffients found for the Equity Market Neutral strategies, (so the strategy was little effected
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by market events at this time). Another benefit of this Scalogram analysis is the &dbility
examine concurrent changes for different strategies. The example described, for September
11", shows an increase in synchronisation between wavelet coefficients between the S&P
500 and the Hedge Fund Composite Index. However, little change in synchronisation is ev-
ident between either the S&P or Composite Index and the Equity Market Neutral strategy,
implying that this strategy would have diversification benefits for a portfolio. We examine

this scale dependent synchronisation in greater detail below.
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Fig. 5.1: Scalogram showing scaling behaviour over time for the S&R CS/Tremont
Composite and Equity Market Neutral Indices.
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5.3.2 Correlation Analysis

Applying the MODWT, (Chapter 3), we examined the correlation between the S&P 500

index and the Credit Suisse/Tremont Hedge Fund composite and sub-indices for different
time horizons. The correlations were calculated for scales 1, 2, 3 and 4 corresponding to
2-4 month, 4-8 month, 8-16 month and 16-32 month periods respectively, as well as for the

original monthly returns data. The results are shown in Table 5.1.

| Scale | OrignalData| 1 | 2 | 3 [ 4 |
Hedge Fund Index 0.47 0.50 | 0.40 | 0.50 | 0.36
Convertible Arbitrage 0.13 0.07 | 0.12 | 0.35| 0.31
Dedicated Short Bias -0.75 -0.78| -0.76 | -0.80| -0.88
Emerging Markets 0.48 0.59 | 0.53 | 0.47 | 0.39
Equity Market Neutral 0.37 0.43| 041 | 0.30 | 0.13
Event Driven 0.55 0.56 | 0.58 | 0.71 | 0.51
Fixed Income Arbitrage 0.00 0.05 | -0.19| 0.08 | 0.23
Global Macro 0.22 0.31 | 0.16 | 0.16 | 0.00
Long/Short Equity 0.58 0.59 | 0.54 | 0.60 | 0.53
Managed Futures -0.14 0.00 | -0.25]| -0.19]| -0.61
Multi-Strategy 0.10 0.03 | 0.03 | 0.16 | 0.25

Tab. 5.1: Correlations between the S&P 500 and the Credit Suisse/Tremont Hexige
indices, (Increasing correlations - Blue, decreasing correlations - Red)

The correlations for the Hedge Fund composite index with the S&P were found to vary
according to the time period considered, in a similar fashion to those of the Long/Short Eg-
uity strategy. This may be, at least partly, accounted for by the fact that Long/Short Equity
was the component with the largest weighting in the index (28.8%, [CreditSuisse, 2009]).
The correlation for Convertible Arbitrage, Fixed Income Arbitrage and Multi-Strategy with
the S&P was found to increase as the time horizon increases which may be evidence that
these strategies hold less liquid or hard-to-price securities (resulting in a “smoothing” of
their returns). The correlations for Dedicated Short Bias, Equity Market Neutral and Man-
aged Futures were found to decrease significantly as the time horizon increases. Hence,
these strategies may lg@od diversifiersover a longer time period and would be a useful
addition to a market portfolio. In particular, those strategies with negative correlation would

be expected to product positive returns when S&P returns are negative, a result which has
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been evident throughout the difficult period suffered by the S&P recealiiough some

of these correlations may not vary much, (such as Long/Short Equi/to 0.53), some
variation by scale may have a marked effect on the optimal weights within a portfolio,
particularly if two strategies in the portfolio have similar correlations.

The decrease in correlation over longer time scales for the latter strategies is in direct
contrast to the&eppseffect, [Epps, 1979; dth and Kerész, 2007b], where the correlation
between financial time series was shown to increase over long time scales. However, in the
case of theeppseffect the time scales studied were much shorter @% hours)and the
data much more plentiful, [@h and Kerész, 2007b].

Using the Credit Suisse/Tremont Hedge Fund Composite index, we also measured the
correlation between this and each of the sub-indices over different time horizons. Again,

the correlations were calculated for scales 1, 2, 3 and 4 as above. The results are shown in

Table 5.2.

] Scale | OriginalData| 1 | 2 [ 3 | 4 |
Convertible Arbitrage 0.40 0.23 | 0.36 | 0.53 | 0.63
Dedicated Short Bias -0.48 -0.50| -0.48| -0.50| -0.39

Emerging Markets 0.66 0.71 | 0.65 | 0.66 | 0.64
Equity Market Neutral 0.32 0.36 | 0.34 | 0.12 | 0.07
Event Driven 0.68 0.61| 0.70 | 0.72 | 0.69
Fixed Income Arbitrage 0.41 0.28 | 0.33 | 0.57 | 0.57
Global Macro 0.85 0.88 | 0.87 | 0.85 | 0.79
Long/Short Equity 0.79 0.76 | 0.83 | 0.85 | 0.82
Managed Futures 0.17 0.35] 0.22 | -0.01| -0.58
Multi-Strategy 0.22 0.01| 0.31| 0.30 | 0.50

Tab. 5.2: Correlations between the Credit Suisse/Tremont Hedge Fund Conipdsite
and the sub-indices, (Increasing correlations - Blue, decreasing correlations - Red)

The results for the inter-strategy correlations with the Hedge Fund Composite Index
were somewhat similar to those with the S&P 500. The correlation of Convertible Arbi-
trage, Fixed Income Arbitrage and Multi-Strategy with the Hedge Fund composite index
was found to increase as the time period increased. The correlation of Dedicated Short
Bias, Managed Futures, Equity Market Neutral and Global Macro to the Composite Index
decreased significantly as the time horizon increased. Hence, these strategies nmagloffer

diversificationbenefits over a longer time horizon, while those with increasing correlations
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may actuallyincrease the portfolio risk. We, therefore, examine the effects of the change
in correlations at different time horizons on the efficient frontier of a portfolio made up of

the Hedge Fund strategies in Section 5.3.4.

5.3.3 Systematic Risk Analysis

It was noted, Chapter 2, that systemic risk or Beta for equities is dependent on the scale
studied. We measured the Beta or market risk of various Hedge Fund strategies to the
S&P 500 over different time horizons using the MODWT, (Chapter 3). Once again, the

correlations were calculated for scales 1, 2, 3 and 4 as defined in Section 5.3.2. The results

are displayed in Table 5.3.

] Scale | OriginalData| 1 | 2 [ 3 | 4 |
Hedge Fund Index 0.25 0.25] 0.21 | 0.31| 0.26
Convertible Arbitrage 0.04 0.01 | 0.03| 0.16 | 0.19
Dedicated Short Bias -0.90 -0.85]-0.94| -1.22| -1.49
Emerging Markets 0.53 0.52 | 0.59 | 0.77 | 0.63
Equity Market Neutral 0.07 0.07 | 0.08 | 0.08 | 0.04
Event Driven 0.21 0.17 | 0.22 | 0.38 | 0.39
Fixed Income Arbitrage 0.00 0.01 | -0.05| 0.02 | 0.08
Global Macro 0.16 0.23| 0.11 | 0.12 | -0.01
Long/Short Equity 0.41 0.37 | 0.39 | 0.55 | 0.46
Managed Futures -0.11 0.00 | -0.23| -0.22| -0.61
Multi-Strategy 0.03 0.01 | 0.01 | 0.05| 0.10

Tab. 5.3: Betas of the Credit Suisse/Tremont Hedge Fund indices, (IncrémsamgBlue,
Decreasing beta - Red)

The Beta of the Composite Hedge Fund Index appears to be reasonably static but the
market riskof its components varies according to strategy. Convertible Arbitrage had a
Beta 0f0.04 using monthly data, as opposedd9 using al6 — 32 month time horizon.

This difference may be due to the fact that there is no exchange for Convertible Bonds and
they are traded “over the counter” and hence can be illiquid and difficult to price.

The Beta of the Emerging Markets strategy increased figi®ito a maximum of).77
over an 8-16 month period. This may be due to liquidity constraints in emerging mar-

kets with light markets in equities causing instruments to be marked off non-synchronous
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prices, since the final traded price for an asset may have been before monithermrdfect

of liquidity issues in Emerging Markets has been studied in detail, [Wilcox and Gebbie,
2004]. Another possible factor in the example here might be the difficulty in short-selling
instruments in many emerging markets; hence these funds often employ a more traditional
long-only type strategy.

The market risk of the Event Driven strategy was shown in Table 5.3 to increase from
0.21 to 0.39 over a longer time horizon, as was the case for Equity Long/Short strategy
which increases from.41 to a maximum of0.55. In both cases these increases could be
due to a number of factors, such as liquidity, the holding period of the manager or the time
for the positions in the portfolios to reach a “fair value”. Another significant consideration
might be the use afptionswhich have a non-linear returns profile, [Hull, 2000], and hence
might lead to an overall increase in Beta. Furthermore Long/Short Equity managers may
also hold significant positions in small capitalization stocks or illiquid private securities
which may trade infrequently and hence are difficult to price.

Equity Market Neutral, Fixed Income Arbitrage and Multi-Strategy all appear to have
very small and static levels of market risk over all time horizons. Equity Market Neutral, as
the name suggests, seeks to exploit pricing efficiencies between equity securities while si-
multaneously neutralising exposure to market risk. Fixed Income Arbitrage managers invest
solely in Bonds, (whether sovereign or corporate), and hence have little or no equity market
risk. Multi-Strategy funds implement a dynamic strategy allocation to various Hedge Fund
strategies. All of these strategies should provide good diversification to a portfolio made up
of S&P equities.

The market risk of the Dedicated Short Bias and Managed Futures strategies was found
to decrease by a considerable amount as the time horizon increases. Dedicated Short-Bias
funds are, in a sense, mirrors of traditional long-only managers. The increase in the abso-
lute value of their Beta may be due to excessive leveradgesr Market$ or the use of

Put Optiong with a non-linear return profile. Managed Futures managers tend to use fore-

1A Bear Market is considered to be a prolonged period in which asset prices fall, accompanied by
widespread pessimism
2/ put is an option contract that gives the holder the right to sell a certain quantity of an underlying security
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casting models that depend heavily on past price movements. The time horizibvesr of
trades can vary greatly depending on the individual model’s time horizon; hence this may
have a large impact on the aggregate amount of market risk held at different time intervals.
In fact, both of these strategies proved to be among the best performers 20 gvith

Short Bias and Managed Futures returnidgs7% and18.33% respectively, [CreditSuisse,
2009]. This was against a background of severe market losses, with thé&®&Bsing

38.5% over the same period, [Yahoo, 2009], demonstrating the real diversification benefits
of the strategies.

In summary, the level of market risk held by different strategies varied greatly according
to strategy type and time horizon considered. Given the fact that many funds have minimum
lock-up periods, during which investors cannot liquidate their capital, it is more appropriate
to measure the market risk over longer time intervals. This has obvious consequences for the
allocation strategies of Fund of Furfdand Institutional investors alike, as we demonstrate

in the following Section.

5.3.4 Efficient Frontier

To enable us to demonstrate graphically the effects of calculating the correlation matrix
of Hedge Funds using different time horizons, we show, (Figure 5.2), the efficient frontier
for each time horizon studied. In the calculation of the efficient frontier we have imposed
constraints on the weights allowed, to prevent short-selling of Hedge Funds. This constraint
is natural in the context of Hedge Funds due to the difficulties in short-selling of funds; (note
that short-selling may be achievable by the use of swaps but is uncommon due to liquidity
constraints in borrowing funds), [Lhabitant, 2002, 2004]. Each of these efficient frontiers
was calculated as described, Section 3.3.1, using the annualised returns and variance from
the original data. Hence, the results we see in Figure 5.2 were purely dependent on the
correlation matrix calculated at each time horizon. The efficient frontiers were constructed

using just the Credit Suisse/Tremont sub-indices.

to the writer of the option, at a specified price up to a specified date
3A HedgeFund which invests in other hedge funds
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Efficient Frontier using Correlation Matrices caclulated over different time horizons
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Fig. 5.2: Efficient Frontier using Correlation Matrices calculated over diffeisrd scales

At lower return values, the level of risk calculated for the original data was higher than
that calculated at all other scales. As the return level increased, the risk of the portfolio
(created using the correlation matrix calculated using the monthly returns), decreased rela-
tive to the others. However, the lowest risk portfolio overall was found using a correlation
matrix calculated over & — 32 month horizon (Scale 4). The implication for Hedge Fund
investors using monthly unfiltered correlations, isimmecessary increase in portfolio risk.

By using correlations calculated over longer horizons, investors can capture subtle changes
in the relationships between funds and overcome the problem of stale pricing.

These findings have significant implications for investors allocating capital to Hedge
Funds. For investors looking for diversification through investments in Hedge Funds, the
expected correlation benefits may not be found by using unfiltered data. In fact, the ex-
pected risk reduction from investing in different Hedge Fund strategies may result in an

increase in risk due to misleading correlations found using the original data. By filtering
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the data, the effects of stale pricing are mitigated and a realistic view of the true correlation
structureemerges. By adopting a novel filtering technique such as this, Fund of Funds could
enhance their client offerings, lowering portfolio risk while maintaining their expected re-

turns profile.

5.4 Conclusions

Maintaining our novel focus on Hedge Funds and the risk exposure which can be deter-
mined from an examination of the correlation structure for coarse/fine grained time series,
we investigated strategies in detail to determine diversification benefits over different scales.
Correlation and market risk were found to be scale dependent between Hedge Fund sub-
strategies and both the S&P 500 and the Hedge Fund composite index. In particular, the
correlation between Convertible Arbitrage, Fixed Income Arbitrage and Multi-Strategy and
both the S&P and Hedge Fund Composite index was found to increase as the time scale
increased, while Dedicated Short Bias, Equity Market Neutral, Global Macro and Managed
Futures strategies were found to decrease.

The level of market risk held by different Hedge Fund strategies was also found to
be highly dependent on the time horizon studied. For Convertible Arbitrage, Emerging
Markets, Event-Driven and Long/Short Equity it was found to increase as the time scale
increased, while a decrease in market risk was found for Dedicated Short Bias, Global
Macro and Managed Futures.

Given the minimum lock-up times applicable to many Hedge Funds, this means that it
may be more suitable when assessing risk to use correlation matrices calculated using longer
time scales. To demonstrate this, we calculated the efficient frontier for four different time
scales, as well as for the original, (unfiltered data), for a portfolio constructed from the sub-
strategies. Specifically, the level of risk for a portfolio of funds attained it's lowest value
over16 — 32 months. This scale is significant as Hedge Funds often have lock-up period of
12 — 24 months during which investors cannot withdraw their invested capital, [Lhabitant,

2002], so that calculation of correlations over a similar horizon is more appropriate.
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CHAPTERG

CROSS CORRELATION DYNAMICS IN

FINANCIAL TIME SERIES

Previous Chapters have dealt with correlation structures from low-freguane-series,

in particular those formed from Hedge Fund returns. We have shown that it is possible to
extract real correlation information from a matrix constructed using low-frequency returns,
while also developing a technique to examine the scaling effects on Hedge Fund correla-
tions, [Conlonet al., 2007, 2008]. These approaches were applied to the risk management
of a portfolio of Hedge Funds.

In this Chapter, we turn our attention to the dynamical changes in correlations between
financial assets, [Conlaet al., 2009]. Matrices formed from medium-frequency data (daily
equity returns) are analysed, to investigate whether changes in the correlation structure of
a complex interacting system can be applied to risk characterisation. This analysis is per-
formed for varying time windows and number of stocks in the sample, in order to demon-
strate the results for different levels of granularity.

A basic one-factor model is then proposed, to develop some insight into the formation
of the correlation structure in financial markets. Perturbations are added to the one-factor
model, (leading to a ‘market plus sectors’ model), in order to determine which eigenspec-
trum features are a result of sectoral interactions. The Inverse Participation Ratio is also
compared to that found for empirical data.

Further, we examine the relationship between index returns and relative eigenvalue size,

to provide some insight on the collective behaviour of traders with varying strategies and
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consider how changes, in collective behaviour, are dependent on giei@erceived risk

in the market.

6.1 Data

In order to study the dynamics of the empirical correlation matrix over time, we chose to
analyse two different data sets. The first data set compris&s#hequities of the Standard

& Poors (S&P)500, [Standard and Poor’s, 2009], where full price data is available from
Januaryl996 to August2007 resulting in2938 daily returns, Fig. 6.1(a). The S&0 is

an index consisting df00 large capitalisation equities, which are predominantly from the
US. The advantage of this first dataset is that the components are well-regarded, frequently

traded and liquid, giving us a robust framework to study correlation dynamics.

— S&P 500, Jan 1996 - Aug 2007

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

5000 T T T 3

— DJ Euro Stoxx 50, Apr 2002 - Aug 2007|

L
2002 2003 2004 2005 2006 2007
Year

Fig. 6.1: (a) S&P500ndex, Jan.1996 to Aug. 2007 (b) Dow Jones Euro Stoxx0 Index,
Jan.2001 - Aug. 2007

In order to demonstrate that our results are not market specific, however, we also ex-

amined a second data set, made up of the 49 equities of the Dow Jones Eur@@&toxx
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[Dow Jones, 2009], where full price data is available from Jan@afyt to August2007
resulting in1619 daily returns, Fig. 6.1(b). The Euro Stoxx 50 is a stock index of Eurozone
equities designed to provide a blue-chip representation of supersizders in the Euro-
zone. In contrast to the first data-set, the components of this index are from various nations,

introducing an additional factor of interest, namely country dependent interactions.

6.2 Methods

Initially, the correlation matrix and associated eigenvalues are calculated using a sliding
window approach, Section 3.2. By repeatedly calculating the eigenspectrum using a sliding
window approach, eigenvalue time-series are formed. Changes in the relative size of the
eigenvalues are indicative of changes within the correlation structure, Section 3.5.

In order to examine the dependence of the eigenvalue dynamics on the sample size,
N, the length of the time serie$,, and hence the ratiQ = % we perform a number of
experiments. Initial analysis focuses on changes in the size of the eigenspectrum, with more
detailed studies then looking at the eigenvalues normalised in time. The normalisation,
Section 3.5, is carried out using the mean and standard deviation of each of the eigenvalues
over the entire time-period. Note that other choices for these, such as during a low-volatility
sub-period, would have resulted in a greater emphasis during volatile periods.

To compare the empirical results presented here to those of a single factor model, we
construct a correlation matrix with each non-diagonal element equal to the average of the
empirical correlation matrix in each sliding window, using Cholesky decomposition. We
then calculate and normalise the eigenvalues of this matrix over each sliding window, (Sec-
tion 3.5).

Drawdown analysis requires the calculation of returns, correlation matrix and eigen-
value spectrum time-series for overlapping windows and these are, again, normalised using

the mean and standard deviation over the entire series, (Eqn. 3.19). Representing nor-

!Supersectocompanies are the largest in the sector by market capitalisation. For example, in the European
Energy SectoBritish Petroleum;Total andRoyal Dutch Shelaccount for62% of the total ‘large cap’ market
capitalisation, [Yahoo, 2009], and are considered representative of the sector.
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malised eigenvalues in terms of standard deviation units (SDU) allows partitioning accord-

ing to their magnitude.

6.3 Results

Eigenvalue dynamics of the correlation matrix of a subset(of S&P equities, chosen
randomly, were analysed using a sliding window266 days. This subsector was chosen
such thatg = £ = 2, to ensure that data would be stationary in each sliding window.
Figure 6.2(a) shows broadly similar sample dynamics frombthe15! and 25" largest
eigenvalues over each of these sliding windows. The sum @(lsenallest eigenvalues are
shown in Figure 6.2(b), while the dynamics of the largest eigenvalue are displayed in Figure
6.2(c). The repulsion between the largest eigenvalue and the small eigenvalues are evident
here, (comparing 6.2(b) and 6.2(c)), with the dynamics of the small eigenvalues contrary to
those of the largest eigenvalue. As noted, (Section 3.5), this is a consequence of the fact
that the trace of the correlation matrix must remain constant under transformations and any
change in the largest eigenvalue must be reflected by a change in one or more of the other
eigenvalues. Similar results were obtained for different subsets of the S&P and also for the

members of the Euro Stox30.

6.3.1 Normalised Eigenvalue Dynamics

The use of time-normalised eigenvalues to highlight the dynamics of the smaller eigen-
values was described, by Eqn. 3.19. Using these normalised eigenvalues, we performed a
number of experiments to investigate the dynamics of a set of small eigenvalues versus the
largest. For each of the experiments described below, we plot the largest and the average
of a number of the small eigenvalues, in addition to a heat map of the entire normalised

spectrum over time.

1. The dynamics for the same subsel @f equities were analysed using a sliding win-

dow of 200 days, as above, with similar normalisation criteria using the mean and
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Fig. 6.2: Time Evolution of (a) Three small eigenvalues (b) Sum oRthemallesteigen-
values (c) The largest eigenvalue for a random subséb@fcompanies of the S&P500
from Jan.1996 to Aug. 2007

standard deviation of each of the eigenvalues over the entire time-period. Figure

6.1(a) shows the value of the S&P index fragd7 to mid—2007.

The normalised largest eigenvalue is displayed, Figure 6.3(a), together with the av-
erage of the 80 normalised small eigenvalues. The compensatory dynamics men-
tioned earlier are shown clearly here, with these showing opposite movements. The
normalised eigenvalues for the entire eigenvalue spectrum are shown, Figure 6.3(b),
where the colour indicates the number of standard deviations from the time average
for each of the eigenvalues over time. As shown, there appears little to differentiate
the dynamics of th&80 — 90 or so smallest eigenvalues. In contrast, the behaviour of
the largest eigenvalue was clearly opposite to that of the smaller eigenvalues. How-

ever, from the90*” and subsequent eigenvalue there was a marked change in the
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Fig. 6.3: (a) Normalised Largest Eigenvalue vs. Averagg&losmallestnormalised eigen-
values (b) All Normalised Eigenvalues (c) Largest 12 Normalised Eigenvalues for a random
subset ofl 00 companies of the S&P50ftom Jan.1996 to Aug. 2007

behaviour, (Figure 6.3(c)), and the eigenvalue dynamics were distinctly different.
This may correspond to the area outside the “Random Bulk” in RMT. Similar to
[Drozdzet al., 2000, 2001a], we also found evidence of an increase/decrease in the
largest eigenvalue with respect to ‘drawdowns’/‘draw-ups’. Additionally, we found
the highlightedcompensatory dynamicd the small eigenvalues. These results were
tested for various time windows and normalisation periods, with shorter durations

found to be better able to capture and emphasise additional features.

To illustrate the value of the above results, we look at the dynamics of the largest
normalised eigenvalue over time, Fig. 6.3(a). In particular, the largest normalised
eigenvalue increased from the beginning2661 to mid 2003, corresponding to the

bursting of the ‘tech’ bubble and the start of the second gulf war. This increase in the

largest eigenvalue corresponds to an increase in the global system correlation, Sec-
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tion 3.5, with more agents acting in the same fashion during times of market stress.
During times of market stress, there tends to be a greater synchronisation between
the behaviour of traders (in particular, traders tend to sell at the same time), while
during normal periods equities become less correlated. Results using the minimum
spanning tree have shown similar effects with the size of the tree shown to shrink

during market drawdowns, [Onnedhal., 2003].

2. To demonstrate the above result fodi&erent level of granularity, we randomly
choses0 equities with a time window 0500 days, givingR = % = 10. The results
obtained, (Figure 6.4), were in agreement with those&fet 2 earlier, with a broad-
band increase (decrease) of tliesmallest eigenvalues concurrent with a decrease

(increase) of the largest eigenvalue.

Largest E/Value

Average E/Values 1-40|

= I
1998 2000 2002 2004 2006
Time (Days)

Fig. 6.4: (a) Normalised Largest Eigenvalue vs. Average of 40 smallest normelgge=d
values (b) All Normalised Eigenvalues for a random subsét@ompanies of the S&P500
from Jan.1996 to Aug. 2007

3. The previous examples used random subsets of the S&P universe in order to keep
Q= % aslarge as possible. To demonstrate that the above results were not sampling

artifacts, we also looked at the full sample38ft equities, (ie those that survived the
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entire 11 yearperiod), with a time window 0600 days, (@ = 1.30). The results,

as shown in Figure 6.5, were similar to before, (Figs. 6.3-6.4), with the majority of
the small eigenvalues compensating for changes in the large eigenvalue. As indicated
previously, however, there are a few large eigenvalues which exhibited anomalous

behaviour compared to both the small and largest eigenvalues.
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Fig. 6.5: (a) Normalised Largest Eigenvalue vs. Averagg26fsmallestnormalised eigen-
values (b) All Normalised Eigenvalues for a subse3®f companies of the S&P50ffom
Jan.1996 to Aug. 2007

4. All examples discussed so far have focused on the universe of equities from the S&P
500 that have survived sincB997. To ensure that the results obtained were not ex-
clusive to the S&R500, we also applied the same technique to4hequities of the
Euro Stoxx 50 index that survived from Janua2@01 to August2007, Fig. 6.1(b).

The sliding window used wa00 days, such thaf) = 4.082. The results, (Figure

6.6), were broadly confirmatory, with a wide band of small eigenvalues “responding

to” movements in the largest eigenvalues. In this case, the band of deviating large
eigenvalues (ie. those which correspond to the area outside the “Random Bulk” in

RMT), (Figure 6.6(c)), was not as marked as in the previous example. This effectively
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implies that equities in this index were dominated by “the Market”. This occurs due
to thesmall number of stocks in the data set, which effectively reduces the amount of

inter-sector interaction within the system.
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Fig. 6.6: (a) Normalised Largest Eigenvalue vs. Averagélosmallestnormalised eigen-
values for Euro Stox%0 (b) All Normalised Eigenvalues (c) Th& Largest Normalised
Eigenvalues from Jar2001 to Aug. 2007

6.3.2 Model Correlation Matrix

The results, described, demonstrate thatithe dependent dynamics of the small eigenval-
ues of the correlation matrix of stock returns move counter to those of the largest eigenvalue.
While not a new idea, this is important in our context because, by analysing changes in the
small eigenvalues, we are able to determine changes in the global correlation structure. The
value of modelling such features is that we gain some insight into the group behaviour of

agents during different market types. Here, we look at possible suitable model forms to
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understand this behaviour, Section 3.5.1. We show how a simple one-factor ofiddel
correlation structure reproduces much of the empirical behaviour. Furthermore, we show
how additional features can be captured by including perturbations to this model, essen-
tially a “market plus sectors’model, [Noh, 2000; Malevergne and Sornette, 2004; Papp
et al., 2005].

. . . . . . 6 . . . . . .
2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
Time Time

. . . . . . 0 . . . . . .
2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2006 2007
Time Time

Fig. 6.7: (a) Largest Eigenvalue, one factor model (b) Largest Eigenvilagket plus
sectors model (c) Eigenvalues 1-48, one factor model (d) Eigenvalues 1-48, Market plus
sectors model using average correlation for the Euro Sioxdan. 2001 - Aug. 2007

The dynamics of the largest eigenvalue for the single-factor model are displayed in
Figure 6.7(a) for the Euro Stoxx 50 index using a sliding windowv@f days. As can be
seen, the main features of the dynamics were in agreement with those of Figure 6.6 for the
empirical data. The dynamics of the remaining eigenvalues, shown in Figure 6.7(c), were
found to be within a narrow range, with any change in time due to compensation for change

in the largest eigenvalue.
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For the ‘market plus sectors’ model, we introduced perturbations with two giafups
stocks having correlatiopy — 0.15 andpg + 0.15, with the average correlation at each time
window remaining the same. The largest eigenvalue dynamics for the ‘market plus sectors’
model are shown in 6.7(b), with these almost identical to those for the largest eigenvalue
of the ‘one-factor’ model, (any differences are due to random fluctuations induced in the
Cholesky decomposition). However, looking at the remaining eigenvalues, 6.7(d), we see
that a number were found to deviate significantly from the bulk. These deviations were
ascribable to the additional sectoral information included in the market plus sectors model.
This agrees with previous results, [Plereual., 2000a; Utsugét al., 2004], where small
eigenvalues, corresponding to highly correlated stocks as well as large eigenvalues contain-

ing sectoral information were found to deviate from the random bulk.

Inverse Participation Ratio

To examine properties of the eigenvector components themselves, we use the Inverse Par-
ticipation Ratio (IPR), Chapter 3.4.2. Figure 6.8(a), displays the IPR found using the em-
pirical data from the Euro Stox%0. This has similar characteristics to those found for
different indices, [Pleroet al., 2000a], with the IPR (i) much smaller than the mean for the
largest eigenvalue, (ii) large corresponding to sectoral information ig'ther 37 largest
eigenvalues and (iii) increased for the small eigenvalues. These features correspond to real
correlation information found in the eigenvectors, similar to those found for Hedge Funds,
Chapter 4. A small IPR indicates that all the eigenvector components contribute equally,
while an IPR larger than the average corresponds to an eigenvector where only a small
number of components contribute.

For the single factor model, we createsyatheticcorrelation matrix using Eqn. (3.20),
with average correlatiof0.204) equal to that of the Euro Stox30 over the time period
studied. Using an average value captures the global correlation within the system. As shown
in Figure 6.8(b), the IPR retains some of the features found for empirical data, [Plerou

et al., 2000a; Noh, 2000], with that corresponding to the largest eigenvector having a much
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Fig. 6.8: (a) IPR Empirical Data, Euro Stoxx 50, Jan. 2001 - Aug. 200/PR)Simulated
Data

smaller value than the mean. This corresponds to an eigenvector to which many stocks
contribute, (effectively the market eigenvector), [Pleebv@al., 2000a; Noh, 2000].

For the ‘market plus sectors’ model, Figure 6.8(b), additional features were found, with
larger IPR for both smallest and second largest eigenvalue. This agrees with [gletqu
2000a] where, for empirical data, the group structure resulted in a number of small and large
eigenvalues with larger IPR than that of the bulk of eigenvalues. These large eigenvalues
were shown, [Pleroet al., 2000a], to be associated with correlation information related to

the group or sectoral structure.

6.3.3 Drawdown Analysis

As discussed above, drawdowns, (periods of large negative rgtuigrsd to reflect an
increase of one eigenstate of the cross-correlation matrix. The opposite occurs during
drawups, (periods of predominantly positive retgrnk this section, we attempt to char-

acterise the market according to the relative size of both the largest and small eigenvalues,
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using stocks of the Euro Stoxx 50. Due to the small number of stocks in this indes

unnecessary to choose a subset to en@u#e% waslarge.

] Eigenvalues No. Std Index Return
<-1 18.46%
Large ~1  -16.80%
<-1 -23.90%
Average 40 Smallest -1 19.32%

Tab. 6.1. Drawdown/Drawup analysis, average index returns for eafjgyartitions in
SDU.

Using overlapping windows af00 days, returns, correlations and eigenvalue spectrum
were calculated. Table 6.1 shows the average return of the index, (during periods when
the largest eigenvalue is1 SDU), for both the largest eigenvalue and the average of the
(normalised)0 smallest eigenvalues.

The results, Table 6.1, demonstrate that when the largest eigenvatué DU, the
average index return overa0 day period is found to be 16.80%. When it is small (<—1
SDU), the average index return 18.46%. Hence,the largest eigenvalue can be used to
characterise the risk of markets, with it's value peaking during periods of negative returns
(Drawdowns) and bottoming out when the market is rising (Drawup). For the average of
the 40 smallest eigenvalues, the partition also reflected drawdowns and drawups, but with
opposite signs. This indicates thaformation about the correlation dynamics of financial
time series is visible in both the lower and upper eigenstateagreement with [Niller
et al., 2005; Schindleet al., 2007a] for both synthetic data (and interestingly, for EEG
seizure data). In fact, the returns found using the small eigenvalues were more marked than
those of the largest eigenvalue, perhaps suggesting that the small eigenvalues changes are a

better indicator of changes in the synchronisation structure between equities.

6.4 Conclusions

The correlation structure between medium-frequency multivariate financial time-series was

studied by investigation of the eigenvalue spectrum associated with the equal-time cross-
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correlation matrix. Using sliding windows to filter the correlation matrix, we have examined
behaiour of the largest eigenvalue over time. The largest eigenvalue is shown to move
counter to that of a band of small eigenvalues, dueigenvalue repulsion. A decrease in

the largest eigenvalue, with a corresponding increase in the small eigenvalues, corresponds
to a redistribution of the correlation structure across more dimensions of the vector space
spanned by the correlation matrix. Hence, additional eigenvalues are needed to explain the
correlation structure in the data. Conversely, when the correlation structure is dominated by
a smaller number of factors (eg. the “single-factor model” of equity returns), the number
of eigenvalues needed to describe the correlation structure in the data is reduced. Building
upon previous work, [Drozdet al., 2000, 2001a], this means that fewer eigenvalues are
needed to describe the correlation structure of ‘drawdowns’ than that of ‘draw-ups’.

By introducing a simple ‘one-factor model’ of the cross-correlation in the system, we
were able to reproduce the main results of our empirical study. The compensatory dynam-
ics, described, were clearly seen for a correlation matrix with all elements equal to the
average of the empirical correlation matrix. The one-factor model was then adapted, by
the addition of perturbations to the correlations, with the average correlation remaining un-
changed. This ‘markets plus sectors’ type model was able to reproduce additional features
of the empirical correlation matrix with eigenvalues deviating from below and above the
bulk. The Inverse Participation Ratio of the “markets plus sectors” model was also shown
to have group characteristics typically associated with known Industrial Sectors, with a
larger than average value for the smallest eigenvalue and for the second largest eigenvalue.
Through a partition of the time-normalised eigenvalues, it was then shown quantitatively
that the largest eigenvalue is greatest/smallest during drawdowns/drawups, and vice versa
for the small eigenvaluedemonstrating the potential of the correlation matrix in risk char-
acterisation. Further, the increase in the largest eigenvalue and corresponding increase in
correlation, demonstrates thaiversal collective behaviour of traders during drawdowns
When the market is increasing, traders tend to pursue less universal strategies, exemplified

by the reduction in correlation explained by the largest eigenvalue.
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CHAPTER/

MULTISCALED CROSSCORRELATION

DYNAMICS IN FINANCIAL TIME-SERIES

In previous chapters, we applied the cross-correlation matrix, calculated losmngnd
medium frequency financial data, both for risk diversification and characterisation purposes.
In Chapter 6, we demonstrated how the correlation dynamics between stocks could be de-
tected by analysing both the largest and small eigenvalues over time. Using this, we then
demonstrated how the correlation matrix could be used in risk characterisation, by showing
that the largest eigenvalue peaks during periods of market distress, (drawdowns), with the
smallest eigenvalues peaking during boom periods (draw-ups), [Ceh&dn 2009]. In this
Chapter, drawing on some of our previous discussed methods and results, (Chapters 5 & 6),
we use the Maximum Overlap Discrete Wavelet Transform (MODWT), to calculate correla-
tion matrices over different time scales for both medium and high-frequency data and then
explore theeigenvalue spectrurover sliding time windows. The dynamics of the eigen-
value spectrum at different scales provides insight into the time horizons of the numerous
constituents involved in the interactions and this is important because, by analysing relative
changes across time-scales we obtain an insight into the ‘herd’ behaviour, (and associated
shortening of time horizons), especially during extreme financial events.

The entire eigenspectrum is intrinsically important in terms of understanding the role of
the correlation matrix in risk characterisation. On partitioning the eigenvalue time-series,
we investigate the behaviour of the largest eigenvalue, measured at different scales, during

drawdowns. Further, we examine the effect of different market types on the dynamics of
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the small eigenvalues, to determine whether correlation changes at a pag@li&amight

be visible at this end of the spectrum.

7.1 Data

The first of our two data sets comprises tteequities of the Dow Jones Euro Stoxx 50
(SX5E) where full price data is available from M&999 to August2007, resulting in2183
daily returns. The Euro Stoxx 50 is a market capitalisation weighted inde® Bfiropean
blue-chip stocks from countries participating in the European monetary union. This index
was chosen for this analysis as the number of stocks is small, allowing us to calculate cross-
correlation matrices for small time windows, without reducing the rank of the matrix.

The second data set studied involved high-frequency equity returns and comprised all
50 equities of the SX5E frorfiam on April 2™ 2008 to 4.30pm on OctobeR0” 2008, with
each day made up of approximatdly0 minutes of data, Fig. 7.1. All times are in terms
of GMT and equities from outside of this time-zone were aligned to coincide. The total
dataset consisted 6fl376 one-minute returns and were of particular interest with respect

to the insight offered into the current extreme market events.

Dow Jone Euro Stoxx 50, 2/04/2009 to 20/10/2009
340 T T T T T

Index Level

I I I I I I I I I I
0.5 1 15 2 25 3 3.5 4 4.5 5
Time (Minutes) X 10

Fig. 7.1: DJ Euro Stoxx Index, April™® 2008 to October20* 2008
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7.2 Methods

As in Chapter 5, we used the asymmetric (LA) wavelet (known as the Symlet) which ex-
hibits near symmetry about the filter midpoint. The MODWT was again implemented using
the WMTSA Wavelet Toolkior Matlab, [Percival and Walden, 2000]. The filter width cho-

sen for this study was the LA4, (where the 4 refers to the width of the scaling function),
since it enabled us to accurately calculate wavelet Betas and Correlations3td suale

given the length of data available. Although the MODWT, Section 3.6, can accommodate
any level.Jy, in practise the largest level is chosen so as to prevent decomposition at scales
longer than the total length of the data series, hence the choice ¢/f'tbeale.

For the medium frequency data, the eigenvalue spectrum was found, using a sliding
window approach with a window af00 days. This window was chosen such tlaat=
% = 2.04, thus ensuring that the data would be close to stationary in each sliding window
(Different values of) were examined, with little variation in the results).

Using the high-frequency SX5E returns, the correlation matrix and associated eigen-
spectrum dynamics were found using a moving windowl &0 minutes. This time-
window was chosen in order to reduce the effects of non-stationarities due to non-continuous
time, by including market changes ov&days. As markets are only open b hours per
day, new information can result in large jumps at market open. In fact, for smaller window
choices, we found that the correlation dynamics were dominated by interday ‘jumps’. The
choice ofT" = 1500 resulted inQ = % = 30, resulting in an interesting comparative to the
range ofl.3 < @ < 10 studied previously.

The eigenvalue normalisation was carried out as for Chapter 6, expressed in terms of

standard deviation units (SDU).
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7.3 Results
7.3.1 Medium Frequency Eigenvalue Dynamics

We analysed the dynamics of the cross-correlations between stocks, calculated at different
time scales, through the use of the eigenvalue spectrum. We first considered, Fig. 7.2,
the dynamics of the largest eigenvalue at each time scale, calculated using a sliding time
window of 100 days. Fig. 7.2(a) shows the value of the DJ Euro Stoxx 50 Index over the
period studied. Fig. 7.2(b) displays the largest eigenvalue, calculated using the unfiltered
(one day) time-series data for different time windows. As shown, the largest eigenvalue was
far from static, rising from a minimum @f.5 to a maximum o80.5 from early2001 to late
2003, (coinciding with the bursting of the “tech” bubble). This corresponds to an increase
in the influence of the “Market”, with the behaviour of traders becoming more correlated.
The next major increase occurred in ea&y6, followed by a relatively quick decline until
the beginning of the “Credit Crunch” i007. Similar to Drozdzet al. [2000], we note
an increase in the value of the largest eigenvalue during times of market stress, with lower
values during more “normal” periods.

We next calculated, using the MODWT (Section 3.6), the value of the largest eigenvalue
of the cross-correlation matrix over longer time horizon8,éfand11 days (Fig. 7.2(c-e)).
The rational is that certain traders, (such as Hedge Fund managers), may have very short
trading horizons while others, (such as Pension Fund managers), have much longer hori-
zons. In looking at the value of the largest eigenvalue at different scales, we are attempting,
for the first time, to characterise the impact of these different trading horizons on the cross-
correlation dynamics between large capitalisation stocks. In Fig. 7.2(c-e), we see that the
main features found in the unfiltered data were preserved over longer time scales. How-
ever, certain features, such as the sizeable drop in the largest eigenvalue at the longest scale,
(Fig. 7.2(e)), in late2003, were not seen at shorter scales. The aggregate impact for the
unfiltered data is, nevertheless, a moderate drop. Other features, such as the increase in
2006, were not preserved across all scales. The different features, found at various scales,

suggest that theorrelation matrix is made up of interactions between stocks, traded by
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Fig. 7.2: (a) DJ Euro Stox%0 Index (b) Largest eigenvalue dynamics original data (c) 3
day scale (d) 6 day scale (e) 11 day scale

investors with different time horizons. This has implications for risk management, as the
correlation matrix used for input in a portfolio optimisation should be appropriate to the
investor’'s time horizon. By first decomposing the time-series, we have developed a novel
method to consider these interactions in both time and scale.

The repulsion, (between eigenstates of the cross-correlation matrix as the level of syn-
chronisation between time-series increases), has been demonstrated previously for artificial
and EEG time-series, [Mleret al., 2005], and by us for financial data, [Conktral., 2009]
and in the previous Chapter. In Fig. 7.3, we compare the normalised largest eigenvalue for
sliding windows of100 days with the average of the normalisé@ smallest eigenvalues
over different time scales. The normalisation was carried out as previously, to allow com-

parison of eigenvalues at both ends of the spectrum. The normalised largest eigenvalue
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preserved features, such as the increase from 2@l to late 2003, previously identified

for the largest eigenvalue, with eigenvalue repulsion also demonstrated. The large/small
eigenvalues were shown to increase/decrease respectively2fiomto 2003 across all

scales, demonstrating that changes in the correlation structure can also be detected in the

small eigenvalues.

Unfiltered Data Largest Eigenvalue

Average 40 Smallest Eigenvalues

2000 2001 2002 2003 2004 2005 2006 2007 2008

Wavelet Level 1 (3 days)

1 1 1 1
2000 2001 2002 2003 2004 2005 2006 2007 2008

Wavelet Level 2 (6 days)

2000 2001 2002 2003 2004 2005 2006 2007 2008

Wavelet Level 3 (11 days)
T T T T

Fig. 7.3: (a) DJ Euro Stox%0 Index (b) Eigenvalue Dynamics at 3 day scale (c) Eigenvalue
Dynamics at 6 day scale (d) Eigenvalue Dynamics at 11 day scale

Eigenvalue Ratios

Redistribution of the correlation structure across the eigenvalue spectrum was also captured
usingratios of eigenvaluesFig. 7.4 shows the ratio of the largest eigenvalue to the second
largest eigenvalue, (again calculated using sliding windowR)0fdays), for the original

unfiltered data and for correlation matrices calculated with data corresponding smnd
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11 days. For unfiltered data, the ratio was found to gradually increase for the period from
2000 to 2003, corresponding to greater importance of the largest eigenvalue, followed by

a large decrease, corresponding to the bursting of the ‘tech bubble’ followed by the rela-
tively sanguine period that followed. At higher scalésafid11 days), the ratio was found

to increase more abruptly from mif02 implying that long and short timescales capture
different features of the correlation structure. Importantly, this behaviour may be a flag of
structural correlation changes that could act as a barometer of a change in investor percep-
tion. However, this interpretation can only be tentative due to the relatively small amount

of data studied and the analysis of high-frequency data might reveal more.

Unfiltered Data
T T

1 1 1 1 1
2000 2002 2004 2006 2008

Wavelet Level 1 (3 days)
T T

1 1 1 1 1
2000 2002 2004 2006 2008

Wavelet Level 2 (6 days)
15T T

1 1 1 1 1
2000 2002 2004 2006 2008

Wavelet Level 3 (11 days)

1 1
2000 2002 2004 2006 2008

Fig. 7.4: Ratio largest eigenvalue 287 largest eigenvalue for (a) original data (b) 3 day
scale (c) 6 day scale (d) 11 day scale

The distinct features and abrupt changes visible in the dynamics of eigenvalue ratios,

can be explained by the variation in th&? largest eigenvalue over time. In the context
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of the analysis that we performed using deviating eigenvalues from RMT, the information
containedin the second largest eigenvalue may correspond to distinctly diffseators

at the various scales. This has important implications for portfolio optimisation, where
correlation between assets is a fundamental input, Section 3.3. If the average correlation
between a given asset and others in a portfolio is raised at longer scales, then this asset may
not be such a good diversifier and, in fact, may increase the risk of the portfolio. Examples
of this were seen in Chapter 5, where the correlation of strategies such as Equity Long/Short

increased over longer scales.

7.3.2 High Frequency Eigenvalue Dynamics

The eigenvalue dynamics, found using medium-frequency data, demonstrated that addi-
tional features of the correlation between equities are revealed as the time-scale used in
the calculation is adjusted. High-frequency eigenvalue dynamics for the largest normalised
eigenvalue, (normalised over the entire period), and the average of the normalsedll-

est eigenvalues are shown in Fig. 7.5. The dynamics using the original data are given,
Fig 7.5(a), while Fig 7.5(b-d) were constructed using longer scales. It is evident that addi-
tional features emerge for longer scales, with much larger variation @8tleminute or

~ 6 day scale.

Of particular interest is the small disparity between the original data and that calculated
using the7 minute scale. In fact, this apparent disparity occurred for a variety of scales, up
to daily. Beyond this daily scale, distinct dynamics emerged, Fig 7.5(c-d), highlighting the
changes in correlation structure that occur at longer time-frames. This characteristic time-
period for settled pattern emergence (approximatetiay), may however, be attributable
to the discontinuities in the data. As evident in Fig 7.5(a-b), changes in the eigenvalue
structure tends to occur in ‘jumps’, (discontinuites in trading time are one factor). However,
at scales corresponding foand 6 days, Fig 7.5(c-d), the jumps are less evident as the
discontinuities are smoothed over the extended period.

Looking more closely at the results, we found that the discontinuities at low scales
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Fig. 7.5: Largest eigenvalue for (a) original data (b) 7 min scales(8)dayscale (d}~ 6
day scale, calculated using high-frequency Euro Stoxx 50 data, Zfrilo October20
2008

corresponded exactly with jumps in the market, such at those that occur when markets open
or when news is released. At longer scales, the relationship was less obvious. However, the
distinct rise in the largest eigenvalue at longer scales, corresponded to a large increase in
correlation as the market dropped consistently, (see Fig. 7.1). At3dd@leays), the sharp

upward movement near the end lagged behind a similar rise at Zc@alays), but was

more abrupt. In practical terms traders are known to choose positions based on their trading
strategies, acceptable risks and market conditions. The differences in eigenvalue dynamics
evident at these scales may be the result of the competing time horizons of different agents

involved in the market.
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7.3.3 Drawdown analysis

As indicated earlier, drawdowns, (or periods of large negative returns), and drawups, (peri-
ods of large positive returns), tend to be accompanied by an increase in different eigenstates
of the cross-correlation matrix. Similar to the analysis of Chapter 6, we again look for
evidence of market behaviour in terms of fluctuations in the eigenspectrum. The average
return of the index is shown in Table 7.1, (during periods when the largest eigenvalue is
+1 Standard Deviation Unit (SDU)), for both the largest eigenvalue and the average of the

normalisedt0 smallest eigenvalues.

] Eigenvalues No. Std  Unfiltered 1 2 3
=1 64%  25% 85% 10.4%
L
arge ~1 9%  -10% -9.3% -7.6%
<1  -96% -98% -12% -8.49
A 4 I
verage 40 Smallest 10%  9.6% 82% 8%
<1 15%  04% 7.7% 6.4%
Ratio 1
atio ~1 62%  -72% -9.0% -7.2%
<1 32%  35% -1%  6.9%
Ratio 2
atio ~1 56% -4.7% -59% -3.8%

Tab. 7.1: Drawdown/Drawup analysis. Average Index Returns when vaeigesvalue
partitions in SDU are> 1 and< —1. Ratio1 is that of the largest eigenvalue to th&!
largest, while Rati@ is the largest eigenvalue to the sum of #fiesmallest eigenvalues.

Looking first at the original or unfiltered data, we found that when the largest eigenvalue
is > 1 SDU, the average index return was found to+#%. In contrast, when it was —1
SDU, the average index return over each of the time windowsow&@s. This allowed us
to characterise the market into drawdowns and drawups by examining the relative size of
the eigenvalues. For the average ofdhesmallest eigenvalues, the partition reflected more
marked drawdowns and drawups but with opposite signs. This indicates that information
on the interaction between traders, captured in the correlation dynamics, is visible in both
the lower and upper eigenstates.

Table 7.1 also shows the average index returns for partitioned eigenvalues, calculated
using data at the longer scales (3and11 days). The results show that characterisation

of the largest eigenvalue, (well above average during drawdowns and well below during
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drawups) wagonsistentacross scales. The opposite was found to occur for the small
eigenvalues. The implication is that therrelation structure between stocks is less depen-
dent on the trader’s time horizon than on the current state of the market. This is in contrast
to the results found at high-frequency, where eigenvalue dynamics varied markedly across
scales. However, the high-frequency sample was from a unusual period of rapid market
decrease and may not have captured the full agent behaviour.

In Table 7.1, we also present the ratio of the largest eigenvalue to the second largest,
(normalised over time as above). For the unfiltered data, the ratio was found to be largest
during periods of negative returns and smallest during periods of positive return, again im-
plying that themarket effect dominates during drawdowiiis was seen across all scales
with larger absolute values of the returns found at larger scales, implying that correlations,
calculated using longer time scales, may be more sensitive to market behaviour. The ratio
of the largest eigenvalue to the sum of the forty smallest eigenvalues is also shown in Ta-
ble 7.1. This ratio was less sensitive than that shown in Figure 7.4, with values found to
vary from0.22 to 2.02. However, there is still evidence that negative returns occur during
periods when the largest eigenvalue is much greater than the sum of the small eigenvalues.

The opposite, though less marked for positive returns, is also indicated.

7.4 Conclusions

The multiscale correlation structure of both medium and high-frequency multivariate finan-

cial time-series was studied by investigation of the eigenvalue spectrum of the equal-time
cross-correlation matrix. This analysis revealed some of the risk characteristics, associ-
ated with the correlation structure between stocks, and shed some light on the various time

horizons involved in the underlying interactions. Observations may be summarised as:

1. Using the MODWT and a sliding window, the dynamics of the largest eigenvalue
of the correlation matrix were examined and shown to be time-dependent (Fig. 7.2).
Similar dynamics were visible across all scales, but with particular features, such

as the sizeable drop in the largest eigenvalug0isB, markedly apparent at certain
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scales. This suggests that the correlation matrix between stocks comprises interac-

tionsbetween traders with different time horizons.

. Large and small eigenvalues demonstrated the expected repulsion across all scales
(Fig. 7.3). It is possible to characterise the correlation structure of the system with

just the small eigenvalues, because of this repulsion.

. An initial study of high-frequency data, revealed little change in the eigenvalue dy-
namics over shorter scales, with additional dynamical features emerging at a charac-
teristic time of approximately one day. This characteristic time may be due to the
discontinuities associated with ‘trading hours’. A more detailed study is needed to

confirm this behaviour.

. A patrtition of the time-normalised eigenvalues demonstrated quantitatively that the
largest eigenvalue is greatest/smallest during drawdowns/draBop| eigenvalues
were, in general, found to lmaore sensitive than large eigenvalues to behaviour of the
market, with this persisting across all scales. This suggests that the underlying state
of the market is more important to the correlation structure than the time horizons of

different traders.
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CHAPTERS8

MULTISCALE EEG CORRELATION

DYNAMICS

Risk management is not unique to financial markets. In fact, it is intrinsic to a wide range
of fields including engineering, industrial processes and medicine. In particular, the moni-
toring and control of certain medical and neurophysiological conditions is dependent upon
‘early warning’ systems, often employing signal processing techniques. In previous Chap-
ters, we demonstrated the application of methods based on the correlation matrix for risk
reduction and characterisation in complex financial systems, [Catlah, 2007, 2008,
2009]. We showed how a correlation matrix, cleaned according to Random Matrix Theory
principles, could be used to reduce realised risk in a portfolio optimisation. The scaling
characteristics of low-frequency Hedge Fund correlations were then explored with appli-
cations in risk management for a Portfolio of Hedge Funds. Using medium frequency
financial returns, we then showed how the correlation matrix and associated eigenspectrum
could be used in the characterisation of markets according to their risk. By the application
of wavelet multiscaling techniques we investigated the scaling effects on this risk character-
isation. In some instances, early targets for the ideas explained, particularly for risk char-
acterisation, were Neurological systems and, in this Chapter, we explore this comparative
example. The aim is to build on earlier analysis of these systems, using the scale dependent
correlation analysis we developed above to characterise the risk of epileptic seizures. This
application serves also to demonstrate the inter-disciplinary nature of Complex Systems re-

search and emphasises the value of the cross-correlation matrix formalism in areas outside
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of finance. It also raises interesting questions on which commonality of feasugssential
for informative applicability of techniques across disciplines.

The characterisation of epileptic seizures has the potential to assist in the design of tar-
geted pharmaceutical seizure prevention techniques and pre-surgical evaluations. In this
Chapter, we use the cross-correlation dynamics between electroencephalographic (EEG)
channels in order to develop an early warning system for epileptic seizures. The Maxi-
mum Overlap Discrete Wavelet Transform (MODWT) is applied in order to separate the
EEG channels into their underlying frequencies. The dynamics of the cross-correlation
matrix between channels, at each frequency, are then analysed in terms of the eigenspec-
trum. By examination of changes in the eigenspectrum structure, we investigate the pos-
sibility of identifying frequency-dependent changes in the correlation structure between
channels, which may be indicative of Seizure activity. Further, the energy associated with
each wavelet scale is examined, to help distinguish the scales important during seizure ac-

tivity. Additional features are highlighted and results discussed in the comparative context.

8.1 Background

Seizure occurrence is associated with changes in the level of interaction between neurons
(agents). By reducing or countering the level of interaction between neurons, it may be
possible to reduce the risk of an epileptic seizure occurring. Neurophysiological systems
have many features in common with other Complex Systems, such as interacting, dynamic
agents with heterogeneous characteristics. In previous chapters, we have applied the lin-
ear correlation measure to examine the synchronisation between different agents within a
complex dynamic financial system. The primary risk in the case of seizures is clearly very
different from our previous examples in finance. However, a financial crash can also be
an equally catastrophic outcome on a personal level. The study of comparative systems
like these, allow us to identify features common to both systems. The emergence of com-
mon features, such as correlation changes prior to seizures and crashes, helps us to identify

techniques previously applied in one field, which may prove fruitful in another.
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8.1.1 Data

In this study, EEG signals from eight patients of different ages«{2®), determined by

a neurologist to be suffering from fodalgeneralisetior secondary generalisédeizures

are examined. The data was obtained from the Australian EEG database, [ldtiagier

2005], and all signals were recorded using standard international sy8ter20 electrode
placements. These electrodes are placed so as to provide for a repeatable, uniform coverage
of the entire scalp, [Fisch and Spehlmann, 1999].

The database contains patient details including medical history, technician’'s comments,
medication and a full EEG report by a neurologist. The clinical interpretation from the
neurologist was used to classify the seizures. In this analysis bipolar derivations, (referred
to as a channel from here on), between nearest-neighbour channels were used, [Fisch and
Spehlmann, 1999], as the use of monopolar signals, (where all electrodes have a common
reference), could result in the introduction of unwanted correlations into the system.

One problem with securing financial data is, of course, their confidential nature, which
results in little public availability of information (in particular, for Hedge Funds). Securing
suitable seizure data also proved to be difficult, due to their similarly confidential nature.

A number of databases were explored, included the University of Freiburg EEG database,
[University of Freiburg, 2008], but these proved to be more appropriate for univariate pre-

diction methods. Availability of a more extensive database, containing additional examples
of various forms of epileptic seizures, would have further enhanced the results detailed

below.

A partial or focal onset seizure affects only a part of the brain at onset. They may often be a precursor to a
larger seizure, such as a generalised seizure

2Generalised seizures affect both cerebral hemispheres (sides of the brain) from the beginning of the seizure
and produce loss of consciousness. They are divided into several sub-types: generalised tonic-clonic, my-
oclonic, absense and atonic

3Secondary generalised seizures start as a partial seizure and spread throughout the brain, becoming gener-
alised
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8.1.2 Implementation
Defining Seizure Onsets and Endings

In order to identify seizure activity in a clear and reproducible fashion, we use a technique
previously described, [Schindlet al., 2007a], as follows: Given time-serie(t), corre-

AEEG;(t
At

sponding to readings from an EEG, the absolute slSpe) = ’ ) ’ was computed

over each channél The slope was normalise@i(t) = So_—(t) with o;, the standard de-
viation of the signal over a reference period containing no seizure actity) was then
smoothed using a moving average over a time window séconds.Epiletiform activity

or periods of extreme neuronal activity, were then defined by finding a slope greater then
2.5 standard deviations from the mean. The time of seizure onset was determined from the
number of EEG channels displaying epileptiform activity. For the following analysis, this
was set ab, ensuring that the seizure had spread to a minimum number of channels and was
not specific to one region, allowing us to isolate those periods corresponding to epileptic

events.

Specific Methods

To decompose the EEG signal into component frequencies, we selected the least asymmet-
ric (LA) wavelet, (known as the Symmlet, [Bruce and Gao, 1996]), which exhibits near
symmetry about the filter midpoint. These are defined in even widths and the optimal filter
width is dependent on the characteristics of the signal and the length of the data series. Here,
the filter width chosen was the LA8 (where the 8 refers to the width of the scaling function)
and this enabled us to calculate accurately wavelet correlations 'tlseale, given the

length of data series available, while still containing enough detail to capture subtle changes
in the signal. Although the MODWT can accommodate any le¥glin practise the largest

level is chosen so as to prevent decomposition at scales longer than the total length of the
data series, hence the choice of #escale, [Percival and Walden, 2000].

The equal-time cross-correlation dynamics between EEG channels using a sliding win-
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dow of length5s, (choserso that the signal would be close to stationary during each win-
dow), was analysed. First, the MODWT of each EEG channel was calculated within each
window and the correlation matrix between channels at each scale found, (Egn. 3.32). The
eigenvalues of the correlation matrix in each window were determined, (Egn. 3.4), and

eigenvalue time-series were normalised in time, (Egn. 3.19).

8.2 Results
8.2.1 Single Patient Analysis

The seizure definition, (Section 8.1.2), and eigenvalue dynamics30ryaar old patient
suffering from focal epilepsy with possible secondary generalisation are shown, Fig. 8.1(a).
This reveals3 main periods that display epileptiform activity. Initial examination of the
eigenvalue dynamics for each of the wavelet scales (corresponding to frequencies from 4Hz
to 60Hz), reveals that theigenvalue repulsiofound using the equal-time cross-correlation
matrix on unfiltered data, [Schindlet al., 2007b,a], is also repeated across the different
frequencies. Fig. 8.1(b-f) show the dynamics of both the largest eigenvalue and that of
the average across thé smallest eigenvalues. The dynamics of the smallest eigenvalues
complement, across all scales, those of the largest, (given the trace of the correlation matrix
must remain constant under linear transformation), with increases in the latter and decreases
in the former, when average correlation increasedjlf et al., 2005, 2006a; Schindler
et al., 2007a,b].

In Fig. 8.1, we see that the largest eigenvalue of the cross-correlation matrix, calcu-
lated at the highest frequency (60} increases during epileptiform activity. However, as
we move to lower frequencies, the largest eigenvalue tends to decrease during epileptiform
activity. In the example studied, this is particularly evident at leBed®id4 (correspond-
ing to 15H z and7H = respectively). The increase in the largest eigenvalue at the highest
frequency corresponds to an increase in the average, or global, system correlation at this
frequency, with the opposite occurring at lower frequencies, (Section 3.5).

The wavelet energy, (Eqn. 3.29), measured in a sliding windodsdbr each of the
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wavelet scales, is shown in Fig. 8.2 for the same patient as previously, (FigTBelénergy

at the highest frequencies is negligitdecept during periods corresponding to epileptiform
activity, when it increases greatly, corresponding to more tga of the total system
energy. During non-epileptiform activity, the energy at low frequencies makes up most of
the system energy. However, during epileptiform activity the energy at low frequencies
drops to negligible levels compensating for the increase at high frequencies implying that
most of the system energy is involved in high frequency events such as spikes.

These preliminary results seem to indicate increased levels of correlation between EEG
channels at the highest frequencies during epileptiform activity, with corresponding in-
creases in energy. In contrast, the average system correlation at low frequencies, (measured
against the dynamical behaviour of the largest eigenvalue), decreases with corresponding
decrease in energy. Since the associated energy is higher, high frequencies seem of more
relative importance during epileptiform activity, so that the correlation structure at these

frequencies may be of more relevance in seizure characterisation.

8.2.2 Multiple Patient Analysis

In order to investigate further questions posed by these initial results, we examined the
eigenvalue dynamics and associated energy for eight patients, (described, Section 8.1.1);
individual results given Table 8.1. Average eigenvalue size and associated energy during
active period$and during normal perio@sare presented. The average eigenvalue size and
energy are measured across scales, as before. The results for Patidrare also shown,
(Fig. 8.1).

Fig. 8.3 shows the distribution of the largest eigenvaluealbipatientsacross each
scale. For the highest frequencies, the average eigenvalue is considerably higher during
active, compared to normal periods. Using a Wilcoxon signed-rank test across all samples,

the probability of the median difference between eigenvalue pairs being zero is less than

“Periodswhen the largest eigenvalue, at the highest frequency, is greatet.thatandard deviations units
(SDU) from the mean. This means that we look at the 6.7% largest readings.

SPeriods when the largest eigenvalue, at the highest frequency, is betwiegrand 1.5 SDU from the
mean.
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0.05 for these scales. The increase in the largest eigenvalues corresponds to an increase
in the global or average correlation at these high frequencies. For the lower frequencies,
there is a definite overlap between the eigenvalues but with a lower median and much larger
variance during the active period.

The energy at each of the scales, (shown Fig. 8.4), has an obvious increase at the highest
frequency during active periods (Wilcoxon signed-rank test, Probabilitys of distribu-
tion about same median). At the next frequency, the energy is also higher but not markedly
so. For the lower frequencies, the energy decreases during active periods to compensate
for the increase at higher frequencies. In particular, for scalasd5, the changes are
significant with P<0.05, (Wilcoxon signed-rank test, Kanji [2006]). This behaviour indi-
cates that the high frequency behaviour is of greatest importance during active periods, with
corresponding correlation increase.

Examining the differing overlap between the two periods, (Figs. 8.3,8.4), the active
period appears to have two major manifestations, namely a variance increase and a clear
non-overlap for the two highest frequencies. Further, there is a large increase in variance
of the energy across those same frequencies. This further suggests that the large changes in

synchronisation at certain scales may act as a barometer of seizure activity.

8.3 Discussion

By analysis of the eigenvalue spectrum of EEG epileptiform signals, filtered using the
wavelet transform, we were able to examine changes in the cross-correlation matrix be-
tween channels. The largest eigenvalue corresponds to the average correlation between
all channels and is orthogonal to the other eigenvalues. Previously, a number of studies
examined thaunivariatetime-frequency behaviour using a number of different linear and
non-linear techniques, [Clagk al., 1995; Senhadji and Wendling, 2001; Adstlal., 2003;
Indirdevi et al., 2008]. However, this single channel approach ignores the interactions be-
tween neurons involved in brain activity, which are particularly prominent during seizures.

Variousbivariate method$o examine dynamic changes in these interactions have been

102



Patient
No.

Patient Neurologist Scale
Age Diagnosis 1 2 3 4 5

Scale 1 Active 2.20 0.23 -1.30 -0.71 -0.33
FocalWith Possible Energy 0.38 0.18 0.15 0.17 0.12

Sec. Generalisation Scale 1 Normal -0.12 0.01 0.09 0.05 0.03
Energy 0.09 0.09 0.21 0.36 0.25
Scale 1 Active 254 165 -056 0.13 0.52
Energy 0.39 0.26 0.15 0.11 0.09

Scale 1 Normal -0.25 -0.16 0.06 -0.02 -0.05
Energy 0.23 0.18 0.22 0.19 0.12

47 Benign Focal

Scale 1 Active 250 2.09 0.58 0.37 1.07
Energy 0.32 0.27 0.16 0.13 0.12

Scale 1 Normal -0.10 -0.08 0.00 0.00 -0.05
Energy 023 023 019 023 0.12

50 Focal

Scale 1 Active 1.72 1.78 -0.24 -0.44 -0.11
Energy 042 020 0.16 0.13 0.09

Scale 1 Normal -0.12 -0.12 0.02 0.03 0.01
Energy 0.21 0.15 0.26 0.24 0.14

48 Generalised

Scale 1 Active 2.26 120 0.18 -0.31 -041
Energy 0.16 0.16 024 0.27 0.17

Scale 1 Normal -0.24 -0.13 -0.02 0.03 0.04
Energy 0.17 0.17 0.23 0.26 0.17

28 Generalised

Scale 1 Active 243 211 -0.26 0.65 0.11
Energy 0.21 0.212 0.16 0.20 0.22

Scale 1 Normal -0.14 -0.13 0.03 -0.04 0.00
Energy 0.12 0.18 0.21 0.27 0.22

78 Generalised

Scale 1 Active 1.67 0.75 0.06 -0.03 -0.18
Energy 0.16 0.15 025 0.35 0.09

Scale 1 Normal 0.21 0.17 0.13 0.04 -0.06
Energy 0.15 0.14 0.27 0.32 0.12

48 Sec. Generalised

Scale 1 Active 1.76 040 0.20 -0.85 -0.65
Energy 0.21 0.10 0.13 035 0.21

Scale 1 Normal 0.08 -0.04 -0.03 0.04 0.02
Energy 0.17 0.12 0.14 036 0.21

52 Sec. Generalised

Tab. 8.1: EEG Analysis; For each patient the first row shows average size of eigenvalues
when largest normalised Eigenvalue at Sdale 1.5, while row two shows the associated
energy. The third row shows average eigenvalue at each level during normal behaviour (ie.
when largest eigenvalue,1.5 < F < 1.5) and the fourth row shows the associated Energy.
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suggested. The linear cross-correlation was measured at different frequiordles chan-

nels with the maximum power at high frequencies, [Wendghgl., 2003]. In contrast to

the work above, the correlation between these channels was shown to decrease during the
seizure. This, however, may be due to the bivariate approach used, which only captured
the correlation between pairs of particular channels. This activity may possibly be captured
in the second or third largest eigenvalue of the multivariate technique, where correlations
orthogonal to those in the largest eigenvalue are found, (corresponding to correlations be-
tween certain subsystems, {iMer et al., 2005]). The linear cross-correlation for two band-
filtered channels were examined for different time lags, with a strong relationship found for

a frequency band arourdHz, [Ansari-Aslet al., 2005].

The bivariate methods described concentrated on correlations between a small num-
ber of channels, chosen specifically for the studies involved. Using multivariate EEG data,
changes in the global correlation structure were shown to be visible at both ends of the
eigenvalue spectrum, [Mler et al., 2005]. For a limited study of a single seizure, a sudden
system-wide change from a relatively uncorrelated to highly correlated state was found to
take place, reflected in an increase in the largest eigenvalue. Analysis of the changes in the
eigenvalue spectrum for a large number of seizures showed a generic change in the correla-
tion structure during focal onset seizures, [Schindkeal., 2007a]. The seizure recordings
in this data consisted &8 — 94 channels and the changes in the eigenvalue spectrum were
shown to occur for a number of the largest eigenvalues. Contrary to the behaviour found
previously, [Miller et al., 2005], these large eigenvalues were shown to decrease during
the first half of the seizure, indicating decreased correlation, with an increase in correlation
found before seizure end. It was suggested that this increase in correlation may be related
to seizure termination.

Time-Frequency decompositions of EEG signals have been studied for many years,
[Nakata and Mukawa, 1989]. In this initial work, we extend the previous multivariate
techniques, [Miller et al., 2005; Schindleet al., 2007a], by examining changes in the
eigenvalues of the correlation matrix between EEG time-series across various frequencies.

Results for low frequencies were similar to those found previously, (see Fig. 8.1), with
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a decrease in global correlation at seizure onset, reflected by the deitréhsdargest
eigenvalue. Those, at higher frequencies (Fig. 8.1(b)), demonstrated an increase in the
largest eigenvalue at seizure onset, corresponding to an increase in global correlation. This
was confirmed across seizures, with just a small variation across seizures for the correlation
at lower frequencies. The limited number of channels available for study, meant that the
effects of the global or average correlation were only found in the largest eigenvalue, in
contrast to the work by Schindlet al.[2007a].

Previous studies have used wavelet energy for prediction of seizures, [@igala
2004]. We perused this further to examine the fractional energy of each of the frequencies
and their importance over time. Again, the highest frequencies seemed of most relevance
during active periods. This development of the previous work adds insight on contributing
frequencies to correlation structure. By focusing on these particular frequency breakdowns,
a simple multivariate technique such as that described may be applicable to seizure pre-
vention. Additionally, as very high frequency oscillations have been found during seizures,
[Bragin et al., 1999], a study of correlation dynamics at this scale may reveal further in-

sights.

8.4 Conclusions

Wavelet multiscaling has been used to expand on the previous multivariate analysisy [M

et al., 2005, 2006a; Schindlet al., 2007a,b], to explore the frequency-dependence of the
correlation dynamics between EEG channels for patients suffering with various forms of
epilepsy. By analysis of the eigenvalue spectrum of EEG epileptiform signals, filtered us-
ing the wavelet transform, we were able to examine the correlation dynamics over different
frequencies. Detailed analysis, for a patient with focal epilepsy indicated that EEG time-
series reveal an increase in the largest eigenvalue at high frequencies, (corresponding to
an increase in correlation between channels), during epileptiform activity. This increased
interdependence between channels was not found at low frequencies, where correlation de-

creased during activity. Decomposition revealed an increase in the wavelet energy at higher
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frequencies during epileptiform activity, with a corresponding decreakmvat frequen-

cies. This implies thatigh frequency activity is more significant during epileptiform activ-

ity and so the correlation dynamics at these frequencies are of greater relative importance in
terms of activity displayed. The correlation activity at lower frequencies was larger when
abnormal activity was low, with higher levels of associated wavelet energy. This suggests
that low frequencies are of greater relative importance during normal activity.

This approach was then applied to a variety of EEG signals, (Section 8.2.2), for differ-
ent types of epileptic eventCorrelation dynamics were found to be dependent upon the
frequency examined, with the correlation structure acting as a barometer of EEG activity.
Clearly, the data available are limited, but evidence of clear crossover in eigenvalue energy
does suggest that monitoring correlation structure in EEG signals at different frequencies
can provide a more subtle gauge of incipient imbalance at pre-seizure stage, than was found
by previous researchers using unfiltered signals alone.

A comparison between these results and those found for medium and high-frequency
financial data leads to some obvious differences. The discontinuities in financial data, par-
ticularly apparent for high-frequency returns, leads to ‘jumps’ in the correlation structure at
very high-frequencies. For correlations between EEG channels, the readings have smoother
dynamics. Also, the gradual correlation changes found in EEG signals around seizures are
contrary to the sharp jumps that occur in financial data, particularly at shorter scales. These
sharp jumps are due to the sudden release of information to the market, while for a complex
neuronal system there is more gradual information dissemination. The more gradual release
of information in EEG signals means that the potential ability to forecast changes in corre-
lation is better. However, by applying the energy analysis described above to financial data
we will be able to identify the scales important during different market events, which may
assist in the prediction of market crashes. Some additional similarities between both data
types exist, however, with definite changes in correlation in times of stress. For EEG data
at high frequencies, correlations were shown to increase during seizures, while for financial

data correlations increase during market ‘draw-downs’.
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CHAPTER9

CONCLUSIONS AND FUTURE WORK

In this work, we have investigated the synchronisation between agents in GdDyplami-

cal Systems, using the linear cross-correlation measure. We demonstrated how this measure
could be used in an innovative fashion, bothigk reduction and characterisatioior such
systems. These properties were studied extensively, with data from a number of systems
examined, including novel low-frequency Hedge Fund returns, medium and high-frequency
equity returns and high-frequency EEG seizure data.

In Chapter 4, we considered, for the first time, the effects of noise on low-frequency
Hedge Fund returns. The novel application of Random Matrix Theory to reduce the level
of noise in the correlation matrix, revealed new insight into the relationship between Hedge
Fund strategies. The RMT ‘cleaned’ correlation matrix was explored using eigenvector
analysis, with useful information found in the largdstigenvalues. Using the 'cleaned’
correlation matrix as an input to a classical portfolio optimisation, we showed how the
difference between predicted and realised risk could be improved substantiat3 %y

The information contained in low-frequency Hedge Fund returns can be tainted by arti-
facts such as ‘stale prices’ for instruments held by manageiGhapter 5, we developed
a novel technique to overcome this problem, using the maximum overlap discrete wavelet
transform to decompose the signal into different time horizons. The correlations between
Hedge Funds and the S&0 were calculated using the MODWT and found to vary ac-
cording to scale. Using classical portfolio optimisation, we showed how a correlation matrix
calculated over longer scales, enhanced the risk profile for a portfolio of Hedge Funds.

We then turned our attention to medium-frequency equity returns and demonstrated
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how changes in the global correlation structure, captured by the dynamibe tdrgest
eigenvalue, can be used to characterise the risk of financial matitetpter 6. When the
largest eigenvalue was raised, this was found to correspond to ‘drawdown’ periods with
the opposite occurring during ‘drawups’. Due to eigenspectrum level repulsion, opposite
behaviour was observed for small eigenvalues. Finally, a ‘toy model’ of correlations was de-
veloped, which captured many of the features observed in the empirical data and enhanced
our understanding of correlation dynamics and the relationship with financial risk.

In Chapter 7, we developed this work further through the analysis of both temporal and
scale dependencies of the correlation matrix. Using the maximum overlap discrete wavelet
transform, we constructed the correlation matrix between both medium and high-frequency
data over a variety of scales, using a sliding window approach. This revealed additional
insights, with the correlation dynamics found to depend upon the scale studied. Further,
the eigenvalues were also found to be raised during times of market atrasscales
demonstrating further the ability to characterise financial risk according to changes in the
correlation structure. Using high-frequency data, we then demonstrated the gradual build-
up of the correlation dynamics up to a characteristic time-scale of approximately one day,
with more obvious scale dependent changes occurring thereafter.

Interested in similarities with other multiscale complex data models, we considered
EEG seizure dataChapter 8. For this, we showed how changes in the correlation dy-
namics between channels could be used to characterise the risk of seizures. The maximum
overlap discrete wavelet transform was again used to calculate correlation matrices at differ-
ent scales and to find the associated wavelet energy at each scale. The correlation dynamics
were found to be scale dependent, with increased global correlation (and associated energy)
during seizures at the highest frequencies. At lower frequencies, a compensating decrease
in energy was found, with decreased global correlation. The very distinct and even opposite
behaviour at different scales was in contrast to that found for financial data. The continuous
nature of information processing was advanced as one factor which might explain these
differences but data was too limited to confirm this.

Throughout this thesis, we have explored both the spatiotemporal interaction within sys-
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tems of varying granularity and the application of the correlation measure to rédudsk
inherent in such systems. In the context of financial markets, the reduction and characteri-
sation of risk is hugely topical at the present time, against a backdrop of large banking and
personal losses. Risk management is not exclusive to financial systems, however, and we
have also explored, in a preliminary way, similarities and contrasts for an apparently com-
parable system, namely EEG seizure patterns. Although integration of techniques offers
some new insight, the dynamic, evolving nature of finanical markets means that managing

the risk involved will continue to present truly complex challenges.

9.1 Future Work

Given a larger set of Hedge Funds, (or a set with daily returns), it is reasonable to sug-
gest that additional sectoral features might emerge from analysis of the correlation matrix,
Chapter 4. Additionally, the application of improved cleaning techniques which ensure
the stability of the matrix, [Shariit al., 2004; Dalyet al., 2008], may further improve the
risk-return profile for a portfolio of Hedge Funds. Building on the analysi€ludipter 5,

the measurement of the Alpha, (Equation 3.10), of different strategies over different time
scales is also of potential future interest. In the case of Hedge Funds, the Alpha is a measure
of the abnormal return, which is the value added by the manager, [Lhabitant, 2002, 2004].
A Hedge Fund manager wappears to add Alpha, (using monthly returns), may actually
be found to just hold market risk over longer time scales and hence be less interesting to
investors, (diversification benefits may be limited).

The study of the relationship between the direction of the market and magnitude of the
eigenvalues of the correlation matri@hapters 6-7, indicates the need for more detailed
insight. In particular, the analysis of high-frequency data may be useful in early warning
of future market turmoil. The interactions between high-frequency data may also help to
integrate trading strategies into the analysis, developing our understanding of the roles of
cooperation and competition in financial markets. Moreover, study of the possible rela-

tionship between the dynamics of the small eigenvalues may reveal additional correlation
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information hidden in that part of the eigenvalue spectrum, normally classifiediss.

Such an investigation could be achieved through analysis of the relative dynamics of the
small and large eigenvalues at times of extreme volatility, (e.g. during market crashes).
For a review for this question to date, see Guhr arddbir [2003]; Burdaet al. [2004];

Burda and Jurkiewicz [2004]; Malevergne and Sornette [2004ijéet al.[2005, 20064a];
Kwapienet al.[2006]. Another interesting possbile are of future study is the persistence of
correlations, using for example, the Hurst exponent.

The analysis of multiscale correlation dynamics in EEG seizure @dtapter 8, was
restricted by the difficulties in obtaining large data sets. The work by Schiwdlat.

[2007a] finds a decrease in overall correlation after seizure start, followed by an increase
in correlation as the seizure ends. Our initial results suggest similar behaviour at lower
frequencies, while the opposite occurs at higher frequencies. This suggests that the exam-
ination of correlation dynamics across various frequencies prior to seizure beginning may
reveal pre-seizure characteristics, which can be used to calibrate seizure prevention strate-
gies. An in-depth study on different seizure types may reveal further distinct correlation
structures specific to the seizure type. Analysis of inter-frequency correlations may well
shed light on the lead-lag relationship across different frequencies. Furthermore, investiga-
tion of the second and subsequent eigenvalues in detail could expose additional sub-system
behaviour not revealed by the largest.

The correlation technique used in this thesis to measure the interaction between agents
suffers from the drawback of being linear and hence neglects any higher-order relation-
ships. Application of non-linear information-theory based dependence measures, will al-
low the detection of complex changes in synchronisation behaviour around extreme finan-
cial events. These non-linear techniques will result in additional features emerging to those
highlighted above and may result in signals that warn of likely future market turmoil. The
interaction of various agents with competing strategies and operating over different time
scales will be analysed, resulting in an enhanced understanding of the phenomena underly-
ing events such as financial crashes. Additionally, these techniques would have application

to other Complex Systems, such as the EEG seizure data described.
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APPENDIXA

HEDGE FUND STRATEGIES

Strategies employed by the managers in the sample considered in Chapter 4:

Strategies Number of Funds
Asia excluding Japan Long/Short Equities 2
Convertible & Equity Arbitrage 2
Currency 7
Emerging Markets 6
European Long/Short Equity 10
Fixed Income 1
Global Equity 5
Japan Market Neutral 1
Macro 3
Managed Futures 11
Self-Invested Fund of Funds 1

Tab. A.1: Hedge Fund strategies from sample considered in Chapter 4
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A.1 Strategy Overview

In the following, we describe some of the investment styles used by Hedge Fund managers,
covering those used in the calculation of the Credit Suisse/Tremont indices, Chapter 5.
Convertible Arbitrage

Convertible Arbitrage managers seek to exploit pricing anomolies between a convertible
bond and it's underlying equity. These anomolies occur as the embedded options in a
convertible bond are often undervalued when compared with their theoretical value and

is exploited by buying the bond and shorting either stock or options against it.

Dedicated Short Bias

The portfolio of a Dedicated Short Bias manager has more short positions than long posi-
tions in Equity securities (and derivatives of), leaving them with net short exposure to the

market. They are considered a hedge against Bear markets.

Emerging Markets

Emerging Markets Managers invest in currencies, debt instruments and equities of devel-
oping countries. Examples of such markets include China, India, Russia and Brazil.

Equity Market Neutral

Equity Market Neutral is a style of investment that applies quantitative statistical models to
exploit pricing inefficiencies between equity securities. The portfolio is formed to minimise
exposure to the systematic market risk and this is achieved by offsetting long positions by

short positions on a dollar neutral or zero beta basis.
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Event Driven

Event Driven managers focus on debt and equity of companies where a specific corpo-
rate or market event is taking place. Examples include mergers, restructurings, spin-offs,

bankrupcies, re-capitalisations and share buybacks.

Fixed Income Arbitrage

Fixed income arbitrage exploits inefficiencies within and across global fixed income mar-
kets. Strategies include yield curve and sovereign debt arbitrage, Treasury versus corporate

and municipal yield spreads, basis trading and mortgage-backed security arbitrage.

Global Macro

Global macro managers make directional, leveraged, opportunistic bets on anticipated price
movements in currencies, equities, bonds and comodities. The style is based upon top-down

global analysis and focuses on fundamental economic, political and market factors.

Long/Short Equity

Equity Long/Short managers combine long investments with short sales to reduce but not
elimate market exposure. Funds tend to have net long market exposure, so often suffer
drawdowns at the same time as equity markets. Managers can also trade equity futures and

options and use leverage to increase their exposures.

Managed Futures

Managed futures managers (or Commaodity trading advisors (CTAS)) trade listed commod-
ity, currency, bond and equity futures. Managers often employ systematic trading programs
that rely on computer-generated trading signals to produce returns. Managers do not have

a particualar bias towards a particular market or to being net long or short.



APPENDIX B

SOFTWARE

The code used in the studies above were all written using Matlab and related &sthmh

as the Wavelet and Statistics toolboxes. The calculations for the Maximum Overlap Discrete
Wavelet Tranform (MODWT), Chapter 3.6, was implemented usingtthdTSA Wavelet
Toolkit for Matlab, which is the toolbox associated with Percival and Walden [2000]. The

scripts involved are reproduced below:

function hfRMT
% THIS FUNCTION COMPARES THE EMPIRICAL CORRELATION MATRIX TO THE
% THEORETICAL DISTRIBUTION FROM RANDOM MATRIX THEORY

% Load Hedge Funds returns data

g = load('C:\PhD\49 funds 105 returns normalised.txt’);

t = size(g,1);

n = size(g,2);

% Ratio of time to number of funds

g = thn

% Data has been pre-normalised, so ....

sigma = 1;
% Work out the min and max RMT eigenvalues
lampda_max = (sigma’2) =1 + (1/q) + 2 =(sqrt(1/q)))

lampda_min = (sigma’2) *=(1 + (L/g) - 2  =(sqrt(1/q)))

% Calculate the empirical correlations and eigenvalues
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corrFunds = corrcoef(g);

e = eig(corrFunds)

=1

totP = 0;

for i = lampda_min+0.00001:0.001:lampda_max
eval() = i;
P() = (a/(2 * pi *sigma’2))  * (sqgrt((lampda_max -i) *(i - lampda_min))/i);
=i+ 1L

end

% Specify how many buckets you want to break the data up into

bkt = 1000;

% Here | get the normalisation constant so the area under the curve is 100%
dist = e(end,1) - e(1,1);
dist = dist/bkt;

% This outputs the buckets and the number of e/values in each bucket

[n, xout] = hist(e,bkt);

n(l.end + 1) = 0;
xout(1, end + 1) = (xout(l,end) - xout(l,end-1)) + xout(1,end);

n n/sum(n);

n/(dist);

n

% Now plot the results

plot(xout,n,eval,P)

title('\fontsize{12}\bf Eigenvalue Distribution 49 funds, 105 months data’);
set(gca, 'FontSize’,12);

xlabel('\fontsize{12} Eigenvalues’); ylabel('\fontsize{12} Distribution’);

legend(’Empirical Distribution’, 'Theoretical Distribution’);

function RemovelLargEVec

% THIS FUNCTION REMOVES THE EFFECTS OF THE LARGEST EIGENVALUE FROM THE
% DATA; IE. REMOVES THE EFFECT OF THE 'MARKET’

g = load('C:\PhD\49 funds 105 returns Normalised.txt’);
returns = load('C:\PhD\49 funds 105 returns Unnormalised.txt’);
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savefile = 'C:\PhD\Residuals.mat’;

EVnumber = 49;

corrFunds = corrcoef(g);

[vec,val] = eig(corrFunds);

% Find the eigensignal corresponding to the largest eigenvalue

G_large = returns  *vec(:,EVnumber);

% Regress the returns for each stock against the largest eigenvalue
% and find the residuals
for i = 1:49

[b(i),bint(:,i),r(:,i)] = regress(returns(:,i),G_large);

end

save(savefile, 'b’, ’bint’, 'r’);

function evectorAnal

function evectorAnal

% THIS FUNCTION IS USED TO ANALYSE THE DISTRIBUTION OF EIGENVECTOR
% COMPONENTS, AS WELL AS THE INVERSE PARTICIPATION RATIO

% Pull in data
g = load('C:\PhD\9 funds 105 returns.txt’);

% Number of buckets in graphs

bucket = 200;

%specify the eigenvalue to analyse

EVnumber = size(g,2);

% Calculate correlations and eigenspectrum

corrFunds = corrcoef(g);

[vec,val] = eig(corrFunds,’nobalance’);

% Plot the eigenvector components

B-3



histfit(vec(:,EVnumber),25)
title('Distribution of Eigenvector Components’);

xlabel(’Eigenvector Components’); ylabelNumber of Occurences’);

% Calculate the IPR for each eigenvalue

IPR = sum(vec."4);

% Plot the IPR

figure;

plot(IPR)

title(Inverse Participation Ratio’);

xlabel('Eigenvalue Number’); ylabel(Inverse Participation Ratio’);

function portfundOpt
% PORTFOLIOOPTIMISATION FOR PREDICTED AND REALISED CORRELATIONS USING
% ORIGINAL AND CLEANED CORRELATION MATRIX

% Define portfolio returns

PortReturn = [0.005,0.006,0.0075, 0.01,0.0125,0.015,0.0175];
numPorts = length(PortReturn);

% Call data

fid = fopen('C:\PhD\Results\Portfolio Weights.txt’, 'wt’);

r = load("C:\PhD\Unnormalised Data.txt’);

normData = load('C:\PhD\49 funds 105 returns Normalised.txt’);

% Break up data into 2 and calculate returns, std, cov and correlations

rl = normData(1:53,:); r2 = normData(54:end,:);

ExpReturnl = mean(r(1:53,:)); ExpReturn2 = mean(r(54:end,:));

rl_std = std(r(1:53,:)); r2_std = std(r(54:end,));

corrFundsl = corrcoef(rl); corrFunds2 = corrcoef(r2);

ExpCovariancel = corr2cov(rl_std, corrFundsl);

ExpCovariance2 = corr2cov(r2_std, corrFunds2);

% Set constraints for the portfolio optimisation



ConSet = portcons('PortValue’, 1, 49,’AssetLims’,0, 1, 49);

% Optimise portfolio for original data & get predicted and realised
% risk/return

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn2, ...
ExpCovariancel, [],PortReturn,ConSet)

[ActPortRisk, ActPortReturn] = portstats(ExpReturn2, ExpCovariance2,PortWts);

% number of outlying eigenvalues
n=3;
[V,D] = eig(corrFundsl);

% Clean the first correlation matrix
C_clean_1 = Clean_RMT_Bouchaud(V,D,n);

C_clean_1 = corr2cov(rl_std, C_clean_1);

[V2,D2] = eig(corrFunds?2);

% Clean the 2nd correlation matrix
C_clean_2 = Clean_RMT_Bouchaud(V2,D2,n);

C_clean_2 = corr2cov(r2_std, C_clean_2);

% Optimise portfolio for cleaned data & find predicted and realised
% risk/return

[PortRisk_clean, PortReturn_clean, PortWts_clean] = ...
portopt(ExpReturn2, C_clean_1, [],PortReturn,ConSet);
[ActPortRisk_clean, ActPortReturn_clean] = portstats(ExpReturn2, ...

C_clean_2,PortWts_clean);

% Annualise the results for graphing

PortRisk = sqrt(12) * PortRisk; ActPortRisk = sqrt(12) * ActPortRisk;
PortRisk_clean = sqrt(12) * PortRisk_clean; ....

ActPortRisk_clean = sqrt(12) * ActPortRisk_clean;

for i = 1:numPorts

PortReturn(i,1) = ((1+PortReturn(i,1))"12)-1;

ActPortReturn(i,1) = ((1+ActPortReturn(i,1))"12)-1;
PortReturn_clean(i,1) = ((1+PortReturn_clean(i,1))"12)-1;
ActPortReturn_clean(i,1) = ((1+ActPortReturn_clean(i,1))"12)-1;

end
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% Plot the results

hold on

plot(100 =*PortRisk, 100 =*PortReturn,’ *--''LineWidth’,1, ’color’, [0,0,0.25098])

plot(100 * ActPortRisk, 100 * ActPortReturn,’o--",’LineWidth’,1, ...

‘color’, [0,0,0.25098])
plot(100 *PortRisk_clean, 100 * PortReturn_clean,’
‘color’, [0,0,0.25098])

* ' 'LineWidth’,1, ...

plot(100 *ActPortRisk_clean, 100 * ActPortReturn_clean,’o:’,'LineWidth’,1, ...

‘color’, [0,0,0.25098])

legend('Predicted risk using C’, 'Realised risk using C’,’Predicted risk ....

using filtered C’, 'Realised risk using filtered C’, ’location’, 'SouthEast’)

xlabel('Risk %); ylabel('Return %);

function C_cl = Clean_RMT_Bouchaud(V,D,n)

% CLEANCORRELATION MATRIX USING METHOD DESCRIBED BY BOUCHAUD ET AL

D_size=size(D, 1);

% D_mean is the mean of the noisy eigenvalues

D_mean=mean(diag(D(1:D_size-1, 1:D_size-n)));

% D_cl is the cleaned eigenvalue matrix

D_cl=zeros(D_size);

% Non-noisy part
for j=D_size-n:D_size
for i=D_size-n:D_size
D_cl(i, j)=D(, J);
end

end

% Noisy part is replaced by the identity matrix
for j=1:D_size-n
for i=1:D_size-n
if (j==i)
D_cl(i, j)=D_mean;
end
end

end
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Trace(D)
% Cleaning C
C_cl=V «D_cl »V’;

function StatWaveletComps

% FUNCTIONTO CALCULATE THE VARIANCES, COVARIANCES AND CORRELATIONS BETWEEN
% HEDGE FUNDS AT DIFFERENT SCALES USING THE MODWT. USES THE WMTAS TOOLBOX
% FOR MATLAB

clear;

% Load data
s = load('C:\Program Files\MATLAB704\work\Thesis Code\lndex Data SandP.txt’);

n_c = size(s,2);

levelNo = 4;

Coefs = [J;
% First Decompose the Data using the MODWT
for i = 1in_c
modwtCoefs = modwt(s(;,i),'LA8’,levelNo);
sizeCoefs = size(modwtCoefs);
Coefs = [Coefs; modwtCoefs];

end

% Find Variances, Covariances & Correlations

for i = 1:levelNo

for j = O:n_c-1
flag = sizeCoefs  *j;

Coefsl = Coefs(flag + 1l:flag + sizeCoefs, i);

[waveVar,Cl_wvar] = modwt_wvar(Coefsl,’gaussian’,’'unbiased’,'LA8");
varCoef(j+1, i) = waveVar;

varCI1(j+1,i)
varCI2(j+1,i)

Cl_wvar(:,1);
Cl_wvar(:,2);

for k = O:n_c-1
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flag2 = sizeCoefs *K;

Coefs2 = Coefs(flag2 +1:flag2 + sizeCoefs, i);

[waveCov, CIl_wcov]
‘unbiased’,'LA8’);

[waveCorr, Cl_wcor] =

modwt_wcov(Coefsl, Coefs2,’'gaussian’, ...

modwt_wcor(Coefsl, Coefs2);

corrCoef(j+1+n_c *(i-1), k+1) = waveCorr;

covCI1(j+1+n_c  *(i-1), k+1)
covCI2(j+1+n_c = (i-1), k+1)

= Cl_wcov(;,1);

= Cl_wcov(;,2);

covCoef(j+1+n_c  =(i-1), k+1) = waveCov;

end

end

end

savefile = 'C:\PhD\Wavelets\Measure
db8 MODWT.txt';

save(savefile, 'corrCoef’, '-ASCII’);

savefile = 'C:\PhD\Wavelets\Measure
db8 MODWT.txt’;

save(savefile, 'covCI1l’, -ASCII’);

savefile = 'C:\PhD\Wavelets\Measure
db8 MODWT.txt';

save(savefile, 'covCI2’, -ASCII’);

savefile = 'C:\PhD\Wavelets\Measure
db8 MODWT.txt’;

save(savefile, 'covCoef, -ASCII);
savefile = 'C:\PhD\Wavelets\Measure
db8 MODWT.txt’;

save(savefile, 'varCoef, -ASCII’);

savefile = 'C:\PhD\Wavelets\Measure

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

and

and

and

and

and

and

Beta\Correlation SandP ...

Beta\covCI1 SandP ...

Beta\covCI2 SandP ...

Beta\Covariance SandP ...

Beta\Variance SandP ...

Beta\Variance CI1 SandP ...
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db8 MODWT.txt';

save(savefile, ‘'varCl1’, "-ASCII);

savefile = 'C:\PhD\Wavelets\Measure Alpha and Beta\Variance CI2 SandP ...
db8 MODWT.txt’;

save(savefile, 'varCl2’, '-ASCII’);

function portOptDiffScales
% PORTFOLIOOPTIMISATION USING CORRELATION MATRICES CALCULATED OVER
% DIFFERENT SCALES. EFFICIENT FRONTIERS ARE FOUND FOR EACH SCALE

PortReturn = [0.098:0.005:0.14]

returnindex = load('C:\PhD\Wavelets\Measure Alpha and Beta\...
Port Opt\index Returns.txt’);
vol = load('C:\\PhD\Wavelets\Measure Alpha and Beta\Port Opt\Index Stand Dev.txt);

OrigCorr = load('C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...
Correlation Original Data.txt’);

corrl = load('C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...
Correlation LA8 scale 1.txt');

corr2 = load('C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...
Correlation LA8 scale 2.txt');

corr3 = load('C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...
Correlation LA8 scale 3.txt');

corr4d = load('C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation LA8 scale 4.txt');

expCovOrig = corr2cov(vol, OrigCorr);

expCovl = corr2cov(vol, corrl); expCov2 = corr2cov(vol, corr2);

expCov3 = corr2cov(vol, corr3); expCov4 = corr2cov(vol, corrd);

[PortRiskOrig, PortReturnOrig, PortWtsOrig] = portopt(returnindex, ...
expCovOrig,[],PortReturn);

[PortRisk1, PortReturnl, PortWtsl] = portopt(returnindex, ...
expCovl,[],PortReturn);

[PortRisk2, PortReturn2, PortWts2] = portopt(returnindex, ...

expCov2,[],PortReturn);
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[PortRisk3, PortReturn3, PortWts3] = portopt(returnindex,
expCov3,[],PortReturn);

[PortRisk4, PortReturn4, PortWts4] = portopt(returnindex, ...
expCov4,[],PortReturn);

PortRiskl = 100 =*PortRiskl; PortRisk2 = 100 * PortRisk2;
PortRisk3 = 100 =*PortRisk3; PortRisk4 = 100 * PortRisk4;

PortReturnl = 100 = PortReturnl; PortReturn2 = 100 * PortReturn2;
PortReturn3 = 100 =+ PortReturn3; PortReturn4 = 100 * PortReturn4;
PortRiskOrig = 100  *PortRiskOrig; PortReturnOrig = 100 * PortReturnOrig;
plot(PortRiskOrig, PortReturnOrig,’ *-' PortRisk1,PortReturnl,’p-.’, ...

PortRisk2, PortReturn2,’+-’, PortRisk3, PortReturn3,’x-’, ...
PortRisk4, PortReturn4,’.-’);

legend('Original Data’,’'Scale 1', 'Scale 2'’Scale 3'/'Scale 4, ...
‘location’, 'SouthEast’);

xlabel('Risk (%)’); ylabel(Return (%)’);

title(Efficient Frontier using Correlation Matrices caclulated ...

over different time horizons’);

function eegPearsonCorrel

% Function used to plot normalised eigenvalues vs the Index

load('C:\PhD\Wavelets\Eigvalue Analysis\SX5Edata.mat’,'indexDates’, ...
'indexPX’, 'rtData’);

% Set the returns data to be examined

coef = rtData;

% select 100 stocks randomly (if needed, if not set > size(coef)

for i = 1:130

R(i) = round(unifrnd(1,384));

end

Rleft = unique(R); Rleft = Rleft(1:100);
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tic;

signal = coef’

% Define Variables

blockSize = 100; blockSpace = 1; sig_freq = 1;

indexPXPLot = indexPX(blockSize:end-1,:);

sig_time_segment = 1/sig_freq;

% Find the Pearson Correlation & eigenvalues for each time window

=5

for i = 1:blockSpace:(size(signal,2)-blockSize)

signal_seg = signal(:,(i):(blockSize+i -1));

sig_std = std(signal_seg,0,2);

sig_mean = mean(signal_seg,2);

>
1

repmat(sig_mean, 1, size(signal_seg,2));

B = repmat(sig_std, 1,size(signal_seg,?2));

sig_norm = (signal_seg-A)./B;

eegCorrel = corrcoef(sig_norm’);

eegEig = eig(eegCorrel);

Eigs(:,j) = eegEig();

=i+ 5

% Here we normalise each of the eigenvalue by dividing by its mean &

% dividing by its STD

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);
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>
|

= repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall = (eigs_norm(1,:));
eigsBulk = mean(eigs_norm(1:40,:));

eigsLarge = (eigs_norm(end,:));

% Now plot the data

xData = indexDates(blockSize+2:end)’;

clims = [0 100];

subplot(4,1,1)
plot(xData, indexPXPLot)
axis([xData(1),xData(end),1500,5000]);
text(729010,1500,'(a)’, FontSize’,14)
legend('DJ Euro Stoxx 50, Apr 2002 - Aug 2007’);
datetick('x’,10,’keeplimits’);

maxLarge = max(eigsLarge); maxSmall = max(eigsSmall);

minLarge = min(eigsLarge); minSmall = min(eigsSmall);

maxEig = max([maxLarge,maxSmall]); minEig = min([minLarge,minSmall]);

subplot(4,1,2)
plot(xData, eigsLarge, xData, eigsBulk)
axis([xData(1),xData(end),-3.5,3.5]);
text(729010,2.25,'(b)’,'FontSize’,14)
legend( ’'Largest E/Value'/’Average E/Values 1-40);

datetick('x’,10,’keeplimits’);

cmin = min(min(eigs_norm));

cmax = max(max(eigs_norm));

subplot(4,1,3)

imagesc(min(xData):max(xData),0:size(eigs_norm,1), eigs_norm, clims)

colormap(jet); set(gca, 'CLim’, [cmin, cmax]);
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text(729010,10, (c)’, FontSize’, 14)

datetick('x’,10,’keeplimits’);

subplot(4,1,4)
imagesc(min(xData):max(xData),40:size(eigs_norm,1),
eigs_norm(40:end,:), clims);
colormap(jet); set(gca, 'CLim’, [cmin, cmax])
colorbar(’location’,’'southoutside’);
text(729010,91,'(d)’,'FontSize’,14)
datetick('x’,10,’keeplimits’);  xlabel(Time (Days)’);

t = toc

function findDrawdowns

%%FIND MARKET RETURNS ASSOCIATED WITH DRAWDOWNS OR DRAWUPS

load('C:\PhD\Wavelets\Eigvalue Analysis\SX5Edata.mat’,'indexDates’, ....
'indexPX’, ’'rtData’);

indexReturns = indexPX(2:end)./indexPX(1:end-1)-1;

Returns = rtData;

blockSize = 200; blockSpace = 1; sig_freq = 1;

sig_time_segment = 1/sig_freq;

% Set the Normalisation Period

norm_period = [1l:size(rtData,1)-blockSize];

% Find 200 day returns
for i = 1:1:size(indexPX)-blockSize
cumReturn(i) = indexPX(i+blockSize)/indexPX(i)-1;

end
% Correlations and Eigenspectrum Original Data
for i = 1:1:size(Returns,1)-blockSize
correl = corrcoef(Returns(i:i+blockSize,:));
eigSXXP = eig(correl);

Eigs(:,i) = eigSXXP;
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end

eigs_std = std(Eigs(:,norm_period),0,2);

eigs_mean = mean(Eigs(:,norm_period),2);

>
1l

repmat(eigs_mean, 1, size(Eigs,2));

repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmallOrig = mean(eigs_norm(1:40,:));

eigsLargeOrig = (eigs_norm(end,:));

%%% Find eigenvalues < -1 & > 1 STD
drawUpSTD = 1;

eigsLargeDownOrig = find(eigsSmallOrig<-drawUpSTD);
eigsLargeUpOrig = find(eigsSmallOrig>drawUpSTD);

disp('Orig Data, Large Eigs, >1 std’);
mean(cumReturn(eigsLargeUpOrig))
disp('Orig Data, Large Eigs, <-1 std’);

mean(cumReturn(eigsLargeDownOrig))

unction modwtCorrCoefs

% FUNCTIONTO CALCULATE THE CORRELATIONS BETWEEN STOCKS AT DIFFERENT SCALES
% USING THE MODWT. USES THE WMTAS TOOLBOX FOR MATLAB. WITH SLIGHT CHANGES
% (DATA INPUT) CAN ALSO BE USED FOR EEG EPILEPTIC DATA. WARNING: CAN TAKE

% A LONG TIME TO RUN

clear;

% Load data
load('C:\PhD\Eigenvalue Analysis\SX5E Data\SX5P.mat’, 'Returns’);
s = Returns;

n_c = size(s,2);
levelNo = 4;
blockSize = 300;

blockSpace = 250;
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Coefs = [J;

m =1,

% Find correlations for each moving window

for I = 1:blockSpace:(size(s,1)-blockSize)
signal_seg = s((I):(blockSize+l -1),:);
% First Decompose the Data using the MODWT
for n = 1in_c
modwtCoefs = modwt(signal_seg(:,n),'LA8’,levelNo);
sizeCoefs = size(modwtCoefs);
Coefs = [Coefs; modwtCoefs];
end
% Find Correlations & Eigenvalues
for i = 1l:levelNo
for j = O:n_c-1
flag = sizeCoefs  xj;
Coefsl = Coefs(flag + 1l:flag + sizeCoefs, i);

for k = O:n_c-1

flag2 = sizeCoefs *K;

Coefs2 = Coefs(flag2 +1:flag2 + sizeCoefs, i);

[waveCorr, Cl_wcor] = modwt_wcor(Coefsl, Coefs2);

corrCoef(j+1, k+1) = waveCorr; %+n_c *(i-1)

end

end

eigenV(m,.,i) = eig(corrCoef);
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end
Coefs = [];
m=m+ 1;

end

savefile = 'C:\PhD\Eigenvalue Analysis\SX5E Data\SX5Eeigs.mat’;

save(savefile, 'eigenV’);

function plotEigsScaled

% FUNCTIONTO PLOT EIGENVALUES FOR EACH SCALE STUDIED IN THE FUNCTION

% MODWTCORRCOEFS. THIS FUNCTION CAN BE USED FOR FINANCIAL DATA (AS BELOW)
% OR WITH MINOR MODIFICATIONS FOR EEG EPILEPTIC DATA

load('C:\PhD\Eigenvalue Analysis\SX5E Data\IndexPrice.mat’, 'indexPX’);
load('C:\PhD\Eigenvalue Analysis\SX5E Data\IndexDates.mat’, 'indexDates’);
load('C:\PhD\Eigenvalue Analysis\SX5E Data\lndexReturns.mat’, 'IndexReturns’);
load('C:\PhD\Eigenvalue Analysis\SX5E Data\SX5P.mat’, 'Returns’);

signal = Returns’;

load('C:\PhD\Eigenvalue Analysis\SX5E Data\SX5Eeigs.mat’, 'eigenV’);
eigCC1l = eigenV(;,:1)’; eigCC2 = eigenV(;,:2); eigCC3 = eigenV(;,:,3)’;

% Set Variables
blockSize = 300; blockSpace = 250;
sig_freq = 1; sig_time_segment = 1/sig_freq;

wname = ’'symé4’;

amax = 5; a = 2."[l:amax];

% Calculate the approximate frequencies
f = scal2frg(a,wname,1/sig_freq);

scale = 1./f;

%%%%%%%%%%%%% Unfiltered Data
j =1

for i = 1:blockSpace:size(Returns,1)-blockSize

correl = corrcoef(Returns(i:i+blockSize,:));

Eigs(:,j)) = eig(correl);
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=17+5

end

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));
eigs_norm = (Eigs-A)./B;

eigsSmallOrig = mean(eigs_norm(1:40,:));

eigsLargeOrig = (eigs_norm(end,:));
%9%%%%%%%%%%%% Level 1
Eigs = eigCC1;
eigs_std = std(Eigs,0,2);
eigs_mean = mean(Eigs,2);
A = repmat(eigs_mean, 1, size(Eigs,2));
B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmalll = mean(eigs_norm(1:40,:));

eigsLargel = (eigs_norm(end,:));

%%%%%%%%%%%%% Level 2

Eigs = eigCCz2;

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);
A

repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall2 = mean(eigs_norm(1:40,:));

eigsLarge2 = (eigs_norm(end,:));

%%%%%%%%%%%%% Level 3
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Eigs = eigCCs3;

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));
B = repmat(eigs_std, 1,size(Eigs,2));
eigs_norm = (Eigs-A)./B;

eigsSmall3 = mean(eigs_norm(1:40,:));

eigsLarge3 = (eigs_norm(end,:));

%%% Find Time Frame
xData = indexDates’;

xData = xData(1:blockSize:size(xData,2));

%% Plot Results
maxLarge = max(eigsLargel); maxSmall = max(eigsSmalll);

minLarge = min(eigsLargel); minSmall = min(eigsSmalll);

maxEig = max([maxLarge,maxSmall]); minEig = min([minLarge,minSmall]);

subplot(4,1,1)
plot(xData, eigsLargeOrig, xData, eigsSmallOrig);
axis([xData(1),xData(end),minEig-1,maxEig+1]);
title(Unfiltered Data’]); text(730256,2.5,'(a)’,’FontSize’,14);
legend(’Largest Eigenvalue’, 'Average 40 Smallest Eigenvalues’);

datetick('x’,10,’keeplimits’);

clims = [0 100];

subplot(4,1,2)
plot(xData, eigsLargel, xData, eigsSmalll);
axis([xData(1),xData(end),minEig-1,maxEig+1]);
title(Wavelet Level 1 (', num2str(round(scale(1,1))), ' days)]);
text(730256,2.5,’(b)’,'FontSize’,14); datetick(’x’,10,’keeplimits’);

subplot(4,1,3)
plot(xData, eigsLarge2, xData, eigsSmall2);
axis([xData(1),xData(end),minEig-1,maxEig+1]);
title((Wavelet Level 2 (', num2str(round(scale(1,2))), ' days)’]);
text(730256,2.5,'(c)’,’FontSize’,14); datetick('x’,10,’keeplimits’);
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subplot(4,1,4)
plot(xData, eigsLarge3, xData, eigsSmall3);
axis([xData(1),xData(end),minEig-1,maxEig+1]);
title(Wavelet Level 3 (', num2str(round(scale(1,3))), ' days)]);
text(730256,2.5,'(d)’,'FontSize’,14); datetick('x’,10, keeplimits’);



APPENDIXC

PAPERSPUBLISHED

A number of papers have been published to date, in the course of reseastis this

Thesis. These are included in the pages that follow.
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