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ABSTRACT

In recent years, spatiotemporal synchronisation within systems with multiple interacting

components(Complex Systems), such as financial data, electroencephalographic (EEG)

recordings and magnetoencephalographic (MEG) recordings, has been studied extensively,

using the equal-time cross-correlation matrix. These Complex Systems are characterised

by events such as Market Crashes or Seizures, which are associated with periods of hyper-

synchronisation.

In this Thesis, the Risk Characterisation and Reduction of Complex Systems is studied,

using the Cross-Correlation matrix to condense the system complexity. The systems stud-

ied display interactions between multivariate time series of varying granularities, including

low frequency (Hedge Fund returns), medium frequency (Daily Stock returns) and high

frequency (Intraday Stock returns & EEG seizure data).

The information content of the correlation matrix between low-frequency Hedge Fund

returns is investigated for the first time using Random Matrix Theory (RMT). The RMT

filtered correlation matrix is shown to improve the risk-return profile of a portfolio of Hedge

Funds. Through the use of the Wavelet transform, scaling properties of correlations are then

investigated, with correlations calculated over longer horizons found to result in a better

risk-return profile for a portfolio of Hedge Funds.

Characterisation of market risk is then assessed, through the dynamics of the correlation

structure and associated eigenspectrum for daily equity returns (medium frequency data),

using a moving window approach. This novel characterisation, dependent on both large and

small eigenvalue behaviour, is shown to be consistent across different time scales. Further,

frequency dependent correlations were examined for medium and high-frequency intra-day

stock returns using Wavelet multiscaling.
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Investigation of a comparative system example, specifically correlation scalingcharac-

teristics of high-frequency EEG Seizure data, revealed novel frequency dependent changes

in the correlation structure between channels, which may be indicative of seizures. Large

correlations were found between channels at high frequencies and conversely, smaller cor-

relations at low frequencies during Seizures, with a corresponding switch in system energy.

Our findings suggest that, even for the limited set of examples chosen, diverse appli-

cations demonstrate commonality, in terms of the interpretative power of time-series corre-

lation structure. Through the integration of tools such as Random Matrix Theory, Wavelet

multiscaling and eigenvalue analysis, we have shown the importance of the correlation ma-

trix in risk characterisation and reduction. The potential for wider application of these

methods in the detection of subtle triggers, giving advance warning of risky events, has also

been demonstrated.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Vast losses across multiple markets, spanning various countries, sectors and instruments

over the past two years have resulted in a necessary focus on Financial Risk Management.

By Risk Management, we refer to thequantitative assessment and mitigationof unnecessary

risks. However, Risk Management is not limited to financial applications. In fact, there

is a need to reduce risk associated with many so-called Complex Systems, including but

not limited to the risk of deaths arising from natural disasters such as earthquakes and

hurricanes, the risk of injury during epileptic seizures and the risk of financial loss from

trading.

These systems, although diverse, have many common features, including multiple in-

teracting components, dynamical system changes and an emergence of new properties as

the system evolves. In all cases, it is possible to use the principle of diversification to reduce

the risk of the system, due to the multiple components present. In the case of earthquakes

and hurricanes, relocating people to many different locations makes it possible to reduce the

risk of massive loss of life in one location; equally, the use of medicines and surgical treat-

ments for seizures can reduce the chances of hypersynchronisation between channels, said

to be the underlying cause of seizures. Financial risks can also be mitigated by investing in

a number ofuncorrelatedassets.

In order to achieve this diversification it is necessary to measure the common dynam-

ical properties between the various interacting components. One simple measure of this

3



synchronisation is the Pearson cross-correlation coefficient between thecomponents. How-

ever, there are a number of problems with the calculation of this coefficient. The data

available may be sparse, which increases the influence of noise in the correlations. Also,

the interactions between the components may occur at frequencies other than that at which

they are measured, resulting in hidden correlations.

In addition to its contribution to diversification, the synchronisation between various

components may, itself, be a characteristic of changes in the risk profile of a system. Fur-

ther, there may also be subtle changes in the synchronisation structure that may be used as

an early warning to possible adverse changes in the system, such as the occurrence of an

earthquake or a financial crash.

1.2 Objectives

The purpose of the research presented here is twofold. First, to demonstrate the use of the

correlation matrix for diversification purposes, in particular for sparse data. Second, to show

how the correlation matrix can be used to characterise the risk of extreme events through

the analysis of the associated eigenspectrum. Throughout the research we analyse data

with varying granularity, from low-frequency Hedge Fund data to high-frequency equity

data. To demonstrate the cross-applicability of risk management methods to other complex

problems, we also study high-frequency EEG seizure data. To achieve our objective of

improving risk-management within Complex Systems, we set out the following specific

objectives:

• To demonstrate the application of the correlation matrix for diversification purposes

in a low-frequency environment, using Hedge Fund returns data.

• To investigate the effects of granularity on the calculation of the cross-correlation

matrix, by testing the effects on risk-management for a portfolio of hedge-funds over

different scales.

• To test the use of the correlation matrix as a technique to characterise changes in

risk within complex interacting systems. To this end, we examine dynamics of the

4



eigenspectrum associated with the correlation matrix for medium-frequency equity

returns.

• To examine the dependence of dynamic correlation changes on the granularity of the

data used in the calculation of the matrix.

• To investigate the use of a combination of the above techniques, such as correlation

dynamics and scaling to an alternative system, that of high-frequency EEG seizure

data. We seek to characterise the behaviour of the system over different frequencies

to manage the risk inherent in epileptic seizures and explore early warning potential.

1.3 Outline of Thesis

The thesis is organised as follows: InChapter 2, we outline the background to the research,

review previous work and introduce some of the ideas followed in the thesis. The methods,

both known and developed, which are used throughout are introduced inChapter 3.

In Chapter 4, we investigate the use of the correlation matrix in the risk management

of a portfolio of Hedge Funds. Random Matrix theory is applied to filter noise from the cor-

relation matrix and the information present in the large eigenvalues is investigated. Using

a classical portfolio optimisation, the benefits of filtering a correlation matrix, constructed

using low-frequency Hedge Fund data, are determined.

Wavelet multiscaling techniques are applied inChapter 5, to establish the effects of

coarse/fine graining on the correlation matrix. Using low-frequency Hedge Fund returns,

we examine changes in the correlation structure between funds and the S&P500 over dif-

ferent time frames. The scaled correlation matrices are then used as inputs to a portfolio

optimisation, to judge the effect of time granularity on Risk Management.

The dynamical changes in correlation between medium frequency financial returns are

studied inChapter 6, to investigate whether changes in the correlation structure can be

applied in risk characterisation. The relationship between index returns and relative eigen-

value size is examined, to provide insight on thecollective behaviour of traders. A simple
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‘toy model’ of correlations is proposed to shed light on the formation of correlationstruc-

ture.

The effects of coarse/fine graining on dynamical changes in correlation structure are

examined inChapter 7, to determine risk characteristics of scaling. This provides insight

on the time horizons which apply to the numerous constituents involved in the interactions

and gives some understanding of the scales involved during financial crashes.

In Chapter 8 we examine a broadly comparative non-financial system made up of inter-

acting components, specifically EEG Seizure data. Using a combination of methods applied

in previous Chapters, such as correlation dynamics and wavelet multiscaling, we seek to

identify frequency dependent changes in the correlation structure between EEG channels.

The characteristic changes found may, potentially, then be used in the Risk Management of

seizure events.

Finally, in Chapter 9 we provide a summary of the work, our conclusions and discuss

future improvements.
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CHAPTER 2

L ITERATURE REVIEW

2.1 Introduction

A well known adage among traders refers to diversification as the only “Free Lunch” in

finance. By this, it is meant that by spreading one’s available capital among a number of

different assets it is possible to reduce the risk of a portfolio. Consider an economy with

only two companies, an umbrella company and a suncream company. When the weather is

wet the umbrella company performs well; conversely, when the weather is sunny, it will per-

form badly. As the suncream company will have the reverse performance, one can minimise

the weather dependent risk by splitting the investment between the two companies.

Given time-series data of company returns, one measure of the synchronisation between

the performance of two companies is the Pearson correlation coefficient, [Crawley, 2005].

The Pearson correlation is merely alinear measureof the synchronisation and takes no

account of any higher order relationships. However, as demonstrated below, methodology

based upon this measure provides a firm basis for the risk management of financial assets

and other complex interactions such as Neurological systems.

In this Chapter, we first introduce the scientific field of Complex Systems by describing

some of the common characteristics found in nature, society and science. We then provide

evidence of the interdisciplinary nature of Complex Systems research, by focusing on the

application of ideas from Statistical Physics to Economic systems, namelyEconophysics.

The noise reduction of correlation matrices, using Random Matrix Theory, is described in

combination with Eigenvalue analysis to demonstrate how genuine correlation information

7



can be separated from noise in the cross-correlation matrix. The use of the cross-correlation

matrix to characterise the risk of a Complex System is subsequently considered for both

financial and EEG Seizure data. Risk decomposition provides a critical assessment of the

scaling effects within financial systems and we review its potential using Multiscale Wavelet

analysis. Finally, we discuss in detail properties associated with one of the datasets exam-

ined in this study, Hedge Fund returns data. In the current financial climate Hedge Funds

are of particular interest, due to their optimistic claim ofcapital preservation in all market

conditions.

2.2 Complex Systems

In this Section, we attempt to elucidate the idea of a Complex Dynamic System. One of the

difficulties with this is the sheer number of definitions of Complex Systems that exist. To

overcome this problem, we define a Complex Dynamical System as one that displays many

if not all of the following properties, [Bar-Yam, 2003; Johnsonet al., 2003; Corning, 2003;

Miller and Page, 2007]:

• Agent-Based

The basic building blocks are the characteristics and activities of individual agents

• Dynamic

Properties change over time, often in a nonlinear way

• Interactions

Agents interact, often in a non-linear fashion

• Organisation

Group or Hierarchical structures are displayed

• Feedback

Changes are often as a result of feedback from the environment
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• Heterogeneous

Agentsmay differ in significant characteristics

• Emergence

The arising of novel and coherent structures, patterns and properties during the pro-

cess of evolution and/or self-organisation

Systems with the above characteristics are found in diverse disciplines, including Seis-

mology, Neuroscience, Economics, Meteorology, Molecular Biology and Social Sciences,

[Aki and Richards, 1997; Kelso, 1997; Bouchaud and Potters, 2003; Holton, 2004; Kaneko,

2006; Miller and Page, 2007]. The cross-fertilisation of ideas between these disparate fields

means that the interdisciplinary nature of Complex System analysis is well established. In

this thesis, we examine two particular examples of Complex System, arising respectively in

Economics and Neuroscience where many of the characteristics outlined above are evident.

We focus, in particular, on Risk Management, associated with Financial markets, and EEG

seizures, through the measurement of the level of interaction between ‘agents’1. To this

end, we examine the use of the linear cross-correlation matrix as a measure of the degree of

synchronisation within complex interacting systems.

2.3 Econophysics

The application of theories and methods developed by Physicists to other disciplines is not

a new idea. The fields of Biophysics and Geophysics, for example, are mature and well-

researched areas where physical processes are studied in Geological or Biological systems

[Lowrie, 1997; Glaser, 2000].Econophysicsis an interdisciplinary research field, applying

physical methods to problems in Economics. The first explicit use of the word dates to a

“Workshop on Econophysics” held in Budapest in 1997, [Kertesz and Kondon, 1998]. In the

relatively short time since this conference a variety of books have been written on the topic

[Roehner, 2002; Voit, 2003; Bouchaud and Potters, 2003; McCauley, 2004; Mantegna and

1In this context of this thesis, the term ‘agents’ refers either to the various participants or traders involved
in financial markets or to the neurons of the brain
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Stanley, 2005; Malevergne and Sornette, 2005; Kleinert, 2006], with many morein preprint.

A simple google search for ‘Econophysics’ (30th January 2009) brings up165, 000 results,

[Google Search, 2009].

To consider the underpinning Mathematical theory of finance in more detail, we go

back much earlier, [Davis, 2001]. As early as 1900, Bachelier, [Bachelier, 1900], attempted

to explain the fluctuations of financial markets by introducing the theory of random walks,

an idea later developed by Einstein to explain Brownian motion. This idea was revisited

by Mandelbrot in 1963, when it was shown that fluctuations in cotton prices followed a

distribution that differed from a Gaussian. Mandelbrot’s 1963 paper, [Mandelbrot, 1963],

is now regarded as one of the crucial precursors to the field of Econophysics. Physicists,

working in the field of Statistical Mechanics, first began publishing papers in Econophysics

in the early 1990’s. One of the driving forces behind the application of ideas from statistical

physics to Economic systems was the large amount of financial data available, starting from

the 1980’s. A general treatise of the origin and a basic introduction to some of the ideas

pursued to date in Econophysics can be found in [Gligor and Ignat, 2001; Bouchaud, 2002;

De Liso and Filatrella, 2002; Yakovenko, 2003; Burdaet al., 2003; Wanget al., 2004;

Vasconcelos, 2004].

While Economists start with a few fundamental assumptions and construct a model to

explain observations, Econophysicists tend to begin with the empirical evidence and extract

perceived patterns from the data. The applicability of power law distributions to Economic

data is probably the most studied example of this. Physicists observe and have reported on

power law distributions in many problems in statistical mechanics as well as phenomena as

varied as city populations, internet sites and the levels of ocean tides, [Blank and Solomon,

2000; Barbosaet al., 2006]. Power laws have been applied, with very interesting results,

to financial data also. The distribution of relative price changes has, for example, been

shown to be non-Gaussian and various authors have attempted to characterise these using

distributions such as Truncated Levy and the Student’s-t [Bouchaud and Potters, 2003].

The fact that relative price changes are non-Gaussian distributed has a profound effect on
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the pricing of options2, [Bouchaud,2002]. The Black-Scholes theory of option pricing is

underpinned by the assumption of Gaussian returns, while behaviour unexplained by this

model, such as the ‘volatility smile’3, may be described by power laws, [Bouchaud, 2002].

The distribution of returns for financial crashes associated with speculative bubbles has also

been studied in some detail, [Sornette, 2002; Rotundo and Navarra, 2007]

2.4 Correlation Matrices and Noise Reduction

A further early application of ideas from Physics to Finance, was that of noise reduction

in the correlation matrix between asset returns. Correlations of returns between financial

assets play a central role in Finance, particularly as inputs to Markowitz’s classical port-

folio optimisation problem, (Chapter 3.3.1), [Markowitz, 1958; Elton and Gruber, 2002].

However, the calculation of a correlation matrix for a large portfolio of sizeN is poorly de-

termined unless the length of the time-series,T , is much greater thanN . The finite length

of the sample of returns data used in the calculation of correlation matrices means that these

are ‘Noise Dressed’, [Lalouxet al., 1999], implying that care needs to be taken in applica-

tions. Various methods have been suggested to construct a pure correlation matrix with no

measurement noise, such as the Single-Index Model and the Multi-Index Model, [Elton and

Gruber, 2002]. Another approach, which has recently been explored by Physicists working

in the area of Econophysics, involves the application of Random Matrix Theory.

Random matrix theory (RMT) was developed by Wigner, Dyson, Mehta and others

during the1960’s, [Dyson, 1962; Dyson and Mehta, 1963; Edelman, 1988; Mehta, 2004], in

an effort to understand the energy levels of complex atomic nuclei, which previous theories

failed to explain. For these systems, RMT predictions represent an average over all possible

interactions. Deviations from the universal predictions of RMT are of interest, as they

describe specific non-random properties of the system studied. RMT was later found to

2An option gives the holder the right, but not the obligation, to buy, (for a call option) or sell, (for a put
option), a specific amount of a given stock, commodity, currency, index, or debt, at a specified price, (the strike
price), during a specified period of time.

3In finance, the Volatility Smile is the empirical observation that at-the-money options tend to have lower
implied volatilities than in- or out-of-the-money options for the same underlying asset and expiry.
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have applicability to a wide range of problems, from quantum chaos and gravitythrough

mesoscopic and random systems. In the application of RMT, the spectral properties of an

empirical correlation matrix are compared to those of a ‘random’ Wishart matrix4, where

eigenvalues that are outside the theoretical bounds of Wishart matrix are said to deviate

from RMT. These deviating eigenvalues are said to contain information about the system

under consideration, which can be uncovered through eigenvector analysis, [Gopikrishnan

et al., 2000].

One of the earliest applications of RMT to finance demonstrated that the optimisation

of a margin account in futures markets, (where the constraint on the weights is nonlinear),

is equivalent to finding the ground state configuration of a spin glass5 in statistical physics,

[Galluccioet al., 1998]. This problem is known to be NP-complete, with an exponentially

large number of solutions.

Two papers, published simultaneously, used RMT methods to analyse the properties

of financial cross-correlation matrices (C) and showed that≈ 94% of the eigenvalues of

C agree with the predictions of RMT, [Lalouxet al., 1999; Plerouet al., 1999]. The re-

maining≈ 6% of eigenvalues were shown to deviate from RMT predictions. Later studies,

[Gopikrishnanet al., 2000; Plerouet al., 2000a,b, 2002], compared statistical properties of

the eigenvalue spectrum with the predictions of RMT in greater detail and found these to be

in very good agreement. Further analysis, of the deviating eigenvalues, revealed clustering

corresponding to distinct business sectors.

More recently RMT has been shown to improve risk management of a portfolio of equi-

ties. By incorporating the information contained in the deviating eigenvalues, [Lalouxet al.,

2000], the difference between the predicted and realised risk of an optimal portfolio was re-

duced substantially. The correlations between stock fluctuations were compared to those

of Random Magnets, [Rosenowet al., 2002a,b]. In this case, the Random Magnets were

shown to provide a framework to explain the origin of the correlations, together with the

occurrence of power-law correlations in the time-series of highly correlated eigenmodes.

4TheWishart matrixW can be obtained fromW = 1

M
GGT , whereG is aN × M random matrix with

independent, zero mean and unit variance elements.
5A spin glass is a disordered material exhibiting high magnetic frustration. Frustration refers to the inability

of the system to remain in a single lowest energy state (the ground state).
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Additionally, RMT was used to improve the correlation estimate, compared to the standard

form. The dynamics of the average cross-correlation and the index volatility were compared

to those of the largest eigenvalue, [Rosenowet al., 2003], for moving time-windows. It was

demonstrated that the fluctuations in the average correlation, (and largest eigenvalue), are

themselves correlated with the volatility of the index. The information contained, in the

eigenvalues deviating from the RMT predictions, was then used to forecast future correla-

tions between assets.

Given the level of noise apparent in empirical correlation matrices, highlighted previ-

ously, this leads to some concern over the validity of correlation matrices used by industry

in the calculation of optimal portfolios and in risk management. Some of these concerns

were alleviated, [Pafka and Kondor, 2002], where it was shown that, in the case of a linear

portfolio optimisation, solutions are determined by the large stable eigenvalues, hence the

disturbance due to noise is of the order of5% to 15%. This was reinforced by the demon-

stration, [Pafka and Kondor, 2003], that noise depended on the ratio of time-series length,

T , to portfolio size,N , (Q = T
N

). For small values of1
Q

thelevels of noise were found to

be rather modest. A simulation based approach was subsequently used, [Pafka and Kondor,

2004], to demonstrate the usefulness of various correlation estimators such as the Single-

Index Model and the RMT filtered matrix. Additionally, exponential weighting applied to

financial returns, [Pafkaet al., 2004], demonstrated its superiority for calculating the RMT

spectrum in comparison with uniformly weighted RMT based filtering.

These early studies on RMT applications in finance led to a proliferation of activity. The

memory effect in financial time-series was investigated using lagged time-series, [Drozdz

et al., 2001a], and was shown to be shorter than previously found from autocorrelation anal-

ysis, due to increasing market efficiency. The study of stock market correlation dynamics,

[Kwapienet al., 2002], through RMT have shown that two periods of synchronous bursts

of activity exist in the DAX index and further that consecutive returns carry essentiallyno

common information. A more recent paper, [Kwapienet al., 2005], proposed that even the

bulk of the spectrum of the correlation matrix contains correlations, (possibly non-linear),

that are masked by measurement noise due to short time-series. The evidence provided was
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based on the multi-fractal character of the eigensignals, (even in the noisy RMTzone), and

the fat-tailed distributions of returns.

These initial studies focused predominantly on the application of RMT to US stock

markets. RMT was further shown to hold for the Japanese market, [Utsugiet al., 2004],

where the authors also studied the effect of randomness on deterministic correlations. They

found that randomness causes arepulsionbetween deterministic and random eigenvalues,

which explains the deviations from RMT sometimes found for small eigenvalues. The

South African market was also shown, unexpectedly, to conform to RMT predictions in

the bulk, [Wilcox and Gebbie, 2004]. For an emerging market such as South Africa, the

stock liquidity is an issue, (since stocks trade at very different frequencies), and it was

shown that greater conformity with RMT predictions can be achieved, if correlations are

only calculated when data exist for all stocks, (Measured-data correlations).

Further, the cleaning technique, [Lalouxet al., 2000; Bouchaud and Potters, 2003], was

shown, [Sharifiet al., 2004], to decrease the stability of the cross-correlation matrix. Sub-

sequently, an alternative technique, [Krzanowski, 1984], was shown to eliminate the noise

but preserve the stability of the matrix, while reducing the overall risk of the portfolio. This

work was extended, [Dalyet al., 2008], with the Krzanowski stability based filter applied

to the correlation matrix, the covariance matrix and to an exponentially weighted covari-

ance matrix between S&P500 stocks. Results showed that RMT filtering, while reducing

realised risk out-of-sample, on average, actually increased realised risk on a significant

number of days.

A ‘group model’ for correlations in stock markets proposed [Noh, 2000], assumes that

the returns of companies in the same sector are highly correlated. The spectral properties of

the empirical correlation matrix were explained by this model, together with the behaviour

of the Inverse Participation Ratio distribution, [Gopikrishnanet al., 2000; Plerouet al.,

2000a]. The identification of group behaviour in stock markets was further examined, [Kim

and Jeong, 2005], with market and random noise filtered from the correlation matrix using

RMT. Stock groups were found to be identifiable (without additional knowledge of indi-

vidual stocks), both by optimising the representation of the group correlation matrix and

14



by use of a percolation approach. An interesting treatise of some of the currentresults in

RMT can be found, [Potterset al., 2005], which includes discussions on the stability of the

top eigenvalue and its associated eigenvector, together with implications of insights from

analysis of exponentially weighted and frequency dependent correlation matrices.

2.5 Eigenvalue Analysis and Correlation Dynamics

The work, previously described, reviews techniques to improve the amount of genuine cor-

relation information found in the equal-time cross-correlation matrix. The possible uses

of a cross-correlation matrix are many, with applications in finance, [Lalouxet al., 1999;

Plerouet al., 1999; Gopikrishnanet al., 2000; Plerouet al., 2000a; Lalouxet al., 2000;

Bouchaud and Potters, 2003; Utsugiet al., 2004; Wilcox and Gebbie, 2004; Sharifiet al.,

2004; Podobnik and Stanley, 2008], electroencephalographic (EEG) recordings, [Schindler

et al., 2007a,b] and magnetoencephalographic (MEG) recordings, [Kwapienet al., 2000],

amongst others. Additional approaches to filter the large volumes of data in the correlation

matrix have been explored, in particular ideas from network theory such as theMinimum

Spanning Treeand thePlanar Maximally Filtered Graph, [Onnelaet al., 2004; Tumminello

et al., 2007; Pozziet al., 2007]. In a financial context, alternative relationships such as those

between stock price changes and liquidity or trading volume, [Ying, 1966; Karpoff, 1987;

LeBaronet al., 1999], have also been studied.

Several authors have recently suggested that there may, in fact, be some real correlation

information hidden in the RMT defined ‘random part’ of the eigenvalue spectrum. A tech-

nique, involving the use of a power mapping6 to identify and estimate the noise in financial

correlation matrices, has been described, [Guhr and Kälber, 2003]. This allows the suppres-

sion of those eigenvalues, associated with the noise, in order to reveal different correlation

structures buried underneath. Derivation of the relationship, between the eigenvalue density

of the true correlation matrix,c, and that of the empirical correlation matrix,C, showed that

correlations can be measured in the random part of the spectrum, [Burdaet al., 2004; Burda

6The Correlation matrixC is mapped to the matrixCq, with q +ve and C
q

kl = sign(Ckl) |Ckl|
q for

elementkl.
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and Jurkiewicz, 2004] and was used, [Pappet al., 2005], in the case of portfolio optimi-

sation of financial portfolios. Here, the Authors reconstructed the true correlation matrix

using the cleaned eigenvalues and the empirical eigenvectors for shrinkage models, both for

the ‘one factor’ and a ‘market plus sectors’ models7.

A Kolmogorov test was applied, [Malevergne and Sornette, 2004], to demonstrate that

the bulk of the spectrum is not in the Wishart RMT class. In this paper, the authors demon-

strate that the existence of factors such as an overall market effect, firm size and industry

type is due to collective influence of the assets. More evidence that the RMT fit is not

perfect was provided, [Kwapienet al., 2006], where it was shown that the dispersion of

“noise” eigenvalues is inflated, indicating that the bulk of the eigenvalue spectrum contains

correlations masked by measurement noise.

The behaviour of the largest eigenvalue of a cross-correlation matrix for small windows

of time, has been studied, [Drozdzet al., 2000], for the DAX and Dow Jones Industrial Av-

erage Indices (DJIA). Evidence of a time-dependence between ‘drawdowns’ (‘draw-ups’)

and an increase (decrease) in the largest eigenvalue was obtained, resulting in an increase

of the information entropy8of the system. Similar techniques were used, [Drozdzet al.,

2001b], to investigate the dynamics between the stocks of two different markets (DAX and

DJIA). In this case, two distinct eigenvalues of the cross-correlation matrix emerged, cor-

responding to each of the markets. By adjusting for time-zone delays, the two eigenvalues

were then shown to coincide, implying that one market leads the dynamics of the other.

A new technique, applying the equal-time cross-correlation matrix, to characterise dy-

namical changes in nonstationary multivariate time-series was described, [Müller et al.,

2005]. It was shown that, as the synchronisation ofk time-series within anM−dimensional

multivariate time-series increases, this causes a repulsion between eigenstates of the correla-

tion matrix, in whichk levels participate. Through the use of artificially created time-series

with pre-defined correlation dynamics, it was demonstrated that there exist situations, where

7The‘one factor’ model assumes that the co-movement between stocks is due to a single common factor or
index. The ‘market plus sectors’ model assumes that the co-movement between stocks is due to both market
and industry/sector factors

8In information theory, the Shannon or Information Entropy is a measure of the uncertainty associated with
a random variable.
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the relative change of eigenvalues from the lower edge of the spectrum is greaterthan that

of the large eigenvalues, implying that information drawn from the smaller eigenvalues is

also highly relevant.

A first application of this technique, [M̈ulleret al., 2005], was to the dynamic analysis of

the eigenvalue spectrum of the equal time cross-correlation matrix of multivariate epileptic

seizure time-series, using sliding windows. The authors demonstrated that information

about the correlation dynamics is visible in both the lower and upper eigenstates. A further

detailed study of equal-time correlations between EEG signals, [Schindleret al., 2007a],

investigated temporal dynamics of focal onset epileptic seizures9. It was shown that the

zero-lag correlations between multichannel EEG signals tend to decrease during the first

half of a seizure and increase gradually before the seizure ends. This work was extended

to the case ofStatus epilepticus, [Schindleret al., 2007b], where the equal-time correlation

matrix was used to assess neuronal synchronisation prior to seizure termination.

An alternative form of the correlation measure, proposed [Müller et al., 2006b], was

shown to be more sensitive for weak cross-correlations. For particular examples, informa-

tion on cross-correlations was shown to be found in the RMT bulk of eigenvalues, with

the information extracted at the lower edge statistically more significant than that extracted

from the larger eigenvalues, [M̈uller et al., 2006a]. The authors introduced amethod of

unfolding the eigenvalue level density10, through the normalisation of each of the level

distances by its ensemble average, and used this to calculate the corresponding individual

nearest-neighbour distance. Through this unfolding, those parts of the spectrum, dominated

by noise, could be distinguished from those containing information about correlations. Ap-

plication of this technique to multichannel EEG data showed the smallest eigenvalues to be

more sensitive to detection of subtle changes in the brain dynamics than the largest.

9A partial or focal onset seizure affects only a part of the brain at onset. They may often be a precursor to a
larger seizure, such as a generalised seizure.

10In one dimension, unfolding is a local rescaling of the eigenvalue density, such that the density on the
unfolded scale is equal to unity
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2.6 EEG Correlation Dynamics

As discussed in the previous Section, the equal-time cross-correlation matrix has been

applied to measure the linear synchronisation in many diffuse Complex Systems such as

the financial systems described previously and electroencephalographic (EEG) recordings

[Quian Quirogaet al., 2002; Seba, 2003; M̈uller et al., 2005; Ansari-Aslet al., 2006; M̈uller

et al., 2006a; Schindleret al., 2007a,b], as well as magnetoencephalographic (MEG) record-

ings [Kwapienet al., 1998, 2000] and others. The dynamics of such systems are charac-

terised by a continuously varying level of synchronisation between different subsets of the

system. The degree of synchronisation is dependent on the length of time-series studied,

the granularity or time-interval length of the data and the amount of noise in the system,

amongst other things. Hence, in the case of EEG seizure data for example, the equal-time

correlation matrix has been used to analyse the changes in the synchronisation structure,

prior to seizure events, with the aim ofpredicting epileptic seizures.

The predictability of these seizures has been studied in great detail by many authors.

A comparative analysis of30 different measures, both univariate and bivariate, provided

evidence for a preictal11, state, [Mormannet al., 2005]. Univariate analysis such as vari-

ance, skewness and kurtosis showed preictal changes5− 30 minutes before seizures, while

bivariate analysis showed changes up to240 minutes prior to seizure events. Interestingly,

linear techniques for seizure prediction were found to perform comparably or better than

non-linear techniques. Application of the linear cross-correlation to a small number of EEG

channels, [Wendlinget al., 2003], led to the conclusion EEG signals decorrelate at seizure

onset at high frequencies, followed by an abnormal level of recoupling as the seizure devel-

ops.

The use of Wavelet techniques, (Section 2.7), in the analysis of EEG data is widespread,

allowing a time-frequency decomposition of these non-stationary signals. The Wavelet

transform, [Clarket al., 1995; Senhadji and Wendling, 2001; Adeliet al., 2003; Indirdevi

et al., 2008], has been used, for example, to determine localisation of transient signals

11The preictal state is the period prior to the start of an epileptic seizure, while the ictal state refers to the
period during the seizure
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(spikes) during ictal periods11, vital in preoperative evaluation of the foci and propagation

of ictal events. A technique, based upon the evolution of the accumulated energy at each

wavelet scale, [Gigolaet al., 2004], was shown to predict epileptic seizure onset accurately

in 12 out of13 cases.

Wavelet energy analysis, [Ursinoet al., 2004], of changes in scalp EEG signals dur-

ing epileptic seizures, showed significant changes in energy distribution at seizure incep-

tion. The redistribution of energy was, however, found to be inconsistent across patients

and channels. Further, wavelet energies and entropies were used to characterise EEG sig-

nals from Secondary generalised tonic-clonic seizures12, [Rossoet al., 2006]. The authors

demonstrated that the epileptic recruitment rhythm, [Gastaut and Broughton, 1973], is de-

scribed by the relative wavelet energy. Furthermore, a wavelet-based similarity method

across frequencies was described, [Ouyanget al., 2007], using ideas from nonlinear dy-

namics to predict epileptic seizures.

Various authors have also attempted to measure the interdependencies between different

regions of the brain. A number techniques were compared, [Quian Quirogaet al., 2002;

Ansari-Aslet al., 2006], with relative performance shown to be dependent on the form of

the underlying signals. In the case of Magnetoencephalographic (MEG) signals, [Mizuno-

Matsumotoet al., 2005], a limited study consisting of three patients was performed, using

wavelets to determine cross-correlations over different frequencies and calculate the time

lag between different brain regions. Acoherence functionand cross-correlation between

different frequency bands, defined by a continuous filter bank, [Ansari-Aslet al., 2005],

enabled exploration of the time-frequency dependence of epileptic seizure data.

The EEG and MEG data, used in the above studies has many properties common to that

studied in a financial context, such as non-stationarity, numerous interacting constituents,

(traders versus neurons), and a continuously changing degree of synchronisation. How-

ever, real differences also exist. Recordings of Brain activity are continuous unlike equity

prices, (as Markets are not continuously open). Moreover, financial data is available in non-

synchronous ‘ticks’, while EEG data is recorded synchronously. The availability of large

12Formerlyknown as grand mal seizures, tonic-clonic seizures are a type of generalised seizure affecting the
entire brain
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quantities of data in both fields, allows a detailed comparison of the applicability of the

techniquesdescribed above to varied data types, (as discussed later).

2.7 Multiscale Analysis

Scaling laws play a vital role across a range of Complex Systems and disciplines, with

scaling effects found across Biological, Physical, Social and Economic systems. The im-

portance of time-scale information in a financial context arises from the view that stock

markets consist of heterogeneous investors operating at different intervals and looking to-

wards different time horizons. Through examination of financial data at different granu-

larities, more insight into the nature of volatility and correlation dynamics can be gained.

In the context of EEG time-series, for example, interactions between various neurons nat-

urally occur at different frequencies, depending on the neuronal functions involved. While

time-scale dependence can be examined using a Fourier Analysis, [Bracewell, 1999], it is

unsuitable for the study ofnon-stationarydata such as financial time-series. In examin-

ing scale features, the Wavelet Transform, localised in both time and frequency, is more

appropriate for non-stationary signals.

The expression “Wavelet” evolved fromondelettemeaning “Small Wave”. Applications

using wavelets in disciplines other than finance are extensive, with many papers published

in Astronomy, Medicine, Forensics, Engineering and Physics, [Aldroubi and Unser, 1996;

Jaffardet al., 2001; Mix and Olenjniczak, 2003]. While rooted in Fourier Theory, there are

important differences. Fourier Analysis uses a combination of sine and cosine functions at

different wavelengths to represent a given function. Such periodic functions are non-local,

(ie. go to plus and minus infinity), and can not be used to deal with localised time-series,

whereas wavelets are localised in both time and scale. Scaling in Fourier Analysis is typ-

ically expressed in terms of frequency, whilst in wavelet analysis, is typically referred to

in terms of time. Moving along the signal, the spectrum of a scalable modulated window

is calculated for every position. The process results in a collection of time-scale represen-

tations of the function, all with different resolutions. This collection of representations is
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known as amultiresolution analysis. An introduction to the mathematical theory with some

examples of applications of wavelets, can be found in [Daubechies, 1992; Kaiser, 1994;

Bruce and Gao, 1996; Burruset al., 1998].

The wavelet transform has been applied to many distinct problems in finance and eco-

nomics, [Gençayet al., 2001b; Ramsey, 2002; Schleicher, 2002; Crowley, 2005], allowing

a time frequency decomposition of the underlying function. This multiresolution analy-

sis allows the decomposition of a time-series into severallayers of orthogonal sequences

corresponding to different frequencies. Each of these scales can then be analysed individ-

ually and, also, compared across different series, allowing comprehensive characterisation,

analysis and comparison of Market dynamics and types.

The characterisation of stock markets into Emerging and Mature Markets has been stud-

ied by various authors. Using eigenvalue analysis, [Sharkasiet al., 2006a], showed that

Mature Markets respond in a different way to Emerging Markets during crashes. It was

also shown that the second largest eigenvalue contains information about market dynamics,

in addition to the largest. The Wavelet transform has also been applied to measure the re-

covery time of both emerging and mature markets, [Sharkasiet al., 2006b], by studying the

ratio of the largest eigenvalues for time-series reconstructed from selected wavelet compo-

nents. This analysis, over different time scales, has confirmed that Mature Markets recover

more quickly from crashes and that they exhibit antipersistent behaviour, while Emerging

Markets display persistent behaviour13.

By breaking a time-series down into constituent components, it is possible to remove

high-frequency ‘noise’ and characterise scale-dependent properties. The wavelet multiscal-

ing approach was used, [Gençayet al., 2001c], to decompose a time-series by frequency

scale, in order to remove seasonalities in Foreign Exchange data, (the dominant source of

problems in various volatility models). Scaling laws in Foreign Exchange markets were also

identified, [Gençayet al., 2001a], using this approach, with exchange rate volatility shown

to have different scaling properties at different time horizons and the correlation between

13The persistence of a time-series is a description of the bias in fractional Brownian motion and can be
measured using the Hurst Exponent, withH = 0.50 for Brownian motion,0.50 < H < 1.00 for persistent, or
trend-reinforcing series and0 < H < 0.50 for an anti-persistent, or mean-reverting system.
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two volatility series also shown to be considerably stronger at longer time scales.

Usingunfiltered14 time-series to measure the cross-correlation can lead to a misunder-

standing of the true correlation structure. In an investigation of correlation for equity mar-

kets at longer frequencies, application of wavelets showed that even when high correlation

between markets was expected, (Bombay and National stock exchanges), in fact correlation

varied markedly, depending on the scale considered, demonstrating that unfiltered data may

mask the correlation structure, Razdan [2004].

The Beta15 of an asset, [Gençayet al., 2003, 2005], at different scales has been exten-

sively studied. By calculating the wavelet variance and covariance, the Beta of an asset was

estimated at each scale. For various markets, including the US, Germany and the United

Kingdom, it was shown that the relationship between the return of a portfolio and its Beta

was stronger for longer wavelet scales. This connection between asset returns and the re-

turns on the market portfolio was further examined, [Norsworthyet al., 2000], where it

was shown that the markets’ influence on asset returns was principally in high frequency

movements. In an examination of the scale dependency of Japanese stocks, Yamada [2005],

showed that the standard Beta estimate is an “average” of the wavelet based multiscale es-

timates.

Scaling phenomena have also been found to have application in both Macroeconomics

and Economic contagion. A non-orthogonal variant of the discrete wavelet transform, the

maximal overlap discrete wavelet transform (MODWT), was used, [Gallegati and Gallegati,

2007], to decompose the variance of the industrial production index of G-7 countries. Sim-

ilar techniques, applied to emerging markets, [Gallegati, 2005], demonstrated their level

of integration with developed markets. Wavelet variance and cross-correlation analysis be-

tween Middle East and North African (MENA) stock markets, (Egypt, Israel, Jordan, Mo-

rocco and Turkey), as well as S&P and Eurostoxx indices were studied and it was shown that

emerging markets are neither regionally nor internationally integrated. Through wavelet

decomposition of data for7 stock markets, evidence was found for intra-continental rela-

14Theoriginal data, before a filtering technique, such as wavelets, is applied to decompose it into constituent
frequencies.

15The Beta of an asset is a measure of the volatility, or systematic risk, of a security or a portfolio in com-
parison to the market as a whole, see Chapter 3.3.2
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tionships with an increase in market contagion since the mid-1990s.

Themeasurement of variance and covariance over different time frames, [Gençayet al.,

2001b], is not restricted to the discrete wavelet transform. Two different techniques to

measure variance were described, [Percival, 1995], using both the discrete wavelet trans-

form and one of the first applications of the maximal overlap discrete wavelet transform

(MODWT). Through Monte Carlo simulations it was shown that the MODWT estimator

is reasonable even for small sample sizes of 128 observations. An early application of the

technique involved observations of vertical shear in the ocean. A mathematical framework

providing central limit theorems for MODWT estimators of the wavelet covariance and

correlation was established, [Whitcheret al., 1996].

An extensively studied characteristic of stock market behaviour, is the increase of stock

return cross-correlations as the sampling time scale increases, a phenomenon known as the

Eppseffect, [Epps, 1979]. More recently, analysis of time-dependent correlations between

high-frequency stocks, [T́oth and Kert́esz, 2006], demonstrated, however, that market re-

action times have increased due to greater efficiency. A diminution of the Epps effect

with time is one consequence of increased market efficiency. Trading asynchronicity was

demonstrated to be not solely responsible for the effect, [Tóth and Kert́esz, 2007b], with the

characteristic time apparently independent of the trading frequency. Further analysis using

a toy model of Brownian motion and memoryless renewal process, [Tóth et al., 2007],

found an exact expression for the Epps frequency dependence, with reasonable fitting also

for empirical data. In fact, the effect was shown, [Tóth and Kert́esz, 2007a], not to scale

with market activity but to be due to reaction times, rather than market activity. A new

description of the Epps effect was provided, based on decomposition of cross-correlations.

2.8 Hedge Funds

The core initial data, studied in this thesis, are low-frequency financial time-series, namely

Hedge Fund returns. Given the huge growth in this area and the historical evidence that

managers can help to preserve capital in adverse markets, Hedge Funds are of particular
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interest given the current difficult market conditions. A brief overview ofHedge Funds,

their strategies and some of the issues surrounding their data is provided in what follows. A

Hedge Fund is a lightly-regulated private investment vehicle that may utilise a wide range

of investment strategies and instruments. These funds may use short positions, derivatives,

leverage and charge incentive-based fees. Normally, they are structured as limited partner-

ships or offshore investment companies. Hedge Funds pursue positive returns in all markets

and hence are described as “absolute return” strategies.

Hedge Funds are utilised by pension funds, high net-worth individuals and institutions,

due to their low correlation to traditional long-only investment strategies. The incentive-

based performance fees, earned by Hedge Fund managers, align the interest of the Hedge

Fund manager with that of the investor. The performance of Hedge Funds has been impres-

sive, with the various Hedge Fund indices providing higher returns, with lower volatility,

than traditional assets over many years. As of the end of the third quarter of 2008 the to-

tal assets managed by Hedge Funds world wide was estimated at $1.72 trillion, [Barclays,

2009]. Hedge Funds generally only report their returns on a monthly basis, however, and

this means that very limited amounts of data are available for study, as databases of Hedge

Fund returns have only been in operation for about 15 years. This is in keeping with the

highly secretive, proprietary nature of Hedge Fund investing. The amount of information

reported by a Hedge Fund about how and where it is producing its returns is often lim-

ited to sectoral overviews and strategy allocations. For an introduction to hedge funds see

[Lhabitant, 2002, 2004]; for an overview of their strategies see Appendix A.

In addition to attractive returns, many Hedge Funds claim to provide significant di-

versification benefits when combined with traditional assets such as equities and bonds.

Moderate correlations between Hedge Funds and traditional asset classes, using monthly

returns data, have been reported, [Schneeweis and Martin, 2001; Liang, 2001]. Hence, the

market exposure of Hedge Funds to traditional assets classes has also been found to be

low, although these results were based upon monthly returns data and may be misleading.

Hedge Funds may hold illiquid exchange traded assets or over the counter16 (OTC) secu-

16An over the counter security is one that is not listed or traded on an organised exchange and instead is
traded directly between parties
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rities, which may be priced using the last traded price, (which may not have tradedat or

even near the end of the month), resulting in non-synchronous pricing. Furthermore, OTC

securities may not have publicly available prices but instead rely on broker prices. Due to

the large performance fees charged by hedge funds, using stale or non-synchronous data

may be of great benefit to the manager, at the expense of the investor.

Additional diversification benefits may be gained by investing in a variety of Hedge

Fund strategies, due to the presence of low and even negative correlations between differ-

ent strategies. Such strategies can be broken up into two general categories:directional

andmarket neutral. Directional strategies, (for example Long/Short Equity, Emerging mar-

kets, Macro and Managed Futures), have a high risk, high return profile and act as return

enhancers to a traditional portfolio. Market Neutral strategies, (for example Convertible

Arbitrage, Equity Market Neutral and Fixed Income Arbitrage), deploy a low risk profile

and act as a substitute for some proportion of the fixed income holdings in an investor’s

portfolio, [Lhabitant, 2002, 2004]. However, as mentioned, the inter-strategy correlations,

calculated using the original data, may be misleading.

A Fund of Hedge Funds is a strategy that invests in other funds, rather than investing

directly in Stocks, Bonds or other securities. These allow investors to have access to a large

and diverse portfolio of Hedge Funds without having to carry out due diligence on each

individual manager. The diversification benefits provided by Fund of Funds are brought

about by investing in a number of funds that have a low correlation to each other with a view

to spreading risk across many different strategies. These correlations, however, are often

calculated by using equally weighted fund returns and can contain a significant amount of

noise, due to the very small amount of returns data available for hedge funds, [Lhabitant,

2004].

Risk control techniques for portfolios of hedge funds have been studied by various

authors. The threshold point ofself-organised criticalitywas used as a control parameter of

risk exposure, [Nishiyama, 2001], for a portfolio of Hedge Funds. The correlation matrix

between the returns of Hedge Funds was used, [Miceli, 2004], to characterise Hedge Fund

strategies using Random Matrix Theory (RMT) and a minimum spanning tree. A downside-
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risk17 framework was used, [Perello, 2007], for the study of Hedge Fund risk, taking into

account the inherent asymmetry in Hedge Fund return distributions. Survivorship bias in

Hedge Funds was studied for the period1990 − 1999, where it was found that the level of

survivorship bias was significantly positive, [Liang, 2001].

2.9 Summary

In this Chapter, we have given a broad introduction to Complex Systems, with particular

emphasis on previous research in two sample systems of particular interest to us, that is

Financial and Neurological. Common to these systems is a need to characterise and reduce

risk associated with behaviour under ‘stresses’, such as seizures and market crashes. In the

following, we show that the risk involved is associated with interactions between agents

and look at ways to characterise, reduce and predict the level of risk.

17Downside-risk measures look at how much money an investor stands to lose during adverse market condi-
tions
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CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, we present some of the techniques used in the analysis of the equal-time

cross-correlation matrix between time-series. The calculation of the cross-correlation for

general time-series is introduced and the issue of noise reduction in the cross-correlation

matrix, using Random Matrix Theory (RMT), is then addressed, with financial applications

in Portfolio Optimisation and Sector Identification. In order to build up a methodology

suitable for risk characterisation, we then discuss an approach that allows us to study the

dynamics of correlations over time. In developing a framework for the group structures

found in complex interacting systems, we propose an ‘ab-initio’ model for the correlation

structure between Equities. Finally, we discuss the use of Wavelet multiscale analysis, to

investigate the effect of granularity on the cross-correlation matrix.

3.2 The Cross-Correlation Matrix and Eigenvalues

Correlation is a statistical measure of the strength and direction of a linear relationship

between two random variables. The most common form of correlation is thePearsonor

Product-Momentcorrelation1, which is obtained by dividing the covariance of two variables

by the product of their standard deviations.

Given a series of measurements,x (t), t = 1, 2, . . . , T of a random variableX, we first

1The concept was actually first introduced by Francis Galton, a half-cousin of Charles Darwin, Bulmer
[2003]
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normalise eachx (t) with respect to the series standard deviationσ as follows:

x̃ (t) =
x (t) − x̂

σ
(3.1)

Whereσ andx̂ arethe standard deviation and time average ofx (t) over all the measure-

ments,t = 1, 2, . . . , T .

Then, the equal-time cross-correlation matrix between measurements of two such ran-

dom variablesX andY can be expressed in terms ofx̃ (t) andỹ (t),t = 1, 2, . . . , T

Cij ≡ 〈x̃ (t) ỹ (t)〉 (3.2)

The elements of the cross-correlation matrix,Cij , are limited to the domain−1 ≤ Cij ≤

1, whereCij = 1 defines perfect positive correlation,Cij = −1 corresponds to perfect

negative correlation andCij = 0 corresponds to no correlation. In matrix notation, the

correlation matrix can be expressed as

C =
1

T
ZZ

τ (3.3)

WhereZ is anN × T matrix with elementszit.

TheN eigenvaluesλi and eigenvectorŝvi of the correlation matrixC are found from

the following

Cv̂i = λiv̂i, i = 1, . . . , N. (3.4)

The eigenvalues are then ordered according to size, such thatλ1 ≤ λ2 ≤ . . . ≤ λN .

3.3 Modern Portfolio Theory

Modern portfolio theory is concerned with models of security and portfolio analysis, in

particular with how rational investors use diversification to optimise their portfolios and a

risky asset should be priced. Given the importance of mean-variance portfolio theory and

the Capital Asset Pricing Model (CAPM), we describe briefly their assumptions and form.
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3.3.1 Portfolio Optimisation

Thediversificationof an investment into independently fluctuating assets reduces its risk.

However, since cross-correlations between asset prices exist, accurate calculation of the

cross-correlation matrix is vital. The return on a portfolio withN assets is given by

Φ =

N∑

i=1

wiGi, (3.5)

whereGi(t) is the return on Fundi, wi is the fraction of wealth invested in asseti and
∑N

i=1wi = 1. The risk of holding this portfolio is then given by

Ω2 =
N∑

i=1

N∑

j=1

wiwjCijσiσj (3.6)

whereσi is the volatility (Standard Deviation) ofGi, andCij are the elements of the cross-

correlation matrix. In order to find an optimal portfolio, using the Markowitz theory of

portfolio optimisation [Markowitz, 1958; Elton and Gruber, 2002; Bouchaud and Potters,

2003], we minimiseΩ2 under the constraint that the return on the portfolio,Φ, is some fixed

value. This minimisation can be implemented by using two Lagrange multipliers, which

leads to a set ofN linear equations which can be solved forwi. If we minimiseΩ2 for a

number of different values ofΦ, we obtain a region bounded by an upward-sloping curve,

called theefficient frontier, which reflects the highest level of expected return possible for

a given amount of risk.

In the special case of optimisation with a portfolio containing only Hedge Funds, the

additional constraint of noshort-selling2 is natural due to the difficulties involved; (note

that short-selling may be achievable by the use of swaps3 but is uncommon), [Lhabitant,

2002, 2004].

Throughout this thesis, we focus on the standard deviation of returns as a measure of

2Theselling of a security not currently owned by the seller, where the security is ‘borrowed’ from a third
party. The seller benefits if the price of the security falls.

3A derivative security in which two counterparties agree to exchange one stream of cashflows against an-
other stream.
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financial portfolio risk. However, other methods of calculating the risk of a portfolioare

available such as expected semi-variance (a measure of the variation in risk below certain

threshold value), the shortfall risk measure (this measure the probability of an asset dipping

below a certain target) and the maximum drawdown (the maximum loss that an investor

could suffer within a specific time horizon), [Lhabitant, 2004]. These various methods

capture different aspects of risk and may be more appropriate in particular cases. However,

these techniques do not lend themselves to simple portfolio optimisation (in particular using

the correlation matrix) and so, we choose the standard deviation of returns as a measure of

risk.

3.3.2 The Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) was developed, [Sharpe, 1964], building on ear-

lier work, [Markowitz, 1958], as a model for pricing an individual asset or a portfolio. The

derivation of the standard CAPM is based upon a number of assumptions, (summarised see

[Elton and Gruber, 2002]), and including:

• Risk-averse investors who aim to maximize economic utility

• Infinite divisibility of financial assets

• Absence of personal income tax

• Unlimited short sales

• Unlimited borrowing and lending at the risk free rate

• Axiom that all assets are marketable

• All information is available to all investors at the same time

The CAPM states that the expected return of a security or a portfolio equals the rate

on a risk-free security plus a risk premium. The latter depends linearly on the market risk

exposure (i.e. the Beta of an asset, Equation 3.8) and the market risk premium. Hence, the
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expected return on a risky asset is given by:

E(Ri) = Rf + βi[E(Rm) −Rf ], i = 1, . . . , N (3.7)

whereE(Ri) is the expected return on each ofN risky assets,E(Rm) is the expected return

of the market,Rf denotes the risk free rate andβi is the Beta of each asset with respect to

the market portfolioM , (in excess of the risk free rate return), and is given by

βi =
Cov(Ri, Rm)

V ar(Rm)
, i = 1, . . . , N. (3.8)

A full derivation of the CAPM and the Beta of a portfolio, is given, [Elton and Gruber,

2002].

Equation 3.7 can be rewritten in terms of the risk premium by simply subtracting the

risk-free rate from both sides of the equation giving,

E(Ri) −Rf = βi[E(Rm) −Rf ], i = 1, . . . , N. (3.9)

The empirical version of equation 3.9 is given by

Ri −Rf = αi + βi[Rm −Rf ] + ǫi, i = 1, . . . , N (3.10)

whereαi is the expected firm-specific return andǫi is a random error term. For a more

detailed treatise of the CAPM see [Sharpe, 1964; Elton and Gruber, 2002; Bouchaud and

Potters, 2003; Gençayet al., 2003, 2005] .

3.4 Random Matrix Theory

Random Matrix Theory originates from work by Wigner in nuclear Physics in the 1950’s

and later developed by Dyson and Mehta, and many theoretical and empirical results are

known [Dyson, 1962; Dyson and Mehta, 1963; Edelman, 1988; Mehta, 2004]. In the orig-

inal application of the theory, the problem was to explain the observed structures of the
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energy levels of heavy nuclei, when model calculations failed to explain the experimental

data. Wigner made the bold assumption that the complexity of the interactions between

constituents of the nucleus was such that these could, in fact, be modelled as random.

The spectral properties of a correlation matrix,C, may be compared to those of a “ran-

dom” Wishart correlation matrix or Laguerre ensemble,R, [Plerouet al., 2000a; Laloux

et al., 2000],

R =
1

T
AA

τ (3.11)

whereA is anN×T matrix with each random element having zero mean and unit variance.

Statistical properties of random matrices have been known for many years in the Physics

literature, [Mehta, 2004], and have been applied to financial problems relatively recently

[Laloux et al., 1999; Plerouet al., 1999; Gopikrishnanet al., 2000; Plerouet al., 2000a;

Laloux et al., 2000; Rosenowet al., 2002a; Bouchaud and Potters, 2003; Wilcox and Geb-

bie, 2004; Sharifiet al., 2004; Burdaet al., 2004; Burda and Jurkiewicz, 2004; Conlonet al.,

2007].

In particular, the limiting property for the sample sizeN → ∞ and sample length

T → ∞, providing thatQ = T
N

≥ 1 is fixed, has been examined to show analytically,

[Sengupta and Mitra, 1999], that the distribution of eigenvaluesλ of a random correlation

matrixR is given by:

Prm (λ) =
Q

2πσ2

√
(λ+ − λ) (λ− λ−)

λ
, (3.12)

for λ within the regionλ− ≤ λi ≤ λ+, whereλ− andλ+ are given by

λ± = σ2

(
1 +

1

Q
± 2

√
1

Q

)
, (3.13)

Whereσ2 is the variance of the elements ofG; (for G normalised this is equal to unity).

λ± are the bounds of the theoretical eigenvalue distribution. Eigenvalues that are out-

side this region are said to deviate from Random Matrix Theory. Hence, comparing the

empirical distribution,P (λ), of the eigenvalues of the correlation matrix to the distribution
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for a random matrix,Prm(λ), Eqn. 3.12, deviating eigenvalues can be identified. These

deviating eigenvalues are said to contain genuine correlation information about the system

under consideration and we can use eigenvector analysis to identify this in a given case.

3.4.1 Eigenvector Analysis

The deviations of the empirical eigenvalue distribution,P (λ), from the theoretical RMT

result,Prm(λ), implies that these deviations should also be displayed in the statistics of

the corresponding eigenvector components, [Lalouxet al., 2000]. In order to interpret the

meaning of the deviating eigenvectors, we note that the largest ofN eigenvalues is of an

order of magnitude larger than the others, which constrains the remainingN − 1, since the

trace of the correlation matrix,Tr [C] = N . Thus, to analyse the contents of the remaining

eigenvectors, we first remove the effect of the largest eigenvalue. To do this we use linear

regression, [Plerouet al., 2002]

Gi (t) = αi + βiG
large (t) + ǫi (t) , i = 1, . . . , N (3.14)

WhereGlarge =
∑N

1 ulargei Gi (t) andN is the number of different times-series in our

sample. Hereulargei corresponds to the components of the eigenvector associated with the

largest eigenvalue. We then calculate the correlation matrix using the residuals,ǫi (t) , i =

1 . . . N . This matrix then takes the place of matrixC in porfolio optimisation. If we quan-

tify the variance of the part not explained by the largest eigenvalue asσ2 = 1 − λlarge/N ,

[Laloux et al., 2000], we can use this value to recalculate our values ofλ±.

Using techniques for group/sector identification, [Gopikrishnanet al., 2000], we at-

tempt to analyse the information contained in the eigenvectors. We first partition the time-

series into predefined groupsl = 1, . . .M , (for example, in the case of Hedge Funds we

use strategies such as Equity Long/Short, Managed Futures, Convertible Arbitrage. See

Appendix A for a complete strategy breakdown and description). We define a projection

matrixPli = 1
nl

, if seriesi belongs to groupl andPli = 0 otherwise. For each deviating

eigenvectoruk, k = (N − d), . . . , N andd the number of deviating eigenvalues, we then
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compute the contribution,

Xk
l ≡

N∑

i=1

P kli

[
uki

]2
, k = (N − d), . . . , N (3.15)

of each grouping, where this represents the product of the projection matrix and the square

of the eigenvector components. This allows us to measure the contribution of the different

groupings or sectors to each of the eigenvalues.

3.4.2 Inverse Participation Ratio

As suggested, [Plerouet al., 2002], we also aim to assess how random properties diminish

as we move further from the RMT upper boundary,λ+. To do this, we use the Inverse

Participation Ratio (IPR). The IPR allows quantification of the number of components that

participate significantly in each eigenvector and reveals more about the level and nature of

deviation from RMT. The IPR of the eigenvectoruk is given by

Ik ≡
N∑

l=1

(
ukl

)4
(3.16)

and allows us to compute the inverse of the number of eigenvector components that con-

tribute significantly to each eigenvector. There are two limiting cases for the IPR:(i) When

the eigenvector has identical componentsukl = 1√
N

, thenIPR = 1
N

, (ii) If one component

uk1 = 1 and all others zero, then IPR= 1. The IPR quantifies thereciprocal of the number

of eigenvector componentsthat contribute significantly to each eigenvalue.

3.4.3 RMT and Portfolio Optimisation

One particular application of Random Matrix Theory is in the reduction of noise in the

correlation matrix calculated for returns of financial assets, ([Bouchaud and Potters, 2003;

Sharifiet al., 2004] and references therein), a vital input in financial portfolio optimisation.

In order to examine randomness effects on the cross-correlation matrix between financial
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assets, we first divide the time-series of returns into two equal parts. We assumethat we

haveperfect knowledgeof the future average returnsmi by taking the observed returns on

the second sub-period. We calculate

1. the predicted efficient frontier using the correlation matrix for the first sub-period and

the expected returnsmi

2. the realised efficient frontier using the correlation matrix for the second sub-period

and the expected returnsmi

The portfolio risk due to the noise in the correlation matrix can then be calculated using

Rp =
Ω2
r − Ω2

p

Ω2
p

(3.17)

WhereΩ2
r is the risk of the realised portfolio andΩ2

p is the risk of the predicted portfolio.

It was shown, [Burdaet al., 2004; Burda and Jurkiewicz, 2004], that correlations may

also be measured in the random part of the eigenvalue spectrum. However, since our aim

here is to demonstrate how Random Matrix Theory can be used to improve the risk/return

profile for a portfolio of Hedge Funds, we assume in our early work that the eigenvalues

corresponding to the noise band in RMT,λ− ≤ λ ≤ λ+, are not expected to correspond

to real information, (following [Rosenowet al., 2002a; Sharifiet al., 2004] and references

therein). We then use this assumption to remove some of the noise from the correlation

matrix. Although the technique used in [Lalouxet al., 2000; Bouchaud and Potters, 2003]

has been shown to lead to problems with thestabilityof the correlation matrix, [Sharifiet al.,

2004], we apply it here as a simple test case to demonstrate how noise can be removed from

the cross-correlation matrix formed from Hedge Fund returns. This technique involves

separating the noisy and non-noisy eigenvalues and keeping the non-noisy eigenvalues the

same. The noisy eigenvalues are then replaced by their average and the correlation matrix

is reconstructed using

Cclean = v̂
τλcleanv̂ (3.18)
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whereλclean are the cleaned eigenvalues andv̂ are the eigenvectors of the original correla-

tion matrix. After this, we can calculate the efficient frontiers and compare the risk of both

the predicted and realised portfolios for the original and cleaned correlation matrices.

Conventionally, RMT has been applied, in a financial context to high and medium-

frequency data, such as equity returns, [Bouchaud and Potters, 2003]. There is little reported

in the literature on attempts to subject sparse data, such as Hedge Fund returns data, to

such rigors, a common perception being that such data are unlikely to yield a great deal of

information. In fact, due to the level of noise inherent in sparse data sets, the application of

filtering techniques such as RMT is of paramount importance.

3.5 Correlation Dynamics

The correlations between non-stationary multivariate time-series are characterised by an

ever-changing degree of synchronisation within the system. By considering the eigenspec-

trum of the cross-correlation matrix, we are able to reduce the complexity of the various

synchronisations within a system. Then, through the study of the eigenvalue dynamics, we

can consider the temporal evolution of the system correlations.

The sum of the diagonal elements of a matrix, (the Trace), must always remain constant

under linear transformation, [Jolliffe, 2002]. Thus, the sum of the eigenvalues must always

equal the Trace of the original correlation matrix. Hence, if some eigenvalues increase then

others must decrease, to compensate, and vice versa (Eigenvalue Repulsion).

There are two limiting cases for the distribution of the eigenvalues, [Müller et al., 2005;

Schindleret al., 2007a]. When all the time-series are perfectly correlated,Ci ≈ 1, the

largest eigenvalue is maximised with a value equal toN , while for time-series consisting of

random numbers with average correlationCi ≈ 0, the corresponding eigenvalues are dis-

tributed around1, (where any deviation is due to spurious random correlations, Figure 3.1).

For cases between these two extremes, the eigenvalues at the lower end of the spectrum

can be much smaller thanλmax. To study the dynamics of each of the eigenvalues, using a
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Fig. 3.1: Limiting Cases for eigenvalue distributions

slidingwindow, we normalise each eigenvalue in time using

λ̃i(t) =

(
λi(t) − λ̂i(τ)

)

σλi(τ)
(3.19)

whereλ̂i(τ) andσλi(τ) are the mean and standard deviation of the eigenvaluei over a par-

ticular reference period,τ . This normalisation allows us to visually compare eigenvalues at

both ends of the spectrum, even if their magnitudes are significantly different. The refer-

ence period, used to calculate the mean and standard deviation of the eigenvalue spectrum,

can be chosen to be either a low volatility sub-period, (which helps to enhance the visibility

of high volatility periods), or the full time-period studied.

3.5.1 One-factor Model

The behaviour of the largest eigenvalue of the correlation matrix can be accurately described

by a simple one-factor correlation model, Section 2.5. In theone-factor modelof stock

returns, we assume aglobal correlationwith the cross-correlation between all stocks the

same,ρ0, [Elton and Gruber, 2002]. The spectrum of the associated correlation matrix

consists of only two values, a large eigenvalue of order(N − 1)ρ0 + 1, associated with the

market, and an(N − 1)−fold degenerate eigenvalue of size(1 − ρ0) < 1. Any deviation
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from these values is due to the finite length of time-series used to calculate the correlations.

In the limitN → ∞, (even forsmall correlation, i.e.ρ → 0), a large eigenvalue appears,

which is associated with the eigenvectorv1 =
(

1√
N

)
(1, 1, 1, . . . , 1), and which dominates

the correlation structure of the system.

3.5.2 ‘Market plus sectors’ model

To expand the above to a ‘market plus sectors’ model, Section 2.5, we perturb a number of

pairsN of the correlationsρ0+ρn, where−1−ρ0 ≤ ρn ≤ 1−ρ0. Additionally, we impose

a constraint
∑

N

ρn = 0, ensuring that the average correlation of the system remains equal

to ρ0. These perturbations allow us to introducegroups of stockswith similar correlations,

(corresponding to Market Sectors).

Using the correlation matrix from the “one-factor model” and the “market plus sectors

model”, we can construct correlated time-series using the Cholesky decompositionA of a

correlation matrixC = AA
τ , [Presset al., 2007]. We can then generate finite correlated

time-series of lengthT ,

xit =
∑

j

Aijyjt t = 1, . . . , T (3.20)

whereyjt is a random Gaussian variable with mean zero and variance unity at timet. Using

Eqn. 3.2, we can then construct a correlation matrix using the simulated time-series. The

finite size of the time-series introduces ‘noise’ into the system and hence empirical corre-

lations will vary from sample to sample. This ‘noise’ can be reduced through the use of

longer simulated time-series or through averaging over a large number of series.

In order to compare the eigenvectors from each of the model correlation matrices to

those constructed from the equity returns time-series, we can use the Inverse Participation

Ratio (IPR), (Section 3.4.2).

Consideration of the above techniques in isolation will unmask changes in correlation

dynamics for the system in question, an idea not previously examined in the literature for

financial time-series. Additionally, by first decomposing the signal into component frequen-
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cies, further dynamical features may emerge, allowing a multivariate time and scaleanalysis

of correlations for the first time. In order to first break the signal up, wavelet multiscaling

techniques are applied.

3.6 Wavelet Multiscaling

The characteristics of a time-series may be decomposed into different frequency compo-

nents, a process known as multiscaling. Wavelets provide an efficient means of studying

these multiresolution properties, as they can be used to decompose a signal into different

time horizons or frequency components. The Discrete Wavelet Transform (DWT), [Bruce

and Gao, 1996; Burruset al., 1998; Percival and Walden, 2000], in particular, allows the

decomposition of a signal into components of different frequency. There are two basic

wavelet functions, the father waveletφ and the mother waveletψ. The formal definitions of

the father and mother wavelets are the functions:

φj,k (t) = 2
j

2φ
(
2jt− k

)
(3.21)

ψj,k (t) = 2
j

2ψ
(
2jt− k

)
(3.22)

wherej = 1, , . . . , J in a J-level decomposition andk ranges from1 to the number of

coefficients in the specified level. The father wavelet integrates to unity and reconstructs

the longest time-scale component of the series, whereas the mother wavelet integrates to

zero and is used to describe the deviations from the trend. The wavelet representation of a

discrete signalf(t) in L2(R) is given by:

f(t) =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kφJ,k(t)+, . . . ,

+
∑

k

d1,kφ1,k(t) (3.23)

whereJ is the number of multiresolution levels (or scales) andk ranges from unity to the

number of coefficients in the specified level. The coefficientssJ,k anddJ,k are the smooth

39



and detail component coefficients respectively and are given by

sJ,k =

∫
φJ,kf(t)dt (3.24)

dj,k =

∫
ψj,kf(t)dt (j = 1, , . . . , J) (3.25)

Each of the coefficient setsSJ , dJ , dJ−1, , . . . , d1 is called acrystal.

The Maximum Overlap Discrete Wavelet Transform (MODWT), [Percival and Walden,

2000; Gençayet al., 2001b], is a linear filter that transforms a series into coefficients related

to variations over a set of scales. Like the Discrete Wavelet Transform (DWT), it produces a

set of time-dependent detail and scaling coefficients with basis vectors associated with a lo-

cationt and a unitless scaleτj = 2j−1 for each decomposition level,j = 1, , . . . , , J0 . The

MODWT, unlike the DWT, has a high level of redundancy, however, and is nonorthogonal.

It retains downsampled4 values at each level of the decomposition that would be discarded

by the DWT. The MODWT can also handle any sample size N, whereas the DWT restricts

the sample size to a multiple of2j . One of the benefits of the redundancy present in the

MODWT is the ability to line up features in a multiresolution analysis with the original

time-series, something not possible using the DWT. In this study, we apply the MODWT

as it helps reduce the errors associated with the calculation of the Wavelet Correlation at

different scales, (due to the availability of greater amounts of data at longer scales).

Decomposing a signal using the MODWT toJ levels theoretically involves the appli-

cation ofJ pairs of filters, [Percival and Walden, 2000]. The filtering operation at thejth

level consists of applying a re-scaled father wavelet to yield a set ofdetail coefficients

D̃j,t =

Lj−1∑

l=0

ψ̃j,lft−l (3.26)

and a re-scaled mother wavelet to yield a set ofscaling coefficients

S̃j,t =

Lj−1∑

l=0

φ̃j,lft−l (3.27)

4Downsampling or decimation of the wavelet coefficients retains half of the number of coefficients that were
retained at the previous scale. Downsampling is applied in the Discrete Wavelet Transform
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for all timest =, . . . ,−1, 0, 1, . . ., wheref is the function to be decomposed [Percival and

Walden, 2000]. The rescaled mother,ψ̃j,l =
ψj,l

2j , andfather,φ̃j,t =
φj,l

2j , wavelets for the

jth level are a set of scale-dependent localised differencing and averaging operators and can

be regarded as rescaled versions of the originals. Thejth level equivalent filter coefficients

have a widthLj = (2j − 1)(L − 1) + 1, whereL is the width of thej = 1 base filter. In

practice the filters forj > 1 are not explicitly constructed because the detail and scaling

coefficients can be indirectly calculated, (using an algorithm that involves thej = 1 filters

operating recurrently on thejth level scaling coefficients, to generate thej+1 level scaling

and detail coefficients), [Percival and Walden, 2000].

The MODWT is also an energy conserving decomposition, [Percival and Walden, 2000]:

‖f‖2 =
J∑

j=1

∥∥D̃j

∥∥2
+

∥∥∥S̃J
∥∥∥

2
(3.28)

This decomposition allows the measurement of the contribution to the total energy due to

changes at scale2j−1. A fractional energy,̃Ej , associated with each scale can be calculated

using

Ẽj =
Ej
Etot

, with Etot =
J∑

j=1

Ej . (3.29)

for scalesj = 1, , . . . , , J .

3.6.1 Wavelet Variance

The wavelet varianceν2
f (τj) is defined as the expected value ofD̃2

j,t, if we consider only

the non-boundary coefficients. Anunbiasedestimator of the wavelet variance is formed by

removing all the coefficients that are affected by the boundary conditions5 and is given by:

ν2
f (τj) =

1

Mj

N−1∑

t=Lj−1

D̃2
j,t (3.30)

5TheMODWT treats the time-series as if it were periodic using “circular boundary conditions”, so prevent-
ing double-counting in the calculation. There areLj wavelet and scaling coefficients that are influenced by the
extension, which are referred to as the boundary coefficients.

41



whereMj = N − Lj + 1 is the number of non-boundary coefficients at thejth level,

[Percival and Walden, 2000]. The wavelet variance decomposes the variance of a process

on a scale by scale basis and allows us to explore how a signal behaves over different time

horizons.

3.6.2 Wavelet Covariance and Correlation

The wavelet covariance between functionsf(t) andg(t) is similarly defined to be the co-

variance of the wavelet coefficients at a given scale. Theunbiasedestimator of the wavelet

covariance at thejth scale is given by

νfg(τj) =
1

Mj

N−1∑

t=Lj−1

D̃
f(t)
j,t D̃

g(t)
j,t (3.31)

where all the wavelet coefficients affected by the boundary are removed, [Percival and

Walden, 2000], andMj = N − Lj + 1.

The MODWT estimate of the wavelet cross-correlation, between functionsf(t) and

g(t), may then be calculated using the wavelet covariance and the square root of the wavelet

variance of the functions at each scalej. The MODWT estimator, [Gençayet al., 2001b],

of the wavelet correlation is then given by:

ρfg(τj) =
νfg(τj)

νf (τj)νg(τj)
(3.32)

In the CAPM model, Section 3.3.2, the wavelet Beta estimator, at scalej, [Gençay

et al., 2001b], is defined as

βfm(τj) =
νfm(τj)

ν2
m(τj)

(3.33)

whereνfm(τj) is the covariance between an assetf and the marketm, andνm(τj) is the

variance of the return on the market portfolio at scalej.
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3.7 Summary

In this chapter, we outlined the use of the cross-correlation matrix as a measure of syn-

chronisation between time-series. We then introduced a number of techniques designed to

increase the amount of information gleaned from, as well as detect changes in the structure

of the correlation matrix. While these methods are known, the techniques have not been

previously integrated or used to explore the correlation structure in data sets from diverse

applications such as Hedge Fund returns and Brain signals. A combination of techniques

allows us to demonstrate the use of the correlation matrix for diversification purposes, even

in sparse data-sets. It also provides a test of robustness of the methodologies considered

in, for example, the characterisation of extreme events in Complex Systems through the

analysis of the eigenspectrum.
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CHAPTER 4

RANDOM MATRIX THEORY AND FUNDS OF

FUNDS PORTFOLIO OPTIMISATION

As described, (Section 2.4), Random Matrix Theory (RMT) has been appliedto the correla-

tion matrix between returns of stocks from markets of various countries. The data examined

in these studies varied from medium frequencyinterdayreturns [Lalouxet al., 1999; Plerou

et al., 1999; Lalouxet al., 2000; Plerouet al., 2002; Utsugiet al., 2004; Sharifiet al., 2004;

Conlonet al., 2007], to high frequencyintraday, [Plerouet al., 2000a, 2002]. Here, we

extend the application of Random Matrix Theory in financial markets through the study of

sparse, low-frequency Hedge Fund returns. The purpose is to demonstrate the application

of the correlation matrix to portfolio diversification, even in a low-frequency data environ-

ment. Given the current difficulties facing financial markets, perhaps the Hedge Fund focus

is particularly relevant due to their stated aim ofabsolute returns.

The proprietary nature of Hedge Fund investing means that it is common practise for

managers to release minimal information about their returns, often reporting only once per

month. The construction of a Fund of Hedge Funds portfolio, (Section 2.8), thus requires

correlation matrix estimation, typically based on a relatively small sample of monthly re-

turns data and this means that high levels of noise can have significant impact on portfolio

optimisation.

In this Chapter, we establish that information is retained within the correlation matrix

for low-frequency Hedge Fund returns. Further, through the application of Random Ma-

trix Theory, (Section 3.4), we test the ability of RMT-based filtering to clean a correlation
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matrix constructed from low-frequency data. We investigate, in a financial context what

diversification benefits can be found using the information contained in eigenvalues of the

cross-correlation matrix deviating from Random Matrix Theory. Using classical portfolio

optimisation theory, (Chapter 3.3.1), we consider how the cleaned correlation matrix can

be used in Hedge Fund risk management, specifically to improve the risk-return profile of

a portfolio of Hedge Funds.

4.1 Data and Implementation

The dataset studied here is a collection of 49 Hedge Funds with varying strategies, over a

synchronous period from January 1997 to September 2005,(T = 105). The original dataset

was much larger, (approximately 1500 funds), but since the length of data series available

was much less than the number of funds we were forced to choose a subset. The subset

chosen contained the 49 funds with the longest track records giving us a fund to data ratio

Q = 2.143. Reducing the dataset in this way is not unrealistic as a typical fund of hedge

funds would monitor a subset of funds and choose a portfolio from these, [Lhabitant, 2002,

2004]. Often, one of the criteria used in choosing this subset of investable funds would be

the completion of a minimum track record. (Other data sets, such as a portfolio made up of

Hedge Fund strategy indices, were also studied with similar although less obvious results.

The smaller number of strategies available means the amount of correlation information

available decreases and there are fewer deviating eigenvalues than will be shown below for

Fund returns).

In order to explore the information content of a correlation matrix, we calculated the

empirical Correlation Matrixbetween the funds using equally weighted returns and from

this found the spectrum of eigenvalues, (Section 3.2). This was then compared with the

theoretical spectrum for random Wishart matrices, (as per Eqn. 3.12). To demonstrate the

stability of the returns across different time periods and for different series lengths, we

divided the data into two segments and reperformed the above experiment. The information

found in the deviating eigenvalues was subsequently analysed using eigenvector analysis
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and the inverse participation ratio. Finally, the RMT filtered correlation matrix was usedas

an input to a portfolio optimisation for a collection of Hedge Funds, (Section3.4.3).

4.2 Results

4.2.1 Equally weighted Correlation Matrix

The minimum and maximum theoretical eigenvalues of the correlation matrix correspond-

ing to the full data set were found to beλ− = 0.1 andλ+ = 2.83, respectively, (Section3.4).

As can be seen, from Fig. 4.1, the bulk of the eigenvalues conformed to those of the random

matrix. There were three deviating eigenvalues, at10.9886, 8.2898 and2.944, correspond-

ing to spikes outside the bulk envelope. This means that6.1% of eigenvalues deviated from

the RMT prediction, consistent with the findings of [Lalouxet al., 2000] for equity markets,

where the authors argue thatat most6% of eigenvalues are non-noisy.
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Fig. 4.1: Spectral density for equally weighted Hedge Fund correlation matrix
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4.2.2 Bootstrapping

Dividing the time-series into two segments, we found just two eigenvalues that deviated

from the RMT prediction, for both time periods. As can be seen in Fig. 4.2, the anomalous

eigenvalue contributions are very similar for both periods chosen, which implies these are

independent of the choice of time period, (ie. stationarity of the data). The values of the

deviating eigenvalues are shown in Table 4.1.

Eigenvalue Rank 105 Months Returns 1st 53Months 2nd 52Months

1 10.9886 11.334 11.6874
2 8.2898 8.1375 8.9312
3 2.944

Tab. 4.1: Eigenvalues deviating from RMT predictions
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Fig. 4.2: Bootstrapped spectral density for consecutive periods.
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4.2.3 Eigenvector Analysis

Fig. 4.3 shows the density of the components of the largest eigenvector and also the compo-

nents of a typical eigenvector from the region predicted by RMT. As can be seen from this

graph, the distribution of the components of the largest eigenvector is significantly different

from that of an eigenvector chosen from the random region. The average value is greater

and the variance of the components much smaller for the largest eigenvector, which is in

agreement with [Plerouet al., 2002; Sharifiet al., 2004], where the largest eigenvector was

interpreted as the ‘market’. A Kolmogorov-Smirnov test rejected the hypothesis that the

two eigevectors came from the same distribution, withP < e−8. In this case the ‘market’

is the set of external stimuli that affect most Hedge Funds, (eg. Interest rate changes, large

market (ie S&P 500 etc) moves, margin changes etc).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

Eigenvector Components

N
um

be
r o

f O
cc

ur
en

ce
s

Eigenvector Components

Fig. 4.3: Comparison of Eigenvector Components, showing the largest Eigenvector (Red),
Eigenvector from the bulk (Blue)

We then removed the effects of the largest eigenvalue, (using techniques described in

Section 3.4.1). This caused a shift inλmax from 2.8329 to 2.1975 which means that 4 of

the remaining largest eigenvalues are now outside the RMT region, (Fig. 4.4).

The distribution of the components of largest remaining deviating eigenvector showed
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Fig. 4.4: Eigenvalue spectrum after the removal of the effects of the largestEigenvalue

distinctive clustering, (Fig. 4.5). In particular Managed Futures, Emerging Markets and

European Long/Short Equity strategies were major contributors here.

A similarly-clustered distribution also featured for other deviating eigenvalues. An anal-

ysis of the eigenvector components for the 2nd largest remaining eigenvector, after remov-

ing the effects of the market eigenvector, (Fig. 4.6), showed distinctive sectoral grouping,

especially for managed futures and long/short equity. However, the components corre-

sponding to the managed futures strategy did not deviate much from zero and contribute

little. These findings for clustering of the deviating eigenvalues are in agreement with those

of Sharkasiet al. [2006b], where the authors showed that, in addition to the largest, other

deviating eigenvalues of the correlation matrix of asset returns also contain information

about the risk associated with these assets.
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Fig. 4.5: Density of eigenvector components, largest remaining eigenvalue
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4.2.4 Strategy Identification

Following on from the analysis described in Section 4.2.3, we looked also at the contribu-

tion of each strategy grouping,Xk
l ≡

∑N
i=1 P

k
li

[
uki

]2
, to each of the deviating eigenvalues

from the different strategies employed, (Section 3.4.1). Fig. 4.7 showsXk
l for the largest

remaining Eigenvector once the effects of the market eigenvalue was removed. The largest

contributors were clearly Managed Futures and Emerging Markets, although the strategy

contribution for Managed Futures was only around twice that for many of the other sec-

tors. Hence, Managed Futures and Emerging Markets clearly seemed to be the dominant

strategies. However, care in interpretation is needed, since neither contributor was domi-

nant overall and there may be overlaps. In particular, as Managed Futures managers may

trade the currencies of Emerging Markets, it may also be that there is a closer relationship

between these two strategies than is obvious.
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Fig. 4.7: Strategy Contribution, largest eigenvalue

Fig. 4.8 shows the strategy contributions for the second largest eigenvalue. These are

interesting, since three of the four dominant strategies (Asia, Global Equity& European

Long/Short Equity) areequity strategies and are all affected by events in world equity

markets. As funds appearing in the same eigenvalue arehighly correlated, this means that
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it is difficult to diversify by investing in equity funds. In addition, the fourth strategy, Self

Invested Fund of Funds, may well also consist of equity funds. However, information

is limited on exactly what type of funds the managers were invested, although there is

reason to believe that a majority of them would be equity based, (as equity based funds

account for the largest proportion of Hedge Fund assets under management, [Barclays,

2009; CreditSuisse, 2009]). This implies, albeit tentatively, that this eigenvalue contains

information primarily on equity funds.
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Fig. 4.8: Strategy Contribution, 2nd largest eigenvalue

Fig. 4.9 contains the strategy contributions for the third largest remaining eigenvalue.

Clearly, the dominant strategy here was Currency. It was notable in the above, that analysis

of the eigenvalues fromwithin the random matrix regionappeared to reveal no dominant

strategies. The evidence of strategy information in the deviating eigenvalues, coupled with

a lack of dominant strategies within the RMT region, strongly supports the idea that infor-

mation in the correlation matrix is chiefly contained within the deviating eigenvalues. Addi-

tionally, as these are orthogonal to each other, diversification is accomplished by investing

in funds from each of the deviating eigenvalues. Focus on the deviating eigenvalues, enables

the creation of a portfolio with an improved risk-return profile, (described section 4.2.6).

An alternative method of investigating strategy clustering was also examined through the
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Fig. 4.9: Strategy Contribution, 3rd largest eigenvalue

minimumspanning tree, [Miceli, 2004], but given the small amount of data available within

each cluster the results were found to be unstable.

4.2.5 Inverse Participation Ratio

The value of the inverse participation ratio (IPR) for Hedge Fund data is the additional

insight into the number of components contributing to the eigenvectors of both large and

small eigenvalues. Fig. 4.10 shows the IPR calculated for the eigenvectors of the Hedge

Fund cross-correlation matrix studied. The average IPR value was around 0.06, larger than

would be reasonably expected (1
N

≈ 0.02) if all components contributed to each eigen-

vector. The IPR of the largest eigenvector is smaller, as expected, since it’s corresponding

eigenvalue reflects the Market or the influences that affect all Funds. However, the devi-

ating eigenvalues, highlighted earlier, are not obvious in the eigenvector components, as is

found for equity markets, [Plerouet al., 2002]. The small sample size, may mean that the

IPR was not particularly effective in terms of assessing by how much larger eigenvectors

deviate from the random region, due to finite size limitations, (expected IPR relies on a

sample size that tends to infinity).
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A significant deviation from this average IPR value was found for the first few eigen-

vectors. In particular, for the IPR of the smallest eigenvector this was due to the inclusion of

two funds, identical apart from being in different base currencies, with correspondingly high

correlation, (≈1). This lends support, even for sparse data, to the decoupling of funds with

a correlation coefficient much greater than the average, as described Plerouet al. [2002].
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Fig. 4.10: Inverse Participation Ratio as a function of eigenvalueλ

4.2.6 Noise Removal and Portfolio Optimisation

It was noted earlier that where the time-series available to estimate cross-correlation ma-

trices are of limited length, noise effects can be exaggerated. This problem is particularly

prevalent with sparse Hedge Fund data, since only monthly returns are available. The return

of a portfolio ofN Hedge Funds is given given by

Φ =
N∑

i=1

wiGi, (4.1)
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whereGi(t) is the return on asseti, wi is the fraction of wealth invested in asseti and
∑N

i=1wi = 1. The risk of holding this portfolio is then given by

Ω2 =
N∑

i=1

N∑

j=1

wiwjCijσiσj (4.2)

whereσi is the volatility ofGi, andCij are the elements of the cross-correlation matrix.

Using the methodology described in Section 3.4.3, we found realised risk to be, on

average, 292%of the predicted risk, Fig. 4.11. This large difference between predicted

and realised risk has obvious and serious consequences for risk management. Cleaning the

correlation matrix reduced the difference by more than a third, (realised risk was 190%

of predicted risk). This huge improvement was brought about by limiting the correlation

matrix to the information band prescribed by RMT. Some efforts to enhance the cleaning

techniques have been reported by [Sharifiet al., 2004; Dalyet al., 2008], however these

methods may be less effective on Hedge Fund data due to the difficulty in fitting given the

small number of eigenvalues.
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Fig. 4.11: Efficient Frontiers using original and cleaned correlation matrices
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It can be seen in Fig. 4.11 that, for some return values, the predicted risk, (usingthe fil-

tered correlation matrix), was actually less than that of the original correlation matrix. This

may have been due to the constraints imposed on the portfolio, in particular the restriction

of no ‘short-selling’, (Section 3.3.1). This constraint is natural in the context of Hedge

Funds since, given their illiquid nature, it may be difficult to secure the borrow necessary to

implement the short-sale.

The use of the cleaned correlation matrix, led to a35% improvement in the difference

between the realised risk and the predicted risk for the optimal portfolio, even with the

imposed ‘short-selling’ restrictions. This demonstrates that, even for sparse Hedge Fund

data the correlation matrix has a role in risk reduction through diversification.

4.3 Conclusions

We have illustrated that, even with limited low-frequency Hedge Fund data (105 months

of returns data for 49 Hedge Funds), useful information can be extracted from the cross

correlation matrix constructed. Significant deviations from Random Matrix Theory predic-

tions were observed, while further analysis showed that there was real strategy information

contained within the deviating eigenvalues. Eigenvector analysis revealed distinctstrategy

clusteringin the deviating eigenvectors. These strategy effects included Emerging Markets

and Managed Futures in the largest eigenvector, Equity funds in the second, Currency and

Fund of Funds in the final two deviating eigenvectors. The strategy information in the de-

viating eigenvalues was then used to clean the correlation matrix, to alleviate noise effects

due to the small sample. Construction of a portfolio using classical portfolio optimisation

techniques, (Section 3.3.1), demonstrated that diversification benefits could be found using

the correlation matrix, even for low-frequency data. Further, application of the RMT filter-

ing technique, showed how financial risk management of a portfolio of Hedge Funds can be

addressed, with a35% improvement achieved between the risk of the predicted and realised

portfolios.
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CHAPTER 5

WAVELET MULTISCALE ANALYSIS FOR

HEDGE FUNDS: SCALING AND STRATEGIES

In Chapter 4, we demonstrated that an equal-time cross-correlation matrix constructedus-

ing low-frequency Hedge Fund returns, contains real strategy information. We also showed,

using Random Matrix Theory, that it is possible to clean the correlation matrix in order to

create a portfolio with an improved risk-return profile, [Conlonet al., 2007]. However, as

mentioned earlier (Chapter 2), the diversification benefits found from Hedge Funds with

low or negative correlation to more traditional investments such as equities, may be mis-

leading. This is due to the fact that Hedge Funds may hold illiquid exchange traded assets

or over-the-counter (OTC) securities, which are difficult to price accurately. Problems may

also arise with intra-strategy correlations for Hedge Fund portfolio optimisation, due to

misleading correlations calculated using unfiltered data.

In this Chapter, we develop a novel methodology to overcome this difficulty. Applica-

tion of the Wavelet Transform to the correlation between Hedge Funds and the Market and,

also, to inter-strategy correlations across different time-scales is presented. The Wavelet

Transform allows the study of scaling in the correlation matrix, (see remarks on emergence

in Complex Systems, Section 2.2). By examining scaling properties, we demonstrate how

the correlation matrix can be used to improve the risk management for portfolios of Hedge

Funds.
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5.1 Data

To enable us to study the market risk and correlations of Hedge Funds at different time

scales, we examine returns from the Credit Suisse/Tremont Hedge Fund indices from April

1994 to October 2006, a total of 151 months, [CreditSuisse, 2009]. These indices use the

Credit Suisse/Tremont database, which tracks over 4500 funds and consists only of funds

with a minimum USD 50 million under management, a 12 month track record and audited

financial statements. The indices are calculated and rebalanced on a monthly basis and

are net of all performance and management fees. The data used here differs from that

in Section 4, as Index data was available over a longer time-frame and the helps in the

calculation of wavelet coefficients to longer scales.

The funds in the Credit Suisse/Tremont database are separated into 10 primary cate-

gories based on their investment style. From this universe, Credit Suisse/Tremont selects

a subset of funds for inclusion in the sub-indices such that each sub-index represents at

least 85% of the assets under management in that respective category. The sub-indices are

Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Equity Market Neutral,

Event-Driven, Fixed Income Arbitrage, Global Macro, Long/Short Equity, Managed Fu-

tures and Multi-Strategy, (in Appendix A we give a full description of each strategy). Each

of these strategies is distinct both in the instruments used and the types of markets traded

and detailed descriptions of each can be found in Lhabitant [2002, 2004]; CreditSuisse

[2009].

The S&P 500 index is chosen to represent the “Market”, [Plerou et al., 2002]. The

S&P 500 is a cap-weighted equity index consisting of large publicly held companies that

generally trade on major US stock exchanges such as the New York Stock Exchange and

NASDAQ. Monthly returns data for the S&P 500 are available to download publicly on the

internet, [Yahoo, 2009].
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5.2 Methods

For the present study, we selected the least asymmetric (LA) wavelet (known as theSymlet)

which exhibits near symmetry about the filter midpoint. LA filters are available in even

widths, with optimal filter width dependent on the characteristics of the signal and the

length of the data. The filter width chosen for this study was the LA8 (where the 8 refers to

the width of the scaling function), since it enabled us to accurately calculate wavelet Betas

and Correlations to the4th scale, given the length of data series available. Although the

MODWT, Section 3.6, can accommodate any levelJ0, in practise the largest level is chosen

so as to prevent decomposition at scales longer than the total length of the data series, hence

the choice of the4th scale. The MODWT was implemented using theWMTSA Wavelet

Toolkit for Matlab, also featured in Percival and Walden [2000].

5.3 Results

5.3.1 Scalogram

In order to demonstrate graphically the dependence of the S&P 500 and the Credit Su-

isse/Tremont indices on both scale and time, we examine a scalogram produced using the

wavelet transform, Fig. 5.1. The Scalogram shows the size of each wavelet detail coeffi-

cient across both scale and time. Examination of the scalogram also helps to reveal infor-

mation about the scale dependence of features in the time-series examined. For example,

Fig. 5.1(a), shows a scaleogram of the S&P500 for the period studied, Section 5.1, with

distinct behaviour found across the20 scales studied. In particular at time-period95, cor-

responding to market behaviour after the events of September11th 2001, coefficients up

to the12th cofficient are raised. This means that the events of September11th influenced

market movements for a period of12 months after.

Looking at the returns of the Credit Suisse/Tremont Composite Index over the same pe-

riod, coefficients are found to be raised at much longer scales, with little evidence of raised

coeffients found for the Equity Market Neutral strategies, (so the strategy was little effected
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by market events at this time). Another benefit of this Scalogram analysis is the abilityto

examine concurrent changes for different strategies. The example described, for September

11th, shows an increase in synchronisation between wavelet coefficients between the S&P

500 and the Hedge Fund Composite Index. However, little change in synchronisation is ev-

ident between either the S&P or Composite Index and the Equity Market Neutral strategy,

implying that this strategy would have diversification benefits for a portfolio. We examine

this scale dependent synchronisation in greater detail below.
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Wavelet Coefficients, Credit Suisse Tremont Equity Market Neutral Hedge Fund Index April 1994 − Oct. 2006
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Fig. 5.1: Scalogram showing scaling behaviour over time for the S&P500, CS/Tremont
Composite and Equity Market Neutral Indices.
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5.3.2 Correlation Analysis

Applying the MODWT, (Chapter 3), we examined the correlation between the S&P 500

index and the Credit Suisse/Tremont Hedge Fund composite and sub-indices for different

time horizons. The correlations were calculated for scales 1, 2, 3 and 4 corresponding to

2-4 month, 4-8 month, 8-16 month and 16-32 month periods respectively, as well as for the

original monthly returns data. The results are shown in Table 5.1.

Scale Original Data 1 2 3 4

Hedge Fund Index 0.47 0.50 0.40 0.50 0.36
Convertible Arbitrage 0.13 0.07 0.12 0.35 0.31
Dedicated Short Bias -0.75 -0.78 -0.76 -0.80 -0.88
Emerging Markets 0.48 0.59 0.53 0.47 0.39

Equity Market Neutral 0.37 0.43 0.41 0.30 0.13
Event Driven 0.55 0.56 0.58 0.71 0.51

Fixed Income Arbitrage 0.00 0.05 -0.19 0.08 0.23
Global Macro 0.22 0.31 0.16 0.16 0.00

Long/Short Equity 0.58 0.59 0.54 0.60 0.53
Managed Futures -0.14 0.00 -0.25 -0.19 -0.61
Multi-Strategy 0.10 0.03 0.03 0.16 0.25

Tab. 5.1: Correlations between the S&P 500 and the Credit Suisse/Tremont HedgeFund
indices, (Increasing correlations - Blue, decreasing correlations - Red)

The correlations for the Hedge Fund composite index with the S&P were found to vary

according to the time period considered, in a similar fashion to those of the Long/Short Eq-

uity strategy. This may be, at least partly, accounted for by the fact that Long/Short Equity

was the component with the largest weighting in the index (28.8%, [CreditSuisse, 2009]).

The correlation for Convertible Arbitrage, Fixed Income Arbitrage and Multi-Strategy with

the S&P was found to increase as the time horizon increases which may be evidence that

these strategies hold less liquid or hard-to-price securities (resulting in a “smoothing” of

their returns). The correlations for Dedicated Short Bias, Equity Market Neutral and Man-

aged Futures were found to decrease significantly as the time horizon increases. Hence,

these strategies may begood diversifiersover a longer time period and would be a useful

addition to a market portfolio. In particular, those strategies with negative correlation would

be expected to product positive returns when S&P returns are negative, a result which has
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been evident throughout the difficult period suffered by the S&P recently.Although some

of these correlations may not vary much, (such as Long/Short Equity,0.58 to 0.53), some

variation by scale may have a marked effect on the optimal weights within a portfolio,

particularly if two strategies in the portfolio have similar correlations.

The decrease in correlation over longer time scales for the latter strategies is in direct

contrast to theEppseffect, [Epps, 1979; T́oth and Kert́esz, 2007b], where the correlation

between financial time series was shown to increase over long time scales. However, in the

case of theEppseffect the time scales studied were much shorter (0− 21
2 hours)and the

data much more plentiful, [T́oth and Kert́esz, 2007b].

Using the Credit Suisse/Tremont Hedge Fund Composite index, we also measured the

correlation between this and each of the sub-indices over different time horizons. Again,

the correlations were calculated for scales 1, 2, 3 and 4 as above. The results are shown in

Table 5.2.

Scale Original Data 1 2 3 4

Convertible Arbitrage 0.40 0.23 0.36 0.53 0.63
Dedicated Short Bias -0.48 -0.50 -0.48 -0.50 -0.39
Emerging Markets 0.66 0.71 0.65 0.66 0.64

Equity Market Neutral 0.32 0.36 0.34 0.12 0.07
Event Driven 0.68 0.61 0.70 0.72 0.69

Fixed Income Arbitrage 0.41 0.28 0.33 0.57 0.57
Global Macro 0.85 0.88 0.87 0.85 0.79

Long/Short Equity 0.79 0.76 0.83 0.85 0.82
Managed Futures 0.17 0.35 0.22 -0.01 -0.58
Multi-Strategy 0.22 0.01 0.31 0.30 0.50

Tab. 5.2: Correlations between the Credit Suisse/Tremont Hedge Fund Compositeindex
and the sub-indices, (Increasing correlations - Blue, decreasing correlations - Red)

The results for the inter-strategy correlations with the Hedge Fund Composite Index

were somewhat similar to those with the S&P 500. The correlation of Convertible Arbi-

trage, Fixed Income Arbitrage and Multi-Strategy with the Hedge Fund composite index

was found to increase as the time period increased. The correlation of Dedicated Short

Bias, Managed Futures, Equity Market Neutral and Global Macro to the Composite Index

decreased significantly as the time horizon increased. Hence, these strategies may offerreal

diversificationbenefits over a longer time horizon, while those with increasing correlations
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may actuallyincrease the portfolio risk. We, therefore, examine the effects of the change

in correlations at different time horizons on the efficient frontier of a portfolio made up of

the Hedge Fund strategies in Section 5.3.4.

5.3.3 Systematic Risk Analysis

It was noted, Chapter 2, that systemic risk or Beta for equities is dependent on the scale

studied. We measured the Beta or market risk of various Hedge Fund strategies to the

S&P 500 over different time horizons using the MODWT, (Chapter 3). Once again, the

correlations were calculated for scales 1, 2, 3 and 4 as defined in Section 5.3.2. The results

are displayed in Table 5.3.

Scale Original Data 1 2 3 4

Hedge Fund Index 0.25 0.25 0.21 0.31 0.26
Convertible Arbitrage 0.04 0.01 0.03 0.16 0.19
Dedicated Short Bias -0.90 -0.85 -0.94 -1.22 -1.49
Emerging Markets 0.53 0.52 0.59 0.77 0.63

Equity Market Neutral 0.07 0.07 0.08 0.08 0.04
Event Driven 0.21 0.17 0.22 0.38 0.39

Fixed Income Arbitrage 0.00 0.01 -0.05 0.02 0.08
Global Macro 0.16 0.23 0.11 0.12 -0.01

Long/Short Equity 0.41 0.37 0.39 0.55 0.46
Managed Futures -0.11 0.00 -0.23 -0.22 -0.61
Multi-Strategy 0.03 0.01 0.01 0.05 0.10

Tab. 5.3: Betas of the Credit Suisse/Tremont Hedge Fund indices, (Increasingbeta - Blue,
Decreasing beta - Red)

The Beta of the Composite Hedge Fund Index appears to be reasonably static but the

market riskof its components varies according to strategy. Convertible Arbitrage had a

Beta of0.04 using monthly data, as opposed to0.19 using a16 − 32 month time horizon.

This difference may be due to the fact that there is no exchange for Convertible Bonds and

they are traded “over the counter” and hence can be illiquid and difficult to price.

The Beta of the Emerging Markets strategy increased from0.53 to a maximum of0.77

over an 8-16 month period. This may be due to liquidity constraints in emerging mar-

kets with light markets in equities causing instruments to be marked off non-synchronous
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prices, since the final traded price for an asset may have been before month-end.The effect

of liquidity issues in Emerging Markets has been studied in detail, [Wilcox and Gebbie,

2004]. Another possible factor in the example here might be the difficulty in short-selling

instruments in many emerging markets; hence these funds often employ a more traditional

long-only type strategy.

The market risk of the Event Driven strategy was shown in Table 5.3 to increase from

0.21 to 0.39 over a longer time horizon, as was the case for Equity Long/Short strategy

which increases from0.41 to a maximum of0.55. In both cases these increases could be

due to a number of factors, such as liquidity, the holding period of the manager or the time

for the positions in the portfolios to reach a “fair value”. Another significant consideration

might be the use ofoptionswhich have a non-linear returns profile, [Hull, 2000], and hence

might lead to an overall increase in Beta. Furthermore Long/Short Equity managers may

also hold significant positions in small capitalization stocks or illiquid private securities

which may trade infrequently and hence are difficult to price.

Equity Market Neutral, Fixed Income Arbitrage and Multi-Strategy all appear to have

very small and static levels of market risk over all time horizons. Equity Market Neutral, as

the name suggests, seeks to exploit pricing efficiencies between equity securities while si-

multaneously neutralising exposure to market risk. Fixed Income Arbitrage managers invest

solely in Bonds, (whether sovereign or corporate), and hence have little or no equity market

risk. Multi-Strategy funds implement a dynamic strategy allocation to various Hedge Fund

strategies. All of these strategies should provide good diversification to a portfolio made up

of S&P equities.

The market risk of the Dedicated Short Bias and Managed Futures strategies was found

to decrease by a considerable amount as the time horizon increases. Dedicated Short-Bias

funds are, in a sense, mirrors of traditional long-only managers. The increase in the abso-

lute value of their Beta may be due to excessive leverage inBear Markets1 or the use of

Put Options2 with a non-linear return profile. Managed Futures managers tend to use fore-

1A Bear Market is considered to be a prolonged period in which asset prices fall, accompanied by
widespread pessimism

2A put is an option contract that gives the holder the right to sell a certain quantity of an underlying security
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casting models that depend heavily on past price movements. The time horizons oftheir

trades can vary greatly depending on the individual model’s time horizon; hence this may

have a large impact on the aggregate amount of market risk held at different time intervals.

In fact, both of these strategies proved to be among the best performers during2008, with

Short Bias and Managed Futures returning14.87% and18.33% respectively, [CreditSuisse,

2009]. This was against a background of severe market losses, with the S&P500 losing

38.5% over the same period, [Yahoo, 2009], demonstrating the real diversification benefits

of the strategies.

In summary, the level of market risk held by different strategies varied greatly according

to strategy type and time horizon considered. Given the fact that many funds have minimum

lock-up periods, during which investors cannot liquidate their capital, it is more appropriate

to measure the market risk over longer time intervals. This has obvious consequences for the

allocation strategies of Fund of Funds3 and Institutional investors alike, as we demonstrate

in the following Section.

5.3.4 Efficient Frontier

To enable us to demonstrate graphically the effects of calculating the correlation matrix

of Hedge Funds using different time horizons, we show, (Figure 5.2), the efficient frontier

for each time horizon studied. In the calculation of the efficient frontier we have imposed

constraints on the weights allowed, to prevent short-selling of Hedge Funds. This constraint

is natural in the context of Hedge Funds due to the difficulties in short-selling of funds; (note

that short-selling may be achievable by the use of swaps but is uncommon due to liquidity

constraints in borrowing funds), [Lhabitant, 2002, 2004]. Each of these efficient frontiers

was calculated as described, Section 3.3.1, using the annualised returns and variance from

the original data. Hence, the results we see in Figure 5.2 were purely dependent on the

correlation matrix calculated at each time horizon. The efficient frontiers were constructed

using just the Credit Suisse/Tremont sub-indices.

to the writer of the option, at a specified price up to a specified date
3A HedgeFund which invests in other hedge funds
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Fig. 5.2: Efficient Frontier using Correlation Matrices calculated over differenttime scales

At lower return values, the level of risk calculated for the original data was higher than

that calculated at all other scales. As the return level increased, the risk of the portfolio

(created using the correlation matrix calculated using the monthly returns), decreased rela-

tive to the others. However, the lowest risk portfolio overall was found using a correlation

matrix calculated over a16− 32 month horizon (Scale 4). The implication for Hedge Fund

investors using monthly unfiltered correlations, is anunnecessary increase in portfolio risk.

By using correlations calculated over longer horizons, investors can capture subtle changes

in the relationships between funds and overcome the problem of stale pricing.

These findings have significant implications for investors allocating capital to Hedge

Funds. For investors looking for diversification through investments in Hedge Funds, the

expected correlation benefits may not be found by using unfiltered data. In fact, the ex-

pected risk reduction from investing in different Hedge Fund strategies may result in an

increase in risk due to misleading correlations found using the original data. By filtering
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the data, the effects of stale pricing are mitigated and a realistic view of the true correlation

structureemerges. By adopting a novel filtering technique such as this, Fund of Funds could

enhance their client offerings, lowering portfolio risk while maintaining their expected re-

turns profile.

5.4 Conclusions

Maintaining our novel focus on Hedge Funds and the risk exposure which can be deter-

mined from an examination of the correlation structure for coarse/fine grained time series,

we investigated strategies in detail to determine diversification benefits over different scales.

Correlation and market risk were found to be scale dependent between Hedge Fund sub-

strategies and both the S&P 500 and the Hedge Fund composite index. In particular, the

correlation between Convertible Arbitrage, Fixed Income Arbitrage and Multi-Strategy and

both the S&P and Hedge Fund Composite index was found to increase as the time scale

increased, while Dedicated Short Bias, Equity Market Neutral, Global Macro and Managed

Futures strategies were found to decrease.

The level of market risk held by different Hedge Fund strategies was also found to

be highly dependent on the time horizon studied. For Convertible Arbitrage, Emerging

Markets, Event-Driven and Long/Short Equity it was found to increase as the time scale

increased, while a decrease in market risk was found for Dedicated Short Bias, Global

Macro and Managed Futures.

Given the minimum lock-up times applicable to many Hedge Funds, this means that it

may be more suitable when assessing risk to use correlation matrices calculated using longer

time scales. To demonstrate this, we calculated the efficient frontier for four different time

scales, as well as for the original, (unfiltered data), for a portfolio constructed from the sub-

strategies. Specifically, the level of risk for a portfolio of funds attained it’s lowest value

over16− 32 months. This scale is significant as Hedge Funds often have lock-up period of

12 − 24 months during which investors cannot withdraw their invested capital, [Lhabitant,

2002], so that calculation of correlations over a similar horizon is more appropriate.

67



CHAPTER 6

CROSS-CORRELATION DYNAMICS IN

FINANCIAL TIME SERIES

Previous Chapters have dealt with correlation structures from low-frequency time-series,

in particular those formed from Hedge Fund returns. We have shown that it is possible to

extract real correlation information from a matrix constructed using low-frequency returns,

while also developing a technique to examine the scaling effects on Hedge Fund correla-

tions, [Conlonet al., 2007, 2008]. These approaches were applied to the risk management

of a portfolio of Hedge Funds.

In this Chapter, we turn our attention to the dynamical changes in correlations between

financial assets, [Conlonet al., 2009]. Matrices formed from medium-frequency data (daily

equity returns) are analysed, to investigate whether changes in the correlation structure of

a complex interacting system can be applied to risk characterisation. This analysis is per-

formed for varying time windows and number of stocks in the sample, in order to demon-

strate the results for different levels of granularity.

A basic one-factor model is then proposed, to develop some insight into the formation

of the correlation structure in financial markets. Perturbations are added to the one-factor

model, (leading to a ‘market plus sectors’ model), in order to determine which eigenspec-

trum features are a result of sectoral interactions. The Inverse Participation Ratio is also

compared to that found for empirical data.

Further, we examine the relationship between index returns and relative eigenvalue size,

to provide some insight on the collective behaviour of traders with varying strategies and
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consider how changes, in collective behaviour, are dependent on the level of perceived risk

in the market.

6.1 Data

In order to study the dynamics of the empirical correlation matrix over time, we chose to

analyse two different data sets. The first data set comprises the384 equities of the Standard

& Poors (S&P)500, [Standard and Poor’s, 2009], where full price data is available from

January1996 to August2007 resulting in2938 daily returns, Fig. 6.1(a). The S&P500 is

an index consisting of500 large capitalisation equities, which are predominantly from the

US. The advantage of this first dataset is that the components are well-regarded, frequently

traded and liquid, giving us a robust framework to study correlation dynamics.
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Fig. 6.1: (a) S&P500Index, Jan.1996 to Aug. 2007 (b) Dow Jones Euro Stoxx50 Index,
Jan.2001 - Aug. 2007

In order to demonstrate that our results are not market specific, however, we also ex-

amined a second data set, made up of the 49 equities of the Dow Jones Euro Stoxx50,
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[Dow Jones, 2009], where full price data is available from January2001 to August2007

resulting in1619 daily returns, Fig. 6.1(b). The Euro Stoxx 50 is a stock index of Eurozone

equities designed to provide a blue-chip representation of supersector1 leaders in the Euro-

zone. In contrast to the first data-set, the components of this index are from various nations,

introducing an additional factor of interest, namely country dependent interactions.

6.2 Methods

Initially, the correlation matrix and associated eigenvalues are calculated using a sliding

window approach, Section 3.2. By repeatedly calculating the eigenspectrum using a sliding

window approach, eigenvalue time-series are formed. Changes in the relative size of the

eigenvalues are indicative of changes within the correlation structure, Section 3.5.

In order to examine the dependence of the eigenvalue dynamics on the sample size,

N , the length of the time series,T , and hence the ratioQ = T
N

, we perform a number of

experiments. Initial analysis focuses on changes in the size of the eigenspectrum, with more

detailed studies then looking at the eigenvalues normalised in time. The normalisation,

Section 3.5, is carried out using the mean and standard deviation of each of the eigenvalues

over the entire time-period. Note that other choices for these, such as during a low-volatility

sub-period, would have resulted in a greater emphasis during volatile periods.

To compare the empirical results presented here to those of a single factor model, we

construct a correlation matrix with each non-diagonal element equal to the average of the

empirical correlation matrix in each sliding window, using Cholesky decomposition. We

then calculate and normalise the eigenvalues of this matrix over each sliding window, (Sec-

tion 3.5).

Drawdown analysis requires the calculation of returns, correlation matrix and eigen-

value spectrum time-series for overlapping windows and these are, again, normalised using

the mean and standard deviation over the entire series, (Eqn. 3.19). Representing nor-

1Supersectorcompanies are the largest in the sector by market capitalisation. For example, in the European
Energy Sector,British Petroleum,Total andRoyal Dutch Shellaccount for62% of the total ‘large cap’ market
capitalisation, [Yahoo, 2009], and are considered representative of the sector.
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malised eigenvalues in terms of standard deviation units (SDU) allows partitioning accord-

ing to their magnitude.

6.3 Results

Eigenvalue dynamics of the correlation matrix of a subset of100 S&P equities, chosen

randomly, were analysed using a sliding window of200 days. This subsector was chosen

such thatQ = T
N

= 2, to ensure that data would be stationary in each sliding window.

Figure 6.2(a) shows broadly similar sample dynamics from the5th, 15th and25th largest

eigenvalues over each of these sliding windows. The sum of the80 smallest eigenvalues are

shown in Figure 6.2(b), while the dynamics of the largest eigenvalue are displayed in Figure

6.2(c). The repulsion between the largest eigenvalue and the small eigenvalues are evident

here, (comparing 6.2(b) and 6.2(c)), with the dynamics of the small eigenvalues contrary to

those of the largest eigenvalue. As noted, (Section 3.5), this is a consequence of the fact

that the trace of the correlation matrix must remain constant under transformations and any

change in the largest eigenvalue must be reflected by a change in one or more of the other

eigenvalues. Similar results were obtained for different subsets of the S&P and also for the

members of the Euro Stoxx50.

6.3.1 Normalised Eigenvalue Dynamics

The use of time-normalised eigenvalues to highlight the dynamics of the smaller eigen-

values was described, by Eqn. 3.19. Using these normalised eigenvalues, we performed a

number of experiments to investigate the dynamics of a set of small eigenvalues versus the

largest. For each of the experiments described below, we plot the largest and the average

of a number of the small eigenvalues, in addition to a heat map of the entire normalised

spectrum over time.

1. The dynamics for the same subset of100 equities were analysed using a sliding win-

dow of 200 days, as above, with similar normalisation criteria using the mean and
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from Jan.1996 to Aug. 2007

standard deviation of each of the eigenvalues over the entire time-period. Figure

6.1(a) shows the value of the S&P index from1997 to mid−2007.

The normalised largest eigenvalue is displayed, Figure 6.3(a), together with the av-

erage of the 80 normalised small eigenvalues. The compensatory dynamics men-

tioned earlier are shown clearly here, with these showing opposite movements. The

normalised eigenvalues for the entire eigenvalue spectrum are shown, Figure 6.3(b),

where the colour indicates the number of standard deviations from the time average

for each of the eigenvalues over time. As shown, there appears little to differentiate

the dynamics of the80 − 90 or so smallest eigenvalues. In contrast, the behaviour of

the largest eigenvalue was clearly opposite to that of the smaller eigenvalues. How-

ever, from the90th and subsequent eigenvalue there was a marked change in the
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values (b) All Normalised Eigenvalues (c) Largest 12 Normalised Eigenvalues for a random
subset of100 companies of the S&P500from Jan.1996 to Aug. 2007

behaviour, (Figure 6.3(c)), and the eigenvalue dynamics were distinctly different.

This may correspond to the area outside the “Random Bulk” in RMT. Similar to

[Drozdzet al., 2000, 2001a], we also found evidence of an increase/decrease in the

largest eigenvalue with respect to ‘drawdowns’/‘draw-ups’. Additionally, we found

the highlightedcompensatory dynamicsof the small eigenvalues. These results were

tested for various time windows and normalisation periods, with shorter durations

found to be better able to capture and emphasise additional features.

To illustrate the value of the above results, we look at the dynamics of the largest

normalised eigenvalue over time, Fig. 6.3(a). In particular, the largest normalised

eigenvalue increased from the beginning of2001 to mid 2003, corresponding to the

bursting of the ‘tech’ bubble and the start of the second gulf war. This increase in the

largest eigenvalue corresponds to an increase in the global system correlation, Sec-
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tion 3.5, with more agents acting in the same fashion during times of market stress.

During times of market stress, there tends to be a greater synchronisation between

the behaviour of traders (in particular, traders tend to sell at the same time), while

during normal periods equities become less correlated. Results using the minimum

spanning tree have shown similar effects with the size of the tree shown to shrink

during market drawdowns, [Onnelaet al., 2003].

2. To demonstrate the above result for adifferent level of granularity, we randomly

chose50 equities with a time window of500 days, givingQ = T
N

= 10. The results

obtained, (Figure 6.4), were in agreement with those forQ = 2 earlier, with a broad-

band increase (decrease) of the40 smallest eigenvalues concurrent with a decrease

(increase) of the largest eigenvalue.
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Fig. 6.4: (a) Normalised Largest Eigenvalue vs. Average of 40 smallest normalisedeigen-
values (b) All Normalised Eigenvalues for a random subset of50 companies of the S&P500
from Jan.1996 to Aug. 2007

3. The previous examples used random subsets of the S&P universe in order to keep

Q = T
N

aslarge as possible. To demonstrate that the above results were not sampling

artifacts, we also looked at the full sample of384 equities, (ie those that survived the
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entire11 yearperiod), with a time window of500 days, (Q= 1.30). The results,

as shown in Figure 6.5, were similar to before, (Figs. 6.3-6.4), with the majority of

the small eigenvalues compensating for changes in the large eigenvalue. As indicated

previously, however, there are a few large eigenvalues which exhibited anomalous

behaviour compared to both the small and largest eigenvalues.
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Fig. 6.5: (a) Normalised Largest Eigenvalue vs. Average of325 smallestnormalised eigen-
values (b) All Normalised Eigenvalues for a subset of384 companies of the S&P500from
Jan.1996 to Aug. 2007

4. All examples discussed so far have focused on the universe of equities from the S&P

500 that have survived since1997. To ensure that the results obtained were not ex-

clusive to the S&P500, we also applied the same technique to the49 equities of the

Euro Stoxx 50 index that survived from January2001 to August2007, Fig. 6.1(b).

The sliding window used was200 days, such thatQ = 4.082. The results, (Figure

6.6), were broadly confirmatory, with a wide band of small eigenvalues “responding

to” movements in the largest eigenvalues. In this case, the band of deviating large

eigenvalues (ie. those which correspond to the area outside the “Random Bulk” in

RMT), (Figure 6.6(c)), was not as marked as in the previous example. This effectively
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implies that equities in this index were dominated by “the Market”. This occurs due

to thesmall number of stocks in the data set, which effectively reduces the amount of

inter-sector interaction within the system.
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Eigenvalues from Jan.2001 to Aug. 2007

6.3.2 Model Correlation Matrix

The results, described, demonstrate that thetime dependent dynamics of the small eigenval-

ues of the correlation matrix of stock returns move counter to those of the largest eigenvalue.

While not a new idea, this is important in our context because, by analysing changes in the

small eigenvalues, we are able to determine changes in the global correlation structure. The

value of modelling such features is that we gain some insight into the group behaviour of

agents during different market types. Here, we look at possible suitable model forms to
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understand this behaviour, Section 3.5.1. We show how a simple one-factor modelof the

correlation structure reproduces much of the empirical behaviour. Furthermore, we show

how additional features can be captured by including perturbations to this model, essen-

tially a “market plus sectors”model, [Noh, 2000; Malevergne and Sornette, 2004; Papp

et al., 2005].
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The dynamics of the largest eigenvalue for the single-factor model are displayed in

Figure 6.7(a) for the Euro Stoxx 50 index using a sliding window of200 days. As can be

seen, the main features of the dynamics were in agreement with those of Figure 6.6 for the

empirical data. The dynamics of the remaining eigenvalues, shown in Figure 6.7(c), were

found to be within a narrow range, with any change in time due to compensation for change

in the largest eigenvalue.
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For the ‘market plus sectors’ model, we introduced perturbations with two groupsof 5

stocks having correlationρ0−0.15 andρ0 +0.15, with the average correlation at each time

window remaining the same. The largest eigenvalue dynamics for the ‘market plus sectors’

model are shown in 6.7(b), with these almost identical to those for the largest eigenvalue

of the ‘one-factor’ model, (any differences are due to random fluctuations induced in the

Cholesky decomposition). However, looking at the remaining eigenvalues, 6.7(d), we see

that a number were found to deviate significantly from the bulk. These deviations were

ascribable to the additional sectoral information included in the market plus sectors model.

This agrees with previous results, [Plerouet al., 2000a; Utsugiet al., 2004], where small

eigenvalues, corresponding to highly correlated stocks as well as large eigenvalues contain-

ing sectoral information were found to deviate from the random bulk.

Inverse Participation Ratio

To examine properties of the eigenvector components themselves, we use the Inverse Par-

ticipation Ratio (IPR), Chapter 3.4.2. Figure 6.8(a), displays the IPR found using the em-

pirical data from the Euro Stoxx50. This has similar characteristics to those found for

different indices, [Plerouet al., 2000a], with the IPR (i) much smaller than the mean for the

largest eigenvalue, (ii) large corresponding to sectoral information in the2nd or 3rd largest

eigenvalues and (iii) increased for the small eigenvalues. These features correspond to real

correlation information found in the eigenvectors, similar to those found for Hedge Funds,

Chapter 4. A small IPR indicates that all the eigenvector components contribute equally,

while an IPR larger than the average corresponds to an eigenvector where only a small

number of components contribute.

For the single factor model, we created asyntheticcorrelation matrix using Eqn. (3.20),

with average correlation(0.204) equal to that of the Euro Stoxx50 over the time period

studied. Using an average value captures the global correlation within the system. As shown

in Figure 6.8(b), the IPR retains some of the features found for empirical data, [Plerou

et al., 2000a; Noh, 2000], with that corresponding to the largest eigenvector having a much
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smaller value than the mean. This corresponds to an eigenvector to which many stocks

contribute, (effectively the market eigenvector), [Plerouet al., 2000a; Noh, 2000].

For the ‘market plus sectors’ model, Figure 6.8(b), additional features were found, with

larger IPR for both smallest and second largest eigenvalue. This agrees with [Plerouet al.,

2000a] where, for empirical data, the group structure resulted in a number of small and large

eigenvalues with larger IPR than that of the bulk of eigenvalues. These large eigenvalues

were shown, [Plerouet al., 2000a], to be associated with correlation information related to

the group or sectoral structure.

6.3.3 Drawdown Analysis

As discussed above, drawdowns, (periods of large negative returns), tend to reflect an

increase of one eigenstate of the cross-correlation matrix. The opposite occurs during

drawups, (periods of predominantly positive returns). In this section, we attempt to char-

acterise the market according to the relative size of both the largest and small eigenvalues,
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using stocks of the Euro Stoxx 50. Due to the small number of stocks in this index,it was

unnecessary to choose a subset to ensureQ = T
N

waslarge.

Eigenvalues No. Std Index Return

<-1 18.46%
Large

>1 -16.80%
<-1 -23.90%

Average 40 Smallest
>1 19.32%

Tab. 6.1: Drawdown/Drawup analysis, average index returns for eigenvalue partitions in
SDU.

Using overlapping windows of200 days, returns, correlations and eigenvalue spectrum

were calculated. Table 6.1 shows the average return of the index, (during periods when

the largest eigenvalue is±1 SDU), for both the largest eigenvalue and the average of the

(normalised)40 smallest eigenvalues.

The results, Table 6.1, demonstrate that when the largest eigenvalue is> 1 SDU, the

average index return over a200 day period is found to be−16.80%. When it is small (<−1

SDU), the average index return is18.46%. Hence,the largest eigenvalue can be used to

characterise the risk of markets, with it’s value peaking during periods of negative returns

(Drawdowns) and bottoming out when the market is rising (Drawup). For the average of

the40 smallest eigenvalues, the partition also reflected drawdowns and drawups, but with

opposite signs. This indicates thatinformation about the correlation dynamics of financial

time series is visible in both the lower and upper eigenstates, in agreement with [M̈uller

et al., 2005; Schindleret al., 2007a] for both synthetic data (and interestingly, for EEG

seizure data). In fact, the returns found using the small eigenvalues were more marked than

those of the largest eigenvalue, perhaps suggesting that the small eigenvalues changes are a

better indicator of changes in the synchronisation structure between equities.

6.4 Conclusions

The correlation structure between medium-frequency multivariate financial time-series was

studied by investigation of the eigenvalue spectrum associated with the equal-time cross-
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correlation matrix. Using sliding windows to filter the correlation matrix, we have examined

behaviour of the largest eigenvalue over time. The largest eigenvalue is shown to move

counter to that of a band of small eigenvalues, due toeigenvalue repulsion. A decrease in

the largest eigenvalue, with a corresponding increase in the small eigenvalues, corresponds

to a redistribution of the correlation structure across more dimensions of the vector space

spanned by the correlation matrix. Hence, additional eigenvalues are needed to explain the

correlation structure in the data. Conversely, when the correlation structure is dominated by

a smaller number of factors (eg. the “single-factor model” of equity returns), the number

of eigenvalues needed to describe the correlation structure in the data is reduced. Building

upon previous work, [Drozdzet al., 2000, 2001a], this means that fewer eigenvalues are

needed to describe the correlation structure of ‘drawdowns’ than that of ‘draw-ups’.

By introducing a simple ‘one-factor model’ of the cross-correlation in the system, we

were able to reproduce the main results of our empirical study. The compensatory dynam-

ics, described, were clearly seen for a correlation matrix with all elements equal to the

average of the empirical correlation matrix. The one-factor model was then adapted, by

the addition of perturbations to the correlations, with the average correlation remaining un-

changed. This ‘markets plus sectors’ type model was able to reproduce additional features

of the empirical correlation matrix with eigenvalues deviating from below and above the

bulk. The Inverse Participation Ratio of the “markets plus sectors” model was also shown

to have group characteristics typically associated with known Industrial Sectors, with a

larger than average value for the smallest eigenvalue and for the second largest eigenvalue.

Through a partition of the time-normalised eigenvalues, it was then shown quantitatively

that the largest eigenvalue is greatest/smallest during drawdowns/drawups, and vice versa

for the small eigenvalues,demonstrating the potential of the correlation matrix in risk char-

acterisation. Further, the increase in the largest eigenvalue and corresponding increase in

correlation, demonstrates theuniversal collective behaviour of traders during drawdowns.

When the market is increasing, traders tend to pursue less universal strategies, exemplified

by the reduction in correlation explained by the largest eigenvalue.
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CHAPTER 7

MULTISCALED CROSS-CORRELATION

DYNAMICS IN FINANCIAL TIME-SERIES

In previous chapters, we applied the cross-correlation matrix, calculated usinglow and

medium frequency financial data, both for risk diversification and characterisation purposes.

In Chapter 6, we demonstrated how the correlation dynamics between stocks could be de-

tected by analysing both the largest and small eigenvalues over time. Using this, we then

demonstrated how the correlation matrix could be used in risk characterisation, by showing

that the largest eigenvalue peaks during periods of market distress, (drawdowns), with the

smallest eigenvalues peaking during boom periods (draw-ups), [Conlonet al., 2009]. In this

Chapter, drawing on some of our previous discussed methods and results, (Chapters 5 & 6),

we use the Maximum Overlap Discrete Wavelet Transform (MODWT), to calculate correla-

tion matrices over different time scales for both medium and high-frequency data and then

explore theeigenvalue spectrumover sliding time windows. The dynamics of the eigen-

value spectrum at different scales provides insight into the time horizons of the numerous

constituents involved in the interactions and this is important because, by analysing relative

changes across time-scales we obtain an insight into the ‘herd’ behaviour, (and associated

shortening of time horizons), especially during extreme financial events.

The entire eigenspectrum is intrinsically important in terms of understanding the role of

the correlation matrix in risk characterisation. On partitioning the eigenvalue time-series,

we investigate the behaviour of the largest eigenvalue, measured at different scales, during

drawdowns. Further, we examine the effect of different market types on the dynamics of

82



the small eigenvalues, to determine whether correlation changes at a particularscale might

be visible at this end of the spectrum.

7.1 Data

The first of our two data sets comprises the49 equities of the Dow Jones Euro Stoxx 50

(SX5E) where full price data is available from May1999 to August2007, resulting in2183

daily returns. The Euro Stoxx 50 is a market capitalisation weighted index of50 European

blue-chip stocks from countries participating in the European monetary union. This index

was chosen for this analysis as the number of stocks is small, allowing us to calculate cross-

correlation matrices for small time windows, without reducing the rank of the matrix.

The second data set studied involved high-frequency equity returns and comprised all

50 equities of the SX5E from8am on April 2nd 2008 to4.30pm on October20th 2008, with

each day made up of approximately450 minutes of data, Fig. 7.1. All times are in terms

of GMT and equities from outside of this time-zone were aligned to coincide. The total

dataset consisted of51376 one-minute returns and were of particular interest with respect

to the insight offered into the current extreme market events.
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Fig. 7.1: DJ Euro Stoxx Index, April2nd 2008 to October20th 2008
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7.2 Methods

As in Chapter 5, we used the asymmetric (LA) wavelet (known as the Symlet) which ex-

hibits near symmetry about the filter midpoint. The MODWT was again implemented using

theWMTSA Wavelet Toolkitfor Matlab, [Percival and Walden, 2000]. The filter width cho-

sen for this study was the LA4, (where the 4 refers to the width of the scaling function),

since it enabled us to accurately calculate wavelet Betas and Correlations to the3rd scale

given the length of data available. Although the MODWT, Section 3.6, can accommodate

any levelJ0, in practise the largest level is chosen so as to prevent decomposition at scales

longer than the total length of the data series, hence the choice of the4th scale.

For the medium frequency data, the eigenvalue spectrum was found, using a sliding

window approach with a window of100 days. This window was chosen such thatQ =

T
N

= 2.04, thus ensuring that the data would be close to stationary in each sliding window

(Different values ofQ were examined, with little variation in the results).

Using the high-frequency SX5E returns, the correlation matrix and associated eigen-

spectrum dynamics were found using a moving window of1500 minutes. This time-

window was chosen in order to reduce the effects of non-stationarities due to non-continuous

time, by including market changes over3 days. As markets are only open for8.5 hours per

day, new information can result in large jumps at market open. In fact, for smaller window

choices, we found that the correlation dynamics were dominated by interday ‘jumps’. The

choice ofT = 1500 resulted inQ = T
N

= 30, resulting in an interesting comparative to the

range of1.3 ≤ Q ≤ 10 studied previously.

The eigenvalue normalisation was carried out as for Chapter 6, expressed in terms of

standard deviation units (SDU).
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7.3 Results

7.3.1 Medium Frequency Eigenvalue Dynamics

We analysed the dynamics of the cross-correlations between stocks, calculated at different

time scales, through the use of the eigenvalue spectrum. We first considered, Fig. 7.2,

the dynamics of the largest eigenvalue at each time scale, calculated using a sliding time

window of 100 days. Fig. 7.2(a) shows the value of the DJ Euro Stoxx 50 Index over the

period studied. Fig. 7.2(b) displays the largest eigenvalue, calculated using the unfiltered

(one day) time-series data for different time windows. As shown, the largest eigenvalue was

far from static, rising from a minimum of7.5 to a maximum of30.5 from early2001 to late

2003, (coinciding with the bursting of the “tech” bubble). This corresponds to an increase

in the influence of the “Market”, with the behaviour of traders becoming more correlated.

The next major increase occurred in early2006, followed by a relatively quick decline until

the beginning of the “Credit Crunch” in2007. Similar to Drozdzet al. [2000], we note

an increase in the value of the largest eigenvalue during times of market stress, with lower

values during more “normal” periods.

We next calculated, using the MODWT (Section 3.6), the value of the largest eigenvalue

of the cross-correlation matrix over longer time horizons of3, 6 and11 days (Fig. 7.2(c-e)).

The rational is that certain traders, (such as Hedge Fund managers), may have very short

trading horizons while others, (such as Pension Fund managers), have much longer hori-

zons. In looking at the value of the largest eigenvalue at different scales, we are attempting,

for the first time, to characterise the impact of these different trading horizons on the cross-

correlation dynamics between large capitalisation stocks. In Fig. 7.2(c-e), we see that the

main features found in the unfiltered data were preserved over longer time scales. How-

ever, certain features, such as the sizeable drop in the largest eigenvalue at the longest scale,

(Fig. 7.2(e)), in late2003, were not seen at shorter scales. The aggregate impact for the

unfiltered data is, nevertheless, a moderate drop. Other features, such as the increase in

2006, were not preserved across all scales. The different features, found at various scales,

suggest that thecorrelation matrix is made up of interactions between stocks, traded by
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investors with different time horizons. This has implications for risk management, as the

correlation matrix used for input in a portfolio optimisation should be appropriate to the

investor’s time horizon. By first decomposing the time-series, we have developed a novel

method to consider these interactions in both time and scale.

The repulsion, (between eigenstates of the cross-correlation matrix as the level of syn-

chronisation between time-series increases), has been demonstrated previously for artificial

and EEG time-series, [M̈ulleret al., 2005], and by us for financial data, [Conlonet al., 2009]

and in the previous Chapter. In Fig. 7.3, we compare the normalised largest eigenvalue for

sliding windows of100 days with the average of the normalised40 smallest eigenvalues

over different time scales. The normalisation was carried out as previously, to allow com-

parison of eigenvalues at both ends of the spectrum. The normalised largest eigenvalue
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preserved features, such as the increase from early2001 to late2003, previously identified

for the largest eigenvalue, with eigenvalue repulsion also demonstrated. The large/small

eigenvalues were shown to increase/decrease respectively from2001 to 2003 across all

scales, demonstrating that changes in the correlation structure can also be detected in the

small eigenvalues.
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Eigenvalue Ratios

Redistribution of the correlation structure across the eigenvalue spectrum was also captured

usingratios of eigenvalues. Fig. 7.4 shows the ratio of the largest eigenvalue to the second

largest eigenvalue, (again calculated using sliding windows of100 days), for the original

unfiltered data and for correlation matrices calculated with data corresponding to3, 6 and
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11 days. For unfiltered data, the ratio was found to gradually increase for the period from

2000 to 2003, corresponding to greater importance of the largest eigenvalue, followed by

a large decrease, corresponding to the bursting of the ‘tech bubble’ followed by the rela-

tively sanguine period that followed. At higher scales (6 and11 days), the ratio was found

to increase more abruptly from mid2002 implying that long and short timescales capture

different features of the correlation structure. Importantly, this behaviour may be a flag of

structural correlation changes that could act as a barometer of a change in investor percep-

tion. However, this interpretation can only be tentative due to the relatively small amount

of data studied and the analysis of high-frequency data might reveal more.
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The distinct features and abrupt changes visible in the dynamics of eigenvalue ratios,

can be explained by the variation in the2nd largest eigenvalue over time. In the context
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of the analysis that we performed using deviating eigenvalues from RMT, the information

containedin the second largest eigenvalue may correspond to distinctly differentsectors

at the various scales. This has important implications for portfolio optimisation, where

correlation between assets is a fundamental input, Section 3.3. If the average correlation

between a given asset and others in a portfolio is raised at longer scales, then this asset may

not be such a good diversifier and, in fact, may increase the risk of the portfolio. Examples

of this were seen in Chapter 5, where the correlation of strategies such as Equity Long/Short

increased over longer scales.

7.3.2 High Frequency Eigenvalue Dynamics

The eigenvalue dynamics, found using medium-frequency data, demonstrated that addi-

tional features of the correlation between equities are revealed as the time-scale used in

the calculation is adjusted. High-frequency eigenvalue dynamics for the largest normalised

eigenvalue, (normalised over the entire period), and the average of the normalised40 small-

est eigenvalues are shown in Fig. 7.5. The dynamics using the original data are given,

Fig 7.5(a), while Fig 7.5(b-d) were constructed using longer scales. It is evident that addi-

tional features emerge for longer scales, with much larger variation at the2807 minute or

≈ 6 day scale.

Of particular interest is the small disparity between the original data and that calculated

using the7 minute scale. In fact, this apparent disparity occurred for a variety of scales, up

to daily. Beyond this daily scale, distinct dynamics emerged, Fig 7.5(c-d), highlighting the

changes in correlation structure that occur at longer time-frames. This characteristic time-

period for settled pattern emergence (approximately1 day), may however, be attributable

to the discontinuities in the data. As evident in Fig 7.5(a-b), changes in the eigenvalue

structure tends to occur in ‘jumps’, (discontinuites in trading time are one factor). However,

at scales corresponding to3 and6 days, Fig 7.5(c-d), the jumps are less evident as the

discontinuities are smoothed over the extended period.

Looking more closely at the results, we found that the discontinuities at low scales
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Fig. 7.5: Largest eigenvalue for (a) original data (b) 7 min scale (c)≈ 3 dayscale (d)≈ 6
day scale, calculated using high-frequency Euro Stoxx 50 data, April2nd to October20th

2008

corresponded exactly with jumps in the market, such at those that occur when markets open

or when news is released. At longer scales, the relationship was less obvious. However, the

distinct rise in the largest eigenvalue at longer scales, corresponded to a large increase in

correlation as the market dropped consistently, (see Fig. 7.1). At scale3, (6 days), the sharp

upward movement near the end lagged behind a similar rise at scale2, (3 days), but was

more abrupt. In practical terms traders are known to choose positions based on their trading

strategies, acceptable risks and market conditions. The differences in eigenvalue dynamics

evident at these scales may be the result of the competing time horizons of different agents

involved in the market.
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7.3.3 Drawdown analysis

As indicated earlier, drawdowns, (or periods of large negative returns), and drawups, (peri-

ods of large positive returns), tend to be accompanied by an increase in different eigenstates

of the cross-correlation matrix. Similar to the analysis of Chapter 6, we again look for

evidence of market behaviour in terms of fluctuations in the eigenspectrum. The average

return of the index is shown in Table 7.1, (during periods when the largest eigenvalue is

±1 Standard Deviation Unit (SDU)), for both the largest eigenvalue and the average of the

normalised40 smallest eigenvalues.

Eigenvalues No. Std Unfiltered 1 2 3

<-1 6.4% 2.5% 8.5% 10.4%
Large

>1 -9% -10% -9.3% -7.6%
<-1 -9.6% -9.8% -12% -8.4%

Average 40 Smallest
>1 10% 9.6% 8.2% 8%
<-1 1.5% 0.4% 7.7% 6.4%

Ratio 1
>1 -6.2% -7.2% -9.0% -7.2%
<-1 3.2% 3.5% -1% 6.9%

Ratio 2
>1 -5.6% -4.7% -5.9% -3.8%

Tab. 7.1: Drawdown/Drawup analysis. Average Index Returns when variouseigenvalue
partitions in SDU are> 1 and< −1. Ratio1 is that of the largest eigenvalue to the2nd

largest, while Ratio2 is the largest eigenvalue to the sum of the40 smallest eigenvalues.

Looking first at the original or unfiltered data, we found that when the largest eigenvalue

is> 1 SDU, the average index return was found to be−9%. In contrast, when it was< −1

SDU, the average index return over each of the time windows was6.4%. This allowed us

to characterise the market into drawdowns and drawups by examining the relative size of

the eigenvalues. For the average of the40 smallest eigenvalues, the partition reflected more

marked drawdowns and drawups but with opposite signs. This indicates that information

on the interaction between traders, captured in the correlation dynamics, is visible in both

the lower and upper eigenstates.

Table 7.1 also shows the average index returns for partitioned eigenvalues, calculated

using data at the longer scales (3,6 and11 days). The results show that characterisation

of the largest eigenvalue, (well above average during drawdowns and well below during
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drawups) wasconsistentacross scales. The opposite was found to occur for the small

eigenvalues. The implication is that thecorrelation structure between stocks is less depen-

dent on the trader’s time horizon than on the current state of the market. This is in contrast

to the results found at high-frequency, where eigenvalue dynamics varied markedly across

scales. However, the high-frequency sample was from a unusual period of rapid market

decrease and may not have captured the full agent behaviour.

In Table 7.1, we also present the ratio of the largest eigenvalue to the second largest,

(normalised over time as above). For the unfiltered data, the ratio was found to be largest

during periods of negative returns and smallest during periods of positive return, again im-

plying that themarket effect dominates during drawdowns. This was seen across all scales

with larger absolute values of the returns found at larger scales, implying that correlations,

calculated using longer time scales, may be more sensitive to market behaviour. The ratio

of the largest eigenvalue to the sum of the forty smallest eigenvalues is also shown in Ta-

ble 7.1. This ratio was less sensitive than that shown in Figure 7.4, with values found to

vary from0.22 to 2.02. However, there is still evidence that negative returns occur during

periods when the largest eigenvalue is much greater than the sum of the small eigenvalues.

The opposite, though less marked for positive returns, is also indicated.

7.4 Conclusions

The multiscale correlation structure of both medium and high-frequency multivariate finan-

cial time-series was studied by investigation of the eigenvalue spectrum of the equal-time

cross-correlation matrix. This analysis revealed some of the risk characteristics, associ-

ated with the correlation structure between stocks, and shed some light on the various time

horizons involved in the underlying interactions. Observations may be summarised as:

1. Using the MODWT and a sliding window, the dynamics of the largest eigenvalue

of the correlation matrix were examined and shown to be time-dependent (Fig. 7.2).

Similar dynamics were visible across all scales, but with particular features, such

as the sizeable drop in the largest eigenvalue in2003, markedly apparent at certain
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scales. This suggests that the correlation matrix between stocks comprises interac-

tionsbetween traders with different time horizons.

2. Large and small eigenvalues demonstrated the expected repulsion across all scales

(Fig. 7.3). It is possible to characterise the correlation structure of the system with

just the small eigenvalues, because of this repulsion.

3. An initial study of high-frequency data, revealed little change in the eigenvalue dy-

namics over shorter scales, with additional dynamical features emerging at a charac-

teristic time of approximately one day. This characteristic time may be due to the

discontinuities associated with ‘trading hours’. A more detailed study is needed to

confirm this behaviour.

4. A partition of the time-normalised eigenvalues demonstrated quantitatively that the

largest eigenvalue is greatest/smallest during drawdowns/drawups.Small eigenvalues

were, in general, found to bemore sensitive than large eigenvalues to behaviour of the

market, with this persisting across all scales. This suggests that the underlying state

of the market is more important to the correlation structure than the time horizons of

different traders.

93



CHAPTER 8

MULTISCALE EEG CORRELATION

DYNAMICS

Risk management is not unique to financial markets. In fact, it is intrinsic to a wide range

of fields including engineering, industrial processes and medicine. In particular, the moni-

toring and control of certain medical and neurophysiological conditions is dependent upon

‘early warning’ systems, often employing signal processing techniques. In previous Chap-

ters, we demonstrated the application of methods based on the correlation matrix for risk

reduction and characterisation in complex financial systems, [Conlonet al., 2007, 2008,

2009]. We showed how a correlation matrix, cleaned according to Random Matrix Theory

principles, could be used to reduce realised risk in a portfolio optimisation. The scaling

characteristics of low-frequency Hedge Fund correlations were then explored with appli-

cations in risk management for a Portfolio of Hedge Funds. Using medium frequency

financial returns, we then showed how the correlation matrix and associated eigenspectrum

could be used in the characterisation of markets according to their risk. By the application

of wavelet multiscaling techniques we investigated the scaling effects on this risk character-

isation. In some instances, early targets for the ideas explained, particularly for risk char-

acterisation, were Neurological systems and, in this Chapter, we explore this comparative

example. The aim is to build on earlier analysis of these systems, using the scale dependent

correlation analysis we developed above to characterise the risk of epileptic seizures. This

application serves also to demonstrate the inter-disciplinary nature of Complex Systems re-

search and emphasises the value of the cross-correlation matrix formalism in areas outside
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of finance. It also raises interesting questions on which commonality of featuresis essential

for informative applicability of techniques across disciplines.

The characterisation of epileptic seizures has the potential to assist in the design of tar-

geted pharmaceutical seizure prevention techniques and pre-surgical evaluations. In this

Chapter, we use the cross-correlation dynamics between electroencephalographic (EEG)

channels in order to develop an early warning system for epileptic seizures. The Maxi-

mum Overlap Discrete Wavelet Transform (MODWT) is applied in order to separate the

EEG channels into their underlying frequencies. The dynamics of the cross-correlation

matrix between channels, at each frequency, are then analysed in terms of the eigenspec-

trum. By examination of changes in the eigenspectrum structure, we investigate the pos-

sibility of identifying frequency-dependent changes in the correlation structure between

channels, which may be indicative of Seizure activity. Further, the energy associated with

each wavelet scale is examined, to help distinguish the scales important during seizure ac-

tivity. Additional features are highlighted and results discussed in the comparative context.

8.1 Background

Seizure occurrence is associated with changes in the level of interaction between neurons

(agents). By reducing or countering the level of interaction between neurons, it may be

possible to reduce the risk of an epileptic seizure occurring. Neurophysiological systems

have many features in common with other Complex Systems, such as interacting, dynamic

agents with heterogeneous characteristics. In previous chapters, we have applied the lin-

ear correlation measure to examine the synchronisation between different agents within a

complex dynamic financial system. The primary risk in the case of seizures is clearly very

different from our previous examples in finance. However, a financial crash can also be

an equally catastrophic outcome on a personal level. The study of comparative systems

like these, allow us to identify features common to both systems. The emergence of com-

mon features, such as correlation changes prior to seizures and crashes, helps us to identify

techniques previously applied in one field, which may prove fruitful in another.
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8.1.1 Data

In this study, EEG signals from eight patients of different ages (28− 78), determined by

a neurologist to be suffering from focal1, generalised2 or secondary generalised3 seizures

are examined. The data was obtained from the Australian EEG database, [Hungeret al.,

2005], and all signals were recorded using standard international system10 − 20 electrode

placements. These electrodes are placed so as to provide for a repeatable, uniform coverage

of the entire scalp, [Fisch and Spehlmann, 1999].

The database contains patient details including medical history, technician’s comments,

medication and a full EEG report by a neurologist. The clinical interpretation from the

neurologist was used to classify the seizures. In this analysis bipolar derivations, (referred

to as a channel from here on), between nearest-neighbour channels were used, [Fisch and

Spehlmann, 1999], as the use of monopolar signals, (where all electrodes have a common

reference), could result in the introduction of unwanted correlations into the system.

One problem with securing financial data is, of course, their confidential nature, which

results in little public availability of information (in particular, for Hedge Funds). Securing

suitable seizure data also proved to be difficult, due to their similarly confidential nature.

A number of databases were explored, included the University of Freiburg EEG database,

[University of Freiburg, 2008], but these proved to be more appropriate for univariate pre-

diction methods. Availability of a more extensive database, containing additional examples

of various forms of epileptic seizures, would have further enhanced the results detailed

below.
1A partial or focal onset seizure affects only a part of the brain at onset. They may often be a precursor to a

larger seizure, such as a generalised seizure
2Generalised seizures affect both cerebral hemispheres (sides of the brain) from the beginning of the seizure

and produce loss of consciousness. They are divided into several sub-types: generalised tonic-clonic, my-
oclonic, absense and atonic

3Secondary generalised seizures start as a partial seizure and spread throughout the brain, becoming gener-
alised
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8.1.2 Implementation

Defining Seizure Onsets and Endings

In order to identify seizure activity in a clear and reproducible fashion, we use a technique

previously described, [Schindleret al., 2007a], as follows: Given time-series,Si(t), corre-

sponding to readings from an EEG, the absolute slope,Si(t) =
∣∣∣∆EEGi(t)

∆t

∣∣∣, was computed

over each channeli. The slope was normalised,̃Si(t) = Si(t)
σi

, with σi, the standard de-

viation of the signal over a reference period containing no seizure activity.S̃i(t) was then

smoothed using a moving average over a time window of5 seconds.Epiletiform activity

or periods of extreme neuronal activity, were then defined by finding a slope greater then

2.5 standard deviations from the mean. The time of seizure onset was determined from the

number of EEG channels displaying epileptiform activity. For the following analysis, this

was set at5, ensuring that the seizure had spread to a minimum number of channels and was

not specific to one region, allowing us to isolate those periods corresponding to epileptic

events.

Specific Methods

To decompose the EEG signal into component frequencies, we selected the least asymmet-

ric (LA) wavelet, (known as the Symmlet, [Bruce and Gao, 1996]), which exhibits near

symmetry about the filter midpoint. These are defined in even widths and the optimal filter

width is dependent on the characteristics of the signal and the length of the data series. Here,

the filter width chosen was the LA8 (where the 8 refers to the width of the scaling function)

and this enabled us to calculate accurately wavelet correlations to the5th scale, given the

length of data series available, while still containing enough detail to capture subtle changes

in the signal. Although the MODWT can accommodate any level,J0, in practise the largest

level is chosen so as to prevent decomposition at scales longer than the total length of the

data series, hence the choice of the5th scale, [Percival and Walden, 2000].

The equal-time cross-correlation dynamics between EEG channels using a sliding win-
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dow of length5s, (chosenso that the signal would be close to stationary during each win-

dow), was analysed. First, the MODWT of each EEG channel was calculated within each

window and the correlation matrix between channels at each scale found, (Eqn. 3.32). The

eigenvalues of the correlation matrix in each window were determined, (Eqn. 3.4), and

eigenvalue time-series were normalised in time, (Eqn. 3.19).

8.2 Results

8.2.1 Single Patient Analysis

The seizure definition, (Section 8.1.2), and eigenvalue dynamics for a30 year old patient

suffering from focal epilepsy with possible secondary generalisation are shown, Fig. 8.1(a).

This reveals3 main periods that display epileptiform activity. Initial examination of the

eigenvalue dynamics for each of the wavelet scales (corresponding to frequencies from 4Hz

to 60Hz), reveals that theeigenvalue repulsionfound using the equal-time cross-correlation

matrix on unfiltered data, [Schindleret al., 2007b,a], is also repeated across the different

frequencies. Fig. 8.1(b-f) show the dynamics of both the largest eigenvalue and that of

the average across the15 smallest eigenvalues. The dynamics of the smallest eigenvalues

complement, across all scales, those of the largest, (given the trace of the correlation matrix

must remain constant under linear transformation), with increases in the latter and decreases

in the former, when average correlation increases, [Müller et al., 2005, 2006a; Schindler

et al., 2007a,b].

In Fig. 8.1, we see that the largest eigenvalue of the cross-correlation matrix, calcu-

lated at the highest frequency (60Hz), increases during epileptiform activity. However, as

we move to lower frequencies, the largest eigenvalue tends to decrease during epileptiform

activity. In the example studied, this is particularly evident at levels3 and4 (correspond-

ing to 15Hz and7Hz respectively). The increase in the largest eigenvalue at the highest

frequency corresponds to an increase in the average, or global, system correlation at this

frequency, with the opposite occurring at lower frequencies, (Section 3.5).

The wavelet energy, (Eqn. 3.29), measured in a sliding window of5s for each of the
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wavelet scales, is shown in Fig. 8.2 for the same patient as previously, (Fig. 8.1).The energy

at the highest frequencies is negligible,except during periods corresponding to epileptiform

activity, when it increases greatly, corresponding to more than60% of the total system

energy. During non-epileptiform activity, the energy at low frequencies makes up most of

the system energy. However, during epileptiform activity the energy at low frequencies

drops to negligible levels compensating for the increase at high frequencies implying that

most of the system energy is involved in high frequency events such as spikes.

These preliminary results seem to indicate increased levels of correlation between EEG

channels at the highest frequencies during epileptiform activity, with corresponding in-

creases in energy. In contrast, the average system correlation at low frequencies, (measured

against the dynamical behaviour of the largest eigenvalue), decreases with corresponding

decrease in energy. Since the associated energy is higher, high frequencies seem of more

relative importance during epileptiform activity, so that the correlation structure at these

frequencies may be of more relevance in seizure characterisation.

8.2.2 Multiple Patient Analysis

In order to investigate further questions posed by these initial results, we examined the

eigenvalue dynamics and associated energy for eight patients, (described, Section 8.1.1);

individual results given Table 8.1. Average eigenvalue size and associated energy during

active periods4 and during normal periods5 are presented. The average eigenvalue size and

energy are measured across scales1−5, as before. The results for Patient1 are also shown,

(Fig. 8.1).

Fig. 8.3 shows the distribution of the largest eigenvalue forall patientsacross each

scale. For the highest frequencies, the average eigenvalue is considerably higher during

active, compared to normal periods. Using a Wilcoxon signed-rank test across all samples,

the probability of the median difference between eigenvalue pairs being zero is less than

4Periodswhen the largest eigenvalue, at the highest frequency, is greater than1.5 standard deviations units
(SDU) from the mean. This means that we look at the 6.7% largest readings.

5Periods when the largest eigenvalue, at the highest frequency, is between−1.5 and1.5 SDU from the
mean.
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0.05 for these scales. The increase in the largest eigenvalues corresponds to an increase

in the global or average correlation at these high frequencies. For the lower frequencies,

there is a definite overlap between the eigenvalues but with a lower median and much larger

variance during the active period.

The energy at each of the scales, (shown Fig. 8.4), has an obvious increase at the highest

frequency during active periods (Wilcoxon signed-rank test, Probability<0.05 of distribu-

tion about same median). At the next frequency, the energy is also higher but not markedly

so. For the lower frequencies, the energy decreases during active periods to compensate

for the increase at higher frequencies. In particular, for scales3 and5, the changes are

significant with P<0.05, (Wilcoxon signed-rank test, Kanji [2006]). This behaviour indi-

cates that the high frequency behaviour is of greatest importance during active periods, with

corresponding correlation increase.

Examining the differing overlap between the two periods, (Figs. 8.3,8.4), the active

period appears to have two major manifestations, namely a variance increase and a clear

non-overlap for the two highest frequencies. Further, there is a large increase in variance

of the energy across those same frequencies. This further suggests that the large changes in

synchronisation at certain scales may act as a barometer of seizure activity.

8.3 Discussion

By analysis of the eigenvalue spectrum of EEG epileptiform signals, filtered using the

wavelet transform, we were able to examine changes in the cross-correlation matrix be-

tween channels. The largest eigenvalue corresponds to the average correlation between

all channels and is orthogonal to the other eigenvalues. Previously, a number of studies

examined theunivariatetime-frequency behaviour using a number of different linear and

non-linear techniques, [Clarket al., 1995; Senhadji and Wendling, 2001; Adeliet al., 2003;

Indirdevi et al., 2008]. However, this single channel approach ignores the interactions be-

tween neurons involved in brain activity, which are particularly prominent during seizures.

Variousbivariate methodsto examine dynamic changes in these interactions have been
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Patient Patient Neurologist Scale
No. Age Diagnosis 1 2 3 4 5

Scale 1 Active 2.20 0.23 -1.30 -0.71 -0.33
FocalWith Possible Energy 0.38 0.18 0.15 0.17 0.12

1 30
Sec. Generalisation Scale 1 Normal -0.12 0.01 0.09 0.05 0.03

Energy 0.09 0.09 0.21 0.36 0.25

Scale 1 Active 2.54 1.65 -0.56 0.13 0.52
Energy 0.39 0.26 0.15 0.11 0.09

2 47 Benign Focal
Scale 1 Normal -0.25 -0.16 0.06 -0.02 -0.05

Energy 0.23 0.18 0.22 0.19 0.12

Scale 1 Active 2.50 2.09 0.58 0.37 1.07
Energy 0.32 0.27 0.16 0.13 0.12

3 50 Focal
Scale 1 Normal -0.10 -0.08 0.00 0.00 -0.05

Energy 0.23 0.23 0.19 0.23 0.12

Scale 1 Active 1.72 1.78 -0.24 -0.44 -0.11
Energy 0.42 0.20 0.16 0.13 0.09

4 48 Generalised
Scale 1 Normal -0.12 -0.12 0.02 0.03 0.01

Energy 0.21 0.15 0.26 0.24 0.14

Scale 1 Active 2.26 1.20 0.18 -0.31 -0.41
Energy 0.16 0.16 0.24 0.27 0.17

5 28 Generalised
Scale 1 Normal -0.24 -0.13 -0.02 0.03 0.04

Energy 0.17 0.17 0.23 0.26 0.17

Scale 1 Active 2.43 2.11 -0.26 0.65 0.11
Energy 0.21 0.21 0.16 0.20 0.22

6 78 Generalised
Scale 1 Normal -0.14 -0.13 0.03 -0.04 0.00

Energy 0.12 0.18 0.21 0.27 0.22

Scale 1 Active 1.67 0.75 0.06 -0.03 -0.18
Energy 0.16 0.15 0.25 0.35 0.09

7 48 Sec. Generalised
Scale 1 Normal 0.21 0.17 0.13 0.04 -0.06

Energy 0.15 0.14 0.27 0.32 0.12

Scale 1 Active 1.76 0.40 0.20 -0.85 -0.65
Energy 0.21 0.10 0.13 0.35 0.21

8 52 Sec. Generalised
Scale 1 Normal 0.08 -0.04 -0.03 0.04 0.02

Energy 0.17 0.12 0.14 0.36 0.21

Tab. 8.1: EEG Analysis; For each patient the first row shows average size of eigenvalues
when largest normalised Eigenvalue at Scale1 > 1.5, while row two shows the associated
energy. The third row shows average eigenvalue at each level during normal behaviour (ie.
when largest eigenvalue,−1.5 < E < 1.5) and the fourth row shows the associated Energy.
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suggested. The linear cross-correlation was measured at different frequencies,for the chan-

nels with the maximum power at high frequencies, [Wendlinget al., 2003]. In contrast to

the work above, the correlation between these channels was shown to decrease during the

seizure. This, however, may be due to the bivariate approach used, which only captured

the correlation between pairs of particular channels. This activity may possibly be captured

in the second or third largest eigenvalue of the multivariate technique, where correlations

orthogonal to those in the largest eigenvalue are found, (corresponding to correlations be-

tween certain subsystems, [Müller et al., 2005]). The linear cross-correlation for two band-

filtered channels were examined for different time lags, with a strong relationship found for

a frequency band around30Hz, [Ansari-Aslet al., 2005].

The bivariate methods described concentrated on correlations between a small num-

ber of channels, chosen specifically for the studies involved. Using multivariate EEG data,

changes in the global correlation structure were shown to be visible at both ends of the

eigenvalue spectrum, [M̈uller et al., 2005]. For a limited study of a single seizure, a sudden

system-wide change from a relatively uncorrelated to highly correlated state was found to

take place, reflected in an increase in the largest eigenvalue. Analysis of the changes in the

eigenvalue spectrum for a large number of seizures showed a generic change in the correla-

tion structure during focal onset seizures, [Schindleret al., 2007a]. The seizure recordings

in this data consisted of58− 94 channels and the changes in the eigenvalue spectrum were

shown to occur for a number of the largest eigenvalues. Contrary to the behaviour found

previously, [Müller et al., 2005], these large eigenvalues were shown to decrease during

the first half of the seizure, indicating decreased correlation, with an increase in correlation

found before seizure end. It was suggested that this increase in correlation may be related

to seizure termination.

Time-Frequency decompositions of EEG signals have been studied for many years,

[Nakata and Mukawa, 1989]. In this initial work, we extend the previous multivariate

techniques, [M̈uller et al., 2005; Schindleret al., 2007a], by examining changes in the

eigenvalues of the correlation matrix between EEG time-series across various frequencies.

Results for low frequencies were similar to those found previously, (see Fig. 8.1), with
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a decrease in global correlation at seizure onset, reflected by the decreasein the largest

eigenvalue. Those, at higher frequencies (Fig. 8.1(b)), demonstrated an increase in the

largest eigenvalue at seizure onset, corresponding to an increase in global correlation. This

was confirmed across seizures, with just a small variation across seizures for the correlation

at lower frequencies. The limited number of channels available for study, meant that the

effects of the global or average correlation were only found in the largest eigenvalue, in

contrast to the work by Schindleret al. [2007a].

Previous studies have used wavelet energy for prediction of seizures, [Gigolaet al.,

2004]. We perused this further to examine the fractional energy of each of the frequencies

and their importance over time. Again, the highest frequencies seemed of most relevance

during active periods. This development of the previous work adds insight on contributing

frequencies to correlation structure. By focusing on these particular frequency breakdowns,

a simple multivariate technique such as that described may be applicable to seizure pre-

vention. Additionally, as very high frequency oscillations have been found during seizures,

[Bragin et al., 1999], a study of correlation dynamics at this scale may reveal further in-

sights.

8.4 Conclusions

Wavelet multiscaling has been used to expand on the previous multivariate analysis, [Müller

et al., 2005, 2006a; Schindleret al., 2007a,b], to explore the frequency-dependence of the

correlation dynamics between EEG channels for patients suffering with various forms of

epilepsy. By analysis of the eigenvalue spectrum of EEG epileptiform signals, filtered us-

ing the wavelet transform, we were able to examine the correlation dynamics over different

frequencies. Detailed analysis, for a patient with focal epilepsy indicated that EEG time-

series reveal an increase in the largest eigenvalue at high frequencies, (corresponding to

an increase in correlation between channels), during epileptiform activity. This increased

interdependence between channels was not found at low frequencies, where correlation de-

creased during activity. Decomposition revealed an increase in the wavelet energy at higher
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frequencies during epileptiform activity, with a corresponding decrease atlower frequen-

cies. This implies thathigh frequency activity is more significant during epileptiform activ-

ity and so the correlation dynamics at these frequencies are of greater relative importance in

terms of activity displayed. The correlation activity at lower frequencies was larger when

abnormal activity was low, with higher levels of associated wavelet energy. This suggests

that low frequencies are of greater relative importance during normal activity.

This approach was then applied to a variety of EEG signals, (Section 8.2.2), for differ-

ent types of epileptic event.Correlation dynamics were found to be dependent upon the

frequency examined, with the correlation structure acting as a barometer of EEG activity.

Clearly, the data available are limited, but evidence of clear crossover in eigenvalue energy

does suggest that monitoring correlation structure in EEG signals at different frequencies

can provide a more subtle gauge of incipient imbalance at pre-seizure stage, than was found

by previous researchers using unfiltered signals alone.

A comparison between these results and those found for medium and high-frequency

financial data leads to some obvious differences. The discontinuities in financial data, par-

ticularly apparent for high-frequency returns, leads to ‘jumps’ in the correlation structure at

very high-frequencies. For correlations between EEG channels, the readings have smoother

dynamics. Also, the gradual correlation changes found in EEG signals around seizures are

contrary to the sharp jumps that occur in financial data, particularly at shorter scales. These

sharp jumps are due to the sudden release of information to the market, while for a complex

neuronal system there is more gradual information dissemination. The more gradual release

of information in EEG signals means that the potential ability to forecast changes in corre-

lation is better. However, by applying the energy analysis described above to financial data

we will be able to identify the scales important during different market events, which may

assist in the prediction of market crashes. Some additional similarities between both data

types exist, however, with definite changes in correlation in times of stress. For EEG data

at high frequencies, correlations were shown to increase during seizures, while for financial

data correlations increase during market ‘draw-downs’.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this work, we have investigated the synchronisation between agents in Complex Dynami-

cal Systems, using the linear cross-correlation measure. We demonstrated how this measure

could be used in an innovative fashion, both inrisk reduction and characterisationfor such

systems. These properties were studied extensively, with data from a number of systems

examined, including novel low-frequency Hedge Fund returns, medium and high-frequency

equity returns and high-frequency EEG seizure data.

In Chapter 4, we considered, for the first time, the effects of noise on low-frequency

Hedge Fund returns. The novel application of Random Matrix Theory to reduce the level

of noise in the correlation matrix, revealed new insight into the relationship between Hedge

Fund strategies. The RMT ‘cleaned’ correlation matrix was explored using eigenvector

analysis, with useful information found in the largest4 eigenvalues. Using the ’cleaned’

correlation matrix as an input to a classical portfolio optimisation, we showed how the

difference between predicted and realised risk could be improved substantially, (by35%).

The information contained in low-frequency Hedge Fund returns can be tainted by arti-

facts such as ‘stale prices’ for instruments held by managers. InChapter 5, we developed

a novel technique to overcome this problem, using the maximum overlap discrete wavelet

transform to decompose the signal into different time horizons. The correlations between

Hedge Funds and the S&P500 were calculated using the MODWT and found to vary ac-

cording to scale. Using classical portfolio optimisation, we showed how a correlation matrix

calculated over longer scales, enhanced the risk profile for a portfolio of Hedge Funds.

We then turned our attention to medium-frequency equity returns and demonstrated
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how changes in the global correlation structure, captured by the dynamics ofthe largest

eigenvalue, can be used to characterise the risk of financial markets,Chapter 6. When the

largest eigenvalue was raised, this was found to correspond to ‘drawdown’ periods with

the opposite occurring during ‘drawups’. Due to eigenspectrum level repulsion, opposite

behaviour was observed for small eigenvalues. Finally, a ‘toy model’ of correlations was de-

veloped, which captured many of the features observed in the empirical data and enhanced

our understanding of correlation dynamics and the relationship with financial risk.

In Chapter 7, we developed this work further through the analysis of both temporal and

scale dependencies of the correlation matrix. Using the maximum overlap discrete wavelet

transform, we constructed the correlation matrix between both medium and high-frequency

data over a variety of scales, using a sliding window approach. This revealed additional

insights, with the correlation dynamics found to depend upon the scale studied. Further,

the eigenvalues were also found to be raised during times of market stressat all scales,

demonstrating further the ability to characterise financial risk according to changes in the

correlation structure. Using high-frequency data, we then demonstrated the gradual build-

up of the correlation dynamics up to a characteristic time-scale of approximately one day,

with more obvious scale dependent changes occurring thereafter.

Interested in similarities with other multiscale complex data models, we considered

EEG seizure data,Chapter 8. For this, we showed how changes in the correlation dy-

namics between channels could be used to characterise the risk of seizures. The maximum

overlap discrete wavelet transform was again used to calculate correlation matrices at differ-

ent scales and to find the associated wavelet energy at each scale. The correlation dynamics

were found to be scale dependent, with increased global correlation (and associated energy)

during seizures at the highest frequencies. At lower frequencies, a compensating decrease

in energy was found, with decreased global correlation. The very distinct and even opposite

behaviour at different scales was in contrast to that found for financial data. The continuous

nature of information processing was advanced as one factor which might explain these

differences but data was too limited to confirm this.

Throughout this thesis, we have explored both the spatiotemporal interaction within sys-
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tems of varying granularity and the application of the correlation measure to reducethe risk

inherent in such systems. In the context of financial markets, the reduction and characteri-

sation of risk is hugely topical at the present time, against a backdrop of large banking and

personal losses. Risk management is not exclusive to financial systems, however, and we

have also explored, in a preliminary way, similarities and contrasts for an apparently com-

parable system, namely EEG seizure patterns. Although integration of techniques offers

some new insight, the dynamic, evolving nature of finanical markets means that managing

the risk involved will continue to present truly complex challenges.

9.1 Future Work

Given a larger set of Hedge Funds, (or a set with daily returns), it is reasonable to sug-

gest that additional sectoral features might emerge from analysis of the correlation matrix,

Chapter 4. Additionally, the application of improved cleaning techniques which ensure

the stability of the matrix, [Sharifiet al., 2004; Dalyet al., 2008], may further improve the

risk-return profile for a portfolio of Hedge Funds. Building on the analysis ofChapter 5,

the measurement of the Alpha, (Equation 3.10), of different strategies over different time

scales is also of potential future interest. In the case of Hedge Funds, the Alpha is a measure

of the abnormal return, which is the value added by the manager, [Lhabitant, 2002, 2004].

A Hedge Fund manager whoappears to add Alpha, (using monthly returns), may actually

be found to just hold market risk over longer time scales and hence be less interesting to

investors, (diversification benefits may be limited).

The study of the relationship between the direction of the market and magnitude of the

eigenvalues of the correlation matrix,Chapters 6-7, indicates the need for more detailed

insight. In particular, the analysis of high-frequency data may be useful in early warning

of future market turmoil. The interactions between high-frequency data may also help to

integrate trading strategies into the analysis, developing our understanding of the roles of

cooperation and competition in financial markets. Moreover, study of the possible rela-

tionship between the dynamics of the small eigenvalues may reveal additional correlation
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information hidden in that part of the eigenvalue spectrum, normally classified asnoise.

Such an investigation could be achieved through analysis of the relative dynamics of the

small and large eigenvalues at times of extreme volatility, (e.g. during market crashes).

For a review for this question to date, see Guhr and Kälber [2003]; Burdaet al. [2004];

Burda and Jurkiewicz [2004]; Malevergne and Sornette [2004]; Müller et al.[2005, 2006a];

Kwapienet al. [2006]. Another interesting possbile are of future study is the persistence of

correlations, using for example, the Hurst exponent.

The analysis of multiscale correlation dynamics in EEG seizure data,Chapter 8, was

restricted by the difficulties in obtaining large data sets. The work by Schindleret al.

[2007a] finds a decrease in overall correlation after seizure start, followed by an increase

in correlation as the seizure ends. Our initial results suggest similar behaviour at lower

frequencies, while the opposite occurs at higher frequencies. This suggests that the exam-

ination of correlation dynamics across various frequencies prior to seizure beginning may

reveal pre-seizure characteristics, which can be used to calibrate seizure prevention strate-

gies. An in-depth study on different seizure types may reveal further distinct correlation

structures specific to the seizure type. Analysis of inter-frequency correlations may well

shed light on the lead-lag relationship across different frequencies. Furthermore, investiga-

tion of the second and subsequent eigenvalues in detail could expose additional sub-system

behaviour not revealed by the largest.

The correlation technique used in this thesis to measure the interaction between agents

suffers from the drawback of being linear and hence neglects any higher-order relation-

ships. Application of non-linear information-theory based dependence measures, will al-

low the detection of complex changes in synchronisation behaviour around extreme finan-

cial events. These non-linear techniques will result in additional features emerging to those

highlighted above and may result in signals that warn of likely future market turmoil. The

interaction of various agents with competing strategies and operating over different time

scales will be analysed, resulting in an enhanced understanding of the phenomena underly-

ing events such as financial crashes. Additionally, these techniques would have application

to other Complex Systems, such as the EEG seizure data described.
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APPENDIX A

HEDGE FUND STRATEGIES

Strategies employed by the managers in the sample considered in Chapter 4:

Strategies Number of Funds
Asia excluding Japan Long/Short Equities 2
Convertible & Equity Arbitrage 2
Currency 7
Emerging Markets 6
European Long/Short Equity 10
Fixed Income 1
Global Equity 5
Japan Market Neutral 1
Macro 3
Managed Futures 11
Self-Invested Fund of Funds 1

Tab. A.1: Hedge Fund strategies from sample considered in Chapter 4
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A.1 Strategy Overview

In the following, we describe some of the investment styles used by Hedge Fund managers,

covering those used in the calculation of the Credit Suisse/Tremont indices, Chapter 5.

Convertible Arbitrage

Convertible Arbitrage managers seek to exploit pricing anomolies between a convertible

bond and it’s underlying equity. These anomolies occur as the embedded options in a

convertible bond are often undervalued when compared with their theoretical value and

is exploited by buying the bond and shorting either stock or options against it.

Dedicated Short Bias

The portfolio of a Dedicated Short Bias manager has more short positions than long posi-

tions in Equity securities (and derivatives of), leaving them with net short exposure to the

market. They are considered a hedge against Bear markets.

Emerging Markets

Emerging Markets Managers invest in currencies, debt instruments and equities of devel-

oping countries. Examples of such markets include China, India, Russia and Brazil.

Equity Market Neutral

Equity Market Neutral is a style of investment that applies quantitative statistical models to

exploit pricing inefficiencies between equity securities. The portfolio is formed to minimise

exposure to the systematic market risk and this is achieved by offsetting long positions by

short positions on a dollar neutral or zero beta basis.
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Event Driven

Event Driven managers focus on debt and equity of companies where a specific corpo-

rate or market event is taking place. Examples include mergers, restructurings, spin-offs,

bankrupcies, re-capitalisations and share buybacks.

Fixed Income Arbitrage

Fixed income arbitrage exploits inefficiencies within and across global fixed income mar-

kets. Strategies include yield curve and sovereign debt arbitrage, Treasury versus corporate

and municipal yield spreads, basis trading and mortgage-backed security arbitrage.

Global Macro

Global macro managers make directional, leveraged, opportunistic bets on anticipated price

movements in currencies, equities, bonds and comodities. The style is based upon top-down

global analysis and focuses on fundamental economic, political and market factors.

Long/Short Equity

Equity Long/Short managers combine long investments with short sales to reduce but not

elimate market exposure. Funds tend to have net long market exposure, so often suffer

drawdowns at the same time as equity markets. Managers can also trade equity futures and

options and use leverage to increase their exposures.

Managed Futures

Managed futures managers (or Commodity trading advisors (CTA’s)) trade listed commod-

ity, currency, bond and equity futures. Managers often employ systematic trading programs

that rely on computer-generated trading signals to produce returns. Managers do not have

a particualar bias towards a particular market or to being net long or short.



APPENDIX B

SOFTWARE

The code used in the studies above were all written using Matlab and related toolboxes such

as the Wavelet and Statistics toolboxes. The calculations for the Maximum Overlap Discrete

Wavelet Tranform (MODWT), Chapter 3.6, was implemented using theWMTSA Wavelet

Toolkit for Matlab, which is the toolbox associated with Percival and Walden [2000]. The

scripts involved are reproduced below:

function hfRMT

% THIS FUNCTION COMPARES THE EMPIRICAL CORRELATION MATRIX TO THE

% THEORETICAL DISTRIBUTION FROM RANDOM MATRIX THEORY

% Load Hedge Funds returns data

g = load(’C:\PhD\49 funds 105 returns normalised.txt’);

t = size(g,1);

n = size(g,2);

% Ratio of time to number of funds

q = t/n

% Data has been pre-normalised, so ....

sigma = 1;

% Work out the min and max RMT eigenvalues

lampda_max = (sigmaˆ2) * (1 + (1/q) + 2 * (sqrt(1/q)))

lampda_min = (sigmaˆ2) * (1 + (1/q) - 2 * (sqrt(1/q)))

% Calculate the empirical correlations and eigenvalues
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corrFunds = corrcoef(g);

e = eig(corrFunds)

j = 1;

totP = 0;

for i = lampda_min+0.00001:0.001:lampda_max

eval(j) = i;

P(j) = (q/(2 * pi * sigmaˆ2)) * (sqrt((lampda_max -i) * (i - lampda_min))/i);

j = j + 1;

end

% Specify how many buckets you want to break the data up into

bkt = 1000;

% Here I get the normalisation constant so the area under the curve is 100%

dist = e(end,1) - e(1,1);

dist = dist/bkt;

% This outputs the buckets and the number of e/values in each bucket

[n, xout] = hist(e,bkt);

n(1,end + 1) = 0;

xout(1, end + 1) = (xout(1,end) - xout(1,end-1)) + xout(1,end);

n = n/sum(n);

n = n/(dist);

% Now plot the results

plot(xout,n,eval,P)

title(’\fontsize{12}\bf Eigenvalue Distribution 49 funds, 105 months data’);

set(gca, ’FontSize’,12);

xlabel(’\fontsize{12} Eigenvalues’); ylabel(’\fontsize{12} Distribution’);

legend(’Empirical Distribution’, ’Theoretical Distribution’);

function RemoveLargEVec

% THIS FUNCTION REMOVES THE EFFECTS OF THE LARGEST EIGENVALUE FROM THE

% DATA; IE. REMOVES THE EFFECT OF THE ’MARKET’

g = load(’C:\PhD\49 funds 105 returns Normalised.txt’);

returns = load(’C:\PhD\49 funds 105 returns Unnormalised.txt’);
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savefile = ’C:\PhD\Residuals.mat’;

EVnumber = 49;

corrFunds = corrcoef(g);

[vec,val] = eig(corrFunds);

% Find the eigensignal corresponding to the largest eigenvalue

G_large = returns * vec(:,EVnumber);

% Regress the returns for each stock against the largest eigenvalue

% and find the residuals

for i = 1:49

[b(i),bint(:,i),r(:,i)] = regress(returns(:,i),G_large);

end

save(savefile, ’b’, ’bint’, ’r’);

function evectorAnal

function evectorAnal

% THIS FUNCTION IS USED TO ANALYSE THE DISTRIBUTION OF EIGENVECTOR

% COMPONENTS, AS WELL AS THE INVERSE PARTICIPATION RATIO

% Pull in data

g = load(’C:\PhD\49 funds 105 returns.txt’);

% Number of buckets in graphs

bucket = 200;

%specify the eigenvalue to analyse

EVnumber = size(g,2);

% Calculate correlations and eigenspectrum

corrFunds = corrcoef(g);

[vec,val] = eig(corrFunds,’nobalance’);

% Plot the eigenvector components
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histfit(vec(:,EVnumber),25)

title(’Distribution of Eigenvector Components’);

xlabel(’Eigenvector Components’); ylabel(’Number of Occurences’);

% Calculate the IPR for each eigenvalue

IPR = sum(vec.ˆ4);

% Plot the IPR

figure;

plot(IPR)

title(’Inverse Participation Ratio’);

xlabel(’Eigenvalue Number’); ylabel(’Inverse Participation Ratio’);

function portfundOpt

% PORTFOLIOOPTIMISATION FOR PREDICTED AND REALISED CORRELATIONS USING

% ORIGINAL AND CLEANED CORRELATION MATRIX

% Define portfolio returns

PortReturn = [0.005,0.006,0.0075, 0.01,0.0125,0.015,0.0175];

numPorts = length(PortReturn);

% Call data

fid = fopen(’C:\PhD\Results\Portfolio Weights.txt’, ’wt’);

r = load(’C:\PhD\Unnormalised Data.txt’);

normData = load(’C:\PhD\49 funds 105 returns Normalised.txt’);

% Break up data into 2 and calculate returns, std, cov and correlations

r1 = normData(1:53,:); r2 = normData(54:end,:);

ExpReturn1 = mean(r(1:53,:)); ExpReturn2 = mean(r(54:end,:));

r1_std = std(r(1:53,:)); r2_std = std(r(54:end,:));

corrFunds1 = corrcoef(r1); corrFunds2 = corrcoef(r2);

ExpCovariance1 = corr2cov(r1_std, corrFunds1);

ExpCovariance2 = corr2cov(r2_std, corrFunds2);

% Set constraints for the portfolio optimisation
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ConSet = portcons(’PortValue’, 1, 49,’AssetLims’,0, 1, 49);

% Optimise portfolio for original data & get predicted and realised

% risk/return

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn2, ...

ExpCovariance1, [],PortReturn,ConSet)

[ActPortRisk, ActPortReturn] = portstats(ExpReturn2, ExpCovariance2,PortWts);

% number of outlying eigenvalues

n = 3;

[V,D] = eig(corrFunds1);

% Clean the first correlation matrix

C_clean_1 = Clean_RMT_Bouchaud(V,D,n);

C_clean_1 = corr2cov(r1_std, C_clean_1);

[V2,D2] = eig(corrFunds2);

% Clean the 2nd correlation matrix

C_clean_2 = Clean_RMT_Bouchaud(V2,D2,n);

C_clean_2 = corr2cov(r2_std, C_clean_2);

% Optimise portfolio for cleaned data & find predicted and realised

% risk/return

[PortRisk_clean, PortReturn_clean, PortWts_clean] = ...

portopt(ExpReturn2, C_clean_1, [],PortReturn,ConSet);

[ActPortRisk_clean, ActPortReturn_clean] = portstats(ExpReturn2, ...

C_clean_2,PortWts_clean);

% Annualise the results for graphing

PortRisk = sqrt(12) * PortRisk; ActPortRisk = sqrt(12) * ActPortRisk;

PortRisk_clean = sqrt(12) * PortRisk_clean; ....

ActPortRisk_clean = sqrt(12) * ActPortRisk_clean;

for i = 1:numPorts

PortReturn(i,1) = ((1+PortReturn(i,1))ˆ12)-1;

ActPortReturn(i,1) = ((1+ActPortReturn(i,1))ˆ12)-1;

PortReturn_clean(i,1) = ((1+PortReturn_clean(i,1))ˆ12)-1;

ActPortReturn_clean(i,1) = ((1+ActPortReturn_clean(i,1))ˆ12)-1;

end
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% Plot the results

hold on

plot(100 * PortRisk, 100 * PortReturn,’ * --’,’LineWidth’,1, ’color’, [0,0,0.25098])

plot(100 * ActPortRisk, 100 * ActPortReturn,’o--’,’LineWidth’,1, ...

’color’, [0,0,0.25098])

plot(100 * PortRisk_clean, 100 * PortReturn_clean,’ * :’,’LineWidth’,1, ...

’color’, [0,0,0.25098])

plot(100 * ActPortRisk_clean, 100 * ActPortReturn_clean,’o:’,’LineWidth’,1, ...

’color’, [0,0,0.25098])

legend(’Predicted risk using C’, ’Realised risk using C’,’Predicted risk ....

using filtered C’, ’Realised risk using filtered C’, ’location’, ’SouthEast’)

xlabel(’Risk %’); ylabel(’Return %’);

function C_cl = Clean_RMT_Bouchaud(V,D,n)

% CLEANCORRELATION MATRIX USING METHOD DESCRIBED BY BOUCHAUD ET AL

D_size=size(D, 1);

% D_mean is the mean of the noisy eigenvalues

D_mean=mean(diag(D(1:D_size-1, 1:D_size-n)));

% D_cl is the cleaned eigenvalue matrix

D_cl=zeros(D_size);

% Non-noisy part

for j=D_size-n:D_size

for i=D_size-n:D_size

D_cl(i, j)=D(i, j);

end

end

% Noisy part is replaced by the identity matrix * mean of the noisy eigenvalues

for j=1:D_size-n

for i=1:D_size-n

if (j==i)

D_cl(i, j)=D_mean;

end

end

end
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Trace(D)

% Cleaning C

C_cl=V * D_cl * V’;

function StatWaveletComps

% FUNCTIONTO CALCULATE THE VARIANCES, COVARIANCES AND CORRELATIONS BETWEEN

% HEDGE FUNDS AT DIFFERENT SCALES USING THE MODWT. USES THE WMTAS TOOLBOX

% FOR MATLAB

clear;

% Load data

s = load(’C:\Program Files\MATLAB704\work\Thesis Code\Index Data SandP.txt’);

n_c = size(s,2);

levelNo = 4;

Coefs = [];

% First Decompose the Data using the MODWT

for i = 1:n_c

modwtCoefs = modwt(s(:,i),’LA8’,levelNo);

sizeCoefs = size(modwtCoefs);

Coefs = [Coefs; modwtCoefs];

end

% Find Variances, Covariances & Correlations

for i = 1:levelNo

for j = 0:n_c-1

flag = sizeCoefs * j;

Coefs1 = Coefs(flag + 1:flag + sizeCoefs, i);

[waveVar,CI_wvar] = modwt_wvar(Coefs1,’gaussian’,’unbiased’,’LA8’);

varCoef(j+1, i) = waveVar;

varCI1(j+1,i) = CI_wvar(:,1);

varCI2(j+1,i) = CI_wvar(:,2);

for k = 0:n_c-1
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flag2 = sizeCoefs * k;

Coefs2 = Coefs(flag2 +1:flag2 + sizeCoefs, i);

[waveCov, CI_wcov] = modwt_wcov(Coefs1, Coefs2,’gaussian’, ...

’unbiased’,’LA8’);

[waveCorr, CI_wcor] = modwt_wcor(Coefs1, Coefs2);

corrCoef(j+1+n_c * (i-1), k+1) = waveCorr;

covCI1(j+1+n_c * (i-1), k+1) = CI_wcov(:,1);

covCI2(j+1+n_c * (i-1), k+1) = CI_wcov(:,2);

covCoef(j+1+n_c * (i-1), k+1) = waveCov;

end

end

end

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\Correlation SandP ...

db8 MODWT.txt’;

save(savefile, ’corrCoef’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\covCI1 SandP ...

db8 MODWT.txt’;

save(savefile, ’covCI1’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\covCI2 SandP ...

db8 MODWT.txt’;

save(savefile, ’covCI2’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\Covariance SandP ...

db8 MODWT.txt’;

save(savefile, ’covCoef’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\Variance SandP ...

db8 MODWT.txt’;

save(savefile, ’varCoef’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\Variance CI1 SandP ...
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db8 MODWT.txt’;

save(savefile, ’varCI1’, ’-ASCII’);

savefile = ’C:\PhD\Wavelets\Measure Alpha and Beta\Variance CI2 SandP ...

db8 MODWT.txt’;

save(savefile, ’varCI2’, ’-ASCII’);

function portOptDiffScales

% PORTFOLIOOPTIMISATION USING CORRELATION MATRICES CALCULATED OVER

% DIFFERENT SCALES. EFFICIENT FRONTIERS ARE FOUND FOR EACH SCALE

PortReturn = [0.098:0.005:0.14]

returnIndex = load(’C:\PhD\Wavelets\Measure Alpha and Beta\...

Port Opt\Index Returns.txt’);

vol = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\Index Stand Dev.txt’);

OrigCorr = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation Original Data.txt’);

corr1 = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation LA8 scale 1.txt’);

corr2 = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation LA8 scale 2.txt’);

corr3 = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation LA8 scale 3.txt’);

corr4 = load(’C:\PhD\Wavelets\Measure Alpha and Beta\Port Opt\...

Correlation LA8 scale 4.txt’);

expCovOrig = corr2cov(vol, OrigCorr);

expCov1 = corr2cov(vol, corr1); expCov2 = corr2cov(vol, corr2);

expCov3 = corr2cov(vol, corr3); expCov4 = corr2cov(vol, corr4);

[PortRiskOrig, PortReturnOrig, PortWtsOrig] = portopt(returnIndex, ...

expCovOrig,[],PortReturn);

[PortRisk1, PortReturn1, PortWts1] = portopt(returnIndex, ...

expCov1,[],PortReturn);

[PortRisk2, PortReturn2, PortWts2] = portopt(returnIndex, ...

expCov2,[],PortReturn);
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[PortRisk3, PortReturn3, PortWts3] = portopt(returnIndex, ...

expCov3,[],PortReturn);

[PortRisk4, PortReturn4, PortWts4] = portopt(returnIndex, ...

expCov4,[],PortReturn);

PortRisk1 = 100 * PortRisk1; PortRisk2 = 100 * PortRisk2;

PortRisk3 = 100 * PortRisk3; PortRisk4 = 100 * PortRisk4;

PortReturn1 = 100 * PortReturn1; PortReturn2 = 100 * PortReturn2;

PortReturn3 = 100 * PortReturn3; PortReturn4 = 100 * PortReturn4;

PortRiskOrig = 100 * PortRiskOrig; PortReturnOrig = 100 * PortReturnOrig;

plot(PortRiskOrig, PortReturnOrig,’ * -’,PortRisk1,PortReturn1,’p-.’, ...

PortRisk2, PortReturn2,’+-’, PortRisk3, PortReturn3,’x-’, ...

PortRisk4, PortReturn4,’.-’);

legend(’Original Data’,’Scale 1’, ’Scale 2’,’Scale 3’,’Scale 4’, ...

’location’, ’SouthEast’);

xlabel(’Risk (%)’); ylabel(’Return (%)’);

title(’Efficient Frontier using Correlation Matrices caclulated ...

over different time horizons’);

function eegPearsonCorrel

% Function used to plot normalised eigenvalues vs the Index

load(’C:\PhD\Wavelets\Eigvalue Analysis\SX5Edata.mat’,’indexDates’, ...

’indexPX’, ’rtData’);

% Set the returns data to be examined

coef = rtData;

% select 100 stocks randomly (if needed, if not set > size(coef)

for i = 1:130

R(i) = round(unifrnd(1,384));

end

Rleft = unique(R); Rleft = Rleft(1:100);
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tic;

signal = coef’;

% Define Variables

blockSize = 100; blockSpace = 1; sig_freq = 1;

indexPXPLot = indexPX(blockSize:end-1,:);

sig_time_segment = 1/sig_freq;

% Find the Pearson Correlation & eigenvalues for each time window

j = 1;

for i = 1:blockSpace:(size(signal,2)-blockSize)

signal_seg = signal(:,(i):(blockSize+i -1));

sig_std = std(signal_seg,0,2);

sig_mean = mean(signal_seg,2);

A = repmat(sig_mean, 1, size(signal_seg,2));

B = repmat(sig_std, 1,size(signal_seg,2));

sig_norm = (signal_seg-A)./B;

eegCorrel = corrcoef(sig_norm’);

eegEig = eig(eegCorrel);

Eigs(:,j) = eegEig(:);

j = j + 1;

end

% Here we normalise each of the eigenvalue by dividing by its mean &

% dividing by its STD

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);
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A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall = (eigs_norm(1,:));

eigsBulk = mean(eigs_norm(1:40,:));

eigsLarge = (eigs_norm(end,:));

% Now plot the data

xData = indexDates(blockSize+2:end)’;

clims = [0 100];

subplot(4,1,1)

plot(xData, indexPXPLot)

axis([xData(1),xData(end),1500,5000]);

text(729010,1500,’(a)’,’FontSize’,14)

legend(’DJ Euro Stoxx 50, Apr 2002 - Aug 2007’);

datetick(’x’,10,’keeplimits’);

maxLarge = max(eigsLarge); maxSmall = max(eigsSmall);

minLarge = min(eigsLarge); minSmall = min(eigsSmall);

maxEig = max([maxLarge,maxSmall]); minEig = min([minLarge,minSmall]);

subplot(4,1,2)

plot(xData, eigsLarge, xData, eigsBulk)

axis([xData(1),xData(end),-3.5,3.5]);

text(729010,2.25,’(b)’,’FontSize’,14)

legend( ’Largest E/Value’,’Average E/Values 1-40’);

datetick(’x’,10,’keeplimits’);

cmin = min(min(eigs_norm));

cmax = max(max(eigs_norm));

subplot(4,1,3)

imagesc(min(xData):max(xData),0:size(eigs_norm,1), eigs_norm, clims)

colormap(jet); set(gca, ’CLim’, [cmin, cmax]);
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text(729010,10,’(c)’,’FontSize’,14)

datetick(’x’,10,’keeplimits’);

subplot(4,1,4)

imagesc(min(xData):max(xData),40:size(eigs_norm,1), ...

eigs_norm(40:end,:), clims);

colormap(jet); set(gca, ’CLim’, [cmin, cmax])

colorbar(’location’,’southoutside’);

text(729010,91,’(d)’,’FontSize’,14)

datetick(’x’,10,’keeplimits’); xlabel(’Time (Days)’);

t = toc

function findDrawdowns

%%FIND MARKET RETURNS ASSOCIATED WITH DRAWDOWNS OR DRAWUPS

load(’C:\PhD\Wavelets\Eigvalue Analysis\SX5Edata.mat’,’indexDates’, ....

’indexPX’, ’rtData’);

indexReturns = indexPX(2:end)./indexPX(1:end-1)-1;

Returns = rtData;

blockSize = 200; blockSpace = 1; sig_freq = 1;

sig_time_segment = 1/sig_freq;

% Set the Normalisation Period

norm_period = [1:size(rtData,1)-blockSize];

% Find 200 day returns

for i = 1:1:size(indexPX)-blockSize

cumReturn(i) = indexPX(i+blockSize)/indexPX(i)-1;

end

% Correlations and Eigenspectrum Original Data

for i = 1:1:size(Returns,1)-blockSize

correl = corrcoef(Returns(i:i+blockSize,:));

eigSXXP = eig(correl);

Eigs(:,i) = eigSXXP;
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end

eigs_std = std(Eigs(:,norm_period),0,2);

eigs_mean = mean(Eigs(:,norm_period),2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmallOrig = mean(eigs_norm(1:40,:));

eigsLargeOrig = (eigs_norm(end,:));

%%% Find eigenvalues < -1 & > 1 STD

drawUpSTD = 1;

eigsLargeDownOrig = find(eigsSmallOrig<-drawUpSTD);

eigsLargeUpOrig = find(eigsSmallOrig>drawUpSTD);

disp(’Orig Data, Large Eigs, >1 std’);

mean(cumReturn(eigsLargeUpOrig))

disp(’Orig Data, Large Eigs, <-1 std’);

mean(cumReturn(eigsLargeDownOrig))

unction modwtCorrCoefs

% FUNCTIONTO CALCULATE THE CORRELATIONS BETWEEN STOCKS AT DIFFERENT SCALES

% USING THE MODWT. USES THE WMTAS TOOLBOX FOR MATLAB. WITH SLIGHT CHANGES

% (DATA INPUT) CAN ALSO BE USED FOR EEG EPILEPTIC DATA. WARNING: CAN TAKE

% A LONG TIME TO RUN

clear;

% Load data

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\SX5P.mat’, ’Returns’);

s = Returns;

n_c = size(s,2);

levelNo = 4;

blockSize = 300;

blockSpace = 250;
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Coefs = [];

m = 1;

% Find correlations for each moving window

for l = 1:blockSpace:(size(s,1)-blockSize)

signal_seg = s((l):(blockSize+l -1),:);

% First Decompose the Data using the MODWT

for n = 1:n_c

modwtCoefs = modwt(signal_seg(:,n),’LA8’,levelNo);

sizeCoefs = size(modwtCoefs);

Coefs = [Coefs; modwtCoefs];

end

% Find Correlations & Eigenvalues

for i = 1:levelNo

for j = 0:n_c-1

flag = sizeCoefs * j;

Coefs1 = Coefs(flag + 1:flag + sizeCoefs, i);

for k = 0:n_c-1

flag2 = sizeCoefs * k;

Coefs2 = Coefs(flag2 +1:flag2 + sizeCoefs, i);

[waveCorr, CI_wcor] = modwt_wcor(Coefs1, Coefs2);

corrCoef(j+1, k+1) = waveCorr; %+n_c * (i-1)

end

end

eigenV(m,:,i) = eig(corrCoef);
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end

Coefs = [];

m = m + 1;

end

savefile = ’C:\PhD\Eigenvalue Analysis\SX5E Data\SX5Eeigs.mat’;

save(savefile, ’eigenV’);

function plotEigsScaled

% FUNCTIONTO PLOT EIGENVALUES FOR EACH SCALE STUDIED IN THE FUNCTION

% MODWTCORRCOEFS. THIS FUNCTION CAN BE USED FOR FINANCIAL DATA (AS BELOW)

% OR WITH MINOR MODIFICATIONS FOR EEG EPILEPTIC DATA

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\IndexPrice.mat’, ’indexPX’);

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\IndexDates.mat’, ’indexDates’);

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\IndexReturns.mat’, ’IndexReturns’);

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\SX5P.mat’, ’Returns’);

signal = Returns’;

load(’C:\PhD\Eigenvalue Analysis\SX5E Data\SX5Eeigs.mat’, ’eigenV’);

eigCC1 = eigenV(:,:,1)’; eigCC2 = eigenV(:,:,2)’; eigCC3 = eigenV(:,:,3)’;

% Set Variables

blockSize = 300; blockSpace = 250;

sig_freq = 1; sig_time_segment = 1/sig_freq;

wname = ’sym4’;

amax = 5; a = 2.ˆ[1:amax];

% Calculate the approximate frequencies

f = scal2frq(a,wname,1/sig_freq);

scale = 1./f;

%%%%%%%%%%%%% Unfiltered Data

j = 1;

for i = 1:blockSpace:size(Returns,1)-blockSize

correl = corrcoef(Returns(i:i+blockSize,:));

Eigs(:,j) = eig(correl);
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j = j +1;

end

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmallOrig = mean(eigs_norm(1:40,:));

eigsLargeOrig = (eigs_norm(end,:));

%%%%%%%%%%%%% Level 1

Eigs = eigCC1;

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall1 = mean(eigs_norm(1:40,:));

eigsLarge1 = (eigs_norm(end,:));

%%%%%%%%%%%%% Level 2

Eigs = eigCC2;

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall2 = mean(eigs_norm(1:40,:));

eigsLarge2 = (eigs_norm(end,:));

%%%%%%%%%%%%% Level 3
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Eigs = eigCC3;

eigs_std = std(Eigs,0,2);

eigs_mean = mean(Eigs,2);

A = repmat(eigs_mean, 1, size(Eigs,2));

B = repmat(eigs_std, 1,size(Eigs,2));

eigs_norm = (Eigs-A)./B;

eigsSmall3 = mean(eigs_norm(1:40,:));

eigsLarge3 = (eigs_norm(end,:));

%%% Find Time Frame

xData = indexDates’;

xData = xData(1:blockSize:size(xData,2));

%% Plot Results

maxLarge = max(eigsLarge1); maxSmall = max(eigsSmall1);

minLarge = min(eigsLarge1); minSmall = min(eigsSmall1);

maxEig = max([maxLarge,maxSmall]); minEig = min([minLarge,minSmall]);

subplot(4,1,1)

plot(xData, eigsLargeOrig, xData, eigsSmallOrig);

axis([xData(1),xData(end),minEig-1,maxEig+1]);

title([’Unfiltered Data’]); text(730256,2.5,’(a)’,’FontSize’,14);

legend(’Largest Eigenvalue’, ’Average 40 Smallest Eigenvalues’);

datetick(’x’,10,’keeplimits’);

clims = [0 100];

subplot(4,1,2)

plot(xData, eigsLarge1, xData, eigsSmall1);

axis([xData(1),xData(end),minEig-1,maxEig+1]);

title([’Wavelet Level 1 (’, num2str(round(scale(1,1))), ’ days)’]);

text(730256,2.5,’(b)’,’FontSize’,14); datetick(’x’,10,’keeplimits’);

subplot(4,1,3)

plot(xData, eigsLarge2, xData, eigsSmall2);

axis([xData(1),xData(end),minEig-1,maxEig+1]);

title([’Wavelet Level 2 (’, num2str(round(scale(1,2))), ’ days)’]);

text(730256,2.5,’(c)’,’FontSize’,14); datetick(’x’,10,’keeplimits’);
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subplot(4,1,4)

plot(xData, eigsLarge3, xData, eigsSmall3);

axis([xData(1),xData(end),minEig-1,maxEig+1]);

title([’Wavelet Level 3 (’, num2str(round(scale(1,3))), ’ days)’]);

text(730256,2.5,’(d)’,’FontSize’,14); datetick(’x’,10,’keeplimits’);



APPENDIX C

PAPERSPUBLISHED

A number of papers have been published to date, in the course of researchtowards this

Thesis. These are included in the pages that follow.
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