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Abstract
Gene expression is central to the function of living cells. While advances in se-

quencing and expression measurement technology over the past decade has greatly

facilitated the further understanding of the genome and its functions, the character-

isation of functional groups of genes remains one of the most important problems

in modern biology. Technological advancements have resulted in massive infor-

mation output, with the priority objective shifting to development of data analysis

methods. As such, a large number of clustering approaches have been proposed

for the analysis of gene expression data obtained from microarray experiments, and

consequently, confusion regarding the best approach to take. Common techniques

applied are not necessarily the most applicable for the analysis of patterns in mi-

croarray data. This confusion is clarified through provision of a framework for the

analysis of clustering technique and investigation of how well they apply to gene

expression data. To this end, the properties of microarray data itself are examined,

followed by an examination of the properties of clustering techniques and how well

they apply to gene expression.

Clearly, each technique will find patterns even if the structures are not meaning-

ful in a biological context and these structures are not usually the same for different

algorithms. Also, these algorithms are inherently biased as properties of clusters

reflect built in clustering criteria. From these considerations, it is clear that cluster

validation is critical for algorithm development and verification of results, usually

based on a manual, lengthy and subjective exploration process. Consequently, it is

key to the interpretation of the gene expression data. We carry out a critical analysis

of current methods used to evaluate clustering results. Clusters obtained from real

and synthetic datasets are compared between algorithms.



To understand the properties of complex gene expression datasets, graphical

representations can be used. Intuitively, the data can be represented in terms of a bi-

partite graph, with weighted edges between gene-sample node couples correspond-

ing to significant expression measurements of interest. In this research, this method

of representation is extensively studied and methods are used, in combination with

probabilistic models, to develop new clustering techniques for analysis of gene ex-

pression data in this mode of representation. Performance of these techniques can

be influenced both by the search algorithm, and, by the graph weighting scheme

and both merit vigorous investigation. A novel edge-weighting scheme, based on

empirical evidence, is presented. The scheme is tested using several benchmark

datasets at various levels of granularity, and comparisons are provided with cur-

rent a popular data analysis method used in the Bioinformatics community. The

analysis shows that the new empirical based scheme developed out-performs cur-

rent edge-weighting methods by accounting for the subtleties in the data through a

data-dependent threshold analysis, and selecting ‘interesting’ gene-sample couples

based on relative values.

The graphical theme of gene expression analysis is further developed by con-

struction of a one-mode gene expression network which specifically focuses on

local interactions among genes. Classical network theory is used to identify and ex-

amine organisational properties in the resulting graphs. A new algorithm, GraphCre-

ate, is presented which finds functional modules in the one-mode graph, i.e. sets

of genes which are coherently expressed over subsets of samples, and a scoring

scheme developed (using bi-partite graph properties as a basis) to weight these

modules. Use of this representation is used to extensively study published gene

expression datasets and to identify functional modules of genes with GraphCreate.

This work is important as it advances research in the area of transcriptome analy-

iii



sis, beyond simply finding groups of coherently expressed genes, by developing a

general framework to understand how and when gene sets are interacting.
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CHAPTER 1

INTRODUCTION

Approximately a century and a half ago an Augustinian monk, Gregor Mendel, hy-

pothesized, through the study of Pisum Sativum (Pea plants), that there were units

of heredity that controlled how traits were passed from one generation to another.

Unknowingly he was preparing the core of genetic theory. In the intervening time,

this discipline has changed substantially, although the analysis of genes in the nu-

cleus of the cell has remained a fundamental concern in the study of biological

organisms. Understanding how, why and when genes are expressed1 is critical to

the understanding of the functioning of the cell, and hence of biological organisms.

Experimental work suggests that biological networks are modular, (Barabasi and

Oltvai, 2004; Petti and Church, 2005) with modules defined over groups of genes

and proteins, as well as other molecules that are involved with a common subcel-

lular process. The underlying idea in clustering genes is that genes that are co-

regulated will be grouped together, and if co-regulation indicates shared functional-

ity, then clusters defined at gene level represent biological modules. Understanding

how, why and when these groups operate is one of the most important questions in

modern Biology.

1Genes are said to be expressed when the product they code for is realised, see Chapter 2 for
more details.
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1.1 Motivation for High Level Computational Anal-

ysis of Gene Expression Data

What is High Level Computational Analysis of Gene Expression Data?

Analysis of the transcriptome of an organism or group of cells to infer how gene

expression affects it’s function can take many forms. These include laboratory ex-

periments, which might include gene “knock outs” to analyse the effect on pheno-

type, or time consuming, gene-by-gene investigations experiments. Computational

analysis, involving simultaneous analysis of multiple gene expression can also be

carried out. Computational algorithms and techniques include (i) extraction and es-

timation of expression levels - normally referred to as “low level” analysis, or (ii)

identification and linkage of patterns of expression in the data - referred to as “high

level” analysis. This categorisation, though crude, is useful and is expanded upon

throughout the thesis.

Why is high level analysis of gene expression data important?

Single gene experiments can reveal only a limited amount of information. Genes

do not work in isolation, but rather in modules in which the products of a number

of genes come together. Furthermore, genes may be expressed coherently under

one condition, but diverge under another. Identifying functional groups of genes

can shed new light on the prognosis of a disease, (identifying for example targets

for treatments), can elucidate functions of unknown genes, determine sets of genes

involved in regulation of a particular process and so on. For example, in a study

of the Saccharomyces Cerrvisae genome, hypoxic genes, which are transcription-

ally repressed during aerobic growth (through recruitment of the Ssn6-Tup1 repres-

sion complex by the DNA binding protein Rox1), where investigated, (Klinken-

berg et al., 2005). In an oxygen deprived environment, cells are unable to main-

2



tain oxygen-dependent heme (a complex containing iron, among other elements, to

which oxygen binds) biosynthesis and heme accumulates in the cell, which serves

as an effector for the transcriptional activator Hapl, Fig. 1.1. A heme-Hapl com-

plex activates transcription of the ROX1 gene that encodes the repressor of one set

of hypoxic genes. Under hypoxic conditions, heme levels fall, and a heme-deficient

Hapl complex represses ROX1 expression. As a consequence, the hypoxic genes

are derepressed (Klinkenberg et al., 2005). Put quite simply, if we examine the

transcriptome of S. Cerrvisae during hypoxic and aerobic conditions, and we have

prior information that the ROX1 gene encodes a repressor for hypoxic genes, we

have the potential to evaluate which set of genes are affected by ROX1.

Ssn6-Tup1

heme-Hap1 complex 
activator of ROX1 gene

ROX1

Expression results in 
DNA binding protein Rox1

Ssn6-Tup1 Rox1 complex repressor
of hypoxic genes

aerobic conditions

Ssn6-Tup1 not recruited

heme deficient Hap1 
complex represses
ROX1 gene

ROX1

No expression of 
DNA binding protein Rox1

Hypoxic genes are expressed

hypoxic conditions

Figure 1.1: Through the repression or activation of ROX1 gene, hypoxic genes can
be regulated. Identification of potential functional and/or regulatory groups is one
of the aims of cluster analysis. Blue indicates repression, while green indicates
activation.

What ‘tools’ are used for high level analysis of gene expression data?
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High level analysis of gene expression data combines methods from Biology, Statis-

tics and Computer Science to derive a picture of what genes are expressed in the

nucleus of a living cell. Biological Science poses questions and hypotheses about

active processes of the cell and gives us experimental tools to test these hypotheses.

Statistical quantification of evidence is standard, not least because new automated

tools mean that experimental techniques are rapidly becoming high-throughput in

nature, resulting in a vast amount of data. Finally, Computer Science offers tools

to organise, analyse and visualise the information generated in addition to the po-

tential to simulate abstractions if biological theory and the theoretical implications.

Statistical robustness is crucial, and results of analysis can provide a further basis

for biological experiments. This cyclical process, with each disciplinary combina-

tion both directly and indirectly reinforcing investigations as a whole is a powerful

combination. The focus here is computational although the context of the work is

core to understanding the choices made.

1.2 Scope and Contribution

With the explosion of data following the typing of the human genome in 2000,

much effort has focused on data generation, rather less on appropriate methods

of analysis, with the initial assumption being that standard methods would apply.

Systematic assessment of analytical techniques for high throughput technologies,

such as microarray data has attracted limited interest, (Kerr and Churchill, 2001;

van Bakel and Holstege, 2004; Zakharkin et al., 2005; Pham et al., 2006; Datta and

Datta, 2006; Giancarlo et al., 2008). The view that clustering methods are univer-

sally applicable is a common mis-conception and recently, has provoked consider-

able controversy among practitioners, not least in the biological context, (Levsky

4



and Singer, 2003; Shendure, 2008). The main objectives of this thesis are thus: (i)

An assessment of common unsupervised clustering methods and their applicabil-

ity to gene expression data, (ii) an understanding of the purpose of such analysis,

i.e. an extensive examination of the properties of the gene expression dataset, (iii)

the development of a robust solution to computational analysis of these data, (iv)

testing the solution proposed for diverse data.

1.3 Layout of Thesis

Chapter 2 introduces the main concepts and defines the terminology used through-

out the thesis. Many of the definitions introduced in this Chapter can be found in

the glossary for ease of reference.

Chapter 3 examines the theoretical state of the art in gene expression cluster-

ing. In particular, commonly-applied clustering techniques are examined for their

appropriateness for gene expression data, and alternative, notably biclustering and

graphical methods, are considered.

Evaluation of clustering results is non-trivial for gene expression data as very

little may be known about the data before hand. In Chapter 4 we thus propose a

practical approach for the evaluation of clustering techniques. We assess results ob-

tained with selected clustering algorithms (identified in Chapter 3) for real bench-

mark and synthetic datasets. We demonstrate that recognition of valid clusters is

problematic, and results frequently misleading in the context of gene expression

data.

In Chapter 5, we adopt a framework for graphical modelling to carry out robust

and extensive analyses of gene expression data behaviour. This allows us to link the

theory of the gene expression data, identified in chapters 2 and 3, with the “realistic”

5



organisational properties and patterns found in large gene expression datasets.

In Chapter 6 we develop algorithms which draw on properties, identified in

Chapter 5, to extract meaningful groups of genes and samples from the datasets.

The ultimate goal of this analysis is to group subset of genes and samples, for

which the genes show correlated behaviour, i.e. to extract bi-clusters or functional

modules from the graph.

Chapter 7 discusses the challenges in analysing gene expression data and what

can be achieved through appropriate computational analysis. Overall results are

evaluated, and areas for future work highlight on the basis of conclusions drawn.

Due to the fact that this research deals with large datasets and each analysis

is quite detailed and to maintain continuity of text, a lot of information has been

enclosed into various appendices. Appendix A contains details of mathematical

formulae. Details of the benchmark and synthetic datasets are given in Appendix

B. Additional graphs from various analysis can be found in Appendix C.

6



CHAPTER 2

BACKGROUND

In this Chapter, we briefly introduce some key concepts concerning gene expres-

sion, its role in a biological cell and tools used for its measurement. For a more

extensive overview, additional references are cited.

2.1 Introduction

Early observers using microscopes noted that living cells contained a light grey sap

encapsulating a darker, denser globule of floating matter. In 1831, the botanist,

Robert Brown, used the word nucleus to describe this dark, central globule, while

the sap is the cytoplasm. Adding stains or dyes to thinly sliced tissue caused chro-

matin material in the nucleus to stand out. To early observers, chromatin appeared

to be tiny granules or delicately intertwined threads scattered about inside the nu-

cleus. These long entangled threads are what we now know as chromosomes.

Today we know that the chromosome structures, found in the nucleus of a cell,

consist of linear deoxyribonucleic acid (DNA) polymers, in which the monomeric

subunits are four chemically distinct nucleotides that can be linked together, in any

order, into chains up to millions of units in length. Each nucleotide in a DNA poly-

mer is made up of three components: a phosphate, a deoxyribose sugar and one of

7



four nitrogenous bases: adenine, thymine, cytosine or guanine, usually abbreviated

to A, T, C and G respectively, (Brown, 2002d).

N

N

N

N

NH
2

H

Adenine

N

N N

H

Guanine

O

NH

NH
2

N

N

NH
2

O

Cytosine

N

NO

Thymine

H

H
O

CH
3

Pyrimidine’sPurine’s

Base Pairing

Phosphate

Deoxyribose

Double Helix

Figure 2.1: Left - Molecular structure of the four nitrogenous bases, which dif-
ferentiate the DNA polymers and can be categorised as Purine’s (double ring) or
Pyrimidine’s (single ring). Right - “The Double Helix”

DNA polymers assemble together in pairs within the nucleus of a cell to form

a double stranded structure known as the Double Helix, (Figure 2.1). The double

helix has structural flexibility due to base-pairing and base-stacking. Base-pairing

between the two DNA polymer strands involves the formation of hydrogen bonds

between an adenine on one strand and a thymine on the other strand, or between

a cytosine and a guanine. Only the A-T and C-G pairs are permissible, partly be-

cause of the geometries of the nucleotide bases and the relative positions of the

groups that are able to participate in hydrogen bonds, and partly pairing must be

between a purine and a pyrimidine, (resulting in the distinctive helix structure).

Base-stacking then involves hydrophobic interactions between adjacent base-pairs,

adding stability to the double helix, (Walker and Rapley, 1997).

The limitation that only base pairs A-T and C-G are permissible has significant

biological implications. It results in perfect copies of a parent molecule during DNA

replication through the simple expedient of using the sequences of the pre-existing
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strands to dictate the sequences of the new strands. This is template-dependent

DNA synthesis and is the system used by all cellular DNA polymerases; (an enzyme

fundamental to DNA replication). Further details of DNA polymerase function can

be found in Brown (2002c) and Hartl and Jones (2002).

Genes are a DNA sub-segment of the genome which contain important biolog-

ical information. The vast majority of genes code for proteins and a few for non-

coding Ribonucleic acid (RNA)1. The so-called “expression” of protein-specifying

genes involves intermediate messenger RNA (mRNA), or coding RNA. This is

transported from the nucleus to the cytoplasm of the cell where it directs synthesis

of the protein coded by the gene. The structure of RNA is similar to that of DNA

in that it is also a polynucleotide. However, the sugar in the RNA nucleotide is a

ribose sugar and, further, RNA contains the monomeric subunit uracil (U) instead

of the base thymine found in DNA. Additionally, RNA is found in single strands

in the cell, while DNA is usually double-stranded. RNA is transcribed from DNA

by RNA polymerase, facilitating the biological encoding of DNA to be realised,

(Brown (2002g,e) for more information)

Template-dependent RNA synthesis is used by RNA polymerases to make RNA

copies of genes: these copies preserve the biological information contained in the

sequence of the genomic DNA molecule, meaning that the sequence of nucleotides

in a DNA template dictates the sequence of nucleotides in the RNA that is created.

During transcription, ribonucleotides are added one after another to the RNA tran-

script, the identity of each nucleotide being specified by the base pairing rules: A-U,

G-C2. RNA polymerase is the central component of the transcription initiation com-

1Non-coding in the sense that they are not translated into protein, but do carry out other essential
functions in the cell

2Adenines in the DNA template do not specify thymines in the RNA copy as RNA does not
contain thymine, instead adenine pairs with uracil in DNA-RNA hybrids
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plex. Every time a gene is transcribed, a new complex is assembled immediately

upstream of the gene. The initiation complexes are constructed at specific positions

on the genome, marked by specific nucleotide sequences called promoters, which

are only found upstream of the gene, (Brown, 2002b).

Genes are said to be expressed when the product they code for are expressed

(see below for details). A large percentage of protein-coding genes are involved

in expression, replication and maintenance of the genome. A smaller percentage

specifies components of the signal transduction pathway that regulates genome ex-

pression and other cellular activities in response to signals received from outside

the cell. Other genes code for enzymes, responsible for the general biochemical

functions of the cell, while the remainder of the genes are involved in activities

such as transport of compounds into and out of cells, the folding of proteins into

their correct three dimensional structures, the immune response and synthesis of

structural proteins, such as those found in the cytoskeleton and in muscles, (Petsko

and Ringe, 2004b).

2.2 The Central Dogma of Protein Synthesis

The genome is a repository of biological information, where utilization of this re-

quires the coordinated activity of enzymes and other proteins. These participate in a

complex series of biochemical reactions collectively referred to as genome expres-

sion.

The initial product of genome expression is the transcriptome, a collection of

RNA molecules derived from those protein-coding genes, having biological infor-

mation required by the cell at a particular time. These RNA molecules direct the

synthesis of the final product of genome expression, the proteome, (the cell’s reper-
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Figure 2.2: Central Dogma of protein synthesis

toire of proteins), which specifies the nature of the biochemical reactions that the

cell is able to carry out. Transcription, (where individual genes are copied into RNA

molecules, see above) constructs the transcriptome. Construction of the proteome

involves translation of these RNA molecules into protein (Figure 2.2). Transcrip-

tion does not result in synthesis of a new transcriptome but rather (i) its mainte-

nance, (replacing mRNA that have been degraded), and (ii) changes to its composi-

tion, (by switching on and off different sets of genes).

It is an inadequate over-simplification to describe synthesis and maintenance

of the transcriptome and proteome as the two-step process “DNA makes RNA

makes protein”, as the series of events involved is much more complex (Figure

2.3). Nevertheless, the Central Dogma has considerable acceptance for its sim-

plicity. In reality, genome expression comprises the following steps, discussed by

Brown (2002d,g,a,b,e,f,c).

1. Accessing the genome - Involves processes influencing chromatin structure

in the parts of the genome that contain active genes, ensuring that these genes

are accessible and are not buried deep within highly packaged parts of the

chromosomes.

2. Assembly of the transcription initiation complex - this comprises a set of

proteins that work together to copy genes into RNA. Assembly of initiation

complexes is a highly targeted process because these complexes must be con-
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structed at precise positions in the genome, adjacent to active genes.

3. Synthesis of RNA, during which the gene is transcribed into an RNA copy.

4. Processing of RNA molecule - Involves a series of alterations made to its

sequence and chemical structure, and which must occur before the RNA

molecule can be translated into protein or, in the case of non-coding RNA,

before it can carry out other functions in the cell.

5. RNA degradation - The controlled turnover of RNA molecules, (plays an

active role in determining the makeup of the transcriptome), (Lorkowski and

Cullen, 2006).

6. Assembly of the translation initiation complex - Occurs at the termini of cod-

ing RNA molecules, and is a prerequisite for translation of these molecules.

7. Protein synthesis - The synthesis of a protein by translation of an RNA molecule,

(Brown, 2002f).

8. Protein folding and protein processing. Folding results in the protein taking

up it’s correct three-dimensional structure. Processing involves modification

of the protein by addition of chemical groups and, for some proteins, removal

of one or more segments of the protein, (Branden and Tooze, 1999).

9. Protein degradation has an important influence on the composition of the

proteome and, like RNA degradation, is an integral component of genome

expression, (Petsko and Ringe, 2004a).

Control mechanisms exist for regulation of each step, (Figure 2.3), allowing the

cell to ‘adjust expression’ in response to changes in its environment and to signals
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Figure 2.3: Detailed Central Dogma

received from other cells. These regulatory events determine not only function of

individual cells but also the processes of differentiation and development.

Processing of mRNA has an important influence on the composition of the tran-

scriptome. RNA editing, for example, can result in a single pre-mRNA being con-

verted into two different mRNAs, coding for distinct proteins. Splicing, in which

one pre-mRNA gives rise to two or more mRNAs by assembly of different combi-

nations of exons3, resulting in protein isoforms4, is fairly widespread, (Modrek and

Lee, 2002; Lee and Wang, 2005; Birzele et al., 2007). The mRNA resulting from

both editing and alternative splicing often displays tissue specificity. These process-

ing events increase the coding capabilities of the genome without the requirement

for increased gene number. To some degree, this explains the “surprise” discovery

of the Human Genome Project that an estimated 20, 000 ∼ 25, 000 protein-coding

3A segment of a gene that contains instructions for making a protein. In many genes the exons
are separated by “intervening” segments of DNA, known as introns, which do not code for proteins;
these introns are removed by splicing to produce messenger RNA.

4An alternative form of a protein resulting from differential transcription of the relevant gene
either from alternative promoter or alternate splicing.
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genes only are responsible for the synthesis of many thousands of functional pro-

teins, (Pennisi, 2000; Lander et al., 2001; Consortium, 2004).

Many genes are active at any one time in a given cell. Transcriptomes are there-

fore complex, containing copies of hundred, if not thousands, of different mRNAs.

Usually, each mRNA contributes a small fraction only of mRNA abundance, with

the most common type rarely contributing more than 1% of the total. Overall,

mRNA itself typically accounts for ∼ 4% of total abundance of RNA in a cell,

while non-coding RNA makes up the remainder, (Brown, 2002g)

2.3 Analysing Gene Expression

Identification of which genes are active, and under what circumstances, is a constant

goal of the scientific community. The development of high-throughput technologies

for the measurement of the entire transcriptome has evolved from gene-by-gene ex-

perimental methods, such as reverse transcriptome polymerase chain reactions (RT-

PCR) (Erlich, 1989), reverse northern (Alwine et al., 1977) and Southern hybridis-

ation (Southern, 1975). These relatively new high-throughput tools have broadened

the size and scope of biological questions scientists can pose.

2.3.1 Microarray Technologies

One-at-a-time study of gene expression is time consuming and limited as multiple

gene expression is typical for an organism. Microarray and DNA chip technology

have facilitated determination of transcriptome composition, enabling comparisons

between them.

Various manufacturers provide a large assortment of different microarray plat-
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forms (Aligent and Affymatrix for instance). Fundamentally, all platforms take

advantage of the specificity and affinity of complementary base-pairing of nucleic

acid. Thousands of known discrete DNA sequences (known as probes) are attached,

(via print, jet, photolithography), at known positions to a solid surface. To measure

the quantity of transcripts of specific genes in a sample of interest, genetic material

is extracted from the sample and labelled with a fluorescent dye. The labelled ge-

netic material is referred to as the target. The target is then allowed to hybridise5

to the probes on the slide. After hybridisation, a specialised scanner is used to

measure the amount of fluorescence (i.e. amount of target) at each probe, which is

reported as intensity. The “raw” or “probe-level” data are the intensities read for

each of these components. As the address and sequence of each probe is known,

probe intensities determine the abundance of the sequence of each specific gene in

the target.

Microarray Platforms

Different platforms can be divided into two main classes that are differentiated by

the type of data they produce.

(A) The high density oligonucleotide array platform contains probes of length

25 base-pairs(bp)6 that are synthesised directly onto the array surface using

photolithography. Rather than discrete spot association with a transcript of

interest, a combinatorial probe is used for each gene, i.e. each gene on the

array is represented by a series of smaller oligonucleotides that span different

parts of the gene. Most probes are designed to represent the most common

5Base-pair to form double stranded structure
6Base-pairs are the units for measuring the length of a nucleic sequence. Each nucleotide in a

sequence is one base-pair. 1000bp = 1kb (kilo base-pairs), 1000kb = 1mb (mega base-pairs) etc.
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transcripts expressed from a gene. Probe design is thus constrained by need-

ing to meeting the most consistent hybridisation parameters across the entire

set - as the size and concentrations of each probe is predetermined, the most

critical factors are the Guanine-Cytosine content7, predicted secondary struc-

ture within the probe itself, as well as the uniqueness of the probe sequence

itself, (Pham et al., 2006). There are typically mismatch probes and con-

trol probes incorporated in the design to measure the amount of non-specific

binding and for use in normalisation procedures. Genetic material from one

sample of interest is hybridised to the array resulting in one set of probe-level

data per microarray. This platform is typically used for well-sequenced and

annotated genomes. The data is, within reason, robust and reproducible be-

tween laboratories, with the design of each oligonucleotide being critical to

the robustness of the array as a whole.

(B) For two-colour spotted (cDNA array) platforms, the probes may be as long

as the gene product, (∼ 2kb). Probe sets are typically captured from gene

products expressed in an organism of interest, so represent a set of likely

gene expression patterns. The genetic material from two target samples are

labelled with separate dyes (Cy3 (green) and Cy5 (red)), mixed together and

hybridised to the same array, thus producing two sets of probe-level data per

microarray (the red and green channels), (Gentleman et al., 2005a). This

platform is typically used for incompletely sequenced genomes, but is often

limited by poor probe annotation, redundancy in the array of gene products,

cross-hybridisation of sequences common to different probes and sub-optimal
7Percentage of bases which are either guanine or cytosine. GC pairs are more thermostable

compared to the alternative Adenine-Thymine pairs. Genes are often characterised by having a
higher GC content in contrast to the background GC content for the entire genome. Evidence of
GC ratio with that of length of the coding region of a gene have shown that the length of the coding
sequence is directly proportional to higher GC content, (Oliver and Marn, 1996)
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variation in hybridisation efficiencies8 across the probe set. The platform is

useful for organisms not well represented in the public sequencing databases,

(Pham et al., 2006).

The choice of platform (A or B) determines the type of experimental design

(two colour comparison, or single colour indirect comparison), as well as choice

of normalisation and filtering strategies employed. Sources of variation need to

be accounted for, and data must be heavily manipulated before the genomic level

measurements used for analysis can be obtained.

2.4 Design of Gene Expression Analysis Experiments

The size and scope of the questions the data can answer is dependent on the exper-

imental design. Important features are: (i) choice and collection of samples (tissue

biopsies or cell lines exposed to different treatments); (ii) choice of probes and array

platform to use; (iii) choice of controls (to measure non-specific binding, noise, and

for normalisation procedures etc.); (iv) RNA extraction, amplification, labelling,

and hybridisation procedures; (v) allocation of replicates; and (vi) scheduling. Un-

surprisingly, the quality of experimental design to a large extent determines the

utility of the data, and avoidance of confounding between biological factors and/or

measurement artefacts is important. Examples of biological factors include tissue

heterogeneity, genetic polymorphism, and changes in mRNA levels within cells and

among individuals due to sex, age, race, genotype-environment interactions and so

on. The Biological variation between experimental units (i.e. individual mice, rats,

tissue samples etc.) is of intrinsic interest to investigators. However, technical vari-

ation inherent in preparation of samples, labelling, hybridisation and other steps

8determined by probe length and composition
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of microarray experimentation, can significantly impact data quality, (Zakharkin

et al., 2005) To minimise this quality control of RNA samples is required, (Gentle-

man et al., 2005a). For good reviews of microarray experiment design principles

see Yang and Speed (2002), Churchill (2002) and Pham et al. (2006).

Transcriptome Analysis

Gene Expression
Monitoring( )

INPUTS

Normal Tissue

Diseased Tissue

Test Compound

Cell Cycle

OUTPUTS

Prognosis
Diagnosis
Drug Targets
Pathology
Drug Efficacy
Toxicology
Gene Function
Gene Regulation

Figure 2.4: Microarrays have a large number of applications and expression data
measurements can have an impact on a large spectrum of research areas.

Replicates: Biological replicates are samples extracted from independent9 bi-

ological units (cell line, organism etc.). Technical replicates are genetic material

extracted from the same biological unit and hybridised to two different arrays. Inde-

pendent biological replication is very important in experimental design, to achieve

adequate power and validity in statistical inference and testing. For technical repli-

cates, conclusions are descriptive and limited to the samples used (i.e. descriptive

as opposed to inferential), (Churchill, 2002).

Comparison: Two-colour cDNA arrays are inherently directly comparable be-

tween samples. With oligonucleotide arrays, however, only one sample can hy-

bridise to an array, thus only indirect comparisons are possible. The main design

issue with cDNA microarrays is to determine which RNA samples should be hy-

bridised together on the same slide to achieve the desired precision. Popular de-

9Two measurements are considered independent if the experimental materials on which the mea-
surements are based receive different treatments and if the materials were handled separately at all
stages of the experiment.
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signs and other practical considerations are discussed by Churchill (2002); Yang

and Speed (2002) and references therein.

Reproduction and Analysis: The experimental design influences both data col-

lected and the analysis performed. Comprehensive and meticulous details of the

experimental procedures are vital for subsequent analysis of the data.

2.5 Microarray Data

2.5.1 Abundance Measures

High density oligonucleotide array and cDNA array platforms measure overall and

relative abundance of a probe sequence in one and two target samples respectively,

i.e. the former give absolute (log) intensities, while the latter give ratio (log) inten-

sities. In many cases one of the samples in a cDNA array hybridization is a common

reference used across multiple slides, with the sole purpose of providing a baseline

for direct comparison of expression between arrays, (Gentleman et al., 2005b).

For oligonucleotide arrays, the direct comparison of expression measures within

arrays is problematic, because fluorescent intensities are not the same across genes.

The measured fluorescence intensities are roughly proportional to mRNA abun-

dance but the proportionality factor, (p), is different for each gene. When using

short oligonucleotide arrays, p is a function of the probes used and, in particular,

of the frequencies of the different nucleotides in each. Specifically, the between-

sample, within-gene comparisons are valid and sensible, but the within-sample,

between-gene comparisons are not.

As an illustration of the difficulty, suppose that genes a and b, have estimated

expression measures 100 and 200 respectively, in sample i. These observed data tell
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us nothing about the real relative abundance of mRNA for these two genes. There

could in fact be more copies of the mRNA for gene a. On the other hand, if in a

second sample, j, gene a has an expression measure of 200, we could conclude that

the abundance of mRNA for a in sample j is likely to be higher than that observed

in sample i, (Gentleman et al., 2005b).

For cDNA arrays the measure of interest is a ratio of abundance, typically calcu-

lated relative to a standard reference. Consider a sample, i, with estimated relative

abundance of 1 for gene a and 2 for gene b. It can be inferred that gene a is expressed

at approximately the same level in sample i as in the reference sample, while gene

b has approximately twice the abundance of mRNA as the reference sample. Note:

relative values if a, b mRNA abundance are unknown as the value in the reference

sample is not specified here. Certain designs are also less readily interpretable e.g.

dye swaps (Churchill, 2002) (a gene ratio may be recorded a 2 for one slide and

0.5 for another, corresponding to the same abundance of target). These simple ex-

amples serve to show that data from transcriptome analysis experiments need to be

carefully interpreted in the context of the experimental design.

2.5.2 Gene Expression Data Characteristics

Once raw gene expression data are collected and processed, these are typically pre-

sented as a real-valued matrix, with rows corresponding to gene expression mea-

surements over a number of experiments, and columns corresponding to the pattern

of expression of all genes for a given microarray experiment, Figure 2.5. Each entry,

xij , is the measured expression of gene i in experiment j. Dimensionality of a gene

or sample refers to the number of its expression or sample values recorded (num-

ber of matrix columns or rows respectively). A gene/gene profile, −→gi , is a single
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data item (row) consisting of p measurements, −→gi = (xi1, xi2, ..., xip). An experi-

ment/sample−→sj is a single microarray experiment corresponding to a single column

in the gene expression matrix, −→sj = (x1j, x2j, ..., xnj)
T , where n is the number of

genes in the dataset. The notation adopted throughout this thesis is presented in

Table 2.1.
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Figure 2.5: Gene Expression Matrix

X Gene expression matrix
n Number of genes
p Number of samples
xij A cell in the gene expression matrix
−→gi Gene vector i
−→sj Sample vector j

Table 2.1: Notation used throughout thesis

From the above discussion, we can summarise the properties of microarray data.

Accuracy: The accuracy of gene expression data strongly depends on experimental

design and minimisation of technical variation, whether due to instruments, ob-

server or pre-processing10, (Zakharkin et al., 2005). It also depends on the number

10Preprocessing is a processes applied to the raw data, such as standardisations, normalisations to
remove noise etc. to produce data that can used as input to another program

21



of alterations of an mRNA molecule before it is measured by the array.

Incompleteness: Image corruption and/or slide impurities may lead to unusable or

undetectable fluorescent intensities resulting in incomplete data, or missing values

(Troyanskaya et al., 2001).

Noise: Due to the many uncontrollable factors in the experiments (biological varia-

tion, binding efficiencies, cross hybridisation etc.), gene expression data is intrinsi-

cally noisy, resulting in outliers, typically managed by: (i) robust statistical estima-

tion/testing, (when extreme values are not of primary interest), (ii) identification,

(when outlier information is of intrinsic importance), (iii) manual screening for de-

fective slides, (Liu et al., 2002).

High Dimensional Data: The resulting dataset is of high dimension, with a few

experiments, reporting on a large number of variables.

2.6 Beyond Microarrays

In addition to microarrays, other experimental methods for gene expression mon-

itoring are continually under development. Serial Analysis of Gene Expression

(SAGE), for example, is a technique used to produce a snapshot of the mRNA pop-

ulation in a sample, (Velculescu et al., 1995). The output of SAGE is a list of short

sequence tags and the number of times each is observed. Using sequence databases

a researcher can usually determine the original mRNA, (and therefore which gene),

the tag was extracted from. Statistical methods can be applied to tag and count

lists from different samples in order to determine which genes are more highly ex-

pressed between different samples. Several variants of SAGE have been developed,

such as, LongSAGE (Saha et al., 2002), RL-SAGE (Gowda et al., 2004) and Super-

SAGE (Matsumura et al., 2003). SuperSAGE advances its predecessors by using a
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technique that expands the tag-size, (Matsumura et al., 2003). The longer tag-size

allows more precise allocation of the tag to the corresponding transcript. By direct

high-throughput sequencing techniques, thousands of tags can be analyzed in one

run, producing precise gene expression profiles.

Many vendors provide an assortment of array platforms that are continually

improved and upgraded. An alternative microarray, based on randomly arranged

beads was developed by Illumina technologies. A specific 50bp oligonucleotide is

assigned to each bead type, which is replicated approximately 30 times on an array,

(Kuhn et al., 2004). The high degree of replication makes robust measurements for

each bead type possible. Randomisation of the probe spots between arrays further

avoids the potential systematic biases that could be introduced due to regular ar-

rangements, (e.g. printing, scanning conditions etc.). Ideally, different arrays used

in an experiment should have similar clones in different positions. Formerly, used

for single nucleotide polymorphism detection amongst others. Illumina bead arrays

can now be used to monitor the expression of genes in the entire genome.

Microarrays and their alterations offer a unique opportunity to analyse gene

expression and regulation at a global cellular level. However, the generation of

large datasets presents challenges in analysis and warehousing of the data, as well

as its integration of that data with other high throughput platforms.

The “Central Dogma” of “DNA makes mRNA makes proteins” (that comprise

the proteome) is overly simple. A single gene does not translate into one protein

and protein abundance depends not only on transcription rates of genes but also on

additional control mechanisms, such as mRNA stability , regulation of the transla-

tion of mRNA to proteins and protein degradation . Proteins can also be modified

by post-translation activity (Brown, 2002(a)). Inevitably, the integration of tran-

scriptome and proteome data will provide a more complete understanding of the
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connection of gene expression to the physical chemistry of the cell. Integration and

merger of proteomic11 and transcription data sources across platforms is needed,

together with development of automated high-throughput comparison methods if

detailed understanding of cell mechanisms is to be achieved. To this end, as well

as to successfully integrate cluster information from different datasets, standardis-

ation of gene and protein annotation methods across databases is overdue, (Waters,

2006). Finally, recent developments in new ontologies and databases facilitate stor-

age of expression and meta information, which assists enormously in validation of

exploratory analyses of gene expression datasets.

2.7 Summary

Gene expression analysis represents only one parameter by which cells or tissues

may be characterised. Depending on the experiment, epidemiological or molecular

pathological data, genomic changes or sensitivity to drugs may be additional param-

eters that will influence the interpretation of microarray data. The ability to combine

RNA and protein expression data to comprehensively profile both transcriptional

and post-transcriptional changes in cells and tissues is particularly appealing, al-

though the number of proteins that can be profiled at this stage is substantially less

than the number of genes. Although it is more difficult to identify proteins that are

differentially expressed, techniques for rapid and reproducible two-dimensional gel

protein separation and mass spectrometry-based protein identification make high

throughput proteomics, not only desirable, but feasible in the short term as an ad-

junct to microarray transcriptome analysis, (Bowtell, 1999). Consequently, accu-

rate algorithms and computing techniques are needed to measure and understand

11Protein measurement methods include ICAT, MudPIT, 2-DE.
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transcript data before integration with other levels.

Measurement of gene expression is critical for the understanding of cellular bi-

ological processes, and although it is not a complete link between sequence and cell

function, it is an important element in the chain of events. While high-throughput

technology has “evolved” from its ancestor technologies, there are “side effects”

which need to be dealt with, not least the challenge of analysing abundant data.

Even as this work was completed, new and more precise methods of measurement

have emerged, but the need for robust analysis techniques remains.
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CHAPTER 3

A REVIEW OF TECHNIQUES

This Chapter examines the strengths and weaknesses of algorithms used in the anal-

ysis of gene expression data. The properties of these data were introduced in Chap-

ter 2 and we investigate here what is required from pattern-finding algorithms to

meet the challenges of their analysis. We focus on unsupervised pattern recognition

algorithms, reviewing key concepts; (further details are also referenced appropri-

ately).

3.1 Introduction

Array data are used to determine which genes are expressed under which condi-

tions, and for comparisons between transcriptomes of different biological samples.

Searching for meaningful information patterns and dependencies in gene expres-

sion data, to provide a basis for hypothesis testing is non-trivial. An initial step is

to cluster or “group” genes, with similar changes in expression. Lack of a priori

knowledge means that unsupervised clustering techniques, where data are unla-

belled (un-annotated), are common in gene expression work.

Many excellent reviews of gene expression analysis, using clustering techniques,

are available. Asyali et al. (2006) provide a synopsis of class prediction and dis-
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covery; (respectively, supervised pattern recognition and clustering), while Pham

et al. (2006) provide a comprehensive literature review of the various stages of data

analysis during a microarray experiment. In a landmark paper, Jain et al. (1999)

provided a thorough introduction to clustering, and gave a taxonomy of clustering

algorithms, (used in this work). Reviewing the state of the art in gene expression

analysis is complicated by the high level of interest in exploratory analysis and the

consequent proliferation of techniques, Figure 3.1. We restrict our assessment to

a selection of those methods, which illustrate the properties of each group in the

taxonomy according to Jain et al. (1999), and also to those which address short-

comings of conventional approaches, by introducing modifications to account for

properties specific to gene expression data.
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Figure 3.1: Data from ISI web of science on number of papers published in the area
with key words “Clustering (Pattern Recognition)” and “Gene Expression”

3.2 Pattern Recognition

Pattern recognition is an exploratory technique and assumes that there is an un-

known mapping that assigns a group “label” to each gene, where the goal is to
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estimate this mapping. However, common clustering approaches do not always

translate well to gene expression data, and may fail significantly to account for the

data profile.

To recapitulate from Chapter 2: properties (which any clustering algorithm in

this domain must account for) include: (i) Accuracy: this is not absolute and de-

pends on a number of factors, not least the experimental design and the platform

used; (ii) Missing values: common in gene expression datasets, mainly because of

the complex and specific nature of the experiments. Frequently, the measured inten-

sity is not convincing and deemed “absent” by experimentalists. Dust, scratches or

image quality may also render a large proportion of values unusable. Consequently,

any clustering algorithm which can not account for missing values must be supple-

mented by missing value estimation procedures prior to any exploratory analysis of

the data; (iii) Incorporated noise: this is typically multiplicative or additive, may

be caused by measurement or experimental error, and affects accuracy. A good

clustering algorithm should not be greatly affected by spurious measurements, and

should treat outliers with caution.

As cluster analysis is usually exploratory, lack of a priori knowledge on gene

groupings or the number of these, K, is common. Arbitrary selection of K may

undesirably bias the search, as pattern elements may be ill-defined unless signals

are strong. Meta-data can guide choice of correct K, e.g. genes with common

promoter sequence are likely to be expressed together and thus are likely to be

placed in the same group. Methods for determining optimal number of groups, K,

are discussed by Milligan and Cooper (1985) and Fridlyand and Dudoit (2001).
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3.2.1 Cluster Types

In general, a cluster is defined as a group of objects, which exhibit similar properties

according to some objective criterion. Clustering a gene expression matrix can be

achieved in two ways:

1. genes can form a group which show similar expression across samples, (i.e.

grouping rows of the gene expression matrix).

2. samples can form a group which show similar expression across all genes,

(i.e. grouping columns of the gene expression matrix).

Both (i) and (ii) lead to global clusters, where a gene or sample is grouped

across all dimensions. However, genes and samples can also be clustered simulta-

neously, with their inter-relationship represented by bi-clusters. These are defined

over a subset of genes and a subset of samples thus focusing on a Section of the

gene expression matrix and capturing local structure in the dataset. This is an im-

portant strength as cellular processes are understood to rely on subsets of genes,

which are co-regulated and co-expressed under certain conditions and behave

independently under others, (Ben-Dor et al., 2003).

Justifiably, this approach has been gaining much interest of late. For an excellent

review on bi-clusters and bi-clustering techniques see Madeira and Oliveira (2004).

Additionally, clustering can be complete or partial, where the former assigns

each gene to a cluster, and the latter does not. Partial clustering tends to be more

suited to gene expression, as the dataset often contains irrelevant genes or samples.

This allows: (i)“noisy genes” to be left out, with correspondingly less impact on the

outcome and (ii) genes to belong to no cluster - omitting a large number of irrelevant

contributions. This is important as microarrays measure expression for the entire
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genome in one experiment, but genes may change expression independently of the

experimental condition, (e.g. due to stage in the cell cycle). Forced inclusion, (as

demanded by complete clustering), in well-defined but inappropriate groups may

impact final structure found for the data. Partial clustering thus avoids the situation

where an interesting sub-group in a cluster is obscured through forcing membership

of unrelated genes.

Finally, clustering can be categorised as exclusive (hard), or overlapping. Ex-

clusive clustering requires each gene to belong to a single cluster, whereas overlap-

ping clusters permit simultaneous membership of numerous clusters. This mem-

bership may qualify additionally as crisp or fuzzy. Crisp membership is boolean -

either the gene does or does not belong to a group. In the case of fuzzy membership,

each gene belongs to a cluster with a membership weight between 0, (definitely ex-

cluded), and 1, (definitely included). Clustering algorithms, which permit genes

to belong to more than one cluster are typically more applicable to gene ex-

pression since: (i)impact of “noise” is reduced - the assumption is that “noisy”

genes are unlikely to belong exclusively to any one cluster but are equally likely

to be members of several, (ii) this supports the underlying principle that genes,

with similar change in expression for a set of samples, are involved in a similar

biological function. Typically, gene products are involved in several such bio-

logical functions and groups need not be co-active under all conditions. Thus

gene groups are fluid, so that constraining a gene to a single group (hard clus-

ter) is counter-intuitive.

30



3.2.2 Steps in Cluster Analysis

Cluster analysis includes several basic steps, (Jain et al., 1999). Initially, the data

matrix is represented by number, type, dimension and scale of the gene expression

profiles. Some features are set during the experiment, others are controllable, (e.g.

scaling, imputation, normalisation etc.). An optional step of feature selection or

feature extraction may also be carried out. The former refers to selecting, from the

original features, a subset, which is most effective for clustering, while the latter

refers to transformation of the input features to form a new set that may be more

discriminatory in clustering, e.g. through Principal Component Analysis, (Yeung

and Ruzzo, 2001).

Pattern proximity assessment is needed, usually provided by a “distance” mea-

sure between pairs of genes. (Alternatively, “conceptual” measures can be used

to characterise similarity of gene profiles e.g. Mean Residue Score of Cheng and

Church (2000), (see Section 3.3.1)). The next step is to apply a clustering algorithm

to determine structure in the dataset. Methods can be broadly categorised according

to taxonomy in Jain et al. (1999).

Structures are then described by data abstraction. For gene expression data, the

context is usually direct interpretation by a human, so abstraction should ideally

be straightforward, (for follow up analysis/experimentation). Required is usually a

compact description of each cluster, through a prototype or representative selection

of points, such as the centroid. Clusters are valid if they can not reasonably be

achieved by chance or as an artefact of the clustering algorithm. Validation requires

formal statistical testing, and can be categorised as Internal or External (see Chapter

4).
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3.3 Clustering and Clustering Extensions

Analysis of large gene expression datasets is a relatively new task, although pat-

tern recognition of complex data is well-established in a number of fields. Many

common generic algorithms have, in consequence, been adopted for gene expres-

sion data, (e.g. Hierarchical (Eisen et al., 1998), SOM’s (Kohonen, 1990), among

others), but not all perform well. A good method must deal with noisy high di-

mensional data, be insensitive to the order of input, have moderate time and space

complexity, (i.e. allow increased data load without breakdown or requirement of

major changes), require few input parameters, incorporate meta-data knowledge

(an extended range of attributes), and produce results, which are interpretable in the

biological context.

3.3.1 Pattern Proximity Measures

The choice of proximity measure, needed to evaluate degree of expression coher-

ence in a group of gene vectors, is as important as choice of clustering algorithm,

and is based on data type and context of the clustering. Many clustering algorithms

either employ a proximity matrix directly (e.g. hierarchical clustering), or use one

to evaluate clusters during execution (e.g. K-Means). Proximity measures are cal-

culated between pairs (e.g. Euclidean distance) or groups of genes (e.g. Mean

Residue Error). For ease of reference, the mathematical formulae for each of the

distances can be found in Appendix A.

Distances: Distance functions between two vectors include the so-called Minkowski

measures, (Euclidean, Manhattan, Chebyshev, (Romesburg, 2004)), useful when

searching for exact matches between two profiles in the dataset. These tend to find
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globular structures and work well when these are compact and isolated. A draw-

back is that the largest feature dominates, so measures are sensitive to outliers, (Jain

et al., 1999). However more sophisticated variants, such as Mahalanobis distance,

also account for correlations in the dataset and are scale-invariant, (Romesburg,

2004). Different distance measures produce clusters of different shape, (e.g Eu-

clidean are spherical, while Mahalanobis’ are ellipsoidal). Alternatively, Kim et al.

(2005) describe an adaptive distance norm (the Gaustafson-Kessel method). Here

co-variances are estimated for the data in each cluster, (based on eigenvalue calcu-

lations), to obtain structure. Each cluster is then created using a unique distance

measure.

Distances based on correlations reflect degree of similarity of changes in ex-

pression across samples, for two gene expression profiles, without regard to scale.

For example, if, for a set of samples, gene X is up-regulated, and gene Y is down-

regulated, i.e. are negatively correlated, then X and Y would form a cluster. This

would clearly not be the case if Minkowski distances were used, since the aver-

age absolute distance between the points would be large. Correlation coefficients

commonly used include both parametric (standard Pearson , cosine), and non-

parametric (Spearman’s rank and Kendall’s τ ), the latter used when outliers and

noise are present, (Romesburg, 2004). In general, distance = 1− correlation2, if

sign is unimportant.

Conceptual Measures: As an alternative to measures of distance, “conceptual”

measures of similarity can be used. Models are based on constant rows, columns

and coherent values, (additive or multiplicative), (Madeira and Oliveira, 2004) (Fig.

3.2). A “good fit” indicates high correlation within a sub-matrix, (thus a possible

cluster). These models are common to several clustering algorithms. For example,

Cheng and Church (2000) and FLOC (Yang et al., 2003), use the additive model
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(Fig. 3.2(C)), to evaluate biclusters obtained by determining the Mean Residue

Score. Given a gene expression matrix, X , an element aij in a sub-matrix, A =

(I, J) is given by the constant additive model:

aij = µ+ αi + βj + rij (3.1)

Note that that the mean value of A corresponds to aIJ , the offset of row i cor-

responds to αi = aiJ − aIJ , (the mean of row i minus the overall mean of A), the

offset for column j corresponds to βj = aIj − aIJ , (the mean of column j minus

the overall mean of A) and rij corresponds to unexplained error, which must be

minimised. Simply rearranging equation 3.1 the residue of an element is calculated

as:

rij = (aij − aiJ − aIj + aIJ) (3.2)

The “H-score” of the sub-matrix is then the sum of the squared residues, given

by:

H(I, J) =
1

| I || J |Σi∈Ij∈J(rij)
2 (3.3)

A perfect bi-cluster gives a H-score equal to zero, (corresponding to “ideal”

gene expression data, with constant or additive matrix rows and columns).

The Plaid Model bi-cluster variant, (Lazzeroni and Owen, 2000), builds the

gene expression matrix as a sum of layers, where each layer corresponds to a bi-

cluster. Each value aij is modelled by aij =
K∑

k=0

θijkρikκjk whereK is the layer (bi-

cluster) number, and ρik and κjk are binary variables representing membership of

row i and column j in layer k. Here, the value of an element in the gene expression

matrix is a linear function of the contributions of the different bi-clusters to which
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Figure 3.2: (A) Bi-cluster with constant rows. Each row is obtained from a typical
value µ and row offset αi, (B) Constant columns. Each value is obtained from a
typical value µ and column offset βj , (C) Additive model. Each value is predicted
from µ, and a row and column offset, αi + βj . Similar model constructs apply for
the multiplicative case with (A(i)) µ× αi, (B(i)) µ× βj and (C(i)) µ× αi × βj

the row i and the column j belong, (Fig. 3.3), (Lazzeroni and Owen, 2000). For

layer k, expression level θijk can be estimated using the general additive model,

θijk = µk + αik + βjk, in layer k, (Fig. 3.2 (C)).
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Figure 3.3: Values at overlaps are seen as a linear function of different bi-clusters.

For the Coherent Evolutions model the exact values of xij are not directly taken

into account, but a cluster is evaluated to see if it shows coherent patterns of ex-
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pression. In simplest model form, each gene expression value can have three states:

up-regulation, down-regulation and no change. Thresholds between states are cru-

cial and additional complexity results from extending model definitions to include

further states such as “slightly” up-regulated, “strongly” up-regulated and so on,

e.g. SAMBA, (Tanay et al., 2002).

Other Measures: Other measures used to evaluate coherency of a group of genes

include conditional entropy: H(C|X) = −
∫ m∑

j=1

p(cj|x)logp(cj|x)p(x)dx, (the

average uncertainty of the random variable C (cluster category), when a random

variable X (gene expression profile) is known). The optimal partition of the gene

expression dataset is obtained when this entropy is minimised, (Li et al., 2004) i.e.

a partition is achieved where each gene is assigned with a high probability to only

one cluster. This requires the estimation of the a posteriori probabilities p(cj|x),

usually by non-parametric methods, as this avoids assumptions on the distribution

of the underlying gene expression data).

Note: Pattern proximity measures described so far make no distinction between

time-series data and those obtained from expressions of two or more phenotypes.

Applying similarity measures to time series data is not straightforward. Gene ex-

pression time series have non-uniform intervals and are usually very short, (4-20

samples while classically even 50 observations is low for statistical inference). Fur-

thermore, data are not independently, identically distributed. Similarity in time

series should be viewed only in terms of similar patterns in the direction of change

across time points (i.e. trends in the data), while robust measures must allow for

non-uniformity, in addition to scaling, shifting and shape (internal structure of clus-

ters), (Moller-Levet et al., 2003).
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3.3.2 Conventional Methods

In this Section we examine popular clustering methods and their more recent devel-

opments. Each algorithm described below relies, by definition, on some choice of

proximity measure and inherits the limitations of that choice.

Agglomerative clustering

All agglomerative techniques naturally form a hierarchical cluster structure in which

genes have crisp membership. Eisen et al. (1998) studied gene expression in the

budding yeast, Saccharmyces Cerevisiae, using hierarchical methods, (which have

been popularised due to ease of implementation, visualisation capability and avail-

ability). Methods vary with respect to choice of distance metric, decision on cluster

merging, (linkage), as well as parameter selection affecting structure and relation-

ship between clusters. Options include: single linkage (cluster separation as dis-

tance between two nearest objects), complete linkage (as previously, but between

two furthest objects), average linkage (average distance between all pairs), centroid

(distance between centroid’s of each cluster) and Ward’s method, (which minimises

ANOVA Sum of Squared Errors between two clusters), (Sturn, 2001).

Distance and linkage determine level of sensitivity to noise: Ward’s and the

Complete method are particularly affected, (due to the ANOVA basis and outlier

importance respectively, since clustering decisions depend on maximum distance

between two genes). Single linkage forces cluster merger, based on minimum dis-

tance, regardless of other gene contributions to the cluster, so noisy or outlying val-

ues are among the last to be considered. Consequently, the “chaining phenomenon”

may arise, (Romesburg, 2004). For commonly used Average and Centroid linkage
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this problem is avoided, as no special consideration is given to outliers and clusters

are based on highest density.

Results for agglomerative clustering may be intuitively presented by dendo-

grams but there are 2n−1 different linear orderings consistent with tree structure,

so care is needed in pruning. Dendrogram analysis, based on gene class infor-

mation from specialised databases is presented by Toronen (2004), where optimal

correlations are obtained between gene classes and used to form clusters from dif-

ferent branch lengths. Bar-Joseph et al. (2003) present an agglomerative technique

for which each internal node has at most N children, allowing up to N genes (or

clusters) to be directly connected, (extending traditional hierarchical concepts and

reducing the effects of noise). Permutation is used to decide on the number of nodes

(max N ) to merge, based on a similarity threshold. Heuristically, algorithm com-

plexity is comparable to traditional hierarchical clustering, although Bar-Joseph

et al. (2003) also present a “divide and conquer” approach for optimal leaf ordering

for small N , which has implications of increased time and space complexity.

Note: It should be stated that, such methods can not, in general, compensate for

the greedy nature of the traditional algorithm, where mis-clustering at the beginning

can not be corrected at a later stage and are magnified as the process continues.

Further, Yeung et al. (2001) and Gibbons and Roth (2002) note that hierarchical

clustering performance is close to random, despite its popularity and is poorer than

other common techniques such as K-means and Self Organising maps (SOM).

Partitive Techniques

Partitive clustering divides data by similarity measure, where typical methods mea-

sure distance from a gene vector to a prototype vector representing the cluster, and
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intra-cluster/inter-cluster distance are respectively maximised/minimised. A ma-

jor drawback is the need to specify the number of clusters in advance. Table 3.2

summarises algorithms discussed here.

• K-means produces crisp clusters with no structural relationship between these,

(MacQueen, 1967). It deals poorly with noise, since outliers must belong to a clus-

ter and this distorts the means. Equally, cluster inclusion is dependent on the cu-

mulative values of genes already present, so order matters. Results are dependent

on initial cluster prototype (which varies between clustering attempts); this leads

to instability and, frequently, to a local minimum solution. Incremental approaches

to refine local minima solutions converging to a global solution, include the Mod-

ified Global K-means (MGKM) algorithm (Bagirov and Mardaneh, 2006), which

computes k-partitions of the data using k − 1 clusters from previous iterations.

A tolerance threshold must be set which determines the number of clusters indi-

rectly, and, as with regular K-means, returns spherical clusters. For the six datasets

reported the MGKM algorithm showed slight improvement over K-means, but at

higher computational time cost, (Bagirov and Mardaneh, 2006).

• The prevalence of local minima for K-means is linked to initial prototype selec-

tion. Genetic algorithms (GAs), as an evolutionary approach, work well for small

datasets, (less than 1000 gene vectors and of low dimension), but have prohibitive

time constraints for anything larger, so are less desirable for gene expression anal-

ysis. Although GA’s find the global optimum, they are sensitive to user-defined

input parameters and must be fine tuned for each specific problem. Studies which

have combined K-means and GA include Incremental Genetic K-Means Algorithm

(IGKA), (Lu et al., 2004). This is a hybrid approach which converges to a global

optimum faster than stand alone GA, and without the sensitivity to initialisation

prototypes. The fitness function for the GA is based on Total Within Cluster Vari-
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ance (TWCV), while the basis of the algorithm is to cluster centroids incrementally,

using a standard similarity measure. The GA method requires the number of output

clusters, K, to be specified, but is further complicated by inherent GA parameters

(mutation probability rate, number of generations, size of the chromosome popu-

lations etc.), which influence time taken by the algorithm to converge to a global

optimum.

• Fuzzy modifications of K-means include Fuzzy C-Means (FCM), (Dembele and

Kastner, 2003), and Fuzzy clustering by Local Approximations of MEmberships

(FLAME), (Fu and Medico, 2007). In both, genes are assigned a cluster member-

ship degree indicating percentage association with that cluster, but the two algo-

rithms differ in the weighting scheme used to determine gene contribution to the

mean. For a given gene, FCM membership value of a set of clusters is proportional

to its similarity to cluster mean. The contribution of each gene to the mean of a clus-

ter is weighted, based on its membership grade. Membership values are adjusted

iteratively until the variance of the system falls below a threshold. These calcula-

tions require the specification of a degree of fuzziness parameter which is problem

specific, (Dembele and Kastner, 2003). As with K-Means, clusters are unstable,

and considerably influenced by initial parameter values, while K, the number of

clusters, must be specified a priori. In contrast FLAME requires membership of a

cluster, i, to be determined by the weighted similarity of the gene to its K-nearest

neighbours, and their membership of cluster i.

Note: This density-based approach (FLAME) further reduces noise impact,

since genes with a density lower than a pre-defined threshold are categorised as

outliers, and grouped with a dedicated ‘outlier’ cluster. FLAME produces stable

clusters, but the size of the neighbourhood and the weighting scheme used affect K

(as above) and hence clustering achieved.
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For both FCM and FLAME, genes may have multiple and varied degrees of

membership, but interpretation differs. FCM and FLAME use averaging, where

each gene contributes to the calculation of a cluster centroid, and its overall mem-

bership value set sums to 1, (i.e. gene-cluster probability). Thus strong membership

for a given gene does not indicate it to be more typical of the cluster, but rather the

relative strength of its individual association, (Krishnapuram and Keller, 1993).

Table 3.1 illustrates three clusters of an FCM carried out on published yeast ge-

nomic expression data of Gasch and Eisen (2002), (available at http://rana.

lbl.gov/FuzzyK/data.html). Membership values for genes B and D are

very different for cluster 21, although both are approximately equidistant from the

centroid of the cluster. Similarly genes C and D have comparable membership

values for cluster 4, but gene C is more typical (closer to the centroid) than gene

D. With similar centroid distances, membership value for gene B in cluster 21 is

smaller than that for gene A in cluster 46. These anomalies arise from the member-

ship sum constraint, which decreases gene membership in one cluster to increase

it in another. Listing genes in a cluster based on membership values is therefore

counter-intuitive and does not reflect their compatibility with the cluster, but rather

how they are shared between clusters. Similarly for FLAME, as the memberships

are weighted relative to the K-nearest neighbours, so a low membership value in-

dicates a high degree of cluster sharing among these and not a more typical value

of a given cluster.

This interpretative flaw was recognised by Cano et al. (2007), who developed

the possibilistic biclustering algorithm, which removes the sum rule restriction. The

authors used spectral clustering principles, (Kluger et al., 2003), to create, from

the original gene expression matrix, a partition matrix, Z, to which possibilistic

clustering is applied. The resulting clusters were evaluated using the H-Score,
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GID Cluster 4 Cluster 21 Cluster 46
Centroid
Dist.

Mem. Centroid
Dist.

Mem. Centroid
Dist.

Mem.

A 10.691 0.002575 8.476 0.002002 3.864 0.482479
B 6.723 0.009766 3.855 0.009341 6.33 0.007381
C 6.719 0.007653 5.29 0.00515 8.024 0.005724
D 7.725 0.007609 3.869 0.01782 6.279 0.010249

Table 3.1: Fuzzy Membership Interpretation. Membership of a gene and distance
to cluster centroid, as calculated by Euclidean distance.

(Eq.3.3), and improved on traditional techniques. The algorithm requires, inter

alia, two specific parameters, namely cutoff memberships for (i) gene inclusion and

(ii) sample inclusion in a cluster. In this case, these cutoffs are intuitively reasonable

as membership does indicate how typical a gene/sample is to a defined cluster, and

not the degree to which it is shared between clusters.

Neural Networks

Basic: Neural Networks (NN), loosely based on the biological parallel, can be

modelled as a collection of nodes with weighted interconnections. Only numerical

vectors are processed, so meta-information can not be included in the clustering

procedure. Interconnection weights are adaptively learned i.e. features are selected

by appropriate assignment of weights. In particular, Self Organising Maps (SOMs),

a type of NN, have proved popular for gene expression, (Kohonen, 1990; Tamayo

et al., 1999; Golub et al., 1999). A kernel function, that defines the region of in-

fluence, (neighbourhood), for an input gene, distinguishes SOM from K-means.

Updating the kernel function causes the output node and its neighbours, to track

towards the gene vector. The network is trained, (adjusting strengths of intercon-

nections), from a random sample of the dataset. Once training is complete, all genes
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Cluster
Mem.

Input Proximity Other

K-Means Hard Starting Prototypes,
Stopping Threshold,
K

Pairwise
Distance

Very Sensitive to input
parameters and order of
input.

MGKM Hard Tolerance Threshold Pairwise
Distance

Not as sensitive to start-
ing prototypes. K spec-
ified through tolerance
threshold.

IGKA Hard K, mutation prob.,
generation number,
population size

TWCV Time taken to converge
to global influenced by
parameters.

FCM Fuzzy Degree of fuzziness,
Starting prototypes,
Stop threshold, K

Pairwise
Distance

Careful Interpretation
of membership values.
Sensitive to input pa-
rameters and order of
input

FLAME Fuzzy Knn - number of
neighbours

Pairwise
Distance
to Knn

neigh-
bours

careful interpretation
of membership values.
Output determined by
Knn.

Possibilistic
bicluster-
ing

Fuzzy Cut-off memberships,
Max. residue, number
of rows and number of
columns

H-Score Number of biclusters
determined when qual-
ity function peaks by
re-running for different
numbers of eigneval-
ues.

Table 3.2: Summary of Partitive techniques. With the exception of FLAME and
Possibilistic biclustering, all find complete global clusters.
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in the dataset are then applied to the SOM. Cluster members, represented by output

node i are the set of genes causing i to ‘fire’ (hard clustering).

SOMs are robust to noise and outliers, dependent on distance metric and neigh-

bourhood function used. As for K-means, a SOM produces a sub-optimal solution

if the initial weights for the interconnections are not chosen properly. Convergence

is controlled by problem-specific parameters such as learning rate and neighbour-

hood function. A particular input pattern can fire different output nodes at different

iterations; (while this can be overcome by gradually reducing the learning rate to

zero during training, it can result in over-fitting, which leads to poor performance

for new data). In specifying K, based on the number of output nodes, it should

be noted that too few output nodes in the SOM gives large within-cluster distance,

while too many results in meaningless diffusion across clusters.

Extended: The Self Organizing Tree Algorithm (SOTA), (Herrero et al., 2001),

Dynamically Growing Self Organizing Tree (DGSOT) algorithm, (Luo et al., 2004)

and, more recently, Growing Hierarchical Tree SOM (GHTSOM), (Forti and Foresti,

2006) were developed to combine strengths of NN, (i.e. speed, robustness to noise)

and hierarchical clustering, (i.e. tree structure output, minimum a priori require-

ment for number of clusters specification and training) to deal with properties of

gene expression data. Here the SOM network is a tree structure, trained by compar-

ing only leaf nodes to input gene expression profiles (each graph node representing

a cluster). SOTA and DGSOT result in a binary and n-tree structure respectively,

while in GHTSOM, each node is a triangular SOM (3 neurons, fully connected),

each having 3 daughter nodes (also triangular SOMs), Fig. 3.4. Tree growth strat-

egy determines K.

At each iteration of SOTA the leaf node with the highest degree of heterogeneity

is split into two daughter cells. In the DGSOT case, the correct number of daugh-
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ters, (nd ≥ 2), is determined dynamically by starting off with two and continually

adding one until cluster validation criteria are satisfied. To determine nd, a method

was proposed, (Luo et al., 2004), based on geometric characteristics of the data

(specifically, cluster separation in the minimum spanning tree of the cluster cen-

troids). For this an empirical threshold, α, value must be specified; (the authors

propose 0.8)). In SOTA and DGSOT, growth of the tree continues until overall het-

erogeneity crosses a threshold, β, or until all genes map onto a unique leaf node.

The DGSOT method uses average leaf distortion to determine β for growth termi-

nation, while, for SOTA, this threshold is determined by re-sampling, (with system

variability defined to be the maximum distance among genes mapped to the same

leaf node). By comparing distances between randomized data and those of the

real dataset, a confidence interval and distance cut-off are obtained. In GHTSOT,

growth occurs if a neuron is activated when a sufficient number of inputs map to

it, (i.e. at least 3 or a user defined number, β), which determines the resolution of

the system. Growth continues as long as there is one neuron in the system which

can grow. The advantage of these methods over most partitive techniques is that

K is not pre-determined, but depends indirectly on the threshold, β, which is data

dependant.

Key Features: SOTA, DGSOT and GHTSOM differ from typical hierarchical

clustering algorithms in terms of adaptation. This occurs once a gene is mapped

to a leaf node, but the neighbourhood of the adaptation is more restrictive than for

SOM. DGSOT also overcomes the misclustering problem of traditional hierarchical

algorithms, SOTA and GHTSOM, by specification of another input parameter, L -

the immediate ancestor level in the tree of a given node which is growing. DGSOT

then distributes all mapped values among the leaves of the subtree rooted at the

Lth ancestor. In GHTSOM, new nodes (after growth) are trained using only those
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inputs which caused the parent node to fire. Any neuron, which shows low activity,

is deleted, and its parent is blocked from further growth. This has the advantage

that inputs mapping to leaf neurons at the top of the hierarchy are usually noise,

and clearly distinguishable from relevant biological patterns.

Data

(A) SOTA

Data

(B) DGSOT (C) GHTSOM

Figure 3.4: (A) SOTA. A binary tree structure. Neighbourhood of adaptation in-
dicated for (i) node with sibling, (ii) node with no sibling, (B) DGSOT. N-ary tree
structure. Neighbourhood of adaptation indicated when L = 2, (C) GHTSOM.
Each node represented by triangular SOM. Each layer indicated with line styles, (3
layers shown).

Search Based

Solutions for a criterion function are found by searching the solution space either

deterministically or stochastically, (Jain et al., 1999). The former exhaustive search

is of little use for high dimensional gene expression analysis and, typically, heuris-

tics are used. Simulated Annealing is well-known and has been applied by Lukashin

and Fuchs (2001) and Bryan et al. (2006), using TWCV and H-Score (Eq. 3.3),

respectively, as the fitness function, E, to be minimised. At each stage of the pro-

cess, gene vectors are randomly chosen and moved to a new random cluster. E is

evaluated for each move and the new assignment is accepted if E is improved or

with a probability of e−
Enew−Eold

T otherwise. The “temperature”, T , controls readi-
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Structure Proximity Input Other
SOM None Distance Number of

output neu-
rons, Learning
rate

Careful considera-
tion of initialisation
weights

SOTA Binary Tree Distance Threshold β
DGSOT N-ary Tree Distance Thresholds

and L.β, α
Corrects for mis-
clusterings

GHTSOM Each node
triangu-
lar SOM,
arranged
in Tree
structure

Distance Minimal re-
quirement -
learning rate

Table 3.3: Summary of Neural Network techniques presented.

ness of the system to accept the poorer situation by chance, enabling the algorithm

to avoid local minima. As the search continues, T , is gradually reduced accord-

ing to an annealing schedule, and ultimately achieves the global minimum, where

the annealing schedule parameters dictate performance and speed of the search.

Choice of initial temperature Ti governs convergence time and size of search space,

(increased/decreased in the case of high/low T respectively). Similarly for search

termination, (final effective TF ). The user must specify the rate at which T ap-

proaches TF , which must be slow enough to guarantee a global minimum, as well

as the number of swaps of gene vectors between clusters allowed in an iteration.

To determine K, a randomisation procedure is used, (Lukashin and Fuchs,

2001), to determine cut-off threshold for the distance, D, between two gene vectors

in a single cluster. It is also necessary to determine P , the probability of accepting

false positives, (e.g. P = 0.05). Simulated annealing is then applied for different

numbers of clusters, until the weighted average fraction of incorrect gene vector

pairs reaches the P -value.
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3.3.3 Biclustering Methods

Biclustering methods are important for gene expression data analysis (Section 3.2.1),

so we deviate slightly from the known taxonomy of clustering algorithms, (Jain

et al., 1999) to consider algorithms which adopt biclustering strategy ‘in isolation’.

‘Cheng and Church’ Algorithm and FLOC

This algorithm, (Cheng and Church, 2000, : adapted from Hartigan (1972)) obtains

H-scores, (Eq. 3.3, Fig. 3.2, (Madeira and Oliveira, 2004)) of the sub-matrices of

the gene expression matrix. This method is initialised for the entire gene expression

matrix and considers a sub-matrix to be a bi-cluster if H(I, J) < δ for some δ ≥

0, (user defined). Each row and column of the original matrix is thus tested for

deletion. Once a sub-matrix is determined to be a bi-cluster, its values are “masked”

with random numbers in the initial gene expression matrix. Masking bi-clusters

prevents the algorithm from repeatedly finding the same sub-matrices, but there is

a substantial risk that this replacement will interfere with the discovery of future

bi-clusters. To overcome this problem of random interference, Flexible Overlapped

biClustering (FLOC) was developed - a generalised model of Cheng and Church

incorporating null values, (Yang et al., 2003). FLOC constrains the clusters to both

a low mean residue score and a minimum occupancy threshold of α, 0 ≤ α ≤ 1

(user defined).

Note: FLOC does not require pre-processing for imputation of missing values.

Both these bi-clustering algorithms find coherent groups (Section 3.3.1) and permit

overlapping.
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Coupled Two Way Clustering(CTWC)

Getz et al. (2000) adopted an iterative approach to find biclusters in the data. Firstly,

all samples are clustered (using any clustering algorithm) using all genes, and vice

versa to identify stable clusters of genes and of samples. Then, each gene cluster

is used to cluster all stable sample clusters, and vice versa. Whenever a clustering

operation generates a new stable subcluster, it is recorded and its members are used

in the next iterative step. The process stops when no new stable clusters (that exceed

a minimum size) are generated. This method is, of course, reliant on that algorithm

used to cluster the data in the first place, and inherits the limitations of that method.

Inputs are determined by the clustering algorithm used. Unlike many others, the

method adopted in Getz et al. (2000) (Superparamagnetic Clustering, (Blatt et al.,

1996)) does not require the number of clusters to be specified before hand. How-

ever, if another clustering approach was used, for e.g. K-means, then the number

of clusters would have to be specified. The results are also dependent on initial

clusters found and the order used to cluster the samples etc. in the latter stages of

the algorithm.

The Plaid Model

The Plaid Model, (Lazzeroni and Owen, 2000), (Section 3.3.1), assumes that bi-

clusters can be generated using a statistical model and aims to identify the parameter

distribution that best fits the available data, by minimising the error sum of squares

for the kth bi-cluster assuming that k − 1 bi-clusters have already been identified.
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Explicitly, it seeks to minimise for the whole matrix:

Q =
1

2

n∑

i=1

m∑

j=1

(Zij − θijkρikκjk)2 (3.4)

where Zij is the residual after deducting k − 1 previous layers,

Zij = aij −
K−1∑

k=0

θijkρikκjk (3.5)

Parameters (θijk, ρik and κjk, defined previously, Section 3.3.1) are estimated

for each layer and for each value in the matrix, and are updated iteratively, providing

refined estimates of µk, αik and βjk, (Fig: 3.2(C)) and ρik and κjk to minimise Q,

(Lazzeroni and Owen, 2000).

The importance of a layer is defined by:

δ2
k =

n∑

i=1

p∑

j=1

ρikκjkθ
2
ijk (3.6)

To evaluate the significance of the residual matrix, Z is randomly permuted and

tested for importance. If δ2
k is significantly better than δ2

random, k is reported as a

bi-cluster. The algorithm stops when the residual matrix Z retains only noise, again

with the advantage that the user does not need to specify the number of clusters

beforehand. Another important property of this method is that statistical evaluation

is intrinsic in the results.

3.3.4 Graph Theoretic Methods

Methods selected and detailed below also span agglomerative/partitive, global/local

structures, crisp/fuzzy cluster membership etc. and, as with all others, have an
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Proximity Deterministic/
Stochastic

Clusters Other

SA Depends on
application

Stochastic Depends on
application

Specification
of Annealing
Schedule

CC Additive
Model

Deterministic Overlapping,
partial bi-
clusters

δ, random in-
terference

FLOC Additive
Model

Deterministic Overlapping,
partial

bi-clusters
α and δ to
specify. Over-
comes random
interference,
allows missing
values.

CTWC Depends on
application

Deterministic Crisp, partial
bi-clusters

Results de-
pendent on
underlying
algorithm
used and on
initial clusters
found.

Plaid Additive
Model

Deterministic Overlapping,
partial, bi-
clusters

Values seen as
sum of contri-
butions to bi-
clusters

Table 3.4: Summary of biclustering techniques presented.
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objective function to evaluate the clusters found. We isolate graph theoretic ap-

proaches for special consideration, due to their intuitive nature, interpretation and

visualisation of gene expression matrices but also because the modelling paradigm

is well established for analysis of other complex systems which exhibit similar

properties to those found for gene expression.

Data Organisation in Gene Expression Context

At a basic level, a graph, G = (V,E), consists of two parts: a set of nodes (or

nodes), V , and a set of edges (or links, connections), (vi, vj) ∈ E, which captures

the concept of a ‘relationship’ between nodes vi and vj , with vi, vj ∈ V .

A graph can be undirected (where edge (a,b) is considered to be the same as

edge (b,a) and is only recorded once) or directed, (distinction is made between an

edge (a,b) and an edge (b,a), i.e. both edges are recorded). A graph can be complete,

with an edge between every node in a graph, or incomplete, with an edge between

a subset of nodes in a graph - also referred to as strongly connected, connected or

weakly connected.

Definition/Representation of graph edges and nodes in terms of gene expres-

sion data is a first consideration. Nodes may be viewed as either genes or samples,

linked by edges. In the gene expression context an edge can have different mean-

ings - depending on how the graph is designed. For example, it could indicate a

similarity above some threshold of a similarity measure, or adherence to some co-

hesion model. We will see further examples of these in this Section, and later in

Chapter 5 when we describe a new method for extraction of a graph from a gene

expression matrix. A graph may be constructed from ‘gene’ nodes alone, with an

edge which represents similarity of expression. Alternatively, the graph could be
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constructed from both ‘gene’ and ‘sample’ nodes. Further, (Tanay et al., 2002) used

additional ‘condition’ nodes and sample nodes, where condition nodes represented

moderate and strong changes in gene expression, involvement in a protein complex

etc.

(a) Gene Expression
Graph containing only
gene nodes

(b) Gene Expression Graph with both
gene and sample nodes

(c) Gene Expression Graph
according to Tanay et al.
(2002) with both condition
and sample nodes

Figure 3.5: Gene Expression Graphs. (a) is an example of an one-mode graph (one
type of node). (b) and (c) are examples of bi-partite graphs (two types a node).

While benefits are associated with each representation, it is important to note

that the final clusters/identification achieved follows from this choice. In graphical

context, a cluster is defined to be connected components, i.e. a group of nodes

that are connected to one another, but that have no connection to nodes outside the

group. Examples include, contiguity-based clusters (connecting objects within a

specified distance on one another), or a clique (a set of nodes in a graph that are

completely connected to each other).

Given a dataset X , we construct an adjacency matrix, A, where aij ∈ A,

aij = f(i, j). The adjacency matrix can be a square n×nmatrix (a One Mode Rep-

resentation, Fig. 3.5a) or a n× p matrix (a Bipartite Representation, Fig. 3.5b and

3.5c), n = cardinality of one set of nodes (e.g. number of genes), p = cardinality

of alternative set of nodes (e.g. number of samples). For some clustering schemes
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each pair of nodes is connected by an edge with an assigned weight, f(i, j), and

thus the adjacency matrix records edge weights (and the structure is referred to as a

weighted graph). In other instances, f(i, j) ∈ {0, 1}: edges are constrained to exist

between objects i and j only if f(i, j) = 1, and thus the adjacency matrix records

whether an edge exists of not1. Additionally, each node may be assigned a weight2,

g(vi) and this information can be used in any clustering process. The clustering

problem is thus explicitly presented in terms of graph theoretical properties.

One Mode Representation

A graph, G = (V,E), is considered to be in one mode if an edge can exist between

any two nodes, v ∈ V . A gene expression dataset can be modelled in this way

where nodes in the graph represent genes and an edge exists between two gene

nodes if they show common expression (e.g. measured as a distance function).

Bipartite Representation

A graph, G = (>,⊥, E), is considered to be bipartite if there are two disjoint

subsets of nodes, >, ⊥, and there is no edge between two nodes in the same subset.

A gene expression dataset can be modelled in this way, where > nodes represent

genes and⊥ nodes represent samples. An edge wij ∈ W is the weight matrix, were

wij 6= 0 if there is an edge between i ∈ > and j ∈ ⊥.

We consider applying these modelling ideas more specifically to gene expres-

sion data in Chapter 5.

1In computer science there are, of course, alternative methods of recording edge lists such as
linked lists etc. However to introduce the concept we use only the idea of an adjacency matrix.

2the weight of a node can represent such things as importance in hub, e.g. internet networks,
telephone networks etc.
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Graph Theoretic Clustering Options

Graph theoretic approaches generally have gained ground recently in analysing

large complex datasets and we consider in brief the principle options for the gene

expression case.

• The Cluster Affinity Search Technique (CAST), (Ben-Dor et al., 1999), models

data as an undirected graph, G = (V,E), where {V,E} is the set representing

{genes, similar expression}. The model assumes that there is an ideal clique graph,

(see 3.3.4), H = (U,E), which represents the ideal input gene expression dataset,

while data to be clustered is a “contamination” of the ideal graph H by random er-

rors. In a clique graph each clique represents a cluster. For a pair of genes in G, the

model assumes that an edge/non-edge was assigned incorrectly, with a probability

of α. The true clustering of G is assumed to be that which requires fewer edge

changes to generate H .

CAST uses an affinity (similarity) measure, either binary or real valued, to as-

sign a node to a cluster. This must be above a threshold, t (user-defined, determin-

ing size and number of clusters). The affinity of a node v to a cluster, is the sum

of affinities over all objects currently in the cluster, so v has high affinity with i if

affinity(x) > t|i|, and low affinity otherwise. The CAST algorithm alternates

between adding high affinity elements and removing low affinity elements, finding

clusters one at a time. A disadvantage of this approach is that the result is dependent

on the order of input, as once initial cluster structure is obtained, a node v is moved

to that cluster for which it has a higher affinity value.

• CLICK, (Sharan and Shamir, 2000), builds on the work of Hartuv et al. (2000),

introducing a probabilistic model for edge weighting. Pairwise similarity mea-

sures between genes are assumed to be normally distributed: between ‘mates’
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(N(µT , σ
2
T )), and between ‘non-mates’ ((µF , σ2

F )), where µT > µF . These param-

eters can be estimated via Expectation Maximisation methods, (Dempster et al.,

1977). The weight of an edge is derived from the similarity measure between the

two gene vectors, and reflects the probability that i(∈ V ) and j(∈ V ) are mates,

specifically that:

wij = log
pmatesσF

(1− pmates)σT
+

(Sij − µF )2

2σ2
F

− (Sij − µT )2

2σ2
T

(3.7)

Edges with weights below a user defined non-negative threshold are omitted

from the graph. The graph is thus partitioned using a minimum weight cut algo-

rithm, (Hartuv et al., 2000), and the weight of a partition is the average of these

edge weights.

• The Statistical Algorithmic Method for Bi-cluster Analysis (SAMBA) method finds

bi-clusters based on the coherent evolution model (Section 3.3.1), (Tanay et al.,

2002). Firstly, the gene expression matrix is modelled as a bipartite graph, G =

(U, V,E), where U is the set of sample nodes, U ∩ V = ∅ and an edge (u, v) only

exists between v ∈ V and u ∈ U iff there is a significant change in expression level

of gene v, w.r.t. to its normal level, in sample u. Key to SAMBA is the scoring

scheme for a bi-cluster, corresponding to its statistical significance, where a weight

is assigned to a given edge, (u, v), based on the log-likelihood of getting that weight

by chance, (Tanay et al., 2002):

log
Pc
P(u,v)

> 0 for edges and, log
(1− Pc)

(1− P(u,v))
< 0 for non-edges. (3.8)

The probability P(u,v) is the fraction of random bipartite graphs, with degree

sequence identical toG, that contain edge (u, v) (and can be estimated using Monte-
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Carlo methods). Pc is a constant probability> max(u,v)∈UxV P(u,v). Assigning these

weights to the edges and non-edges in the graph, the statistical significance of a

subgraph H can be calculated:

logL(H) =
∑

(u,v)∈E
log

Pc
P(u,v)

+
∑

(u,v)∈E

log
1− Pc

1− P(u,v)

(3.9)

and, given that the expected degree for each node is d̂u =
∑

v∈V φ(u, v), where

φ(u, v) is the probability that u has an edge to v, the expected log-likelihood score

of a subgraph is thus:

E(log(L(H))) =
∑

u,v

(φ(u, v)× log Pc
Pu,v

+ (1− φ(u, v))× log 1− Pc
1− Pu,v

) (3.10)

The K heaviest (largest weight) sub-graphs for each node in G is found. Tanay

et al. (2002) present two ways to calculate the weight of the resulting sub-graph.

(i) In the simpler model, bi-clusters, which reflect changes relative to normal ex-

pression level, without considering direction of change are sought.

(ii) The second model, focuses on consistent bi-cliques, targeting those samples

which have the same or opposite effect on each of the genes.
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Mode Proximity Search Other
CAST One Mode Similarity Clique Graph Parameters α and t.

Finds global, com-
plete, crisp clusters.

CLICK One Mode Distribution
based on
distance

Minimum
weight cut

Stat. Sig. of clus-
ters. EM to estimate
parameters. Finds
global, partial, crisp
clusters.

SAMBA Bi-Partite Probability Heuristic
search of
neighbours

Stat. sig. of clusters.
Input Pc difficult to
define. Finds par-
tial overlapping bi-
clusters.

Table 3.5: Summary of Graph theoretic methods presented.

Gene Expression Graphs and Random Graphs

Random graphs3 are proposed as the simplest and most straight forward realisation

of a complex network with no apparent design principles. The theory of random

graphs lies at the intersection between graph theory and probability theory and are

used to explore the existence of properties of real world graphs. First studied by

Erdös and Rényi (1959), the model they propose starts with N nodes and connects

every pair of nodes with probability p, creating a random graph with approximately

pN(N − 1)/2 edges distributed randomly. Growing interest in complex systems

has prompted revision of this as a suitable model. Questions have been raised as

to whether the real networks behind diverse complex systems, such as gene co-

expression in the cell, are fundamentally random? Intuitively, the random network

model is insufficient for gene expression, since we expect these systems to display

some organizing principles, which at some level are encoded in their topology. If

3A random graph is a graph in which properties such as the number of nodes, edges and/or
connections between are determined randomly.
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the topology does deviate from that of random graphs, we need to develop tools

and measurements to capture, in quantitative terms, the underlying organisational

principles. In Chapter 5 we investigate the potential of using random graph models

to compare to real gene expression graphs in order to highlight interesting organi-

sational properties in real gene expression graphs.

Techniques for generating random graphs

There are a number of random graph models, here we list three.

• Erdös-Rényi Model There are two closely related variants of the Erdös-Rényi

random model. In the first model, a graph, G(n,M), is chosen uniformly at

random from the collection of all graphs which have n nodes and M edges.

In the second model, a graph G(n, p) is constructed by connecting nodes ran-

domly. Each edge is included in the graph with probability p, with the pres-

ence or absence of any two distinct edges in the graph being independent.

An Erdös-Rènyi graph is not scale-free, (Erdös and Rényi, 1959), see below.

Both of the two major assumptions of the G(n, p) model (that edges are inde-

pendent and that each edge is equally likely) are unrealistic in modeling gene

expression data.

• Barabasi Albert Model This technique generates scale-free random graphs.

In scale-free networks, some nodes act as “highly-connected hubs”, although

most nodes are of small degree (number of edges incoming and outgoing

from a node). Scale free network structure and dynamics are independent

of, N , the number of nodes. Their defining characteristic is that the degree

distribution follows a power law relationship defined by P (k) ∼ k−γ , where

59



the probability P (k) that a node in the network connects to k other nodes is

roughly proportional to k−γ . The coefficient γ varies from 2 to 3 for most real

networks, or, in some cases, between 1 and 2, (Barabasi and Albert, 1999).

• Watts Strogatz Small World Model This model produces graphs with small-

world properties, i.e. where most nodes are not neighbours of one another,

but most nodes can be reached from every other by a small number of hops

or steps. Watts and Strogatz (1998) noted that graphs could be classified ac-

cording to their clustering coefficient (the average proportion of edges shared

by nodes neighbours in a graph) and mean shortest path length. Watts and

Strogatz proposed a simple model of random graphs with (i) a small average

shortest path and (ii) a large clustering coefficient .

Using graphical techniques to extract meaningful information from biological

data is an intuitive and popular method. Bi-partite graphs representation, in par-

ticular, capture essential properties of the gene expression dataset, allowing for the

extraction of biclusters, however, the alternative one-mode gene expression graph

can also be been considered. This approach was used in Yip and Horvath (2007),

where an edge existed between two genes nodes if they show similar expression

across all samples, (measured e.g by a distance function). Yip and Horvath (2007)

did not explicitly to investigate graphs with weighted edges. Carlson et al. (2006)

and Zhang and Horvath (2005) studied weighted one-mode gene expression graphs

(creating the graphs using a threshold on a similarity function) using classical net-

work analysis techniques. Again, an edge existed between two genes nodes if they

show similar expression across all samples. They found that, for the datasets tested,

the gene networks generated by this technique were scale free, following a power-

law distribution or an exponential. These results, however, are dependent the global
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method used to extract a graph from the gene expression data. Analysis of complex

weighted networks was also considered in Saramaki et al. (2007). All the aforemen-

tioned authors did not expand the investigation to the weighting scheme itself. It is

important to recognise the essential role a weighting scheme itself plays on cluster

determination from gene expression graphs, and thus it is important to investigate

the intrinsic nature of these schemes in isolation.

3.4 Discussion

Despite shortcomings, application of clustering methods to gene expression data

has proven to be of immense value, providing insight on cell regulation, as well

as on disease characterisation. Nevertheless, not all clustering methods are equally

valuable for high dimensional gene expression data. Recognition that well-known,

simple clustering techniques, such as K-Means and Hierarchical clustering, do not

capture complex local structure, has led to investigation of other options. In partic-

ular, bi-clustering has gained considerable recent popularity. Indications to date are

that these methods provide increased sensitivity at local structure level in discovery

of meaningful biological patterns.

An inherent problem with exploratory clustering is ab initio knowledge of K,

the number of clusters. Consequently, those methods for gene expression analysis

which do not need K specified ab initio have an advantage. Most algorithms seek

empirically to determine this at run time, but derive complicated thresholds that

may not make sense in the context of gene expression data. There is a risk that

determination of these thresholds is not a one step process but requires testing and

validation of clusters produced. A comprehensive survey of robust cluster valida-

tion and evaluation methods is given (Handl et al., 2005) but it seems clear that a
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requirement for information-driven clustering is emerging, which integrates cluster

and meta-information, (Choi et al., 2004; Liu et al., 2004; Kasturi and Acharya,

2005; Gamberoni et al., 2006; Kustra and Zagdanski, 2006). This provides a ba-

sis for validation, independent of the current problem, as well as interpretation of

clustering results.

3.5 Summary

Cluster analysis, applied to gene expression data, aims to highlight meaningful pat-

terns for gene co-regulation. The evidence suggests that, while commonly applied,

agglomerative and partitive techniques are insufficiently powerful given the high

dimensionality and nature of the data. While further testing on non-standard and

diverse data sets is required, comparative assessment and numerical evidence, to

date, supports the view that bi-clustering methods, although computationally ex-

pensive, offer better interpretation in terms of data features and local structure.

While the limitations of commonly-used algorithms are well documented in the lit-

erature, adoption by the bioinformatics community of new (and hybrid) techniques,

developed specifically for gene expression analysis has been slow, mainly due to

the increased algorithmic complexity required. This would be catalysed by more

transparent guidelines and increased availability in specialised software and public

dataset repositories.
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CHAPTER 4

CLUSTER ANALYSIS: A PRACTICAL

EVALUATION

In the Assessment process, a clustering achieved is tested for specific properties.

Assessment measures are rarely a fixed set but together form a diagnostic toolkit

targeted at improving the clustering process. In general, clustering techniques op-

timise some form of this measure as a criterion function. Evaluation of clustering

thus involves the synthesis of a number of assessment measures used to gauge final

cluster quality in order to form an objective final judgement on the most suitable

technique for the dataset involved. In this chapter we use these basic principals to

investigate the applicability of clustering algorithms to gene expression data. The

approach is to consider a series of measures which assess cluster quality on the

basis of biological realism amongst other criteria. It also involves comparison of

these measures between clustering algorithms and for different datasets. We evalu-

ate clusterings obtained with selected algorithms1 identified in Chapter 3. Clusters

obtained from real and synthetic datasets are compared between algorithms. We

demonstrate the fact that, with so many classification criteria for clustering, no one

1Reporting for all algorithms is prohibitively detailed. Our aim is to give a ‘flavour’ of tech-
niques and their validation, by applying selected algorithms from each group in the Jain et al. (1999)
taxonomy.
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algorithm is good for all datasets, so that a preliminary review of the most appropri-

ate methods is essential. Further, it is also strongly advocated that no single method

or interpretation is sufficient and that recognition of valid clusters is frequently in-

definite or misleading.

4.1 Introduction

Evaluation of clustering requires both internal/external assessments of clusters ob-

tained, and comparison between algorithms. This is a complicated area for gene

expression data due to its unique properties, due to the fact that little may be known

about the data before hand. Many clustering algorithms are designed to be ex-

ploratory; so that clusters (dependent on given criteria) found will discover “a struc-

ture” which, while meaningful in the context of these, may yet fail to be optimal

or even biologically realistic. Algorithms are inherently biased, as properties of

clusters reflect built-in clustering criteria, while structures found are not usually the

same for different algorithms. For example, with regard to the K-Means criterion

the “best” structure is one that minimises the sum of squared errors (MacQueen,

1967), while for the Cheng and Church biclustering algorithm (Cheng and Church,

2000), it is that which minimises the Mean Residue Score (MRS, Eq. 3.3). The two

assessments are generally not directly comparable, as the former highlights global

patterns in the data and the latter local patterns, (Section 3.2). Also, large devia-

tions from the mean may correspond to large residue scores, but this is not always

the case. For example, Fig. 4.1(a), and the corresponding table, highlight a simple

case of three genes in a cluster across four samples. According to the K-Means cri-

terion, the cluster (Euclidean and centroid) distance is approximately 11.02, while

MRS = 0. In the second case (Figure 4.1(b)) the scale of profile 1 was reduced by
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one third. In this case the cluster distance is decreased to 7.91 (indicating a bet-

ter cluster), while the MRS is increased to 0.0168 (indicating an inferior cluster).

Obviously, interpretation of cluster results relies at some level on subjective choice

with regard to the assessment criterion to use. The greater the need, therefore, for

independent validation by integration of findings with metadata. Subjective evalua-

tion, (based on experience, background knowledge, expected results), even for low

dimensional data, is non-trivial at best, but becomes increasingly difficult for high

dimensional gene expression data. From these considerations, it is clear that cluster

validation is critical for algorithm development and verification of results, with the

latter usually based on a manual, lengthy and subjective exploration process.

Figure 4.1: Cluster (B) has profile 1 scaled down by one third.

4.2 Assessment Methods

Once a non-random structure is distinguished in the data, a technique that finds the

“best” structure is desirable - a vague expression - since ‘best’ may refer to nov-

elty, stability, size, suitability, and is again dependent on the nature of the analysis

and experimental purpose, and so on. Some non-trivial considerations might in-

clude: whether the method is exploratory or predictive (with results used as the
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foundation for further investigations), whether all samples and genes should be

grouped, whether a novel structure is to be assessed, and so on. Objective assess-

ment measures of clustering quality fall into two categories - external and internal -

summarized in Table 4.1.

Internal Measures:

These measures use only information from the clustering result and the dataset itself

to assess cluster quality. Properties considered include:

• Compactness - intra-cluster homogeneity e.g. assessment of average or max-

imum pairwise intra-cluster distances, average or maximum centroid-based

similarities.

• Separation - inter-cluster distance, e.g. average weighted distance where the

distance between clusters can be computed as the distance between their cen-

troids, or as the minimum distance between data items of each, e.g. the min-

imum distance between any two clusters.

• Connectedness - to what degree data items are grouped with their nearest

neighbours in the data space, i.e. also known as connectivity (Handl et al.,

2005).

• Combinations - as compactness usually improves with the number of clusters

and separation usually deteriorates, linear/non-linear combination measures

to assess both can be used, e.g. the SD-validity index (Halkidi et al., 2000),

Dunn Indices (Dunn, 1974), Davies-Bouldin Index (Davies and Bouldin, 1979),

Silhouette Index (Rousseeuw, 1987), C-Index (Hubert and Schultz, 1976).
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An equivalent measure for fuzzy clusterings includes the Xie-Beni index (Xie

and Beni, 1991).

• Fuzziness - applicable only to fuzzy partitions, these measures assesses shar-

ing of membership between clusters, included are the partition coefficient and

partition entropy (Bezdek, 1973, 1974).

• Stability/Predictive Power - based on repeatedly resampling the original data,

this measures the consistency of the results, which in turn provides an esti-

mate of the significance of the clusters obtained from the original dataset

e.g. Ben-Hur et al. (2002) and Levine and Domany (2001). The jackknife

approach, Yeung et al. (2001), forms clusters based on p− 1 (with p = num-

ber of samples) and uses the remaining sample to assess predictive power

of the algorithm i.e. Figure Of Merit (FOM). Stability can also be assessed

by perturbing data and comparing the different clusters found with the origi-

nal partition, using external indices, (Bittner et al., 2000; Kerr and Churchill,

2001; Li and Wong, 2001).

• Preservation of distance information - the degree to which the distance in-

formation in the original data is preserved in a clustering and typically used

for hierarchical clustering. Here, a cophenetic distance matrix is an N × N

matrix where each entry (i, j) records the level at which the data items i and j

are grouped in the same cluster for the first time. The preservation is usually

assessed using the cophenetic correlation coefficient i.e. the correlation be-

tween the entries in the cophenetic distance matrix and the original distance

matrix, (Sokal and Rohlf, 1962).
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External Measures (Supervised):

These refer to assessments which reference external information (e.g. class labels

or clusterings from alternative algorithms). The comparison of clusterings with ex-

ternal class labels is of critical importance as it provides a great deal of information

to the user. For instance, genes that show similar pattern across clusters do not nec-

essarily indicate the same pathway or similar function but could do. Examples of

the properties key to external measurements include:

• Agreement with metadata - For biological function information included, in

the gene list for each cluster, a more complete picture is inevitably provided

of the dataset and the success of the technique. A number of functional an-

notation databases are available. The Gene Ontology database, (Ashburner

et al., 2000), for example, provides a structured vocabulary that describes

the role of genes and proteins in all organisms. The database is organised

into three hierarchical ontologies: biological process, molecular function and

cellular component. Several tools have been developed for batch retrieval

of GO annotations for a list of genes ( e.g. tools DAVID, (Dennis et al.,

2003), Babelomics, (Al-Shahrour et al., 2005) or Machaon CVE (Bolshakova

et al., 2006)). Statistically relevant GO terms can be used to investigate the

properties shared by a set of genes. These tools typically use comprehensive

measures, like the F-measure (introduced by Rijsbergen (1975)), or hyper-

geometric tests, (Falcon and Gentleman, 2007), to test the significance of

cluster purity, (the fraction of the cluster taken up by the predominant class

label) and completeness, (fraction of items in a class grouped in the current

cluster). This assessment can be adapted for partially annotated datasets, by

only including that fraction of genes that are annotated in the calculation of
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the measure. This facilitates the transition from data collection to biological

meaning by providing a template of relevant biological patterns in gene lists.

• Agreement between clusterings (cluster runs) -In a simulation dataset, the

true partition is known, and the performance of a technique can be assessed

in terms of its clustering similarity to the true partition. There are several such

indices to measure this in the literature, (Fridlyand and Dudoit, 2001). Most

popular is the Rand Index (RI), (Rand, 1971) and a number of variations

of this exist, including the adjusted RI, (Hubert and Arabie, 1985) and the

weighted RI (Thalamuthu et al., 2006). In general, these determine the simi-

larity between two partitions as a function of positive and negative agreement

in pairwise cluster assignments. The Jaccard coefficient, (Jaccard, 1908),

looks at similarity as a function of only the positive agreements in pairwise

cluster assignments. Most of these can also only be used where a single class

label is unequivocally assigned to a data item, thus are inappropriate for fuzzy

clusterings or overlapping clusters, although a fuzzy extension has been pro-

posed recently for the Rand Index, (Campello, 2007) Note: these measures

can also be used where the gold standard is not known, to assess relative

similarity of two clusterings obtained.
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Table 4.1: Summary of Evaluation Measures, categorised into Internal and Exter-
nal. Assess’ refers to which property the measure it assessing, Measure, refers to
the popular name for the measure in literature, G, L, C, C>1, F indicates if the
measure is suitable for assessing Global, Local structures, Crisp, Crisp in more
than one cluster, and Fuzzy Membership respectively, Max/Min indicates whether
the measure should be maximised or minimised, Bounds refers to the [maximum,
minimum] possible value of the result.

Assessment Measures

Category Assess’ Measure G L C C>1 F Max

/Min

Bounds

Internal

Connectedness Conn X X Min [0,∞)

Compactness Intra-cluster Dis-

tance

X X X X Min [0,∞)

Separation Inter-cluster Dis-

tance

X X X Max [0,∞)

Combination

SD-validity Index X X Min [0,∞)

Dunn Indices X X Max [0,∞)

Davies-Bouldin In-

dex

X X Min [0,∞)

Silhouette Index X X Max [−1, 1]

C-Index X X Min [0, 1]

Xie-Bien Index X X Min [0,∞)

Fuzziness
Partition Coeffi-

cient

X X X Max [0,∞)

Partition Entropy X X X Min [0,∞)

Continued on Next Page. . .
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Table 4.1 – Continued

Category Assess’ Measure G L C C>1 F Max

/Min

Bounds

Stability

Cluster Overlaps

(Average Propor-

tion Non-overlap,

Average Distance,

Average Distance

between Means)

X X X Min [0, 1]

Figure Of Merit X X X X Min [0,∞)

Distance

Preservation

Cophentic Correla-

tion

X X Max [−1, 1]

External

Purity Biological Homo-

geneity Index

X X X X Max [0, 1]

Completeness Biological Stability

Index

X X X Max. [0, 1]

Reconstruction

of structure

Adjusted Rand In-

dex

X X X X Max [0, 1]

Fuzzy Rand Index X X X X Max [0, 1]

Jaccard Coefficient X X X X Max [0, 1]

Hubert Γ Statistic X X X X Max [−1, 1]

These metrics are usually highly dependent on the number of clusters as an

input parameter, (discussed in Chapter 3). The ‘natural’ number of clusters in the

data depends on which clustering criterion are used in the algorithm and is not fixed

between algorithms. For example, according to the K-Means criterion the optimal
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number of clusters for a particular dataset may be 5, while for CLICK it may be 10

for the same dataset. The ‘optimal’ number of clusters depends on the dataset and

algorithm so that absolute choice is difficult. Assessment measures are also biased.

The compactness index, e.g. is biased towards a large number of clusters, while the

separation index is biased towards a small number of clusters. Formulae for each

of the assessments can be found in Appendix A.

4.3 Tools and Packages

R is a powerful statistical computing language and environment, available for down-

load from CRAN (http://CRAN.R-project.org/). This, and associated

contributed packages, were used extensively for this analysis of clustering algo-

rithms and evaluation methods. Primarily, esoteric packages, provided as part of

the Bioconductor open source and open development project, (Gentleman et al.,

2004), were employed. As a result of the Bioconductor project hundreds of pack-

ages for the analysis of gene expression data are publicaly available and, as the

project is open development, updated regularly. Navigation and understanding of

this abundance of contributed packages presents a serious challenge even for the

experienced user.

For development of software for this analysis we used a number of contributed

packages that perform cluster validation and which are available from CRAN or

Bioconductor (http://www.bioconductor.org). These include packages

clv, (Nieweglowski., 2008), clValid, (Brock et al., 2008), e1071, (Dimitriadou et al.,

2008), clusterSim, (Dudek, 2008) and biclust, (Kaiser et al., 2007). Not all assess-

ment measures that we wanted to use were available in any package on CRAN or

Bioconductor, and for those we implemented our own functions. These included
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the C-Index, (Hubert and Schultz, 1976), and a form of the Xie-Beni index, (Xie

and Beni, 1991).

4.4 A Framework for Evaluation

Each of the above measures assesses different properties of a clustering, but does

not tell us which ‘weigh’ more heavily. The evaluation framework here provides a

road-map to guide final judgement of quality and applicability. Steps in the evalu-

ation framework, (Figure 4.2) are:

1. To understand the dataset properties (Chapter 2).

2. To understand the properties, (biases and cluster types found preferentially)

of the chosen clustering algorithm (Chapter 3).

3. To make an educated guess for initial input parameters

4. To apply clustering algorithm.

5. For a range of input parameters to the clustering algorithm, to analyse internal

assessment measures. Determine which type of internal measures are appro-

priate for the algorithm e.g. does it take into account fuzzy memberships, or

overlapping clusters etc.?

6. To use optimal input parameters based on internal validation.

7. To apply external assessment measures.
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Figure 4.2: Evaluation Work-flow

4.5 Datasets

Table 4.2 details the range of benchmark datasets used to evaluate clustering tech-

niques. The range of datasets was chosen to reflect different platforms, experimen-

tal design, number and type of samples and genes. Details of datasets used can be

found in Appendix B.

4.5.1 Creation of synthetic datasets

Synthetic datasets allow us to test assessment measures with a known partition. A

two-step process was used to create two synthetic datasets, where the number, size

and type of clusters could be controlled. The two-step process involved:

1. Data generated according to artificial patterns, such that the true class of each

gene is known for 11 classes of various sizes, for which all genes in a class
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Author Experiment Type Number of genes Number of Samples
Alizadeth Lymphoma Spotted 4026 (3019) 96
Alon Colon Cancer Oligonucleotide 2000 (2000) 62
Cho Yeast Cycle Oligonucleotide 6601 (3000) 17
Gash Yeast Stress Spotted 6152 (3120) 173
Golub Leukemia Oligonucleotide 7129 (3571) 72
Hsiao Human tissue Oligonucleotide 7070 (2115) 59
Spellman Yeast Cycle Spotted 6178 (3049) 82
Stegmaier Leukemia Oligonucleotide 22283 (3145) 22
West Breast Cancer Oligonucleotide 7129 (3332) 49
Synthetic 1 - - 3000 60
Synthetic 2 - - 3000 90

Table 4.2: Test datasets used for analysis. The value in brackets represents the
number of genes after filtering

have identical patterns before error is added. Genes not contributing to the

programmed pattern, so technically ‘irrelevant’ for cluster formation, were

also included.

2. Error was added to the synthetic patterns, aimed to control the level of bi-

ological noise cluster each class (and hence, the signal-to-noise ratio), such

that classes were less separable when affected by a higher error. Errors were

added randomly, (uniform distribution), so that the signal-to-noise ratio was

20 at maximum.

Artificial patterns were created to reflect patterns of real gene expression datasets,

based on the analysis in Chapter 2. The artificial patterns were encoded as follows,

(refer to Figure 4.3 and for exact details on functions for artificial patterns see Ap-

pendix B):

• Synthetic dataset A was designed to represent data derived from two time-

course experiments, over 30 time points, creating a 60 × 3000 dataset, (see
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Figure 4.3 (a)). The 11×2 groups were primarily modelled usingAsin(2πf+

θ), for various values of A = amplitude, f = frequency and θ = phase. Note

that apart from pattern ‘e’, Atime series 1 6= Atime series 2, ftime series 1 6= ftime series 2 and

θtime series 1 6= θtime series 2, and that, in some groups (d and f, Fig. 4.3,(a)) time

series 1 shows definite structure, where gene values are random in time se-

ries 2 and vice verse (group j Fig. 4.3(a)). For exact details on functions see

Appendix B.

• Synthetic dataset B was designed to represent data derived from an exper-

iment on phenotypic samples, with 3 ‘treatment groups’. In the first two

groups samples relate to 6 individuals, with 5 tests carried out on each sam-

ple (2 × (6 × 5) = 60 experiments). In the third group, samples relate to 4

individuals, again with 5 tests carried out on each sample (4× 5 = 20 exper-

iments). This created a 80× 3000 dataset. Patterns were created to either (i)

affect all samples between treatment groups similarly, (ii) affect a subset of

treatment groups similarly, (iii) affect a subset of individuals in a treatment

group, or (iv) have a different effect on individuals between treatment groups.

Note also that intentional overlap between groups was added to the patterns,

(see Figure 4.3 (b)).

4.5.2 Random Datasets

Random datasets were created by randomly sampling expression values from the

original dataset without replacement, thus destroying any cluster structure in the

data while retaining all other properties.
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Figure 4.3: (a) Synthetic time series data, contained two time series over 30 time
points. (b) Synthetic data from phenotypic samples. Contains data from 3 treatment
groups, samples derived from 6 individuals in group 1 and 2, and 4 individuals in
group 3, 5 tests carried out on each sample
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4.5.3 Dataset pre-processing

An initial pre-processing step was applied to the ‘real’ datasets for testing, (Table

4.2) depending on whether the pre-processed data,due to the original authors, was

available. Hence, the West, Golub, Hsiao, Stegmaier datasets were preprocessed

as proposed by Speed (2000). This involves an initial step of applying a threshold

on expression values of a floor of 100 and ceiling of 16000. The data was then

log-transformed and finally, standardized to have zero mean and unit variance. The

Alon and Cho datasets were standardized to have zero mean and unit variance.

A filter based on variation in gene expression was applied to all datasets to

focus computations on informative genes across the samples. Each dataset was also

filtered based on the percentage of missing values (if > 25% missing values occur

in the gene vector it was excluded analysis).

4.6 Evaluation

In the following sections, we assess a number of clustering applications using a va-

riety of assessment measures. These are intended to give a ‘flavour’ of techniques

and assessments, and the reader should be aware that there are a number of permu-

tations of input parameters etc. that could affect the final clustering. The intention

is to assess the metrics and the performance of the metrics when applied to specific

clustering algorithms.

4.6.1 Hierarchical application

The agnes implementation of hierarchical clustering (available in the cluster pack-

age of Bioconductor (Maechler et al., 2005)) was used to carry out this analysis.
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As stated previously, the cophenetic correlation is often used to decide between

various linkage methods when applying hierarchical clustering. Table 4.3 provides

the cophenetic correlation of this clustering on the test datasets. In all cases, the

distance matrix used for the clustering correlates most with the cophentic distance

derived when average linkage was used. However, tests on random datasets sug-

gest that the cophenetic correlation measure is, in fact, biased towards this linkage

method. There is a higher degree of correlation for the synthetic datasets compared

to the real datasets, most likely because groups in these datasets are less complex

than in real cases.

The dendogram produced by the hierarchical clustering can, of course, be ‘cut’

at various levels to produce clusterings with different cluster numbers,K. The trend

of the internal assessments (SD-Validity, Dunn, Davies-Bouldin, Silhouette Index

and C-Index) across various values of K are given in Figures C.1 - C.9, Appendix

C. For a majority of these internal assessments, the values remain roughly constant

for the entire range of K, (for all linkage methods), indicating that, according to

these measures, hierarchical clustering techniques do not identify a compact and

well separated structure in the data.

For a minority of datasets, however, the internal indices did indicate an opti-

mal number of clusters. Table 4.4 summarises optimal K, suggested by internal

measures for selected datasets. The SD-Validity index for single linkage, was min-

imised at 6 and 4 clusters for the Cho and Stegmaier datasets respectively. This

value was corroborated by the Davies-Bouldin index for the Cho dataset for single

linkage, Fig. 4.4. Again, the Dunn index indicates 4 clusters for the Cho dataset

using average and ward linkage, Fig. 4.5.

For Synthetic B dataset, (were 11 groups is optimal, excluding outliers) the

Dunn index suggested 15 and 10 clusters optimal for complete and ward linkage
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Figure 4.4: Hierarchical Assessment (Single) of Cho and Stegmaier datasets using
Internal measures. The x-axis indicates the cluster number while the y-axis indi-
cates the score obtained.
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Single Complete Average Ward’s
Aliz 0.363 0.211 0.485 0.178
Alon 0.245 0.304 0.544 0.428
Cho 0.296 0.332 0.558 0.335

Gasch 0.669 0.297 0.762 0.324
Golub 0.280 0.184 0.439 0.169
Hsiao 0.258 0.362 0.620 0.298
Spell 0.246 0.196 0.405 0.183
Steg 0.589 0.288 0.703 0.418
West 0.323 0.199 0.451 0.081

Synth. A 0.872 0.857 0.943 0.772
Synth. B 0.914 0.934 0.952 0.615

Random Datasets
Aliz 0.005 0.104 0.129 0.057
Alon 0.014 0.126 0.146 0.091
Cho 0.011 0.147 0.198 0.145

Gasch 0.006 0.1 0.12 0.057
Golub 0.008 0.1 0.116 0.066
Hsiao 0.014 0.129 0.150 0.092
Spell 0.004 0.106 0.142 0.048
Steg 0.006 0.121 0.170 0.104
West 0.006 0.092 0.11 0.063

Synth. A 0.009 0.106 0.122 0.07
Synth. B 0.009 0.110 0.128 0.076

Table 4.3: Cophenetic correlation coefficient. Agglomerative Clustering Tech-
niques, internal assessment using the Cophenetic Correlation Coefficient measure.

respectively, Fig. 4.6. For the same dataset, the Silhouette index is maximised at 15

and 9 clusters for average and ward linkage respectively, Fig. 4.8. For Synthetic

A dataset, the majority of indices do not change across clusters, with the exception

of the Silhouette index, which indicates that the optimal number of clusters is 8

and 12 for complete and ward linkage methods respectively. Indeed, the negative

Silhouette index for all the real datasets indicates that the clustering is very poor

and that on average genes are placed in the wrong cluster, for all K, Fig. 4.8. With

the exception of single linkage, the trend of the SD-Validity index is to increase
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Dunn Davies-Bouldin SD-Validity Silhouette C-Index
Cho Single - 4 4 - 4

Average 4 - - - -
Complete - - - - -

Ward 4 - - - -
Steigmaier Single - - 4 - -

Average - - - - -
Complete - - - - -

Ward - - - - -
Synthetic A Single - - - - 16†

Average - - - - -
Complete - - - 8 -

Ward - - - 12 7
Synthetic B Single - - - - 16†

Average - - - - -
Complete 15 - - 15 11

Ward 10 - - 9 11

Table 4.4: K for selected datasets using HC Analysis. † - The value of C-index up
to this point gradually declined.
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Figure 4.5: Hierarchical Assessment (Average) of Cho dataset using Internal mea-
sures. The x-axis indicates the cluster number while the y-axis indicates the score
obtained.
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with the number of clusters in all linkage methods, i.e. the cluster variance to.

distance ratio deteriorates, Fig. 4.7. The major trend of the C-Index is to decrease

with the number of clusters, Fig. C.5, Appendix C. For ward and complete linkage

methods, the C-Index indicates that the optimal number of clusters is 11 (optimal

number) for Sythentic dataset B, Fig. 4.9.
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Figure 4.6: Hierarchical Assessment (Complete) of Synthetic dataset B using Dunn
internal measures. The x-axis indicates the cluster number while the y-axis indi-
cates the score obtained.

For a stability analysis2 of the hierarchical clustering methods, shows that the

behaviour of ADM measure across datasets is shown in Fig. 4.10. This measure

generally increases with K and it highlights larger effects of K on the final cluster-

ing of Synthetic datasets A and B. For the single and average linkage methods this

relationship is more gradual (range of values 0 − 1.2) compared to complete and
2Note: these stability measures are extremely time consuming and memory intensive measures

to calculate. This is in addition to the fact that they are already assessing a very memory intensive
algorithm. For example, to assess the Synthetic dataset A took 344.24 hours of CPU execution time,
while analysis of the Golub dataset took 744.56 hours of CPU time. This is a practical consideration
of computation time and memory and is obviously a drawback of these stability measures.

83



1
1 1 1 1 1 1 1 1

1
1 1 1 1

6 8 10 12 14 16 18

0
5

1
0

2
0

3
0

SD−Validity Index

2

2 2 2
2

2
2 2

2 2 2 2
2 2

3
3

3 3
3

3
3

3 3 3 3 3
3

3

4 4 4 4 4
4 4

4 4 4 4 4 4 4

5
5

5 5
5

5 5 5
5

5
5 5 5

5

6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7

7 7 7

7 7 7
7

7

8 8 8 8
8

8 8

8 8
8

8
8 8 8

9
9 9 9 9 9 9 9

9
9

9 9
9 9

a
a

a

a

a
a

a

a

a
a

a
a

a
a

b
b

b
b

b
b b

b
b

b
b

b
b

b

1
2
3
4
5
6
7
8
9
a
b

Aliz
Alon
Cho
Gasch
Golub
Hsiao
Steg
Spell
West
Synth1
Synth2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 6 8 10 12 14 16

0
.0

0
.1

0
.2

0
.3

0
.4 Dunn Index

2

2 2 2 2 2 2 2 2 2 2 2 2 2

3 3

3 3 3

3 3 3

3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5
5 5 5 5 5 5

6 6
6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7

8
8 8 8 8 8

8 8 8 8 8 8 8 8

9 9
9 9 9 9 9 9 9 9 9 9 9 9

a a a a a a a a a a a a a a

b b b b b b b b b b b b b b
Figure 4.7: Hierarchical Assessment (Average) of datasets using SD-Validity In-
dex. The x-axis indicates the cluster number while the y-axis indicates the score
obtained.

Figure 4.8: Hierarchical Assessment (Ward) of datasets using Silhouette Index.
The x-axis indicates the cluster number while the y-axis indicates the score ob-
tained. For the majority of ‘real’ datasets the silhouette is negative, indicating a bad
clustering. Similar results were obtained for all linkage methods.
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Figure 4.9: Hierarchical Assessment (Ward) of datasets using C-Index. The x-axis
indicates the cluster number while the y-axis indicates the score obtained. The trend
of the index is to decrease as the number of clusters increases. Similar results were
found for all linkage methods.
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ward (range 0− 5.3), Fig. 4.10.

Similar behaviour of APN across linkage methods is observed, whereby the

value of this index increases with K. Like the ADM measure, this increase is more

abrupt in the complete and ward linkage methods, Fig. 4.11. This indicates that as

the number of clusters increases the consistency of results deteriorates. Exceptions

include assessments of Synthetic datasets A and B, for complete and ward linkage.

Although there is a bias towards smallK with these measures, some information

can be obtained. For Synthetic dataset A the ADM index indicates 13 clusters for

ward linkage. For the same dataset, the ADM and APN index indicate 9 clusters for

complete linkage. For Synthetic B dataset the optimal number of clusters of 8 as

indicated by the ADM and APN indices for complete linkage, while 17 clusters is

indicated by the AD and FOM indices for the same linkage method (not shown). For

ward linkage, all indices indicate 10 clusters for this dataset. For the Cho dataset,

ADM and APN indicate 3 clusters for average linkage, while the same measures

indicate 5 clusters for the Alon dataset for ward linkage. For other datasets, these

assessments give little information. Table 4.5 summarises results of the stability

measurements.

External assessment is crucial in gene expression analysis, because it lets the

experimenter link data to knowledge. External assessment results, using the Bi-

ological Homogeneity (BHI) and Biological Stability (BSI) measures, is given in

Figures 4.12 - 4.13. It is evident that the biological stability of the hierarchical

clusters is maximised when K is small. The BSI index inspects the cluster consis-

tency of genes grouped by similar biological function, for K = 1 stability = 1 and

gradually decreases as K increases, i.e. the BSI index is biased towards a smaller

number of clusters, Fig. 4.12. Single and Average linkage methods decrease lin-

early with K while Complete and Ward deterioration is more pronounced. The
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Single

Average

Complete

Ward

Figure 4.10: ADM measure across linkage methods. The x-axis indicates the clus-
ter number while the y-axis indicates the score obtained. This measure highlights
larger effects of K on the clustering of Synthetic datasets A and B (smaller values
preferred).
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Single

Average

Complete

Ward

Figure 4.11: APM measure across linkage methods. The x-axis indicates the cluster
number while the y-axis indicates the score obtained. For Ward and Complete link-
age, similar to ADM behaviour, Synthetic datasets A and B show deviant behaviour
compared to real datasets.

88



ADM AD APN FOM
Synthetic A Single 4 - - -

Average - - - -
Complete 9 - 9 -

Ward 13 12 - -
Synthetic B Single - - - -

Average - - - -
Complete 8 16 8 16

Ward 10 10 10 10
Cho Single - - - -

Average 3 - 3 -
Complete - - - -

Ward - - - -
Alon Single - - - -

Average 5 - 5 5
Complete - - - -

Ward - - - -

Table 4.5: K selected by stability measures

BHI index measures whether genes placed in the same cluster belong to the same

functional classes, through interrogation of GO ontologies. A value of unity indi-

cates a biologically homogenous cluster. The maximum value for any technique is

∼ 0.35, indicating that the clusters are not particularly homogenous. (This value

was obtained for the Golub dataset, when K = 2, Fig. 4.13.)

Hierarchical Application Summary

Although there are some consistent predictions for K within the stability analy-

sis, these are not consistent with internal assessment results. For example, stability

indices indicate 10 clusters is optimal for the Synthetic dataset B dataset, while in-

ternal indices indications range from 9−16. Again, the external assessments are not

consistent with either the internal or stability assessment results, and suggest that
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Figure 4.12: Hierarchical Assessment using BSI. Top - bottom: Single, Average,
Complete, Ward. The x-axis indicates the cluster number while the y-axis indicates
the score obtained. It is clear there is a bias towards small values of K.
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Figure 4.13: Hierarchical Assessment using BHI. Top - bottom: Single, Average.
The x-axis indicates the cluster number while the y-axis indicates the score ob-
tained.
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clusters found by hierarchical clustering are not particularly homogenous. There

are also obvious biases of indices (e.g. SD-Validity, C-Index, APN, BSI) towards

a small number of clusters or linkage method (e.g. APN and ADM towards single

linkage).

4.6.2 Partitive Application

K-Means and SOTA were selected as representative techniques for the partitive

analysis. Internal assessments (or classification criteria) have a more obvious role

here as these are typically used to provide the required parameter, K, to the algo-

rithm.

K-Means Clustering

As discussed in Section 3.3.2, K-Means partitions the data by associating each

gene vector with its nearest centroid and re-computing the cluster centroids. Thus,

the K-Means technique is very sensitive to the random start positions and different

executions will result in different clusterings. The K-Means algorithm available

from the cluster package of Bioconductor (Maechler et al., 2005), was used for this

analysis and starting positions were initalised using a technique which approximates

the centres, based on the SPSS QuickCluster function, available in the clusterSim

package (Dudek, 2008) of Bioconductor.

Figures C.12 - C.13 (Appendix C) summarises the internal assessments of clus-

terings obtained for various values of K. The Dunn index ranges from from∼ 0.03

to ∼ 0.1 for K = 3 to 16, for all ‘real’ datasets, increasing slightly for Synthetic

datasets A and B. This implies the datasets do not have compact and well separated
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clusters when grouped according to the K-Means cost function. This assessment

measure also indicates that the Synthetic B dataset (designed to have K = 11) has

optimal compactness to separation ratio at K = 4. The Davies-Bouldin index indi-

cates 6 for the same dataset, Fig. 4.14, (which measures the average error of each

cluster group, rather than the maximum used by Dunn, thus incorrect grouping has

less of an impact, see Appendix A for function details, (Davies and Bouldin, 1979)).
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Figure 4.14: K-Means of selected datasets using Davies-Bouldin Index. The x-axis
indicates the cluster number while the y-axis indicates the score obtained.

Overall, the range of values and trend for the SD-Validity index is similar to that

obtained for the Hierarchical application - gradually increasing with K. For Syn-

thetic A dataset, the SD-Validity index is minimised at K = 5, before it increases

(deteriorates) rapidly as K increases. The SD-Validity index indicates K = 3 for

the Alizadeth and the Spellman datasets, before the value increasing rapidly, Fig.

4.15.

Unlike the hierarchical clustering methods, the Silhouette index is > 0 for all
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Figure 4.15: K-Means of selected datasets using SD-Validity Index. The x-axis
indicates the cluster number while the y-axis indicates the score achieved obtained.

datasets, which suggests a better clustering, Fig. 4.16. This index indicates that

the best choice of K is 14 for Synthetic B dataset. The Silhouette index indicates

correctly that the optimal number of clusters for Synthetic A dataset is at K = 11.

For the Alon, Hsiao, Steigmaier and West datasets, the Silhouette index indicates

K = 3.

The C-Index is minimised at K = 9 for Synthetic dataset B, while for Synthetic

dataset A the C-Index indicates the optimal K = 5. For the Alizadeth and Spell-

man datasets, the C-Index indicates K = 14 and 15 respectively. In contrast to

hierarchical methods, when this index is used with the K-Means algorithm, no bias

towards small K is indicated, Fig. C.13, Appendix C. Results of K-Means internal

analysis are summarised in Table 4.6.

Unsurprisingly, the Connectivity measure increases with K, (when K is low,

each gene vector will more likely be grouped with its nearest neighbour). This
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Figure 4.16: K-Means assessment using Silhouette Index. The x-axis indicates the
cluster number while the y-axis indicates the score achieved obtained.
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Figure 4.17: K-Means assessment using C-Index for selected datasets. The x-axis
indicates the cluster number while the y-axis indicates the score achieved obtained.
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indicated 4 clusters for Synthetic dataset B and 5 clusters for Synthetic dataset A.

This measure is minimised for all other datasets at K = 3.
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Figure 4.18: K-Means assessment using connectivity index for selected datasets.
The x-axis indicates the cluster number while the y-axis indicates the score achieved
obtained.

Stability analysis of theK-Means algorithm show that the AD measure does not

determine K for the K-Means algorithm, although the value is minimised for both

Synthetic datasets A and B at K = 11, Fig. 4.19. The ADM measure selects K = 8

for the Spellman dataset and K = 4 for the Gasch dataset. Values of this measure

are erratic across all the values of K, Fig. 4.20. The APN index is minimised at

K = 6 for Synthetic B dataset, K = 4 for the Gash dataset and K = 5 for the

Alizadeth, Cho and Hsiao datasets, Fig. 4.21. The FOM index is not selective of K

across any dataset, see Table 4.7 for summary of stability indices.

As for hierarchical clustering, biological stability (BSI) and biological homo-

geneity (BHI) were assessed for the clustering produced by K-Means. As for hier-

archical clustering, moreover, the biological measures identify no discernible struc-
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Dunn Davies-Bouldin SD-Validity Silhouette C-Index
Synthetic A - - 5 11 5
Synthetic B 4 6 - 14 9
Alizadeth - - - 3 14

Alon - - 3 - -
Hsiao - - - 3 -

Spellman - - 3 - 15
Steigmaier - - - 3 -

West - - - 3 -

Table 4.6: Optimal K identified by internal assessment measures for K-Means
algorithm.
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Figure 4.19: K-Means stability analysis using AD index. x-axis indicated cluster
number and y-axis, score achieved.
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Figure 4.20: K-Means stability analysis using ADM index. x-axis indicated cluster
number and y-axis, score achieved.
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Figure 4.21: K-Means stability analysis using APN index. x-axis indicated cluster
number and y-axis, score achieved.
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AD ADM APN FOM
Synthetic A 11 - - -
Synthetic B 11 - 6 -
Spellman - 8 - -

Gasch - 4 4 -
Alizadeth - - 5 -

Cho - - 5 -
Hsiao - - 5 -

Table 4.7: Stability summary of K-Means

ture in the datasets. BSI values decrease with the number of clusters, K, consistent

with the trend for hierarchical clustering, Fig. 4.22. The value of BHI increases

slightly for the Golub dataset at K = 15 (as opposed to k = 2 found by hierarchi-

cal average linkage for this dataset).

SOTA - Self Organising Tree Algorithm

Details of this technique were given in Section 3.3.2. A partitive technique, it uses

self organising maps to discover hierarchical structure in the data. For this analysis,

the Euclidean distance measure was used, with an ancestor height of two.

Figure C.15, Appendix C, summarises the internal assessment of the clusters

obtained for various values of K. Again, the internal measurements tell us little

about these data. The Silhouette index indicates the optimum choice of K is 6 for

both the Synthetic B and Stegmaier datasets. For all other datasets, the optimum

choice is indicated atK=3. Again, this index is> 0, for each datasets and across all

K, similar to the results found for the K-Means algorithm, and again the maximum

value found is for Synthetic B dataset. There is a large range in Silhouette values

across K, for each dataset, however the trend is to decrease with increasing K

(exception is Synthetic B dataset which increases with K and Synthetic A dataset
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Figure 4.22: KMeans Assessment using Biological Homogeneity and Biological
Stability Measures . The x-axis indicates the cluster number while the y-axis indi-
cates the score achieved obtained.

which remains constant). The Dunn and Davies-Bouldin indices indicate K=8 for

the Synthetic B dataset. The C-index is minimised for Synthetic dataset B at K =

7. This value of this index increases with K for Synthetic dataset A. Optimal K

indicated by the internal assessments for various datasets is given in Table 4.8.

Unsurprisingly, the SD-Validity index tends to increase with K, Fig. 4.24.

Dunn Davies-Bouldin SD-Validity Silhouette C-Index
Synthetic B 8 8 - 6 7
Stegmaier - - - 6

Table 4.8: Optimal K selected with internal assessments and SOTA algorithm

Table 4.9 shows the results for the stability analysis of selected datasets for the
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Figure 4.23: Dunn index returned for various K and SOTA algorithm.
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Figure 4.24: SD-Validity returned for various K using SOTA algorithm. This index
is biased towards small values of K.
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Figure 4.25: Silhouette index for various K using SOTA algorithm. For all datasets
this value is > 0
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Figure 4.27: Connectivity measurements for selected datasets for various K, using
SOTA algorithm

SOTA algorithm. The AD and FOM assessment indices were not informative of K

for this technique, hence not shown.

AD ADM APN FOM
Synthetic B - - 5 -
Alizadeth - 6 - -

Cho - - 6 -
Hsiao - 8 - -
Golub - - 5 -

Stegmaier - - 7 -
West - - 6 -

Table 4.9: K selected by stability measurements and SOTA algorithm

Biological Homgeneity (BHI) values, obtained for various values of K with

the SOTA algorithm, are of a similar range as those obtained for other clustering

algorithms tested, Fig. 4.30. However, with previous techniques, this index did not

change with K, whereas with SOTA there is an optimal. For example, this index is

optimised at K = 16 for the Golub dataset, corresponding to BHI = 0.25. This
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datasets.

1
1 1 1 1

1

1

1

1

1

1

1

1

1
1

2 4 6 8 10 12 14 16

0.0
0

0.0
5

0.1
0

0.1
5 APN−Validity Index

2 2

2 2

2

2

2

2

2
2

2 2 2 2 2

3 3

3

3

3 3

3

3

3 3 3
3

3
3

3

4
4 4 4

4

4

4
4

4

4

4

4
4

4
4

b

b
b b

b

b

b

b

b
b

b

b

b

b

b

1
2
3
4
b

Aliz
Golub
Hsiao
Steg
Synth2

Figure 4.29: SOTA assessment using APN index for values of K for selected
datasets.
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value does not represent very homogenous clusters, or is it significantly different

than the BHI value found, for example, with K-Means.
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Figure 4.30: SOTA assessment using Biological Homogeneity. The x-axis indicates
the cluster number while the y-axis indicates the score obtained.

Partitive Application Summary

A similar bias as observed for hierarchical algorithms occurs for the K-Means and

SOTA algorithms whereby SD-Validity values increase with K. The Dunn index

does not identify any compact and well separated clusters with the K-Means algo-

rithm, again similar to hierarchical techniques. However, in contrast to hierarchical

techniques, the silhouette values are > 0 for all datasets across all K. K-Means

and SOTA strive to find spherically linked compact clusters, and these results in

agreement with Handl et al. (2005) in that the Silhouette index will perform better

with these techniques.
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4.6.3 Fuzzy Application

Examples of Fuzzy clustering algorithms include Fuzzy CMeans (FCM) and Fuzzy

Local Approximation MEthod (FLAME). FCM is the most widely used fuzzy clus-

tering method. We used the FCM implementation available in the e1071 package

of Bioconductor, (Dimitriadou et al., 2008), and similarly to the K-Means analysis,

the initial cluster centres were estimated using the technique available in the cluster-

Sim package. For these tests we used a ‘fuzzification’ parameter of 2, (see Section

3.3.2). The developers of Fuzzy Local Approximation MEthod (FLAME) commit-

ted code to open-source3, which we adapted for comparison in R. Recall that this

method does not take K as an input parameter, but determines the optimal num-

ber from the dataset. However, K is dependent on a number of input parameters,

primarily the number of nearest neighbours, knn.

From an analysis of the effect of the knn parameter on FLAME output it was

observed that K decreases as knn increases, Table 4.10 (also noted in the original

paper (Fu and Medico, 2007)). This relationship arises for two reasons. In this

algorithm, a cluster is determined from a ‘Cluster Supporting Object’ (CSO) and

its relationship to knn. Firstly, knn determines the smoothness of the cost func-

tion used by this algorithm, which in turn limits the maximum number of CSO’s,

and secondly, knn determines the range covered by one CSO - a larger value of

knn results in a wider CSO range, therefore the fewer the CSO’s, (Fu and Medico,

2007). As K is not specified, the assessment indices are presented for various knn.

The reader can cross reference with Table 4.10 to check equivalent number of clus-

ters. As this technique creates a dedicated outlier cluster, this was removed before

assessment.
3available from http://flame-clustering.googlecode.com/svn/trunk/
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The cluster separation and the fuzzy compactness ratio, (Xie-Beni index), esti-

mate how spatially separated the clusters are. No well separated or compact clusters

found for any K > 10 by the FCM technique appearing as very large values of the

Xie-Beni index, Fig. 4.31. For the Alon, Golub, Stegmaier and West datasets, this

index indicates K = 3 is optimal, while, for the FLAME method, it points to the

partitioning again being more stable for small K (i.e. for large values of knn in

the graph). For large values of K, (i.e. small knn) no compact or well separated

clusters are found, Fig. 4.32.

The Partition Coefficient measures the amount of overlap, or sharing of gene

membership, between clusters. As this value approaches unity the clustering ap-

proaches a crisp partitioning. For FCM this value monotonically decreases with

K (memberships of genes is spread roughly equally amongst the clusters), while

for FLAME it remains roughly constant for each dataset for all values of K. This

highlights the contrast FCM and FLAME membership requirements for a cluster.

For the former, for a given gene, the membership value to a set of clusters is pro-

portional to its similarity to cluster mean, and the latter requires membership of a

cluster, i, to be determined by the weighted similarity of the gene to its K-nearest

neighbours, and their membership of cluster i. The assignment of genes with few

neighbours to a dedicated outlier cluster (not considered with this analysis) also

contributes to stable results. This implies that for FCM that each gene does not

particularly belong to any cluster, while for FLAME, memberships are similarly

spread among a subset of clusters, regardless of the cluster number.

Similarly, the partition entropy measure monotonically increases with K for

FCM, where a small value indicates a good clustering, while for FLAME this value

remains roughly constant for the majority of datasets. Again, highlighting the dif-

ference in the membership weighting schemes of the techniques. For example, in
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the Alizadeth dataset, there is a minimisation of this value at knn = 23, which

corresponds to K = 2 (Table 4.10), while for the Spellman dataset this value is

minimised at knn = 30, which corresponds to K = 5.

4.6.4 Biclustering Application

Here the Plaid biclustering model is investigated4, significant because it uses a sta-

tistical model to capture the biclusters in the data.

Plaid Model

Described in Sections 3.3.1 and 3.3.3, this method requires few input parameters.

Code used for this method was made available by the original authors (Lazzeroni

and Owen, 2000) and was used in this analysis. An advantage of this approach

is the determination of K directly from the dataset, however this algorithm uses

a K-Means start to initialize clusters, thus it is sensitive to starting positions and

different runs may produce different results. The number and size (% volume of

the dataset) of clusters returned for each dataset by the Plaid algorithm is given in

Table 4.11

Notable of this technique is the large range in the size of the clusters returned.

The average volume of clusters is quite high for each dataset. For example, the

average volume of clusters found in the Alon dataset is 16.4% of the volume of the

entire dataset and the largest bicluster found in the Stegmaier dataset is 36.6% of

the total dataset size. This means that large proportions of the datasets are grouped

into one cluster. Table 4.12 gives description of biclusters scores obtained with

4In the next sub-section the SAMBA algorithm, a technique which also finds biclusters in the
data, (although categorised here as a graphical application) is examined.
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Figure 4.31: FCM Assessment using Internal measures. The x-axis indicates K
while the y-axis indicates the score achieved obtained.
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Figure 4.32: FLAME Assessment using Internal measures. The x-axis indicates
knn while the y-axis indicates the score achieved obtained.
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Dataset K Avg. Vol Min. Vol Max. Vol
Aliz 3 27866 (9.6%) 12208 (4.2%) 41360 (14.3%)
Alon 37 20280.49 (16.4%) 11400 (9.2%) 32190 (25.9%)
Cho 9 5656.67 (11.1%) 1484 (2.9%) 9904 (19.4%)

Gasch 56 58626.75 (10.8%) 2087 (0.4%) 131442 (24.4%)
Golub 10 39528.9 (15.4%) 27144 (10.5%) 58240 (22.6%)
Hsiao 8 11359 (9.1%) 1788 (1.4%) 27081 (21.7%)
Spell 150 33423.83 (13.3%) 1256 (0.5%) 52836 (21.1%)

Stegmaier 9 10510.44 (15.1%) 3980 (5.7%) 25395 (36.6%)
West 63 23846.37 (14.6%) 2238 (1.4%) 38280 (23.4%)

Synth. Data A 8 21979.25 (12.2%) 5168 (2.8%) 34804 (19.3%)
Synth. Data B 7 20102.71(8.3%) 12250(5.1%) 30818(12.8%)

Table 4.11: Plaid cluster statistics. % indicates the percentage volume of the dataset.

this technique. Of note is the range of scores for biclusters found in the Spellman

dataset. This dataset also presented the largest number of biclusters, 69 of which

had a score > 150. Biclusters with large scores were found in Synthetic B dataset,

however these represented the smallest in terms of % volume. However, K =

3, found in Synthetic dataset B, is considerably less than the number designed.

Biological homogeneity is again low for the biclusters returned by the Plaid Model,

and is in fact lower than that obtained from more traditional methods (analysed

above), Table 4.13.

4.6.5 Graphical Application

These evaluations were performed using software developed by the original authors

and available with the Expander v4.3 suite of analysis tools5, (Sharan et al., 2003).

Both algorithms examined here, CLICK and SAMBA, score clusters (biclusters in

the case of SAMBA), using a probabilistic based scoring scheme (Section 3.3.4).

5available for download at http://acgt.cs.tau.ac.il/expander
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Dataset K Avg. Score Min. Score Max. Score
Aliz 3 12426.97 10893.62 13960.33
Alon 37 603.17 179.51 1727.81
Cho 9 3068.08 1444.87 4517.52

Gasch 56 6314.35 735.99 66365.16
Golub 10 2621.29 1433.33 4780.91
Hsiao 8 3136.63 1625.79 5768.42
Spell 150 306.44 38.13 2517.25

Stegmaier 9 1475.67 270.29 4155.55
West 63 774.28 238.38 3799.12

Synth. A 8 6653.08 3257.03 8576.35
Synth. B 7 38919.86 17629.02 68774.17

Table 4.12: Plaid cluster scores, a large score indicates a more significant cluster.

BHI
Gasch 0.110
Golub 0.197

Stegmaier 0.179
Spellman 0.103

West 0.176

Table 4.13: BHI values for selected datasets obtained with Plaid model algorithm
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As these methods determine the optimalK from the dataset, clusterings for multiple

K are not investigated.

CLICK

Dataset K Avg. Score Min. Score Max. Score
Alon 8 0.578 0.521 0.614
Aliz 13 0.535 0.423 0.57
Cho 24 0.725 0.615 0.788

Gasch 14 0.671 0.491 0.749
Golub 23 0.492 0.406 0.525
Hsiao 20 0.645 0.538 0.734
Spell 13 0.546 0.344 0.6

Stegmaier 18 0.702 0.583 0.78
West 14 0.501 0.447 0.553

Synth. Data A - - - -
Synth. Data B 7 0.844 0.685 0.94

Table 4.14: CLICK Cluster Statistics

This is a partial clustering method, in that not all the genes must be put into a

cluster, however genes are grouped over all samples, i.e. global clustering. No-

table from the results, and contrary to results obtained from previous methods, a

structure was not identified in Synthetic dataset A (time series synthetic dataset),

Table 4.14. Structure was, however, identified in ‘real’ time-series datasets, (Cho,

Spellman, see Appendix B). Structure was found in Synthetic dataset B (7 clusters)

with a higher significance compared to all real datasets. There is a small range in

scores of clusters found in each of the datasets and the number of clusters found in

each dataset is larger than those suggested by assessment indices for other global

clustering techniques (hierarchical, partitive and fuzzy).

As this is a partial clustering method, and therefore clusters should in theory
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only contain relevant genes, it is surprising that the Biological Homogeneity Index

has a similar range to those obtained for traditional clustering techniques. Again,

the largest BHI value is associated with the Golub dataset, Table 4.15 and these

values are consistent with those obtained for other clustering algorithms tested.

BHI
Gasch 0.121
Golub 0.200

Stegmaier 0.185
Spellman 0.115

West 0.178

Table 4.15: BHI values obtained for selected datasets using the CLICK algorithm

SAMBA

Dataset K Avg. Score Min. Score Max Score
Alon 37 468.11 113.14 1217.62
Aliz 101 304.83 62.65 1114.9
Cho - - - -

Gasch 118 834.04 82.4 5780.29
Golub 49 490.78 32.91 1477.37
Hsiao 20 702.96 307.64 1452.83
Spell 88 348.2 83.43 984.93

Stegmaier 9 570.32 311.2 809.48
West 36 274.78 12.7 881.04

Synth. Data A 49 1823.27 39.55 5777.94
Synth. Data B 28 1027.81 55.78 4216.82

Table 4.16: SAMBA Cluster Scores

On average finds much smaller clusters compared to the Plaid technique, with

most clusters < 1% of the total volume of the dataset. This is due to the negative

effect of non-edges on bicluster scores, thus making larger clusters unfavourable, as
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these would inevitably include more non-edges. Notable among the results of the

SAMBA algorithm is the absence of structure found in the Cho dataset.

Dataset K Avg. Vol Min. Vol Max. Vol
Alon 37 1432.3 (1.1%) 264(0.2%) 3956(3.1%)
Aliz 101 468.8 (0.1%) 60 (2e−3%) 2050 (0.7%)
Cho - - - -

Gasch 118 1170.34 (0.2%) 96(1e−4%) 9454(1.7%)
Golub 49 1699.08 (0.6%) 45 (1e−4%) 5190(2.0%)
Hsiao 20 1636.3 (1.3%) 495 (3e−3%) 5264(4.2%)
Spell 88 482.2 (0.2%) 91(3e−4%) 1648(0.6%)

Stegmaier 9 1704.44 (2.4%) 931(1.3%) 2592 (3.7%)
West 36 1067 (0.6%) 35 (2e−4%) 3302 (2.0%)

Synth. Data A 49 1726.14 (0.6%) 55 (2e−4%) 6000(2.2%)
Synth. Data B 28 896.78 (0.4%) 104 (3e−4%) 3400(1.2%)

Table 4.17: SAMBA Cluster Statistics

Although, structures found with this biclustering technique are smaller com-

pared to Plaid model, the BHI values are marginally larger. As with all techniques

examined, analysis of the Golub dataset for biological homogeneity returns the best

result, albeit still small. Similar BHI results were found for this technique, when

compared to more traditional methods, Table 4.18.

BHI
Gasch 0.178
Golub 0.209

Stegmaier 0.195
Spellman 0.157

West 0.180

Table 4.18: BHI values for selected datasets for biclusters obtained from SAMBA
algorithm
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Graphical Methods Summary

The probabilistic scoring scheme employed by both models is a strength of these

techniques, as it provides an estimate of significance of results. The final score of

a cluster is a summation of significance of edges when using SAMBA, whereas

for CLICK it is the average. Graph theoretic methods provide an intuitive method

of gene expression analysis, owing to the modularity and inter-connectedness of

gene expression in the cell. Moreover, the SAMBA technique is innovative as it

finds local structures in a bipartite graph. In this analysis, this algorithm was ap-

plied to gene expression data only, however, it has been applied to compendium of

biological data, (Tanay et al., 2005). The variation of clusterings found between

the CLICK and the SAMBA algorithm, (although the former finds global struc-

tures, and the latter, local), highlight the need to investigate the techniques used to

score gene interactions in the graphical domain. For example, the SAMBA algo-

rithm identifies no biclusters in the Cho dataset, however, when applied to the same

dataset the CLICK algorithm identifies clusters which has the highest overall ho-

mogeneity score of any real dataset tested. SAMBA edge-weighting is thoroughly

investigated in Chapter 5. Using graphical techniques also presents the opportunity

to explore the organisational properties of gene interaction using tools and ideas

from classical graph theory.

4.7 Summary

It is important to understand that use of analytical validation techniques solely is

not sufficient, but that an understanding of the working principles of clustering

algorithms, validation measures and their intrinsic biases is critical to enable fair
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and objective cluster validation. As shown in this investigation, many validation

techniques are intrinsically biased, hence a careful analysis of the results obtained

is required, and results should be corroborated using alternative validation tech-

niques. Although research suggests (Chapters 2 and 3 and references therein) that

clustering techniques which find a local structure in the data are more suitable for

gene expression data, the topic of internal assessment measures for biclustering is

not well developed and is of fundamental concern.

This analysis shows that the FCM algorithm does not partition the data well,

where the membership of the genes is spread evenly across all clusters for all K,

as indicated by the partition coefficient and the partition entropy measures. The

Xie-Beni index has been found to be very eratic. However, the FLAME algorithm,

which performs a partial clustering of the data by having a committed ‘outlier’

cluster, returns more stable results. FLAME was found to be more suitable for gene

expression data clustering, which often contains a large noise component or irrel-

evant measurements. Most clustering techniques do not provide estimates of the

significance of results returned. This is a strength of the exceptions CLICK, SOTA,

Plaid and Samba algorithms, which do estimate significance in cluster scoring, as

validation methods are inherently biased and misleading. A key strength of graph-

ical techniques is that it transforms gene expression data into a network. These

resulting networks can and should therefore be examined further using classical

network analysis methods, to highlight the properties of gene interactions.There is

no method investigated here which is optimal across all datasets, as indicated by the

assessment indices. There is always a tradeoff between algorithm and assessment

measure used, e.g. SD-Validity, BSI, Silhouette.

In this chapter assessment indices were evaluated for a range of cluster num-

bers K, for each dataset, to detect biases and trends. With many cluster validation
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packages available, the returned result is simply the minimum or maximum for a

particular range of values for K. However, we have shown that the trend and range

of the values need to be accounted for. This analysis was carried out on comparably

large sets of genes than typically reported in literature. It is expected that better

results would have be obtained by limiting the number of genes being clustered to

a small subset (100 ∼ 600) for computational and visualization purposes, however

eliminating perhaps interesting genes in the filtering process.

Assessment indices measure the extent of a clustering algorithms’s ability to

find structures in a dataset. However, for clustering gene expression data, it is rea-

sonable to consider external measures that use existing biological knowledge. In-

ternal measures by themselves may not be suitable for gene expression data which

are often subject to many sources of noise, (also argued by Handl et al. (2005)). The

BHI index was used to quantify the association of gene expression profiles in a clus-

ter with functional classes. The BHI index is, of course, greatly influenced by the

annotation used. Here, all (Biological Process, Cellular Component and Molecular

Function) categories from Gene Ontologies annotation database was used to define

functional classes. If, for e.g. FunCat or EASE were used to determine functional

classes the results may vary slightly.

Past studies have concluded that clustering of the gene expression profiles show

that functionally similar genes are grouped together. This is often concluded by

manually inspecting genes in a cluster. Validation of a clustering result in this

manner is tricky, however, from our investigation, the biases and limitations of

assessment indices suggest that validation through expert knowledge is the ideal,

although time consuming and subjective. Manual interrogation will be aided as

more advanced ontologies and detailed annotation databases become mainstream.

External indices would be preferable over internal indices when there is a substan-
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tial biological knowledge about the genome under investigated (i.e. proportion of

annotated genes).
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CHAPTER 5

IN DEPTH: CONSTRUCTING AND

EXPLORING GENE EXPRESSION

BI-PARTITE GRAPHS

Statistical methods can identify specific genes and groups of genes through co-

expression analysis but are less reliable in terms of identifying pattern and dynam-

ics of interaction. A natural representation of such inter-connectivity and an aid

to its evaluation is a network. Practically, such a network can be considered as a

(weighted) graph. Here, we introduce a new method for extracting graph struc-

ture from a gene expression dataset. We explore the organisational properties of

graphs obtained, such as node degree distributions, edge distributions, clustering

co-efficient information and amongst others and compare these for empirical data

to those generated by a random graph model. We also describe, in detail, the moti-

vation and implementation of a new edge-weighting scheme for the graph extracted

from the data. Finally, we present results of an analysis of this weighting scheme

and compare its performance with the well-known Tanay scheme, (Tanay et al.,

2002, 2005).
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5.1 Introduction

Traditionally, graph theory has been used to study complex networks1 and is prov-

ing a useful tool in the analysis of large complex biological datasets. For instance,

protein-protein interactions can be modelled as an undirected graph (Pereira-Leal

et al., 2004), where nodes represent proteins and an edge connects two nodes if the

proteins physically combine. Transcription factor binding sites can also be identi-

fied through the use of undirected weighted graphs, where the weights of edges cap-

ture the similarity between aligned nucleotides in an input set of promoters, (Reddy

et al., 2007). Additionally, metabolic networks can be represented as bi-partite

graphs: In this case, an edge connects a reaction to a compound node, representing

either substrate or product relationships, (Bourqui et al., 2007). As noted (Section

3.3), gene expression can also be modelled as a weighted bi-partite graph, where

the two node types represent genes and samples. An edge is taken to exiss between

a gene and a sample node, with the weight of the edge representing the effect of

the experimental condition on the expression of the gene, (Tanay et al., 2002). Bi-

partite graph structures have also been been studied in a wide variety of contexts:

for instance, in reference to company boards, (Robins and Alexander, 2004), to

film actor social contacts, (Newman et al., 2002), to financial networks, (Caldarelli

et al., 2004), in investigating word occurrences (i Cancho and Sole, 2001), in peer-

to-peer networks, (Blond et al., 2005) and with respect to scientific co-authoring,

(Newman, 2001b,a), amongst others.

The analysis of the gene expression graphs of interest to us is carried out on

three levels, Fig. 5.1. Our analysis begins by extracting bi-partite graphs to in-

vestigate reactivity of genes at various response levels. Genes may be coherently

1A system composed of interconnecting parts that as a whole exhibit complex properties not
evident from the properties of the individual parts.
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expressed at these different levels across samples: the next step is thus to investi-

gate the bi-partite graph properties for combined levels of response. In Chapter 6,

(mentioned here to give the complete roadmap), we also investigate the properties

of, and extract coherent gene modules from, one-mode2 gene expression graphs.

Strong 
Induced

Moderate
Induced

Weak 
Induced

Strong 
Repressed

Moderate 
Repressed

Weak 
Repressed

Union of all
response categories 

Projected 
one-mode graph

Level 1

Level 2

Level 3

Figure 5.1: Three level analysis of gene expression graphs on three levels.

5.2 Extracting a Graph from a Gene Expression Dataset

A gene expression graph can be organised as a bi-partite model, G = (>,⊥, E)

or a one-mode model, G = (V,E), (Section 3.3.4). A large, and powerful, set of

tools and ideas exist for one-mode graphs. A one-mode gene expression graph can

be extracted from a dataset by e.g. applying a threshold to the distance matrix, and

creating an edge between genes whose similarity exceeds this threshold, Section

2Defined in Section 3.3.4 to be a graph where an edge can exist between any two nodes
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3.3.4 and Zhang and Horvath (2005); Carlson et al. (2006), illustrated in Fig. 5.2a.

However, this technique extracts a graph which encodes global structures from the

dataset, so that it inherits drawbacks of the associated distance/similarity measure.

Alternatively, two gene nodes can be linked in a one-mode projection of the bi-

partite graph, if they have a sample neighbour in common, Fig. 5.2a. However,

some information encoded in the bi-partite graph may be lost by this projection,

such as details on which or for how many samples gene expression is similar. In

illustration, three gene nodes e.g. can form a clique even though not expressed

under the same samples, (nodes 2, 3 and 4 in Fig. 5.2a). This means that a number

of bi-partite gene-sample graphs can give rise to the same one-mode projection,

(e.g. Fig. 5.2b). Additionally, each sample node of degree d, (the number of edges

incident to a node), can inflate to d(d−1)
2

edges in a one-mode projection, which can

limit the number and type of the computations that are feasible. Bi-partite graphs

capture local structures in the dataset, enabling identification and examination of

meaningful local groups of gene-interactivity.

5.2.1 Node and Edge Definition

Critical to this analysis is the definition of a node and, in particular, the relationship

between nodes defined through an edge. The edge definition and derivation will

influence the final graph generated and hence the information retrieved. Both hard

and soft threshold strategies can be used for definition of an edge in the network.

A hard threshold is an all-or-nothing approach, where an edge is said to exist if

the score of the gene in a particular sample exceeds a certain threshold. A soft

threshold approach assigns an edge between each gene and sample node according

to a function, f(x) → [0, 1]. This effectively ranks all nodes in a network. If a list
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(a) Two methods of extracting a one-mode graph for gene expression. Top: extracting
a graph from direct threshold analysis of the distance matrix, (dis = distance determined
by some distance function, thres = threshold, T = TRUE). Bottom: Projecting bi-partite
graph into one-mode by retaining links through second degree neighbours, e.g 2-D-4
produces link 2 – 4 in one-mode projection.
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(b) Multiple bi-partite graphs can give result in the same one-mode graph in a projection.

Figure 5.2: One-Mode Gene Expression Graphs
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of neighbours of a particular node is required, a threshold must be determined for

all edges so that these become the investigation focus.

There are two sets of nodes in our representation of a gene expression graph,

> = the set of all genes and ⊥ = the set of all samples. Fundamental to the

method proposed here is that, for a given sample, genes having either high or low

expression, (equivalent to induction or repression), are more likely to contribute

to a function, or have a functional response, than for those for which expression

values remain unaffected. Affected expression values can thus be extracted for

further analysis. An edge (i, j) is thus defined for the bi-partite graph, if gene

i ∈ > is deemed to show significant change in expression relative to its normal

level under sample j ∈ ⊥. The edge set here is created using an empirical-based

scheme. (The weight of the edge should then reflect how ‘interesting’ this change

in expression is relative to other gene expression changes in that particular sample.

Implementation of such a scheme is described, Section 5.3.) This approach differs

from previous work, (Zhang and Horvath, 2005; Tanay et al., 2002, 2005), based,

respectively, on (i) a soft thresholding approach applied to a distance matrix, based

on an assumed power-law distribution, and (ii) defined nodes in a graph based on

“properties” rather than samples.

In our method, a high/low expression value for gene i, under sample j, is de-

termined relative to other expression values in gene vector i, (i.e. across rather

than within samples). The motivation for this, (Chapter 2.5), is that, for microarray

technology, direct comparison of expression measures within arrays is problematic,

because fluorescent intensities are not the same across genes. While measured in-

tensities are roughly proportional to mRNA abundance, the proportionality factor is

different for each gene. Specifically, this means that between-sample, within-gene

comparisons are appropriate, but within-sample, between-gene comparisons are
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not straightforward, (Gentleman et al., 2005b).

expression level gene vector i

Prob.
Expression
Value

very 
interesting

quite 
interesting

 
interesting

 
interesting

quite 
interesting

very 
interesting

InductionRepression

Figure 5.3: Extracting expression values from a gene vector for further analysis

Hence, an edge (i, j) exists when the ith gene shows “significant” induction or

repression, relative to its mean level of expression, for sample j, Fig. 5.3. To esti-

mate this significance, we make use of Chebyshev’s inequality (Chebyshev, 1867),

as no distributional form of expression values for each gene is assumed. Cheby-

shev’s inequality, for any real number κ > 0, can be written:

Pr(|X − µ| ≥ κσ) ≤ 1

κ2
(5.1)

with random variable X , µ the expected value of X and σ2 the variance.

Those expression values X = xij , (i = 1 . . . n, j = 1 . . . p), of interest, for

a given sample j, are taken to be ≥ κσ from the mean expression of gene vector

i. From Eq. 5.1, for example, the associated probability of an expression value

≥ 4.47σ from the mean of gene i is less than 0.05. Expression values≥ 4.47σ from

the mean would indicate a strong response of gene i to sample j.

Clearly, categories can be established to highlight those expression values which

127



Step 1

Step 2

SSMWk Wk- -

Wk

S

M

-

-

-

<0

<0

<0

>0

Figure 5.4: Two-step process of empirical scheme. Step 1: A univariate analysis
of each gene vector is carried out to determine strength of response. Step 2: A
univariate analysis of each sample vector is performed, used to order gene response
and assign weights (Section 5.3).

indicate a weak response, moderate response and strong response, where κ indicates

the threshold between categories, Fig. 5.4. For example, these categories could be

defined by grouping expression values which are ≥ 2.58σ, ≥ 3.16σ and ≥ 4.47σ

from µ, into non-overlapping (mutually exclusive) categories of weak, moderate

and strong respectively, corresponding to probabilities = 0.15, 0.10 and 0.05, Eq.

5.1. (The number of categories can clearly be extended for fine-grained response.)

For the analysis described, the three categories weak, moderate and strong, as de-

fined here were used as also in Tanay et al. (2002), to facilitate comparison. Thresh-

old determination between categories is discussed further in the next subsection.

5.2.2 Threshold Estimation

To decide on thresholds between categories, i.e. the value of κ, graphs from real

datasets, G = (>,⊥, E) are compared to graphs from random datasets3, GRand =

3Random datasets of the same dimension as the input dataset were created, where for each row
(gene) i, random numbers were selected from a Normal distribution of mean, µi Rand = µi Real, and
standard deviation, σi Rand = σi Real (Note: for a gene which does not respond to any sample, gene
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(>Rand,⊥Rand, ERand), for a range of possible thresholds, (Fig. 5.5). The null

model assumes each edge in the graph was created with

probability = (|ERand|/Number of possible edges)

while the alternative model assumes an edge to be created with

probability = (|E|/Number of possible edges)

The level at which the logarithm ratio of these two probabilities is maximised is

taken to be ‘optimal’ in terms of any real effect observed.

Thresholds between categories are identified sequentially. Firstly, the strong

response threshold, κstr, is investigated and identified. One test criterion for maxi-

mum κstr for is that at least one edge must be identified in the real graph. Possible

thresholds values are then tested in probability increments of 0.02 to determine per-

centage inclusion of expression values4. The threshold is then set at the level at

which the log ratio is maximised. Once κstr is found, moderate and weak response

thresholds (κmod and κwk, respectively) are established, (in that order). The maxi-

mum value to test for κmod is set to κstr and the maximum value to test for κwk is

set to κmod. In summary, the technique for identifying thresholds is:

for Induced and repressed categories do

- Identify threshold, κ, where at least one gene-sample couple identified.

Begin testing from this value.

- Test range of possible thresholds for κstr, which correspond to probability

expression is relatively constant.). For each threshold choice in this analysis, 100 random datasets
were created to estimate cut-offs, with comparisons based on averaging over these.

4subjectively chosen from analysis of datasets
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(b) Threshold Analysis of Alon Data
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(c) Threshold Analysis of Hsiao Data
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(d) Threshold Analysis of West Data

Figure 5.5: Threshold analysis of selected input datasets Alizadeth, Alon, Hsiao
and West. The x-axis is the probability threshold i.e. 1

κ2
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increments of 0.02, Eq. 5.1

- Set κstr at the level which maximises the log ratio of probability of edge in

real graph to random graph.

(Gene-sample couples corresponding to strong response have been identified

and hence the strong response graph can be created. Remove those gene-

sample couples from the dataset.)

- Starting from κstr, test range of possible thresholds for κmod, which corre-

spond to probability increments of 0.02, Eq. 5.1.

- Set κmod at the level which maximises the log ratio of probability of edge

in real graph to random graph.

(The moderate response gene-sample couples have been identified and hence

the moderate response graph can be created. Remove those edges, i.e. gene-

sample couples, from the dataset).

- Starting from κmod, test thresholds for κwk, which correspond to probability

increments of 0.02, Eq. 5.1.

- Set threshold for weak response at level where log ratio is maximised, κwk.

(The weak response gene-sample couples have been identified and hence the

weak response graph can be created. Remove those edges from the dataset).

end for

Fig. 5.5 illustrates the results of a threshold analysis of four test datasets, where

the probability of an edge for a range of values of κ is plotted for each of the cat-

egories of response. Note that for each dataset, thresholds were identified sequen-

tially, therefore the strong response threshold was identified and set before carrying

out analysis for the moderate threshold, likewise for weak response. The x-axis in

each of the plots indicats the corresponding probabilities for the κ tested. Induced,

repressed and random cases are shown in each plot. For the random case, there is
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an expected gradual increase in the number of edges identified as κ approaches 0,

mimicking the underlying normal distribution. The Alizadeth, West and, to some

extent, Hsiao, are somewhat similar to the random profile, however differences ex-

ist on the vertical scale, indicating that there are more genes identified as repressed

or induced across samples in the real datasets, compared to the random. In terms of

comparative performance of real data versus random in the weak response category,

the former, in general, led to identification of relatively more co-expressed genes,

although the difference is less distinct: in some cases more edge were picked out

by random selection.

The point at which the difference in the vertical scale is maximised is taken

as the optimal threshold. In, for example, the Alizadeth dataset, Fig. 5.5a, this

point occurs in the strong response category at probability = 0.06 (for induced and

repressed), corresponding to κstr = 4.08, Eq. 5.1. All gene expression values

which are ≥ 4.08σ from the mean are taken to be evidence of strong response and

are then extracted as strong response from the dataset. All gene expression values

which are < 4.08σ from the mean are considered for inclusion in the moderate

response category. Beginning at κ = 4.08, possible values for κmod are tested

and theκmod value at which the log ratio is maximised is identified - this occurs

at probability = 0.10 (for induced and repressed), corresponding to κmod = 3.162.

All gene expression values which, fall in the moderate category, i.e. are ≥ 3.162σ

(and < 4.08σ) from the mean are then extracted from the dataset. Beginning at

κ = 3.162 possible thresholds for weak response are tested, the threshold for the

maximal log ratio is identified, and occurs at probability = 0.20 (for induced and

repressed), corresponding to κwk = 2.23. All gene expression values in the weak

response category: ≥ 2.23σ (and < 3.162σ) s.d. from the mean are then extracted

from the dataset.
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For a number of datasets the thresholds are clear (e.g. Alizadeth and West

datasets), however for others it is not so evident. For instance, the Alon dataset,

(which represents data from a colon cancer study, see Appendix B), has anomalous

behaviour, in that repressed genes are more evident, generating a large number of

edges, while the induced genes closely follow random behaviour. Conversely, the

Hsiao dataset, (which represents data from a compendium of normal tissue sam-

ples), evidently has more genes induced than expected while repressed genes are

again close to random.

Table 5.1 shows κstr, κmod and κwk representing the thresholds identified for

each of the test datasets, i.e. for which the ratio of edges in real vs. random graphs

is a maximum. For the majority of datasets thresholds are common, with µ± 3(4)σ

a significant deviation the gene vector mean. The Cho and Stegmaier datasets are

the smallest in terms of number of samples, (17 and 22 respectively, Appendix B),

hence thresholds are less markedly difference from 0. The anomalies of the Alon

dataset are again reflected here in the lower threshold for the weak induced category,

and, similarly, Hsiao dataset, with lower thresholds for strong response. These

thresholds were applied for the respective datasets and six subgraphs were extracted

for each test case, where an edge indicates a significant change in expression in that

category.

5.2.3 Properties Of Gene Expression Graphs

Complex networks are usually analysed for a specific list of properties, whether

bi-partite or one-mode, although basic analysis tools for bi-partite graphs have not

previously been applied to bi-partite gene expression graphs.

In the following discussion, weak repressed, moderate repressed, strong re-
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Repressed Induced
Strong Moderate Weak Strong Moderate Weak

Aliz 4.08 3.16 2.23 4.08 3.16 2.23
Alon 4.08 3.16 2.23 4.08 3.16 1.82
Cho 3.16 2.88 2.23 3.16 2.88 2.23
Gasch 4.08 3.16 2.23 4.08 3.16 2.23
Golub 4.08 3.16 2.23 4.08 3.16 2.23
Hsiao 3.58 3.16 2.23 3.58 3.16 2.23
Spell. 4.08 3.16 2.23 4.08 3.16 2.23
Steg. 3.16 2.50 1.82 3.16 2.50 2.04
West 3.58 3.16 2.23 3.58 3.16 2.23

Table 5.1: κ, the number of s.d. units from the mean, that represent thresholds
identified for each of the tested datasets.

pressed, weak induced, moderate induced and strong induced subgraphs, are the

categorised subgraphs. A one-mode graph refers to the graph obtained by projec-

tion of the bi-partite graph. The term ‘all-in-one’ refers to a graph which is not split

into categories, i.e. contains all nodes and edges from all subgraphsG ∈ (>,⊥, E).

The main properties of the bi-partite gene expression graphs extracted from the

test datasets are outlined in Table 5.2. Despite the size of the table, it is worthwhile

considering it as a whole in order to identify common features across a wide range

of data, as well as highlighting distinction.

Table 5.2: n> = the active set of genes, n⊥ = active set of samples, m = number of
edges, d⊥ = average degree of sample nodes, d> = average degree of gene nodes, δ
= bi-partite density i.e the fraction of existing links with respect to possible ones, cc
= clustering coefficient (Eq. 5.3), ccmin = minimum clustering coefficient (Eq. 5.5)

Graph Cat. n> n⊥ m d> d⊥ δ cc> ccmin> cc⊥ ccmin⊥

Alizadeth

Str. Induced 209 46 219 1.04 4.70 0.02 0.95 0.99 0.35 0.71

Mod. Induced 476 43 550 1.15 12.79 0.03 0.81 0.98 0.05 0.20

Continued on Next Page. . .
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Graph Cat. n> n⊥ m d> d⊥ δ cc> ccmin> cc⊥ ccmin⊥

Wk. Induced 2088 79 3713 1.77 47.00 0.02 0.44 0.81 0.02 0.09

Str. Repressed 63 16 64 1.01 4.00 0.06 0.97 1.00 0.06 0.33

Mod. Repressed 296 13 327 1.10 25.15 0.08 0.88 0.99 0.06 0.15

Wk. Repressed 1889 53 3227 1.70 60.89 0.03 0.48 0.85 0.02 0.12

Alon

Str. Induced 27 14 27 1 1.92 0.071 1 1 0 0

Mod. Induced 25 10 26 1.04 2.6 0.104 0.92 1 0.11 0.25

Wk. Induced 1167 28 1813 1.55 64.75 0.055 0.54 0.88 0.03 0.09

Str. Repressed 73 31 73 1 2.35 0.032 1 1 0 0

Mod. Repressed 221 29 226 1.02 7.79 0.035 0.96 0.99 0.04 0.11

Wk. Repressed 1338 56 2028 1.51 36.21 0.026 0.55 0.88 0.03 0.09

Cho

Str. Induced 351 9 351 1 39 0.111 1 1 0 0

Mod. Induced 227 9 227 1 25.22 0.111 1 1 0 0

Wk. Induced 805 12 2051 1.02 68.83 0.212 0.96 0.99 0.02 0.074

Str. Repressed 19 5 19 1 3.8 0.2 1 1 0 0

Mod. Repressed 21 2 21 1 10.5 0.5 1 1 0 0

Wk. Repressed 122 8 826 1.06 16.25 0.84 0.91 1 0.11 0.25

Gasch

Str. Induced 434 96 564 1.3 5.87 0.014 0.73 0.97 0.18 0.51

Mod. Induced 970 89 1644 1.69 18.47 0.019 0.55 0.89 0.08 0.30

Wk. Induced 2031 138 7017 3.45 50.84 0.025 0.25 0.59 0.04 0.19

Str. Repressed 645 93 848 1.31 9.12 0.014 0.74 0.97 0.22 0.51

Mod. Repressed 1258 85 2217 1.76 26.08 0.013 0.52 0.87 0.10 0.36

Wk. Repressed 2552 136 8448 3.31 62.11 0.024 0.27 0.61 0.03 0.16

Golub

Str. Induced 279 60 315 1.13 5.25 0.019 0.82 0.98 0.12 0.42

Mod. Induced 408 60 528 1.29 8.8 0.021 0.69 0.95 0.09 0.25

Wk. Induced 1641 70 2898 1.73 41.4 0.025 0.47 0.85 0.03 0.07

Continued on Next Page. . .
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Graph Cat. n> n⊥ m d> d⊥ δ cc> ccmin> cc⊥ ccmin⊥

Str. Repressed 118 46 122 1.03 2.65 0.022 0.95 1 0.42 0.65

Mod. Repressed 312 45 348 1.12 7.73 0.025 0.84 0.99 0.09 0.30

Wk. Repressed 1411 68 2509 1.77 36.89 0.026 0.43 0.81 0.02 0.07

Hsiao

Str. Induced 576 57 758 1.32 13.3 0.023 0.72 0.96 0.13 0.35

Mod. Induced 399 57 555 1.39 9.7 0.024 0.68 0.95 0.15 0.36

Wk. Induced 1308 59 2826 2.16 47.89 0.036 0.41 0.81 0.06 0.13

Str. Repressed 13 9 13 1 1.44 0.111 1 1 0 0

Mod. Repressed 17 7 17 1 2.4 0.142 1 1 0 0

Wk. Repressed 22 17 296 1.34 17.41 0.079 0.65 0.94 0.05 0.16

Spellman

Str. Induced 207 36 218 1.05 6.05 0.029 0.93 0.99 0.07 0.45

Mod. Induced 597 35 657 1.1 18.77 0.031 0.86 0.99 0.03 0.19

Wk. Induced 2193 59 3661 1.67 62 .05 0.028 0.49 0.84 0.02 0.11

Str. Repressed 316 49 323 1.02 6.59 0.02 0.96 0.99 0.06 0.17

Mod. Repressed 731 47 814 1.11 17.31 0.024 0.85 0.99 0.04 0.16

Wk. Repressed 2283 62 3934 1.72 63.45 0.028 0.45 0.82 0.02 0.09

Stegmaier

Str. Induced 9 4 9 1 2.25 0.25 1 1 0 0

Mod. Induced 60 4 60 1 15 0.25 1 1 0 0

Wk. Induced 1037 20 1249 1.2 62.45 0.06 0.88 0.99 0.04 0.12

Str. Repressed 19 9 19 1 2.21 0.111 1 1 0 0

Mod. Repressed 179 8 180 1 22.5 0.126 0.99 1 0.03 0.08

Wk. Repressed 705 19 832 1.18 43.79 0.062 0.69 0.96 0.03 0.08

West

Str. Induced 583 47 674 1.16 14.34 0.025 0.81 0.98 0.09 0.28

Mod. Induced 350 44 367 1.04 8.34 0.024 0.93 0.99 0.10 0.38

Wk. Induced 1489 48 2051 1.38 42.72 0.029 0.63 0.93 0.02 0.08

Str. Repressed 266 29 290 1.09 10 0.038 0.88 0.99 0.24 0.50

Continued on Next Page. . .
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Graph Cat. n> n⊥ m d> d⊥ δ cc> ccmin> cc⊥ ccmin⊥

Mod. Repressed 195 24 239 1.22 9.95 0.051 0.74 0.97 0.09 0.28

Wk. Repressed 866 37 1426 1.64 38.54 0.045 0.49 0.85 0.03 0.12

Descriptive Statistics:

Unsurprisingly, in all cases, the weak response categories have larger gene, (n>),

sample, (n⊥) and edge, m sets, as thresholds are lower. Those datasets with a

small number of samples tend to have a small n> in the resulting graphs, e.g. Cho

and Stegmaier datasets, which limits the type and amount of information that can

be inferred from it. For a number of datasets there is a preference towards either

induced or repressed categories, in terms of the number of edges identified, e.g.

Alizadeth, Alon and Hsiao sub-graphs.

The average degree, d>, of the gene node set in the majority of datasets is ∼ 2,

increasing slightly for the weak response categories. This indicates that the majority

of genes do not participate in more than two samples in each category (the Gasch

dataset has the highest number of samples, with dtop > 2). However, this still

exceeds the expected degree (i.e. ntop/m). Again, for datasets with small number

of samples, d> ∼ 1. Unsurprisingly, the average degree of the sample node set, d⊥

increases from Strong - Weak categories, meaning that there are more genes in a

given sample responding in the weak category compared to the strong categories.

The density measure, δ evaluates overall how sparse the graph is, i.e. the number

of edges compared to the number of possible edges, m/n>n⊥. In most cases the

gene expression graphs with δ < 0.06. This value increases in certain cases for n>

and n⊥ small, indicating that most of the sample and gene nodes in the graph are

connected, (e.g. Cho, Stegmaier and Alon repressed sub-categories). This measure
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is more reflective of the number of gene and sample nodes in the graph and doesn’t

reveal much organisational information.

Clustering:

The inherent tendency of real networks to form cliques (or clusters) is quantified

by the clustering coefficient, cc. Traditionally, this is defined, for each node in a

one-mode graph, u ∈ N , with at least two neighbours (i.e. degree, d(u) ≥ 2), as

the proportion of edges between its neighbours, (Guillaume and Latapy, 2004):

c(u) =
|{x, y}, x, y ∈ N(u)|(

d(u)
2

) (5.2)

where N(u) is the set of neighbours of u. The clustering coefficient of a graph is

the average over all nodes u ∈ N . Equivalently, in the case of a bi-partite graph, the

clustering co-efficient, for two nodes u and v, for either the gene or sample node set

is:

c(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| (5.3)

This captures the probability that two nodes in the same node set (i.e. gene or

sample) have a neighbour in common. The clustering for one node between all its

neighbours is then:

c(u) =

∑
v∪N(N(u)) c(u, v)

|N(N(u))| (5.4)

where |N(N(u))| is the number of second degree neighbours (i.e. neighbour-

hood of neighbour nodes). For the bi-partite case, a clustering coefficient can be

obtained for the two sets of nodes separately, (>,⊥), by taking the average of

Eq. 5.4 over all nodes in each set, resulting in cc> and cc⊥. The definition pre-
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sented in Eq. 5.3 for two nodes, has the disadvantage that the node with the largest

neighbourhood will dominate the results, even if the smaller neighbourhood node is

completely encapsulated in the larger. An alternative, introduced by (Latapy et al.,

2006), is to scale by the minimum neighbourhood:

c(u, v)min =
|N(u) ∩N(v)|

min(|N(u)|, |N(v)|) (5.5)

This defines a more precise relationship between two nodes, and is more appro-

priate for gene expression data, given the fact that genes may participate in multiple

samples and need not be co-active under all samples, with some samples having

participation from more genes than others. Again, a summary value can be calcu-

lated for each node set separately by taking the average of Eq. 5.5 for each node,

cc>min and cc⊥min.

In each of the subgraphs, Table 5.2, the clustering coefficient for gene nodes,

cc>, is quite large, indicating that if two gene nodes participate in the same sample

node, then a large proportion of their neighbourhood will be similar. The clustering

coefficient for the sample nodes, cc⊥, captures the overlap between gene subsets

participating in the samples and is, unsurprisingly, smaller. Each node in this set

has a much higher average degree (i.e. each sample node is typically connected

to a large number of genes), whereas the average degree for gene nodes is ∼ 2.

Thus if two genes show similar expression in two or more samples, this reflects the

‘entire neighbourhood’ of each gene node. In a random Erdös-Rényi Model graph,

(Section 3.3.4), edges are distributed randomly between nodes with a probability p,

so the clustering coefficient is cc = p, (probability that two nodes are connected).

In real networks the clustering coefficient is typically much larger than it is for a

corresponding random network, (i.e. one having the same number of nodes and
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edges as the real network). Although the subgraphs are individually quite sparse

(bi-partite density δ < 0.1), the relatively high cc> and cc⊥ indicate that there are

denser local structures (more evident, as noted, for the gene node set), i.e. cc > p.

The exceptions are the Cho and Stegmaier subgraphs and strong/moderate repres-

sion Hsiao subgraphs. These subgraphs also have the smallest n>, n⊥ and m, and

are quite dense, and cc⊥ indicates that there is no overlap between gene subsets

participating in the samples.

The minimum clustering coefficients, cc>min and cc⊥min, capture the local inter-

actions of two genes or two samples. This measure, for the sample nodes, cc⊥min,

is significantly larger than for cc⊥ (at least double in most cases). This captures the

fact that the cc⊥ measure is dominated by sample nodes of high degree, while neigh-

bourhoods of lower nodes of smaller degree do in fact overlap with other sample

nodes.

Degree Distribution:

To further understand the basis for gene expression networks, we examine the dis-

tribution of the node degrees. The spread in the node degrees is characterized by a

probability distribution function, P (d), which gives the probability that a randomly

selected node, u, has a degree of exactly d(u). For bi-partite graphs, there are two

degree distributions, one for each node set, {>}, {⊥}. Given there are substantially

fewer samples than genes in the datasets, tail distribution statistics are unlikely

for this case. For a large number of examples of real networks, the node degree

distribution follows a power-law P (d) ∼ d−γ and these networks are said to be

scale-free. In an Erdös-Rényi model and Watts-Strogatz graph the edges are placed

randomly, and degree distribution of the nodes is close to a Poisson distribution

p(d) = λde−λ/d! (special case of Watts-Strogatz model), (Section 3.3.4)

Each subgraph may of course have alternative forms. Figures C.18 - C.21 (Ap-
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pendix C) are the distribution plots found when the sub-graphs of strong - weak

induction and strong - weak repression are extracted, for both sample and gene

sets. It must be noted that clear identification of node degree distribution is difficult

when the node set size in the graph is small. For subgraphs with larger node sets,

(Aliz, Alon, Gasch, Golub, Hsiao, West), the node degrees are skewed to the right

and are more accurately modelled by a Poisson distribution, most evidently in weak

response categories, where n> is largest. Overall, n⊥ is small for a large number

of the subgraphs: however, where large, (e.g. Figures C.20a, C.20b, C.21a,C.21c

weak response categories) it again follows a Poisson distribution.

All In One Graph

To examine whether there is a coherent response of genes across all categories, an

all-in-one graph can be constructed for each dataset. For example, a gene with

expression across samples in the moderate induced sub-graph, may be coherent

with one expressed in the moderate repressed graph. This is captured in the all-in-

one graph which is constructed from the union of all sub-graphs, Table 5.3. The

average degree of the gene nodes increases in the all-in-one graph indicating that

genes identified are participating across categories. Likewise the average degree

of the sample nodes increases, indicating that samples have overlapping gene sets

across categories. The size of the edge set is simply the sum of the cardinality of

each edge set from each sub-category.

Clustering Coefficient:

Once again, we use the clustering coefficient information to examine the degree of

sharing among node neighbourhoods. In the all-in-one graph the clustering coeffi-

cient of the sample nodes, cc⊥, is ∼ 0.02 for all dataset graphs (with the exception
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Dataset n> n⊥ m d> d⊥ δ cc> ccmin> cc⊥ ccmin⊥
Aliz. 2870 84 8100 2.82 96.42 0.03 0.25 0.56 0.02 0.09
Alon 1857 57 4193 2.25 73.56 0.04 0.32 0.68 0.02 0.09
Cho 1537 12 3495 1.02 131.17 0.19 0.96 0.99 0.01 0.05
Gasch 3114 151 20738 6.66 137.33 0.05 0.18 0.35 0.02 0.13
Golub 2933 71 6720 2.29 94.65 0.03 0.31 0.67 0.02 0.05
Hsiao 1749 59 4465 2.55 75.68 0.04 0.39 0.78 0.06 0.13
Spell. 3024 71 9607 3.18 135.31 0.04 0.22 0.48 0.02 0.12
Steg. 1776 22 2349 1.32 106.77 0.06 0.67 0.94 0.02 0.07
West 2748 48 5047 1.84 105.15 0.03 0.43 0.79 0.02 0.07

Table 5.3: Statistics of All in One Graph. n> = the active set of genes i.e. d > 0,
n⊥ = active set of samples, m = number of edges, d⊥ = average degree of sample
nodes, d> = average degree of gene nodes, δ = bi-partite density i.e the fraction of
existing links with respect to possible ones, cc = clustering coefficient (Eq. 5.3),
ccmin = minimum clustering coefficient (Eq. 5.5)

of the Hsiao graph), regardless of sample size - lower than the overall graph densi-

ties. This supports the idea that the clustering coefficient is independent of the size

of the graph for most real world networks, (Guillaume and Latapy, 2004). However,

the minimum clustering coefficients, cc>min and cc⊥min, are relatively high. cc⊥min

trebles in most cases and is higher than the overall graph densities. This indicates

again that the sample nodes of high degree are dominating the cc⊥ measure, sug-

gesting that there is a level of organization in the graph, such that if two nodes are

linked, the neighbourhood of the smaller node will intersect the neighbourhood of

the larger.

Intersection Ratios:

Although the clustering coefficient information reveals the degree of sharing among

node sets, information on the exact size of the intersection is lost. This level of

organisation can be assessed through an examination of the size of the intersection

neighbourhoods of the datasets. If two gene nodes have a sample neighbour in

common, the size of this intersection neighbourhood will be significantly greater
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than for a random graph5 of the same size and degree distribution, see Fig. 5.6.
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Figure 5.6: Red = random, Black = real. Cumulative distribution of degree of in-
tersection of neighbourhoods of gene nodes, i.e. if two gene nodes have a sample
neighbourhood in common, there is a significantly greater chance that this neigh-
bourhood will be larger than expected by chance. The plot shows, for each value i
on the x axis, the ratio of all intersections greater or equal to i.

Degree Distribution:

In terms of gene node degree distribution of the all-in-one gene expression graphs,

(Fig.C.22 - C.23, Appendix C), these are in general right skewed: this is less evident

in the Cho and Iressa datasets, which have the smallest number of sample nodes.

Right-skewness is largely due to the higher cardinality of the gene sets in each

dataset. For the gene node sets, the distributions approach the Normal - in those

graphs where the average degree is high - and hence not particularly heterogeneous.

The sample node distributions, in most cases, follow the Poisson. In Fig. 5.7 a plot

of gene node degree distribution for four test datasets is given. In most cases the

5The random graphs were Monte Carlo switching process (Maslov et al., 2004), to create random
graphs with the same degree distributions. This proceeds by picking two random edges (x,y) and (u,
v) uniformly with x, y, u, v distinct nodes. If (x, u) and (y, v) are not edges, then adding the edges
(x, u), (y, v) and delete edges (x, y), (u, v). This process is repeated m× 100 times
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gene node distribution is close to the Poisson in shape (solid line in plots), although

tail effects are less extreme, indicating that approximation by the Normal is likely to

be reasonable. The Gasch dataset, for example, is approximated well by a Normal,

Table 5.3, and has the largest set of sample nodes: Note, Alizadeth n⊥ = 84,

Gasch n⊥ = 151, Hsiao n⊥=59, Spellman n⊥ = 71. While this suggests that as the

cardinality of the sample node set increases, the gene node degree distribution tends

to Normal, the limited sample and gene set for most datasets means that we cannot

conclude this is the case in general. Many other examples of real world one-mode

networks approximate a power law. However, in support of our findings here it

should be noted that a poor fit to a power-law distribution was also observed in other

bi-partite models of real world complex networks, (Latapy et al., 2006; Guillaume

and Latapy, 2004). Although, projection of the gene nodes into a one-mode graph

is shown to follow a power-law in general (see Chapter 6), this conclusion cannot

be drawn for the bi-partite case. However, we can conclude that the node degrees

in a single graph can have alternative distributions.

Correlations between the bi-partite gene node degree and the degree in a one-

mode projection of the gene nodes, (Chapter 6), captures the notion of overlap, Fig.

5.8. The degree of a node in the one-mode projection is the sum of the degrees

of the sample nodes to which it is connected in the bi-partite graph, minus the

number of nodes in common in the neighbourhood of these nodes. That is to say,

if a node, u has a high degree in the bi-partite graph and a lower degree in the

one-mode projection, there is an overlap between u and its neighbour nodes, i.e.

they are over/under expressed in the same samples, Fig. 5.8. Correlations between

node degree in the bi-partite and one-mode graphs suggest that while some genes

show little or no common sample activity, others are co-expressed across their entire

sample neighbourhoods.
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Figure 5.7: Distribution of gene node degrees for four test datasets. The solid line
indicates a Poisson distribution. The distributions depart from the Poisson, despite
shape similarity in part, with a higher % distribution in the bulk and less extreme
tail effect.

5.3 Edge Weights

The weighting scheme for a gene expression graph plays an important role in cluster

determination, and thus merits independent investigation. To this end, we introduce

the second step of our graph theoretic approach - a univariate analysis of expression

values, within each sample vector, used to empirically weight the edges. We also

discuss performance measures for edge-weighting schemes, and present a compar-

ative evaluation based on application to several real datasets.
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Figure 5.8: Correlation between node degrees in the bi-partite and one-mode pro-
jection for three test datasets. There is a large spread in the data indicating that
although for some gene nodes there is overlap, for others there is none.

5.3.1 Definition of Assessment Properties

For evaluation of any clustering technique and for its reusability, it is important that

weighting schemes are validated independently of the subsequent network analysis

and good quality results reflect a well-designed weighting scheme, together with

a reasonably robust and efficient search algorithm. Both aspects are usually sus-

ceptible to considerable refinement. Consequently, we propose an edge weighting

assessment procedure, based upon four properties, as detailed below.

Discrimination:

Ability of the method to “rate” highly those gene-sample couples which contribute

to a cluster. The range and distribution of edge weights establish how well a given

scheme distinguishes between relevant and irrelevant gene-sample couples.
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Reusability:

Independence of the proposed scheme and the subsequent clustering technique.

This deals with how/if the weighting scheme must change to reflect additional lay-

ers of analysis.

Robustness:

Ability of a given weighting scheme to deal with noise and missing values. This

involves investigating the distortion of edge weights caused by different levels of

noise and missing values.

Noise and missing values were added to the dataset to replicate measurement

error of differing amounts. Noise was randomly “added/subtracted” to each value

in the dataset as a percentage (up to 10%) of the original value. To replace data

with missing values, up to 10% of expression values from the original dataset were

randomly selected and removed. Commonly, in cluster analysis, missing values in

the gene expression matrix are replaced by zeroes or by an average expression level

of the gene, (“row average”). More sophisticated options include methods of K-

Nearest Neighbour (KNN) and Support Vector Decomposition type, (Troyanskaya

et al., 2001). To test our weighting schemes the common practice of replacing

missing values by the row mean was adopted. Replacing missing values with the

gene vector mean, in this scheme, equate the expression as unresponsive.

For this analysis we define “Average Absolute Variation” as the average differ-

ence in edge weights compared to 0% noise/missing values, while “Stable weights”

are defined to be those weights for which the variation is less than the % level of

noise/missing values added.

147



Parameter Influence:

The weighting scheme ideally should require minimal specification of input param-

eters. This includes consideration of input parameter influence on discrimination

and robustness, as well as on the distribution of weights themselves.

5.3.2 Edge Weights in Bipartite Subgraphs

For each sample vector, j, expression values xij which indicate strong response

of the ith gene under j, (as determined in step one, Section 5.2.1) are selected.

Similarly, genes which show moderate and weak response under j can be identified.

For each of the three “strength of response” categories, a gene may be repressed

or induced relative to the mean expression value; (X − µ < 0, or X − µ > 0

respectively), giving six sub-categories in total. For each sub-category, Cats, s =

1 . . . 6 and for each sample variable, j = 1 . . . p, the empirical probability of xij ∈

Cats is calculated as:

|xij ≥ xvj|/|Cats|, xvj ∈ Cats, i 6= v (5.6)

(probability = 1 if |Cats| = 1) and hence the edge weight in the bi-partite gene

expression graph is obtained.

The weight is thus, directly related to obtaining a given expression level in a

specific response category for a particular sample. So, if many genes react strongly

in the sample, the weight is smaller, while if, more interestingly, only a few react

strongly, the weight will be larger. Note that, with this weighting scheme, a given

sample (experiment) may also have no reacting genes.

The graph is broken down into an independent subgraph for each sub-category.
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Gene-sample edges in these different response groups may have similar weight

“values” but are distinguished, in terms of absolute levels of expression6, by the cat-

egory into which they fall, so that strength of response is important overall. Within

a category however, the weight can be interpreted directly in terms of the relative

probability of a gene-sample response. Thus the higher the weight, the more confi-

dence that a relationship exists between gene and sample in that category.

5.3.3 Edge Weights in All In One graph

Obviously, transformation of the data into an all-in-one graph, requires scaling of

edge weights to reflect the additional information in the graph.; Due to the design

of the weighting scheme, an edge within the weak response category may have a

larger weight (e.g. eij = 1), than an edge within the moderate response category

(e.g. eij = 0.2), Fig. 5.9. These weights are rescaled in the all-in-one graph, to

reflect the significance of an edge for a particular sample overall.

Each edge weight is rescaled to reflect the additional information in the graph.

This is achieved simply by, (Fig. 5.10):

for all Sample nodes, j do

for all Induction or Repression Category, Cats do

if j is in Cats then

Multiply each edge weight incident to j by the degree of the sample

node in the sub-graph

Add the degree of j in each of the lower sub-graphs, e.g. for strong

sub-graphs weights, add the degree of j in the moderate and weak sub-

6If the dataset was not categorised, a weak response and a strong response gene-sample couple
would have very different weights, with the consequence that the strong response couple would
dominate the analysis and obscure more subtle patterns.
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Figure 5.9: Edge Weight Distribution of each Spellman subgraph for Induced genes

graphs.

Likewise, for the moderate sub-graphs, add the degree of j in the weak

subgraph

end if

end for

Divide by the degree of j in the all-in-one graph

end for

These edge weights still reflect the probability of getting that level of expression

relative to the other genes being expressed in that sample.

5.4 Scheme evaluation

In this Section, we use the 4-point framework introduced above to analyse our novel

weighting scheme, and to compare this with the scheme introduced in Tanay et al.

(2002), (described in Section 3.3.4).
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Figure 5.10: Rescaling edge weights from either Induced or Repressed Categories
to weights in all-in-one graph, to reflect additional information.
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5.4.1 Reusability

The empirical weighting scheme proposed here results in a partially-connected

graph for each sub-category, since genes which do not show a significant change

for a given sample do not generate an edge. Subsequent clustering techniques need

to allow for this non-edge set, by optimisation of the objective function excluding

nodes not connected by an edge. This scheme requires a dedicated algorithm for

subsequent biclustering, which maintains the lists of gene-sample couples in each

category, (i.e. strongly induced, moderately induced, etc.).

The Tanay scheme is independent of the subsequent clustering technique, as it

results in positive edges for “interesting” gene-sample couples and negative edges

for “non-interesting” gene-sample couples. Indeed, the scheme was specifically

designed for an additive scoring system, where the sum of the edge weights in a

subgraph corresponds to its statistical significance, ((Tanay, 2005) for more details).

This scheme has also been applied to a compendium of information, and not just to

gene expression data, (Tanay et al., 2005).

5.4.2 Parameter influence

The weighting scheme introduced here is controlled by a single parameter and is,

therefore, easily configurable while offering some flexibility. This parameter is κ,

(Eq. 5.1), which determines thresholds between categories. Table 5.4 illustrates the

results of the threshold analysis for the Alizadeth dataset. The maximum threshold

for which any gene-sample couple was identified in the real dataset was κ = 7.07

(probability ≤ 0.02, (Eq. 5.1)). Thresholds of κ = 5, 4.08, 3.58 and 3.162, (i.e.

probabilities ( 1
κ2 ) ≤ 0.04, 0.06, 0.08 and 0.10 respectively) were then tested. The
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Strong
κ 7.07 5 4.08 3.58 3.16
P 0.02 0.04 0.06 0.08 0.10

log( P (X=Edge)
Prand(X=Edge)

) undef undef 1.69 1.02 0.62
Moderate

κ 3.162 2.88 2.67 2.5 2.35
P 0.10 0.12 0.14 0.16 0.18

log( P (X=Edge)
Prand(X=Edge)

) 1.94 1.76 1.62 1.55 1.45
Weak

κ 2.23 2.13 2.04 1.96 1.88
P 0.20 0.22 0.24 0.26 0.28

log( P (X=Edge)
Prand(X=Edge)

) 0.11 0.08 0.04 0.04 0

Table 5.4: Threshold Analysis, Alizadeth data. κ= the number of standard devia-
tions from mean (Eq. 5.1). P = 1

κ2 , is the probability that values are κσ from mean.
The maximum log-ratio is taken as the threshold between categories.

log ratio of the probabilities is maximised at κ = 4.08, and this was taken to be the

strong response threshold. Thresholds for moderate and weak response were then

similarly deduced to be κ = 3.162 and κ = 2.23, respectively. Table 5.1 provides

results of the threshold analysis for three test datasets.

The main parameters for the Tanay weighting scheme are, similarly, thresholds

between categories, and Pc, (the constant probability that an edge appears in a bi-

cluster, Eq. 3.10). Thresholds between categories are arbitrarily chosen, based on

normalized ranked values within each sample and are, therefore, not directly data

dependent. This ‘hard thresholding’ has consequences for the deterioration of the

scheme when noise and missing values are added to the data. As the threshold pa-

rameter is lowered, a higher percentage of edges will be identified, even if none

exist. (For a more detailed discussion of parameter Pc see Tanay et al. (2002)).

153



5.4.3 Robustness

The influence of noise and missing values are summarised respectively in Table 5.5

for the Alizadeth dataset. Results for other datasets are not displayed here but are

broadly consistent with those presented.

The absolute variation in weights is extremely low for the empirical scheme

since the technique examines extreme values, i.e. values which appear in the tail of

the distributions of each gene variable. In addition, weights are not based directly

on a given expression value, but on that expression value relative to other values in

the category for a particular sample (Step 2 of scheme, see Fig. 5.4). The category

is also defined relative to expected value of the gene variable, (Step 1 of scheme, see

Fig. 5.4). As “missing” values are replaced by the row mean, this does not greatly

affect extreme values. Equally, even noise added at 10% level of the original values

does not affect relative values, so that, perturbations in the data have small effect

on weights assigned.

Similar to results shown in Table 5.5, for the Stegmaier dataset, average absolute

variation in edge weights is ∼ 0.26% for an added noise level of 10% (not shown),

while denoting 10% of the dataset as ‘missing’, gives average absolute variation

in values ∼ 0.3%, while 99.5% of weights are stable. For the Cho dataset, the

corresponding values for 10% noise added were: ∼ 0.22% (absolute variation) and

∼ 99.65% (stable weights); and for missing values at 10% was: ∼ 0.15% (absolute

variation) and ∼ 99.69% (stable weights).

Using the Tanay weighting scheme, perturbations in the data have very little

effect on weights derived: (similar results for all tested datasets). We were surprised

by this result and tested missing values up to a level of 80% however the effect was

still minimal (0.01%, average variations and 99.99% stable weights). It may be
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% Noise level 1.5 2.5 5 10
Empirical Based
% Average Absolute variation 6× 10−2 2× 10−2 3× 10−2 5× 10−2

% “stable” weights 99.66 99.68 99.68 99.65
Tanay Scheme
% Average Absolute variation 2.7× 10−3 2.6× 10−3 2.3× 10−3 3.2× 10−3

% “stable” weights 99.98 99.98 99.99 99.99
%missing values 1.5 2.5 5 10
Empirical Scheme
% Average absolute variation 0.04 0.04 0.09 0.16
% of “stable” weights 99.70 99.72 99.64 99.62
Tanay Scheme
% Average absolute variation 0.0023 0.0027 0.0028 0.0069
% of “stable” weights 99.98 99.98 99.99 99.99

Table 5.5: Influence of noise level and missing values on weights assigned

the case that this scheme identifies ‘interesting’ gene-sample couples, even if none

exist, due to the ‘hard’ threshold nature of the scheme and its reliance on a ranking

system. If 10% noise is added to the dataset, thresholds still depend on ranking and

not a calculated mean level, thus approximately the same gene-sample couples are

selected as interesting as the ranked position is not changed. Missing values also

have little effect, as these are replaced by the mean, and the same thresholds used

so that decisions are more conservative if anything.

5.4.4 Discrimination

For this analysis, a ‘random graph’ refers to a graph created from a random dataset,

as described in Section 4.5.2.

From the threshold analysis for the Empirical scheme, described above, max-

imum discrimination between empirical and random graphs is obtained. As ex-

pected, the largest number of gene-sample couples falls in the weak response cat-
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egory. Discriminating between gene responses clearly depends on the category

thresholds used and, while threshold derivation described is based on statistical

considerations, this can obviously be augmented by biological information. From

Table 5.6, for strong and moderate response, the probability of an edge existing

between a gene and sample node in the real graph is greater than that for the ran-

dom graph, indicating that significant structure is present. For a weak response,

the ratio of probabilities is smaller and it is less convincing that real differences

exist. Nevertheless, an examination of the average degree of sample nodes in the

real graphs indicates that the average number of genes responding is higher than

expected. For example, for the weak repression sub-category, a sample node is, on

average, connected to ∼ 3.2% of gene nodes compared to ∼ 1.2% in the random

graph, (d⊥/n>). The average degree of a sample node in the real graph is much

higher than expected, (> m/n⊥ with degree ≥ 0 = 96). This suggests that, al-

though the ratio of edge probabilities in the weak response category compared to

the random graph is not high, some pattern structure is present and the method is

capable of identifying ‘indicative’ gene-sample couples, even in this less-reactive

category.

From our analysis of the Tanay et al. scheme (Table 5.7), we observed that (a)

a smaller number of total positive weights were identified compared to those iden-

tified from corresponding graphs generated from a random dataset (Section 5.2.2),

(b) the number of positive weights in each category is roughly equivalent to that

for the random case(the exceptions are Stegmaier Moderate and Strongly repressed

categories). Observations (a) and (b) imply that the amount of edge ‘sharing’ of

gene-sample couples in the real dataset is considerable, (i.e. gene-sample couples

having a positive edge in the weakly induced category, also feature in the strongly

induced category) - thus categories are not mutually exclusive. Since ‘hard’ thresh-
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Repres Induc
Wk Mod. Str. Wk. Mod. Str.

n> 1889 296 63 2088 476 209
(2004) (6) (5) (2030) (4) (2)

n⊥ 53 13 16 79 43 46
(82) (2) (2) (85) (2) (2)

m 3227 327 64 3713 550 219
(2754.04) (6.01) (2.92) (2779.27) (5.57) (2.89)

d> 1.7 1.1 1.01 1.77 1.15 1.04
(1.4) (1) (1) (0.98) (0.79) (6.6e−4)

d⊥ 60.89 25.15 4 47 12.79 4.7
(35.23) (1.02) (1) (34.95) (2) (1)

δ 0.01 0.001 2.2e−4 0.012 0.002 7.5e−4

(0.003) (1.7e−5) (1e−5) (0.009) (2e−5) (1e−5)

Table 5.6: Categories for Alizadeth data, created by cut off thresholds 0.20 (weak
induction/repression), 0.10 (moderate induction/repression), and 0.06 (strong in-
duction/repression). n> = the active set of genes (gene nodes with degree ≥ 1), n⊥
= active set of samples, m = number of edges, d> = average degree of active set of
genes, d⊥ = average degree of active set of samples, δ = bi-partite density i.e the
fraction of existing links with respect to possible ones (i.e. gene nodes with degree
≥ 0× sample nodes with degree ≥ 0). Numbers in brackets indicate corresponding
values for random graphs.
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Datasets Aliz. Cho. Steg.
% total edges 2.7 3.34 2.13

(2.9) (4.3) (3.6)
Induced

% strong 1.2 1.1 0.8
(1.1) (1.2) (0.8)

% moderate 3.2 4.1 1.0
(3.1) (3.9) (1.0)

% weak 3.9 5.0 1.1
(3.9) (4.8) (1.1)

Repressed
% strong 1.2 1.1 1.3

(1.1) (1.2) (1.4)
% moderate 3.2 3.8 3.8

(3.1) (3.9) (3.4)
% weak 4.0 4.7 4.7

(3.8) (4.8) (4.1)

Table 5.7: Tanay scheme - percentage of total possible edges is taken as
Number of Positive Edges\n × p × 6 categories whereas percentage of edges in
each category is expressed in terms of the total possible edges in that category i.e.
Number of positive Edges\n × p, (n = number of genes, p = number of samples).
Bracketed values represent results from random graphs.

olds between categories were used and arbitrarily chosen, the order of the number

of edges in each category is Strong < Moderate < Weak. Note also that those

gene-sample couples, evaluated as strongly reacting, will have a magnified impact

on any clustering procedure for the resulting graph, due to the overlap between

categories, (i.e. weak influences are a subset of strong influences).

5.5 Summary

We have presented an empirical-based method for the extraction of a bi-partite

graph from a gene expression dataset. This method is important because it builds

the gene expression graph in a data dependent manner. Analysing gene expression
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datasets is important as it allows for fine grained analysis of the reactivity of genes

at various response levels.The scheme for constructing graphs presented here re-

sults in independent non-overlapping sub-graphs, each representing a strength/type

of response category. These can then be used to construct, what we have called

an “all-in-one” graph, where the interactions and reinforcement of response group-

ings from combined categories can be analysed. This can be used to determine

subtle coherence in patterns of co-expression. Using tools and notation for classic

network analysis for extraction, identification and analysis, we have uncovered or-

ganisational structure in graphs, constructed with this scheme. To our knowledge,

this is the first time basic network analysis techniques for bi-partite graphs have

been applied to the analysis of gene expression. Clustering coefficients, cc, were

obtained for gene and sample node sets individually with that for gene nodes found,

unsurprisingly, to be much larger than that for sample nodes, due to the large dispar-

ity in average degree between sets. In the latter, the cc were dominated by sample

nodes of high degree. Consideration of the minimum clustering coefficient measure

removes large neighbourhood bias, and reveals there more subtle, local interactions

in the data. We examined the size of the neighbourhood intersections for genes, and

found that, genes react more coherently in larger neighbourhoods than expected

by chance. An examination of the gene node degree distribution of the extracted

graphs suggests that has some Poisson characteristics, but suggests that for large

gene sets is well-approximated a Normal distribution. However, the size of the

sample node set for most datasets is relatively low, so that degree distribution is less

easy to establish and appears to depend on the observed data itself.

The issue of data-dependent threshold estimation is addressed in the empirical-

scheme presented, but is non-trivial, as numerous thresholds need to be assessed,

which is computationally expensive. The scheme presented here is more specific in
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that fewer gene-sample couples are identified than in the Tanay et al. scheme. For

example, for the Alizadeth dataset, our scheme extracts ∼ 3% edges ( at optimal

threshold levels). The Tanay scheme extracts ∼ 16% for the same dataset. In

real terms this means that the denser graphs created with the Tanay scheme, could

contain more irrelevant gene-sample couples, while our scheme can more precisely

target the gene set of interest.

We have presented a novel edge-weighting scheme for gene expression bi-

partite graphs. From the investigations, presented in this chapter, it is clear that

interpretations of edge weights in graphical gene expression schemes can be diffi-

cult and a comparative analysis with the well-known Tanay et al. (2002) scheme is

also presented. This analysis was carried out w.r.t four major properties: reusability,

parameter influence, robustness and discrimination. Both schemes result in positive

weights for interesting gene-sample couples. Our new weighting scheme, for a par-

ticular sample j, determines affected genes relative to other gene expression values

for that sample j. This is an important feature, as absolute level of gene expression

is not directly accounted for, but rather the fact that change occurs, together with

the significance of this change relative to the majority of genes. Relative evalua-

tion is also an intrinsic feature of the Tanay scheme as the initial probability φ(i, j),

Eq 3.10 is based on ranks. However, the selection of a pre-determined thresholds

(between ranks) with the Tanay scheme has a large effect on robustness and dis-

crimintation as it is not data dependent. Overall, therefore, weights resulting from

the Tanay scheme seem little affected by noise and missing values, which indicates

that this scheme could assign high weights to gene-sample couples, even if none

are present. Our contention, therefore, is that this ignores the subtleties in the data,

and selects ‘interesting’ gene-sample couples based on absolute values, (including

noise levels). With our empirical scheme, however, small sample size (number of
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microarray experiments), the performance deteriorates with respect to the random

graph comparison basis, (difficult to estimate µ and sd for each gene variable), and

the thresholds between categories become increasingly difficult to identify.

We have also demonstrated that edge-weighting schemes should be considered

to be independent of the subsequent clustering procedure in the sense that they

should satisfy intrinsic requirements and be internally consistent. Alternative edge-

weight derivation can be seen as providing different probes for data interrogation

leading to complimentary interpretations. This type of assessment framework for

weighting is not unique to gene expression data, but is also crucial for other appli-

cations, generating large, complex datasets.

Using graphical techniques to extract meaningful information from biological

data is both intuitive and valuable. In this chapter, we have limited our investigation

to bi-partite graphs, a representation which captures essential properties of gene

expression datasets and allows for the extraction of suitable bi-clusters. In the next

chapter we investigate how information from these bi-partite graphs can be used to

find important gene sets.
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CHAPTER 6

PARTITIONING GENE EXPRESSION

GRAPHS OF LOCAL INTERACTIONS

In Chapter 5, a framework for creating weighted bi-partite gene expression graphs

and highlighting interesting properties of these was outlined in Chapter 5. Here, a

method is presented for the construction of a one-mode gene expression network

which specifically focuses on local interactions of genes, (i.e. across a subset

of samples). This approach permits use of classical network analysis tools and

adds to previously published work in the area, (Stuart et al., 2003; Carter et al.,

2004; Bergmann et al., 2004; Zhang and Horvath, 2005). Specifically, no devel-

oped framework exists to date for the construction and examination of a one-mode

gene expression network which captures local structures of a dataset. In what fol-

lows we present our analysis, and validation, of such a framework. We present a

method to extract cliques from the network of local interactions, and provide com-

pelling evidence that cliques extracted from a suitably constructed graph, represents

meaningful biological structures.
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6.1 Introduction

Gene co-expression networks provide a straightforward mechanism to explore system-

wide functionality of genes, by using intuitive network concepts to analyse complex

interactions. However, it is essential that relationships between genes in the network

are captured in a meaningful manner. We address this issue by constructing a gene

expression network from the underlying bi-partite graph. Nodes are connected in a

one-mode graph, if the corresponding genes are significantly co-expressed across a

subset of samples in the bi-partite graph, reflecting local gene interactions. How-

ever, in the one-mode projection information, such as the number of samples which

a gene shows similar expression can be lost (Chapter 5). This is overcome by us-

ing a weighting scheme to capture this information, where edges are weighted in

the one-mode graph to reflect the size and significance of the intersection in the

bi-partite graph.

This represents a further development and improvement on previous gene ex-

pression network analysis, (Stuart et al., 2003; Carter et al., 2004; Bergmann et al.,

2004). In their work each node in the network represents an expression profile of a

given gene, and an edge represents a significant pairwise expression profile associ-

ation across all samples. Zhang and Horvath (2005) also use an adjacency function

to weight the edges, which assumes that connections between nodes approximate

a scale free topology. The framework presented here does not require such as-

sumptions and node connections are more biologically plausible as these represent

significant pairwise gene expression across a subset of samples (i.e. identifies gene

groups with similar expression for this set of samples and divergent expression

otherwise). We describe an approach where the graph encoding is built from the

bi-partite version and designed to reveal local interactions in the data, hence the no-

163



tion of similarity, (weighted edges), is significantly different from previous work.

This leads us to define edge weights in the one-mode graph, based on information

obtained from the bi-partite graph, and an “intersection” score.

The main purpose of the network analysis is to use gene connectivity informa-

tion to group genes according to function and to relate to external gene information.

For each graph constructed, gene subgroups are identified which show similar ex-

pression across a subset of samples. Many graphical clustering procedure have been

proposed, Kernighan-Lin algorithm (Kernighan and Lin, 1970), Simulated Anneal-

ing (Johnson et al., 1989), Path Optimization (Berry and Goldberg, 1995), Genetic

algorithms (Bui and Moon, 1996), MinMax clustering (Ding et al., 2001), heuristic

search using hash tables (Tanay et al., 2002) and others. We use a number of graph

properties in a clustering procedure to identify biologically meaningful groups.

6.2 Graph Properties

A one-mode graph,G = (U,E,W ), is constructed, where U is the set of gene nodes

and n = |U |, eij ∈ E is the set of edges - an edge exists between two gene nodes

ui and uj (i 6= j), if they show similar co-expression across at least two samples

(i.e. their intersection neighbourhood in the underlying all-in-one bi-partite graph

is ≥ 2).1, wij ∈ W is the set of edge weights associated with the edge between

nodes ui and uj , ∀eij ∈ E, i 6= j.

Once the network has been constructed several biologically important network

concepts can be identified which relate connectivity information to external gene

information. Descriptive statistics of the one-mode graphs, extracted for the test

datasets, are given in Table 6.1.
1This could be easily extended to > 2 sample neighbours. We focus on the all-in-one graph as

we want to find coherent bi-clusters i.e. genes which may be alternately expressed in a given sample.
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n m d density cc ccmin γ
Aliz 2349 90624 77.15 0.03 0.66 0.69 1.1 (2.09 tail)
Alon 1205 19404 32.2 0.03 0.72 0.72 1.2 (2.33 tail)
Cho 27 91 6.7 0.26 1 0.84 -
Gasch 3086 1348783 874.13 0.28 0.69 0.77 0.76 (1 tail)
Golub 1974 20931 21.2 0.01 0.68 0.68 1.26 (2.45 tail)
Hsiao 1163 42243 72.64 0.06 0.84 0.88 1.18 (1.12 tail)
Spell 2736 176248 122.25 0.04 0.62 0.67 1.89 (2.47 tail)
Steg 549 14189 51.69 0.09 0.94 0.89 1.08 (2.06 tail)
West 1556 102462 131.69 0.08 0.86 0.87 1.09 (1.58 tail)

Random Graphs
Aliz 2392 16747 117.58 0.005 0.16 0.20 1 (1.6 tail)
Alon 1296 32093 49.52 0.03 0.13 0.18 1.1 (2.15 tail)
Cho 36 56 3.11 0.08 0 0 -
Gasch 3094 3002425 970.40 0.62 0.19 0.25 0.75 (1 tail)
Golub 2052 30457 29.69 0.02 0.05 0.10 1.19 (2.65 tail)
Hsiao 1199 37893 63.43 0.05 0.20 0.26 1.12 (1.12 tail)
Spell 2763 275068 199.10 0.07 0.18 0.20 0.92 (1.67 tail)
Steg 585 10915 37.31 0.06 0.18 0.25 1.16 (2.28 tail)
West 1631 149530 183.36 0.11 0.33 0.40 0.98 (1.56 tail)

Table 6.1: one-mode Graph Properties: For each real dataset: n, the number of
active genes, i.e. U ′ ∈ U with d ≥ 1, m, the number of edges between gene
nodes, d, the average degree of the graph, cc, the unweighted clustering coefficient
for the graph, γ the value of the exponent of the power law that best fits its degree
distribution based on maximum likelihood estimation. The value in brackets refers
to the power law estimate for values log(d) > 1
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Descriptive Statisitics:

For these gene expression test datasets, the number of gene nodes, n, is small

compared to typical real world complex networks, (see Guillaume and Latapy (2004)

for examples). It is clear that the size of the one-mode graph (nodes and number of

edges) is dependent on the number of sample nodes in the underlying graph, Table

6.1, Fig. 6.1. Not typical of most real world complex networks is the observation

that the average node degree, d, of each graph is quite high compared to n, and

varies depending on the dataset under observation. (The Cho dataset is indetermi-

nate, which has low n and d, thus has limited information encoded.) The average

degree of gene nodes is independent of the number of sample nodes in the underly-

ing graph. For example, for the Alon data, genes are connected on average to 3%

of the nodes, while for the West data genes connect on average to 8% of the nodes -

the sample node set size in the underlying graphs are 57 and 48 respectively. There

are, on average, more nodes in the random graphs2, which suggests that there is less

overlap in sample node neighbourhoods in the underlying random bi-partite graph

compared to real, Fig. 6.2.

The density of all graphs is quite low, with the exception of the Gasch and Cho

dataset. These datasets represent the maximum and minimum size graphs in terms

of number of nodes. For the Cho dataset, n is small and, as noted, the intersec-

tion neighbourhoods in the underlying bi-partite graph are snot extensive, resulting

in a larger number of neighbours in the one-mode projection. The Gasch dataset

contains a large number samples from experiments under extreme conditions, re-

sulting in a large subset of genes responding. If the number of samples for which

2Random graphs were created by projecting uniformly sampled random bi-partite graphs (cre-
ated with monte carlo edge switching algorithm) into one-mode.
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two genes have similar expression is increased to qualify for an edge in one-mode

graph (eliminating spurious measurements), to, for e.g., 5, the density of the Gasch

graph reduces to 0.03.

10 30 50 70

0
500

00
100

000
150

000

No.Samples in Bipartite Graph

Nu
mb

er o
f ed

ges

0 500 1500 2500

0
500

00
100

000
150

000

No.Samples in Bipartite Graph

Nu
mb

er o
f no

des

Figure 6.1: The size of the one-mode graph (number of nodes and edges) is depen-
dent on the number of samples in the underlying bi-partite graph.

Clustering:

The clustering co-efficient, cc, in the one-mode gene expression graphs are

again high, compared to the corresponding random graphs (Table 6.1), despite most

nodes not begin linked (lower density), i.e. this implies that graphs have locally

dense structures. Random networks (both the Erdös-Rényi model and the Barabasi-

Albert model), result in a small clustering coefficient, which corresponds to cc val-

ues generated for the random case. This indicates that there is a non-trivial level of

organisation in the graph, such that, if two genes are connected, they are more than

likely to have similar neighbourhoods.
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Real Random

Gene Nodes

Sample Nodes

A B A B

A B A B

PROJECT

Figure 6.2: There are smaller intersection neighbourhoods in the underlying random
graphs compared to real, resulting in a higher average number of nodes.

As suggested in Chapter 5, cc can be dominated by the gene node with the larger

neighbourhood. Thus we examine the minimum clustering coefficient, ccmin, (Eq.

5.5, (Latapy et al., 2006)). This measure does not deviate much from cc, suggesting

that high degree nodes do not dominate. To further investigate this, the relationship

between the average clustering coefficient for a node and its degree was analysed.

The clustering coefficients, both cc and ccmin, have a large spread for gene nodes

of small degree, which are the majority, Figures 6.3, 6.4. For the fewer nodes of

high degree, cc decreases, while ccmin increases (as its denominator is the minimum

neighbourhood).

For all graphs, the values for the random graphs are well below the values for

the test datasets. This shows that the values of cc and ccmin are larger in real

gene expression datasets and the difference is substantial. There is an inverse rela-

tionship between cc and node degree in the real datasets, while it remains roughly

constant in the random case. This was also found by Ravasz et al. (2002) in a study

of metabolic networks, who suggested that it was due to a hierarchical structure

within the network. In the case of ccmin there is a positive relationship with node
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degree for both the real and the random graphs.
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(a) Hsiao
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(b) Stegmaier
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Figure 6.3: Average Clustering Coefficient of Nodes Vs. Degree

In Fig. 6.5 the cumulative distribution of the clustering coefficients for four test

datasets are shown. In the random case the value of ccmin grows very quickly and

are close to unity at low values of ccmin. This means that ccmin are very small for

most nodes. That is, the intersection of the neighbourhoods is quite small compared

to the minimum neighbourhood size. The value of ccmin grows much less quickly

for the real datasets and remain lower than unity for a long time. This means that

for an important number of nodes, ccmin is large, closer to one in most cases - the

neighbourhoods of many nodes significantly or completely overlap with other node
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(a) Hsiao
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(b) Stegmaier
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Figure 6.4: Average Clustering Coefficient of Nodes Vs. Degree.

neighbourhoods.

Degree Distribution:

For ∼ log(d) > 1, (where d = node degree), approximate power-law behaviour

is observed for the node degree distributions, implying that its heterogeneous na-

ture is non-trivial, i.e. the networks are scale-free, Figures C.26 - C.27 Appendix

C. This implies that the node degree distribution exhibits greater heterogeneity for

one-mode compared to bi-partite graphs, with most genes having small degree and

only few having high degree. Exceptions include the Gasch and Hsiao datasets

(Figures C.26d,C.27b, Appendix C), for all d. Recall that an edge in the one-mode
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Figure 6.5: Cumlative distribution of the minimum clustering coefficient. For each
value on the x-axis the probability of all the nodes having lower than x for ccmin

graph results when two genes show similar expression across samples. As with the

density information, if the condition of number of samples for which gene expres-

sion is similar is increased to qualify for an edge in the one-mode graph (eliminating

spurious measurements) a power-law distribution emerges, Fig. 6.6. Interestingly,

Gasch and Hsiao are the datasets with near normal behaviour in the gene node de-

gree distributions in the underlying bi-partite graph, suggesting that the near-normal

behaviour of these underlying datasets is the limiting case, and increased sample in-

tersection size requirements need to be applied when creating these graphs.

From this investigation, it is clear that there is structure in the constructed gene
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Figure 6.6: As the requirement for intersection neighbourhood increases, the degree
distribution conforms to a power law distribution

expression graph, that is not typical of a random network, and projecting into one-

mode does reveal new information. There is considerable sharing among neigh-

bourhoods, (high clustering coefficients), indicating that these are co-active in sim-

ilar samples. Although the underlying gene node distributions in the bi-partite graph

were approximated by the Poisson, the node degrees in the corresponding one-mode

graph are more closely modelled by a power law. This indicates that the topology

of the network is dominated by a few highly connected genes which link the rest

of the less connected genes to the network, i.e. genes are preferentially attached to

genes of high degree.
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6.2.1 Edge Weights in one-mode Graph

We have already discussed how two genes are linked in a one-mode projection

of a bi-partite graph if they have a sample neighbour in common. If two genes

were truly co-expressed, they would be co-expressed in more than one sample i.e.

the intersection neighbourhood of the genes would be large. Here, we define the

weighted strength of this interconnection as the “interconnection coefficient”, Eq.

6.1.

ccinter(u, v) =

∑
j∈{N(u)∩N(v)}wujwvj

|N(u) ∩N(v)| (6.1)

where wuj and wvj is the weight of edges (u, j)and (v, j) in the bi-partite graph

respectively, and N(u) and N(v) are the neighbourhoods of gene nodes u and v

in the bi-partite graph respectively. This quantifies the level of confidence in the

co-expression of two genes, defined through edge weights in the bi-partite graph.

For example, if two genes have a high significance of expression(i.e. large edge

weights) under three samples, the interconnection coefficient will be close to one,

on the other hand if one gene has a high significance and the other a low significance

under three samples it will be closer to 0.5, and if both genes have a low significance

under three sample the interconnection coefficient will be close to 0. Hence, the

weight of a link between two genes u and v in the one-mode projection captures the

weight of the intersection of their neighbourhoods. This weight corresponds to a

similarity measure as it is non-negative and symmetric.
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6.3 Detecting High Scoring Coherent Modules -

GraphCreate

A principal objective is to detect meaningful subsets of genes which are tightly

connected to each other across a subset of samples, i.e. to detect modules in the

one-mode graph and to develop a scoring scheme which takes into account the

samples for which these genes show similar expression. Here we introduce a new

method, GraphCreate, designed to detect high scoring modules. A module of genes

is defined by considering nodes with high neighbourhood overlap. We have already

shown that if two genes have a neighbour in common, they are more likely to have

similar neighbourhoods when compared to a random graph. All potential modules,

1...L are identified by considering, for each gene, u, neighbours of u which have an

intersection neighbourhood greater than a predefined threshold (I) with u, i.e.

L = {N(u) ∩N(j)} > t ∀j∈N(u),L=1...n (6.2)

This identifies a maximum of n, (= number of gene nodes) potential modules.

Modules are processed to remove those with a high degree of overlap between their

nodes.

Which, or the number of, samples gene nodes exhibit co-activity under is con-

sidered by a bit string associated with each gene node, u, in the one-mode graph.

The bit string has length equal to the number of samples nodes in the bi-partite

graph, where a 1 at position s indicates that u shows response in sample s. For each

bicluster formed by gene u define:

M` = max[sum{bs(i) ∧ bs(j)}] ∀i,j∈`,`=1...L (6.3)
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and

mij` =
bs(i) ∧ bs(j)

M`

where bs(·) is the bit string associated with the node (·), ∧ = logical AND of

each position in the bit string. (Note: bs(i) ∧ bs(j) is the intersection size of N(i)

and N(j) sample neighbourhoods in the bi-partite graph.) M` is the maximum

intersection for the bicluster, `, formed by nodes in the module. It is a factor which

scales the weight of an edge between two gene nodes based all gene nodes in the

modules, see Fig. 6.7. This scaling factor for an edge weight will change between

modules, depending on its membership, i.e. the edge weight will have greater or

lesser significance depending on which genes it is grouped with. Thus the weight

of a module can be found by:

Wbicluster =
∑

i,j∈`
wijmij (6.4)

where wij is weight of the edge between gene’s i and j in the one mode projec-

tion, defined in Eq. 6.1. This weighting scheme reflects the intersection of the two

genes and the samples for which genes show similar expression.

6.4 Representative Modules Found

In practice, the search space is restricted by searching only gene nodes with a mini-

mum degree > dt. Thus, there are two parameters affecting the number and size of

gene groups found by GraphCreate: the size of the intersection neighbourhood, I ,

and dt. Fig. 6.8 illustrates how these parameters affect the number, size and weight

of modules found in the Hsiao dataset. Similar results, found for other datasets,

are not given here. In general, the number of modules, K, decreases as dt and I
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Figure 6.7: Finding groups in the data. Neighbour of A whose neighbourhood
intersects with A≥ t are found.The bit string AND operation is then used to weight
the edges according to the number of samples the group are expressed similarly in
the bi-partite graph.
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increase (Fig. 6.8a), while the average weight of the modules increases, (Fig. 6.8b).

This is due to the additive nature of the scoring scheme, since as the requirement for

dt and I increases, more edges are included in the module. The average size (i.e.

number of gene nodes) in a module tends to increase with dt, but not strictly so,

indicating that as more edges are required the module does not necessarily acquire

more nodes.
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Figure 6.8: Effects on the Number of Clusters (K), Average Size (S) and Average
Weight (W) as input parameters (I = Intersection Neighbourhood Size, M = dt
= minimum degree of nodes) change for the Hsiao dataset. Similar results were
obtained for all datasets.

Dataset K Avg. Size Min. Size Max. Size Avg. Score Min. Score Max Score
Aliz 21 275.29 106 566 1457.02 247.61 3348.63
Alon 7 159.57 102 264 425.00 217.32 666.50
Gasch 4 280.25 141 446 4081.05 1455.76 7065.32
Golub 6 106 84 139 303.04 230.97 437.57
Hsiao 4 177 118 232 2665.96 1674.98 3477.03
Steg. 3 130 99 178 1636.66 1161.44 2401.49
Spell 46 285.30 108 728 1801.884 329.63 4990.37
West 11 352.90 135 721 3623.64 637.48 8458.10

Table 6.2: Descriptive statistics of modules found. The minimum and maximum
values are presented to illustrate the range of modules found.

177



Table 6.2 provides descriptive statistics for modules (i.e. sets of genes exhibiting

coherent activity), found in all datasets3. The average weight of the modules varies

between graphs, e.g. Alon and Hsiao modules have very different average weight

although the size of the modules are approximately the same. Unsurprisingly, the

density of the Hsiao one-mode graph is much greater than the density of the Alon

one-mode graph. Indeed, in all cases, higher weight modules tend to be associated

with one-mode graphs of higher density. Therefore, although within graphs higher

weighted modules tend to be associated with larger size, this is not the case between

graphs.

One prediction of GraphCreate is that groups of high degree genes will be re-

peated across modules for a particular dataset, while genes appearing solely in one

module are less reactive (have smaller degree). This arises due to the power-law

distribution of the gene nodes whereby a few genes are connected to many nodes

and many nodes are connected to a few genes. Modules found in all datasets are in-

deed hierarchical in nature (i.e. there is gene overlap between modules). Gene node

memberships of modules found in the Hsiao dataset, are given in Fig. 6.9, which

illustrates these overlaps e.g. module 3 is completely formed from subgroups of

nodes found in modules 1 and 2, Fig.6.9a. If we examine the degree of gene nodes

within a module, x say, it is clear that those gene nodes which overlap with other

modules have higher connectivity within module x (i.e. considering only these con-

nections within x), than those gene nodes which appear solely in x and nowhere

other than x, Fig. 6.10. This indicates that genes found in the overlaps of the mod-

ules are highly reactive, either affecting or affected by genes which appear in one

3Note that, due to small size and lack of information, the Cho dataset is not considered for further
analysis. Modules for the Gasch dataset was extracted from a one-mode graph created whereby two
gene nodes must have a common neighbourhood of at least 5 sample nodes in the underlying bi-
partite graph in order to qualify for an edge in the one-mode graph.
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module only.

(a) Modules 1, 2 and 3 (b) Modules 1, 2 and 4

(c) Modules 1, 3 and 4 (d) Modules 2, 3 and 4

Figure 6.9: Overlap between modules in the Hsiao dataset.

Groups of genes forming modules in the Hsiao dataset were compared with

those gene clusters found by the original authors, Hsiao et al. (2001), who cat-

egorised these according to involvement in house-keeping functions (HK), tissue

selectivity (TS) or tissue variance (TV). It is clear, (where genes in modules found

by GraphCreate are annotated by original authors), that overlaps occur for TV and

TS categories. Modules 1 and 3 (Fig ??) have a significant overlap of 127 TS genes
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d = 192.22d=130.91 d = 92.16d=139.76

d = 183.55d=148.68 d = 0d=128.59

d = 111.33d=88.96 d = 139.76d=92.16

d = 139.03d=111.15 d = 124.21d=131.67

Modules 1 and 3

Modules 1 and 4

Modules 2 and 3

Modules 3 and 4

Figure 6.10: Schematic depicting the degree of modules found in Hsiao dataset. In
each instance, “modules x and y”, blue represents the average degree of the gene
nodes only found in x, while red represents the average degree of the nodes which
are co-operating in module y. For e.g. “Modules 3 and 4”, the average degree of
gene nodes found solely in 3 is 111.15, while those co-operating with module 4 also
is 139.03. Similarly, the average degree of gene nodes found solely in module 4 is
124.21, while those co-operating with module 3 also is 131.67. In each instance,
there is a higher average node degree with the co-operating nodes, (except modules
2 and 3, as module 3 also has large commonality with module 1)
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(hypergeometric test4 p = 9.3e−33). Similarly modules 1 and 4 have a TS overlap

of 121 (p = 6.7e−33), modules 2 and 3 of 85 (p = 6.5e−28), and finally modules

3 and 4 of 76 (p = 1e−22). These TS genes forming commonalities across mod-

ules have the highest variance across samples in the original dataset, and therefore

have a higher degree in the underlying bi-partite graph, (and consequently a higher

degree in the one-mode graph).

We continue our investigation of modules found by GraphCreate by considering

the cancer and yeast datasets separately. From our set of test datasets, four relate to

cancer experiments and two relate to experiments on yeast, Table 6.3.

Cancer Alon Golub Stegmaier West
(Colon) (Leukemia) (Leukemia) (Breast)

Yeast Gasch Spellman
(Stress Response) (Cell Cycle)

Table 6.3: Datasets used for analysis

6.4.1 Cancer Datasets

A hypergeometric test was used to find groups of over-represented genes in each

module5, (Falcon and Gentleman, 2007). For these tests, the entire set of genes in

each dataset was used as the pool to draw from (i.e. the gene universe). Genes

that mapped to more than one entrezID were removed to avoid Gene Ontology
4A hypergeometric test was used to find groups of over-represented genes in each module (Falcon

and Gentleman, 2007). This describes the probability of number of successes from n trails, using
sampling without replacement.

5In the Gene Ontology (GO) annotation hierarchy, each GO term inherits all annotations from its
more specific descendants. An analysis for GO term associations can result in the identification of
genes associated with directly related GO terms with considerable overlap. To avoid this problem,
when analysing the GO ontology graph, the leaves of the GO graph were tested first (nodes with
no children), before testing terms whose children have already been tested, and all genes annotated
at significant children are removed from the parent’s gene list. This continues until all terms were
tested.
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7 TV
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84 TS
4 TV
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129 TS
13 TV

Module 1 Module 3

12 HK
70 TS
11 TV

0 HK
0 TS
0 TV

4 HK
121 TS
9 TV

Module 1 Module 4
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0 TV
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13 TV
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Module 2 Module 3

1 HK
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9 TV
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3 TV

0 HK
76 TS
6 TV

Module 3 Module 4

HK = House Keeping, TS = Tissue Selective, TV = Tissue Variant

Figure 6.11: Hsiao module comparison with author’s annotation.
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(GO) categories being counted twice. Only annotated genes in each module were

considered for this analysis. Fig. 6.12 shows the most significant GO ontology

terms associated with groups of over-represented genes, (using hypergeomtric tests

described above), for the Golub dataset. All ontology terms selected had an associ-

ated p-value < 0.001. In each of the modules (Fig. 6.12a - 6.12f), it may be seen

that the percentage of genes within a module associated with a particular term is

greater than the percentage of genes in the ‘gene universe’ associated with the same

term. This illustrates graphically the idea that there is a higher representation of

terms in the modules, or gene subsets, than would be expected by chance given the

number of terms in the gene universe.

Although a few of the modules extracted from the Golub dataset have a di-

verse categorisation of genes, other are quite specific. For instance, Module 5 quite

clearly contains genes associated with changing the state of a cell as a result of

a stimulus. Module 4 on the other hand contains genes involved in transport of

substances, biosynthetic processes (reactions resulting from the formation of sub-

stances), and erythrocyte (red blood cell) development. There is overlap among

modules for genes involved in RNA processing events and pathways involving ATP

(a universal coenzyme and enzyme regulator). Not all genes found in each module

were associated with the most significant GO terms. Table 6.4 illustrates the per-

centage of annotated genes in each module which were associated with the most

significant GO terms.

Module 1 2 3 4 5 6
% 55% 54% 54% 57% 65% 56%

Table 6.4: Percentage of genes annotated in associated with the most significant
GO categories for each module in the Golub dataset
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Figure 6.12: GO annotations of modules found for Golub Dataset, using Biological
Process Ontology of GO database. GO categories with p-value < 0.001 where
chosen.

184



Associated GO categories of over-represented genes for the remaining three

cancer test datasets are shown in Table 6.5. Clearly, there are more genes with

associated significant GO annotations in the Stegmaier dataset compared to both the

West and Alon datasets. In the Stegmaier dataset, many of the genes are associated

with cell-cycle ontology terms (this dataset consists of leukemia samples obtained

at 6 hr and 24 hr time points). The edge set from the underlying bi-partite graph

(used to generate the one-mode graph) can be used to determine to which samples

the genes in a module, M , are coherently responding, i.e. E ′ ⊂ E, (E = edge set in

bi-partite graph), where (x, y) ∈ E ′ iff x ∈ M , then y ∈ Y (= subset of interesting

samples). For example, it was found that in Module 2 of the Steigmaier dataset all

genes had an edge to sample 8, 9 and 10 only (Kasumi cell line, Genetifib treated

at 24 hrs) in the underlying bi-partite graph, (Fig. 6.13), indicating a significant

alteration in expression of all genes in module 2 at this time point.

Modules in the West dataset have quite a low % of annotated genes associ-

ated with the most significant GO terms (Module 11 has an insignificant amount,

hence not shown). However, a noteworthy significant identification is the RAS pro-

tein signal transduction, identified in modules 6, 9, and 10. This forms part of

the MAPK (mitogen-activated protein kinase) pathway, the activity of which was

found to be high in breast cancers (Maemura et al., 1999), and which is corre-

lated to the degree of RAS activation (von Lintig et al., 2004). RAS protein signal

transduction is hyper-activated in breast cancer by overexpression of growth fac-

tor receptors which signal through it. RAS involvement in breast cancer has been

well documented (von Lintig et al., 2004; McGlynn et al., 2009), and, although not

mutated itself, is abnormally activated in breast cancers overexpressing the ErbB-2

receptor, (von Lintig et al., 2004). ErbB2 was also identified in modules 6, 9 and

10, as was GPR30, (G protein-coupled estrogen receptor 1). The fact that these
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8 9 10

Figure 6.13: Genes in module 2 of Stegmaier dataset where induced or repressed
in samples 8, 9 and 10, found through an examination of the edges in the bi-partite
graph. These correspond to genetifib treated Kasumi cell line sample at 24hrs.
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genes where identified indicates proliferation and migration of the breast cancer

cells (Pandey et al., 2009). Other genes involved in MAPK pathway (i.e. MAPK,

MAP2K, MAPKAPK2, MAPK14 (p38 isoform)) which play a central role in inva-

sive breast cancer were also found in modules 6, 9 and 10 (Maemura et al., 1999;

Han et al., 2002). These genes were not identified in modules that did not have

genes associated with the RAS signal transduction.

The gene nodes involved in the RAS signal transduction pathway (RAS genes)

also contribute heavily to the weight of the modules. For example, the 14 nodes

associated with RAS genes in module 6 make up 2.8% of the total gene nodes of

the module, however the weight of the RAS gene nodes (i.e. weight of all edges

incident to these nodes) make up 40% of the total weight of the module. The average

degree of RAS gene nodes is higher than the rest of the gene nodes in module 6

(1354.64:1333.614, RAS:non-RAS).

West et al. (2001), (the authors of the original analysis of this dataset), made

available the top 100 genes found to be most discriminatory (DS genes) between

ER+ and ER- 6 (based on a Bayesian regression model). Of these, five DS genes

were found in modules 6 and 9, while seven DS genes where found in Module 10.

From an analysis of the edges in the bi-partite graph, the RAS genes in Module

6 were responsive in either ER+LN- or ER-LN+ samples7. Fig. 6.14 shows the

pattern of expression of RAS genes across the subset of samples (ER+LN- or ER-

LN+) in Module 6. The genes in these modules did not discriminate between ER+

and ER- tumors, (because the technique was applied to a graph which contained

edges for both induction and repression).

6ER+ Estrogen Receptor positive samples, which ER- represents Estrogen Receptor negative
samples

7ER+LN- represents Estrogen Receptor positive and Lymph Node negative samples, which ER-
LN+ represents Estrogen Receptor negative and Lymph Node positive samples
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Figure 6.14: Pattern of coherent expression (i.e. induced or repressed coherently)
of genes involved in RAS protein signalling pathway in module 6 found in the West
dataset, across a subset of 37 samples in which change of expression was identified.
Each of the 37 samples were either ER+LN- or ER-LN+.
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6.4.2 Yeast Datasets

There are a core set of genes in yeast that are transcribed under numerous stress-

ful conditions, representing a general yeast response set (Mager and Kruijff, 1995;

Ruis and Schuller, 1995). The Gasch dataset represents a compendium of gene re-

sponse in yeast under a variety of stressful conditions8. The structure of the modules

found in this dataset is presented in Fig. 6.15. Again, a hierarchical organisation

is indicated, where Module 2 is a super-module, containing nodes from all other

modules, i.e. the general stress response. The genes in Module 2 where found to be

responsive under a wide variety of samples.

The most significant GO term associations for genes in modules found in the

Gasch dataset are given in Table 6.6 (all terms identified with p < 0.01). The wide

range of GO terms found illustrates the large scale effect of stress conditions on

gene expression in yeast cells. (Note that although Module 2 is a superset of all

other modules significant GO terms can alter between module 2 and other mod-

ules found, due to the nature of the hypergeometric test.) Genes in Module 1,

with known function, are mainly involved in fatty acid metabolism, while genes in

Module 4 are associated both with these and also with cell wall organisation and

modifications. GO terms identified in Module 3 largely intersect those of Module

2, however a large percentage of genes are also significantly over-represented in

cellular macromolecule and protein metabolic processes.

Genes which are responsive to stress can also be isolated to a particular stressful

condition. For instance, 22 genes were found to be responsive in the heat-shock (25◦

to 30◦) samples of the Gasch dataset (HS genes). All of these genes where members

8Heat Shock, Hydrogen Peroxide treatment, Menadione exposure, Diamide treatment, DTT Ex-
posure, Hyper-osmotic shock, Hypo-osmotic shock, Amino acid starvation, Nitrogen depletion,
Stationary phase, Steady state growth on alternative carbon sources. Each represent time course
experiments.
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(a) Modules 1, 2 and 3 (b) Modules 1, 2 and 4

(c) Modules 1, 3 and 4 (d) Modules 2, 3 and 4

Figure 6.15: Overlap between modules in the Gasch dataset.
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1 2 3 4
Lipid Metabolic Proces 15 20
Fatty Acid Metabolic Process 6 7
Cell Wall Organisation and Biogenesis 17
Ergosterol Biosynthetic Process 20 6
Carboxylic acid metabolic process 20
tRNA aminoacylation for protein translation 5 12 11
Secretion 38 29
Secretory pathway 13 11
Intracellular transport 62 38
Cellular localisation 67 53
Amino acid activation 12 11
Ergosterol biosynthetic process 12 10
Vesicle-mediated transport 35
Steroid biosynthetic process 5 11 10 6
Sterol metabolic process 12 10
Post-Golgi vesicle-mediated transport 12
ER to Golgi vesicle-mediated transport 12
External encapsulating structure organization and biogenesis 26
Protein amino acid glycosylation 11
Glycoprotein metabolic process 11
Macromolecule localization 37 30
Protein import 13
Nitrogen compound metabolic process 38
Cellullar lipid metabolic process 24
Vaculor Transport 10
Macromolecule biosynthetic process 49
Cellular macromolecule metabolic process 76
Protein metaboic process 74
% 25% 48% 64% 21%

Table 6.6: Significant GO associations in modules found in the Gasch dataset.
These where identified via a hypergeometric test. All annotations have p-value
< 0.01
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of Module 3 (subset of Module 2) only. Notably, the application of sudden heat

shock elicited large and rapid alterations in the expression of these genes before

they returned to a steady state, Fig 6.16. From an examination of the underlying bi-

partite graph, the HS genes where identified in samples 2, 3, 4 and 6 (10 mins, 15

mins, 20 mins and 40 mins respectively) of the heat shock samples. Thus, this rapid

alteration in gene expression is captured in the bi-partite graph, translated to the

one-mode graph and captured in modules by GraphCreate. Notably, the HS genes

are also a subset of genes found to be activated in the stationary phase, Fig. 6.17.

Interestingly, the HS genes were not identified as significantly responding under

any other conditions. This relationship between HS and stationary phase genes was

also identified by Gasch et al. (2000).

As a second example from the Gasch dataset, 130 genes which are responsive

under nitrogen depletion were found in Module 4 (ND genes). From an examination

of the underlying bi-partite graph, the ND genes were identified across all time

points in the experiment (1hr, 2hr, 4hr, 8hr, 12hr, 1day, 2 day, 3 day, 5 day), Fig.

6.18. Notably, this condition elicited a large response in the later stages of nitrogen

depletion, Fig. 6.18.

The most significant GO terms associated with the modules in the Spellman

(Yeast Cell Cycle) dataset are given in Table 6.7, (all 41 modules not shown).

Clearly, there are distinct modules associated with (i) rRNA processing and ribo-

some assembly, and (ii) protein catabolic processes, (a similar distinction between

rRNA processing and protein catabolic processes was found in a study by Carlson

et al. (2006) of yeast cell cycle data). These processes are fundamental processes in

the general function of the cell. The pattern of GO terms associated with many of

the modules is unique, indicating a unique relationship between genes in individual

modules. For instance, Modules 2 and 34 both have strong associations with rRNA
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6432

Module 3 subset

Bi-partite Graph

Figure 6.16: Responsive genes to heat shock (25◦ to 30◦) in the Gasch dataset.
These genes showed a rapid change in expression in the early stages, which was
captured in the bi-partite graph, projected into one-mode graph and grouped into
module 3 by GraphCreate.
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Figure 6.17: Responsive HS genes in stationary phase in the Gasch dataset. Genes
which showed a rapid change in expression in heat shock where also identified as a
subset of those changing in stationary phase.

processing and ribosome assembly. However, Module 34 also has a strong associ-

ation with Organelle ATP synthesis coupled electron transport, Metabolic process

and Alcohol metabolic process suggesting a possible relationship between genes

involved in these and those involved in rRNA processing and ribosome assembly.

Patterns of gene expression are shown in Fig. 6.19, for selected modules. In

these examples, Module 22 is the smallest, with genes coherently expressed in 22

samples (out of a possible 82), 12 of which are from the cdc15 strained based time

course experiment9. (There are 37 cdc15 time-points in the Spellman dataset in to-

tal.) Module 12 is the largest with genes showing coherent expression in 47 samples

(out of a possible 82). Again, 29 of the samples were cdc15 based, which repre-

9The Spellman yeast cell cycle experiment is a compendium of time course experiments based on
four synchronisation methods: alpha factor (DBY8724), elutriation-chamber (DBY7286), cdc15-2
(DBY8728), Cln3 and Clb2 (DBY8725, DBY8726).
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1hr 2hr 4hr 8hr 12hr 1d 2d 3d 5d0.5hr

Time

Figure 6.18: Responsive genes to nitrogen depletion found in module 4 in the Gasch
dataset. These genes showed a rapid change in expression in the later stages of the
time series.
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sents the majority. However, the entire elutriation-chamber time course was rep-

resented in this module, (there are 10 elutriation-chamber experiment time-points

in the Spellman dataset in total). Additionally, 24 of the 33 samples in Module 37

are cdc15 based, while Module 14 has representative samples from all time-course

experiments.

6.4.3 Overall Summary of Modules Found

It is clear from the evaluation of modules found in the test datasets that significant

groups of genes are found by the GraphCreate algorithm. To avoid the misleading

results arising from overlaps of associations at different levels of the GO ontology

tree, a ‘conditional’ hypergeometric test was used in all cases, whereby the leaves of

the GO graph were tested first, before terms with children previously tested with all

genes annotated at significant children removed from the parent’s gene list, (Falcon

and Gentleman, 2007). Regardless, strong associations were found in each dataset,

which agreed with published findings, e.g. RAS signal transduction pathway in

West dataset. When examining the Gasch dataset, it was insightful to observe how

each specific stressful condition affected groups of genes found by GraphCreate,

and how the patterns of expression for these genes where repeated across stressful

conditions.

A drawback of projecting a gene expression bi-partite graph into one-mode is

of course the loss of sample information. However, once a module of genes is dis-

covered to be important, it is trivial to search the bi-partite edge-set to highlight

those samples for which these gene nodes are coherently expressed. This analysis

was carried out on one-mode graphs, projected from bi-partite graphs that con-

tained both induced and repressed genes, with the intention of capturing groups of
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 cdc cdc cdc cdc cdc cdc elu clb alpha elu elu elu cdc cdc cdc cdc cdc cdc cdc cdc

(a)

 cdc cdc cdc cdc clb elu cln alpha elu elu elu cdc cdc alpha cdc cdc cdc cdc alpha

(b)

 cdc cdc cdc cdc cdc cdc elu clb alpha elu elu elu cdc cdc cdc cdc cdc cdc cdc cdc

(c)

cdc cdc cdc elu elu cln  alpha cdc cdc cdc cdc cdc cdc cln  clb  cdc clb  elu   cdc cdc

(d)

Figure 6.19: Expression pattern of Spellman dataset modules 12, 14, 22 and 37,
captured by GraphCreate.
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coherently expressed genes. This could easily be adapted to analyse induced or re-

pressed genes, simply by projecting the appropriate induced or repressed bi-partite

graph (see Chapter 5).

There is a hierarchical structure to the groups found (overlap of modules), which

was also suggested in work by Ravasz et al. (2002) on metabolic networks. This

structure arises from the power-law distribution of the gene nodes, and it was ob-

served that gene nodes involved in overlaps of modules have a higher degree within

the modules than those nodes not not included in overlaps. All this suggests that

genes which ‘connect’ distinct modules either affect or are affected by a number of

sub-groups of genes with membership in one module only.

6.5 Summary

In this chapter, we developed a general technique for weighted gene co-expression

network construction that can be applied to gene expression datasets based on a

bi-partite model, developed in Chapter 5. Microarray-based experiments of gene

expression allow for a detailed survey of gene expression across a wide range of

experimental samples. An advantage of using the bi-partite model as a basis include

the fact that relationships in the gene co-expression network are based on a subset

of these samples.

A thorough investigation of the gene co-expression network was carried out

using important network concepts. This investigation uncovered many important

organisational properties in these network not evident in the corresponding ran-

dom networks of similar size and degree distribution. Chief amongst these was the

increased probability that high density cliques, (measured through the clustering

coefficients), in the gene co-expression networks together with the finding that the
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node degree followed a power-law distribution.

An algorithm, GraphCreate, was developed for identification of modules of

coherently expressed genes, based on considering nodes with high neighbourhood

overlap, (our investigations also indicate that this is more likely in real gene co-

expression networks). A module of gene nodes identifies those genes which form a

common functional group. A scoring scheme for modules was developed, whereby

the weight of a module is a direct consequence of the significance of expression

of all genes in that module, (i.e. the weights of the edges are scaled based on

other genes in the module). This innovative scoring scheme takes into account the

samples under which the genes are co-regulated.

GraphCreate was used to find modules of gene nodes in gene co-expression

graphs constructed. Our analysis demonstrates that significant functional groups

of genes, which are co-active across a subset of experiments, are identified within

the gene co-expression networks by GraphCreate. These results were corroborated

from various published papers.

We carried out this analysis on a one-mode graph, obtained from a bi-partite

all-in-one graph, containing information on both induced and repressed genes, to

identify genes which were co-activated coherently. For if induced or repressed

gene expression patterns are only required, this investigation can easily be adapted

by projecting only the bi-partite subgraph which encodes the required category,

(see Chapter 5). For instance, if only strongly induced genes where desired, the

strongly-induced bi-partite graph would be projected. This is a powerful method

of analysis which allows the researcher to analyse patterns of gene expression at

different granularities if desired.
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CHAPTER 7

OVERALL DISCUSSION AND FUTURE

WORK

7.1 Goals of this Thesis

Understanding the interactions of genes expressed in a cell is critical to elucidat-

ing how biological organisms function. In this work efforts were concentrated on

identifying these interactions through clustering (unsupervised) techniques to high-

light meaningful patterns of gene co-regulation. The hypothesis is that genes which

show co-regulated will be grouped together, indicating shared functionality, hence

clusters defined at gene level represent biological modules.

The main goals of this thesis have been to: (i) investigate common unsupervised

clustering methods and their applicability to gene expression data, (ii) extensively

examine the properties of the gene expression data (iii) develop a robust solution

to the computational analysis of gene expression data, and (iv) test the solution

proposed for diverse datasets.

The view that clustering methods are universally applicable is a common mis-

conception and has provoked controversy among practitioners, (Levsky and Singer,

2003; Shendure, 2008). While traditional global clustering techniques are popular,
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biological theory supports the view that bi-clustering methods offer better inter-

pretation in terms of data features and local structure. Limitations of commonly-

used algorithms are well documented in the literature, while adoption of new (and

hybrid) techniques has been slow among practitioners of microarray experiments

and would be catalysed by transparent guidelines and increased availability in spe-

cialised software and public dataset repositories.

This work attempts to provide a new framework for analysis of gene expression

analysis, which include:

• An numerical assessment of the performance of common unsupervised clus-

tering methods and applicability of associated assessment measures.

• Adoption of graphical and statistical theory concepts to achieve an extensive

examination of the properties of gene interactions over a diverse range of

datasets, chosen reflect a range of experimental designs, platforms, sizes and

objectives.

• Drawing on biological theory to develop a data dependent probabilistic model

for weighting gene-sample interactions in bi-partite graph structures.

• Construction of a gene expression network from an underlying bi-partite

graph, whereby nodes are connected in the gene expression network, if the

corresponding genes are significantly co-expressed across a subset of samples

in the bi-partite graph, reflecting local gene interactions.

• Using information of properties of gene interactions, development of GraphCre-

ate, which identifies local structures of interaction among genes in a gene co-

expression network. Development of a scoring scheme whereby the weight

203



of each module is a consequence of the significance of expression among all

genes in that module.

7.2 Summary and Conclusions

We summarise a number of findings related to this work as follows:

1. The set of assessment measures for biological data is incomplete, with omis-

sions for assessment metrics for overlapping local structures. Careful consid-

eration of the compatibility of a particular assessment measure and clustering

algorithm is required. Many assessment measures exhibit biases towards a

particular algorithm or number of clusters. Internal measures by themselves

may not be suitable for gene expression data, and validation through external

measures, (although continued development of public annotation databases

and metrics is required), is optimal.

2. Using classical network analysis tools, organisational structure was found

in bi-partite graphs. To our knowledge, this is the first time basic network

analysis techniques for bi-partite graphs have been applied to the analysis of

gene expression. Clustering coefficients, cc, were obtained for gene and sam-

ple node sets individually with cc of gene nodes found, unsurprisingly, to be

much larger than that for sample nodes, due to the large disparity in average

degree between sets. Consideration of the minimum clustering coefficient

measure removes the bias of nodes with larger neighbourhood, and reveals

there more subtle, local interactions in the data. We examined the size of the

neighbourhood intersections for genes, and found that, genes react more co-

herently in larger neighbourhoods than expected by chance. An examination
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of the gene node degree distribution of the extracted graphs suggests that, for

large gene sets, it is well-approximated a Normal distribution. However, the

size of the sample node set for most datasets is relatively low, so that degree

distribution is less easy to establish and appears to depend on the observed

data itself.

3. The issue of data-dependent threshold estimation for the identification of

edges is non-trivial, as numerous thresholds need to be assessed, which is

computationally expensive.This work is important as it directly addresses the

problem transformation of gene-sample couples into edges of a graph, and as-

sociated edge-weights, and has shown that it is critical to successful analysis

of gene expression and extraction of meaningful patterns. This transforma-

tion process has received little attention in the literature.

4. Investigations into weighting schemes of gene expression networks is often

overlooked. Comparison analysis of the empirical-based scheme with the

well know Tanay et al. (2002) scheme, has shown that the edge weight-

ing scheme itself deserves careful consideration. Presented an analysis un-

der four major properties, parameter influence, robustness, reuseability and

discrimination and found that our new empirical based scheme outperforms

the Tanay scheme, capturing subtleties in the data, by selecting ‘interesting’

gene-sample couples in a data dependent manner and based on relative val-

ues. The new empirical based scheme presented is more specific in that fewer

gene-sample couples are identified than in the Tanay scheme.

5. This investigation one-mode gene co-expression networks uncovered many

important organisational properties in these network not evident in corre-

sponding random networks of similar size and degree distribution. Amongst
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these was the increased probability that high density cliques, (measured through

the clustering coefficients), in the gene co-expression networks. Although

gene-node degree distributions in the underlying bi-partite graph are well ap-

proximated by the Normal distribution, node degree in the gene co-expression

networks more closely follow a power-law distribution, suggesting there a

few ‘hub’ genes which connect to many other genes in the network.

6. Our analysis demonstrates that significant functional groups of genes, which

are co-active across a subset of experiments, are identified within gene co-

expression networks by GraphCreate, and these results were corroborated

from various published papers.

Gene expression analysis represents only one parameter by which cells or tis-

sues may be characterised. While clusters found at the transcript level represent

potential shared function, the ability to combine RNA and protein expression data

to comprehensively profile both transcriptional and post-transcriptional changes is

particularly appealing, and will inevitably provide a more complete picture cell

function. Although it is more difficult to identify proteins that are differentially

expressed, advances in techniques for rapid and reproducible two-dimensional gel

protein separation and mass spectrometry-based protein identification make high

throughput proteomics feasible as an adjunct to microarray gene expression anal-

ysis, (Bowtell, 1999). Consequently, it is important that accurate algorithms and

computing techniques are developed to measure and understand gene expression

data before integration with other levels.
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7.3 Future Work

Analysis in Chapter 6 was carried out on a one-mode graph, obtained from a bi-

partite all-in-one graph, containing information on both induced and repressed genes.

Future work will involve further investigation of the dynamics of gene interaction at

various levels of granularity and the framework presented in Chapter 6 can easily be

adapted by projecting only the bi-partite subgraph which encodes the required cat-

egory, (for e.g., if only strongly induced genes where desired, the strongly-induced

bi-partite graph would be projected). This method of analysis has enormous poten-

tial which allows the researcher to systematically analyse patterns of gene expres-

sion at different granularities if desired.

Throughout this thesis, care was taken to implement efficient and robust al-

gorithms. This was achieved through the R and Bioconductor platform, calling

external C functions for computationally demanding tasks. However, as with all

open-source packages, R is continously improving. There are ongoing projects de-

veloping packages for parallel computing and message passing (e.g. Rmpi (Yu,

2009)). As biological data is increasingly complicated, important packages like

these are vital to continue to successfully use this platform for Bioinformatics tasks.

This work would benefit for these ongoing projects, enabling a larger scale analysis

and yet even more thorough investigations.

Providing code developed in this work as an open-source package to the Bio-

conductor community would ensure that the algorithms and techniques would be

thoroughly examined and tested. Although implementations of popular algorithms

are sometimes available as standalone implementations, they often have clunky GUI

interfaces and particular presentation of results which cannot be directly used as

input to other statistical methods. For this reason, we have carried out this analy-
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sis using, and developed algorithms which use, command line function calls in R.

However, although a GUI has its disadvantages, (clunky and platform specific), it

also has benefits for dissemination of the technique to practitioners of microarray

experiments, and hence future work would involve a development of user interface

for this package. Continued development and addition of algorithms to this package

is part of future work.

Gene expression in the genome of a cell an extremely complex and does not

act as a predetermined system, but as a system that responds to chemical changes

in its environment. Therefore, although it is very important to study the transcrip-

tome in isolation, it can only be understood by taking the complete state of the cell

into consideration. The development of Bioinformatics/data-mining tools that span

different levels of “omics”, and which consider sequence similarity in promoter re-

gions, is a crucial next step in the investigation of gene expression and its role in

cell function.
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Glossary

Chapter 2

Array

See microarray

Base-pairing

The process by which two nucleotides become connected by hydrogen bonds. The

only permissible pairs are the nitrogenous base Adenine(A) pairing with the ni-

trogenous base Thymine(T), similar Guanine(G) pairing with Cytosine(C).

Coding-RNA (non-coding RNA)

Coding RNA refers to RNA which will be translated into a protein. Non-coding

RNA refers to RNA which carries out various essential functions in the cell.

Complementary Strand

In double stranded DNA or RNA structures, each strand is complementary to the

other in that base pairing occurs between the nitrogenous bases on each strand.

Since since each base can only pair with one other possible type of base, the com-

plementary strand can be reconstructed from any single strand.

DNA (Deoxyribonucleic Acid)

The collective term for polymers nucleotides. Each nucleotide consists of a de-

oxyribose sugar, a phosphate group and one of four nitrogenous bases; Adenine,



Guanine, Cytosine and Thymine .

End Modifications

This refers to 5’ capping, 3’ polyadenylation which are modifications made to the

mRNA strand (referred to as pre-mRNA before end-modifications) before it is trans-

lated.

Exon

DNA sequences with a gene which code for a protein.

Expression

This refers to the process of converting the information encoded in a gene sequence

to information encoded in an RNA sequence.

Gene

Sequence of DNA in the genome of a cell, which is transcribed into RNA.

Intron

DNA sequences within a gene which do not code for a protein.

Microarray

A technology which consists of glass or silicon chip with thousands of DNA oligonu-

cleotides or cDNA sequences immobilised at distinct known positions.
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Polymerase (RNA Polymerase)

An enzyme involved in DNA replication. RNA Polymerase is an enzyme involved

in the transcription of RNA from DNA.

Probes

DNA RNA segments, immobilized at distinct positions, which ‘probe’ a sample if

interest, i.e. bind to a complementary strand in a sample of interest. See also: Target

RNA (Ribonucleic Acid)

The collective term for polymers nucleotides. Each nucleotide consists of a ribose

sugar, a phosphate group and one of four nitrogenous bases; Adenine, Guanine,

Cytosine and Uracil .

Splicing

Alternative removal of mRNA coded for by introns, resulting in alternative protein

products.

Target

DNA RNA extracted from a sample of interest which is to be analysed.

Transcription

The process of realisation of the RNA coded for in the genome.

Translation

The process of realisation of the proteins coded for in the mRNA strands.
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Chapter 3

Bi-clusters

A cluster defined over a subset of attributes and subset of samples.

Cluster

A group of object which are more similar in some properties compared to groups in

other clusters.

Complete clustering

A cluster structure in which every variable and attribute are in some cluster.

Crisp Membership

An object is assigned membership of a cluster with a certainty of 1. In the case of

overlapping clusters, a cluster can be a member of ≥ 1 cluster with a membership

of 1.

Exclusive (hard) clusters

Each object is a member of only one cluster.

Feature extraction

Identifying latent features in the dataset which can differentiate groups.
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Feature selection

Selecting features of the variables most distinguishable in grouping objects.

Fuzzy Membership

An object is assigned to a cluster with a membership value which indicates the as-

sociativity with that cluster.

Global clusters

Structure in the dataset defined over all attributes and all samples.

Local structure

Structure in the dataset defined over a subset of attributes (samples) and variables

(genes).

Overlapping clusters

Two or more clusters which contain common objects.

Partial clustering

A clustering structure found in the dataset where every variable and attribute are in

a cluster.
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Chapter 4

Assessment

Formative in nature which is ongoing and used to improve process. It is also diag-

nostic, i.e. identify areas for improvement.

Cluster Validation

The process of determining the correctness of grouping genes in a cluster, and of

the cluster structure overall.

Cophenetic Distance

This refers to how similar two objects have to be in order to be grouped together

in the same cluster. The cophenetic correlation measure, measures the correlation

between the cophenetic distance matrix and the distance matrix.

Evaluation

Summative in nature which is final and used to gauge quality. Judgemental i.e. ar-

rive at an overall grade/score.

Validation

The process of evaluating techniques and determining suitability based on statisti-

cal evidence and/or meeting user needs and requirements.
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Chapter 5

All In One Graph

A bipartite graph, G = (>,⊥, E) which contains independent subgraphs from all

subcategories, i.e. weak repressed GwkR = (>wkR,⊥wkR, EwkR), moderate re-

pressedGmodR = (>modR,⊥modR, EmodR), strong repressedGstrR = (>strR,⊥strR, EstrR),

weak inducedGwkI = (>wkI ,⊥wkI , EwkI), moderate inducedGmodI = (>modI ,⊥modI , EmodI),

strong induced GstrI = (>strI ,⊥strI , EstrI), such that {>} = {>wkR ∪ >modR ∪

>strR ∪>wkI ∪>modI ∪>strI}, {⊥} = {⊥wkR ∪⊥modR ∪⊥strR ∪⊥wkI ∪⊥modI ∪

⊥strI}, {E} = {EwkR ∪ EmodR ∪ EstrR ∪ EwkI ∪ EmodI ∪ EstrI}.

Bipartite Graph

A graph, G = (>,⊥, E), is considered to be bipartite if there are two disjoint

subsets of vertices, >, ⊥, and there is no edge between two vertices in the same

subset. A gene expression dataset can be modelled in this way, where > vertices

represent genes and ⊥ vertices represent samples. An edge wij ∈ W is the weight

matrix, were wij 6= 0 if there is an edge between i ∈ > and j ∈ ⊥.

Clustering Coefficient

Clustering Coefficient refers to a measure of the degree of sharing of neighbour-

hoods among nodes.

Degree

Degree of a node refers to how many edges are incident to the node.

Density

Density of a graph refers to the number of edges in the graph proportional to the

total possible number of edges.

Edge
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An edge connects two nodes/vertices in a graph. Each pair node can be connected

by an edge, referred to as a complete graph, or a subset of nodes can be connected

referred to as a partial graph.

Edge-Weight

Value assigned to an edge in a graph which can have various interpretations depend-

ing on the problem, e.g. distance, cost, length, capacity. In the problems represented

in this thesis the weights represent significance of expression.

Node

Graphs comprise of a set of fundamental units, referred to as nodes. These nodes

are the connecting points for edges in the graph. Nodes of the graph have vari-

ous interpretations depending on the problem. In this thesis nodes represent genes

and/or samples in the gene expression dataset under consideration.

Node Neighbourhood

The neighbourhood of a node, i, refers to the set of nodes an i has a connection to.

One-mode Graph

A graph, G = (V,E), is considered to be in one mode if an edge can exist between

any two vertices, v ∈ V . A gene expression dataset can be modelled in this way

where vertices in the graph represent genes and an edge exists between two gene

vertices if they show common expression (e.g. measured as a distance function).

One-Mode Projection

A bipartite graph can be projected to a one-mode graph. Two nodes in a bi-partite

graph are linked in a one mode projection if they have a sample neighbour in com-

mon, A bipartite graph is either projected with the > set of nodes, or the ⊥ set of

nodes.

Random Graph
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A random graph is a graph in which properties such as the number of vertices, edges

and/or connections between are determined randomly.

Vertex

Also known as /textitnode, see above
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APPENDIX A

DISTANCE AND ASSESSMENT

METRICS

Distance Formulas

Minkowski Distance

This is a measure of distance in euclidean space. The Minkowski distance of order

p between two points of n dimension, (x1, x2, . . . , xn) and (y1, y2, . . . , yn), is:

p norm dis =

(
n∑

i=1

|xi − yi|
) 1

p

(A.1)

Of special interest arise when p = 1 (Manhattan distance), p = 2, (Euclidean

distance), and p =∞, (Chebychev distance).

Correlation distance

Correlation measures the linear relationship between two variables. Pearson’s Cor-

relation is defined as:
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rxy =

n∑

i=1

(xi − x)(yi − y)

(n− 1)sxsy
(A.2)

where:

• x and y are two data points of n-dimension.

• sx and sy are the standard deviations of data points x and y respectively.

• x and y are the mean values of x and y respectively.

Spearman’s correlation is a non-parametric correlation measure, where xi and

yi are converted to rankings. It is defined as:

ρ = 1−
6

n∑

i=1

d2i

n(n2 − 1)
(A.3)

where:

• di = xi − yi = the difference in ranks.

An alternative non-parametric measure is Kendal’s tau:

τ =
nc − nd

n(n− 1)/2
(A.4)

where:

• nc is the number of concordant pairs, i.e. pairs ordered the same way

• nd is the number of discordant pairs i.e. pairs ordered differently
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Assessment measures

Average Distance (AD)

AD =
1

NP

N∑

i=1

P∑

`=1

1

n(Ki,0)n(Ki`)


 ∑

i∈Ki,0,j∈Ki,`

dist(i, j)


 (A.5)

where:

• Ki,0 represents the cluster containing observation i using the original cluster-

ing (based on all available data),

• Ki,` represents the cluster containing observation i where the clustering is

based on the dataset with column ` removed.

Average Distance between Means (ADM)

ADM =
1

NP

N∑

i=1

P∑

`=1

(
dist(xKi,`

, xKi,0

)
(A.6)

where:

• xKi,0
is the mean of the observations in the cluster which contain observation

i, when clustering is based on the full data,

• xKi,`
is the mean of the observations in the cluster containing observation i

where the clustering is based on the dataset with column ` removed

Average Proportion of non-overlap (APN)

APN =
1

NP

N∑

i=1

P∑

`=1

(
1− n(Ki,` ∈ Ki,0)

n(Ki,0)
)

)
(A.7)

where:
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• Ki,0 represents the cluster containing observation i using the original cluster-

ing (based on all available data),

• Ki,` represents the cluster containing observation i where the clustering is

based on the dataset with column removed.

C-Index, (Hubert and Schultz, 1976)

CI =
S − Smin

Smax − Smin

where S = the sum of the distances over all pairs of patterns from the same

cluster. Let that number of patterns in a cluster = l, then Smin is the sum of the l

smallest distances if all pairs of distances are considered, similarly Smax is the sum

of the l largest distances. Hence, a small CI indicates a good clustering.

Connectivity, (Handl et al., 2005)

Conn =
N∑

i=1

L∑

j=1

xi,nni(j)
(A.8)

where:

• nni(j) is the jth neighbour of observation i.

• xi,nni(j)
is 0 is both i and nni(j) are in the same cluster, otherwise xi,nni(j)

is

1/j.

• L is an input parameter which determines the number of neighbours that con-

tribute to the measure.
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Cophentic correlation

COPH =

∑

i<j

(xij − x)(zij − z)

√∑

i<j

(xij − x)2
∑

i<j

(zij − z)2

(A.9)

where:

• Z is a symmetric matrix of size N × N , where, for a hierarchical clustering,

each entry (zij)of the matrix indicates the level at which genes i and j where

put into a cluster together.

• X is the original distance matrix

Davies-Bouldin Index, (Davies and Bouldin, 1979)

DB =
1

K

K∑

i=1

maxi 6=j(diam(Ki) + diam(Kj))

dist(Ki, Kj)
(A.10)

where:

• K = the number of clusters.

• diam(Kx), is the diameter of cluster x.

• dist(Ki, Kj) is the distance between clusters Ki and Kj .

Dunn Index, (Dunn, 1974)

Dunn = min1≤i≤K

{
min1≤j≤K,j 6=i

(
dist(Xi, Xj)

max1≤c≤Kdiam(Xc)

)}
(A.11)

where
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diam(Xi) = maxx,y∈Xi
{d(x, y)} and

dist(Xi, Xj) = minx∈Xi,y∈Yi
{d(x, y)}

(A.12)

Diam and dist can be severely affected by noisy values.

Figure of Merit

This is a measure of the predictive power of the algorithm. This measure assesses

predictive power of each sample.

FOM(e, k) =

√√√√ 1

n
×

K∑

i=1

∑

x∈Ki

(R(x, e)− µKi
(e))2 (A.13)

where:

• e = the sample that is being assessed for predictiveness

• K = the number of clusters

• n = the number of genes

• Ki = the ith cluster

• R(x,e) = the expression level of gene x in sample i.

• µKi
(e) = the average expression level in sample e of genes in cluster Ki.

The aggregate figure of merit assesses the total predictive power of the algorithm

over all the samples for K clusters.
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FOM(k) =

p∑

e=1

FOM(e, k) (A.14)

This figure is biased towards larger number of clusters, due to the fact that (a)

smaller clusters will tend to be more homogenous and (b) increasing the number of

clusters will decrease the FOM(e,k) equation. The FOM equation can be adjusted

to account for (b), see Yeung et al. (2001) for details.

FOM(e, k)adjusted = FOM(e, k)/

√
n−K
n

(A.15)

Rand Index

The rand index is the proportion of concordant gene pairs in two partitions of a gene

expression matrix, (two genes are concordant if they appear in the same cluster in

both partitions or different clusters in both partitions) Rand (1971).

Rand1 =
a+ d

a+ b+ c+ d
(A.16)

where:

• a = the number of pairs of genes which are in the same cluster in both parti-

tions

• b = the number of pairs of genes which are in different clusters in both parti-

tions

• c = the number of pairs of genes which are in the same cluster in partition 1

and different clusters in partition 2
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• d = the number of pairs of genes which are in different clusters in partition 1

and different clusters in partition 2

This can be standardised to an expected value of zero if the partitions are ran-

domly generated and takes a maximum value of 1 if the partitions are perfectly

correlated (Randadjusted), Hubert and Arabie (1985).

SD-Validity Index

This index is composed of the average Scattering of the clustering (measures the

variance/compactness of the clusters)and the total Separation of the clustering (dis-

tance between cluster centres).

Average scattering of the clustering is given by:

Scatt =
1

nc

nc∑

i=1

∥∥∥∥
σ(vi)

σ(vx)

∥∥∥∥ (A.17)

and Separation is given by:

Dis =
maxi,j=1...nc(‖vj − vi‖)
mini,j=1...nc(‖vj − vi‖)

nc∑

k=1

(
nc∑

j=1,k 6=j
‖vj − vk‖

)−1

(A.18)

and the SD-Validity index is defined to be:

SD = α · Scatt+Dis (A.19)

where:

• α is a weighting factor which is equal to the total separation of the maximum

number of input clusters.
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Silhouette Width

For each observation i, the Silhouette Value is:

S(i) =
bi − ai

max(bi, ai)
(A.20)

where:

• ai is the average distance between i and all other observations in the same

cluster.

• bi is the average distance between i and all observations in the nearest neigh-

bouring cluster.

The Silhouette Width of a cluster is the average of the silhouette values of each

observation.

Sil =
1

N

N∑

i=1

S(i) (A.21)

Xie-Beni Index, (Xie and Beni, 1991)

XB =

∑

i∈N

∑

j∈K
u2
ij · d2(Xi, Kj)

n ·mini,jd2(Ki, Kj)
(A.22)

where:

• u2
ij is the membership of gene i to cluster j.

• d2(Xi, Kj) is the distance between i and cluster j centroid.
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APPENDIX B

DATASETS

Alizadeth - Lymphoma data

The dataset downloaded from http://llmpp.nih.gov/lymphoma/data.

shtml, and contains data pertaining to the seminal paper of Alizadeh et al. (2000).

The dataset consists of 4026 genes and 96 samples. It represents data from

a two-colour spotted array. The available values are ratio values that were log-

transformed (base 2). The available data were centered by subtracting (in log space)

the median observed value for each gene, (Alizadeh et al., 2000)

Alon - Colon Cancer

The dataset was downloaded from http://microarray.princeton.edu/

oncology/affydata/index.html, which contains data pertaining to a colon

cancer study by Alon et al. (1999).

The dataset contains measurements for 2000 genes across 62 samples (40 tumor

samples, 22 normal tissue samples). An oligonucleotide array was used and the

available data represented raw intensity values (i.e. unprocessed). The data was

log transformed and scaled to have mean 0 and standard deviation of one for each
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sample.

Cho - Yeast Cell Cycle

Data was downloaded from: http://genomics.stanford.edu/yeast_

cell_cycle/full_data.html. The purpose of this experiment data was the

characterization of mRNA levels during the cell cycle of the yeast Saccharomyces

cerevisiae.

The dataset contains 6601 genes and across 17 time points. The downloaded

dataset was normalized between timepoints with respect to each other, and repre-

sents information from 4 chips. The provided values for each of the 17 time points

data for each gene are the normalized fluorescence between 0 and 160 minutes

after cell cycle initiation from time 0. Data was normalized similar to the tech-

nique used in: http://www.nature.com/ng/journal/v22/n3/full/

ng0799_281.html.

Gasch Dataset - Yeast Stress

Dataset was retrieved from http://genome-www.stanford.edu/yeast_

stress/data.shtml and contains measurements of mRNA from an experi-

ment monitoring yeast expression under various stressful conditions.

The data contains 6, 152 genes under 173 samples. The available data represents

normalized, background-corrected log2 values of the Red/Green ratios measured on

spotted DNA microarrays. Details of materials and methods can be found at http:

//genome-www.stanford.edu/yeast_stress/materials.pdf
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Golub - Leukemia data

The dataset was downloaded from http://www.broad.mit.edu/cgi-bin/

cancer/publications/pub_paper.cgi?mode=view&paper_id=43.

and contains data pertaining to an experiment to monitor human acute leukemia’s

by Golub et al. (1999).

The dataset consists of 7129 genes across 72 samples, and represents unpro-

cessed data. The data was processed according to technique outlined in Dudoit

et al. (2002)

Hsiao data - Human tissue

Data was downloaded from http://www.biotechnologycenter.org/hio/

databases/index.html, (HuGE Index) and represents a compendium of gene

expression data for normal human tissues, (Hsiao et al., 2001).

The dataset represents 7,070 genes over 59 samples. As the data is from a

collection of sources the units of expression level are arbitrary. All data was pro-

cessed by the curators identically so that data can be compared across samples

and tissues, (see http://www.biotechnologycenter.org/hio/faq/

index.html).

Spellman - Yeast Cell cycle.

Data downloaded from http://genome-www.stanford.edu/cellcycle/

data/rawdata/, complementing the work of Spellman et al. (1998). The dataset

represents processed measurements from various experiments, with the aim to to

identify all genes whose mRNA levels are regulated by the cell cycle in the yeast
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Saccharomyces cerevisiae.

The dataset contains 6,178 genes across 82 sample points ( and includes analysis

of Cho et al. (1998) data). Spotted two cDNA arrays were used and details of

materials and methods can be found at: http://www.molbiolcell.org/

cgi/content/full/9/12/3273#MaterialsMethods.

Stegamaier - Kasumi data

Raw data was downloaded from http://www.broad.mit.edu/cgi-bin/

cancer/publications/pub_paper.cgi?mode=view&paper_id=117.

and pertains to myeloid differentiation in acute leukemia. The data represents HL-

60 and Kasumi-1 cells treated in replicates of 3 with getinib at 10 µM or DMSO,

and RNA was prepared at 6 and 24 hours for hybridization to Affymetrix U133A

microarrays. (Stegmaier et al., 2005)

The dataset contains 22,283 probes over 22 samples and represented unpro-

cessed values. The data was log transformed and scaled to have mean 0 and stan-

dard deviation of 1 across samples. Detail of materials and methods can be found

at above url.

West - Breast Cancer

The data was downloaded from http://data.cgt.duke.edu/west.php.

It contains data resulting from an experiment to analyse gene expression assays

from breast cancer tissue, with the aim of identifying potential prognostic and/or

predictive factors.

It contains 7,129 probes for 49 samples. The collection of tumors for RNA
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extraction consisted of 13 estrogen receptor (ER) + lymph node (LN) + tumors,

12 ER−LN+ tumors, 12 ER−LN− tumors and 12 ER+LN− tumors. The level of

RNA transcripts was measured using oligonucleotide array’s (HuGeneFL Genechip

array). The data was processed by scaling to have mean 0 and standard deviation of

one. The data was log transformed.

Synthetic Dataset - Repeated Measures

The following functions were used to create the 11 groups in the synthetic repeated

measures dataset. A 12th group containing random data was also created.
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1 Treatment effect on group 1, group 2 and group 3 similarly but to dif-

ferent levels.

2 Affect first individual in each group differently from others individuals

3 Affects each individual in similar way across treatment groups, apart

from 3rd treatment group

4 Affects treatment groups 1 and 3 similarly, has no effect on 2nd treat-

ment group (random numbers)

5 Affects treatment groups 1 and 3 in opposite way, has no effect on 2nd

treatment group (random numbers)

6 Affects 4 individual in treatment groups 1 and 2 and 3 individuals in

group 3. Affects each treatment of an individual equally not the same

across treatment groups were it affects the last treatment of each indi-

vidual differently.

7 Affects 4 individuals in groups 1 and 2; 2 individuals in group 3. Affects

each treatment of individuals differently.

8 Affects only individuals in group 1, affects each treatment of an indi-

vidual equally.

9 Affects first individual in each treatment group only, affects each treat-

ment equally.

10 Affect each treatment, affects all individuals of each treatment equally.

11 Linear combination of groups 2 and 10, such that j = (g23 + g10)/10

Noise Random
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Synthetic Dataset - Time Series

The following functions were used to create the 11 groups in the synthetic time

series dataset. For sine wave functions, y(t) = A.sin(ω × t + θ), ω × t = fre-

quency, θ = phase shift. t1 = time-series one, t2 = time-series two. A 12th group

containing random data was also created.

T1 T2

1 ω = 2× pi/5, θ = −10 ω = 2× pi/10, θ = −10

sin(2× 3.14159× 1:30
5 − 10) sin(2× 3.14159× 1:30

10 − 10)

2 ω = 2× pi/5, θ = +10, A = 1, ω = 2× pi/10, θ = +10,

sin(2× 3.14159× 1:30
5 + 10) sin(2× 3.14159× 1:30

10 + 10)

3 group 1 + group 2

4 A = 0.4, ω = 2× pi/20, θ = +0 random

0.4× sin(2× 3.14159× 1:30
20 ) + 0.6

5 A = 1.5, ω = 2× pi/40, θ = +10

1.5× sin(2× 3.14159× 1:30
20 + 10)

6 A = 1, ω = 2× pi/40, θ = +10 random

sin(2× 3.14159× 1:30
40 + 10)

7 A = 0.8, ω = 2× pi/10, θ = +0 A = 1, ω = 2× pi/3, θ = +0

0.8× sin(2× 3.14159× 1:30
10 ) sin(2× 3.14159× 1:30

3 )

8 (i,j)→ i = j
15 (i,j)→ i = −j15

9 (i,j)→ i = j2

1000 (i,j)→ 0.5

10 random A = 2, ω = 2× pi/40, θ = +20

2× sin(2× pi× (1 : 30)/40 + 20) + 0.5

11 (group 7 + group 8)/10

Noise random
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Chapter 4 - Method Analysis

Hierarchical Clustering - Internal Analysis
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Figure C.1: Hierarchical Assessment (Single) using Internal measures. The x-axis
indicates the cluster number while the y-axis indicates the score achieved obtained.
The majority of indices for ‘real’ datasets remain constant across all K, however
the Cho and Stegmaier datasets reveal information.
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Figure C.2: Hierarchical Assessment (Average) using Internal measures. The x-axis
indicates the cluster number while the y-axis indicates the score achieved obtained.
Similarly to all linkage methods, the Silhouette index is < 0 for real datasets, indi-
cating a bad clustering.
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Figure C.3: Hierarchical Assessment (Complete) using Internal measures. The x-
axis indicates the cluster number while the y-axis indicates the score achieved ob-
tained. The Dunn index indicates a better clustering in Synthetic datasets compared
to ‘real’ datasets.
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Figure C.4: Hierarchical Assessment (Ward) using Internal measures. The x-axis
indicates the cluster number while the y-axis indicates the score achieved obtained.
As with all linkage methods, the SD-Validity index increases with K, (small values
indicate a better clusterings.)
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Figure C.5: Hierarchical Assessment using C-Index. The x-axis indicates the clus-
ter number while the y-axis indicates the score achieved obtained. Contrary to other
assessment metrics, this index indicates a better structure in the ‘real’ datasets com-
pared to Synthetic (small values indicate a better clustering).260
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Figure C.6: Hierarchical Assessment (single linkage) using AD,ADM, APN and
FOM stability Measures. The x-axis indicates the cluster number while the y-axis
indicates the score achieved obtained.
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Figure C.7: Hierarchical Assessment (average linkage) using AD, ADM, APN and
FOM stability Measures. The x-axis indicates the cluster number while the y-axis
indicates the score achieved obtained. The APN index reveals a marked deteriora-
tion in stability with the Cho dataset as the value of K increases. AD and FOM
indices reveal little information.

262



2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 10 15

0
5

10
15

20

AD−Validity Index

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
a a a a a a a

a a a a a a a a a

b b

b b
b b

b b b b
b b b b

b b

2
3
5
6
a
b

Alon
Cho
Golub
Hsiao
Synth1
Synth2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

5 10 15

0
1

2
3

4
5

ADM−Validity Index

3
3

3
3

3 3 3 3 3 3 3 3 3 3 3 3

5

5
5 5 5 5 5 5 5 5 5 5 5 5 5 5

6

6
6

6 6 6 6 6
6 6 6 6 6 6 6 6

a

a
a

a
a a a

a a a a a a
a a a

b

b
b

b
b

b

b

b
b

b

b
b

b b

b
b

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

APN−Validity Index

3

3

3

3

3
3 3 3 3 3 3 3 3 3 3 3

5

5

5

5
5

5
5 5 5 5 5 5 5 5 5 5

6

6

6

6
6 6 6 6 6 6 6 6 6 6 6 6

a

a
a

a
a a a

a a a a a a a a a

b

b

b
b

b
b

b
b

b
b

b b b b

b b

2
3
5
6
a
b

Alon
Cho
Golub
Hsiao
Synth1
Synth2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 10 15

0.
0

0.
5

1.
0

1.
5

FOM−Validity Index

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 56 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

a a a a a a a a a a a a a a a a

b
b

b
b b

b b
b

b
b

b b b b b b

Figure C.8: Hierarchical Assessment (complete linkage) using AD, ADM, APN
and FOM stability Measures. The x-axis indicates the cluster number while the
y-axis indicates the score achieved obtained.
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Figure C.9: Hierarchical Assessment (Ward linkage) using AD, ADM, APN and
FOM stability Measures. The x-axis indicates the cluster number while the y-axis
indicates the score achieved obtained. The APN values in Ward and Complete
linkage increase exponentially with K, compared to a linear increase observed with
Single and Average linkage.
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Hierarchical Clustering - External Analysis
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Figure C.10: Hierarchical Assessment (Single and Complete linkage) using Bio-
logical Homogeneity and Biological Stability Measures . The x-axis indicates the
cluster number while the y-axis indicates the score achieved obtained.
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Figure C.11: Hierarchical Assessment (Average and Ward linkage) using Biological
Homogeneity and Biological Stability Measures . The x-axis indicates the cluster
number while the y-axis indicates the score achieved obtained. The BSI stability
indices exponentially decrease in Ward and Complete linkage, while the linearly
decrease with Single and Average linkage.
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KMeans - Internal Analysis
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Figure C.12: K-means Assessment using Internal measures. The x-axis indicates
the cluster number while the y-axis indicates the score achieved obtained. Better
clustering are obtained for the Synthetic datasets when assessed with Dunn met-
ric (larger values preferred). Again, SD-Validity increases with K (smaller values
preferred).

267



1

1

1

1
1

1 1 1 1
1

1

1

1
1

4 6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

C−Index

2
2

2

2

2 2
2 2

2
2 2 2

2

3 3
3 3

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4
4 4 4

4
4 4

5
5

5
5 5 5 5 5

5

5

5 5

5
6

6 6 6
6 6

6 6 6 6 6 6 67
7

7 7
7 7 7 7 7 7

7 7
7

8
8

8

8

8

8
8 8 8 8

8

8
8

9
9 9 9

9
9

9 9 9
9 9 9 9

a

a

a

a

a

a a

a

a

a

a

a
a

b
b

b

b
b

b

b

b

b

b

b

b

b

1
2
3
4
5
6
7
8
9
a
b

Aliz
Alon
Cho
Gasch
Golub
Hsiao
Steg
Spell
West
Synth1
Synth2

1
1

1 1
1

1
1

1
1

1 1

1 1

4 6 8 10 12 14

0
50

0
10

00
15

00
20

00

Connectivity

2
2

2 2

2
2 2 2 2

2 2
2 2

3

3
3

3

3
3 3

3 3
3 3 3

3

4 4

4
4

4

4
4

4

4 4
4

4

4

5

5 5
5

5
5 5

5

5

5

5 5 5

6
6

6
6 6

6 6 6
6 6

6 6 6

7
7

7 7
7

7

7
7

7
7

7
7

7

8

8 8

8

8 8

8 8 8 8 8

8

8

9

9

9

9

9

9

9

9

9

9

9

9 9

a
a a

a a

a
a

a

a

a a

a a

b

b

b b

b

b

b b b
b

b

b
b

1
2
3
4
5
6
7
8
9
a
b

Aliz
Alon
Cho
Gasch
Golub
Hsiao
Steg
Spell
West
Synth1
Synth2

Figure C.13: K-means Assessment using Internal measures c-index and connec-
tivity. The x-axis indicates the cluster number while the y-axis indicates the score
achieved obtained.
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KMeans - Stability Analysis
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Figure C.14: K-means Assessment using Stability measures. The x-axis indicates
the cluster number while the y-axis indicates the score achieved obtained.
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Figure C.15: SOTA Assessment using Internal measures. The x-axis indicates the
cluster number while the y-axis indicates the score achieved obtained.
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Figure C.16: SOTA Assessment using Internal measure - c-index. The x-axis indi-
cates the cluster number while the y-axis indicates the score achieved obtained.

271



SOTA - Stability Analysis
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Figure C.17: SOTA Assessment using Stability measures. The x-axis indicates the
cluster number while the y-axis indicates the score achieved obtained.
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Chapter 5

Node Degree -Bipartite SubGraphs

wk Repres

Degree

F
re

qu
en

cy

1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0
10

00

mod Repres

Degree

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

20
0

25
0

str Repres

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
10

20
30

40
50

60

wk Induc

Degree

F
re

qu
en

cy

1 2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00

mod Induc

Degree

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

20
0

25
0

str Induc

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
10

20
30

40
50

60

(a) Alizadeth Data

wk Repres

Degree

F
re

qu
en

cy

1 2 3 4 5

0
20

0
40

0
60

0
80

0

mod Repres

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
50

10
0

15
0

20
0

str Repres

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
20

40
60

wk Induc

Degree

F
re

qu
en

cy

1 2 3 4 5 6

0
10

0
30

0
50

0
70

0

mod Induc

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
50

10
0

15
0

20
0

str Induc

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
20

40
60

(b) Alon Data

wk Repres

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
20

40
60

80
10

0

mod Repres

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
5

10
15

20

str Repres

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
5

10
15

wk Induc

Degree

F
re

qu
en

cy

1.0 1.4 1.8

0
20

0
40

0
60

0
80

0

mod Induc

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
5

10
15

20

str Induc

Degree

F
re

qu
en

cy

0.0 0.4 0.8

0
5

10
15
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Figure C.18: Gene Degree Distribution of Alizadeth, Alon, Cho and Gasch sub-
graphs
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(d) Stegmaier Data
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Figure C.19: Gene Degree Distribution of Golub, Hsiao, Spellman, Stegmaier and
West subgraphs 274
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Figure C.20: Sample Degree Distribution of Alizadeth, Alon, Cho and Gasch sub-
graphs
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Figure C.21: Sample Degree Distribution of Golub, Hsiao, Spellman, Stegmaier
and West subgraphs 276
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Figure C.22: Degree Distribution of Alizadeth, Alon, Cho and Gasch datasets
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Figure C.24: Degree Distribution of Alizadeth, Alon, Cho and Gasch datasets
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datasets 280



Degree Distribution One Mode

●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●

●

●●●●

●●●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●

0.0 0.5 1.0 1.5 2.0 2.5

−
2.

5
−

2.
0

−
1.

5
−

1.
0

Node Degree Distribution

log10(d)

lo
g1

0(
p(

d)
)

(a) Alizadeth Data

●
● ●

● ● ●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●●●

●

●●

●●●●

●●

●

●●

●

●

●●●●●● ●

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

Node Degree Distribution

log10(d)

lo
g1

0(
p(

d)
)

(b) Alon Data

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Node Degree Distribution

log10(d)

lo
g1

0(
p(

d)
)

(c) Cho Data

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●

●

●●

●●

●●●●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●●●

●●

●●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●●

●●●

●

●

●

●

●●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●●●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●●

●●

●●●●

●

●●●

●●●

●

●●●

●

●●●●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●●

●●

●●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●●

●●●

●●

●●

●

●●●

●

●●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●●

●●

●

●

●●●●

●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●●●●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●●●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3.

0
−

2.
5

−
2.

0
−

1.
5

Node Degree Distribution

log10(d)

lo
g1

0(
p(

d)
)

(d) Gasch Data

Figure C.26: Degree Distribution of Alizadeth, Alon, Cho and Gasch datasets
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(b) Hsiao Data
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Figure C.27: Degree Distribution of Golub, Hsiao, Spellman, Stegmaier and West
datasets 282



List of Publications:

Kerr G., Ruskin H. J., Crane M., Doolan P. (2007), Techniques for Clustering Gene

Expression Data, Computers in Biology and Medicine, Nov 30, 2007.

Kerr G., Ruskin H.J. and Crane M., Pattern Discovery in Gene Expression Data,

in Wang, H.F. (Ed), Intelligent Data Analysis: Developing New Methodologies

Through Pattern Discovery and Recovery, Idea Group Publishing Ltd, 2008, ISBN

978-1599049823.

Kerr G., Perrin P., Ruskin H. J., Crane M. (Accepted Manuscript) Edge Weighting

of Gene Expression Graphs, Advanced Complex Systems.



Computers in Biology and Medicine 38 (2008) 283– 293
www.intl.elsevierhealth.com/journals/cobm

Techniques for clustering gene expression data

G. Kerr∗, H.J. Ruskin, M. Crane, P. Doolan
Biocomputation Research Lab (Modelling and Scientific Computing Group, School of Computing) and National Institute of Cellular Biotechnology,

Dublin City University, Dublin 9, Ireland

Received 11 July 2006; accepted 5 November 2007

Abstract

Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However,
choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take
account of the data profile. This review paper surveys state of the art applications which recognise these limitations and addresses them. As
such, it provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly.
Selected examples are presented for clustering methods considered.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Gene expression; Clustering; Bi-clustering; Microarray analysis

1. Introduction

Searching for meaningful information patterns and depen-
dencies in gene expression (GE) data, to provide a basis for
hypothesis testing, is non-trivial. An initial step is to cluster
or “group” genes, with similar changes in expression. Lack of
a priori knowledge means that unsupervised clustering tech-
niques, where data are unlabeled (un-annotated), are common
in GE work. These are an exploratory techniques and assume
that there is an unknown mapping that assigns a group “label”
to each gene, where the goal is to estimate this mapping. How-
ever, common clustering approaches do not always translate
well to GE data, and may fail significantly to account for data
profile.

Many excellent reviews of GE analysis, using clustering tech-
niques, are available. Asyali et al. [1] provide a synopsis of
class prediction and discovery (respectively, supervised pattern
recognition and clustering), while Pham et al. [2] provide a
comprehensive literature review of the various stages of data
analysis during a microarray experiment. In a landmark paper
Jain et al. [3] provide a thorough introduction to clustering, and
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E-mail address: gkerr@computing.dcu.ie (G. Kerr).

0010-4825/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiomed.2007.11.001

give a taxonomy of clustering algorithms (used in this review).
Reviewing the state of the art in GE analysis is complicated
by the high level of interest in the field, and the many tech-
niques available. This review aims to evaluate modifications
to currently used techniques which address shortcomings of
conventional approaches and special properties of GE data.

GE data are typically presented as a real-valued matrix, with
row objects corresponding to GE measurements over a num-
ber of experiments, and columns corresponding to the pattern
of expression of all genes for a given microarray experiment.
Each entry, xij , is the measured expression of gene i in ex-
periment j. Dimensionality of a gene refers to the number of
its expression values recorded (number of matrix columns). A
gene/gene profile x is a single data item (row) consisting of
d measurements, x = (x1, x2, . . . , xd). An experiment/sample
y is a single microarray experiment corresponding to a single
column in the GE matrix, y = (x1, x2, . . . , xn)

T where n is the
number of genes in the dataset.

Accuracy of GE data strongly depends on experimental de-
sign and minimisation of technical variation, whether due to
instruments, observer or pre-processing [4]. Image corruption
and/or slide impurities may lead to incomplete data [5]. Many
clustering algorithms require a complete matrix of input val-
ues, so imputation (missing data estimation) techniques need
to be considered before clustering. GE data are intrinsically
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noisy, resulting in outliers, typically managed by: (i) robust
statistical estimation/testing (when extreme values are not of
primary interest) or (ii) identification (when outlier information
is of intrinsic importance [6]. As cluster analysis is usually
exploratory, lack of a priori knowledge on gene groups or their
number, K, is common. Arbitrary selection of this number may
undesirably bias the search, as pattern elements may be ill-
defined unless signals are strong. Meta-data can guide choice
of correct K, e.g. genes with common promoter sequence are
likely to be expressed together and thus are likely to be placed
in the same group. Methods for determining optimal number
of groups, K, are discussed in [7,8].

Clustering a GE matrix can be achieved in two ways: (i) genes
can form a group which show similar expression across con-
ditions and (ii) samples can form a group which show similar
expression across all genes. Both (i) and (ii) lead to global clus-
ters, where a gene or sample is grouped across all dimensions.
However, genes and samples can be clustered simultaneously,
with their inter-relationship represented by bi-clusters. These
are defined over a subset of genes and a subset of samples thus
capturing local structure in the dataset. This is a major strength
of bi-clustering as cellular processes are understood to rely on
subsets of genes, which are co-regulated and co-expressed un-
der certain conditions and behave independently under others
[9]. Justifiably, this approach has been gaining much interest
of late. For an excellent review on bi-clusters and bi-clustering
techniques see [10].

Additionally, clustering can be complete or partial, where
the former assigns each gene to a cluster, and the latter does
not. Partial clustering tends to be more suited to GE, as the
dataset often contains irrelevant genes or samples. This allows:
(i) “noisy genes” to be left out, with correspondingly less impact
on the outcome and (ii) genes to belong to no cluster—omitting
a large number of irrelevant contributions. This is important as
microarrays measure expression for the entire genome in one
experiment, but genes may change expression independent of
the experimental condition (e.g. due to stage in the cell cycle).
Forced inclusion (as demanded by complete clustering) in well
defined but inappropriate groups may impact final structure
found for the data. Partial clustering thus avoids the situation
where an interesting sub-group in a cluster is obscured through
forcing membership of unrelated genes.

Finally, clustering can be categorised as exclusive (hard) or
overlapping. Exclusive clustering requires each gene to belong
to a single cluster, whereas overlapping clusters permit genes
simultaneously to be members of numerous clusters. An addi-
tional qualification is crisp and fuzzy membership. Crisp mem-
bership is boolean—either the gene belongs to a group or not.
In the case of fuzzy membership, each gene belongs to a clus-
ter with a membership weight between 0 (definitely excluded)
and 1 (definitely included). Clustering algorithms, which per-
mit genes to belong to more than one cluster are typically more
applicable to GE since: (i) impact of “noise” is reduced—the
assumption is that “noisy” genes are unlikely to belong to any
one cluster but are equally likely to be members of several;
(ii) this supports the underlying principle that genes, with sim-
ilar change in expression for a set of samples, are involved in

a similar biological function. Typically, gene products that are
involved in several such biological functions and groups need
not be co-active under all conditions. Thus gene groups are
fluid and constraining a gene to a single group (hard cluster) is
counter-intuitive.

Cluster analysis includes several basic steps [3]. Initially, the
data matrix is represented by number, type, dimension and scale
of the GE profiles. Some features are set experimentally, others
are controllable (e.g. scaling, imputation, normalisation, etc.).
An optional step of feature selection or feature extraction may
also be carried out. The former refers to selecting, from the
original features, a subset, which is most effective for clustering,
while the latter refers to transformation of the input features to
form a new set that may be more discriminatory in clustering,
e.g. through principal component analysis.

Pattern proximity assessment is needed, usually provided by
a “distance” measure between pairs of genes. (Alternatively,
“conceptual” measures can be used to characterise similarity of
gene profiles, e.g. Mean Residue Score of Cheng and Church
(see Section 2)). The next step is to apply a clustering algorithm
to determine structure in the dataset. Methods can be broadly
categorised according to taxonomy [3].

Those structures are then described by data abstraction. For
GE data, the context is usually direct interpretation by a human,
so abstraction should ideally be straightforward (for follow-
up analysis/experimentation). A compact description of each
cluster, through a prototype or representative selection of points,
such as the centroid, is usually required Clusters are valid if they
cannot reasonably be achieved by chance or as an artefact of
the clustering algorithm. Validation requires formal statistical
testing, and can be categorised as: (i) internal, (ii) external
or (iii) relative. The focus here is on proximity measures and
clustering algorithms, within the wider analysis context.

2. Clustering methods

Analysis of large GE datasets is a relatively new task, al-
though pattern recognition of complex data is well established
in a number of fields. Many common generic algorithms have,
in consequence, been adopted for GE data (e.g. hierarchical
[11], SOMs [12] and others), but not all perform well. A good
method must deal with noisy high dimensional data, be in-
sensitive to the order of input, have moderate time and space
complexity (i.e. allow increased data load without breakdown
or requirement of major changes), require few input parame-
ters, incorporate meta-data knowledge (an extended range of
attributes) and produce results, which are interpretable in the
biological context.

2.1. Pattern proximity measures

The choice of proximity measure, needed to evaluate
degree of expression coherence in a group of gene vectors, is
as important as choice of clustering algorithm, and is based on
data type and context of the clustering. Many clustering algo-
rithms either employ a proximity matrix directly (e.g. hierarchi-
cal clustering) or use one to evaluate clusters during execution
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(e.g. K-Means). Proximity measures are calculated between
pairs (e.g. Euclidean distance) or groups of genes (e.g. Mean
Residue Error).

Distance functions between two vectors include the so-called
Minkowski measures (Euclidean, Manhattan, Chebyshev [13])
useful when searching for exact matches between two profiles
in the dataset. These tend to find globular structures and work
well when these are compact and isolated. A drawback is that
the largest feature dominates, so measures are sensitive to out-
liers [3]. However, more sophisticated variants, such as Maha-
lanobis distance, also account for correlations in the dataset and
are scale-invariant [13]. Different distance measures produce
clusters of different shape (e.g. Euclidean are spherical, while
Mahalanobis’ are ellipsoidal). Alternatively Kim et al. [14]
describe an adaptive distance norm (the Gaustafson–Kessel
method). Here co-variances are estimated for the data in each
cluster (based on eigenvalue calculations) to obtain structure.
Each cluster is then created using a unique distance measure.

Distances based on correlations reflect degree of similarity
of changes in expression across samples, for two GE profiles,
without regard to scale. For example, if, for a set of sam-
ples, gene X is up-regulated, and gene Y is down-regulated,
i.e. are correlated, then X and Y would form a cluster. This
would clearly not be the case if Minkowski distances were used,
since the average absolute distance between the points would
be large. Correlation coefficients include both parametric (stan-
dard Pearson, cosine) and non-parametric (Spearman’s rank
and Kendall’s �), the latter used when outliers and noise are
present [13]. In general, distance = 1 − correlation2, if sign is
unimportant.

As an alternative to measures of distance, “conceptual” mea-
sures of similarity can be used. Models are based on constant
rows, columns and coherent values (additive or multiplicative),
[10] (Fig. 1). A “good fit” indicates high correlation within a
sub-matrix (thus a possible cluster). These models are com-
mon to several clustering algorithms. For example, Cheng and
Church [15] and Flexible Overlapped biclustering (FLOC) [16]
use the additive model (Fig. 1(C)), to evaluate bi-clusters ob-
tained by determining the Mean Residue Score. Given a GE
matrix A, the residue of an element aij in a sub-matrix (I, J )

is given by the difference rij = (aij − aiJ − aIj + aIJ ), where
aij , aiJ , aIj and aIJ are the sub-matrix value, the row, column
and group mean, respectively. The “H-score” of the sub-matrix
is then the sum of the residues, given by

H(I, J ) = 1

|I ||J | �
i∈Ij∈J

(rij )
2. (1)

A perfect bi-cluster gives a H-score equal to zero (correspond-
ing to “ideal” GE data, with constant additive matrix rows and
columns).

The Plaid Model [17] bi-cluster variant builds the GE matrix
as a sum of layers, where each layer corresponds to a bi-cluster.
Each value aij is modelled by aij = ∑K

k=0�ijk�ik�jk , where
K is the layer (bi-cluster) number, and �ik and �jk are binary
variables representing membership of row i and column j in
layer k. The value of an element in the GE matrix can be
modelled as a linear function of the contributions of the different

bi-clusters to which the row i and the column j belong (Fig. 2)
[17]. For layer k, expression level �ijk can be estimated using
the general additive model, �ijk = �k + �ik + 	jk in layer k
(Fig. 1(C)).

For the coherent evolution model the exact values of xij are
not directly taken into account, but a cluster is evaluated to see
if it shows coherent patterns of expression. In simplest model
form, each GE value can have three states: up-regulation, down-
regulation and no change. Thresholds between states are crucial
and additional complexity results from extending model defi-
nitions to include further states such as “slightly” up-regulated,
“strongly” up-regulated and so on, e.g. Statistical Algorithmic
Method for Bi-Cluster Analysis (SAMBA) [18].

Other measures used to evaluate coherency of a group
of genes include conditional entropy: H(C|X) = − ∫ ∑m

j=1
p(cj |x)log p(cj |x)p(x) dx (the average uncertainty of the
random variable C (cluster category), when a random vari-
able X (GE profile) is known). The optimal partition of the
GE dataset is obtained when this entropy is minimised, i.e. a
partition where each gene is assigned with a high probability
to only one cluster [19]. This requires the estimation of the
a posteriori probabilities p(cj |x), usually by non-parametric
methods, as this avoids assumptions on the distribution of the
underlying GE data [19].

Pattern proximity measures described so far make no dis-
tinction between time-series data and those obtained from ex-
pressions of two or more phenotypes. Applying similarity mea-
sures to time-series data is not straightforward. Gene expres-
sion time series have non-uniform intervals and are usually
very short (4–20 samples while classically even 50 observations
are low for statistical inference), further data are not indepen-
dently, identically distributed. Similarity in time series should
be viewed only in terms of similar patterns in the direction of
change across time points, while robust measures must allow
for non-uniformity, in addition to scaling and shifting problems,
and shape (internal structure of clusters) [20].

Each algorithm described below by definition relies on some
choice of proximity measure and inherits the limitations of that
choice.

2.2. Agglomerative clustering

All agglomerative techniques naturally form a hierarchical
cluster structure in which genes have a crisp membership.
Eisen et al. [11] studied GE in the budding yeast, Saccha-
rmyces cerevisiae, using hierarchical methods which have been
popularised due to ease of implementation, visualisation ca-
pability and availability. Methods vary with respect to choice
of distance metric, decision on cluster merging, (linkage), as
well as parameter selection affecting structure and relationship
between clusters. Options include: single linkage (cluster sepa-
ration as distance between two nearest objects), complete link-
age (as previously, but between two furthest objects), average
linkage (average distance between all pairs), centroid (distance
between centroid’s of each cluster) and Ward’s method (which
minimises ANOVA Sum of Squared Errors between two
clusters) [21].
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Fig. 2. Plaid Model GE values at overlaps are seen as a linear function of different bi-clusters.

Distance and linkage determine level of sensitivity to noise:
Ward’s and Complete method are particularly affected (due to
the ANOVA basis and outlier importance respectively, since
clustering decisions depend on maximum distance between two
genes). Single linkage forces cluster merger, based on minimum
distance, regardless of other gene contributions to the cluster,
so noisy or outlying values are among the last to be considered.
Consequently, the “chaining phenomenon” may arise [13]. For
commonly used average and centroid linking this problem is
avoided as no special consideration is given to outliers and
clusters are based on highest density.

Results for agglomerative clustering may be intuitively pre-
sented by dendograms but there are 2n−1 different linear order-
ings consistent with tree structure, so care is needed in pruning.
Dendrogram analysis, based on gene class information from
specialised databases is presented in [22], where optimal cor-
relations are obtained between gene classes and used to form
clusters from different branch lengths. In [23] authors present

an agglomerative technique for which each internal node has
at most N children, allowing up to N genes (or clusters) to be
directly connected (extending traditional hierarchical concepts
and reducing the effects of noise). Permutation is used to decide
on the number of nodes (max N) to merge, based on a sim-
ilarity threshold. Heuristically, algorithm complexity is com-
parable to traditional hierarchical clustering [23], although the
authors also present a “divide and conquer” approach for op-
timal leaf ordering for small N, which has implications of
increased time and space complexity.

It should be stated that such methods cannot, in general,
compensate for the greedy nature of the traditional algorithm,
where misclustering at the beginning cannot be corrected at a
later stage and are magnified as the process continues. Further,
Yeung et al. [24] and Gibbons and Roth [25] note that hier-
archical clustering performance is close to random, despite its
popularity and is poorer than other common techniques such
as K-means and self-organising maps (SOM).
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2.3. Partitive techniques

Partitive clustering divides data by similarity measure, where
typical methods measure distance from a gene vector to a pro-
totype vector representing the cluster, and intra-cluster/inter-
cluster distance are, respectively, maximised and minimised. A
major drawback is the need to specify the number of clusters
in advance. Table 2 summarises algorithms discussed here.

K-means produces crisp clusters with no structural relation-
ship between these [26]. It deals poorly with noise, since out-
liers must belong to a cluster and this distort the means. Equally,
cluster inclusion is dependent on the cumulative values of genes
already present, so order matters. Results are dependent on
initial cluster prototype (which varies between clustering at-
tempts); this leads to instability and, frequently, to a local min-
imum solution. Incremental approaches to refine local minima
solutions close towards a global solution include the Modified
Global K-means (MGKM) algorithm [27], which computes k-
partitions of the data using k − 1 clusters from previous itera-
tions. A tolerance threshold must be set which determines the
number of clusters indirectly, and, as with regular K-means,
returns spherical clusters. For the six datasets reported [27], the
MGKM algorithm showed slight improvement over K-means,
but at higher computational time cost.

The prevalence of local minima for K-means is linked to ini-
tial prototype selection. Genetic algorithms (GAs), as an evolu-
tionary approach, work well for small datasets (less than 1000
gene vectors and of low dimension), but have prohibitive time
constraints for anything larger, so are less desirable for GE anal-
ysis. Although GAs find the global optimum, they are sensitive
to user defined input parameters and must be fine tuned for each
specific problem. Studies which have combined K-means and
GA include Incremental Genetic K-Means Algorithm (IGKA)
[28]. This is a hybrid approach which converges to a global
optimum faster than stand alone GA, and without the sensitiv-
ity to initialisation prototypes. The fitness function for the GA
is based on Total Within Cluster Variance (TWCV), while the
basis of the algorithm is to cluster centroids incrementally, us-
ing a standard similarity measure. The GA method requires the
number of output clusters, K, to be specified, but is further com-
plicated by inherent GA parameters (mutation probability rate,
number of generations, size of the chromosome populations,
etc.), which influence time taken by the algorithm to converge
to a global optimum.

Fuzzy modifications of K-means include Fuzzy C-Means
(FCM) [29] and Fuzzy clustering by Local Approximations of
MEmberships (FLAME) [30]. In both, genes are assigned a
cluster membership degree indicating percentage association
with that cluster, but the two algorithms differ in the weight-
ing scheme used to determine gene contribution to the mean.
For a given gene, FCM membership value of a set of clusters
is proportional to its similarity to cluster mean. The contribu-
tion of each gene to the mean of a cluster is weighted, based
on its membership grade. Membership values are adjusted it-
eratively until the variance of the system falls below a thresh-
old. These calculations require the specification of a degree of
fuzziness parameter which is problem specific [29]. As with

K-means, clusters are unstable, and considerably influenced by
initial parameter values, while K, the number of clusters, must
be specified a priori. In contrast FLAME requires member-
ship of a cluster, i, to be determined by the weighted similarity
of the gene to its K-nearest neighbours, and their membership
of cluster i. This density-based approach further reduces noise
impact, since genes with a density lower that a pre-defined
threshold are categorised as outliers, and grouped with a ded-
icated “outlier” cluster. FLAME produces stable clusters, but
the size of the neighbourhood and the weighting scheme used
affect K (as above) and clustering achieved. For both FCM
and FLAME, genes may have multiple and varied degrees of
membership, but interpretation differs. FCM and FLAME use
averaging, where each gene contributes to the calculation of a
cluster centroid, and its overall membership value set sums to
1 (i.e. gene-cluster probability). Thus strong membership for a
given gene does not indicate it to be more typical of the cluster,
but rather relative strength of its individual association [31].

Table 1 illustrates for three clusters. For FCM carried out on
published yeast genomic expression data [32], results are avail-
able at http://rana.lbl.gov/FuzzyK/data.html.
Membership values for genes B and D are very different for
cluster 21, although both are approximately equidistant from
the centroid of the cluster. Similarly genes C and D have com-
parable membership values for cluster 4, but gene C is more
typical (closer to the centroid) than gene D. With similar cen-
troid distances, membership values for gene B in cluster 21
is smaller than that of gene A in cluster 46. These anomalies
arise from the membership sum constraint, which decreases
gene membership in one cluster to increase it in another. List-
ing genes in a cluster based on membership values is therefore
counter-intuitive and does not reflect their compatibility with
the cluster, but rather how they are shared between clusters.
Similarly for FLAME, as the memberships are weighted rela-
tive to the K-nearest neighbours, a low membership value in-
dicates a high degree of cluster sharing among these and not a
more typical value of a given cluster. This interpretative flaw
was recognised by Cano et al. [33], who developed the pos-
sibilistic biclustering algorithm, which removes the sum rule
restriction. The authors used spectral clustering principles [34]
to create from the original GE matrix, a partition matrix, Z,
to which possibilistic clustering is applied. The resulting clus-
ters were evaluated using the H -score (Eq. (1)), and improved
on traditional techniques. The algorithm requires, inter alia,
two specific parameters, namely cut-off membership for (i)
gene inclusion and (ii) a sample inclusion in a cluster. In this
case, these cut-offs are intuitively reasonable as membership
does indicate how typical a gene/sample is to a defined clus-
ter, and not the degree to which it is shared between clusters
(Table 2).

2.4. Neural networks

Neural networks (NN), loosely based on the biological
parallel, can be modelled as a collection of nodes with weighted
interconnections. Only numerical vectors are processed,
so meta-information cannot be included in the clustering
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Table 1
Membership of a gene and distance to cluster centroid, as calculated by Euclidean distance

GID Cluster 4 Cluster 21 Cluster 46

Centroid dist. Mem. Centroid dist. Mem. Centroid dist. Mem.

A 10.691 0.002575 8.476 0.002002 3.864 0.482479
B 6.723 0.009766 3.855 0.009341 6.33 0.007381
C 6.719 0.007653 5.29 0.00515 8.024 0.005724
D 7.725 0.007609 3.869 0.01782 6.279 0.010249

Table 2
Summary of partitive techniques

Cluster mem. Input Proximity Other

K-means Hard Starting prototypes, Pairwise Very sensitive
stopping distance to input parameters
threshold, K and order of input

MGKM Hard Tolerance threshold Pairwise Not as sensitive to
distance starting prototypes

K specified through
tolerance threshold

IGKA Hard K , mutation prob. TWCV Time taken to
generation number, converge to global
population size influenced by parameters

FCM Fuzzy Degree of fuzziness Pairwise Careful interpretation
starting distance of membership values.
prototypes, stop Sensitive to input parametres
threshold, K and order of input

FLAME Fuzzy Knn—number of Pairwise Careful interpretation
neighbours distance of membership

to Knn values. Output
neighbours determined by Knn

Possibilistic Fuzzy Cut-off memberships, H -score Number of bi-clusters
biclustering max. residue, number of rows determined when quality

and number of columns function peaks by
re-running for different
numbers of eignevalues

With the exception of FLAME and possibilistic biclustering, all find complete global clusters.

procedure. Interconnection weights are adaptively learned, i.e.
features are selected by appropriate assignment of weights. In
particular, SOMs, a type of NN, have proved popular for GE
[12,35,36]. A kernel function, which defines the region of in-
fluence (neighbourhood) for an input gene, distinguishes SOM
from K-means. Updating the kernel function causes the output
node and its neighbours to track towards the gene vector. The
network is trained (adjusting strengths of interconnections)
from a random sample of the dataset. Once training is com-
plete, all genes in the dataset are then applied to the SOM.
Cluster members, represented by output node i, are the set of
genes causing i to “fire” (hard clustering).

SOMs are robust to noise and outliers, dependent on distance
metric and neighbourhood function used. As for K-means, an
SOM produces a sub-optimal solution if the initial weights
for the interconnections are not chosen properly. Convergence
is controlled by problem-specific parameters such as learning
rate and neighbourhood function. A particular input pattern
can fire different output nodes at different iterations (while this

can be overcome by gradually reducing the learning rate to
zero during training, it can result in over-fitting, which leads to
poor performance for new data). In specifying K, based on the
number of output nodes, it should be noted that too few output
nodes in the SOM gives large within-cluster distance, while too
many results in meaningless diffusion.

The Self-Organising Tree Algorithm (SOTA) [37], Dynami-
cally Growing Self-Organising Tree (DGSOT) Algorithm [38]
and, more recently, Growing Hierarchical Tree SOM (GHT-
SOM) [39] were developed to combine strengths of NN (i.e.
speed, robustness to noise) and hierarchical clustering (i.e. tree
structure output, minimum a priori requirement for number of
clusters specification and training) to deal with properties of GE
data. Here the SOM network is a tree structure, trained by com-
paring only leaf nodes to input GE profiles (each graph node
represents a cluster). SOTA and DGSOT result in a binary and
n-tree structure, respectively, while in GHTSOM, each node is
a triangular SOM (three neurons, fully connected), each hav-
ing three daughter nodes (also triangular SOMs) (Fig. 3). Tree



G. Kerr et al. / Computers in Biology and Medicine 38 (2008) 283–293 289

Data Data

Fig. 3. Self-organising tree structures: (A) SOTA. A binary tree structure. Neighbourhood of adaption indicated for (i) node with sibling, (ii) node with no
sibling. (B) DGSOT. N-ary tree structure. Neighbourhood of adaption indicated when L = 2. (C) GHTSOM. Each node represented by triangular SOM. Each
layer indicated with line styles (three layers shown).

growth strategy determines K. At each iteration of SOTA the
leaf node with the highest degree of heterogeneity is split into
two daughter cells. In the DGSOT case, the correct number of
daughters (nd �2) is determined dynamically by starting off
with two and continually adding one until cluster validation
criteria are satisfied. To determine nd, a method was proposed
[38], based on geometric characteristics of the data (specifi-
cally, cluster separation in the minimum spanning tree of the
cluster centroids). For this an empirical threshold, �, value must
be specified (the authors propose 0.8). In SOTA and DGSOT,
growth of the tree continues until overall heterogeneity crosses
a threshold, 	, or until all genes map onto a unique leaf node.
The DGSOT method uses average leaf distortion to determine
	 for growth termination. While for SOTA, this threshold is
determined by re-sampling, with system variability defined to
be the maximum distance among genes mapped to the same
leaf node. By comparing distances between randomised data
and those of the real dataset, a confidence interval and distance
cut-off are obtained. In GHTSOT, growth occurs if a neuron is
activated if a sufficient number of inputs map to it (i.e. at least
three or a user defined number, 	) which determines the reso-
lution of the system. Growth continues as long as there is one
neuron in the system which can grow. The advantage of these
methods over most partitive techniques is that K is not pre-
determined, but depends indirectly on the threshold, 	, which
is data dependent.

SOTA, DGSOT and GHTSOM differ from typical hierar-
chical clustering algorithms in terms of adaption. This occurs
once a gene is mapped to a leaf node, but the neighbourhood of
the adaptation is more restrictive than for SOM. DGSOT also
overcomes the misclustering problem of the traditional hierar-
chical algorithm, SOTA and GHTSOM, by specification of an-
other input parameter, L—the immediate ancestor level in the
tree of a given node which is growing. DGSOT then distributes
all mapped values among the leaves of the subtree rooted at
the Lth ancestor. In GHTSOM, new nodes (after growth) are
trained using only those inputs which caused the parent node to
fire. Any neuron, which shows low activity, is deleted, and its
parent is blocked from further growth. This has the advantage
that inputs mapping to leaf neurons at the top of the hierarchy
are usually noise, and clearly distinguishable from relevant bi-
ological patterns (Table 3).

2.5. Search based

Solutions for a criterion function are found by searching the
solution space either deterministically or stochastically [3]. The
former exhaustive search is of little use for high dimensional
GE analysis and, typically, heuristics are used. Simulated an-
nealing is well known and has been applied [40] using TWCV
to minimise the fitness function, E and [41] by minimising H-
score (Eq. (1)). At each stage of the process, gene vectors are
randomly chosen and moved to a new random cluster. E is
evaluated for each move and the new assignment is accepted if
E is improved or with a probability of e−(Enew−Eold)/T other-
wise. The “temperature”, T, controls readiness of the system to
accept the poorer situation by chance, enabling the algorithm
to avoid local minima. As the search continues, T is gradually
reduced according to an annealing schedule, and ultimately
achieves the global minimum, where the annealing schedule
parameters dictate performance and speed of the search. Choice
of initial temperature, Ti governs convergence time and size of
search space (increased/decreased in the case of high/low T,
respectively), and similarly for search termination (final effec-
tive temperature, TF). The user must specify the rate at which
T approaches TF, which must be slow enough to guarantee a
global minimum, as well as the number of swaps of gene vec-
tors between clusters allowed in an iteration.

To determine K, a randomisation procedure is used [40] to
determine cut-off threshold for the distance, D, between two
gene vectors in a single cluster. It is also necessary to determine
P, the probability of accepting false positives (e.g. P = 0.05).
Simulated annealing is then applied for different numbers of
clusters, until the weighted average fraction of incorrect gene
vector pairs reaches the P-value.

The algorithm of Cheng and Church [15] (adapted from
Hartigan [42]) obtains H -scores ([10], Eq. (1), Fig. 1) of the
sub-matrices of the GE matrix. This method is initialised for the
entire GE matrix and considers a sub-matrix to be a bi-cluster
if H(I, J ) < 
 for some 
�0 (user defined). Each row and
column of the original matrix is thus tested for deletion. Once
a sub-matrix is determined to be a bi-cluster, its values are
“masked” with random numbers in the initial GE matrix. Mask-
ing bi-clusters prevents the algorithm from repeatedly finding
the same sub-matrices, but there is a substantial risk that this
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Table 3
Summary of neural network techniques presented

Structure Proximity Input Other

SOM None Distance Number of Careful consideration
output neurons, of initialisation weights
learning rate

SOTA Binary tree Distance Threshold 	
DGSOT N-ary tree Distance Thresholds 	, � Corrects for

and L. misclusterings
GHTSOM Each node Distance Minimal requirement

triangular SOM, arranged — learning rate
in tree structure

replacement will interfere with the discovery of future bi-
clusters [16]. To overcome this problem of random interference,
flexible overlapped biclustering (FLOC) was developed—a
generalised model of Cheng and Church incorporating null
values [16]. FLOC constrains the clusters to both a low mean
residue score and a minimum occupancy threshold of �,
0���1 (user defined). Note: this method does not require
pre-processing for imputation of missing values. Both these
bi-clustering algorithms find coherent groups (Section 2.1) in
the data and permit overlapping.

The Plaid Model [17] (Section 2.1) assumes that bi-clusters
can be generated using a statistical model and aims to iden-
tify the parameter distribution that best fit the available data,
by minimising the error sum of squares for the kth bi-cluster
assuming that k − 1 bi-clusters have already been identified.
Explicitly, it seeks to minimise for the whole matrix: Q =
1
2

∑n
i=1

∑m
j=1(Zij −�ijk�ik�jk)

2, where Zij is the residual after

deducting k−1 previous layers (Zij =aij −∑K−1
k=0 �ijk�ik�jk).

Parameters �ijk , �ik and �jk are estimated for each layer and
for each value in the matrix, and are updated iteratively, pro-
viding refined estimates of �k , �ik and 	jk (Fig: 1(C)) and �ik

and �jk to minimise Q [17] (Table 4).
The importance of a layer is defined by 
2

k = ∑n
i=1

∑p
j=1

�ik�jk�
2
ijk . To evaluate the significance of the residual matrix,

Z is randomly permuted and tested for importance. If 
2
k is

significantly better than 
2
random, k is reported as a bi-cluster.

The algorithm stops when the residual matrix Z retains only
noise, with the advantage that the user does not need to specify
the number of clusters beforehand.

2.6. Graph theoretic methods

Graph theoretic approaches have recently gained ground in
analysing large complex datasets. The Cluster Affinity Search
Technique (CAST) [43] models data as an undirected graph,
G = (V , E), where {V, E} is the set of {vertices, edges} rep-
resenting {genes, similar expression}. The model assumes that
there is an ideal clique graph (a disjoint union of complete
sub-graphs), H = (U, E), which represents the ideal input GE
dataset, while data to be clustered are a “contamination” of the
ideal graph H by random errors. In a clique graph each clique

represents a cluster. For a pair of genes in G, the model as-
sumes that an edge/non-edge was assigned incorrectly, with a
probability of �. The true clustering of G is assumed to be that
which requires fewer edge changes to generate H. CAST uses
an affinity (similarity) measure, either binary or real valued, to
assign a vertex to a cluster. Affinity to a cluster must be above
a threshold, t (user defined which determines size and number
of clusters). The affinity of a vertex v to a cluster is the sum of
affinities over all objects currently in the cluster, so v has high
affinity with i if affinity(x) > t |i|, and low affinity otherwise.
The CAST algorithm alternates between adding high affinity
elements and removing low affinity elements, finding clusters
one at a time. The result is dependent on the order of input as
once initial cluster structure is obtained, a vertex v is moved to
that cluster for which it has a higher affinity value.

CLICK [44], builds on the work of Hartuv et al. [45],
which uses a probabilistic model for edge weighting. Pairwise
similarity measures between genes are assumed to be nor-
mally distributed: between “mates” (N(�T , �2

T )), and between
“non-mates” (N(�F , �2

F )), where �T > �F . These parame-
ters can be estimated via Expectation Maximisation methods
[46]. The weight of an edge is derived from the similarity
measure between the two gene vectors, and reflects the prob-
ability that i(∈ V ) and j (∈ V ) are mates, specifically that:

wij = log pmates�F

(1−pmates)�T
+ (Sij −�F )2

2�2
F

− (Sij −�T )2

2�2
T

. Edges with

weights below a user defined non-negative threshold are omit-
ted from the graph. The graph is partitioned using a minimum
weight cut algorithm [45].

The SAMBA method finds bi-clusters based on the coher-
ent evolution model (Section 2.1) [18]. Firstly, the GE matrix
is modelled as a bipartite graph, G = (U, V, E), where U is
the set of sample vertices, U ∩ V = � and an edge (u, v)

only exists between v ∈ V and u ∈ U iff there is a signifi-
cant change in expression level of gene v, w.r.t. to its normal
level, in sample u. Key to SAMBA is the scoring scheme for
a bi-cluster, corresponding to its statistical significance, where
a weight is assigned to a given edge (u, v) based on the log-
likelihood of getting that weight by chance [18], (log Pc

P(u,v)
> 0

for edges and log (1−Pc)
(1−P(u,v))

< 0 for non-edges). The probability
P(u,v) is the fraction of random bipartite graphs, with degree
sequence identical to G that contain edge (u, v) (and can be
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Table 4
Summary of search-based techniques presented

Proximity Deterministic/stochastic Clusters Other

SA Depends on Stochastic Depends on Specification of
application application annealing Schedule

CC Additive model Deterministic Overlapping, partial 
,
bi-clusters random interference

FLOC Additive model Deterministic Overlapping, partial � and 

bi-clusters to specify. Overcomes

random interference,
allows missing values

Plaid Additive model Deterministic Overlapping, partial Values seen as sum of
bi-clusters contributions to bi-clusters

Table 5
Summary of performance criterion of graph theoretic methods presented

Mode Proximity Search Other

CAST One mode Similarity Clique Parameters � and t. Finds global,
graph complete, crisp clusters

CLICK One mode Distribution Minimum Stat. sig. of clusters. EM to
based on weight cut estimate parameters. Finds
distance global, partial, crisp clusters

SAMBA Bi-partite Probability Heuristic Stat. sig. of clusters. Input
search of Pc difficult to define. Finds
neighbours partial overlapping bi-clusters

estimated using Monte Carlo methods). Pc is a constant prob-
ability > max(u,v)∈UxV P(u,v). Assigning these weights to the
edges and non-edges in the graph, the statistical significance
of a subgraph H can be calculated, and the K heaviest (largest
weight) sub-graphs for each vertex in G found. The authors [18]
present two ways to calculate the weight of the resulting sub-
graph. In the simpler model, bi-clusters, which reflect changes
relative to normal expression level, without considering direc-
tion of change are sought. The second model focuses on con-
sistent bi-cliques, targeting those samples which have the same
or opposite effect on each of the genes (Table 5).

3. Discussion

Despite shortcomings, application of clustering methods to
GE data has proven to be of immense value, providing in-
sight into cell regulation, as well as into disease character-
isation. Nevertheless, not all clustering methods are equally
valuable for high dimensional GE data. Recognition that well-
known, simple clustering techniques, such as K-means and
hierarchical clustering, do not capture complex local struc-
ture, has led to investigation of other options. In particular,
bi-clustering has gained considerable recent popularity. Indica-
tions to date are that these methods provide increased sensitiv-
ity at local structure level in discovery of meaningful biological
patterns.

An inherent problem with exploratory clustering is ab initio
knowledge of K, the number of clusters. Consequently, those
methods for GE analysis which do not need K specified ab
initio have an advantage. Most algorithms seek empirically to

determine this at run time, but derive complicated thresholds
that may not make sense in the context of GE data. There
is a risk that determination of these thresholds is not a one-
step process but requires testing and validation of clusters pro-
duced. While space limits a comprehensive survey of robust
cluster validation and evaluation methods here, their importance
is clear: (see [47] for a comprehensive review). A discipline
of information-driven clustering is emerging, which integrates
cluster and meta-information, [48–52]. These provide a basis
for validation, independent of the current problem and simplify
interpretation of clustering results.

4. Conclusion

Cluster analysis applied to GE data aims to highlight mean-
ingful patterns for gene co-regulation. The evidence suggests
that, while commonly applied, agglomerative and partitive tech-
niques are insufficiently powerful given the high dimensional-
ity and nature of the data. While further testing on non-standard
and diverse data sets is required, comparative assessment and
numerical evidence, to date, support the view that bi-clustering
methods, although computationally expensive, offer better in-
terpretation in terms of data features and local structure. While
the limitations of commonly used algorithms are well docu-
mented in the literature, adoption by the bioinformatic commu-
nity of new (and hybrid) techniques developed specifically for
GE analysis has been slow, mainly due to the increased algo-
rithmic complexity required. This would be catalysed by more
transparent guidelines and increased availability in specialised
software and public dataset repositories.
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Abstract

Microarray technology1 provides an opportunity to monitor mRNA levels of expression of thousands 
of genes simultaneously in a single experiment. The enormous amount of data produced by this high 
throughput approach presents a challenge for data analysis: to extract meaningful patterns, to evaluate 
its quality, and to interpret the results. The most commonly used method of identifying such patterns 
is cluster analysis. Common and sufficient approaches to many data-mining problems, for example, 
Hierarchical, K-means, do not address well the properties of “typical” gene expression data and fail, 
in significant ways, to account for its profile. This chapter clarifies some of the issues and provides a 
framework to evaluate clustering in gene expression analysis. Methods are categorised explicitly in the 
context of application to data of this type, providing a basis for reverse engineering of gene regulation 
networks. Finally, areas for possible future development are highlighted.

Introduction

A fundamental factor of function in a living cell is 
the abundance of proteins present at a molecular 

level, that is, its proteome. The variation between 
proteomes of different cells is often used to ex-
plain differences in phenotype and cell function. 
Crucially, gene expression is the set of reactions 
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that controls the level of messenger RNA (mRNA) 
in the transcriptome, which in turn maintains 
the proteome of a given cell. The transcriptome 
is never synthesized de novo; instead, it is main-
tained by gene expression replacing mRNAs that 
have been degraded, with changes in composi-
tion brought about by switching different sets of 
genes on and off. To understand the mechanisms 
of cells, involved in a given biological process, 
it is necessary to measure and compare gene 
expression levels in different biological phases, 
body tissues, clinical conditions, and organisms. 
Information on the set of genes expressed, in 
a particular biological process, can be used to 
characterise unknown gene function, identify 
targets for drug treatments, determine effects 
of treatment on cell function, and understand 
molecular mechanisms involved.  

DNA microarray technology has advanced 
rapidly over the past decade, although the concept 
itself is not new (Friemert, Erfle, & Strauss, 1989; 
Gress, Hoheisel, Sehetner, & Leahrach 1992). It 
is now possible to measure the expression of an 
entire genome simultaneously, (equivalent to the 
collection and examination of data from thou-
sands of single gene experiments). Components 
of the system technology can be divided into: 
(1) Sample preparation, (2) Array generation 

and sample analysis, and (3) Data handling and 
interpretation. The focus of this chapter is on the 
third of these.

Microarray technology utilises base-pair-
ing hybridisation properties of nucleic acids, 
whereby one of the four base nucleotides (A, T, 
G, C) will bind with only one of the four base 
ribonucleotides (A, U, G, C: pairing = A – U, 
T – A, C – G, G - C). Thus, a unique sequence 
of DNA that characterises a gene will bind to 
a unique mRNA sequence. Synthesized DNA 
molecules, complementary to known mRNA, are 
attached to a solid surface, referred to as probes. 
These are used to measure the quantity of specific 
mRNA of interest that is present in a sample (the 
target). The molecules in the target are labelled, 
and a specialised scanner is used to measure the 
amount of hybridisation (intensity) of the target 
at each probe. Gene intensity values are recorded 
for a number of microarray experiments typically 
carried out for targets derived under various 
experimental conditions (Figure 1). Secondary 
variables (covariates) that affect the relationship 
between the dependent variable (experimental 
condition) and independent variables of primary 
interest (gene expression) include, for example, 
age, disease, and geography among others, and 
can also be measured.  

Figure 1. mRNA is extracted from a transcriptome of interest, (derived from cells grown under precise 
experimental conditions). Each mRNA sample is hybridised to a reference microarray. The gene intensity 
values for each experiment are then recorded.
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An initial cluster analysis step is applied to 
gene expression data to search for meaningful 
informative patterns and dependencies among 
genes. These provide a basis for hypothesis test-
ing—the basic assumption is that genes, showing 
similar patterns of expression across experimental 
conditions, may be involved in the same underly-
ing cellular mechanism. For example, Alizadeh, 
Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, 
Sabet, Tran, Yu, Powell, Yang, Marti, Moore, 
Hudson Jr, Lu, Lewis, Tibshirani, Sherlock, Chan, 
Greiner, Weisenburger, Armitage, Warnke, Levy, 
Wilson, Grever, Byrd, Botstein, Brown, and Staudt 
(2000) used a hierarchical clustering technique, 
applied to gene expression data derived from dif-
fuse large B-cell lymphomas (DLBCL), to identify 
two molecularly distinct subtypes. These had gene 
expression patterns, indicative of different stages 
of B-cell differentiation—germinal centre B-like 
DLBCL and activated B-like DLBCL. Findings 
suggested that patients, with germinal centre B-
like DLBCL, had a significantly better overall sur-
vival rate than those with activated B-like DLBCL. 
This work indicated a significant methodology 
shift towards characterisation of cancers based 
on gene expression, rather than morphological, 
clinical and molecular variables. 

Background

The Gene Expression Dataset

Data are typically presented as a real-valued ma-
trix, with rows representing the expression of a 
gene over a number of experiments, and columns 
representing the pattern of expression of all genes 
for a given microarray experiment. Each entry xij is 
the measured expression of a gene i in experiment 
j, (Figure 1). The following terms and notations 
are used throughout this chapter:

•	 A gene/gene profile x is a single data item 
(feature vector) used by the clustering al-
gorithm. It consists of d measurements, x 
= (x1, x2, … xd).

•	 A condition y is a single microarray experi-
ment corresponding to a single column in 
the gene expression matrix, y = (x1, x2, … 
xn)

T, where n is the number of genes in the 
dataset.

•	 The individual scalar components of each 
gene vector xij represent the measured 
expression of gene i under experimental 
condition j.

Database Description URL

ArrayExpress Gene expression and hybridisation 
array data repository

http://www.ebi.ac.uk/arrayexpress/#ae-main[0]

CellMiner Data from 60 cancer cell lines based 
on Affymetrix and cDNA microarray 
data

http://discover.nci.nih.gov/cellminer

ExpressDB Collection of E. Coli and Yeast RNA 
expression datasets

http://arep.med.harvard.edu/ExpressDB/

GEO Gene expression and hybridisation 
array data repository

http://www.ncbi.nlm.gov/geo/

RAD Gene expression and hybridisation 
array data repository

http://www.cbil.upenn.edu/RAD/

SMD Extensive collection of microarray data http://genome-www.stanford.edu/microarray

Table 1. Selection of publicly available dataset repositories
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There are a number of publicly available dataset 
repositories, which contain a wealth of microar-
ray datasets2: Table 1 provides a sample of these. 
Typically, these repositories store data using the 
‘Minimum Information About Microarray Exper-
iment’ (MIAME) standard (Brazma, Hingamp, 
Quackenbush, Sherlock, Spellman, Stoeckert, 
Aach, Ansorge, Ball, Causton, Gaasterland, 
Glenisson, Holstege, Kim, Markowitz, Matese, 
Parkinson, Robinson, Sarkans, Schulze-Kremer, 
Stewart, Taylor, Vilo, & Vingron, 2001), which 
allow researchers to replicate the experiments. 
This allows analysts to compare gene expression 
data from different laboratories effectively, based 
on information about the microarrays used in 
experiments, how these were produced, samples 
obtained and mRNA extracted and labelled. Ad-
ditional information is also recorded on methods 
used to hybridise the sample, scan the image and 
normalise the data.

Characteristics of the Gene 
Expression Dataset

Choice of the appropriate clustering technique 
relies on the amount of information on the par-
ticular properties of gene expression data available 
to the analyst, and hence the likely underlying 
structure. The following data characteristics are 
typical of the gene expression dataset:

Measurement accuracy of mRNA expres-
sion levels depends on the experimental design 
and rigour. While design of experiments is not 
a specific focus of this chapter, a good design 
minimises variation and has a focused objective 
(Kerr & Churchill, 2001). Technical variation 
between microarray slides depends on numerous 
factors including experimental technique, instru-
ment accuracy for detecting signals, and observer 
bias. Biological variation may arise due to dif-
ferences in the internal states of a population of 
cells, either from predictable processes, such as 
cell cycle progression, or from random processes 
such as partitioning of mitochondria during cell 

division, variation due to subtle environmental 
differences, or ongoing genetic mutation (Raser & 
O’Shea, 2005). Pre-processing techniques attempt 
to remove technical variation while maintaining 
interesting biological variation.

Many variables, both random and fixed, 
(biological and technical), are associated with 
microarray measurements. Data is thus intrinsi-
cally noisy and outliers in the dataset need to be 
identified and managed effectively. This usually 
takes one of two forms, (i) outlier accommodation; 
uses a variety of statistical estimation or testing 
procedures, which are robust against outliers, (ii) 
identification and decision on inclusion/exclusion, 
used when outliers may contain key information 
(Liu, Cheng, & Wu, 2002). Normalisation proce-
dures applied to gene expression data (Bolstad, 
Irizarry, Astrand, & Speed, 2003), aim at minimis-
ing the effect of outliers (assuming these to be due 
to experimental variation and thus undesirable). 
Most manufacturers of microarrays, aware of 
effects of optical noise and non-specific binding, 
include features in their arrays to measure these 
directly: these measurements can be used in the 
normalisation procedures. Note: although pre-
processing methods attempt to remove all noise 
these may be only partially successful. 

Missing values are common to microarray 
data, and can be caused by insufficient resolu-
tion in image analysis, image corruption, dust 
or scratches on the slide, robotic method used to 
create the slide, and so on, (Troyanskaya, Cantor, 
Sherlock, Brown, Hastie, Tibshirani, Botstein, & 
Altman, 2001). In general, the number of missing 
values increases with the number of genes being 
measured. Many clustering algorithms, used for 
gene expression data, require a complete matrix of 
input values. Consequently, imputation or missing 
data estimation techniques need to be considered 
in advance of clustering. The effect of missing 
data on pattern information can be minimised 
through pre-processing.

Commonly, missing values in the gene ex-
pression matrix are replaced by zeroes or by an 
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average expression level of the gene, (or “row 
average”). Such methods do not, however, take 
into account the correlation structure of the data 
and more sophisticated options include K-Nearest 
Neighbour (KNN) and Support Vector Decom-
position type methods. Troyanskaya et al. (2001) 
note that KNN and SVD-based methods are more 
effective than traditional methods of replacement, 
with KNN being more robust as the number of 
missing values increases.

Clustering algorithms that permit overlap 
(probabilistic or fuzzy clusters) are typically 
more applicable to gene expression data since: (i) 
the impact of noisy data on clusters obtained is a 
fundamental consideration in algorithm choice. 
(The assumption is that “noisy genes” are unlikely 
to belong to any one cluster, but are equally likely 
to be members of several clusters): (ii) the underly-
ing principal of clustering gene expression data, is 
that genes with similar change in expression for a 
set of conditions are involved, together, in a simi-
lar biological function. Typically, gene products 
(mRNA) are involved in several such biological 
functions and groups need not be co-active under 
all conditions. This gives rise to high variability 
in the gene groups and/or some overlap between 
them. For these reasons, constraining a gene to a 
single cluster (hard clustering) is counter-intuitive 
with respect to natural behaviour.

Additionally, methods that aim at a partial 
clustering tend to be more suited to expression 
data, with some genes or conditions not members 
of any cluster (Maderia & Oliveira, 2000). Clus-
tering the microarray dataset can be viewed in 
two ways: (i) genes can form a group which show 
similar expression across conditions, (ii) condi-
tions can form a group which show similar gene 
expression across all genes. It is this interplay of 
conditions and genes that gives rise to bi-clusters, 
whereby conditions and genes are simultaneously 
grouped. Such partial clusterings, (or bi-clusters), 
are defined over a subset of conditions and a 
subset of genes, thus capturing local structure in 
the dataset. Clearly, this allows: (i) “noisy genes” 

to be left out, with correspondingly less impact 
on the final outcome, (ii) genes belonging to no 
cluster—omitting a large number of irrelevant 
contributions, (iii) genes not belonging to well-
defined groups. (Microarrays measure expres-
sion for the entire genome in one experiment, 
but genes may change expression, independent 
of the experimental condition, [e.g. due to stage 
in cell cycle]. Forced inclusion of such genes in 
well-defined but inappropriate groups may impact 
the final structures found for the data).

Methods of Identifying Groups of 
Related Genes

Cluster definition is dependent on clearly defined 
metrics, which must be chosen to reflect the data 
basis. Metric categories include:

Similarity-Based

The cluster is defined to be the set of objects in 
which each object is closer, (or more similar), to 
a prototype that defines that cluster as opposed 
to any other cluster prototype. A typical gene 
expression cluster prototype is often the average 
or centroid of all gene vectors in the cluster. The 
similarity metric used affects the cluster produced. 
Common measures include: (i) Euclidean distance, 
(ii) Manhattan distance, and (iii) Squared Pearson 
correlation distance (Quakenbush, 2001), with the 
last being the most popular as it captures gene ex-
pression “shape” without regard to the magnitude 
of the measurements. However, this distance mea-
surement is quite sensitive to outliers, although, 
correlation, rather than “distance,” is inherently 
more important for gene expression data. Take, 
for example, two gene vectors X1=(1,2,3,4,5) and 
X2=(3,6,9,12,15). These two profiles result in a 
Euclidean distance of 14.8323 and a Manhattan 
distance of 30. The Pearson correlation distance 
however is 0, reflecting the fact that the two genes 
are showing the same patterns of expression. 
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Density-Based 

Clusters, in this instance, are based on dense re-
gions of genes, surrounded by less-dense regions.  
Such methods are often employed when clusters 
are irregular or intertwined, and when noise and 
outliers are present (Sander, Ester, Kriegel, & 
Xu, 1998). However, as each cluster is assumed 
to have a uniform density, the method is not read-
ily applicable to gene expression data, as some 
biological functions involve more gene products 
than others. The high dimensionality also means 
that density thresholds can be difficult to define 
and expensive to compute.

 
Model-Based

Despite the convenience of similarity-based 
measures, it can be biologically meaningless to 
characterise a cluster through a cluster prototype, 
such as the mean or centroid, as these may be 
poorly representative of the cluster elements as 
a whole. As a typical gene expression dataset is 
large, noisy distortion of these prototypes may be 
considerable, resulting in relatively uninformative 
structures. In contrast, model-based techniques, 
applied to expression space, consider the “fit” 
of genes in a given cluster to the “ideal” cluster. 
Concentrating on the strengths of the bi-clustering 
approach, and following notation from Maderia 
and Oliveira (2004), four types of model can be 
identified:

(i)	 Bi-clusters with constant values. A per-
fect cluster is a sub-matrix (I,J) of the gene 
expression matrix (N,D), with all values 
equal, xi,j = μ.  The ideal bi-cluster is, of 
course, rarely found in noisy gene expres-
sion data.  

(ii)	 Bi-clusters with constant values on rows 
or columns. A subset of the “ideal” or 
constant bi-cluster model, and one which is 
more realistic for gene expression data is a 

sub-matrix with constant rows or columns.  
For the former, rows have constant value in 
a sub-matrix (I,J) given by aij = μ + αi or aij 
= μ × αi , where μ is the “typical” bi-clus-
ter value and αi is the row offset for i ∈ I. 
Similarly, perfect bi-clusters with constant 
columns can be obtained for aij = μ + βj or 
aij = μ × βj, where j ∈ J. 

(iii)	 Bi-clusters with coherent values. From ii, a 
combined additive model can be derived. In 
this framework, a bi-cluster is a sub-matrix 
(I,J), with coherent3 values, based on the 
model: 

aij = μ + αi +  βj		  		  Eq. 1

(where μ, αi and βj  are as for (ii)).  Similarly, 
the multiplicative model assumes that a perfect 
bi-cluster could be identified using aij = m' × a'i × 
b'j . Note: the additive form clearly follows for μ 
= log(m'), αi = log(a'i ) and βj = log(b'j ).

The artificial example in Figure 2(a) and (b) 
illustrates this point. The sub-matrix is an ideal 
bi-cluster found in a fictional dataset, where μ=1, 
the offset for row 1 to 3 is α1=0, α2=2, α3=4 re-
spectively, and the offset for columns 1 to 6 is 
β1=0, β2=1, β3=2, β4=4, β5=1, β6=-1 respectively. 
The expression levels can be obtained from Eq. 
1. Of course, when searching the dataset for a fit 
to this model, the mean and offset parameters are 
unknown and must be estimated from the data.  
The schematic illustrates the coherent expression 
profile over the six conditions. Similarly for the 
multiplicative model where μ=1, α1=1, α2=2, α3=5, 
β1=1, β2=2, β3=4, β4=6, β5=3, β6=1.5.

In reality, these “perfect” bi-clusters are, of 
course, unlikely to occur, so each entry in the 
sub-matrix can be regarded as having a residue 
component (Cheng & Church, 2000): 

rij = μ + αi + βj – αij .			   Eq. 2
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Thus, finding bi-clusters is equivalent to 
finding sub matrices that minimise the average 
residue.

(iv)	 Bi-clusters with coherent evolution. Local 
structures, with coherent evolution across a 
sub-matrix (I,J), can exist in the data regard-
less of the exact values. This occurs if there 
is a pattern of co-regulation for a subset of 
genes and conditions. Expression can occur 
at different levels, so for example if two genes 
are up-regulated by different degrees, (e.g. 
due to a specific condition), these are said 
to experience coherent evolution.

Taking Figure 2(c) as an example. Gene 1 and 
gene 2 are regulated, with similar periodicity, 
while gene 3 shows alternated periodicity.  Al-
though the genes are expressed at different levels, 
each change in expression level is triggered by the 
same condition. In a simple form, each gene can 
be said to be exhibiting three states, down-regu-
lated, up-regulated or no change. Additional states 
can be used, for example strongly up-regulated, 
weakly up-regulated etc. depending on the detail 
of the model required. Adding additional states, 
of course, adds complexity to the model, and cut-
off points between states of regulation must be 
considered carefully. The problem then reduces 
to finding profiles that show consistent patterns 
of regulation across all conditions. 

Cluster Analysis

Current Methods

With extensive choice of metric, structure, com-
pleteness etc. in cluster analysis it is useful to 
consider a framework (Table 2) for performance 
comparison. The taxonomy used is due to Jains, 
Murty, and Flynn (1999).

Hierarchical Methods:

Ever since the landmark paper of Eisen et al. 
(1998), numerous clustering algorithms have been 
applied to gene expression data.  Predominantly 
these have been hierarchical methods, (Higgins, 
Shinghal, Gill, Reese, Terris, Cohen, Fero, Pol-
lack, van de Rijn, & Brooks, 2003; Khodursky, 
Peter, Cozzarelli, Botstein, Brown, & Yanofsky, 
2000; Makretsov, Huntsman, Nielsen, Yorida, 
Peacock, Cheang, Dunn, Hayes, van de Rijn, 
Bajdik, & Gilks, 2004; Wen, Fuhrman, Mi-
chaels, Carr, Smith, Barker, & Somogyi, 1998), 
due mainly to ease of implementation, visualisa-
tion capability and general availability. 

The basic steps of a hierarchical clustering 
algorithm include: (i) computation of the proximity 
matrix of distances between each gene, (initially 

Figure 2. Models in gene expression datasets. The matrix gives clusters found, where rows are gene 
expression values across 6 experimental conditions (columns). X-axis indicates experimental condition 
or time point, y-axis indicates gene expression level. Model forms are (a) Additive for rows and columns, 
(b) Multiplicative for rows and columns and (c) Coherent evolution.
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each is in a unique cluster of size one), (ii) searching 
the proximity matrix for the two closest clusters, 
(iii) merging these two clusters and updating the 
proximity matrix, and (iv) repeating steps two and 
three until all genes are in one cluster.  

Such agglomerative clustering techniques 
vary with respect to the (i) distance metric used 
and the decision on cluster merger (that is linkage 
choice as single, complete, average or centroid; 
see Quackenbush [2001]). Typically output of a 
hierarchical clustering algorithm is a dendogram, 
representing nested patterns in the data and the 
similarity level at which clusters are merged. The 
choice of parameters affects both structure of, and 
relationship between the clusters. Hierarchical 
cluster structure works well for situations where 
membership is crisp, but, despite their popularity 
these methods may not be appropriate to capture 
natural structures in gene expression data.

Nevertheless, some successes of clustering 
conditions based on gene expression have been 
reported. For example, Makrestov et al. (2004) 
used gene expression profiles, to determine 
whether sub-types of invasive breast cancer could 
be identified, with a view to improving patient 
prognosis. Hierarchical clustering successfully 
identified three cluster groups with significant 
differences in clinical outcome. Similarly, a study 
on renal cell carcinoma, Higgins et al. (2003), 
found that hierarchical clustering led to segre-
gation of “histologically distinct tumour types 
solely based on their gene expression patterns” 
(p. 925). These studies indicate that characterisa-
tion of tumours is potentially viable from gene 
expression profiling. 

Hierarchical clustering algorithm properties 
include location of complete clusters, forced 
membership and large time-space complexity, 

Common Clustering techniques

Gene 
Membership

Cluster 
Structure

Cluster Type Complete/Partial

Hierarchical (Eisen, 
Spellman, Brown, & 
Botstein, 1998)

Hard Hierarchical 
(nested)

Similarity-Based Complete

K-Means (Tavazoie, 
Hughes, Campbell, 
Cho, & Church, 1999)

Hard No struc-
ture

Similarity-Based Complete

FCM (Gasch & Eisen, 
1999)

Fuzzy No struc-
ture

Similarity-Based Complete

SOM (Golub, Slonim, 
Tamayo, Huard, 
Gaasenbeek, Mesirov, 
Coller, Loh, Down-
ing, Caligiuri, Bloom-
field, & Lander, 1999)

Hard Topological 
Structure

Similarity and 
Neighbourhood 
kernal function-

based

Complete

Delta clusters (Cheng 
& Church, 2000)

Shared Overlap Based on 
Coherent Additive 

Model

Partial

FLOC (Yang, Wang, 
Wang, & Yu, 2003)

Shared Overlap Based on Coher-
ent Additive 

Model

Partial

SAMBA (Tanay, 
Sharan, & Shamir, 
2002)

Shared Overlap Based on Coher-
ent Evolution 

Model

Partial

Table 2. Popular clustering techniques applied to gene expression data. Partial (overlapping) clusters 
are more relevant in this context.
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but inclusion of “noisy genes” in the cluster can 
affect the final grouping, (depending to a greater 
or lesser extent on the linkage method and the 
distance measure used). As algorithms are pro-
totype-based, further iterations exacerbate noise 
effects. Given the distance metric basis, hierar-
chical techniques also tend to produce globular 
structures.

Partitive Methods:

In contrast to hierarchical algorithms, which create 
clusters in a bottom up fashion resulting in nested 
levels of clustering, partitive methods optimise a 
function of given criteria, partitioning the entire 
dataset and obtaining one cluster structure.

Partitive K-Means clustering (MacQueen, 
1967) produces hard clustering with no structural 
relationship between the individual clusters. The 
main steps of the K-means algorithm are: (i) 
Identification K prototype vectors for K clusters 
in the dataset. (ii) Assignment of each gene to 
a cluster based on its similarity to the cluster 
prototype, (iii) computation of cluster proto-
types based on current genes in the cluster, (iv) 
repeating steps two and three until convergence 
criteria are satisfied. These may be for example 
no (or minimal) reassignment of genes to new 
clusters or for example minimal improvement in 
optimisation of the criteria function. A typical 
optimisation approach is to minimise the squared 
error within a cluster: 
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where qj is the vector representing the mean of 
the cluster, xi is the vector representing the gene, 
d(xi,qj) is a distance measure and yij is a partition 
element. Here yij ∈ {0,1}, and yij=1, indicates that 
gene i is assigned to cluster j.

An example of use of the K-means method is 
discussed in Tavazoie et al. (1999), and is based 
on a yeast time-course gene expression dataset, 
containing profiles for more than 6000 genes, 

with 15 time points (at 10 minute intervals—over 
nearly two cell cycles), (Cho, Campbell, Winzeler, 
Steinmetz, Conway, Wodicka, Wolfsberg, Gabri-
elian, Landsman, Lockhart, & Davis,, 1998). (This 
work succeeded in identifying transcriptional co-
regulated genes in yeast). Unfortunately, initial 
prototype vectors in K-Means usually have a large 
impact on the data structures found. Prototype 
vectors are often genes selected at random from 
the dataset. Alternatively, Principal Component 
Analysis can be used to project the data to a 
lower dimensional sub-space and K-means is 
then applied to the subspace (Zha, Ding, Gu, He, 
& Simon, 2002). Whichever method is used in 
practice to select prototype vectors, it is usually 
the case that different initial prototypes are inves-
tigated to assess stability of the results, with the 
best configuration, (according to the optimisation 
criteria), used as output clusters. 

Fuzzy Methods:

As observed, (Section Characteristics of the Gene 
Expression Dataset), multiple cluster membership 
is more appropriate for gene expression data. The 
Fuzzy C-Means (FCM) algorithm extends the 
standard K-means algorithm, to the case where 
each gene has a membership degree indicating 
its “fuzzy” or percentage association with the 
centroid of a given cluster. Typically, each gene 
has a total membership value of 1, which is di-
vided proportionally between clusters according 
to its similarity with the cluster means. A fuzzy 
partition matrix Y, (of dimension NK, where K 
is the number of clusters and N is the number of 
genes), is created, where each element yij is the 
membership grade of gene i in cluster j and a 
weighted version of Eq. 3 applies. At each itera-
tion, the membership value, yij, and the cluster 
center, kj, is updated by:
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where m>1 denotes the degree of fuzziness, 
(everything else is as for Eq. 3). The iterations stop 
when max <−+ || 1 k

ij
k
ij jj , where ε is a termina-

tion criterion with value between 0 and 1, and k 
is the number of iterations.

Given the usual constraint that membership 
values of a gene must sum to unity, these values 
should be interpreted with care. A large “mem-
bership value” does not indicate “strength of 
expression” but rather reduced co-membership 
across several clusters (Krishnapuram & Keller, 
1993). Table 3 illustrates this idea for three clusters. 
FCM was carried out on published yeast genomic 
expression data (Gasch & Eisen, 2002; results 
available at http://rana.lbl.gov/FuzzyK/data.html). 
The membership values for gene B and gene D 
are very different for cluster 21, although they 
are approximately equidistant from the centroid 
of the cluster. Similarly, gene C and gene D have 
comparable membership values for cluster 4. 
However, gene C is more “typical” than gene D. 
With similar centroid distance measures, member-
ship value for gene B in cluster 21 is smaller than 
membership value of gene A in cluster 46. These 
values arise from the constraint that membership 
values must sum to unity across all clusters, forcing 
a gene to give up some of its membership in one 

cluster to increase it in another. Listing the genes 
of a cluster, based on membership values alone 
is somewhat non-intuitive as it is not a measure 
of their compatibility with the cluster. However, 
if interpretation of the list in terms of degree of 
sharing between clusters is of value.

The work of Gasch and Eisen (2002) on the 
use of FCM in analysing microarray data looked 
at clustered responses of yeast genes to environ-
mental changes. Groups of known functionally co-
regulated genes, and novel groups of co-regulated 
genes, were found by this method, although missed 
by both hierarchical and K-means methods.

Artificial Neural Networks

Artificial neural networks (ANN) mimic the idea 
of biological neural networks, where links between 
various neurons (nodes) can be strengthened or 
weakened through learning. A number of ANN 
types have been explored, with Self-Organising 
Maps (SOM) (Kohonen, 1990) proving popular 
for the analysis of gene expression, as these pro-
vide a fast method of visualising and interpreting 
high dimensional data. The network maps the 
high-dimension input gene vector into a lower 
dimensional space. A SOM is formed by an input 
layer of D nodes, (where D is the gene vector di-
mension), and an output layer of neurons arranged 
in a regular grid (usually of 1 or 2 dimensions). 
A vector, of the same dimension as the input 
gene, references each node in the output layer. 

GID Cluster 4 Cluster 21 Cluster 46

Centroid Dist. Mem. Centroid Dist. Mem. Centroid Dist. Mem.

GENE1649X 10.691 0.002575 8.476 0.002002 3.864 0.482479

GENE6076X 6.723 0.009766 3.855 0.009341 6.33 0.007381

GENE5290X 6.719 0.007653 5.29 0.00515 8.024 0.005724

GENE2382X 7.725 0.007609 3.869 0.01782 6.279 0.010249

Table 3. Difficulties interpreting membership values for FCM. GENE1649X (Gene A), GENE6076X (Gene 
B), GENE5290X (Gene C) and GENE2382X (Gene D). The table highlights distance to cluster centroid, 
in terms of Euclidean distance, and the associated membership values of the gene.
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Briefly, the mechanism involves: (i) initialisation 
of the prototype vectors of the output nodes, (ii) 
training the network to find clusters in the data 
(Genes are selected at random from the dataset 
and the closest output neuron is identified by 
its prototype vector. Once an output neuron is 
identified, its topological neighbours are updated 
to reflect this. Training continues until the refer-
ence vectors satisfy a stopping criterion), and (iii) 
Sequential application of all gene vectors to the 
SOM, where only one output neuron “fires” upon 
receiving an input gene vector. “Members” of a 
cluster, represented by output neuron i, are the 
set of genes, applied to the input neurons, causing 
output neuron i to fire.

ANN techniques have been used in a number 
of gene expression studies, including Tamayo, 
Slonim, Mesirov, Zhu, Kitareewan, Dmitrovsky, 
Lan-der, and Golub (1999) (to analyse haemato-
poietic differentiation); Toronen, Kolehmainen, 
Wong, & Castren (1999) (to analyse yeast gene 
expression data); and Golub et al. (1999) (to cluster 
acute lymphoblastic leukaemia [ALL] and acute 
myeloid leukaemia [AML]). The stopping crite-
rion of the SOM is crucial, since over-fitting to the 
training dataset is a risk. A further disadvantage 
is the amount of prior information needed. SOM 
requires input parameters such as learning rate, 
neighbourhood size and kernel function, as well 
as topology of the map, (typically hexagonal or 
square). The stability of results is also an issue, 
as a particular gene vector can be found to cause 
different output nodes to fire at different iterations, 
(Jains et al. 1999). Furthermore, clusters produced 
by the SOM are sensitive to choice of initial vec-
tors for the output neurons, and a sub-optimal 
structure may result from a poor selection. 

Search Based Methods:

While methods considered so far focus on finding 
global structures in the data, local structures are 
frequently of great interest. Cheng and Church 
(2000) adapted work of Hartigan (1972) for gene 

expression data, producing simultaneous clusters 
of genes and conditions and an overall partial 
clustering of the data. From Eq. 1 each value aij 
of a sub-matrix can be defined from the typical 
value within the bi-cluster aIJ, plus the offsets 
for the row mean, aiJ-aIJ and column mean aIj-
aIJ. Thus, each value in the sub-matrix should 
(ideally) be:

aij = aij – aiJ –aIj+aIJ			   Eq. 6

The Cheng and Church technique defines the 
Mean Residue Score (H) of a sub-matrix, based 
on Eq. 2 and Eq. 6, such that: 

2
,

)(
||||

1),( ∑ ∈∈
=

JjIi ijr
JI

JIH 		  Eq. 7

The algorithm carries out greedy iterative 
searches for sub-matrices (I,J), which minimise 
this function (Eq. 7), generating a large time cost, 
as each row and column of the dataset must be 
tested for deletion. (A sub-matrix is considered 
a bi-cluster if its Mean Residue Score falls below 
a user specified threshold). A further overhead 
is the masking of a bi-cluster with random 
numbers once it is found, to prevent finding the 
same clusters repeatedly on successive iterations. 
There is, nevertheless, high probability that this 
replacement with random numbers affects the 
discovery of further bi-clusters. To overcome 
this random “interference” Yang et al. (2003) 
developed Flexible Overlapped bi-Clustering 
(FLOC), generalising the model of Cheng and 
Church to incorporate null values.

For both the Cheng and Church (2000) al-
gorithm and the FLOC generalisation, K can 
be specified to be much larger than the desired 
number of groups, without affecting the outcome, 
as each row and column in the expression matrix 
can belong to more than one bi-cluster, (Cheng 
& Church, 2000; Yang et al., 2003). Selecting K 
then reduces to selecting the percentage of the 
bi-clusters with the best Mean Residue-score (Eq. 
7). The cost is increased computation time—the 
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Cheng and Church algorithm finds one bi-cluster 
at a time while FLOC finds all simultaneously. 
However, a major additional strength of the bi-
clustering techniques is the minimal requirement 
for domain knowledge. Also, as FLOC accounts 
for null values in the dataset, the preliminary 
imputation of missing values is not necessary.

Graph theoretic Methods:

A further approach, which is proving useful in the 
analysis of large complex biological datasets, is 
that of graph theory, (Aiello, Chun, & Lu, 2000; 
Aittokallio & Schwitowski, 2006; Guillaume & 
Latapy, 2006; Maslov, Sneppen, & Zaliznyak, 
2004). A given gene expression dataset can be 
viewed as a weighted bipartite graph, G= (V, U, 
E), where V is the set of gene vertices, U is the set 
of condition vertices, with V ∩ U = Φ, and E is 
the set of edges, with (u, v) ∈ E having a weight 
auv proportional to the strength of the expression 
of gene v under condition u (Figure 3). 

Analysis of the models involved focuses on 
identification of similarly or densely connected 
sub graphs of nodes and, of course, relies greatly 
on the method used to define the edge weights. 
Clustering by graph network leads to similar is-
sues as before; (i) results are highly sensitive to 
data quality and input parameters, (ii) predicted 
clusters can vary from one method of graph 
clustering to another. Clusters that share nodes 
and edges of a graph networks, clearly “overlap” 
and as noted in the section titled Characteristics 
of the Gene Expression Dataset, are desirable for 

gene expression interpretation.
The “Statistical Algorithmic Method for Bi-

cluster Analysis” (SAMBA) (Tanay et al., 2000), 
uses a graphical approach and, unlike previous 
bi-clustering techniques, finds coherent evolution 
in the data. An edge is defined to exist between 
a gene node u and a condition node v if there is 
significant change in expression of gene u under 
condition v, relative to the genes normal level (a 
non-edge exists if u does not change expression 
under v). Each edge and non-edge is then weighted, 
based on a log likelihood model, with weights:
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Here, P(u,v) is the fraction of random bipartite 
graphs, with degree sequence identical to G, that 
contain edge (u,v), and Pc is a constant probability 
assigned by the user. For ),(),(max vuVUvuc PP ×∈> , 
edges are taken to occur in a bi-cluster with equal 
probability. Weights as determined by Eq. 8 are 
assigned to the edges and non-edges in the graph. 
A major strength of this method is that statisti-
cal significance of any sub graph is then simply 
determined by its weight.

Cluster Evaluation and Comparison

Evaluation is not particularly well developed for 
clustering analyses applied to gene expression 
data, as very little may be known about the da-
taset beforehand. Many clustering algorithms are 
designed to be exploratory; producing different 
clusters according to given classification criteria 
and will discover a structure, meaningful in that 
context, which may yet fail to be optimal or even 
biologically realistic. For example, for K-Means 
the “best” structure is one that minimises the 
sum of squared errors (MacQueen, 1967) while, 
for the Cheng and Church algorithm (Cheng & 
Church, 2000), it is that which minimises of the 

Figure 3. Bipartite graph representing expression 
for seven genes under five conditions—edges 
indicate a change in expression
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Mean Residue-Score (Eq. 7). The two may not 
be directly comparable, as the former highlights 
global patterns in the data and the latter local 
patterns. While larger deviations from the mean 
may also correspond to large residue scores this 
will not always be the case. For example, Figure 
4 highlights a simple situation with three genes 
in a cluster. According to the K-means criterion, 
the within cluster distance is approximately 11.02, 
based on Euclidean distance and centroid of the 
cluster. The Mean Residue Score is 0. Reduc-
ing the scale of profile 1 by one third, (Figure 
4(b)), decreases the within-cluster distance to 
7.91, while increasing the Mean Residue Score 
slightly to 0.0168. Both (a) and (b) are roughly 
equivalent. Consequently, interpretation of clus-
ter results relies on some level of subjectivity as 
well as independent validation and integration 
of findings. Subjective evaluation, even for low 
dimensional data, is non-trivial at best, but be-
comes increasingly difficult for high dimensional 
gene expression data. Clearly, each technique will 
find patterns even if these are not meaningful in 
a biological context. 

The benefits of the individual techniques, as 
applied to gene expression data, were highlighted 
in the last section. This section aims at providing 
navigational guidelines for some degree of objec-
tive evaluation and comparison. 

Determining the Correct Number of 
Clusters

Cluster number, in the absence of prior knowledge, 
is determined by whether a non-random structure 
exists in the data. Limiting to a specific number 
of groups will bias the search, as patterns tend 
to be well-defined only for the strongest signals. 
Commonly, statistical tests for spatial randomness 
test if a non-random structure exists, but identifi-
cation of small, biologically meaningful clusters 
remains non-trivial. This is particularly true of 
standard methods, which find global structure, 
but lack fine-tuning to distinguish local struc-
tures. Selection of the correct number of clusters 
(K) thus is inherently iterative. Near optimal K 
should clearly minimise heterogeneity between 
groups, while maximising homogeneity within 
groups, but determining the number of significant 
clusters relies, not only on direct extraction (or 
assessment) but also on appropriate hypothesis 
testing. Direct methods are based on various of 
criteria4. Nevertheless, improvement in terms of 
identification of local clusters is slight. Specific 
tests include Gap Statistic (Tibshirani, Walther, & 
Hastie, 2001), Weighted Discrepant Pairs (WADP) 
(Bittner, Meltzer, Chen, Jiang, Seftor, Hendrix, 
Radmacher, Simon, Yakhini, Ben-Dor, Sampas, 
Dougherty, Wang, Marincola, Gooden, Lueders, 
Glatfelter, Pollock, Carpten, Gillanders, Leja, 
Dietrich, Beaudry, Berens, Alberts, & Sondak, 

Figure 4. Gene expression profiles for two equivalent clusters; cluster in (B) has Profile 1 scaled down 
by one third
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2000), and a variety of permutation methods 
(Bittner et al., 2000; Fridlyand & Dudoit, 2001). 
Since most involve bootstrapping, these methods 
can be computationally very expensive. Compari-
son of methods for selecting the number of groups 
is discussed by Milligan and Cooper (1985) and, 
more recently, by Fridlyand and Dudoit (2001), 
who note that no existing tests are optimal for 
gene expression data.

Comparing Results from Clustering 
Algorithms

Numerical measures of cluster “goodness” include 
cluster cohesion (compactness or tightness), 
that is how closely related genes in a cluster are, 
while measures of cluster separation (isolation), 
determine how distinct each cluster is. The Group 
Homogeneity Function, is often used to measure 
the association (distinctiveness) of genes within 
and between groups.  

Comparison with Metadata

Including biological function information in the 
gene list for each cluster inevitably provides a 
more complete picture of the dataset and of the 
success of the technique. This information can 
be used to validate the clusters produced, and a 
number of functional annotation databases are 
available. The Gene Ontology database (Ash-
burner, Ball, Blake, Botstein, Butler, Cherry, 
Davies, Dolinski, Dwight, Epping, Harris, Hill, 
Issel-Tarver, Kasarskis, Lewis, Matese, Rich-
ardson, Ringwald, Rubin, & Sherlock, 2000) for 
example, provides a structured vocabulary that 
describes the role of genes and proteins in all 
organisms. The database is organised into three 
ontologies: biological process, molecular function, 
and cellular component. Several tools5 have been 
developed for batch retrieval of GO annotations 
for a list of genes. Statistically relevant GO terms 
can be used to investigate the properties shared 
by a set of genes. Such tools facilitate the transi-

tion from data collection to biological meaning 
by providing a template of relevant biological 
patterns in gene lists. 

Future Trends

Despite the shortcomings, the application of 
clustering methods to gene expression data 
has proven to be of immense value, providing 
insight on cell regulation, as well as on disease 
characterisation. Nevertheless, not all clustering 
methods are equally valuable in the context of 
high dimensional gene expression. Recognition 
that well-known, simple clustering techniques, 
such as K-Means and Hierarchical clustering, 
do not capture more complex local structures 
in the data, has led to bi-clustering methods, in 
particular, gaining considerable recent popular-
ity, (Ben-Dor, Chor, Karp, & Yakhini, 2002; 
Busygin, Jacobsen, & Kramer, 2002; Califano, 
Stolovitzky, & Tu, 2000; Cheng & Church, 2000; 
Getz, Levine, & Domany, 2000; Kluger, Basri, 
Chang, & Gerstein, 2003; Lazzeroni & Owen, 
2002; Liu & Wang, 2003; Segal, Taskar, Gasch, 
Friedman, & Koller, 2003; Sheng, Moreau, & De 
Moor, 2003; Tanay et al., 2002; Yang et al., 2003;). 
Indications to date are that these methods provide 
increased sensitivity at local structure level for 
discovery of meaningful biological patterns.

Achieving full potential of clustering methods 
is constrained at present by the lack of robust vali-
dation techniques, based on external resources, 
such as the GO database. Standardisation of gene 
annotation methods across publicly available 
databases is needed before validation techniques 
can be successfully integrated with clustering 
information found from datasets.

The “Central Dogma” that “DNA makes 
mRNA makes proteins” that comprise the pro-
teome is overly simple. A single gene does not 
translate into one protein and protein abundance 
depends not only on transcription rates of genes 
but also on additional control mechanisms, such as 
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mRNA stability6, regulation of the translation of 
mRNA to proteins7 and protein degradation8. Pro-
teins also can be modified by post-translation ac-
tivity9 (Brown, 2002a). The study of proteomic and 
transcription data investigates the way in which 
changes connect gene expression to the physical 
chemistry of the cell. Integration and merger of 
proteomic and transcription data sources across 
platforms is needed, together with development of 
automated high-throughput comparisons methods 
if detailed understanding of cell mechanisms is 
to be achieved. To this end, a standard method 
of gene and protein annotation across databases 
is overdue (Waters, 2006). The development of 
Bioinformatics/data-mining tools that span dif-
ferent levels of “omics” is a necessary next step 
in the investigation of cell function.

Conclusion

Clustering gene expression data is non-trivial 
and selection of appropriate algorithms is vital 
if meaningful interpretation of the data is to 
be achieved. Successful analysis has profound 
implications for knowledge of gene function, 
diagnosis, and for targeted drug development 
amongst others. The evidence to date is that 
methods, which determine global structure, are 
insufficiently powerful given the complexity of 
the data. Bi-clustering methods offer interpret-
ability of data features and structure to a degree 
not possible with standard methods. However, 
even though less sophisticated algorithms such 
as K-means are achieving some success and 
while bi-clustering methods seem promising, 
these are the first steps only to analysing cellular 
mechanisms and obstacles remain substantial. A 
significant barrier to the integration of genomic 
and proteomic platforms and understanding cel-
lular mechanisms is the lack of standardisation. 
Integration of heterogeneous datasets must be 
addressed before analysis of gene expression data 
comes of age.
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Endnotes

1	 Microarray development timeline: 1989 – de-
velopment of world’s first microarray; 1991 
– Photolithographic printing technique de-
veloped by Affymetrix; 1993 – Microarray 
containing over 1 million DNA sequences 
developed; 1994 – First cDNA collections 
developed by Stanford; 1995 – Quantitative 
monitoring of gene expression patterns with 
cDNA microarray; 1996 – Commercialisa-
tion of arrays (Affymetrix); 1997 – Genome-
wide expression monitoring in Yeast; 2000 
– Portraits/Signatures of gene expression in 
cancer identified; 2002 - Genechip® Human 
Genome two array set developed for analysis 
of over 33,000 genes from public databases; 
2003 – Microarray technology introduced 
to clinical practices; 2004 – Whole human 
genome on one microarray.

2	  The two most popular array platforms are 
complementary DNA (cDNA) and oligo-
nucleotide microarrays. The former contains 
cDNA probes that are products synthesized 
from polymerase chain reactions generated 
from cDNA and clone libraries, the latter 
contain shorter synthesized oligonucleotide 
probes (prefect match and mismatch) gen-
erated directly from sequence data.  A key 
difference between the two platforms is the 
manner in which the data is presented for 
analysis. Intensity measurements for cDNA 
arrays are the result of competitive hybri-
disation, (where two transcription samples 
of interest (labelled with two different dyes) 
are hybridised to the same array), resulting 
in a measurement of the ratio of transcript 
levels for each gene, (usually reported as a 
log ratio).  Oligonucleotide arrays, on the 
other hand, results from non-competitive hy-
bridisation (where one transcription sample 
is hybridised to a array and difference in 
expression levels between two samples are 
compared across arrays). Here, measurement 
level for a gene is presented as the average 
measurement of all probes representing 
the gene (depending on pre-processing 
technique this may have mismatch probes 
subtracted first). See Schulze and Downward 
(2001) for a review.

3	 Gene expression patterns with similar fre-
quency and phase.

4	 These include likelihood ratios (Scott and 
Symons, 1971), cluster sums of squares (Mil-
ligan and Cooper, 1985), average silhouette 
(Kaufmann and Rousseeuw, 1990) or mean 
split silhouette (van der Laan and Pollard, 
2001).

5	 Tools important for the management and 
understanding of large scale gene expres-
sion data: FatiGo (Al-Shahrour et al., 2003), 
GoMiner (Zeeberg et al., 2003), OntoExpress 
(Draghici et al., 2003), EASE (Hosack et 
al., 2003), DAVID Gene classification tool 
(Dennis et al., 2003).
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6	 Sequences of mRNA may vary considerably 
in stability. The balance between mRNA 
degradation and mRNA synthesis deter-
mines the level of mRNA in the cell.

7	 The mechanisms, including regulatory 
proteins, which dictates which genes are 
expressed and at what level.

8	  The method and rate at which protein is 
broken down in the body.

9	  Before taking on a functional role in the 
cell an amino acid sequence must fold into 
its correct tertiary structure. Additional 
post-processing events may occur, such as 
proteolytic cleavage, chemical modifica-
tions, intein splicing. (Brown, 2002(b)).
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In recent years, considerable research efforts have been directed to microarray tech-
nologies and their role in providing simultaneous information on expression profiles for
thousands of genes. These data, when subjected to clustering and classification proce-
dures, can assist in identifying patterns and providing insight on biological processes.
To understand the properties of complex gene expression datasets, graphical representa-
tions can be used. Intuitively, the data can be represented in terms of a bipartite graph,
with weighted edges corresponding to gene-sample node couples in the dataset. Bio-
logically meaningful subgraphs can be sought, but performance can be influenced both
by the search algorithm, and, by the graph weighting scheme and both merit vigorous
investigation. In this paper we focus on edge-weighting schemes for bipartite graph-
ical representation of gene expression. Two novel methods are presented: the first is
based on empirical evidence; the second on a geometric distribution. The schemes are
compared for several real datasets, assessing efficiency of performance based on four
essential properties: robustness to noise and missing values, discrimination, parameter
influence on scheme efficiency and reusability. Recommendations and limitations are
briefly discussed.

Keywords: Edge Weighting; Weighted Graphs; Gene Expression; Bi-clustering.

1. Introduction

Advances towards a better description of the dynamics of complex systems often rely
on a detailed analysis of large datasets. Financial modelling is an obvious example:
to understand the interactions between worldwide markets, it is crucial to extract
information for large time-series datasets, (see e.g. [1]). Graph theoretical mod-
elling is proving a useful tool in the analysis of large complex biological datasets.
For instance, protein-protein interactions can be modelled by undirected graphs,
[2], where nodes represent proteins and an edge connects two nodes if the proteins
physically combine. Transcriptional factor binding sites can be identified through
the use of undirected weighted graphs, where weights of edges capture the similarity
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between aligned nucleotides in an input set of promoters, [3]. Further, metabolic
networks can be represented as bipartite graphs. In this case an edge connects a
reaction node to a compound node, representing either substrate or product rela-
tionships, [4]. Gene expression can also be modelled as a weighted bipartite graph,
where two node types are used to represent genes and samples and an edge exists
between a gene and a sample node. In the pioneering work of Tanay et al.[5, 6],
the weight of an edge, eij was designed to incorporate the probabilities of an effect
of experimental condition j on the expression of gene i, and of eij existing in the
graph.

Clustering techniques are fundamental for the exploration of gene expression
data, [7–9, 5]. Gene profiles are grouped into K subsets (clusters), with K not
necessarily known a priori, such that elements in the same subset are associated
with one another. The fundamental biological premise underlying these approaches
is that genes, which display similar expression patterns, are co-regulated and may
share a common function or contribute to a common pathway. Identification of
patterns is made more difficult by the fact that association (through similarity
measures or adherence to some co-regulation model) among a subset of genes may be
determined by a subset of samples giving rise to biclusters, [10]. Moreover, genes may
belong to a number of biclusters, with varying degrees of membership, [11]. This, and
the fact that gene expression profiles often originate from very noisy experimental
measurements, makes computational solutions to the clustering problem difficult
and patterns difficult to interpret.

Graphical clustering techniques involve identification of similar, (e.g densely
connected), subgraphs, where usual limitations (such as NP-completeness) apply. A
variety of evolutionary and heuristic algorithms can be used to find subgraphs and
include Genetic algorithms, [12], Simulated Annealing, [13], the MinCut algorithm,
[14], CLICK, [15] and Samba, [5]. These algorithms all rely on an objective function
to evaluate the sub-graphs found. Fundamentally, this function relies on the concept
of an edge weight and its derivation.

Substantial efforts have been devoted to the development of weighted graph-
based clustering methods for biological tasks, (see references above). However, it is
important to recognise the essential role a weighting scheme itself plays on cluster
determination, and thus to investigate the intrinsic nature of these schemes in iso-
lation. To this end, we introduce and compare two new weighting schemes: (i) a
distribution-based method, (where edge weights are estimated from a pre-defined
probability distribution); (ii) an empirical-based method, (where edge weights are
determined by the experimental data). We also discuss performance measures for
these (and the Tanay) edge weighting schemes, and present a comparative validation
based on application to several real datasets.
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2. Clustering Approach and Evaluation Framework

2.1. Gene Expression as a Bi-Partite Graph

Gene expression data is typically presented as a matrix, where rows (i = 1 . . . n)
correspond to gene vectors, gi = (xi1, xi2, . . . , xip), which record expression values
for gene i across p experiments. A bipartite graph is a triplet G = (⊤,⊥, E), where
⊤ is the set of top nodes, ⊥ the set of bottom nodes, and E ⊆ ⊤ × ⊥ is the set
of edges, which links top and bottom nodes. ⊤ ∩ ⊥ = ∅, is a defining property of
bipartite graphs. We define a weighted bipartite graph to model gene expression
under a number of experiments as, G = (⊤,⊥, E, W ), where ⊤ corresponds to the
set of genes, |⊤| = n, ⊥ to the set of samples, |⊥| = p, E is the set of edges between
genes and samples, and W = (wij) where wij ∈ ℜ denotes the weight of the edge eij

between ‘gene’ node i and ‘sample’a node j. If every gene sample couple is connected
by an edge, (i.e. |E| = p× n), then the gene expression network is said to be fully
connected, otherwise it is partially connected.

As mentioned previously, essential properties of the dataset can be transformed
to bi-partite graph properties by appropriate representation. However, care must be
taken not to lose important information in the transformation process. This allows
us to study the gene-sample inter-activity using the powerful tools and notions
provided for classical networks. Here, we are concerned with what constitutes an
(important) edge in the context of gene expression and how this edge is weighted.

2.2. Definition of Assessment Properties

It is important, both for the evaluation of any clustering technique and for its
reusability, that weighting schemes are validated independently of the subsequent
network analysis. A clustering technique should not be considered as a “black box”,
and assessment of its core features is crucial to improve the overall performance.
For a given graph-clustering technique reliable results reflect a well-designed weight-
ing scheme, together with a reasonably robust and efficient search algorithm, and
both aspects are susceptible to refinement. Consequently, we propose a graphical
edge weighting assessment procedure for gene-sample networks, based upon four
properties, as detailed below.

2.2.1. Discrimination:

Ability of the method to “rate” highly those gene-sample couples which contribute
to a cluster. The range and distribution of edge weights establish how well a given
scheme distinguishes between relevant and irrelevant gene-sample couples.

aA sample refers to a microarray experiment carried out on mRNA extracted from biological
samples; each microarray experiment is a column in the gene expression dataset
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2.2.2. Reusability:

Independence of the proposed scheme and the subsequent clustering technique. This
deals with how the weighting scheme must change to reflect additional layers of
analysis.

2.2.3. Robustness:

Ability of a given weighting scheme to deal with noise and missing values. This
involves investigation of distortion of weights caused by different levels of noise and
missing values.

Noise and missing values were included in the dataset in the tests reported here
in order to mimic measurement error of different amounts. Noise was randomly
“added/subtracted” to each value in the dataset as a percentage (up to 10%) of
the original value. To replace data with missing values, up to 10% of expression
values from the original dataset were randomly selected and removed. Commonly,
missing values in the experimental gene expression matrix are replaced by zeroes or
by an average expression level of the gene, (“row average”). Such methods, however,
do not take into account the correlation structure of the data, and more sophisti-
cated options include methods of K-Nearest Neighbour (KNN) and Support Vector
Decomposition type, [16]. Missing value estimation methods have generated a con-
siderable literature in their own right, so to test our weighting schemes the common
practice of replacing missing values by the row mean was adopted.

For this analysis, we defined “Average Absolute Variation” as the average differ-
ence in edge weights, compared to 0% noise/missing values and “Stable weights” to
be those for which the variation is less than the level of noise/missing values added.

2.2.4. Parameter Influence:

Any weighting scheme ideally requires minimal specification of input parameters.
We thus examined input parameter influence on discrimination and robustness, as
well as on the distribution of weights themselves.

2.3. Datasets

The three weighting schemes were tested on three datasets. (i) The Yeast Cell Cycle
Data, provided by [17], contains time-course expression profiles for more than 6000
genes, with 17 time points for each gene (taken at 10-min intervals) and covers nearly
two yeast cell cycles (160 min). The raw gene expression profiles were downloaded
from http://genomics.stanford.edu. (ii) A Lymphoma Dataset (downloaded
from supplementary web by [7], http://llmpp.nih.gov/lymphoma/index.shtml),
relates to an experiment to characterize gene expression in Diffuse Large B-cell lym-
phoma (DLBCL). The complete dataset contains expression levels for 4,026 genes
and 96 samples. Finally, (iii) Gefitinib Treated Kasumi Cell Line dataset. Here
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Kasumi cells were treated with gefitinib or dimethyl sulfoxide (DMSO) control in
duplicate for 6 hours and in triplicate for 24 hours. This results in a dataset of 22283
genes and 10 samples [18], and is available from the MIT Broad Institute website,
(http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi).

3. Edge Weighting Schemes

3.1. Empirical-based Weighting

The empirical-based weighting scheme is data-driven in the sense that it is de-
termined from direct analysis of the dataset, i.e. based on observations obtained.
Fundamental to the method proposed here is that genes which, for a given sample,
have either high or low expression (equivalent to induction or repression) are more
likely to contribute to a function, or have a functional response, than for those for
which expression values remain unaffected. Affected genes can thus be extracted for
further analysis.

A high/low expression value for gene, i under sample j, is determined, relative
to other expression values in gene vector i, i.e. across rather than within samples.
The motivation for this is that, with microarray technology, direct comparison of
expression measures within arrays is problematic, because fluorescent intensities
are not the same across genes. The measured intensities are roughly proportional to
mRNA abundance but the proportionality factor is different for each gene. Specif-
ically, this means that between-sample, within-gene comparisons are appropriate,
but within-sample, between-gene comparisons are not straightforward b[19].

Under this weighting scheme, an edge eij exists when the ith gene shows “signif-
icant” induction or repression, relative to its mean level of expression, for sample j.
It makes use of Chebyshev’s inequality [20], as the distributional form of expression
values for each gene is not assumed. Chebyshev’s inequality, for any real number
κ > 0, can be written:

Pr(|X − µ| ≥ κσ) ≤ 1
κ2

(1)

with random variable X , µ the expected value of X and σ2 the variance.
This scheme uses a two step process (Figure 1). The first step involves iden-

tification of those expression values X = xij , (i = 1 . . . n, j = 1 . . . p), of interest
which, for a given sample j, are ≥ κσ from the mean expression of gene vector i.
From Eq. 1, for example, the associated probability of an expression value ≥ 3.16σ

bFor example, say, genes a and b, have measured expression of 100 and 200 respectively, in sample
j1. These observed data do not reflect the real relative abundance of mRNA for these two genes.
There could in fact be more mRNA for gene a. On the other hand, if in a second sample, j2, gene
a has an expression measure of 200, we could conclude that the abundance of mRNA for a in
sample j2 is likely to be higher than that observed in sample j1,[19]
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Fig. 1. Two-step process of empirical scheme. Step 1: A univariate analysis of each gene vector is
carried out to determine strength of response. Step 2: A univariate analysis of each sample vector
is performed and used to order gene response.

from the mean of gene i is less than 0.10. Expression values ≥ 3.16σ from the mean
would indicate a strong response of gene i to sample jc.

Clearly, categories can be established to highlight those expression values which
indicate a weak response, moderate response and strong response, where κ indicates
the threshold between categories. For example, expression values which are ≥ 2.58σ,
≥ 3.16σ and ≥ 4.47σ from µ fall into non-overlapping categories of weak, moderate
and strong respectively, (i.e. a gene-sample couple will not be categorised as mod-
erately and strongly responsive), corresponding to probabilities = 0.15, 0.10 and
0.05. Obviously the number of categories can be extended for fine-grained response,
while thresholds between categories can also be adjusted. For this analysis, the cat-
egories weak, moderate and strong, as defined above and in Tanay et al [5], were
used. Thresholds chosen are discussed further in Section 3.1.1.

In the second step, a univariate analysis of expression values within each sample
vector is carried out and used to order gene response. For each sample vector,
j, expression values xij which indicate strong response of the ith gene under j,
(as determined in step one) are selected. Similarly, genes which show moderate
and weak response under j can be identified. For each of the three “strength of
response” categories, a gene may be repressed or induced; (X−µ < 0, or X−µ > 0
respectively), giving six sub-categories in total. For each sub-category, Cs, s = 1 . . . 6
and for each sample variable, j = 1 . . . p, the empirical probability of xij ∈ Cs is
calculated as |xij ≥ xvj |/|Cs|, xvj ∈ Cs, i 6= v, (probability = 1 if |Cs| = 1) and
hence the edge weight in the bi-partite gene expression graph is obtained.

The weight is thus a direct reflection of obtaining a given expression level in an
induced/repressed response category for a particular sample. So, if many genes react
strongly in the sample, the weight is smaller, while if only a few react strongly,
the weight will be larger. Note that, with this weighting scheme, a given sample
(experiment) may also have no reacting genes.

cNote that this method assumes that for the majority of samples, the expression of gene i will not
be affected
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The weighted graph can be broken down into an independent subgraph for
each sub-category. Gene-sample edges in these different response groups may well
have similar weight “values” but are distinguished, in terms of absolute levels of
expressiond, by the category into which they fall. Hence, the analysis does not
depend directly on levels of expression but rather strength of response. Within a
category, the weight can nevertheless be interpreted directly in terms of the relative
probability of gene-sample response. Thus the higher the weight, the more confidence
that a relationship exists between gene and sample in that category.

3.1.1. Threshold Estimation

This scheme requires specification of number of categories and threshold val-
ues for each. To decide on thresholds between categories, graphs from real
datasets, G = (⊤,⊥, E) are compared to graphs from random datasets, GRand =
(⊤Rand,⊥Rand, ERand), for a range of thresholds, (Fig. 2). A random dataset of the
same dimension as the input dataset was created, were for each row (gene) i, ran-
dom numbers were selected from a Normal distribution of mean, µi Rand = µi Real,
and standard deviation, sdi Rand = sdi Real (as for a gene which does not respond
to any sample, expression would be relatively constant with no deviation from Nor-
mal to indicated response). For each threshold choice in this analysis, 100 random
datasets were created to estimate cut-offs, with comparisons based on averaging
over these.

A null model assumes each edge in the graph to be created with a probability
= (|ERand|/Number of possible edges), while an alternative assumes an edge was
created with probability = (|E|/Number of possible edges). The level at which the
log of the ratio of these two probabilities is maximised is taken to be optimal in terms
of real effect observed. Clearly, one criterion for definition of maximum threshold
is that at least one gene-sample couple must be identified in the real and random
graph. Thresholds are then tested in probability increments of 0.02, to determine
percentage inclusion of expression values. Once the “strong response” threshold is
found, moderate and weak response thresholds can be established similarly.

3.2. Distribution-based Weighting

The motivation for the distribution-based scheme, proposed here, is that it is dif-
ficult, if not impossible, to give an absolute characterisation of an important gene-
sample couple. An absolute expression level, on its own, means very little, as noted
in Section 3.1. On the other hand, the study of the expression level of a given couple,
relative to that for other couples can provide interesting insight on functionality.

dIf the dataset was not categorised, a weak response and a strong response gene-sample couple
would have very different weights, with the consequence that the strong response couple would
dominate the analysis and obscure more subtle patterns.
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Fig. 2. Threshold Analysis of Lymphoma data. X-axis indicates the probability threshold 1
k2 , the

y-axis indicates the number of edges selected.

An ‘interesting couple’ is loosely one where we can highlight a significant effect for
a given gene responding to a sample.

This implies an expression level, differing notably from the ‘average’ expression
observed for this gene across all samples, (and used by empirical-based approach).
It also implies some deviation from the effect this sample has on the whole set of
genes: if a certain sample leads to over-expression of virtually all the genes, it might
be of limited interest to consider its effect on one, as this would not be in any way
unique.

The dataset is considered as a matrix containing only positive valuese, the ex-
pression levels. Each gene vector is scaled to have a mean of 1, by dividing the
expression level, xij , by the row mean for gene i. Thus, genes i ∈ I with expression
value xij ≤ 1 are considered repressed and xij > 1 are considered induced in sample
j. For a given gene, we therefore obtain a series of positive values, of average 1, with
values x, s.t. 0 ≤ x < 1 when the gene is under-expressed in a certain sample, and
s.t. x > 1 for a gene over-expressed in the sample.

For each sample, in order to differentiate between genes that show specific
behaviour and those that react similarly to other genes, a geometric series,
(a, aR, aR2, aR3, . . .) is used to create tightly defined categories for values close
to 1 (= mean expression level for a gene across all samples, as above), and broader
categories as expression deviates further from this value. Such series are used be-
cause of the skewness of the data: many genes show very little response to a given

eSome microarray datasets are only made available after they are transformed into log space, (a
result of the normalisation process), thus leading to some negative values for low expression levels.
For such cases, the first step is to transform the data back from log-space, to deal exclusively with
positive values.
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sample, having an expression value equal to 1. Two series are used: one for values
greater than 1, and the other for values smaller than 1. A ratio R for each geomet-
ric series is calculated using Eq. 2, where Nc is the number of categories needed,
and Min and Max are, respectively, the smallest and largest value of the partial
set considered for the series. For the [1;∞) part of the dataset, Min = 1, and the
category boundaries are, therefore, 1, R, R2, etc., with R ≥ 1. For the [0; 1] part of
the dataset, Max = 1, and the category boundaries are, therefore, 1, 1

R , 1
R2 , etc.,

with R ≥ 1. For this part of the dataset, there can be a problem if Min = 0, since
R cannot be calculated in such cases. This is typically due to missing values. One
solution here is to use the average value of R, observed for samples where Min 6= 0,
ensuring that the distribution obtained is consistent with the data. Alternatively,
the smallest value larger than zero could be used to calculate R.

R =
(

Max

Min

)1/Nc

(2)

Once the categories have been created and populated by expression values of
the dataset, weights are assigned to gene-sample couples, depending on the size of
the category to which each belongs. As most optimization techniques traditionally
minimize a given objective function, we want to have negative weights for “interest-
ing” couples, and positive otherwise. To obtain size-dependent weights, the average
population, (calculated over all categories) is subtracted from the population of that
category to which the couple belongs (Eq. 3): hence “small” categories are nega-
tively weighted, while larger ones have positive values. To avoid extreme weight
values for datasets with very large number of genes, n, weights are normalised by
dividing by n.

wij = (|N∈(i,j)| −
∑

i=1:c |Ni|
Nc

)/n (3)

These weights should be interpreted as follows: the lower the weight wij of
edge eij , the more significantly the expression level of gene i deviates from what is
observed for the majority of genes for sample j.

3.3. Tanay Scheme

This method is incorporated into the SAMBA clustering algorithm [5] and is avail-
able with the EXPANDER software suite [21], (which also offers a number of other
clustering options and is available from: http://www.cs.tau.ac.il/~rshamir/

expander/expander.html). As this software does not need to provide output on
the weight of each gene-sample couple in the dataset, completion of our analysis
required us to recode this scheme to allow access to the weight information during
the algorithmic process. The information for this scheme was taken from [5] and
[22].
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Note that the bipartite representation of the data in the SAMBA algorithm,
which uses this weighting scheme, has node sets {genes} and {properties}. The
property set includesf nodes for properties of strong, moderate and weak induc-
tion/repression for each particular sample j. Thus |{properties}| = 6 × p, where
p = number of samples. A gene i is defined to be: weakly induced in sample vector
j if the expression value xij is ranked ≥ xweak Induced in j; moderately induced if it
is ranked ≥ xmoderate Induced in j; and strongly induced if it is ranked ≥ xstrong Induced

in j. Similarly it is: weakly repressed if it is ranked ≤ yweak repressed in j; moderately
repressed if it is ranked ≤ ymoderate repressed in j; and strongly repressed if it is ranked
≤ ystrong repressed in j. These thresholds are arbitrarily chosen and are fixed for all
samples. For this analysis we used thresholds of 0.97, 0.90, 0.87, 0.03, 0.10, 0.13, for
each of the values above respectively.

Briefly, with this method let φ(i, j) be the probability that gene i has property
j (i.e. induced/repressed in sample j)g, (see [5, 22] for more details on this calcu-
lation). The majority of gene sample couples will have φ = 0. This probability is
assigned as the weight of a given edge, eij , scaled with the log-likelihood of getting
that edge by chance. Thus each gene-sample couple in the dataset has weight Eq.4:

wij = (φ(i, j)× log
Pc

Pi,j
+ (1− φ(i, j)) × log

1− Pc

1− Pi,j
) (4)

The probability P(i,j) is the fraction of random bipartite graphs, with degree
sequence identical to G, that contain eij (and can be estimated using Monte-Carlo
methods). Pc is based on the assumption that an interesting edge occurs with a
constant probability > max(i,j)∈IxJP(i,j). For this work a Pc value of 0.9 was used
[5].

4. Scheme evaluation

In this Section, we use the 4-point framework introduced in Section 2.2 to analyse
our two novel weighting schemes, and to compare them with the scheme introduced
by Tanay et al. [5].

4.1. Reusability

The empirical weighting scheme results in a partially connected graph for each sub-
category, since genes which do not show a significant change for a given sample
do not generate an edge. Subsequent clustering techniques would need to allow for
this non-edge set, by optimisation of the objective function excluding nodes not
connected by an edge. This scheme requires a dedicated algorithm for subsequent

fThis algorithm was designed to be applied to a compendium of data-sources, not just gene ex-
pression data. For this analysis we are restricting it to gene expression data
gThe property ‘categories’ are not mutually exclusive. If a gene i is weakly induced with a high
probability, it may also be strongly induced, albeit with a smaller probability.
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biclustering, which maintains the lists of gene-sample couples in each category, (i.e.
strongly induced, moderately induced, etc.).

The distribution-based scheme is independent of subsequent clustering ap-
proaches, since it was designed without an explicit approach in mind. It is versatile
and can be used with most clustering techniques and with other types of large
datasets, biological or otherwise.

Likewise, the Tanay scheme is independent of the subsequent clustering tech-
nique, as it results in positive edges for interesting gene-sample couples and negative
edges for non-interesting gene-sample couples. Indeed, the scheme was specifically
designed for an additive scoring system, where the sum of the edge weights in a
subgraph corresponds to its statistical significance, (see [22] for more details). This
scheme has also been applied to a compendium of information, and not just to gene
expression data, [6].

4.2. Parameter influence

The distribution and empirical weighting schemes under consideration are controlled
by a single parameter and, therefore, easily configurable while offering some flexi-
bility.

The distribution-based scheme is controlled by the number of categories, Nc.
The influence of this parameter is assessed through examination of the robustness
and discrimination achieved, as detailed below.

With respect to the empirical scheme the parameter that influences results is κ,
(Eq. 1), which determines thresholds between categories. Table 1 illustrates the re-
sults of the threshold analysis for the Lymphoma dataset. The maximum threshold
for which any gene-sample couple was identified in the real dataset was κ = 7.07
(probability ≤ 0.02, (Eq. 1)). Thresholds of κ = 5, 4.08, 3.58 and 3.162, (i.e. proba-
bilities ( 1

κ2 ) ≤ 0.04, 0.06, 0.08 and 0.10 respectively) were then tested. The log ratio
of the probabilities is maximised at κ = 4.08, and this was taken to be the strong
response threshold. Thresholds for moderate and weak response were then deduced
to be κ = 3.162 and κ = 2.23, respectively.

Table 2 provides results of threshold analysis for all three test datasets..
The main parameters affecting the Tanay weighting scheme are, again, thresh-

olds between categories, and Pc, (Eq. 4). Thresholds between categories are arbi-
trarily chosen, based on normalized ranked values within each sample and are not
data dependent. This ‘hard thresholding’ has consequences for the deterioration of
the scheme when noise and missing values are added to the data. As the threshold
parameter is lowered, a higher percentage of edges will be identified, even if none
exist. For an analysis of parameter Pc see [5].

4.3. Robustness

The influence of noise and missing values are summarised respectively in Table
3 for the Lymphoma dataset. Results for other datasets, not displayed here, are
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Strong
κ 7.07 5 4.08 3.58 3.16
P 0.02 0.04 0.06 0.08 0.10

log( P (X=Edge)
Prand(X=Edge) ) undef undef 3.98 2.45 1.5

Moderate
κ 3.162 2.88 2.67 2.5 2.35
P 0.10 0.12 0.14 0.16 0.18

log( P (X=Edge)
Prand(X=Edge) ) 4.35 3.9 3.54 3.31 3.20

Weak
κ 2.23 2.13 2.04 1.96 1.88
P 0.20 0.22 0.24 0.26 0.28

log( P (X=Edge)
Prand(X=Edge) ) 0.063 0.035 0.019 0.002 -0.01

Table 1. Threshold Analysis , Lymphoma data. κ= the number of standard deviations from mean
(Eq. 1). P = 1

κ2 , is the probability that values are κσ from mean. The maximum log-ratio is taken
as the threshold between categories.

Strong Moderate Weak
Lymphoma 4.08 3.162 2.23
Yeast Cell Cycle 3.16 2.88 2.23
Kasumi 2.77 2.58 2.23

Table 2. κ thresholds identified for each of the tested datasets.

consistent with these.

4.3.1. Empirical Weighting Scheme

The absolute variation in weights is extremely low for the empirical scheme since
the technique examines extreme values, i.e. values which appear in the tail of the
distributions of each gene variable. In addition, weights are not based directly on a
given expression value, but on that expression value relative to other values in the
category for a particular sample (Step 2 of scheme, see Fig. 1). The category is in
turn defined relative to expected value of the gene variable (Step 1 of scheme, see
Fig. 1). As “missing” values are replaced by the row mean, this does not greatly
affect extreme values. Equally, even noise added at 10% level of the original values
does not affect relative values, thus, perturbations in the data have small effect on
weights assigned.

Similar to results shown in Table 3, for the Kasumi dataset, average absolute
variation in edge weights is ∼ 0.26% for an added noise level of 10% (data not
shown), while denoting 10% of the dataset as missing values, gives average absolute
variation in values∼ 0.3%, with stable weights accounting for around 99.5%. For the
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% Noise level 1.5 2.5 5 10

Distribution Based
% Average Absolute variation 3.10 4.90 9 15.80
% “stable” weights 83 84.5 89.1 88.6
Empirical Based
% Average Absolute variation 0.06 0.02 0.03 0.05
% “stable” weights 99.66 99.68 99.68 99.65
Tanay Scheme
% Average Absolute variation 0.00270 0.00260 0.00230 0.00320
% “stable” weights 99.985 99.989 99.994 99.997

%missing values 1.5 2.5 5 10
Distribution Scheme
% Average absolute variation 17.70 27.30 48.86 92.00
% of “stable” weights 37.40 33.40 32.50 30.20
Empirical Scheme
% Average absolute variation 0.04 0.04 0.09 0.16
% of “stable” weights 99.70 99.72 99.64 99.62
Tanay Scheme
% Average absolute variation 0.0023 0.0027 0.0028 0.0069
% of “stable” weights 99.9837 99.9880 99.9936 99.9969

Table 3. Influence of noise level and missing values on weights assigned (for 20 categories for
distribution based scheme)

Yeast Cell Cycle data, the corresponding values for 10% noise added were: ∼ 0.22%
(absolute variation) and ∼ 99.65% (stable weights); and for missing values at 10%
was: ∼ 0.15% (absolute variation) and ∼ 99.69% (stable weights).

4.3.2. Distribution-Based Weighting Scheme

The distribution-based weighting scheme is more generic, as it does not rely as much
on the underpinning biological information: as such, it is less robust to noise and
missing values, which alter the distribution of expression levels.

Influence on the weights used is “reasonable” for low noise perturbation. Specif-
ically, the percentage of stable weights is a helpful indicator, given the nature of the
scheme: when a gene-sample couple falls into a new category due to added noise,
this changes the weights for all couples in the new category as well as all those in
the old one. The % stable weights value may, therefore, give more insight into the
scheme robustness, than using only the average absolute variation of the weights,
(Table 3). Clearly, as the number of categories increases, the each category interval
decreases, and gene-sample couples are more likely to change categories, leading to
a smaller proportion of stable weights 3.
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Fig. 3. Influence of noise - Proportion of stable weights (%)
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Fig. 4. Influence of missing values - Proportion of stable weights (%)

With respect to missing values, the scheme is far less robust than with respect to
noise perturbations. However, it is important to note that the sign of the remaining
weights is not lost: a positive weight does not become negative, (except for cases
when more than half the values for a given gene are missing; in those cases, it would
almost certainly be excluded from the dataset before the scheme is applied). What
is partially lost is the degree of over-expression, (or under-expression), rather than
the knowledge that this change of expression occurs. A representation of missing
value influence, depending on the number of categories, is given in Figure 4.

As noted previously, the results displayed correspond to untreated data, i.e.
where the mean to replace missing values, thus creating larger perturbations in the
weights. Future work might reasonably include tests of the effect of the various
correction techniques on scheme robustness.

4.3.3. Tanay Scheme

Perturbations in the data have very little effect on weights derived with the Tanay
scheme, (similar results for all tested datasets, data not shown for Yeast and Kasumi
datasets). We were surprised by this result and tested missing values up to a level
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of 80% however the effect was still minimal (0.01%, average variations and 99.99%
stable weights). It may be the case that this scheme identifies ‘interesting’ gene-
sample couples, even if none exist, due to the ‘hard’ threshold nature of the scheme.
If 10% noise added to the dataset, thresholds still depend on ranking and not mean
level, thus approximately the same gene-sample couples selected as interesting as
ranked position is not changed. Missing values has little effect, as the values are
replaced by the mean, therefore more extreme values are replaced with less extreme
values, however the same thresholds are used.

4.4. Discrimination

For this analysis, ‘random graph’ refers to graphs created from random datasets, as
described in Section 3.1.1.

4.4.1. Empirical Weighting Scheme

From the threshold analysis, described above, maximum discrimination between
empirical and random graphs is achieved. As expected, the largest number of gene-
sample couples falls in the weak response category. Discriminating between gene
responses depends on the category thresholds used. From Table 4, for strong and
moderate response, the probability of an edge existing between a gene and sam-
ple node in the real graph is greater than that for the random graph, indicating
that significant structure is present. For a weak response, the ratio of probabilities
is smaller and it is less convincing that real differences exist. Nevertheless, an ex-
amination of the average degree of sample nodes in the real graphs indicate that
average number of genes responding is higher than expected. For example, for the
weak repression sub-category, a sample node is, on average, connected to ∼ 3% of
gene nodes compared to ∼ 1.5% in the random graph, (d⊥/d⊤). The average degree
of a sample node in the real graph is also higher than expected, (> m/n⊥). This
suggests that, although the ratio of probabilities in weak response is not high, some
pattern structure is present and the method is capable of identifying indicative
gene-sample couples.

4.4.2. Distribution-Based Weighting Scheme

By construction, there are no “damaging” false-positives or false-negatives, at least
in theory. In practice, false-positive or false-negative edges may have weights very
close to zero, (either positive or negative depending on the number of categories).
A significant change in expression patterns can not lead to a positive weight, while
negative weights are only obtained where there is a significant change. Since abso-
lute, (positive vs. negative), discrimination is guaranteed, the focus here is to assess
relative discrimination, i.e. distribution of weight values. Results, of the influence
of the number of categories, on this discrimination are displayed in Table 5. A first
observation, based on the proportion of negative weights, is that discrimination is
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Repres Induc
Wk Mod. Str. Wk. Mod. Str.

n⊤ 2572 456 111 2829 719 304
n⊥ 63 26 28 81 53 54
m 4324 506 114 4939 822 316
d⊤ 1.69 1.11 1.03 1.74 1.148 1.04
d⊥ 72.29 21.66 4.75 64.09 17.75 6.08
δ 0.0112 0.002 0.0003 0.0127 0.002 0.0008

n⊤rand 2774 8 5 2718 7 3
n⊥rand 87 7 5 87 7 3
mrand 4007 9 5 4020 8 4
d⊤rand 1.477 1 1 1.462 1 1
d⊥rand 46.57 1.28 1 45.875 1.14 1
δrand 0.0103 2e−5 1e−5 0.0104 2e−5 1e−5

Table 4. Categories for Lymphoma data, created by cut off thresholds 0.20 (weak induc-
tion/repression), 0.10 (moderate induction/repression), and 0.06 (strong induction/repression).
n⊤ = the active set of genes (gene nodes with degree ≥ 1), n⊥ = active set of samples, m =
number of edges, d⊤ = average degree of active set of genes, d⊥ = average degree of active set of
samples, δ = bipartite density i.e the fraction of existing links with respect to possible ones.

good: there are on average, just under 41,019 (∼ 11%) negative weights (out of
386,496), implying that 11% of gene-sample couples in the dataset are of interest.
This value varies between 35,542 (30 categories) and 49,242 (10 categories), with
a standard deviation of ∼ 3908. The scheme selected 8.75% ± 0.21% gene-sample
couples from a random dataset, (Section 3.1.1), for Nc = 14. Discrimination is sat-
isfactory for any number of categories, (Nc), in the range tested. Weights obtained
with fewer categories appear more discriminatory in general, (apart from Nc = 10,
which indicates that Nc < 10 would be ill-advised). Given that Nc = 12 to 16 cat-
egories also corresponds to improved robustness, using this range is recommended.
This recommendation also applies to other datasets, for which results obtained are
similar.

4.4.3. Tanay Scheme

From our analysis of this scheme (Table 6), we observed that (a) a smaller number
of total positive weights were identified compared to those selected from correspond-
ing graphs generated from random dataset (Section 3.1.1), and (b) the number of
positive weights in each category is roughly equivalent to random (with the ex-
ception of Kasumi Moderate and Strongly repressed categories). Observations (a)
and (b) imply that the degree ‘sharing’ of gene-sample couples in the real dataset
(i.e. gene-sample couples having a positive edge in the weakly induced category, are
also feature in the strongly induced category- categories are not mutually exclu-
sive). Since ‘hard’ thresholds between categories was used and arbitrarily chosen,
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Distribution Weights
k ≤-6 [-6;-4] [-4;-2] [-2;0] [0;2] [2;4] ≥ 4

10 14977 10207 8779 15279 13337 12969 310948
12 7708 13206 10917 11324 11453 17783 314105
14 733 14252 14998 13327 14293 17606 311287
16 0 9778 16293 17884 14973 17616 309952
18 0 4723 19030 18740 18141 17629 308233
20 0 0 20095 20116 21275 20942 304068
22 0 0 17435 22792 23217 19002 304050
24 0 0 14050 24584 24329 24004 299529
26 0 0 11334 26286 26337 28134 294405
28 0 0 8325 28679 27582 32757 289153
30 0 0 4751 30791 29200 35930 285824

Table 5. Influence of the number of categories on discrimination for Lymphoma data: distribution
of weight values. Values in cells represent the number of gene-sample couples in various ranges

the order of the number of edges in each category is Strong < Moderate < Weak.
Note also that those gene-sample couples, evaluated as strongly reacting, will have
a magnified impact on any clustering procedure on the resulting graph, due to the
overlap between categories.

4.5. Discussion and Conclusion

From the investigations above, it is clear that interpretations of edge weights in
graphical gene expression schemes can differ considerably. Primarily, the empiri-
cal and Tanay weighting scheme result in positive weights for “interesting” gene-
sample couples, while the distribution technique leads to significant effects reflected
in negative weights. If the optimisation technique uses a minimisation-based objec-
tive function, the empirical and Tanay weights could simply be negated, (similarly
for distribution weights if a maximisation function is used). Also, as noted previ-
ously, the empirical scheme results in a set partially-connected graphs, while the
distributed and Tanay scheme results in a fully-connected graph. This has con-
sequences for the subsequent clustering procedure used to group the edge weights.
For both empirical and distribution schemes presented, edge weights linking effected
genes for a particular sample j, are defined relative to other gene expression values
for sample j. This is an important corollary, as absolute level of gene expression is
not directly accounted for, only the fact that it does change and the significance
of this change relative to the majority of genes. Relative evaluation is also an in-
trinsic feature of the Tanay based scheme, as the initial probability φ(i, j), (Eq. 4)
is based on ranks. However, the selection of a pre-determined thresholds between
ranks has a large effect on robustness and discrimination as it is not data depen-
dent. Conversely, the issue of data dependent threshold estimation is addressed in
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Datasets Lymphoma Yeast Cell Kasumi
% total edges 2.7 3.34 2.13

(2.9± 0.007) (4.3± 0.01) (3.6± 0.02)
Induced

% strong 1.2 1.1 0.8
(1.1± 0.009) (1.2± 0.02) (0.8± 0.004)

% moderate 3.2 4.1 1.0
(3.1± 0.01) (3.9± 0.03) (1.0± 0.005)

% weak 3.9 5.0 1.1
(3.9± 0.02) (4.8± 0.03) (1.1± 0.007)

Repressed
% strong 1.2 1.1 1.3

(1.1± 0.009) (1.2± 0.02) (1.4± 0.06)
% moderate 3.2 3.8 3.8

(3.1± 0.01) (3.9± 0.02) (3.4± 0.06)
% weak 4.0 4.7 4.7

(3.8± 0.01) (4.8± 0.03) (4.1± 0.12)

Table 6. Tanay scheme - percentage of total possible edges is taken as
Number of Positive Edges

n×p×6
whereas percentage of edges in each category is taken with respect to total possible edges in that

category i.e.
Number of positive Edges

n×p
, (n = number of genes, p = number of samples). Bracketed

values represent results from random graphs.

the two novel schemes presented, but is non-trivial as numerous thresholds need to
be assessed, which is computationally expensive.

The empirical-based scheme is more specific, in the sense that fewer gene-sample
couples are identified, than the distribution-based and Tanay scheme. For example,
for the Lymphoma dataset, the empirical based scheme extracts 11, 021 gene-sample
couples (∼ 3% at optimal threshold levels). The distribution-based scheme extracts
43, 155 couples (∼ 11%) (for 12 categories), although 11, 324 of these are close to
0 (and hence do not have a major impact on clustering), this still leaves 31, 831
(∼ 8%), “interesting couples”. The Tanay scheme extracts ∼ 16% for the same
dataset.

The empirical-based method deteriorates slowly with perturbations in data,
hence for data that is known to contain many missing values and/or noise it may be
a better choice. Weights overall with the Tanay scheme seem little affected by noise
and missing values, which indicates that this scheme will assign high weights to gene-
sample couples, even if none are present. If the sample size (i.e. the number of mi-
croarray experiments) for each gene is small, the performance of the empirical-based
scheme deteriorates with respect to its random graph comparison basis (difficult to
estimate µ and sd of each gene variable) and the thresholds between categories
become increasingly difficult to identify. In this situation, the distribution-based
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scheme would be the better choice.
Using graphical techniques to extract meaningful information from biological

data is an intuitive and popular method. In this paper, we limited our investigation
to bi-partite graphs as this representation captures essential properties of the gene
expression dataset and allows for the extraction of biclusters most suitable for data
in this domain, [11]. Alternatively, a one-mode gene expression graph could have
been considered, where G = (N, E), with N a set of gene nodes and (ni, nj) ∈ E if
gene i and j show similar expression across all samples, (measured e.g by a distance
function). This approach was used in [23], although not explicitly to investigate
weighted graphs. Analysis of complex weighted networks was considered in [24],
although the authors did not investigate the weighting scheme itself.

As such, investigation into weighting of gene expression networks is long overdue.
In this paper we proposed and compared two weighting schemes applied to gene
expression bi-partite graphs with a view to extracting meaningful biclusters from
the data. We also compared the properties of these novel schemes to the innovative
work of Tanay et al. [5, 6, 22]. The importance of assessing edge-weighting schemes
was highlighted and we demonstrated that edge weights must be considered inde-
pendently from the clustering procedure, since alternative edge weight derivation
can lead to different interpretations of the data. This type of assessment frame-
work for weighting is equally crucial in the context of other types of large dataset,
biological or otherwise

Further investigation on extraction of meaningful graphical relationships
through choice of edge-weighting schemes should include incorporation of infor-
mation from related sources, (such as protein interaction information, promoter
information etc.), to refine weights and improve handling of missing values. Investi-
gation of automatic threshold estimation for category sub-divisions is also indicated.
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