
DUBLIN CITY UNIVERSITY

SCHOOL OF ELECTRONIC ENGINEERING

Speeding Up Adaboost Object Detection With
Motion Segmentation and Haar Feature

Acceleration

A thesis submitted for the award of

M.Eng.

in Electronic Engineering at

Dublin City University

by

Radha Krishna. R

Supervised by

Prof. Noel O'Connor

August 19, 2009

http://www.dcu.ie
http://www.eeng.dcu.ie
mailto:sun.radha@gmail.com
mailto:oconnorn@eeng.dcu.ie

DECLARATION

I hereby certify that this material, which I now submit for assess-

ment on the programme of study leading to the award of M.Eng. in

Electronic Engineering is entirely my own work, that I have exercised

reasonable care to ensure that the work is original, and does not to

the best of my knowledge breach any law of copyright, and has not

been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed

Radha Krishna. R ID.No:56108885

sun.radha@gmail.com

August 19, 2009

To my family

I dedicate this work to my mother Prema Vasantha,

father Satnarayana Murthy and brother Ravi Krishna

for believing in me and encouraging me to pursue higher studies.

Acknowledgements

Thanks to my supervisor, Prof. Noel E O'Connor, for giving me the opportu-

nity to work in the research group and more importantly for his encouragement

and good guidance. I also thank Chanyul Kim, Kealan McCusker, Ciaran O

Conaire and Philip Kelly for many interesting discussions and for giving me very

valuable advice. I would also like to thank Deirdre Sheridan for support in making

travel arrangements for me.

I am also grateful for the �nancial support I have received from the Informat-

ics Commercialisation initiative of Enterprise Ireland and Science Foundation

Ireland.

I was also fortunate enough during my period of study to have an opportunity

to visit Prof. Dr-Ing. Walter Stechele's research group Institute for Integrated

systems at Technical University Munich. I would like to thank those I worked

with there for making my time a rewarding experience. Many thanks to Walter

Stechele for inviting me.

I would also like to thank all my friends at Center for Digital Video Processing

for making my stay very memorable.

I am also grateful to my family, who always have encouraged my interest to

study further, even when it has meant living thousands of miles away from home.

Many thanks to all my friends back home in India for the good time I had during

my last visit. I would also like to express my gratitude to Chanyul and his family

for the a�ection and friendliness, a special thanks for showing me some beautiful

places in and around Ireland.

Radha Krishna. R

sun.radha@gmail.com

Dublin, August 19, 2009

iii

Abstract

A key challenge in a surveillance system is the object detection task. Object

detection in general is a non-trivial problem. A sub-problem within the broader

context of object detection which many researchers focus on is face detection.

Numerous techniques have been proposed for face detection. One of the better

performing algorithms is proposed by Viola et. al. This algorithm is based on

Adaboost and uses Haar features to detect objects. The main reason for its

popularity is very low false positive rates and the fact that the classi�er network

can be trained for any detection task. The use of Haar basis functions to represent

key object features is the key to its success. The basis functions are organized

as a network to form a strong classi�er. To detect objects, this technique divides

each input image into non-overlapping sub-windows and the strong classi�er is

applied to each sub-window to detect the presence of an object. The process is

repeated at multiple scales of the input image to detect objects of various sizes.

In this thesis we propose an object detection system that uses object segmen-

tation as a preprocessing step. We use Mixture of Gaussians (MoG) proposed by

Stau�er et.al. for object segmentation. One key advantage with using segmenta-

tion to extract image regions of interest is that it reduces the number of search

windows sent to detection task, thereby reducing the computational complexity

and the execution time. Moreover, owing to the computational complexity of

both the segmentation and detection algorithms we used in the system, we pro-

pose hardware architectures for accelerating key computationally intensive blocks.

In this thesis we propose hardware architecture for MoG and also for a key com-

pute intensive block within the adaboost algorithm corresponding to the Haar

feature computation.

iv

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 5

1.3 Overview . 6

2 Background Modeling and Moving Object Segmentation 8

2.1 Introduction . 8

2.2 Background Modeling . 9

2.2.1 Mixture Of Gaussian . 10

2.2.2 Post Processing . 12

2.2.2.1 Morphology . 12

2.2.2.2 Connected Component Labeling 14

2.2.3 Discussion . 16

2.3 Segmentation Quality . 17

2.4 Conclusion . 20

v

3 Introduction to AdaBoost Based Object Detection 25

3.1 Introduction . 25

3.2 Face Detection Techniques . 26

3.3 Haar Features and Integral Image 27

3.3.1 Haar Basis Functions . 27

3.3.2 Integral Image . 29

3.4 Training with Adaboost . 30

3.4.1 Haar Basis set as Classi�ers 31

3.4.2 Boosted Cascade of Classi�ers 32

3.4.3 Discussion . 33

3.5 Open CV Haar Cascade . 34

3.6 Conclusion . 35

4 Feature Element For Adaboost Object Detection 39

4.1 Introduction . 39

4.2 MoG Hardware Architecture . 40

4.3 Boosting Hardware Architecture 43

4.4 Feature Element based Architecture 46

4.4.1 Hardware architecture . 48

4.4.2 Grouping multiple FEs . 49

4.5 Conclusion . 53

5 Evaluation and Results 54

5.1 Introduction . 54

5.2 Performance Evaluation . 55

5.2.1 Detection Accuracy . 60

5.2.2 Execution Speed . 61

5.3 Hardware Platform . 62

5.3.1 OCP Interface . 63

5.3.2 Programmer's Model . 65

5.4 Results . 67

5.5 Conclusion . 69

vi

6 Conclusion and Future Work 70

6.1 Conclusion . 70

6.2 Future Work . 71

References 79

vii

List of Figures

1.1 Block Digram of the proposed system 6

2.1 Foreground Segmentation with Uni-Model and Fixed Threshold . 11

2.2 Foreground Segmentation with Mixture of Gaussian 12

2.3 Block Digram of the proposed system 13

2.4 Window mask for 8-way CCL with center pixel e 15

2.5 Typical output at various stages for a sample test sequence. . . . 15

2.6 Moving object segmentation and face detection. 16

2.7 3 � 3 Structuring Element used for Morphology Operations . . . 18

2.8 MoG applied to a sample Tree test sequence 19

2.9 MoG applied to a sample Bootstrap test sequence 20

2.10 Segmentation quality Comparison for Bootstrap Sequence 21

2.11 Segmentation quality Comparison for Tree Sequence. 22

2.12 Segmentation Quality for Di�erent MoG Models 22

2.13 Segmentation Quality for Di�erent MoG Models 23

2.14 Segmentation Quality Plots with Di�erent Learning Rate. 23

2.15 Segmentation quality with Di�erent Learning Rate 24

3.1 Haar Basis Functions - Lienhart et. al. 28

3.2 Haar Features applied to a sub-window - Viola et.al. 28

3.3 Integral Image - Viola et. al. 29

3.4 Feature Computation - Viola et. al. 29

3.5 Face Training Example- The face dataset can be obtained from

cbcl (2000) . 32

viii

3.6 Classi�er Cascade - Viola et. al. 33

3.7 Scaling the image to detect faces at various size 33

3.8 Open CV Haar cascade applied to detect faces and pedestrians . 35

3.9 Open CV Haar cascade applied to detect faces 36

3.10 Open CV Feature Database . 37

3.11 Open CV Haar Basis Representation - where �(xn; yn) denotes

sum of pixels in the rectangular region covered by (xn; yn), width

and height . 38

4.1 Block Diagram of Mixture of Gaussian. 41

4.2 Internal architecture of Match Model block 41

4.3 Variance update block . 42

4.4 Internal architecture of Mean update process 43

4.5 Internal architecture of weight update process 43

4.6 Internal architecture of Sort Model block 44

4.7 Number of Stages for Typical Face Detection 45

4.8 Haar-like feature evaluations . 45

4.9 Block Diagram of Face Detection 46

4.10 Classi�er Engine using 16 Classi�ers 47

4.11 Network-On-Chip Based Face Detection 48

4.12 Proposed Feature Element . 48

4.13 Con�guration Register with pixel address in clock wise direction. 49

4.14 Internal Architecture of FE . 50

4.15 Con�guration RAM Data . 51

4.16 A Recon�gurable Stage formed by using 16 FEs 52

5.1 Face detection applied to Corridor test sequence- Haar feature

window size 24 � 24 and image resolution 640 � 480 57

5.2 Upper body detection applied to Corridor test sequence - Haar

feature window size 22 � 18. 58

5.3 Upper body detection applied to CAVIAR test sequence - Haar

feature window size 22 � 18 and image resolution 384 � 288 . . . 59

5.4 Hardware Software Integration Illustration 63

5.5 Integration Platform with Virtual Components 65

ix

5.6 MoG Virtual Component . 66

x

List of Tables

3.1 Summary of face detection techniques 27

5.1 Object detection performance. FS = Full Search detection, MS

= Background suppression and detection 60

5.2 Detection accuracy after excluding small objects 61

5.3 Execution time for test sequences. 62

5.4 OCP Bus Signals . 64

5.5 MCmd Encoding . 64

5.6 SResp Encoding. 65

5.7 MoG OCP interface Registers . 66

5.8 Stage Control and Con�guration Registers 67

5.9 MoG Hardware Resource Usage - Synthesized for XC2VP30 . . . 68

5.10 Resource Usage for Recon�gurable FE - Xilinx XC2VP30. 68

5.11 Resource Usage for 16 FE Stage - Xilinx XC2VP30 68

xi

Chapter 1

Introduction

Video surveillance and security systems are crucial for crime prevention, and to

protect critical infrastructure. Current generation surveillance systems unlike

closed circuit TV (CCTV) systems have an important advantage that they can

use the existing internet infrastructure, thus making it much easier to deploy

video surveillance equipment in a cost e�ective way. On the other hand the

emergence of visual sensor networks as a promising way to deal with multiple

nodes poses many research challenges. One of the key challenges among others

is the ability to manage the huge information �ow coming from each imaging

node (visual sensor). Transmitting image/video data to a central station for

storage/analysis is not e�cient when considering a large number of these camera

nodes. In order to make e�ective use of the visual surveillance system it is of

key importance to equip each sensing node with autonomous sensing capabilities

i.e. push intelligence into the device. One major drawback with most existing

surveillance systems is the lack of the ability to process information locally and

only send important information to the central station. The amount of data

generated by visual sensor networks is huge and the fact that this data can only

be used for later analysis and cannot be used to detect events on-line and in

real time restricts these systems from realizing their full potential. One way to

make these systems autonomous is to use some of the computer vision and image

1

Chapter 1. Introduction
1.1. Motivation

understanding techniques developed over the last few years to detect and analyse

events in real-time. Another motivation is the fact that the amount of data

transmitted across the network would make human inspection and assessment of

events in the monitored area very di�cult.

The choice of algorithms or techniques that a sensing node should support for

autonomous analysis strictly depends on where the node is deployed. For instance,

for access control applications face detection and recognition may be su�cient.

On the other hand a public place requires pedestrian detection and tracking. It is

of vital importance that smart cameras with adequate capabilities are deployed

to make e�ective use of the surveillance and monitoring infrastructure. The

key aspects apart from detection performance that need to be considered when

implementing an object detection algorithm in a constrained device such as an

embedded smart camera is the algorithm's computational complexity and the

amount of parallelism in the algorithm. Parallelism in the algorithm enables

e�cient hardware implementation needed for real-time detection as the majority

of detection algorithms are compute and data intensive. This thesis focus on one

such important aspect of a smart camera that is the object detection component.

Object detection research is very wide and the details presented in this thesis are

intentionally restricted in scope to consider only an extremely popular approach.

1.1 Motivation

Moving object segmentation and detection is an important research challenge in

computer vision. Some of the key applications that can bene�t from such systems

include security and surveillance, robotics, human computer interaction, envi-

ronment monitoring and advanced driver assistance in the automotive industry.

Object segmentation and detection deal with two di�erent aspects of computer

vision. Firstly, segmentation deals with extracting image regions of interest such

as objects that are not part of the background or in general moving objects.

On the other hand, detection deals with identifying the object type for example

face, human, car, animal etc. Moreover, video surveillance in the last few years

has become crucial at various places for general monitoring and crime preven-

tion. However, the volume of digital surveillance cameras deployed makes human

2

Chapter 1. Introduction
1.1. Motivation

inspection and analysis increasingly di�cult. Consequently, there has been an

increased e�ort to build computer vision enabled cameras (smart camera) for se-

curity and surveillance, where the camera can carry out autonomous analysis of

the captured scene to detect events of interest. Object detection and classi�ca-

tion hold the key to many other high level applications such as face recognition,

human computer interaction, security and tracking among others.

Object detection in general is a non-trivial problem. In a typical surveillance

system the main goal is to detect and classify objects for example faces, humans,

animals, vehicles etc. For e�ective object detection the key is to identify a set

of unique features that distinguish the object from other objects. Apart from

the features, the training and detection methodology also contribute greatly to

detection performance. There are multiple challenges within the broader context

of object detection. For instance for face detection, which many researchers focus

on, the goal is to detect faces whilst overcoming some of the following problems

(as mentioned in Yang et al. (2002)):

Pose: The position of face relative to camera can vary, resulting in partial

or total occlusion of facial features (e.g. pro�le, upside-down, 45 degree).

Presence of other structural components: Facial features such as

beards, mustache and glasses etc.

Change in facial expression: The appearance of a face is directly a�ected

by facial expression.

Occlusion: partial occlusion of face by other objects.

Image Orientation: In plane rotation of faces.

Imaging conditions: Change in lighting etc.

Face detection in general can be classi�ed as a sub problem within the broader

area of object detection. A general consensus that has emerged is that some of

the detection techniques developed for face detection can be used in a broader

context of object detection Yang et al. (2002). While numerous methods have

been proposed to detect faces, the ones based on learning have demonstrated

3

Chapter 1. Introduction
1.1. Motivation

good detection performance, for instance Eigen faces Turk and Pentland (1991),

Kirby and Sirovich (1990), neural network techniques Sung and Poggio (1998),

Feraud and Bernier (1998), Rowley et al. (1998) and techniques that use a support

vector machine (SVM) Osuna et al. (1997), and �nally the approach of Viola and

Jones (2004) that is described in detail below as it is the approach adapted in

this thesis. For a detailed review of di�erent face detection techniques and their

detection performance the reader is referred to Yang et al. (2002) and Hjelmas

and Low (2001). Many of these techniques have been successfully applied to

other pattern recognition problems such as optical character recognition, object

recognition and autonomous robot driving. For example, Papageorgiou et al.

(1998) applied SVM based techniques for object detection. Lucas (1993) used

neural networks for optical character recognition (OCR).

Adaboost based face detection proposed by Viola et. al. has proved to be

one of the best techniques because of its low computational complexity (unlike

other techniques) containing only simple arithmetic operations such as addition,

subtraction and comparison. Because of the algorithm's better performance it

is implemented in both Intel IPP (2008) and Open CV (2008). Also the high

amount of parallelism present in the algorithm and the fact that it can be used

in a broader context of object detection makes this algorithm very suitable for

embedded smart cameras. The key idea proposed by Viola et.al. is the use of Haar

like features to represent important distinguishing features of objects combined

with adaboost based training. For instance, for face detection a set of positive

and negative face samples are used to train the face detector. The output of the

training process is a strong classi�er with a set of Haar features. In the detection

phase, this technique divides each input image into non-overlapping sub-windows

and the strong classi�er is applied to each sub-window to detect the presence of a

face. The process is repeated at multiple scales of the input image to detect faces

of various sizes. The same training and detection methodology can be used to

detect objects of other classes provided the training process uses training samples

from the target object class (see Chapter 13 on Machine learning Bradski and

Kaehler (2008)). The authors in Miyamoto et al. (2006) and Snow et al. (2003)

successfully applied this technique to pedestrian detection.

As mentioned earlier it is very important to make visual sensing nodes more

4

Chapter 1. Introduction
1.1. Motivation

intelligent (smart) by giving them the capability to carry out autonomous real-

time analysis of the captured scene. Object detection is one among several other

potential computer vision and image understanding techniques that a smart cam-

eras can bene�t from. Adaboost based face detection proposed by Viola et. al.

uses machine learning techniques to train a network of weak classi�ers for a spe-

ci�c detection task and has gained much popularity due to its high detection

rate and low false positive rate. Despite its low computational complexity this

algorithm cannot achieve real-time performance on a typical embedded RISC

platform Hiromoto et al. (2009). For instance the Open CV implementation of

full frame search face detection on a 640� 480 image takes around 400 ms on a

Pentium Core 2 Duo 2.4 GHz machine. However, in a surveillance application a

full frame search is not always necessary and a signi�cant amount speed-up could

be achieved by only sending image region of interest to the detection stage. The

region of interest can be obtained by some form of moving object segmentation

technique where regions of motion are extracted and later sent to the detection

stage. This could signi�cantly reduce the number of sub-windows processed by

the detector thus increasing the detection speed.

Moving object segmentation is a crucial step in many detection and tracking

application. Motion segmentation aims to accurately detect moving objects from

a temporal image sequences. However moving object segmentation is a non-trivial

problem and many techniques have been proposed. One approach to robust mov-

ing object segmentation which we focus on in this work is background modeling.

In this technique, a model of the background scene is built and each incoming

frame is compared against the background model to identify foreground objects.

Many algorithms of varying complexity have been proposed that provide vary-

ing segmentation quality Cheung and Kamath (2005), Pless (2005) and Oliver

et al. (2000) (to name just a few). However, one of the popular algorithms is the

mixture of Gaussian (MoG) proposed by Stau�er and Grimson (1999). This tech-

nique is successfully used in surveillance type applications Shahid et al. (2008),

Liao et al. (2006). In this algorithm Steu�ar et.al. model each pixel using multi-

ple Gaussian probability distribution functions (PDFs). This algorithm performs

well in dynamic outdoor environments where there are numerous moving objects

for example trees, persons etc. The Mixture of Gaussian approach can be treated

5

Chapter 1. Introduction
1.2. Objective

as a pixel process where each incoming pixel is matched against all the models

to decide if the pixel is part of background or the foreground.

1.2 Objective

As mentioned earlier, the use of motion segmentation is an e�ective way to speed-

up adaboost detection in a surveillance application. In this thesis we propose an

object detection system by combining one of the popular background modeling

and object detection techniques, that is the MoG and the adaboost respectively.

The system starts by forming a robust model of the background and each subse-

quent image is compared with this background to extract the foreground pixels.

Many typical object segmentation techniques usually generate noise pixels and

false positive pixels due to change in lighting conditions. Some form of post

processing is needed to remove these unwanted foreground pixels for better de-

tection performance. We use morphological operations and connected component

labeling in the post processing stage. Figure 1.1 shows the block diagram of the

proposed system. The output from the post processing stage is sent on to the

detection stage. One key advantage with adaboost is that it can be used for any

detection task provided the training data belongs to the target object class. As

mentioned earlier the adaboost training and detection process is implemented

in Open CV (2008) and comes with a number of pre-trained Haar classi�ers for

frontal face, pro�le face, upper body and full body. The Open CV default Haar

classi�ers come in an .XML database �le (more on this in Chapter 3) and we use

these pre-trained database to evaluate our object detection system.

Another key challenge with the proposed system is that, the MoG and the

Haar feature computation for object detection are both compute and data inten-

sive. In order to achieve real-time performance it is essential to accelerate these

compute intensive blocks in hardware. In this work we build a hardware accel-

erator for MoG and for the Haar feature computation. The key building block

for Haar feature computation in this work is the Haar Feature Element (FE).

To enable multiple object detections the FE is designed in a way that, it can

be con�gured to form any function from the Haar basis set Lienhart and Maydt

(2002). Moreover, these FEs can be grouped to form a generic con�gurable clas-

6

Chapter 1. Introduction
1.3. Overview

Figure 1.1: Block Digram of the proposed system

si�er stage. With the proposed FE based approach and grouping multiple FEs

the adaboost cascade can become more �exible. The FE based approach has an

advantage that it is con�gurable and can be used to di�erent detection tasks.

1.3 Overview

In Chapter 2 details of background modeling and post processing techniques

used in the system are presented. Chapter 3 focuses on the algorithmic issues

of adaboost based object detection. Adaboost training process, the key to this

detection technique is explained in Section 3.4. The Haar basis set and the

concept of integral image that enables fast Haar feature computation is explained

in Section 3.3. Hardware implementation issues are presented in Chapter 4. In

Section 4.3 details of existing hardware architectures for Adaboost are presented

followed by details of the recon�gurable FE in Section 4.4. In Chapter 5 hardware

implementation results of MoG, Feature Element and details of Xilinx XUP board

used for evaluating FE are presented. Finally Chapter 6 presents conclusions and

outlines some future work.

7

Chapter 2

Background Modeling and Moving

Object Segmentation

2.1 Introduction

Smart cameras are becoming increasingly popular in surveillance systems for de-

tecting humans and vehicles in dynamic scenes. The task is to push intelligence

and adaptability, to the device itself for autonomous analysis of the captured

image. One of the �rst stages in many video/image analysis tasks for surveil-

lance applications is object segmentation. Moving object segmentation is one

of the most important research areas in computer vision. Over the last few

years researchers have proposed many techniques for object segmentation. These

techniques range from very simple frame-di�erencing with an adaptive threshold

Rosin and Ioannidis (2003) to background subtraction Piccardi (2004) and com-

plex feature based segmentation Zhu et al. (2005). However in this work we are

concerned with background modeling based approaches. In background subtrac-

tion, a robust model of the background scene is built and each incoming frame is

subtracted from this background model, and an adaptive threshold technique is

used to identify foreground pixels. However background modeling is a complex

problem, mainly due to changes in lighting conditions and small moving objects

among others. The rest of the chapter presents a brief description of various chal-

lenges encountered in object segmentation and then the details of the mixture of

8

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Gaussian approach which we use in this work are presented.

2.2 Background Modeling

An important element in many surveillance applications is the moving object

segmentation module. Background subtraction is the most popular technique

used for moving object segmentation used successfully in Sato and Aggarwal

(2004), Ran et al. (2005) and Snidaro et al. (2005). The task of this module is to

identify foreground pixels and ignore background pixels. The foreground pixels

are later processed by complex detection, identi�cation and tracking modules.

However robust background modeling is not always practical due to the following

reasons as mentioned in Toyama et al. (1999b):

Moved object: A background object for example a chair or phone is moved

and should not be considered part of the foreground.

Time of day: Gradual illumination changes occur in both indoor and

outdoor scenes and the background modeling technique should adapt to

these changes.

Light switch: Sudden changes in lighting conditions could e�ect the scene

and the technique should quickly adapt to these sudden lighting changes.

Waving trees: Constant periodic motion of the background objects can

corrupt the background model.

Camou�age: A foreground object's pixels can sometimes have the same

value/pattern as the background object making the object di�cult to de-

tect.

Bootstrapping: A background modelling technique builds a model of the

background from training images that are free of foreground objects. How-

ever for some environments it is not practical to obtain object free training

images, for example public places.

9

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Foreground aperture: When a homogeneously colored object moves,

changes in interior pixels cannot be detected. Thus, the entire object may

not appear as foreground but only parts thereof.

Sleeping person: When a foreground object stops moving it is hard to

distinguish the motionless foreground object from other background objects.

Walking person: When an object initially part of the background starts

moving, both the object itself and newly revealed parts of the image appear

as foreground.

Shadows: Moving objects often cast shadows and can result in identifying

the shadow regions as foreground.

In the last few years many background modeling techniques were proposed to

handle various scene types. For a detailed review of various techniques the reader

is referred to Piccardi (2004). A popular approach among these methods due to

its relatively low computational cost is the uni-model background. This technique

is more suitable for scenes that are not very dynamic (e.g. indoor scenes). In

this technique a background model is formed by averaging N frames without any

foreground objects. Then each subsequent incoming frame's pixels are declared

as foreground if,

jImt(x; y)�Bg(x; y)j > Th (2.1)

where Imt is current image, Bg is the background image and Th is a threshold.

This technique is not robust in the sense that it cannot adapt to changes in

lighting conditions, bootstrapping and moving background objects. Figure 2.1

shows typical foreground obtained using this technique, and clearly shows the

lack of ability to handle sudden change in light and moving background objects.

The test sequences light switch, bootstrap and waving tree are used by Toyama

et al. (1999b) to evaluate di�erent background modeling techniques and can be

downloaded form Toyama et al. (1999a). The result shown in the �gure are after

some post-processing steps to remove noise. The details of post-processing are

discussed in detail in Section 2.2.2.

10

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Figure 2.1: Foreground Segmentation with Uni-Model and Fixed Threshold

2.2.1 Mixture Of Gaussian

The technique discussed above uses a uni-model background and a �xed threshold

to identity foreground pixels and is suitable for static indoor scenes with no

change in lighting and moving objects. However the majority of outdoor scenes

in surveillance applications are very dynamic so one alternative to deal with

multi-modal backgrounds is the mixture of Gaussians as proposed in Stau�er

and Grimson (1999). This algorithm performs well when multiple objects, which

are part of the background and appear at the same pixel locations e.g. waving

trees, moved chairs etc. To cope with multiple background objects each pixel is

modeled with multiple Gaussian probability distribution functions (PDFs). The

number of Gaussians is determined by the available resources and the required

accuracy. Following Stau�er and Grimson (1999), many researchers proposed

modi�cations to the basic technique to improve robustness and reduce update

complexity. The Mixture of Gaussians (MoG) approach can be treated as a pixel

11

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

process where each incoming pixel is matched against the existing K models.

A match is determined by Equation (2.2). If a match is found the respective

model's mean-�i, variance- �i and weight-wi are updated as in Equations (2.3),

(2.4) and (2.5) respectively Wang and Suter (2005).

jxt � �i;t�1j < 2:5�i;t�1 (2.2)

�i;t = �i;t�1 +Mi�(xt � �i;t�1) (2.3)

�2i;t = �2i;t�1 +Mi�((xi;t � �t)
T (xi;t � �t)� �

2
i;t�1) (2.4)

wi;t = wi;t�1 + �(Mi � wi;t�1) (2.5)

where � is the learning rate, Mi is 1 when the new pixel matches the ith model,

otherwise 0. Following the update process, the models are sorted according to

their new weights. Figure 2.2 shows typical output obtained from MoG approach.

2.2.2 Post Processing

Foreground regions obtained by many of the techniques described earlier need

some form of post processing to remove spurious noise pixels, false positives and

remove small objects. In a typical object segmentation system the output image

generated by the background suppression process is further processed by a series

of post processing stages such as morphological opening and closing Gonzalez and

Woods (2002). Following the morphological operations a connected component

labeling (CCL) step is used to remove small objects. The gray areas in Figure

2.3 show a block diagram of a typical system containing object segmentation and

post processing steps.

2.2.2.1 Morphology

Morphology operations (MOs) are a well known and e�ective image processing

tools, used in image �ltering, segmentation and pattern recognition among oth-

ers. MOs are a set of window based operations for shape analysis based on set

12

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Figure 2.2: Foreground Segmentation with Mixture of Gaussian - Wall�ower test

dataset and image resolution 160 � 120

theory (intersection, union, inclusion, complement etc.) Gonzalez and Woods

(2002). The transformed image has fewer details, but its main characteristics

are preserved. Once the image is transformed, measurements can be made to

give a quantitative analysis of the image. Morphology operation are based on

a structuring element (SE), characterized by shape, size and origin. Images are

transformed by centering the SE on each pixel and replacing it with a new value.

MOs were �rst developed for binary images and later extended for gray scale

images. In this section details of two basic morphology operations erosion and

dilation are presented.

Binary dilation of an image A with a SE B is de�ned as � = A � B =

fzj(B)z\A 6= �g. In simple terms binary dilation is where the center pixel of the

SE in the input image is replaced with 1 if any of the neighboring 4 or 8 (depends

on the SE used) pixels are 1, otherwise the center pixel is set to zero.

13

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Figure 2.3: System Block Diagram

Binary erosion is the opposite of dilation, which is de�ned as � = A 	 B =

fzj(B)z � Ag. Erosion is where the center pixel in the SE in the input image is

replaced with 1 if all of the neighboring 4 or 8 (depends on SE used) pixels are

1, otherwise is set to zero.

Morphological concepts can be extended to gray scale images, given an image

A of size N�N and a SE B of size 2M+1�2M+1; gray scale dilation is de�ned

as

 (x;y) = A�B =Maxi;j[A(x� i; y � j) +B(i; j)]:

Similarly gray scale erosion is de�ned as

 (x;y) = A	B =Mini;j[A(x� i; y � j)�B(i; j)]:

for all i; j, such that �M � i; j �M , with 0 � x; y � N � 1.

Several other MOs can be formed by combining erosion, dilation and by vary-

ing the SE; for example opening, closing, thickening and thinning among others;

refer to Tickle et al. (2007) and Gonzalez and Woods (2002) for di�erent mor-

phology operations. Opening and closing are duals of each other with respect

to function complement and re�ection. Opening smooths contours of an object,

breaks narrow connections and eliminates protrusions while closing also soothes

but fuses narrow gaps and eliminates small holes. Opening an image A by a SE

B is de�ned as:

14

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

A �B = (A	B)�B

Thus, opening is erosion of A by B, followed by dilation by B. Similarly closing

is de�ned as:

A �B = (A�B)	B

2.2.2.2 Connected Component Labeling

Identifying connected pixels is a fundamental concept used for extracting objects

in images. In connected component labeling all connected pixels are given unique

labels. These are two common ways of de�ning connectedness in a 2D image, 4-

way or 8-way connected. Connected component labeling (CCL) is an important

tool in image analysis and pattern recognition and also the most time consuming.

There are many algorithms in literature for CCL, however the one which is of

importance in the context of this thesis is multi-pass technique, where provisional

labels are assigned to an object pixel while scanning in forward (left to right

and top to bottom) and backward directions. The scan process is repeated and

provisional labels are updated in each pass until there is no change in the image.

Figure 2.4: Window mask for 8-way CCL with center pixel e

Suzuki et al. (2003)

Although CCL can be performed for gray scale images, here we only con-

sider binary images for the sake of simplicity. Consider a binary image I, where

I[x; y] = 0 denote background pixels and I[x; y] = 1 denote foreground pixels.

15

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

Eight way connected component labeling is performed by following a forward

raster scan order, using a mask shown in �gure 2.4 with mask center at pixel e.

Provisional labels are assigned to each new pixel as follows:

Le

8>>><
>>>:

0 I[e] = 0

l; l (l + 1) I[i] = 0;8i 2 (a; b; c; d)

Lmin[i]8i2(a;b;c;d)jI[i]=1 otherwise

(2.6)

Where L[e] is the transformed image and e is current pixel in window. If

e = 0, L[e] remains 0. If e = 1 and all neighboring pixels are 0 i.e. background, a

provisional label l is assigned to L[e] and l is incremented by one. Otherwise, L[e]

is assigned the minimum of the provisional labels in the window mask. In subse-

quent scans both forward and reverse, labels of pixels are replaced by minimum

labels in the mask window as: L[e] Lmin[i]; i 2 (a; b; c; d). The window mask in

�gure 2.4.ii is used for the reverse scan with mask center at pixel e. The output

image from morphology operations is processed by the connected component la-

beler and once connected pixels are labeled a small object �lter is used to remove

objects regions that are too small to consider for further processing. Figure 2.5

shows the output at various stages in the system for a sample test sequence. As

mentioned earlier output from background suppression module typically contains

unwanted noise pixels and by applying post-processing a signi�cant reduction in

noise pixels can be obtained.

Figure 2.5: Typical output at various stages for a sample test sequence

In this work background suppression, morphology and connected component

labeling play an important role in properly segmenting moving regions. A sub-

window is extracted based on the bounding box containing the foreground object

16

Chapter 2. Background Modeling and Moving Object Segmentation
2.2. Background Modeling

and sent to the detection stage as shown in the Figure 2.6. A signi�cant increase

in the detection performance can be obtained in this case because the detection

stage instead of processing the whole frame to detect faces now processes only

regions of motion.

Figure 2.6: Moving object segmentation and face detection

2.2.3 Discussion

Among other background modeling techniques such as Eigen background Li et al.

(2006), Codebooks Kim et al. (2004) and non parametric models Elgammal et al.

(2000) we choose to use MoG because of its relatively low computational com-

plexity and reasonably good segmentation performance. Online update of Eigen

background for instance requires matrix multiplication which is compute inten-

sive, also the codebooks algorithm proposed by Kim et.al. although arguably

providing better performance is both compute and data intensive. The MoG

used in this work gives good segmentation quality and the background update

process which is very important for dynamic scenes is simple as explained in

Section 2.2.1. Furthermore the fact that MoG is a pixel process makes it highly

17

Chapter 2. Background Modeling and Moving Object Segmentation
2.3. Segmentation Quality

parallel and suitable for hardware acceleration as detailed in Chapter 4.

2.3 Segmentation Quality

In this section we compare segmentation accuracy of MoG approach with the

uni-model �xed threshold approach. We use the initial 50 frames to construct

the background in case of uni-model approach and a �xed threshold of 30 is used.

The optimal threshold is chosen based on the visual inspection of segmentation

accuracy for various test sequences used in this work. For MoG a learning rate

of 0:01 is used to update each model's parameters. The MoG system maintains

3 models of which the �rst two models represent the background and the third

models the time varying foreground. In this work we maintain only 3 models

for simplicity and much better segmentation accuracy can be obtained by main-

taining more background models, however at the cost of increased computational

complexity. The Wall�ower Toyama et al. (1999a) test sequences we use here are

representative of typical surveillance environments and outdoor scenes. Moreover

in the post-processing stage we use morphology operations with a structuring

element as shown in Figure 2.7 and we consider foreground objects with pixel

count less than 200 as too small for further processing. The threshold set for

small object �lter mainly depends on the resolution of the image and the average

size of noise regions observed in the image. A detailed analysis for choosing the

optimal threshold for small object �lter is outside the scope of this work. The

optimal threshold for small object �lter in this work is chosen based on visual

inspection of segmentation result for various test sequences used in this thesis.

However for the adaboost object detection system that we will describe in Chap-

ters 3 and 5 the minimum window size depends on the target object and the

Open CV database used. For instance for faces the Open CV default window size

is 24 � 24. To apply Haar features we calculate integral image on a sub-window

of size 25 � 25 and thus the minimum threshold for small objects is 625 pixels.

Similarly for upper body the default window size is 22 � 18 and the minimum

size of segmented regions is 437 pixels.

Segmentation quality is the amount of accuracy with which an algorithm sepa-

rates the foreground. To validate the segmentation quality of MoG, we compared

18

Chapter 2. Background Modeling and Moving Object Segmentation
2.3. Segmentation Quality

Figure 2.7: 3 � 3 Structuring Element used for Morphology Operations

the segmentation results with hand segmented ground truth using the Rand in-

dex as introduced in Rand (1971) as the segmentation quality measure. The

ground truth is generated manually for the tree and bootstrap test sequences

from Toyama et al. (1999a). Rand index is a measure of similarity between two

datasets and is given by a+b
a+b+c+d

where a + b are the number of agreements and

c+ d are the number of disagreements between the two datasets. Figure 2.8 and

2.9 shows the sample test sequence, hand segmented ground truth and the output

from the MoG technique.

Figure 2.8: MoG applied to a sample Tree test sequence

19

Chapter 2. Background Modeling and Moving Object Segmentation
2.3. Segmentation Quality

Figure 2.9: MoG applied to a sample Bootstrap test sequence

Plots in Figures 2.10 and 2.11 show segmentation quality achieved with uni-

model �xed threshold and MoG approach for two sample test sequences. The

post processing stage parameters used are the same for both tests, that is we use

morphological opening (dilation followed by erosion) with a 3 � 3 structuring

element as shown in 2.7 and a small object �lter with threshold set to 200 pixels.

In our test we use a total of 2000 images from bootstrap sequence and 260 images

from tree sequence. For bootstrap test sequence we generated ground truth for

images from 200 to 2000 with 25 images apart. In case of tree test sequence we

generate ground truth from images 243 to 259 i.e. when the foreground object

(person) appears in the scene. To compute the Rand index segmentation quality

we compare the hand generated ground truth images with segmented images from

both �xed threshold and MoG for both test sequences. Higher Rand index values

indicate better segmentation quality and the plots in Figure 2.10 and 2.11 show

that MoG approach performs better than uni-model with �xed threshold for both

the test sequences.

However more importantly the performance of MoG algorithm relies on vari-

ous parameters such as the learning rate and the number of background models

20

Chapter 2. Background Modeling and Moving Object Segmentation
2.3. Segmentation Quality

Figure 2.10: Segmentation quality Comparison for Bootstrap Sequence

maintained. Although a higher number of background models give better seg-

mentation quality, the choice of number of background models depends on the

required accuracy, available resources and the amount of complexity in the scene.

For instance outdoor scenes with several moving objects may require more back-

ground models on the otherhand for indoor scenes it is su�cient to maintain

fewer background models. Apart from this the learning rate is also an important

parameter, for instance a very high learning rate may quickly adapt to changes in

the scene but will also push foreground objects into the background there by cor-

rupting the background models. A very low learning rate on the otherhand will

be very slow to adapt to changes in the background and this results in background

objects appearing as foreground for a long time.

Figures 2.12 and 2.13 show segmentation quality plots for two test sequences

with di�erent number of background models. The plots compare MoG approach

with 3, 4 and 5 background models in each case. For the test sequences used there

is no signi�cant di�erence in segmentation quality. At frame 255 the MoG with

3 background models show poor quality relative to 4 and 5 models however the

drop is insigni�cant. Although there is no variation in segmentation quality with

increasing the number of background models maintained for the test cases used

here, this may change for other test cases. That is in case of complex scenes better

segmentation quality can be achieved by maintaining more background models.

The choice of number of background models is a tradeo� between computational

21

Chapter 2. Background Modeling and Moving Object Segmentation
2.3. Segmentation Quality

Figure 2.11: Segmentation quality Comparison for Tree Sequence

complexity, speed and required segmentation quality. In this work we maintain

3 models as it achieves reasonably good segmentation quality.

Secondly Figures in 2.14 and 2.15 show segmentation quality plots for test

sequences with di�erent learning rates. We use a learning rates of 0.05, 0.01 and

0.005 to test the performance of the MoG approach. In Figure 2.14 the segmenta-

tion quality for learning rate 0.005 is poor initially due to the fact that it is very

slow to adapt to changes in the background. On the other hand a learning rate

of 0.05 shows very poor performance during frames 245-260 because it adapts too

quickly to changes in the background. The learning rate of 0.01 adapts reasonably

quickly to changes in the background and achieves better segmentation quality.

In Figure 2.15 on the otherhand a very low learning rate of 0.05 achieves relatively

very poor quality initially and is slow to adapt. Again the choice of learning rate

is a trade o� between the required update speed and the segmentation quality. In

our work we choose a learning rate of 0.01 to maintain reasonable update speed

and segmentation quality.

22

Chapter 2. Background Modeling and Moving Object Segmentation
2.4. Conclusion

Figure 2.12: Segmentation Quality for Di�erent MoG Models- Tree Sequence

2.4 Conclusion

A key bottle neck when implementing face detection or an object detection al-

gorithm in a surveillance system is the enormous amount of time consumed for

full frame search. An e�ective way to reduce the computational time in such

systems is by focusing only on the motion regions. Clearly a background sup-

pression based motion segmentation technique can be used e�ectively to extract

sub-windows. These sub-windows can be later processed to detect any objects

of interest. In this work we use mixture of Gaussians as a pre-processing step

for object detection. The key advantages with MoG is that it is adaptive in the

sense that the background is updated with every incoming frame and also the fact

that it is suitable for hardware acceleration. Apart from this the post-processing

steps play another key role in properly segmenting the foreground regions. In

this work we use a set of morphological operations and a small object �lter to

remove unwanted pixels and objects that are too small for further processing.

The output from this stage is a bounding box containing foreground objects that

are sent to the detection phase.

23

Chapter 2. Background Modeling and Moving Object Segmentation
2.4. Conclusion

Figure 2.13: Segmentation Quality for Di�erent MoG Models- Bootstrap Sequence

Figure 2.14: Segmentation Quality with Di�erent Learning Rate - Tree Sequence

24

Chapter 2. Background Modeling and Moving Object Segmentation
2.4. Conclusion

Figure 2.15: Segmentation quality with Di�erent Learning Rate - Bootstrap Sequence

25

Chapter 3

Introduction to AdaBoost Based

Object Detection

3.1 Introduction

One of the most popular and widely used techniques for object detection tasks

was proposed by Viola and Jones for detecting faces. The technique uses machine

learning to train a network of weak classi�ers/detectors for a speci�c detection

task. One reason for the technique's popularity is its very low false positive

rate Hiromoto et al. (2007), and also the fact that the detector can be trained

for di�erent object classes Lienhart et al. (2002), Lienhart and Maydt (2002),

Miyamoto et al. (2006) and Snow et al. (2003). The technique uses Adaptive

Boosting formulated by Yoav Freund and Robert Schapire Freund and Schapire

(1995), a popular machine learning technique for selecting a set of better per-

forming weak classi�ers from a pool of over complete weak classi�ers. A weak

classi�er in simple terms is a decision rule that classi�es a test sample as either

a positive or a negative sample. A weighted linear combination of these weak

classi�ers forms a strong classi�er with improved detection performance. The

boosting process has two stages corresponding to training and detection. In the

training stage a very large set of labeled samples is used to identify the better

performing weak classi�ers, and a strong classi�er network is constructed by a

weighted linear combination of these weak classi�ers. The output of the train-

26

Chapter 3. Introduction to AdaBoost Based Object Detection
3.2. Face Detection Techniques

ing stage is a trained classi�er network that can be used in the detection phase

to classify samples as positive or negative. For example a typical classi�cation

network trained for detecting frontal faces can have nearly 22 stages with 9-200

features per stage Hiromoto et al. (2007). In the detection phase these features

are applied to each sub-window to make a decision. The rest of this chapter

presents how Haar-like features are e�ectively used as weak classi�ers and the

adaboost training process.

3.2 Face Detection Techniques

In this section we present a brief review of the various face detection techniques.

Face detection research is very broad and this section is intentionally restricted

in scope to provide a very high level overview. The majority of the face detection

techniques can be broadly classi�ed in to the following categories Yang et al.

(2002):

Knowledge based methods encode human knowledge of what consti-

tutes a face in a rule. The rule typically captures the relationship between

di�erent facial features.

Feature invariant approaches �nd key structural features that are in-

variant to changes in view point, pose or lighting conditions. These features

are later used to localize faces.

Template matching methods have been successfully applied to various

pattern recognition problems. In template matching, several face images

are used to describe the face as a whole. The correlation between an input

image and the stored template images is used for detection.

Appearance based methods in contrast to template matching, try to

capture the representative variability of facial features. This technique uses

a set of training samples to identify distinct face features and the learned

models are then used for detection.

Table 3.1 summaries various face detection techniques. The techniques have

di�erent complexity and detection performance. Appearance based methods have

27

Chapter 3. Introduction to AdaBoost Based Object Detection
3.3. Haar Features and Integral Image

proved to achieve better detection performance among other techniques. The

majority of the appearance based methods are based on a learning algorithm

on a training set. For instance, Rowley et.al. face detection is based on neural

network and they use a large set of face images in the training process. Among

all face detection methods that used neural networks, the most signi�cant work

is done by Rowley et.al. Yang et al. (2002). This technique has become an early

standard in face detection for the majority of other face detection work. For

instance Viola et. al. compare their adaboost based face detection against the

neural network technique proposed by Rowley et. al. The adaboost based face

detection which we focus on in this thesis has shown signi�cant improvement in

detection speed and accuracy as mentioned in Viola and Jones (2004).

Approach Related work
Knowledge based

Multi resolution rule based method Yang and Huang (1994)
Feature based

- Facial Features
- Texture
- Skin Color
- Multiple Features

Grouping of edges Leung et al. (1995) Yew and Cipolla (1997)
Space Gray Level Dependence matrix of face pattern Dai and Nakano (1996)
Mixture of Gaussian Yang and Waibel (1996) McKenna et al. (1998)
Integration of skin color, shape and size Kjeldsen and Kender (1996)

Template Matching
- Prede�ned face templates
- Deformable Templates

Shape template Craw et al. (1992)
Active Shape model Lanitis et al. (1995)

Appearance based
- Eigenface
- Distribution-based
- Neural Network
- Support Vector Machine SVM
- Naive Bays Classi�er
- Hidden Markov Model
- Information Theoretical Approach

Eigenvector decomposition and clustering Turk and Pentland (1991)
Gaussian distribution and multilayer prediction Sung and Poggio (1998)
Ensemble of neural networks and arbitration schemes Rowley et al. (1998)
SVM with polynomial kernel Osuna et al. (1997)
Joint statistics of local appearance and position Schneiderman and Kanade (1998)
Higher order statistics with HMM Rajagopalan et al. (1998)
Kullback relative information Lew (1996), Colmenarez and Huang (1997)

Table 3.1: Summary of face detection techniques

Yang et al. (2002)

3.3 Haar Features and Integral Image

The amount of variation in objects (as mentioned in Section 1.1) makes the object

detection task very complex. However, modeling a face by considering variations

such as pose, expression, color, texture and lighting can be e�ectively achieved

using a set of Haar like features as proposed by Viola et. al.. The use of these

features as weak classi�ers combined with a adaboost learning technique makes

object detection practical. Haar like features proved to be more robust when

28

Chapter 3. Introduction to AdaBoost Based Object Detection
3.3. Haar Features and Integral Image

representing various features facilitating rapid object detection.

3.3.1 Haar Basis Functions

The Haar basis functions are a set of rectangular 2D features derived from the

Haar wavelet, see Equation 3.1. The 2D Haar features are shown in Figure 3.1.

There are three kinds of Haar features typically used for object detection: 2-

rectangle, 3-rectangle and 4-rectangle features. In practical terms, the output

of these features when applied to an image is the di�erence between the sum of

pixels in the white region and the black region.

	(x) =

8>>><
>>>:

1 if 0 � x � 1
2

�1 if 1
2
� x � 1

0 otherwise

(3.1)

Figure 3.1: Haar Basis Functions - Lienhart et. al.

Starting with the basis set the detection algorithm applies scaled and shifted

versions of these Haar features at various locations in the image sub-window to

make a decision. Clearly this results in a large number of features. For example

for a 24�24 sub-window the exhaustive set of features is quite large (approx. 105).

Figure 3.2 shows how features are applied to a typical face sub-window. The task

of the training process described in Section 3.4 is to select a sub-set of Haar

29

Chapter 3. Introduction to AdaBoost Based Object Detection
3.3. Haar Features and Integral Image

features that best separate the training data into positive and negative samples.

The choice of features is important but not crucial for detector performance.

Figure 3.2: Haar Features applied to a sub-window - Viola et.al.

3.3.2 Integral Image

One of the other contributions made by Viola et. al. is the idea of an �integral

image� for fast Haar feature computation. The idea is to pre-compute the sum

of pixels to the top and to the left of each pixel as shown in Figure 3.3. After

computing the integral image any feature value can be computed very easily, the

following example shows one example feature computation:

Figure 3.3: Integral Image - Viola et. al.

In �gure 3.4 the sum of pixels within the rectangular region D can be computed

with reference to integral image location 1, 2, 3 and 4. The value of the integral

image at locations 1, 2, 3 and 4 are A, A+B, A+C and A+B+C+D respectively.

30

Chapter 3. Introduction to AdaBoost Based Object Detection
3.4. Training with Adaboost

Figure 3.4: Feature Computation - Viola et. al.

The sum within D can be computed as 4+1-(2+3). Similarly the value of the

feature shown in �gure 3.4.ii can be computed as D+F-A-C+2(B-E), where A!F

denote the values of integral images at respective locations. The key advantage

with the integral image is that all Haar basis functions can be computed within

a maximum of eight memory accesses, and with few arithmetic computations.

3.4 Training with Adaboost

The idea of boosting is to combine a set of simple �rules� or weak classi�ers to form

an ensemble such that the performance of a single ensemble member is improved

i.e. �boosted� Meir and Rätsch (2003). For example given a family of weak

classi�ers and a set of training data consisting of positive and negative samples,

the adaboost approach can be used to select a subset of weak classi�ers and

the classi�cation function. Some of the key advantages of adaboost are Meynet

(2003):

� Adaboost requires no prior knowledge, that is no information about

the structure or features of the face are required when used for face de-

tection. Given a set of training samples and weak classi�ers the boosting

process automatically chooses the optimal feature set and the classi�er func-

tion.

� The approach is adaptive in the sense that misclassi�ed samples are

given higher weight in order to increase the discriminative power of the

31

Chapter 3. Introduction to AdaBoost Based Object Detection
3.4. Training with Adaboost

classi�er. As a result, easily classi�ed samples are detected in the �rst

iteration and have less weight and harder samples with higher weights are

used to train the later iterations.

� The theoretical training error converges to zero as proved by Freund

and Schapire (1995). The training for a set of positive and negative samples

reaches zero after a �nite number of iterations.

Given a feature set fh1; h2; h3 : : : : : :g and a set of training samples

T = f(x1; y1); (x2; y2); (x3; y3) : : : : : :g

where xi is the training sample and yi is a binary value of the sample class (1 is

positive, 0 negative). A �nal boosted classi�er network is formed from the subset

of given features after an arbitrary number of iterations as shown in Equation

3.2.

if(x) =
TX
t=1

�tht(x) (3.2)

where �t is the weight assigned to the tth classi�er, and ht is the classi�er

decision. Adabost training is an iterative process and the accuracy of the �nal

classi�er function depends on the number of iterations and whether the training

error converges to zero after �nite number of iterations. A classi�er is trained as

follows by Viola et. al.:

� Given example images (x1; y1); (x2; y2) : : : ; (xn; yn) where yi = [0; 1] for neg-

ative and positive samples respectively.

� Initialize weights w1;i =
1
2m
; 1

2l
for yi = [0; 1] respectively, where m and l

are the number of negative and positive samples respectively.

� For t = 1; 2; : : : ; T :

� Normalize the weights wt;i
wt;iPn

j=1 wt;j

� Select the best weak classi�er with respect to the weighting error �t =

minf;p;�
P

iwi j h(xi; f; p;�)� yi.

32

Chapter 3. Introduction to AdaBoost Based Object Detection
3.4. Training with Adaboost

� De�ne ht(x) = h(x; ft; pt;�t) where ft, pt and �t are minimizes of

�. Where ft is the feature, x is the image sample, pt is the parity of

inequality and �t is a threshold associated with each feature.

� Update weights: wt+1;i = wt;i�
1��i
t where �i = 0 if example xi is classi-

�ed correctly, �i = 1 otherwise, and � = �t
1��t

.

� The �nal strong classi�er is: f(x) =

8<
:
1
PT

t=1 �tht(x) �
1
2

PT

t=1 �

0 Otherwise
where

�t = log 1
�t

.

Figure 3.5: Face Training Example- The face dataset can be obtained from cbcl (2000)

3.4.1 Haar Basis set as Classi�ers

The role of a weak classi�er is to separate the given training set into positive and

negative samples with more than 50% accuracy. Figure 3.5 shows an illustration

33

Chapter 3. Introduction to AdaBoost Based Object Detection
3.4. Training with Adaboost

of the training process. To use Haar basis set as classi�ers we compute the value

of each feature i.e. compute the di�erence between the sum of pixels in black

region and the white region. The feature value is then compared with a threshold

to classify the samples. A weak classi�er ht(x) consists of a Haar feature ft,

threshold �t a left value and a right value. The optimal value of threshold �t

that best separates positive and negative samples with more than 50% accuracy is

chosen by applying each feature to the given training set. For detailed description

on calculating �t the reader is referred to Chapter 3 of Meynet (2003).

One major disadvantage with the boosting process is the amount of time

consumed in learning the classi�er function. There is one weak classi�er for

each distinct feature/threshold and a considerable amount of time is required

to evaluate all these feature combinations for obtaining an optimal classi�cation

function. This grows linearly with the increase in the training and feature set.

ht(x) =

8<
:
1 if ptft(x) < pt�t

0 otherwise
(3.3)

3.4.2 Boosted Cascade of Classi�ers

To improve the overall performance of the face detection system Viola et.al. pro-

posed to combine several of the classi�ers in a cascade. According to Viola et.al.

the detection performance of a single classi�er with a limited number of features

is very poor for a face detection system. The key idea in a multi-stage classi�er

as shown in Figure 3.6 is that the initial stages are less complex and can re-

ject the majority of negative samples while detecting almost all positive samples.

These positive samples are sent on to further complex classi�er stages to achieve

low false positive rate. It is out of the scope of this thesis to detail the cascade

training process, the reader is referred to Viola and Jones (2004) for a detailed

description of cascade training.

To detect faces at di�erent scales a pre-processing stage down scales the input

image starting from 1.25 times the original image and a step size of 1.5. Figure

3.7 illustrates this process.

34

Chapter 3. Introduction to AdaBoost Based Object Detection
3.4. Training with Adaboost

Figure 3.6: Classi�er Cascade - Viola et. al.

Figure 3.7: Scaling the image to detect faces at various size

3.4.3 Discussion

Face detection is an interesting research challenge and there are many solutions

to solve this problem. Among various techniques proposed so far in the literature

Viola et.al. present what is widely considered to be the best detector in terms

of both computation time and detection performance. The authors trained a 38

stage cascade detector for frontal upright faces using 4916 hand labeled faces and

9544 non-faces gathered from the world wide web. The number of features in the

�rst �ve layers are 1, 10, 25, 25 and 50 respectively. The number of features in

later layers is much higher and the total number of features in all 38 layers is

6016. According to Viola et.al. their 38 stage cascade takes .067 seconds to scan

a 384 � 288 image at various scales on 700 MHz Pentium III processor, which

they claim is 15 times faster than one of the better performing neural network

35

Chapter 3. Introduction to AdaBoost Based Object Detection
3.5. Open CV Haar Cascade

based face detector proposed by Rowley et al. (1998).

3.5 Open CV Haar Cascade

The adaboost based detector discussed so far is implemented in Open CV, an

open source library for image processing and computer vision. Open CV comes

with sample database that are already trained to detect frontal face, full body and

upper body. Figures 3.8 and 3.9 show Open CV Haar classi�er cascade applied to

detect faces and pedestrians. To detect other objects the classi�er can be trained

with a few hundred labeled positive and negative samples of a target object (e.g.

person, car). The adaboost training process is highly time consuming and takes

days to �nish. The output from Open CV Open CV (2008) training process is

a .XML �le of the Haar features and the thresholds used in the various stages.

Figure 3.10 shows the typical structure of the training �le. The values within the

�elds rects (Figure 3.10) are x, y, width, height, weight of the rectangle feature.

In Open CV Haar features are represented as either a two vertex feature or a

three vertex feature as shown in Figure 3.11. The only di�erence is the weight

assigned to each vertex. The output of each feature computation is compared

with the threshold and the classi�er output is decided as shown in Equation 3.4.

After the classi�er is trained it can be applied to an image region of interest to

detect the presence of a target object. Alternatively the classi�er can be applied

to the whole image at various scales to localize a target object.

To apply a feature to an image sub-window, the result of each vertex in the

feature is computed and multiplied by its corresponding weight. Note that each

vertex represents a weighted rectangular region due to the use of an integral

image. The sum of pixels in the rectangular region are computed by reading four

corner pixels from the integral image as detailed in section 3.3.2. The �nal feature

value is computed by summing the result of all vertices. This feature value is used

to decide the classi�cation weight ht(x). The �nal sum for a stage is calculated

by adding ht(x) (Equation 3.4) of all features in the stage. The �nal stage sum is

compared with the stage threshold (shown in Figure 3.10.i), and if the �nal stage

sum is less than stage threshold the sub-window is accepted as positive and sent

on to later stages in the cascade, otherwise it is rejected.

36

Chapter 3. Introduction to AdaBoost Based Object Detection
3.5. Open CV Haar Cascade

Figure 3.8: Open CV Haar cascade applied to detect faces and pedestrians

ht(x) =

8<
:
left_val if ft(x) < threshold

right_val otherwise:
(3.4)

To compensate for illumination changes in images Viola et.al. use variance

normalization on each sub-window i.e. they subtract the sub-window mean from

each pixel and divide each pixel by the sub-window standard deviation. The

standard deviation of an image sub-window can be computed by using a integral

and square integral image as shown in Equation 3.5.

�2 = m2 �
1

N

X
x2 (3.5)

where � is the standard deviation, m is the mean and x is the pixel value

within the sub-window. The mean of the sub-window can be computed by using

the integral image. The sum of squared pixels can be computed by using an

integral image of a squared sub-window pixels. Normalization can be achieved

by post multiplying the feature value with 1
�
rather than operating on individual

pixels. Note that subtracting the mean from individual pixels has no signi�cance

on the feature value.

37

Chapter 3. Introduction to AdaBoost Based Object Detection
3.6. Conclusion

Figure 3.9: Open CV Haar cascade applied to detect faces

3.6 Conclusion

The use of Haar features and the adaboost based training process made fast face

detection practical. One of the primary advantages of this algorithm is the high

speed and detection accuracy compared to previous face detection techniques.

Also the fact that this technique can be adapted to any detection task makes it

suitable for generic object detection in surveillance environments. It is increas-

ingly becoming important to detect objects in real-time in surveillance systems

and a hardware architecture for adaboost which can be used in such a system

would be highly attractive. Chapter 4 focuses on existing adaboost hardware

architectures and the FE based architecture proposed in this thesis.

38

Chapter 3. Introduction to AdaBoost Based Object Detection
3.6. Conclusion

Figure 3.10: Open CV Feature Database

Open CV (2008)

39

Chapter 3. Introduction to AdaBoost Based Object Detection
3.6. Conclusion

Figure 3.11: Open CV Haar Basis Representation - where �(xn; yn) denotes sum of

pixels in the rectangular region covered by (xn; yn), width and height

Open CV (2008)

40

Chapter 4

Feature Element For Adaboost

Object Detection

4.1 Introduction

Computer Vision over the last few years has seen tremendous advancement in

terms of algorithmic development and number of applications. This phenomenal

development can be largely attributed to the availability of powerful computing

platforms. However real time execution of computer vision algorithms can only

be achieved by employing parallel execution of speci�c image processing tasks.

For instance the object detection system proposed in this work when simulated

in software takes around 300 ms to process a 640 � 480 size image on a Pentium

Core 2 Duo 2.4GHz PC, which is approximately 3.5 frames per second. The key

bottle neck in the system apart from the post processing blocks are the MoG and

the Haar feature computation. The MoG is computationally intensive due to the

fact that, it maintains 3 background models and each incoming pixel is compared

to these background models to �nd a match. The background update process also

adds complexity to the system. On the other hand the Haar feature computation

occupies a signi�cant amount of the execution time of object detection due to

the fact that, to localize faces in a sub-window of size N�N, the Haar features

are applied to each sub-window of size 24�24 within the image. This process is

repeated multiple times, and each time the sub-window is scaled down to detect

41

Chapter 4. Feature Element For Adaboost Object Detection
4.2. MoG Hardware Architecture

faces of di�erent sizes. As mentioned in the previous chapter there are nearly 30

stages with each stage containing anywhere between 9-200 features. The total

number of sub-windows in the image is given by N
24
� N

24
and the computational

complexity increases with the sub-window size and the target object size. Due to

the complexity of the detection process it is hard to achieve real-time detection

rates in embedded platforms such as RISC and DSP. A major problem when

deploying complex vision algorithms in embedded smart cameras is the lack of

necessary computational power.

The most e�ective way to achieve real-time performance is by accelerating

some of the compute intensive blocks in the system. A key advantage with hard-

ware acceleration is that we can exploit inherent parallelism in these sub-blocks

thereby achieving higher detection performance. The most suitable hardware

platform for vision application is the Field Programmable Gate Array (FPGA)

as they are both �ne grained (more �exible) and recon�gurable (adaptive) as

mentioned in MacLean (2005) and McBader and Lee (2003). FPGAs are used in

many compute intensive areas such as encryption/decryption, image processing

and neural networks Anderson et al. (2005), Ratha and Jain (1999), Nair et al.

(2005), and Zhang et al. (2007) . Other useful feature of FPGAs is the ability to

customize the data path width depending on the required precision. In Baumgart-

ner et al. (2007) performance benchmarks of DSP and FPGA implementation of

three low level vision algorithms 1) Gaussian Pyramids 2) Bays �ltering 3) Sobel

edge detector are presented. Subsequently it is stated that DSPs perform faster

than FPGAs however on a sub-function basis. From a system level perspective

an FPGA is more advantageous due to the ability to exploit parallelism and the

availability of hardware resources.

4.2 MoG Hardware Architecture

The hardware architecture for the MoG approach comprises of three modules i)

Match Model ii) Update Model and iii) Sort Model. As described in Section 2.2.1

the match model determines if each incoming pixel is part of the background.

Once a match is determined the update module updates the �, � and w of the

model. If no match is found then the least probable model or the model with

42

Chapter 4. Feature Element For Adaboost Object Detection
4.2. MoG Hardware Architecture

lowest weight is replaced with the current pixel value, a high variance and a

low initial weight. The �nal stage sorts the models according to their weights.

Unlike Stau�er and Grimson (1999) where models are sorted according to their
w
�
ratio, we only use weights to sort the models in order to reduce computational

complexity. Furthermore, we use 16 bits to represent the weights and variances,

and the mean of each model is represented with 8 bits. Based on simulation

results sixteen bits are su�cient to represent weight and variance of each model.

Moreover the mean here denotes pixel mean and so we use eight bits to represent

mean of each model. A learning rate of 0:01 is used to update each model's

parameters as mentioned in Section 2.3. Figure 4.1 shows the block diagram of the

MoG architecture. Inputs to the block are pixel values and their corresponding

means, variances and weights. The proposed system maintains 3 models of which

the �rst two models represent the background and the third models the time

varying foreground. Incoming pixels that match either of the �rst two models

are considered a part of background, otherwise they are in the foreground. As

mentioned earlier in Section 2.3 the choice of number of background models is a

trade o� between required segmentation accuracy and computational complexity.

Figure 4.1: Block Diagram of Mixture of Gaussian

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 show the hardware architecture we imple-

mented for various blocks within the MoG algorithm. The match model block

starts by computing the squared euclidean between each incoming pixel and the

pixels of three di�erent background models. A match is found by comparing

the squared euclidean with the variance of each model. If the euclidean distance

is less than three times the model's variance it is considered as a match. The

matched background model's mean weight and variance are updated in a way that

the system adapts to the changes that occur in the background. A multiplexer

43

Chapter 4. Feature Element For Adaboost Object Detection
4.2. MoG Hardware Architecture

Figure 4.2: Internal architecture of Match Model block

Figure 4.3: Variance update block

is used to select one of the three model's parameters based on the match. The

update rate is controlled by the learning rate �. The �nal block sorts individual

models so that the most probable background gets higher weight.

The match model block shown in �gure 4.2 accepts an incoming pixel value

along with mean pixel values of three background models that we maintain in

this work. Square of the di�erence between incoming pixel and the means are

compared against variance of each model (Equation 2.2). If this di�erence is

greater than three times the variance of each model we consider it as a match.

Output of this block is either "00", "01", "10" or "11". A value "11" signi�es no

match and values "00", "01", "10" signify a match corresponding to the respective

44

Chapter 4. Feature Element For Adaboost Object Detection
4.2. MoG Hardware Architecture

Figure 4.4: Internal architecture of Mean update process

model. Once a match is found the variance update block and mean update block

shown in Figure 4.3 and Figure 4.4 update the respective mean and variance

according to Equation 2.2. A multiplexer (mux) is used to select appropriate

model's parameters for the update process and the mux is controlled by the

output from the match model block. If no match is found the mean and variance

of the last model are replaced with the incoming pixel value and a high variance

(not shown here) respectively. Similarly the weight update block takes weights of

three background models and a mux is used to select matched model weight. If no

match is found the last model's weight is replaced with a small weight. Finally

sort model block shown in Figure 4.6 is used to order the background models

according to their weights. Input to this block are weights of three background

models. Weights of individual models are compared and the result of comparison

is used to swap respective model's mean and variance parameters.

The MoG hardware interfaces with a host processor with a Open Core Pro-

tocol (OCP) OcpIP (2006) Bus to load image data along with the background

models. A set of control and con�guration registers are used to control the oper-

ation of the module, details of which are presented in Chapter 5.

45

Chapter 4. Feature Element For Adaboost Object Detection
4.3. Boosting Hardware Architecture

Figure 4.5: Internal architecture of weight update process

Figure 4.6: Internal architecture of Sort Model block

4.3 Boosting Hardware Architecture

A number of hardware architectures have been proposed for boosting based face

detection. The majority of the architectures discussed in this section are hard-

wired for a speci�c detection task (e.g. faces), i.e. the data access patterns for

computing feature values if �xed. The type and number of features used for

detecting an object in a sub-window is �xed for a speci�c object type and is

decided during the training phase. To detect a di�erent object a di�erent fea-

ture/threshold set needs to be used and note that the number of features per

stage may also vary.

The authors in Hiromoto et al. (2009) use serial processing for features in later

stages but use parallel processing for initial stages as the number of sub-windows

are huge for initial stages. Also the fact that the number of features used in

initial stages is relatively small (Figure 4.7). The architecture is targeted for

full frame search and is implemented on a Xilinx Virtex-5 FPGA (XC5VLX330-

2). The design runs at 160MHz and achieves a frame rate of 30fps for 640�480

image. Figure 4.9 shows the block diagram of the architecture and Figure 4.8

46

Chapter 4. Feature Element For Adaboost Object Detection
4.3. Boosting Hardware Architecture

shows feature computations for each sub-window. The sub-window is stored in a

register array and the number of bits used for an integral image is 18 bits.

This architecture mainly focuses on real-time execution of full frame search

localization. The main advantage of the cascade classi�er is that majority of neg-

ative sub-windows are rejected by the initial stages. Consequently the number of

sub-windows processed by later stages is far less compared to those processed by

initial stages. So to attain faster performance this architecture uses parallel pro-

cessing for the initial stages. In �gure 4.9 the scaler and integral image generator,

scale the incoming image and compute integral image respectively. The squared

integral image block computes the square of each pixel and then computes the

integral image. The squared integral image is used to normalize the image as

explained in Section 3.5.

Figure 4.7: Number of Stages for Typical Face Detection

Hiromoto et al. (2009)

The work presented in Gao and Lu (2008) has an approach similar to the

architecture proposed in this thesis to compute the weak classi�er function. A

classi�er engine forms the core for this architecture similar to a classi�er stage

discussed in section 4.4.2. The classi�er engine comprises of 16 weak classi�er

functions that are computed in parallel on a FPGA. In order to e�ectively use

the classi�er engine Changjin Gao et. al. re-trained the Haar classi�er network

to use a multiple of 16 Haar features per stage. The re-training resulted in a 40

47

Chapter 4. Feature Element For Adaboost Object Detection
4.3. Boosting Hardware Architecture

Figure 4.8: Haar-like feature evaluations

Hiromoto et al. (2009)

Figure 4.9: Block Diagram of Face Detection

Hiromoto et al. (2009)

stage classi�er instead of a 22 stage classi�er (Open CV) for frontal faces. The

main advantage of using 16 features in the initial stage instead of fewer features

is that more than 90% of non-face windows are dropped compared to only 50% in

48

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

the case of 22 stage classi�er. Changjin Gao et. al. also show that the 40 stage

classi�er has a better detection rate and low false positive rate compared to a 22

stage classi�er. Also the authors propose a more aggressive resource consuming

classi�er engine where classi�er parameters are loaded in parallel to achieve higher

frame rates. Figure 4.10 shows the aggressive classi�er engine. Gao at.al. design

the classi�er function with reuse in mind and to detect a di�erent object the

design �les need to be modi�ed with new parameters and resynthesized, however

manual editing of VHDL design �les is a long and di�cult task. A key advantage

with the work proposed in this thesis is the FE based stage can be con�gured

with parameters online thus saving valuable design modi�cation and synthesis

time.

Another architecture Lai et al. (2008) shown in Figure 4.11 used Network-On-

Chip architecture to establish communication between di�erent computational

blocks. Various blocks used are: memory, image down scaling, integral image

computation, feature database and classi�er. This when implemented on a Xilinx

Virtex II FPGA achieves a frame rate of 40fps for 320�240 image.

4.4 Feature Element based Architecture

In a surveillance system a full frame processing for face detection (or object

detection) is not always necessary. The most important thing in such a system

is the ability to detect various objects (e.g. face, car, person, animal etc.) with

low complexity hardware. More importantly the hardware should be �exible in

the sense that it should be recon�gurable to accomplish many detection tasks as

the amount of hardware resources are highly constrained on a embedded device.

The proposed con�gurable feature element based architecture makes it easy to

reprogram the detection network for various detection tasks. With this approach

it is not necessary to design hardware blocks for detecting di�erent objects in

e�ect saving massive e�ort needed in the design cycle.

The Haar classi�cation function that Viola et. al use occupies more than

90% of computation time Gao and Lu (2008). To achieve real-time detection

performance it is a good idea to accelerate feature computations in hardware.

In this thesis we propose a generic feature element (FE) that can be con�gured

49

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

Figure 4.10: Classi�er Engine using 16 Classi�ers

Gao and Lu (2008)

to form any feature from the basis set as shown in Figure 3.11. The FEs are

designed in a way that multiple FEs can be grouped to form a stage. Subsequent

sections detail our FE and the operation of a stage formed by grouping 16 FEs,

as motivated by Changjin Gao et. al. who also used 16.

4.4.1 Hardware architecture

A typical FE as shown in �gure 4.12, comprises of a set of data and con�guration

registers and a computation part. There are a total of 16 registers that are used

to load pixel data corresponding to each vertex. Also classi�er parameters such

50

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

Figure 4.11: Network-On-Chip Based Face Detection

Lai et al. (2008)

Figure 4.12: Proposed Feature Element

as Threshold, Left_val and Right_val are loaded into each feature element (FE).

Figure 4.13 shows the con�guration register in each FE. A basis function register

controls the number of vertices used in a FE and also the weight assigned to the

vertices 2 and 3. For instance a basis type 00 uses only two vertices and weights

the second vertex by 2, basis type 01 also uses two vertices and weights the second

vertex by 3, basis type 10 uses two vertices and weights second vertex by 9 and

�nally basis type 11 uses three vertices and weights second and third vertex by

2. Vertex one always uses a weight of -1. See Figure 3.11 for weights of feature

rectangles. In our FE weights are applied by simple shift and add operations.

The top level classi�er stage detailed in Section 4.4.2 controls loading of data

and parameters into each FE. Signal FE_SEL_BUS is a 4-bit bus used to enable

51

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

Figure 4.13: Con�guration Register with pixel address in clock wise direction

a speci�c FE from a group of FEs in the stage. FE_REG_SEL_IN is also a 4-bit

bus used to select con�guration registers when loading data using FE_DATA_IN.

Control signals FE_LOAD_EN, FE_START_EN and FE_READ_EN are used

to load, to start computation and to read classi�er weight respectively. Instead of

post multiplying the inverse of each sub-window standard deviation to normalize

the feature value as explained in section 3.5, we multiply standard deviation with

the threshold value before comparison. The computation part typically comprises

of arithmetic addition, subtraction, and a compare operation to determine the

classi�er output. The output of each FE is a classi�cation weight. Figure 4.14

shows the internal architecture of each FE.

4.4.2 Grouping multiple FEs

Figure 4.16 shows a typical stage formed by grouping 16 FEs. The stage inter-

faces with a host processor with a Open Core Protocol (OCP) OcpIP (2006) Bus

to load integral image and con�guration data. To enable detection on various

sub-window sizes we use a maximum of 1024 � 18 RAM to store sub-window

52

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

Figure 4.14: Internal Architecture of FE

pixels. We use 18 bits to represent integral image pixels. We use eighteen bits

because of the fact that the maximum sub-window size in Open CV pre-trained

database is 24 � 24 which is for frontal faces apart from other databases for

upper body, full body etc. To represent a integral sub-window of size 24 � 24 we

need 18 bits per pixel1. Moreover with 18 bits per-pixel we can represent integral

image sub-windows of any size with a maximum size of 32 � 32 to enable generic

1 24 � 24 � 255 = 146880 requires 18 bits

53

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

object detection. Apart from this a con�guration RAM holds individual FE's

con�guration data. The con�guration data RAM is organized as 256 � 16, note

that each FE has 16 con�gurable parameters and hence 256 locations store con-

�guration data for all 16 FEs in a stage. Figure 4.15 shows example con�guration

data for a FE. Locations 1-12 store pixel addresses for individual vertices of each

feature. These pixel addresses are used to load pixel data from sub-window mem-

ory when loading a FE. A multiplexer is used to switch between con�guration

data and pixel data, note that basis type, threshold, left value and right value are

loaded from con�guration memory and pixel data from sub-window memory. An

address generation unit generates addresses for con�guration RAM, data RAM

and the address of each FE that is being con�gured. A control and con�guration

unit generates the necessary control signals to enable both RAMs and individual

FEs. A set of control registers that can be written to and read from the OCP

bus are used to control the stage. Details of OCP interface, control registers and

the stage validation process are detailed in Chapter 5.

Figure 4.15: Con�guration RAM Data

All FEs are con�gured sequentially and once a FE is fully con�gured, compu-

tation inside the FE is started by FE_START_EN signal. After all the FEs are

con�gured we start the process of reading classi�cation weights from each FE. A

FE_READ_EN is used to enable reading from each FE. Classi�cation weights

54

Chapter 4. Feature Element For Adaboost Object Detection
4.4. Feature Element based Architecture

Figure 4.16: A Recon�gurable Stage formed by using 16 FEs

from all FEs are added inside the stage and are read by the host processor and

compared against a stage threshold as described in Section 3.5.

55

Chapter 4. Feature Element For Adaboost Object Detection
4.5. Conclusion

Open CV uses �oating point numbers to represent threshold, left value and

right value. To reduce computational complexity in our design we use �xed point

to represent these values. The choice of precision for �xed point representation

for these values comes from Open CV pre-trained databases for frontal face,

pro�le face and upper body. The maximum value for left and right values is

between �7, so a precision of 4.12 representation is used for left value and right

value. That is four bit signed number to represent integer part and twelve bits

to represent the fraction part. The feature threshold is normalized and is always

less than �1, so it is represented as 1.15 where 1 is used for sign and 15 bits

are used to represent the fraction part. One major advantage with �xed point

representation as opposed to �oating point representation is the reduction in

hardware complexity. Moreover the choice of precision is a trade of between

detection accuracy, speed and hardware complexity. The choice to use 16 bits to

represent the �oating point parameters comes from the fact that this work targets

an embedded devices with limited computational resources. To attain real-time

speed it is essential to reduce computational complexity of the algorithm.

4.5 Conclusion

In this chapter we present details of the hardware architecture designed to accel-

erate the key compute intensive blocks in the proposed object detection system.

Accelerating Haar feature computation plays an important role in achieving real-

time detection performance. The Haar feature computation is accelerated with

the help of a Feature Element. The main advantage of using a Feature Element

based architecture is that we can dynamically load the con�guration data along

with the image sub-window for various object detection tasks without actually

redesigning the underlying hardware, taking e�ective advantage of parallelism in

the detection algorithm. The number of FEs in each stage is limited to 16 in this

work but could be extended to higher values in the future.

56

Chapter 5

Evaluation and Results

5.1 Introduction

So far in this thesis we have introduced the reader to the importance of object

detection and the concept of a smart camera. An important challenge when

using object detection techniques is that, they are highly compute intensive and

cannot achieve real-time performance in a resource constrained device such as

an embedded smart camera. We present details of one of the better performing

face detection algorithm that is the adaboost based face detection proposed by

Viola et. al. Some of the key reasons for this algorithms popularity are that it

is faster than the majority of face detection techniques and the fact that it can

be trained to detect any object. This algorithm uses full frame search to detect

objects of interest and thus takes more time to execute, however in a surveillance

system it is not always necessary to perform a full frame search. A signi�cant

reduction in execution time can be achieved by only processing motion regions or

image regions of interest to detect target objects. We propose to use background

modeling, a popular moving object segmentation technique, as a pre-processing

step to extract image regions of interest. These image sub-windows are later

passed to the adaboost detector to detect objects of interest.

The primary goals of this thesis are two fold. One to speed-up the adaboost

detection performance by extracting the motion regions using a background mod-

eling technique. The second is to build hardware acceleration architectures for key

57

Chapter 5. Evaluation and Results
5.1. Introduction

compute intensive blocks, that is, the background modeling and Haar feature com-

putation. To facilitate generic object detection we implemented a con�gurable

feature element and a con�gurable stage by grouping 16 FEs. A con�gurable

stage is the core of our architecture and we use pre-trained frontal face and upper

body databases from OpenCV in order to test it. Note that features in Open

CV database are organized as 2-vertex and 3-vertex features. Our FE is designed

around this which enables us to load four corner integral pixels represented by

these vertices. The key components of the proposed system are:

i Build a model of the background.

ii Extract foreground pixels.

iii Post-processing to remove noise and small objects.

iv Send the segmented region to object detection.

a Load Open CV Haar database for target object.

b Compute integral image of the sub-window.

c Compute square integral image.

d Compute variance (see equation 3.5).

e Apply features to sub-window.

f Repeat steps (b) to (e) at di�erent scales.

v Proceed to next frame and repeat steps (ii) to (v).

We implemented a software model of the proposed system in C in order to ver-

ify its operation. The rest of this chapter details important performance metrics

such as the detection speed and accuracy for various test sequences. Follow-

ing this we present hardware implementation details of both MoG and the Haar

feature acceleration.

58

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

5.2 Performance Evaluation

The detection performance and speed of our implemented system is tested with

300 temporal images from two di�erent test sequences for di�erent objects (face

and upper body). The test sequences used are corridor test sequence from Kelly

(2008) and CAVIAR test sequence from CAVIAR (2000) with image resolutions

640 � 480 and 384 � 288 respectively. Manually hand segmented ground truth is

generated for both test sequences for 300 frames. With hand segmented ground

truth we segmented a total of 120 face regions and 393 upper body regions in

the corridor test sequence and a total of 133 upper body regions in the CAVIAR

test sequence. We use the Open CV implementation of Haar detection to test

the system. The Open CV default sub-window size of 24 � 24 for frontal faces

and 22 � 18 for upper body is used to apply the Haar features. The system's

performance is evaluated for both speed and accuracy. The detection accuracy is

measured with precision and recall values as given in Equations 5.1 and 5.2. The

system is executed on a Pentium Core 2 Duo 2.4 GHz machine with 4 Giga Bytes

RAM running Windows XP. Figure 5.1, 5.2 and 5.3 show typical detection results.

Images in the ground truth row indicate hand annotated target image regions in a

bounding box, similarly images in rows labelled Open CV full search and motion

segmentation and detection indicate automatically detected target image regions

with full search and the approach proposed in this thesis respectively.

Precision =
#No: of Correctly Detected

#No: Total Detected
(5.1)

Recall =
#No: Correctly Detected

#No: Ground Truth
(5.2)

59

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

F
ig
u
r
e
5
.1
:
F
a
ce

d
et
ec
ti
o
n
a
p
p
li
ed

to
C
o
rr
id
o
r
te
st

se
q
u
en
ce
-
H
a
a
r
fe
a
tu
re

w
in
d
ow

si
ze

2
4
�

2
4
a
n
d
im
a
g
e
re
so
lu
ti
o
n
6
4
0

�
4
8
0

60

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

F
ig
u
r
e
5
.2
:
U
p
p
er

b
o
d
y
d
et
ec
ti
o
n
a
p
p
li
ed

to
C
o
rr
id
o
r
te
st
se
q
u
en
ce

-
H
a
a
r
fe
a
tu
re

w
in
d
ow

si
ze

2
2
�
1
8

61

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

F
ig
u
r
e
5
.3
:
U
p
p
er
b
o
d
y
d
et
ec
ti
o
n
a
p
p
li
ed

to
C
A
V
IA
R
te
st
se
q
u
en
ce

-
H
a
a
r
fe
a
tu
re
w
in
d
ow

si
ze

2
2
�
1
8
a
n
d
im
a
g
e
re
so
lu
ti
o
n

3
8
4
�
2
8
8

62

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

Test Sequence Ground True False Frame Precision/Recall
300 frames Truth Positive Positive Rate - fps

Corridor- Face
Corridor - Upper body
CAVIAR- Upper body

120
393
133

FS MS

57 41
144 44
133 45

FS MS

48 2
133 15
42 1

FS MS

0.9 2.5
0.7 2.0
1.1 4.2

FS MS

0.54/0.48 0.95/0.34
0.51/0.37 0.74/0.11
0.76/1.0 0.98/0.34

Table 5.1: Object detection performance. FS = Full Search detection, MS = Back-

ground suppression and detection

5.2.1 Detection Accuracy

Table 5.1 and 5.2 show typical performance metrics for two test sequences. The

ground truth column indicates number of hand segmented object regions that

contain faces and upper body extracted from 300 frames from both the test

sequences. The columns true positive, false positive and precision/recall indicate

detection accuracy with both Open CV based full search (FS) and background

suppression based motion segmentation (MS) implemented as a part of this work.

The column frame rate compares the detection speed of both approaches.

The background suppression based detection achieves relatively higher de-

tection speed and higher precision compared to Open CV full search as shown

in Table 5.1. The increase in speed is mainly due to processing only image re-

gions of interest segmented by the background modeling technique instead of the

full frame. Similarly, for both corridor and CAVIAR test sequences there is an

increase in the precision because of the fact that with the proposed motion seg-

mentation based approach we process only fewer image regions instead of the full

frame.

With the proposed approach there is a reduction in the recall values achieved

for both test sequences. In the case of the corridor test sequence the reduction

in recall values is slightly less compared to the CAVIAR test sequence. This is

due to the fact that objects in the corridor sequence are relatively fast moving

compared to objects in the CAVIAR test sequence. Inherent drawbacks within the

background suppression techniques as mentioned in Chapter 2 make it di�cult

to detect homogeneously colored objects and slow moving objects. The main

limitations in building a robust background model such as aperture, camou�age,

sleeping person etc make it hard to generate precision foreground. Mainly with

63

Chapter 5. Evaluation and Results
5.2. Performance Evaluation

Test Sequence Ground True False Precision/Recall
300 frames Truth Positive Positive

Corridor- Face
Corridor - Upper body
CAVIAR- Upper body

68
250
133

FS MS

57 41
144 44
133 45

FS MS

48 2
133 15
42 1

FS MS

0.54/0.84 0.95/0.60
0.51/0.60 0.74/0.20
0.76/1.0 0.98/0.34

Table 5.2: Detection accuracy after excluding small objects

the MoG approach used in this thesis slow moving objects and objects that are

homogeneously colored are hard to detect because the update process pushes these

objects into the background. The detection accuracy greatly relies on segmented

motion regions or regions of interest to achieve higher recall values. Another

important reason for reduced recall values is that, the hand segmented ground

truth in Table 5.1 deliberately considers all objects (faces and upper body) in

the sequence even if they are too small or too far away from the camera to be

detected by our approach. The motivation is to simulate ideal operation in the

ground truth. Table 5.2 presents detection accuracy after excluding objects that

are too small for both object detection and background suppression technique to

identify.

In table 5.2 there is a signi�cant improvement in recall values for faces in

corridor test sequence after removing faces that are too small to detect. In the

case of upper body in corridor test sequence the recall values show a small im-

provement. Unlike faces when we consider upper body we focus on a relatively

large and homogeneously colored regions that are di�cult to segment due to the

inherent limitations in background modeling as mentioned earlier. Moreover we

use the Open CV default database to evaluate the system. Better detection ac-

curacy could possibly be obtained by retraining the Haar classi�er cascade with

robust dataset of the target object class.

5.2.2 Execution Speed

As mentioned earlier one of the important goals of the proposed work is to speed

up the adaboost detection process in a typical surveillance application. The

key idea proposed in this work is that to detect objects a full frame search is

64

Chapter 5. Evaluation and Results
5.3. Hardware Platform

Test Sequence Total Frames Execution Time. Sec

Corridor - Face
Corridor - Upper body
CAVIAR Upper body

300
300
300

FS MS
334 120
431 144
267 70

Table 5.3: Execution time for test sequences

not always necessary and signi�cant amount of speed up can be achieved by

extracting motion regions and image regions of interest. These image regions

of interest are processed by the object detection task to detect target objects.

Table 5.3 shows the amount of time consumed to process temporal images from

both test sequences by full search based detection approach and the proposed

motion segmentation based detection approach. The column total frames indicate

the number of temporal images used from each test sequence and the columns

execution time indicates the amount of time consumed in seconds to process total

number of frames by both approaches.

In case of corridor test sequence we process a total of 300 temporal images

and there is a reduction of approximately 60% in the amount of time consumed

for both faces and upper body. For the CAVIAR test sequence for upper body

we process a total 300 temporal images and a reduction of approximately 73% in

execution time is achieved.

5.3 Hardware Platform

In the previous section we presented details of performance evaluation of the

proposed system in software. From the detection speed it is evident that object

detection is a complex task and cannot achieve real-time speed. It is a good

proposition to accelerate some of the key compute intensive blocks in hardware

and exploit parallelism in the algorithm to speed-up the detection process. In

this thesis we propose hardware architectures for two compute intensive blocks

corresponding to MoG and the Haar feature computation. These hardware blocks

are designed to work with the hardware integration platform built with-in the

group. In this section we present details of the hardware integration platform

65

Chapter 5. Evaluation and Results
5.3. Hardware Platform

Figure 5.4: Hardware Software Integration Illustration

following which details of hardware implementation of MoG and Haar feature

acceleration are presented.

The evaluation platform we use is a Xilinx XUP board, an advanced hardware

platform that consists of a Virtex II Pro FPGA with an embedded PowerPC core.

The PowerPC is tied to a standard IBM Processor Local Bus (PLB) interface

and a PLB-OCP bridge converts processor signals to OCP Bus. Note that our

con�gurable stage uses a OCP interface bus. One key reason for using OCP

interface is to enable plug-n-play with di�erent host processor platforms and

to integrate several other hardware blocks onto the system, a concept of design

reuse widely used for System-On-Chip design. The hardware integration platform

we use here is a system developed within the group as part of a wider project.

The application code runs on an Embedded PowerPC under the Linux operating

system. All hardware accelerators (called virtual components) are connected to

the system via the virtual socket interface. Figure 5.4 shows an illustration of the

integration platform details of which are omitted for simplicity.

66

Chapter 5. Evaluation and Results
5.3. Hardware Platform

Name Width Driver Function
Clk 1 varies Clock Input
MReset 1 varies Reset Input
MAddr con�gurable master Transfer Address
MCmd 3 master Transfer Command
MData con�gurable master Write Data
MByteEn con�gurable master Request Phase Byte Enables
SCmdAccept 1 slave Slave Accepts Transfer
SData con�gurable slave Read Data
SResp 2 slave Transfer Response

Table 5.4: OCP Bus Signals

5.3.1 OCP Interface

The OCP standard de�nes a point-to-point interface between two communicating

entities such as intellectual property (IP) cores and bus interface modules. One

entity act as a master and the other as a slave and the master is responsible

for issuing commands to send and receive data. The slave generally responds to

master commands by presenting requested data or by accepting data from the

master. In table 5.4 the list of OCP signals relevant to the work described here

are presented. For detailed description of other OCP signals the reader is referred

to OCP technical speci�cation manual OcpIP (2006).

MAddr

The transfer address, master speci�es the address of the slave resource tar-

geted by the current transfer. Used to address several con�guration, control

and data registers in a slave.

MCmd

Transfer command issued by master to slave for a data transfer. Table 5.5

show list of commands used.

MData

OCP data word carries data to be written from master to slave, the length

of MData bus is con�gurable and is not restricted to multiples of 8.

67

Chapter 5. Evaluation and Results
5.3. Hardware Platform

MCmd[2:0] Command Mnemonic request
0 0 0 Idle IDLE none
0 0 1 Write WR write
0 1 0 Read RD read

Table 5.5: MCmd Encoding

SRespp[1:0] Response Mnemonic
0 0 No Response NULL
0 1 Data valid / Accept DVA
1 0 Request failed FAIL
1 1 Response Error ERR

Table 5.6: SResp Encoding

MByteEn

This signal facilitates partial data transfers over MData bus. Each byte in

MData is represented by a bit in MByteEn and these bits indicate which

bytes within the OCP data word are part of the current transfer.

SCmdAccept

Slave accepts data from master.

SData

Slave data bus carries data requested by master from slave.

SResp

Slave response to a request, signal data valid (DVA) indicates SData has

valid data, table 5.6 shows list of responses used.

5.3.2 Programmer's Model

In this section we present details of con�guration registers to aid the programing

process. In the integration platform we use, each hardware module is termed as

a virtual component (VC) and is given an unique identi�cation (ID). Several of

these VCs interface with the host processor system with a OCP bus as shown in

Figure 5.5. To access di�erent VC blocks attached to the same system bus the

68

Chapter 5. Evaluation and Results
5.3. Hardware Platform

Figure 5.5: Integration Platform with Virtual Components

host processor system �rst writes the target virtual component ID to the VC select

register block. All the subsequent data access performed will be between the host

processor and the target VC. Moreover, all the data and con�guration registers

within each VC can be memory mapped to enable access from application code

running on the processor. Reminder of this section presents memory mapping

details for the MoG block and the Haar feature acceleration block.

In the MoG hardware block to make data IO simple we use two FIFOs of size

128 � 32 bits as shown in Figure 5.6. Image data along with background model

data for each pixel is written into the IN_FIFO sequentially. The OUT_FIFO is

used to read back foreground pixels and the updated background model param-

eters. A IN_FIFO full status register indicates if the FIFO is full while writing

pixel data and similarly a OUT_FIFO status indicates if the FIFO is empty when

reading back data. Table 5.7 shows the address map of internal data and status

registers. Data written to IN_FIFO_AD is sent to the MoG module and after the

data is processed within the MoG hardware block it is written to the OUT_FIFO.

Data from OUT_FIFO can be read from the address OUT_FIFO_AD.

Table 5.8 shows the address map of con�guration and control registers used

to control the recon�gurable stage. The mapping makes it easy to read and write

data from host processor and helps program the module. Any data written to

Con�g RAM and Data RAM address locations will be written to the respective

69

Chapter 5. Evaluation and Results
5.3. Hardware Platform

Figure 5.6: MoG Virtual Component

Register Name Read/Write Address Function
IN_FIFO_AD WR 0xCAC40200 Write data to MoG module
IN_FIFO_ST RD 0xCAC40208 Indicate if FIFO full
OUT_FIFO_AD RD 0xCAC40210 Out FIFO read address
OUT_FIFO_ST RD 0xCAC40218 Indicate is FIFO is empty

Table 5.7: MoG OCP interface Registers

Register Name Read/Write Address Function
Con�g RAM WR 0xCAC40200 Write data to con�g RAM
Data RAM WR 0xCAC40208 Write data to data RAM
Con�g Status RD 0xCAC40210 Stage con�guration status �ag
Start Stage WR 0xCAC40218 Start stage computation �ag
Finish Stage RD 0xCAC40220 Stage �nish status �ag
Stage Sum RD 0xCAC40228 Final stage sum register
Sub-window variance WR 0xCAC40230 Window variance register

Table 5.8: Stage Control and Con�guration Registers

70

Chapter 5. Evaluation and Results
5.4. Results

RAMs in the physical stage. A start stage �ag is used to start the process

of con�guring individual FEs with feature and integral pixel data. Once data

is loaded each FE starts computing the feature value. The con�g status �ag

indicates the completion of con�guring all FEs in the stage. The �nish stage �ag

indicates that all FEs have �nished computing and the stage sum is ready to be

read by the host processor. The stage sum location holds the �nal result from

the stage.

5.4 Results

From the Section 5.2 it is clear that the proposed object detection system cannot

achieve real-time execution in software. To achieve real-time detection speeds it is

important that some of the compute intensive blocks are accelerated in hardware.

As per the motivations presented earlier in Chapter 4 the most suitable hardware

platform for vision applications is the Field Programmable Gate Array (FPGA).

Moreover the cost of the FPGA and the amount of resources available on the

FPGA have a signi�cant impact on the overall system performance. Cost of

the device is an important factor when considering inexpensive embedded smart

cameras and this has a direct a�ect on the detection speeds. Here we consider

a bigger and more expensive device which is the Xilinx Virtex II Pro however

depending on the required system performance and the cost a much smaller device

can also be used. Tables 5.9, 5.10 and 5.11 show the amount of hardware resources

consumed by the MoG, a recon�gurable FE and a stage formed by grouping 16

FEs respectively.

The hardware resource usage for MoG presented in table 5.9 show that in

total less than 5% of the resources are consumed. This is because here we target

a bigger device from the Virtex II Pro family but a much smaller device can also

be used. This however depends on other system modules, the required system

performance and the cost constraints.

The proposed MoG hardware module runs at 223 MHz as reported by the

Xilinx tools and can process a 640 � 480 image at 60 frames per second excluding

bus interface delay. Various factors that need to be considered when choosing

an FPGA for embedded smart camera are: cost, power consumption, required

71

Chapter 5. Evaluation and Results
5.4. Results

Number of Slices 794 out of 13696 5%
Slice Flip-Flops 1190 out of 27392 4%
4 in-put LUTs 1074 out of 27392 3%

BRAMS 2 out of 136 1%
MULTs 18 x 18 8 out of 136 5%

Table 5.9: MoG Hardware Resource Usage - Synthesized for XC2VP30

Resource Type used Maximum Available % Usage
Number of Slices 311 13696 2%
Number of Slice Flip Flops 488 27392 1%
Number of 4 input LUTs 317 27392 1%
Number of TBUFs 16 6848 0%
Number of MULT18X18s 1 136 0%

Table 5.10: Resource Usage for Recon�gurable FE - Xilinx XC2VP30

hardware resources depending on the number of hardware modules used and the

required system performance.

Table 5.11 presents details of resource usage for the proposed stage and clearly

the object detection task needs more hardware resources. As mentioned earlier to

achieve real-time detection performance it is important that Haar-feature com-

putation is accelerated in hardware.

The proposed con�gurable FE stage can run at 245 MHz as reported by the

Xilinx tools and can compute the result of 16 Haar features in 2.5 �sec. The

key advantage with using a FE based architecture is that we can exploit the

parallelism within a stage and also the fact that multiple stages can run in parallel

Resource Type used Maximum Available % Usage
Number of Slices 5197 13696 37%
Number of Slice Flip Flops 8289 27392 30%
Number of 4 input LUTs 5481 27392 20%
Number of TBUFs 256 6848 3%
Number of BRAMs 2 136 1%
Number of MULT18X18s 16 136 11%

Table 5.11: Resource Usage for 16 FE Stage - Xilinx XC2VP30

72

Chapter 5. Evaluation and Results
5.5. Conclusion

in e�ect achieving higher detection speeds. Running multiple stages in parallel

however depends on the amount of available resources and various other design

constraints mentioned earlier. A key idea proposed in this work is the design of a

stand-alone and a �exible stage formed by grouping 16 FEs. The stage is �exible

in the sense that it can be con�gured to form any stage in the adaboost cascade

and target di�erent object detection tasks.

5.5 Conclusion

In this chapter we presented details of performance evaluation of the proposed

system in software. Some of the key advantages with using a motion segmenta-

tion technique as a pre-processing step to object detection is that a signi�cant

reduction in execution time, reduction in false positives can be achieved (thus

increase in precision). However, there is a reduction in the recall values because

of challenges involved in building a robust background suppression technique.

As mentioned earlier the proposed object detection system contains many com-

pute intensive tasks such as background modeling, post-processing, integral image

computation, square integral image computation, image scaling and Haar feature

computation for several cascade stages. A typical embedded smart camera cannot

achieve real-time processing for object detection needed for surveillance applica-

tions. A good idea is to o� load some of these compute intensive tasks to a

hardware accelerator and the most suitable hardware acceleration platform for

vision application is the Field Programmable Gate Array (FPGA). In this work

we proposed FPGA accelerators for MoG and the Haar feature computation.

Also instead of making Haar computation speci�c to detecting a single object

(e.g. face) we designed a more generic and �exible architecture. The key building

block in the proposed architecture is a feature element FE and a stage formed

by grouping multiple FEs. The stage formed by grouping multiple FEs can be

con�gured to form any stage in the adaboost classi�er cascade and can be used

to detect di�erent objects. Also the use of OCP as a standard bus interface for

both MoG and Haar stage, that makes it possible to build a multi stage cascade

classi�er in hardware which can be easily interfaced with a host processor.

73

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Smart cameras are becoming increasingly popular in surveillance systems for de-

tecting humans, vehicles among others. The ultimate goal is to push intelligence

and adaptability, to the device itself for autonomous analysis of the captured

image. An important task in surveillance systems is the object detection task.

Adaboost based object detection which we use in this thesis is one of the most

popular techniques. There are several compute intensive blocks in the adaboost

algorithm as outlined in the previous chapters and a full frame search for de-

tecting target objects makes the algorithm highly time consuming. One way to

speed up the detection process is by processing only image sub-regions or regions

of interest instead of the whole frame. This makes good sense in a surveillance

type application where a full frame search is not always necessary. Moreover a

resource constrained device such as a smart camera can greatly bene�t from the

reduction in computation time.

One way extract image regions of interest is to use background modeling and

moving object segmentation. Many background modeling techniques of varying

complexity and segmentation performance were proposed. Among these various

approaches we choose to use the Mixture of Gaussian approach because of its

relatively low computational complexity and better segmentation performance.

The MoG approach we use in this work can handle complex outdoor scenes and

74

Chapter 6. Conclusion and Future Work
6.1. Conclusion

is adaptive. Another major advantage with MoG is it is suitable for hardware

implementation. Hardware acceleration is an important element because of the

fact that the majority of image and video analysis algorithms are both data and

compute intensive. When targeting embedded devices such as smart cameras for

surveillance applications it is vital that the system/algorithm achieves real-time

performance.

In addition to this a key compute intensive block in adaboost is the Haar

feature computation and it occupies a signi�cant amount of computation time.

In this thesis we proposed an accelerator for Haar feature computation. To enable

generic object detection we designed a �exible Haar feature element.

The use of motion segmentation as a pre-processing step to adaboost object

detection has a signi�cant e�ect on the detection speed as presented in previ-

ous chapter 5. When implementing object detection in surveillance systems it is

essential to reduce the computation time by processing only motion regions or

regions of interest to detect target objects. Although the proposed system shows

good precision, recall performance greatly relies on robust background modeling

and motion segmentation. Due to inherent limitations in building a robust back-

ground model, it is hard to segment slow moving objects, homogeneously colored

objects and objects that are camou�aged.

Moreover to achieve real-time detection performance it is vital that some

of the key compute intensive blocks are accelerated in hardware. We proposed

hardware acceleration architectures for both MoG and Haar feature computation.

To enable generic object detection we designed a �exible feature element that

can be programed to form any basis function. As outlined earlier the adaboost

detection process uses multiple Haar features in a stage and several of these stages

are grouped in a cascade to improve the detection accuracy. With the FE based

design we can group several of these FEs to form a stage and multiple stages

could run in parallel making e�ective use of the parallelism in the algorithm.

Finally the use of OCP bus for both hardware blocks makes it easy to integrate

with a host processor system. A set of con�guration and control registers that

are memory mapped enables application code running on the host processor to

communicate with these blocks.

75

Chapter 6. Conclusion and Future Work
6.2. Future Work

6.2 Future Work

The research work presented in this thesis deals with decreasing the computation

time for adaboost based object detection. Overall the system has three impor-

tant blocks, background modeling, post-processing and adaboost detection. Key

aspects that contribute to overall system performance are as follows:

Precision of object segmentation.

Robust Haar cascade for adaboost detection.

Hardware acceleration for key compute intensive blocks.

An important block in the system is moving object segmentation. The de-

tection accuracy and speed rely on precise object segmentation. As outlined

in Chapter 2, inherent limitations in background modeling techniques makes it

di�cult to detect foreground regions (e.g. aperture, camou�age) and prevent

background regions (e.g. shadows, re�ections) from appearing in the foreground.

Moving object segmentation is an ongoing research �eld and a more robust or a

less compute intensive technique could greatly improve the system performance.

Another important aspect is the adaboost cascade detector, where by signi�cant

reduction in false positives can be achieved by training the Haar cascade with a

more robust data set from the target object class. Moreover, the adaboost train-

ing process is highly complex, time consuming and requires few hundred training

samples. E�orts to reduce training complexity could greatly bene�t surveillance

applications. The proposed system is tested for faces and upper-body using pre-

trained Haar feature databases from Open CV. However the system could be used

to detect other objects for example automobiles and this should be investigated.

Finally, the optimal number of features per stage and the optimal number of

stages in hardware to achieve real-time detection performance and the tradeo�s

thereof requires signi�cant research attention in the future. Also low complexity

hardware for other compute intensive blocks such as morphology, connected com-

ponent labeling, integral image computation and image scaling could be a good

research direction.

76

Bibliography

Anderson, J. D., Lee, D. J., and Archibald, J. K. (2005). FPGA implementa-

tion of vision algorithms for small autonomous robots. In Casasent, D. P.,

Hall, E. L., and Röning, J., editors, Intelligent Robots and Computer Vision

XXIII: Algorithms, Techniques, and Active Vision. Edited by Casasent, David

P.; Hall, Ernest L.; Röning, Juha. Proceedings of the SPIE, Volume 6006,

pp. 401-411 (2005)., volume 6006 of Presented at the Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference, pages 401�411. SPIE. 40

Baumgartner, D., Rossler, P., and Kubinger, W. (2007). Performance benchmark

of DSP and FPGA implementations of low-level vision algorithms. In Computer

Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on, pages

1�8. 40

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer Vision with

the OpenCV Library. O'Reilly, Cambridge, MA. 4

CAVIAR (2000). http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. 55

cbcl (2000). MIT face dataset availabel at http://cbcl.mit.edu/software-

datasets/FaceData2.html. Center for Biological and Computational Learning

at MIT and MIT. viii, 32

Cheung, S.-C. S. and Kamath, C. (2005). Robust background subtraction with

foreground validation for urban tra�c video. EURASIP J. Appl. Signal Pro-

cess., 2005(1):2330�2340. 5

Colmenarez, A. and Huang, T. (1997). Face detection with information-based

maximum discrimination. In CVPR '97: Proceedings of the 1997 Conference on

77

Computer Vision and Pattern Recognition (CVPR '97), page 782, Washington,

DC, USA. IEEE Computer Society. 27

Craw, I., Tock, D., and Bennett, A. (1992). Finding face features. In ECCV '92:

Proceedings of the Second European Conference on Computer Vision, pages

92�96, London, UK. Springer-Verlag. 27

Dai, Y. and Nakano, Y. (1996). Face-texture model-based on sgld and its applica-

tion in face detection in a color scene. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(6):1007�1017. 27

Elgammal, A. M., Harwood, D., and Davis, L. S. (2000). Non-parametric model

for background subtraction. In ECCV '00: Proceedings of the 6th European

Conference on Computer Vision-Part II, pages 751�767, London, UK. Springer-

Verlag. 16

Feraud, R. and Bernier, O. (1998). Ensemble and modular approaches for face

detection: a comparison. In NIPS '97: Proceedings of the 1997 conference on

Advances in neural information processing systems 10, pages 472�478, Cam-

bridge, MA, USA. MIT Press. 3

Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of on-

line learning and an application to boosting. In EuroCOLT '95: Proceedings

of the Second European Conference on Computational Learning Theory, pages

23�37, London, UK. Springer-Verlag. 25, 30

Gao, C. and Lu, S.-L. (2008). Novel FPGA based haar classi�er face detection

algorithm acceleration. In Field Programmable Logic and Applications, 2008.

FPL 2008. International Conference on, pages 373�378, Heidelberg. 44, 47

Gonzalez, R. and Woods, R. (2002). Digital Image Processing, Second Edition,

chapter 9, pages 519�566. Number ISBN-81-203-2758-6. Prentice Hall. 12, 13,

14

Hiromoto, M., Nakahara, K., Sugano, H., Nakamura, Y., and Miyamoto, R.

(2007). A specialized processor suitable for adaboost-based detection with

haar-like features. Embedded Computer Vision, pages 1�8. 25

78

Hiromoto, M., Sugano, H., and Miyamoto, R. (2009). Partially parallel architec-

ture for adaboost-based detection with haar-like features. IEEE Transactions

on Circuits and Systems for Video Technology, 19(1):41�52. 4, 43, 45, 46

Hjelmas, E. and Low, B. K. (2001). Face detection: A survey. Computer Vision

and Image Understanding, 83(3):236 � 274. 3

Intel IPP (2008). Integrated Performance Primitives (Intel® IPP). Intel. 4

Kelly, P. (2008). Corridor Scenario. http://www.cdvp.dcu.ie/datasets. 55

Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis, L. (2004). Background

modeling and subtraction by codebook construction. In Image Processing,

2004. ICIP '04. 2004 International Conference on, volume 5, pages 3061�3064.

16

Kirby, M. and Sirovich, L. (1990). Application of the karhunen-loeve procedure

for the characterization of human faces. In IEEE Trans. Pattern Anal. Mach.

Intell., volume 12, pages 103�108, Washington, DC, USA. IEEE Computer

Society. 3

Kjeldsen, R. and Kender, J. (1996). Finding skin in color images. In FG '96:

Proceedings of the 2nd International Conference on Automatic Face and Ges-

ture Recognition (FG '96), page 312, Washington, DC, USA. IEEE Computer

Society. 27

Lai, H.-C., Marculescu, R., Savvides, M., and Chen, T. (2008). Communication-

aware face detection using noc architecture. In Gasteratos, A., Vincze, M., and

Tsotsos, J. K., editors, International Conference on Computer Vision Systems,

volume 5008 of Lecture Notes in Computer Science, pages 181�189. Springer.

46, 48

Lanitis, A., Taylor, C., and Cootes, T. (1995). Automatic face identi�cation

system using �exible appearance models. Image and Vision Computing, 13:393�

401. 27

79

Leung, T. K., Burl, M. C., and Perona, P. (1995). Finding faces in cluttered

scenes using random labeled graph matching. In ICCV '95: Proceedings of the

Fifth International Conference on Computer Vision, page 637, Washington,

DC, USA. IEEE Computer Society. 27

Lew, M. S. (1996). Information theoretic view-based and modular face detection.

In FG '96: Proceedings of the 2nd International Conference on Automatic Face

and Gesture Recognition (FG '96), page 198, Washington, DC, USA. IEEE

Computer Society. 27

Li, R., Chen, Y., and Zhang, X. (2006). Fast robust eigen-background updat-

ing for foreground detection. In Image Processing, 2006 IEEE International

Conference on, pages 1833�1836. 16

Liao, M. H. Y., Chen, D.-Y., Sua, C.-W., and Tyan, H.-R. (2006). Real-time

event detection and its application to surveillance systems. In Circuits and

Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium

on, Island of Kos. 5

Lienhart, R., Kuranov, A., and Pisarevsky, V. (2002). Empirical analysis of

detection cascades of boosted classi�ers for rapid object detection. Technical

report, Microprocessor Research Lab, Intel Labs. 25

Lienhart, R. and Maydt, J. (2002). An extended set of haar-like features for rapid

object detection. In Image Processing. 2002. Proceedings. 2002 International

Conference on, volume 1, pages 900�903. 6, 25

Lucas, S. (1993). Optical character recognition with hough transform based neu-

ralnetworks. In Hough Transforms, IEE Colloquium on, London, UK. 3

MacLean, W. (2005). An Evaluation of the Suitability of FPGAs for Embedded

Vision Systems. In Computer Vision and Pattern Recognition, 2005 IEEE

Computer Society Conference on, volume 3, pages 131�131. 40

McBader, S. and Lee, P. (2003). An FPGA implementation of a �exible, parallel

image processing architecture suitable for embedded vision systems. In Parallel

80

and Distributed Processing Symposium, 2003. Proceedings. International, page

5pp. 40

McKenna, S., Gong, S., and Raja, Y. (1998). Modelling facial colour and identity

with gaussian mixtures. Pattern Recognition Journal, 31(12):1883�1892. 27

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging.

Advanced lectures on machine learning, pages 118�183. 30

Meynet, J. (2003). Technical report - fast face detection using adaboost. Technical

report, Signal Processing Institute, EPFL. 30, 31

Miyamoto, R., Sugano, H., Saito, H., Tsutsui, H., Ochi, H., Hatanaka, K., and

Nakamura, Y. (2006). Pedestrian recognition in far-infrared images by com-

bining boosting-based detection and skeleton-based stochastic tracking. In 1st

IEEE Paci�c-Rim Symp. Image Video Technologies, pages 483�494. 4, 25

Nair, V., Laprise, P.-O., and Clark, J. J. (2005). An FPGA-based people detection

system. EURASIP Journal on Applied Signal Processing, 2005(7):1047�1061.

doi:10.1155/ASP.2005.1047. 40

OcpIP (2006). Open Core Protocol Speci�cation. OCP IP. 42, 49, 63

Oliver, N. M., Rosario, B., and Pentland, A. P. (2000). A bayesian computer

vision system for modeling human interactions. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(8):831�843. 5

Open CV (2008). Open Computer Vision Library, available at

http://sourceforge.net/projects/opencvlibrary/. 4, 5, 34, 37, 38

Osuna, E., Freund, R., and Girosit, F. (1997). Training support vector machines:

An application to face detection. In Computer Vision and Pattern Recognition,

1997. Proceedings., 1997 IEEE Computer Society Conference on, pages 130�

136, San Juan. 3, 27

Papageorgiou, C. P., Oren, M., and Poggio, T. (1998). A general framework for

object detection. In Computer Vision, 1998. Sixth International Conference

on, pages 555�562, Bombay. 3

81

Piccardi, M. (2004). Background subtraction techniques: a review. In Systems,

Man and Cybernetics, 2004 IEEE International Conference on, volume 4, pages

3099�3104vol.4. 8, 10

Pless, R. (2005). Spatio-temporal background models for outdoor surveillance. In

EURASIP J. Appl. Signal Process., volume 2005, pages 2281�2291, New York,

NY, United States. Hindawi Publishing Corp. 5

Rajagopalan, A. N., Kumar, K. S., Karlekar, J., Manivasakan, R., Patil, M. M.,

Desai, U. B., Poonacha, P. G., and Chaudhuri, S. (1998). Finding faces in pho-

tographs. In ICCV '98: Proceedings of the Sixth International Conference on

Computer Vision, page 640, Washington, DC, USA. IEEE Computer Society.

27

Ran, Y., Zheng, Q., Weiss, I., Davis, L., Abd Almageed, W., and Zhao, L. (2005).

Pedestrian classi�cation from moving platforms using cyclic motion pattern.

pages II: 854�857. 9

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846�850. 17

Ratha, N. K. and Jain, A. K. (1999). Computer vision algorithms on recon�g-

urable logic arrays. Transactions on Parallel and Distributed Systems, 10(1):29�

43. 40

Rosin, P. L. and Ioannidis, E. (2003). Evaluation of global image thresholding

for change detection. Pattern Recogn. Lett., 24(14):2345�2356. 8

Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural network-based face

detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(1):23�38. 3, 27, 34

Sato, K. and Aggarwal, J. K. (2004). Temporal spatio-velocity transform and

its application to tracking and interaction. Comput. Vis. Image Underst.,

96(2):100�128. 9

82

Schneiderman, H. and Kanade, T. (1998). Probabilistic modeling of local appear-

ance and spatial relationships for object recognition. In CVPR '98: Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, page 45, Washington, DC, USA. IEEE Computer Society. 27

Shahid, H., Khan, K., and Qazi, W. A. (2008). Using modi�ed mixture of gaus-

sians for background modeling in video surveillance. In Advances in Space Tech-

nologies, 2008. ICAST 2008. 2nd International Conference on, pages 155�159,

Islamabad, Pakistan. 5

Snidaro, L., Micheloni, C., and Chiavedale, C. (2005). Video security for ambient

intelligence. IEEE Transaction on System, Man and Cybernetics - Part A,

35(2):133�144. 9

Snow, D., Jones, M., and Viola, P. (2003). Detecting pedestrians using patterns

of motion and appearance. In IEEE International Conference on Computer

Vision, pages 734�741. 4, 25

Stau�er, C. and Grimson, W. (1999). Adaptive background mixture models for

real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on., volume 2. 5, 10, 40

Sung, K. K. and Poggio, T. (1998). Example-based learning for view-based hu-

man face detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(1):39�51. 3, 27

Suzuki, K., Horiba, I., and Sugie, N. (2003). Linear-time connected-component

labeling based on sequential local operations. Computer Vision and Image

Understanding, 89(1):1�23. 15

Tickle, A, J., J, S, S., and Q, H, W. (2007). Development of morphological

operators for �eld programmable gate arrays. Journal of Physics: Conference

Series, 76. 14

Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999a).

The test sequences are availabel at - http://research.microsoft.com/en-

us/um/people/jckrumm/wall�ower/testimages.htm. Microsoft.com. 10, 17

83

Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999b). Wall�ower: prin-

ciples and practice of background maintenance. In Computer Vision, 1999.

The Proceedings of the Seventh IEEE International Conference on, volume 1,

pages 255�261vol.1. 9, 10

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. J. Cognitive

Neuroscience, 3(1):71�86. 3, 27

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput.

Vision, 57(2):137�154. 3, 27, 32

Wang, H. and Suter, D. (2005). A re-evaluation of mixture of gaussian back-

ground modeling [video signal processing applications]. In Acoustics, Speech,

and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International

Conference on, volume 2. 11

Yang, G. and Huang, T. S. (1994). Human face detection in a complex back-

ground. IEEE Pattern Recogn, 27(1):53�66. 27

Yang, J. and Waibel, A. (1996). A real-time face tracker. In WACV '96: Proceed-

ings of the 3rd IEEE Workshop on Applications of Computer Vision (WACV

'96), page 142, Washington, DC, USA. IEEE Computer Society. 27

Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). Detecting faces in images:

a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(1):34�58. 3, 26, 27

Yew, K. and Cipolla, R. (1997). Feature-based human face detection. Image and

Vision Computing, 15(9):713�735. 27

Zhang, H., Xia, M., and Hu, G. (2007). A multiwindow partial bu�ering scheme

for FPGA-based 2-d convolvers. Circuits and Systems II: Express Briefs, IEEE

Transactions on [see also Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on], 54(2):200�204. 40

Zhu, Q., Avidan, S., and Cheng, K.-T. (2005). Learning a sparse, corner-based

representation for time-varying background modelling. In Computer Vision,

84

2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages

678�685. 8

85

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Overview

	2 Background Modeling and Moving Object Segmentation
	2.1 Introduction
	2.2 Background Modeling
	2.2.1 Mixture Of Gaussian
	2.2.2 Post Processing
	2.2.2.1 Morphology
	2.2.2.2 Connected Component Labeling

	2.2.3 Discussion

	2.3 Segmentation Quality
	2.4 Conclusion

	3 Introduction to AdaBoost Based Object Detection
	3.1 Introduction
	3.2 Face Detection Techniques
	3.3 Haar Features and Integral Image
	3.3.1 Haar Basis Functions
	3.3.2 Integral Image

	3.4 Training with Adaboost
	3.4.1 Haar Basis set as Classifiers
	3.4.2 Boosted Cascade of Classifiers
	3.4.3 Discussion

	3.5 Open CV Haar Cascade
	3.6 Conclusion

	4 Feature Element For Adaboost Object Detection
	4.1 Introduction
	4.2 MoG Hardware Architecture
	4.3 Boosting Hardware Architecture
	4.4 Feature Element based Architecture
	4.4.1 Hardware architecture
	4.4.2 Grouping multiple FEs

	4.5 Conclusion

	5 Evaluation and Results
	5.1 Introduction
	5.2 Performance Evaluation
	5.2.1 Detection Accuracy
	5.2.2 Execution Speed

	5.3 Hardware Platform
	5.3.1 OCP Interface
	5.3.2 Programmer's Model

	5.4 Results
	5.5 Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

