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Abstract

The thesis deals with the asymptotic behaviour of highly nonlinear stochastic differential
equations, as well as linear and nonlinear functional differential equations. Both ordinary
functional and neutral equations are analysed. In the first chapter, a class of nonlinear
stochastic differential equations which satisfy the Law of the Iterated Logarithm is stud-
ied, and the results applied to a financial market model. Mainly scalar equations are
considered in the first chapter. The second chapter deals with a more general class of
finite-dimensional nonlinear SDEs and SFDEs, employing comparison and time change
methods, as well as martingale inequalities, to determine the almost sure rate of growth
of the running maximum of functionals of the solution. The third chapter examines the
exact almost sure rate of growth of the large deviations for affine stochastic functional
differential equations, and for equations with additive noise which are subject to relatively
weak nonlinearities at infinity. The fourth chapter extends conventional conditons for ex-
istence and uniqueness of neutral functional differential equations to the stochastic case.
The final chapter deals with large fluctuations of stochastic neutral functional differential

equations.

iv



Introduction and Preliminaries

0.1 Introduction

The classical Efficient Market Hypothesis by Fama in the 1960’s (cf. eg. [34]) asserts that
current prices of assets truly reflect the information available to all investors and the their
collective beliefs about future. This implies that no investors can outperform the mar-
ket by using any public information. In particular, the weakest form of efficiency refers
to that historical price information can not be used to generate any profit. Stochastic
differential equations (SDEs) are common tools in the modelling of financial objects in ef-
ficient markets. The famous stock pricing model Geometric Brownian Motion (GBM) is a
good example. However, the presence of price bubbles and crashes shows that markets are
not always efficient, especially when the prices deviate significantly from their fundamental
value. These phenomena are thought to be caused by widely—used feedback trading strate-
gies. In order to reflect the occasional price persistency, it is reasonable to use stochastic
functional differential equations (SFDEs) with delays to model price evolution.

SFDEs are commonly used in modelling systems which evolve in a random environment
and whose evolution depends on the past states of the system through either memory or
time delay. Examples include population biology (Mao [59], Mao and Rassias [61, 62]),
neural networks (cf. e.g. Blythe et al. [20]), viscoelastic materials subjected to heat
or mechanical stress Drozdov and Kolmanovskii [32], Caraballo et al. [26], Mizel and
Trutzer [64, 65]), or financial mathematics (Ahn et al. [1, 2], Arrojas et al. [14], Hobson
and Rogers [46]).

To date there is comparatively little literature regarding the size of large fluctuations of
the solution of SDEs and SFDEs. In this thesis, we mainly study the rates at which large
fluctuations of solutions of both SDEs and SFDEs tend to infinity. More precisely, if X

is the solution of the stochastic equation, we try to find two constants C; and Cs, and a
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deterministic and continuous function g with o(t) — oo as t — oo such that

X(t
C1 < limsup | ((t))’ < (9, a.s. conditionally on some non—null event A,
t—oo O
or in some cases
X(t
lim sup M =1, a.s. conditionally on some non-null event A.
t—00 Q(t)

We call such a function the essential growth rate of the running mazima of X. In appli-
cations this is important, as the size of the large fluctuations may represent the largest
bubble or crash in a financial market (or the largest epidemic in a disease model,or a pop-
ulation explosion in an ecological model). By comparing results of both SDEs and SFDEs,
we investigate how feedback trading strategies affect the size of the largest fluctuations in
stock prices or returns.

The Law of the Iterated Logarithm (LIL) is one of the most important characteristics
of finite—dimensional standard Brownian motions. In Chapter 1, we classify a family of

SDEs which has the form

dX(t) = f(X(t),t)dt + g(X(t),t) dB(t),

and whose solutions obey the LIL. We give sufficient conditions on f and g which ensure
LIL—type results. Moreover, we investigate the relation between the drift coefficient f and
the ergodicity of the process. The results are used in the modelling of market inefficiency:
The usual source of randomness in the SDE (namely Brownian motion) which governs the
evolution of a Geometric Brownian Motion, is replaced by a semimartingale which obeys
the LIL and whose increments (changes in the logarithm of prices) are no longer Gaussian
and independent. This semimartingale is constructed in such a way that it reflects the
risk—averse behaviour of investors, and it shows how bias can effect the long-run average
value of log-returns. The technique used in this chapter is a combination of stochastic
comparison principle and Motoo’s theorem.

In Chapter 2, we compare this Motoo—Comparison technique with the existing EMI-
GI (Exponential Martingale Inequality and Gronwall Inequality) technique developed by

Mao. We extend SDEs in Chapter 1 to some highly non-linear SDEs using the Motoo—
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Comparison technique. Moreover, we show that the technique also works well on some
SFDEs with point delay which have recurrent solutions.

In Chapter 3, we study the essential growth rate of the partial maxima growth rate of
solutions of finite—dimensional affine SFDEs with additive noise. The general idea is that
the solution of linear SFDEs can be written in terms of the fundamental solution (or the
resolvent). The roots of the characteristic equation determine the asymptotic behaviour
of the resolvent, which in turn determine the asymptotic behaviour of the corresponding
stochastic solution. Moreover, if the resolvent decays exponentially, then the stochastic
process is Gaussian and asymptotically stationary, therefore the partial maxima growth
rate has order y/logt. The results can even be extended to some SFDEs with maximum
functionals, provided that the non-linear term grows slower than linear order at infinity.

In Chapter 4, we study the existence and uniqueness of solutions of stochastic neutral

functional differential equations (SNFDEs) of the form
d(X(t) — D(Xy)) = f(X¢)dt + g(X¢) dB(t).

The existing result on SNFDEs which was developed by Mao in the 1990’s requires that

the neutral functional D to satisfy a global contraction condition, that is, D satisfies

[D(¢) = D(9)] < k¢ = ¢llsup,  for all ¢, € C([=7,0[;RY).

where Kk < 1. One the other hand, in the 1970’s, Hale developed a local contraction
condition on the deterministic neutral functional differential equations (NFDEs) of the

form

d

—(@(t) = D(x1)) = f(x).

dt
The “local” condition is much weaker than the “global” condition, enabling us to remove
the condition x < 1 in most cases. We adapt Mao’s technique for the stochastic case and
extend Hale’s theorem to SNFDEs. By giving some equations which do not have solutions,
we show that Hale’s condition is an optimal one, and in the case of a maximal neutral
functional D, that Mao’s condition can not be relaxed.

In the final chapter, we again study the essential growth rate of the running maxima

of the solutions of SNFDEs. As in Chapter 3, the characteristic question of the under
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lying deterministic resolvent is crucial in determining the asymptotic behaviour of the
stochastic process. Many elements in the results and method of proof can be extended
from those in Chapter 3. Since the equations are affine, we concentrate on solutions
which are Gaussian and asymptotically stationary. For simplicity, we deal with scalar and
affine equations only, believing that extensions to finite-dimensional and weakly nonlinear
equations are relatively routine. In comparison with the non-neutral resolvent, the neutral
resolvent also decays exponentially. However, unlike the non-neutral resolvent which is
everywhere differentiable, the differentiability of neutral resolvent is uncertain. Therefore

the technique used in the neutral case is distinct from that in Chapter 3.
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0.2 Preliminaries

Notations The following notations are used in this thesis:
R : set of real numbers.

R* : set of non-negative real numbers.

R? : d-dimensional Euclidean space.

C : set of complex numbers.

RIX" : set of d by r matrices.

AT . the transpose of A € R4*".

det A : the determinate of a square matrix A.
Re(z) : the real part of z € C.

Im(2) : the imaginary part of z € C.

z Vy : the maximum value between x and y.

x Ay : the minimum value between x and y.

f * g: the convolution of two functions f and g.
(-,-) : the standard inner product on R?,

D™ : the upper Dini derivative, i.e. if f : R — R is continuous, then

DY f(t) := limsup M
h—0*t h

| - | : the Euclidean norm on a row or column vector.

|| -]] : the Frobenius norm of a matrix A € R",

| |lop : the operator norm of a matrix A € R¥>" ie. |Alop = SUPgcRr |o|=1 |AT] =
\/m , where )\mam(ATA) stands for the largest eigenvalue of the square matrix
AT A. Note that [|Allop < ]| < v/l Allop-

| - |oo : the maximum norm of a row or column vector.

|| [|sup: the supremum norm.

e; : the i-th standard basis vector in R?.

N(a,b) : normal distribution with mean a and standard distribution b.

CP: set of functions whose p-th derivative are continuous.

RV oo () : the family of functions which are regularly varying at infinity with index 5. A
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measurable function f : [I,00) — (0,00) for some [ € (0, 00), is called regularly varying of
index 3 € R if and only if f(\z)/f(x) — A\ as z — oo, for all A > 0.

SRV () : the family of functions which are smoothly varying at infinity with index /3
(cf. [19, Section 1.8]). A function f € RV () varies smoothly with index 3, if and only
if h(z) := log f(e®) is C°, and W' (x) — B, K™ (z) — 0 (n = 2,3,...) as © — oco. One
consequence is that x f/'(z)/f(x) — § as © — oc.

M ([a, b]; R¥*9) : the space of finite Borel measures on [a, b] with values in R?*¢,
LP([a,b]; RY) : the family of Borel measurable functions A : [a,b] — R? such that

[ |n(z)P dz < oo

MP([a,b]; R): the family of processes {h(t)}a<i<p in LP([a,b]; R?) such that

E[f” |h(z)|P dz] < oo.

(Q, F,{Fi}+>0,P) : a complete probability spaces with a filtration {F;}:>o satisfying the

usual conditions, i.e. it is increasing and right continuous while Fy contains all P-null sets.

Definitions and Technical Issues The major relevant definitions and theorems on
technical issues are given here:

Scale function and speed measure: let I := (I,7) with —oo <l <r <oo,andlet f: ] — R
and g : I — R be the drift and diffusion coefficients of a scalar autonomous stochastic
differential equation respectively. Moreover, f and g satisfy the non-degeneracy and local

integrability conditions:

(z) >0, VYzel; (0.2.1)
T+e 1
Ve eI, 3Je>0 such that / Mdy < 00. (0.2.2)
e 92(Y)

Under the above conditions, a scale function and speed measure of solution of this SDE

are defined as

2dx
se(7)g?(x)’

where I is the state space of the process. These functions help us to determine the recur-

T oy i) 4,
Se() :/ i Eh dy, m(dx)= c,vel, (0.2.3)

rence and stationary of a process on I by Feller’s test for explosions (cf. [49]). Moreover,
Feller’s test allows us to examine whether a process will escape from its space in finite

time. This in turn relies on the v-function.
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v-function: if s is a scale function, then the v-function is defined as

., Yo 2dz
ve(x) :/C sc(y)/C mdy, ceR, zeR. (0.2.4)

A process will reach the boundary of its state space within finite time if and only if
ve(l4) = ve(r—) = co. Note that the real number ¢ € (I,r) appeared in the definitions of
both scale function and v-function does not affect whether or not s and v are finite at the
boundaries [ and r.

Doob’s continuous martingale representation theorem: suppose M is a continuous local
martingale defined on a probability space (€2, F,P), and the square variation (M) is an
absolutely continuous function of ¢ for P-almost every w. Then there is an extended
space (Q, F, P) of (©, F,P) on which is defined a one-dimensional Brownian motion W =

{W(t), F1;0 < t < 0o} and a Fi-adapted process X with P-a.s.
t
/ X?%(s)ds < 00, 0<t< o0,
0
such that we have the representations P-a.s.

M(t):/o X (s)dW (s), <M>(t):/0 X%(s)ds, 0<t<oo.

In the proof of the above martingale representation theorem (which can be found in
[49, Theorem 3.4.2]), the new Brownian motion W was constructed by a continuous local
martingale with respect to the original probability space (2, F,P) and a another Brownian
motion, say B , which was defined on the extended part of (€2, F,P) in (Q, F, ]f”) Moreover,
Bis independent of M. Therefore in this report, any conclusion made with respect to the
extended measure P about the underlying process with diffusion M defined on (Q,F,P)
coincides with that with measure P. Therefore we do not make explicit reference to the
probability spaces when stating results.

Properties of measures: The total variation of a measure v in M ([—7,0];R¥") on a

Borel set B C [—7,0] is defined by
N
[V]im(B) = sup Y _ [[v(E3)]],
i=1

where (Ez)fil is a partition of B and the supremum is taken over all partitions. The total

variation defines a positive scalar measure |v|,, in M ([—7,0];R). One can easily establish
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for the measure v = (v; ;)¢ j—1 the inequality
d d
Wlm(B) < CY > Juij|(B)  for every Borel set B C [—7,0] (0.2.5)
i=1 j=1
with C' = 1. Then, by the equivalence of every norm on finite-dimensional spaces, the
inequality (0.2.5) holds true for the arbitrary norms and some constant C' > 0. Moreover,

as in the scalar case we have the fundamental estimate

/ v(ds) f(s)
[—7,0]

for every function f : [~7,0] — R%*" which is |v|;,-integrable.

< [ O Wt

Convolution: The convolution of a function f and a measure v is defined by
v f i RT — R (v f)(t) ::/ v(ds) f(t — s).
[0,¢]
The convolution of two functions is defined analogously.

Stochastic Fubini’s Theorem (cf., e.g., [68, Ch. IV.6, Theorem 64]): Let X be a semi-
martingale and (A4,.A) be a measurable space, H? = H(a,t,w) be a bounded A ® P
measurable function (P denotes the predictable o-algebra), and let u be a finite measure
on A. Let Z{ = fg H?dXs be A® B(Ry) ® F measurable such that for each a € A, Z¢ is
a cadlag (i.e.,stochastic process which a.s. has sample paths that are left continuous with

right limits.) version of H*- X. Then Y; = [, Zfu(da) is a cadlag version of H - X, where

Hy = [, Hfp(da).



Chapter 1
Solutions of Stochastic Differential Equations

obeying the Law of the Iterated Logarithm

1.1 Introduction

The following Law of the Iterated Logarithm (LIL) is one of the most important results

on asymptotic behaviour of finite-dimensional standard Brownian motions,

B(t
lim sup 1BO)|

t—oo +/2tloglogt -

Classical work on iterated logarithm—type results, as well as associated lower bounds

a.s. (1.1.1)

on the growth of transient processes date back to Dvoretzky and Erdds [33]. There is an
interesting literature on iterated logarithm results and the growth of lower envelopes for
self-similar Markov processes (cf. e.g., Rivero [72], Chaumont and Pardo [27]) which ex-
ploit a Lamperti representation [53], processes conditioned to remain positive (cf. Hambly
et al. [45]), and diffusion processes with special structure (cf. e.g. Bass and Kumagi [18]).

In contrast to these papers the analysis here is inspired by work of Motoo [67] on iterated
logarithm results for Brownian motions in finite dimensions, in which the asymptotic
behaviour is determined by means of time change arguments to reduce the process under
study to a stationary one. Our paper concentrates mainly on iterated logarithm upper
bounds of solutions of stochastic differential equations, as well as obtaining lower envelopes
for the growth rate. Our goal has been to establish these results under the minimum
continuity and asymptotic conditions on the drift and diffusion coefficients. An advantage

of this approach is that it enables us to analyse a class of equations of the form
dX(t) = f(X(t))dt + g(X(t)) dB(t)

for which xf(z)/g?(x) tends to a finite limit as # — oo in the case when f and g are

regularly varying at infinity. Ergodic type—theorems are also presented. We also show
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how results can be extended to certain classes of non-autonomous and finite-dimensional
equations. We employ extensively comparison arguments of various kinds throughout.

In this chapter, we give the sufficient conditions ensuring that these processes obey the
LIL in the sense of (1.1.1). In particular, for a parameterized family of autonomous SDEs,
we observed that solutions can change from being recurrent to transient when a critical
value of the bifurcation parameter L = 02/2 (where lim, .+ 2f(z) = L and g(z) = o for
all z € R) is exceeded while preserving the properties of the LIL. Among the results, we
examine the extent to which the drift can be perturbed so that in the long-run the size of
the large deviations remains the same as for Brownian motion.

In [57], Mao shows that if X is the solution of the d-dimensional equation
dX(t):f(X(t)at)dt+9(X(t)at)dB(t)7 t>0

and if there exist positive real numbers p, K such that for all z € R? and t > 0, 27 f(z,t) <

P and Hg($7t)”0}7 < K> then

: | X(@)]
1 —— <K 8. 1.1.2
l?lil.fp 2tloglogt — Ve, as ( )

The main steps of the Mao’s proof are as follows: first, make a suitable It6 transformation;
then estimate the size of the Itd integral term by a Riemann integral by means of the
exponential martingale inequality (EMI); and finally apply Gronwall’s inequality (GI) to
determine the asymptotic rate of growth.

In contrast, the results in this chapter are established through a combination of com-
parison principles and Motoo’s theorem. Motoo’s theorem (cf. [67]) determines the exact
asymptotic growth rate of the partial maxima of a stationary or asymptotically stationary
process governed by an autonomous SDE. Since we will frequently refer this theorem, it

is stated here for convenience.

Theorem 1.1.1. Let f: (I,00) = R and g : (I,00) — R satisfy 0.2.1 and 0.2.2, and X be

the unique continuous adapted process satisfying

dX(t) = f(X(t))dt + g(X(t))dB(t),  t>0.

10
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If a scale function s and the speed measure m, as defined in the preliminaries, satisfy
s(l) = —o0, s(o0) =00 and m(l,o0) < o0,

then X is asymptotically stationarily recurrent on its state space (l,00). Moreover, for
some tg > 0, if 0 : (tp,00) — (0,00) is an increasing function with o(t) — oo as t — oo,

then

X
P [Iimsup(t) > 1] =1 or O
o(t

t—o0 )

depending on whether

o0 1 o0 1
/to NP0) / (ot =

for some tg > 0.

In [67], Motoo also gave a proof of the Law of the Iterated Logarithm for a finite-
dimensional Brownian motion. This proof is crucially reliant on applying a change in
both space and scale. He considers an autonomous non—stationary é—dimensional Bessel
process Rg, which is governed by the following scalar equation

o1
 2R;(t)

dRs(t) dt + dB(t) (1.1.3)

with Rs5(0) = rog > 0. The Bessel process Rs is turned into an autonomous process
with finite speed measure (i.e., solutions that possess limiting distributions), to which the

Motoo’s theorem can be applied. More precisely, if we let
Ss(t) = e 'R3(ef — 1), (1.1.4)

then

dS;(t) = (6 — Ss(t)) dt + 21/S5(t) dB(t). (1.1.5)
It is reasonable to ask whether a combination of space and scale transformation of this
classic type could reduce general non-stationary autonomous SDEs to those with finite

speed measure to which Motoo’s theorem could then be applied. If we consider general

transformations of the form
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where v : RT — R¥ is increasing, P € C?(R;R) and A € C'(RT;RT) which is related
to v, the resulting SDE for Y will be non—autonomous, and in particular, will have non-
autonomous diffusion coefficient. Adapting the proof of Motoo’s theorem to cope with
SDEs with non-autonomous diffusion coefficients introduces formidable difficulties. Be-
cause the independence of excursions, on which the proof stands can no longer be assured.

However, in this chapter, with the well-known stochastic comparison principle on the
monotonicity of the drift coefficients, we are able to investigate a much wider class of SDEs
which are related to (1.1.3) through (1.1.4)—or similar rescalings— that give equations
of the type (1.1.5). In addition, with ordinary It6 transformations, we could map an even
wider class of nonlinear equations onto those of known nature as shown in the next chapter.
A detailed discussion on the relative advantages and disadvantages of this comparison-
Motoo technique with the existing EMI-Gronwall approach can also be found in the next
chapter.

In [3], Appleby et al. applied processes obeying the Law of the Iterated Logarithm to
inefficient financial market models. In this chapter, we further investigate the ergodic-like
properties of these processes, and interpret the results in financial market.

This chapter considers a number of closely related equations, and proves a number of
diverse asymptotic results. In order to understand the relationships between these results
and to ease the readers’ path through the chapter, we give a synopsis and discussion about
the main results, and their applications in Section 1.2. Full statements of the theorems
and detailed proofs are found in succeeding sections.

The work in this chapter appears mainly in a paper, joint with John Appleby [12].

1.2 Synopsis and Discussion of Main Results

In this section, we give a discussion of the results proven in this chapter. First, we
prove the LIL and other asymptotic growth bounds for transient processes for autonomous
SDEs. Second, we discuss general non-autonomous equations for which the LIL holds,
under some unified estimates on the drift. Third, we prove comprehensive results for a

parameterized family of autonomous SDEs with constant diffusion coefficient, which do

12
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not require uniform estimates on the drift. Finally, we discuss some extension of these
results to multidimensional SDEs and the applications of the results in this chapter to

inefficient financial markets.

Transient processes Our first main result, Theorem 1.3.1, concerns transient solutions

of the scalar autonomous stochastic differential equation
dX(t) = f(X(t))dt + g(X(t))dB(t) (1.2.1)

where f: R — R satisfies 0.2.1, g(z) = o for z € R, and

lim xf(x) = Loo > 022. (1.2.2)

T—00

If we define A := {w : limy_.o X (t,w) = 00}, then P[A] > 0, and we show that the solution

X obeys
I X(®) o] ditionally on A (1.2.3)
im sup ——=——= = |o|, a.s. conditionally on 2.
tﬂoop V2tloglogt Y
and
log 2.40] 1
liminf — Y& — ———, a.s. conditionally on A.
t—oo loglogt 2L 1

o2
X exhibits similar transient behaviour at minus infinity if

0.2

lim zf(z) =L_ > —. (1.2.4)

T——00 2

These results were established through comparison with a generalized Bessel process
(Lemma 1.3.1) which has similar behaviour to X. The modulus of a finite-dimensional
Brownian motion (i.e., a Bessel process) with dimension greater than two is known to be
transient, and when the dimension is less than or equal to two, the process is recurrent
on the positive real line. However, for general Bessel processes, the critical dimension
altering its behaviour does not have to be an integer. This fact is eventually captured
in Theorem 1.3.1 by condition (1.2.2) (or (1.2.4)). More precisely, if exactly one of the
parameters Lo, and L_, is greater than the critical value 0%/2, then the process tends
to infinity or minus infinity almost surely while still obeying the Law of the Iterated Log-
arithm. If on the other hand L., and L_., are both greater than o2 /2, and we denote

the event {w : lim; oo X(t,w) = —o0} by A, we have that P[A] = 1 — P[A] and both

13
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probabilities are positive and can be computed explicitly in terms of the scale function
and the deterministic initial value of the process (cf. [49, Proposition 5.5.22]). Motoo’s
theorem also aids us to find an exact pathwise lower bound on the growth rate of the
process. This result could also be very useful in determining the pathwise decay rates of
asymptotically stable SDEs. In Theorem 1.3.2, the constant diffusion coefficient o is re-
placed by a state-dependent coefficient g(-) tending to o as x tends to infinity, and similar
results are obtained by means of a random time-change argument. Theorem 1.3.1 lays the
foundation for further results concerning generalized transient problems with unbounded
diffusion coefficients. For example, suppose X obeys (1.2.1), where g is strictly positive

and regularly varying at infinity with index 8 (0 < 8 < 1), and f and g are related via,

lim xf(a:)

Tr—00 g2($) - LOO =

1
5
Then by Itd’s rule, if A is as previously defined, it is easy to show that

lim su X(t)
el G (v2tloglogt)

=1, a.s. conditionally on A

and Gx(v)
log ——7- 1—
lim inf Vi b , a.s. conditionally on A.
t—oo  loglogt 2L —1

where GG is defined as

1
G(:c):/C @dy, ceR.

Example 1.2.1. Suppose f and g are locally Lipschitz continuous, and obeys conditions
0.2.1 and 0.2.2. Moreover, lim, .o f(z)/z~/3 = 1 and lim . g(z)/2z'/®> = 1. Then

P[A] > 0 where A is as previously defined, and

X(t
lim sup ®) T = 373, a.s. conditionally on A
2

z—oco  (2tloglogt)

X3 (1) )
liminf — Y — ——, a.s. conditionally on A.
z—oo loglogt 3

The probability of A also depends on Lo, := lim,_; zf(z)/g?(x) where [ is the lower

bound on the state space of X. Appleby et al. (cf. [13] and [10]) studied the stability

14
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problem with f and g satisfying similar conditions. The techniques can be adapted to this
problem by considering the reciprocal of the stable process (in fact, it even allows § = 1),
which produce less sharper results than the one obtained in this example.

Another application of these results is given in the next subsection: we make use of the

upper envelope of the growth rate (1.2.3) to determine upper bounds for a more general

type of equation which obeys the Law of the Iterated Logarithm.

General conditions and ergodicity In Section 1.4 , we state and prove three theo-
rems which give sufficient conditions ensuring Law of the Iterated Logarithm-type results,
and which support results in following sections of the chapter. We will study the one—

dimensional non—autonomous equation
dX(t) = f(X(t),t)dt +ocdB(t), t=>0, (1.2.5)

with X (0) = zo.

From the results in Section 1.3 , in Theorem 1.4.1, it can be easily shown that if

sup  af(xz,t) =p € (0,00), (1.2.6)
(z,t)ERXRT
then
X(t
lim sup X ()] <|o|, as. (1.2.7)

t—oo  /2tloglogt —

Furthermore, in Theorem 1.4.2, we prove that

o
inf )= — 1.2.8
kg D TH> 75 —
implies
X(t
lim sup X ()] > |o|, a.s. (1.2.9)

t—oo /2tloglogt —

Hence if both (1.2.6) and (1.2.8) are satisfied, we can determine the exact growth rate of
the partial maxima. Moreover, we can establish an ergodic-type theorem on the average

value of the process, as described by the following two inequalities which can be deduced

15
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from the known result [71, Exercise XI1.1.32]:

t X2(s) ds
lim sup o (1+s)* <20+ 0% as. (1.2.10)
t—s00 logt
t X2(s)d
lim in ff UE" 7 5 9+ 02>0, as. (1.2.11)
t—00 logt

(1.2.7) was obtained by the construction of two transient processes as described in
Section 1.3. It appears that a condition of the form (1.2.6) is necessary to ensure that the
solution obeys the LIL. Suppose, for instance in equation (1.2.1) that there is o € (0,1)
such that z®f(z) — C > 0 as x — co. Then X (t) — oo on some event ' with positive

probability and

lim X(lt) =[C(1+ a)]lfa, a.s. on ',

t—o0 t1+a

which obviously violates the Law of the Iterated Logarithm (cf. [37, Theorem 4.17.5]).
It is worth noticing that p does not appear in the estimate in (1.2.7). This fact is used
in Theorem 1.6.3 which deals with multidimensional systems. However p does affect the
average value of X in the long-run, as seen in (1.2.10). As mentioned in the introduction,
by the Motoo-comparison approach, the estimate on the constant on the righthand side
of (1.2.7) has been reduced by a factor of \/e. In addition, this approach enables us to
find the lower estimate (1.2.9), which is the same size as the upper estimate. This has
been unachievable to date by the exponential martingale inequality approach. Condition
(1.2.8) is sufficient but unnecessary for getting a LIL-type of lower bound, as will be seen
in Theorem 1.4.3.

We noted already that the parameters p and u in the drift do not affect the growth of
the partial maxima as given by (1.2.7) and (1.2.9). However, (1.2.10) and (1.2.11) show
that these parameters are important in determining the “average” size of the process, with
larger contributions from the drift leading to larger average values. To cast further light

on this we consider the related deterministic differential equation
(1) = f(w(t), t=0, (12.12)

where zf(z) — C > 0 as x — oo, with the initial condition x(0) > 0 and is sufficiently

large. Then it is easy to verify that x2(t)/t — 2C as t — oo. Moreover, the solution
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satisfies L a(s)
0 (14528

t—o0 logt

=2C. (1.2.13)

Comparing this with (1.2.10) and (1.2.11), suggests that, on average, the absolute value
of the solution of stochastic equation (1.2.5) under condition (1.2.6) and (1.2.8) captures
the basic growth rate v/t of the corresponding deterministic solution (1.2.12). It is known
that the Brownian motion X (t) := oB(t) obeys E[X?(t)] = ot, and using (1.2.10) and

(1.2.11) with p = p = 0, it must also obey

t X2(s)
M — g2 as (1.2.14)
L P , a.s. 2.

We notice how this is also consistent with the behaviour of the ODE (1.2.12). (1.2.14)
indicates how the Brownian motion excursions in the solution of (1.2.5) contributes the
o2 term in (1.2.10) and (1.2.11). These two extreme cases (where there is no diffusion in
the first, and no drift in the second) indicate that the contributions of drift and diffusion
are of similar magnitude, and this is reflected in (1.2.10) and (1.2.11).

Theorem 1.4.3 deals with processes with integrable drift coefficients. For an autonomous
equation with drift coefficient f € L'(R;R) and constant diffusion coefficient, there exist

positive constants {Cj}i=1,2,34 such that

. X(t)
;<1 — <y, as.
b= lﬂigp 2tloglogt — 2 a8
X
O3 < liminf ———2 < Oy, as.
8= MRS 2tloglogt — Hoas

The definitions of the estimates can be found in Section 1.4. These processes are recurrent
and can be transformed to some other processes which are drift-free with bounded diffusion
coefficient, which preserve the largest fluctuation size. This result is consistent with those
in [37, Chapter 4], which essentially say that if the drift coefficient is zero on average
along the real line and the diffusion coefficient has a positive limit ¢ for large values, then
process has a limiting distribution of A/(0, aﬁ), which exactly characterizes the Brownian

motion {oB(t)}+>0-

Recurrent processes In Section 1.5, we investigate scalar autonomous equation
dX(t) = f(X(t))dt + o dB(t) (1.2.15)

17
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where the drift coeflicient satisfies

lim zf(x) = Lo <0%/2 and lim zf(z) = L_o < 0?/2. (1.2.16)

T—00 T——00

These hypothesis are complementary to those in Section 1.3. Simple calculations on Feller’s
test [49] show that under condition (1.2.16), processes are no longer transient but are
recurrent on the real line. However results in Section 1.3 together with Theorem 1.4.3
(which deals with integrable drift) suggest that solutions should still have asymptotic
behaviour similar to the LIL. The upper bound given by Theorem 1.4.1 automatically
applies, while difficulties arise in finding the lower bound on the limsup without condition
(1.2.8), particularly when Lo, and L_ are of the same sign. The subdivision of the main
result into various theorems is necessitated by slight distinctions in proofs, which in turn
depends on the value of both Lo, and L_,,. The results are summarized with ¢ = 1 in
Figure 1.

Theorem 1.5.1 is a direct result of Motoo’s theorem: it shows that —o?/2 is another
critical value at which the behaviour of the process changes from being stationary or
asymptotically stationary to non-stationary. The LIL is no longer valid when Li. <
—0?/2. By constructing another asymptotically stationary process as a lower bound for
X? and X in Theorem 1.5.2 and 1.5.3 respectively, we obtain the following exact estimate

on the polynomial Liapunov exponent | X |:

log | X (t 1
limsupM =—, as. (1.2.17)
{—00 logt 2

(1.2.17) is a less precise result than the LIL. It shows that the partial maxima of the
solution grows at least as fast as K.t(179)/2 for ¢ € (0,1) and some positive K., which is
still consistent with the LIL and supports our conjecture. Using the same construction
(see Lemma 1.5.2) and comparison technique, together with Theorem 1.4.3, we obtain
Theorem 1.5.4 which gives upper and lower estimates on the growth rate of the partial
maxima.

Note that we have excluded zero from Figure 1 for the purpose of stating consistent
results on pairs of intervals for Lo, and L_,,. Theorem 1.5.4 covers the case that at least

one of the limits is zero and the drift coefficient f changes sign for an even number of
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times. In particular, if f remains non—negative or non—positive on the real line, X can be
pathwise compared with the Brownian motion {oB(t)};>¢ directly, so an exact estimate
can be obtained (Corollary 1.5.1). Otherwise, Theorem 1.5.2 and 1.5.3 are sufficient to

cover the rest of the possible cases (Remark 1.5.1).

Multidimensional processes In Section 1.6, we generalize results from Section 1.4 to

the following d-dimensional equation driven by an m—dimensional Brownian motion
dX(t) = f(X(t),t)dt + g(X(t),t)dB(t). (1.2.18)

Theorem 1.6.1 extends the result of Theorem 1.4.1 to SDEs with bounded diffusion coef-
ficients under condition similar to (1.2.6). Through a random time-change to the process,

we prove that

limsupﬂ< 0y A.S.
t—oo /2tloglogt —
where Cq = sup(, yerixr+ ||9(%;tl|op. In a like manner, Theorem 1.6.2 complements

Theorem 1.4.2 in R%. The generalisation of these results to unbounded diffusion coefficients
can be found in the next chapter. Finally, Theorem 1.6.3 shows that if the Euclidean
norm of a multidimensional process generally grows at the rate of the iterated logarithm,
then the order of the actual size of the largest fluctuations of the norm is given by the
coordinate process with the largest fluctuations. This result is an extension of the LIL
for a d-dimensional Brownian motion (1.1.1). Mao (cf. [57]) pointed out the fact that
the independent individual components of the multidimensional Brownian motion are not
simultaneously of the order y/2tloglogt, for otherwise we would have v/d rather than
unity on the right-hand side of (1.1.1). We establish this fact for drift—perturbed finite—
dimensional Brownian motions. To simplify the analysis, we look at the following equation
in R%:

dX(t) = f(X(t),t)dt+T'dB(t), t>0 (1.2.19)
where I' is a d xd diagonal invertible matrix with diagonal entries {; }1<i<a. If (z, f(z,1)) <

p, then

X(t
lim sup X () < max |y, a.s.

oo \/2tloglogt — 1<i<d
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Furthermore if there exists one coordinate process X; with drift coefficient f; satisfying
(1.2.8), then we have

X(t
lim sup X () > |vil, a.s.

t—oo V2tloglogt —

In the more general case that I' is any invertible matrix, with the same conditions as
above, the proof of this result can be easily adapted to show that with respect to the norm

|z|r := |12, the solution of (1.2.19) satisfies

lim sup ’X(t)‘r

t—00 \/2tloglogt: ’

a.s.

Applications to inefficient financial markets According to Fama [34], when effi-
ciency refers only to historical information which is contained in every private trading
agent’s information set, the market is said to be weakly efficient (cf.[35, Definition 10.17].
Weak efficiency implies that successive price changes (or returns) are independently dis-
tributed. Formally, let the market model be described by a probability triple (2, F,P).
Suppose that trading takes place in continuous time, and that there is one risky security.
Let h > 0, t > 0 and let r (¢t + h) denote the return of the security from ¢ to ¢ 4+ h, and let
S(t) be the price of the risky security at time ¢. Also let F(¢) be the collection of historical
information available to every market participant at time ¢. Then the market is weakly

efficient if
Plrp(t +h) <z|F@t)] =Plrp(t+h) <z], YzeR, h>0, t>0.

Here the information F(¢) which is publicly available at time ¢ is nothing other than the
generated o-algebra of the price F°(t) = o{S(u) : 0 < u < t}. An equivalent definition of

weak efficiency in this setting is that
ru(t + h) is F(t)-independent, for all h > 0 and ¢ > 0. (1.2.20)

Geometric Brownian Motion is the classical stochastic process that is used to describe
stock price dynamics in a weakly efficient market. More concretely, it obeys the linear
SDE

dS(t) = puS(t)dt+oS(t)dB(t), t>0 (1.2.21)
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with S(0) > 0. Here S(t) is the price of the risky security at time ¢, u is the appreciation
rate of the price, and o is the volatility. It is well-known that the logarithm of S grows
linearly in the long-run. The increments of log S are stationary and Gaussian, which is a
consequence of the driving Brownian motion. That is, for a fixed time lag h,

S(t+ h)

S = (- L o2 h + o(B(t+h) - B())

rp(t + h) :=log 5
is Gaussian distributed. Clearly 7y, (t4h) is F2(t)-independent, because B has independent
increments. Therefore if FP(t) = F9(t), it follows that the market is weakly efficient. To
see this, note that S being a strong solution of (1.2.21) implies that F°(t) C FB(t). On

the other hand, since
1
log S(t) =log S(0) + (. — 502)t +0oB(t), t>0,

we can rearrange for B in terms of S to get that F2(t) C F9(t), and hence FB(t) = F5(t).
Due to this reason, equation (1.2.21) has been used to model stock price evolution under
the classic Efficient Market Hypothesis.

In order to reflect the phenomenon of occasional weak inefficiency resulting from feed-
back strategies widely applied by investors, in [3] SDEs whose solutions obey the Law of
the Iterated Logarithm are applied to inefficient financial market models. More precisely,
a semi-martingale X, which is slightly drift-perturbed and obeys the Law of the Iterated
Logarithm, is introduced into equation (1.2.21) as the driving semimartingale instead of

Brownian motion. It is shown that if a process S, satisfies
dS,(t) = pS«(t) dt + S, (t) dX(t), t>0, S.(0)>0, (1.2.22)

then S, preserves some of the main characteristics of the standard Geometric Brownian
Motion S. More precisely, the size of the long-run large deviations from the linear trend
of the cumulative returns is preserved, along with the exponential growth of S. This is
despite the fact that the increments of log S, are now correlated and non-Gaussian.

In this paper, we further investigate the effect of this drift perturbation on the cumulative
returns in (1.2.22) with the process X satisfying (1.2.5) or (1.2.15), say. We do not wish
to provide a complicated and empirically precise model, but rather a simple and tractable

model, and to interpret the mathematical results.
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With a modest bias in the trend (e.g. captured by condition (1.2.6) and (1.2.8)), the
excursions in prices from the linear trend are no longer independent. The largest possible
sizes of these excursions coincide with those under no bias (as seen in (1.2.7) and (1.2.9)).
However, by ergodic—type results (e.g. (1.2.10) and (1.2.11)), the stronger the positive bias
that the investors have, the larger the average values of price excursions, and consequently
the smaller the volatility that arises around the average values. This causes the price to
persist on average further from the long-run growth trend that the GBM model would
allow. This is made precisely in (1.2.24) below. This persistence could make investors
believe that the cumulative returns are close to their true values and are unbiased, which
might cause a more dramatic fall in cumulative returns later on. Moreover, if the market
is even more pessimistic after a relatively large drop in returns, the bias tends to have a
longer negative impact on the market.

In the model presented below, we presume that the returns evolve according to the
strength of the various agents trading in the market. At a given time, each agent deter-
mines a threshold which signals whether the market is overbought or oversold. The agents
become more risk-cautious in their trading strategies when these overbought or oversold
thresholds are breached. If we make the simplifying assumption that one agent is repre-
sentative of all, then the threshold level is simply the weighted average of the threshold
for all the individuals.

Using these ideas, we are led to study the equation

Here f is assumed continuous and odd on R so that the positive and negative returns are
treated symmetrically. Moreover, in order that the bias be modest, we require

limy, oo zf(z) = L € (0, 0%/2]. In (1.2.23), I is the indicator function, and a € (0,1]
measures the extent of short-selling or “going long” in the market. Here an increased « is
associated with an increased tendency to sell short or go long. We presume that investors
believe that the de—trended security returns are given by Brownian motion without drift,
and the returns obey the Law of the Iterated Logarithm. Moreover, we assume that the

investors can estimate the value of o by tracking the size of the largest deviations.
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We briefly indicate how the threshold level is arrived at. The standard Brownian motion
(which the investors believe models the security return) is scaled by o, and therefore, at
time ¢, has standard deviation ov/t. If each agent i chooses a multiple k; of this standard
deviation as his/her threshold level, and assuming that all agents are representative, there
exists a weighted coefficient k, such that ko+/t measures the overall market threshold level.
In practice, the value of k might be different for price increases and falls. We treat two
situations with one fixed k here for simplicity.

Given these assumptions, we prove the following. First, X is recurrent on R and obeys
the Law of the Iterated Logarithm by the results in Section 1.4 and 1.5. Second, we
determine the long-run average value of the de-trended cumulative returns by proving the

following ergodic—type theorem:

t X2(s
Jo (1+i))2 ds

t—00 logt

=ALoak>0% as. (1.2.24)

Here, A7, 5 o1 measures the market bias from the unbiased value of o?. Tt can be computed
and is given in Section 1.7. Our assumptions on parameters ensure that Az ;o5 > o2
This means that the presence of bias increases the “average size” of the departures of the
returns from the trend growth rate. Therefore, in theory, the long-run “average size” A
computed from observing the largest size of the fluctuation of the log-returns is too much
different from o, then it’s an indication that there exists bias in the drift, and by the
formula of Ar 5k, We can compute the size of the bias L.

To establish (1.2.24), we first transform the solution X of (1.2.23) into a process Y
by a change in both time and scale; second, we construct two equations with continuous
and time-homogenous drift coefficients and with finite speed measures, such that Y is
trapped between the solutions of these equations; third, by adjusting certain auxiliary
parameters, we obtain an ergodic-type theorem for Y, which in turn implies (1.2.24).
From a mathematical point of view, we have proved an ergodic—type theorem for a non—
autonomous equation using the stochastic comparison principle.

Finally, we confirm that equation (1.2.22) with X satisfying (1.2.23) does represent an

inefficient market in the weak sense, i.e., we want to show that
7o n(t + h) is F5(t)-dependent, for all h > 0 and ¢ > 0, (1.2.25)
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where r, is the return. It is easy to verify that

S(t) (— 10'2)t, t>0.

— (u—Lo2)t4+X (1) X(4) =1
Si(t) = S(0)e > , X() %% 5. (0) 5

Therefore F5+(t) = FX(t). In the proof of the main result of this section, we establish the
strong existence and uniqueness of the solution of equation (1.2.23) (this requires a little
care because of the discontinuity of the drift coefficient). Since X (0) = 0 is deterministic,
and X is a strong solution, we have FX(t) C FB(t) for t > 0. On the other hand, by
writing F'(t, @) := f(@)[1 — &y, 5 poviy ), We get

B =1 (X(t) - /OtF(s,X(s))ds>, 1> 0.

g

Hence FB(t) C FX(t) for t > 0. Consequently F+(t) = FB(t) = FX(t) for t > 0. So we

may replace F°*(t) by FB(¢) in (1.2.25). Next, the increments r, j, of log S, obey
Si(t+h)
wn(t+h) :=log ——=
Ten(t +h) = log 5.0
1 t+h
= (u— 502)h+0(B(t+h) — B(t)) + F(s, X (s))ds
t
1
= (u— 5<72)h + (X (t+h) — X(1)).

Now suppose for some t > 0, that r, (¢ + h) is F5(t)-independent. Since [(u — $02)h +
o(B(t+h)—B(t))] is FB(t)-independent, ftt+h F(s, X (s))ds must also be FZ(t)-independent.
However, by the Markov property of X, ftHh F(s,X(s))ds is a functional of X (¢) and the

increments of B. Hence, ftHh F(s, X (s))ds is FX(t)-dependent, and since F~ (t) = FB(t),

this gives a contradiction. Therefore (1.2.25) is proved.

1.3 Asymptotic Behaviour of Transient Processes

In this section, we study processes which obey (1.2.1) and are transient as time goes to

infinity. To do this, introduce an auxiliary process: let § > 2 and consider

5—1
2
= > ..
dY (t) = o Tt odB(t) fort >0, (1.3.1a)
Y (0) = yo > 0, (1.3.1b)

where gy is deterministic. The solution of the above equation is a generalized Bessel

process of dimension higher than 2; § > 2 does not have to be an integer. If § > 2 is an
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integer, then Y (t) = o|W (t)| where W is a d—dimensional Brownian motion. Therefore,
in the general case, we expect Y to grow to infinity like e.g. a three-dimensional Bessel
process. This can be confirmed by [49, Chapter 3.3 Section C]. In fact, as proven in the
following lemma, Y should also obey the Law of the Iterated Logarithm. The proof is the
same in spirit as that in Motoo [67], but is briefly given here in the language of stochastic
differential equations for the reasons of consistency with the technique of this chapter. We

moreover employ Motoo’s techniques to establish a lower bound on the growth rate.

Lemma 1.3.1. Let § > 2 and Y be the unique continuous adapted process which obeys

(1.3.1). ThenY is a positive process a.s., and satisfies

Y(t)
li — = .8. 1.3.2
thiigp 2tloglogt o] a-s ( )
and
logw 1
lim inf Vi a.s. (1.3.3)

t—oo loglogt T s

Proof. Let Z(t) = Y (t)2. By Itd’s rule, we get
dZ(t) = 628 dt +2/Z(t)o dB(t), t>0

with Z(0) = yg, where by Doob’s martingale representation theorem, we have replaced

the original Brownian motion B by B in an extended probability space. Therefore

t

Z(et —-1)= y(z) + /06‘1 o258 ds + /06 - 2mad§(s)
=2+ /Ot o25e® ds + /Ot 20\/Z(es —1)e2 dW (s),
where W is again another Brownian motion. If Z(t) = Z(e! — 1), then
dZ(t) = o25e dt + 20‘\/%6% AW (t), t>0.
If H(t) := e~ 'Z(t), then H(0) > 0 and H obeys

dH(t) = (026 — H(t))dt + 20\/H(t) dW(t), t>0. (1.3.4)
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Therefore by Lemma 2.3.1, we have

Hit
lim sup ®) =02,
t—oo 2logt

a.s. (1.3.5)

Using the definition of Y in terms of H and Z we obtain (1.3.2).
To prove (1.3.3), consider the transformation H.(t) := 1/H(t). H, is well-defined, a.s.
positive, and by It6’s rule obeys

— (402 — 528\ H2 B U&
(1) = (40" = S HEE) + H(0)] dh = 20~ dW (D), £20

It is easy to show that the scale function satisfies
Tosa 1
SH. (‘T) = Kl/ y762"29dy, T e R?
1

for some positive constant K7, and H, obeys all the conditions of Motoo’s theorem. By

L’Hopital’s rule, for some positive constant Ko, we have

Let 01(t) = 2/00=2) then for some t; > 0,

— = dt = —— dt = oo.
/tl SH*(Ql(t)) t1 KQt

Hence by Motoo’s theorem,

H,.(t i H,(t
lim sup ®) = lim sup 2( ) >1, as.
t—oo  01(1) t—oo  {5-3

On the other hand, for € € (0,0 — 2),

lim Si[igi) =0
T—00 f 5

Let o(t) = t¥/0=27¢<=9) where § € (0,6 — 2 — €). Then for some t5 > 0, we get

o0 1 e° 1
t, Sm.(02(1)) ty to—2-<—0
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a.s. on an a.s. event € g := (. Ny, where (), and (g are both a.s. events. From this by

letting € | 0 and ¢ | 0 through rational numbers, it can be deduced that

. log H, (t 2
hltILsogp logif( ) =59 a.s. on Negeflep-

Using the relation between H, and Y, we get the desired result (1.3.3). O

Corollary 1.3.1. Let § > 2 and Y be the unique continuous adapted process which obeys

(1.3.1a), but with Y(0) =yo < 0. Then Y obeys

o Y(t)
lim inf ——— = — 5. 1.3.6
P Ay A (1.3.6)
and
log V(1) .
liminf — Y. = — a.s. (1.3.7)

t—oo loglogt 52’
Proof. Letting Y, (t) = —Y(t) and applying the same analysis as Lemma 1.3.1 to Y;, the
results can be easily shown. The details are omitted. O

We are now in a position to determine the asymptotic behaviour of (1.2.1) when the

diffusion coefficient is constant.

Theorem 1.3.1. Let X be the unique continuous adapted process which obeys (1.2.1). Let

A:=A{w : limy_ o X(t,w) = c0}. If

lim zf(z) = Loo; (1.3.8)

T—00

g(z) =0, z€R,

where 0 # 0 and Loy > 02/2, then P[A] > 0 and X satisfies

X(t
h?ii;lp 27510(g)10gt =|o| a.s. conditionally on A, (1.3.9)
and
log X 1
lim inf Vi ————, a.s. conditionally on A. (1.3.10)
t—oco loglogt 2Lea

o2
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Proof. First note that given Lo, > 02/2, the existence of such a non-null event A in the
sample space is guaranteed by Feller’s test [49, Proposition 5.5.22]. From now on, we
assume that we are working in A, and will frequently suppress w-dependence and A a.s.

qualifications accordingly. We compare X with Y, ., where Y, is given by

Lo
AYe(t) = YJ;; dt +odB(t), t>0

with Y,¢(0) > 0 and (Leo + €) > (Loo — €) > 02/2, so that Lo, takes the same role as §
in (1.3.1) as we let € | 0. Since lim, .o 2 f(x) = Lo and limy_. X (t) = 0o, there exists
T (e,w) > 0, such that for all t > Ty (€,w), Loo —€ < X () f(X(t)) < Loo + € and X (t) > 0.
Hence (Loo —€)/ X (t) < f(X(t)) < (Loo+€)/X(t), t > Ti(€,w). Let A(t) = Yie(t)— X (2).
We now consider three cases:

Case 1: if X(T1) < Yie(T1), i.e., A(T1) > 0, we claim that
for all ¢t >Ti(e,w), X(t) < Yie(t).

Suppose to the contrary there exists a minimal ¢* > T (e, w) such that X (t*) = Y, (t*).
Then A(t*) = 0 and A’(¢t*) < 0. But

Lo te
}{+e(t)

LOO+G_LOO+6
Yie(t) }((t) ’

- f(X(t) >

A'(t) for all t > Ty (e, w),
so

Loo + € B Loo + €
Vi)  X(#)

A(t%) > =0,

which gives a contradiction.
Case 2: if X(T1) > Y(T1) > 0, i.e., A(T7) < 0, we show that

forall ¢ > Ti(e,w), X(t) < Yie(t)— A(T1).

Now for all t > T (e,w),

1y Lo te Lo+e Leo+e —At)(Loo+e)
A(t)—m—f( (t) > ol T X - Ve oxm (1.3.11)

29



Chapter 1, Section 3 Solutions of Stochastic Differential Equations obeying the Law of the Iterated Logarithm

In particular

—A(T1)(Leo + €)

M) > X

> 0. (1.3.12)

There are now two possibilities: either X (t) > Y (¢) for all ¢ > T’ (e, w) or there is To(w) >
Ti(e,w), such that X (Tp) = Yy (T2). If X(t) > Yi(t),Vt > Ti(e,w), then A'(t) > 0, so A
is increasing on [17(€,w), 00). Therefore Y, (t) — X (¢t) = A(t) > A(T1), we are done. The
analysis of the situation where there exists T5(w) > T (e, w) such that X (T3) = Y (T3) is
dealt with by case 3.

Case 3: if X(T1) = Yy(T1), i.e.,, A(Ty) =0, we claim that
for all ¢t >Ti(e,w), X(t) < Yic(t).

We note first from (1.3.12) that A’(77) > 0. Hence, there exists T3(w) > T1(€,w) such
that A(t) > 0 for t € (11,73). Suppose in contradiction to the claim, that T3(w) is such
that A(T3) = 0. Then A/(7T3) < 0, which is impossible by (1.3.11).

Combining the above results, for almost all w in A, we have

lim sup X(t) < limsup _Yid® (1.3.13)

t—oo V2tloglogt = i—oo +/2tloglogt
A lower estimate on X can be deduced by a similar argument. For the same e, define

Y_. by
L

0o — €
——dt dB(t t>0
Y_E(t) +J ( )7 i}

with Y_(0) > 0. Note that Lo, — € > 02/2, so Y_, is guaranteed to be positive. Then, by

dY_(t) =

arguing as above, we obtain an analogous result to (1.3.13), namely

li XO 5 s Y—(?) (1.3.14)
imsup ————— > limsup ———. 3.
tﬁoop V2tloglogt — tﬂoop V2tloglogt

We are now in a position to prove (1.3.9). Using (1.3.13), and letting 2} be the a.s.

event on which

Yie(t
lim sup well) o],

i—oo  \/2tloglogt
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we have

X(t
lim sup ®) <lo|, a.s. onQ;NA.

t—oo +/2tloglogt —

Letting 2« = Neeqtn(o,1)$2, it follows that

X(t
lim sup ®)

———— <|og|, as. Q.NA, 1.3.15
t—oo  /2tloglogt — o], as. on ( )

as required. Similarly using (1.3.14), and letting Q2*, be the a.s. event on which

lim sup _ Yt = |o]
t—oo  /2tloglogt ’

we have

X(t
lim sup ®) > |o|, a.s.on ANQT.

t—oo V2tloglogt —
With Q. = Neegn(o,1)2%e; it follows that

X(t)
li — = > o], as. on AN Q.. 1.3.16
P ogTogt 2 7 o (1310

as required. Combining (1.3.15) and (1.3.16) gives (1.3.9).
To prove (1.3.10), notice that Y. obeys (1.3.1) with § = 6 = 1 + 2(Lo + €)/0?. Then,
by (1.3.3) we have

log =7 1 1
o Vit +
1 f =— =— 8. Q 1.3.1
gty loglog ¢ de — 2 2(Loo +€)/0%2 =1’ 8.5 Ofl e (1.3.17)

where QF is an almost sure event. Therefore by (1.3.13), a.s. on AN QT we have
log XM 1
lim inf a < — .
t—oo loglogt 2(Loo +€)/0%2—1

If A* = AN {ﬂeeQm(O,l)Qj}a then A* is an a.s. subset of A and

log X(@) 1
lim inf vt <

— .S. A*. 1.3.1
t—oo loglogt = 2Leo/0?2—1' a5 ot (1.3.18)

Proceeding similarly with Y_. and using (1.3.14) we can prove that
log X@) 1

lim inf Vi > — ,

t—oco loglogt 2L /0% —1

a.s. on A™, (1.3.19)

where A** is an a.s. subset of A. Combining (1.3.18) and (1.3.19) now yields (1.3.10). O
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By Feller’s test, depending on the value of L_.,, we can compute the probability of the
event A defined in the previous theorem. Suppose that Lo, > 02/2. If L_, < 02/2, then
P[A] = 1. If L_, > 02/2, and we define A := {w : limy_,oc X (t,w) = —o0}, then AU A is
an a.s. event, and P[A], P[A] € (0,1). The exact values of P[A] and P[A] depend on the
deterministic initial value of X. In a like manner, we can prove similar results when the

roles of Lo, and L_, are interchanged. By Corollary 1.3.1, it is not difficult to show the

following result. The details of the proof are omitted.

Corollary 1.3.2. Let X be the unique continuous adapted process which obeys (1.2.1).

Let A= {w : limy_oo X(t,w) = —c0}. If

lim zf(z) = L_, g(z)=0, z€R

T— 00
where 0 # 0 and L_o, > 02/2, then P[A] > 0 and X satisfies

i inf X(t)
iminf —————
t—oo +/2tloglogt

= —|o| a.s on A,

and
log |X ()] 1 )
lim inf Vi , a.s. on A.
t—oo loglogt o

g

Theorem 1.3.1 can now be used to prove a more general result for (1.2.1), where instead

of being constant, g now obeys

Ve eR, g(x)#0, xh_)nolog(a:) =0 € R/{0}. (1.3.20)

Theorem 1.3.2. Let X be the unique continuous adapted process which obeys (1.2.1). Let
A:=A{w : limy_ X (t,w) = co}. If there exist positive real numbers Lo, and o such that

Loo > 02/2, f obeys (1.3.8), and g obeys (1.3.20), then X satisfies (1.3.9) and (1.3.10).

Proof. Define the local martingale
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Therefore, by (1.3.20) we have

1 t
lim 1<J\4> ()= lim -~ [ ¢*(X(s))ds =0?% a.s. conditionally on A. (1.3.21)

t—oo t t—oo t Jy
For each 0 < s < oo, define the stopping time v(s) := inf{t > 0: (M)(t) > s}. By the
time-change theorem for martingales [49, Theorem 3.4.6], the process defined as W (t) :=
M(v(t)) is a standard Brownian motion with respect to the filtration Q; = F, ). If

X(t) :== X(v(t)), then

s J(X@)
dX(t) = 2% dt+ dW(t), t>0.

Now, since lim;_,o 7f(7)/g%(x) = Loo/0? > 1/2, by Theorem 1.3.1, for almost all w € A,

= log X
I X(0) 1, liminf o V! !
imsup ———— =1, S .
tﬂoop V2tloglogt t—oo loglogt 2550 -1
That is for almost all w € A,
X log 7 1
lim sup ®) =1, liminf wnw - _ 5T . (1.3.22)
t—oo  1/2(M)(t)loglog (M)(t) t—o0 loglog (M)(t) s —1
Combining (1.3.21) with these limits, the desired assertion can be obtained. O

A similar result can be developed in the case when X (t) — —oo under the assumptions
that xf(z) — L_o > 02/2 and g(x) — o as ¥ — —oco. The proof is essentially the same
as that of Theorem 1.3.2, and hence omitted.

The following theorem is a even more generalized result on transient processes and is

obtained by Theorem 1.3.1.

Theorem 1.3.3. Let X be the unique continuous adapted process which obeys (1.2.1). Let

A= {w : limy_0o X(t,w) = oco}. If there exists a positive real numbers Lo, > 1/2 such

that
zf(x)
= L. 1.3.23
M ) (1329
And g obeys
Ve eR, g(z)>0; ge€RVL(f), 0<p<I1. (1.3.24)
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Then
lim su X() =1, a.s. conditionally on A (1.3.25)
P G-1(y/2tloglogt) = Y ’ o
and
log GX®) 1
. Vi B iy
| f = — .8, A 1.3.2
im in loglog TANSEE a.s. conditionally on A, (1.3.26)
where G is defined as
o1
G(x :/ —dy, x,c€R. 1.3.27
(@) ¢ 9W) ( )

Proof. Again by Feller’s test, under condition (1.3.23), the existence of such a non—null
event A is guaranteed. Recall that ¢ € RVso(3) means lim, .o g(Az)/g(z) = N for
all A € R. By the smooth variation theorem [19, Theorem 1.8.2], there exists a func-
tion [ € C([0,00);(0,00)) and | € SRVoo(B) with lim; o g(z)/l(z) = 1 such that
lim, oo 2l'(z)/l(x) = (. Moreover, we can extend [ to (—oo,0) such that I[(x) > 0 for

x € (—00,0) and [ € C1(R; (0,00)). Then the function H : R — R given by

T 1
H(:lc)::/1 @dy

is well-defined. Moreover, H'(x) = 1/I(x) and H"(z) = —I'(z)/I*(x). Since 3 € (0,1),
it follows that lim, . H(z) = oo and lim,_.. G(z)/H(z) = 1. Since both g and [ are

strictly positive, G and H are monotone increasing on R. By It6’s rule, we have

2
aH(x(e) = FED) Ly 8 X)

9(X (1)
X0 2 dB(t).

WX (1))

| dt +

Let Y (¢) := H(X(t)) for all t > 0. Then X (t) = H~'(Y(t)). Hence if we could prove

x 2(x
lim H(z) [M - %l’(x)g ( )]

1
T > =, 1.3.28

then by Theorem 1.3.2, we get (1.3.26) and

Y(t
lim sup ®) =1, a.s. conditionally on A,

tooo /2tloglogt
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which implies (1.3.25) since lim, .o, G~(z)/H~!(z) = 1. Now by the definition of H and

L’Hopital’s rule,

i H(\x) M(z) 1-8
w1—>oo H({E) T—00 l()\.%') A

Thus H € RV (1 — 3). Hence

lim H) _ im L ) S
w0 x/l(x)  e—ool(z) I(z)—axl'(x) 1-0

Therefore
, - al'(z)  H(z) B8
lim I'(z)H(z) = lim ——. . - _
xggol (z) H () 0 (z) z/l(x) 1-0
Also
. fle) . H(x) zf(r) L
dm Hz) 90y =) B T 1-8
Since Lo > 1/2, the above two equations implies (1.3.28). O

1.4 General Conditions Ensuring the Law of the Iterated

Logarithm and Ergodicity

Theorem 1.4.1. Let X be the unique continuous adapted process satisfying (1.2.5). If

there exists a positive real number p such that

V(z,t) e Rx R, zf(x,t) <p, (1.4.1)
then
, | X ()]
1 — < 8. 1.4.2
I?Liljp 2tloglogt — ol, s ( )
and
t X2(s )2 ds
lim sup 0 O+ S) <2p+0% as. (1.4.3)
t—o0 1

Proof. Without loss of generality, we can choose p > ¢2/2. Consider

dX2(t) = 2X () f(X(t),t) + o%) dt + 2X (t)o dB(t)
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and

dX,(t) = (2p+ o) dt + 2/ X, (t)o dB(t). (1.4.4)
with X, (0) > X?2(0). By the comparison theorem (cf. e.g.Proposition 5.2.18 [49]), X, (t) >
X2(t) for all t > 0 a.s. From the proof of Lemma 1.3.1, we know that P[lim; . X, (t) =

oo] = 1. Moreover, X, obeys

X (t
lim sup # <o’ as.
t—oo 2tloglogt

Hence the assertion (1.4.2) is obtained.
The second part of the theorem can be easily deduced from (1.4.4) by the following

known result (cf. e.g.[71, Exercise XI.1.32]). We omit its proof. O
Lemma 1.4.1. Suppose that Q) is the unique continuous adapted process satisfying

dQ(t) = §dt + 2,/Q(t) dB(t), >0

with Q(0) > 0 and 6 > 0. Then Q) obeys

ft Q(s) Jg

1 2

=9, a.s.
t—oo  logt

We now establish lower bounds corresponding to the upper bounds given in the previous

theorem.

Theorem 1.4.2. Let X be the unique continuous adapted process satisfying (1.2.5). If

there exists a real number p such that

2

g
inf =p>—— 1.4.5
ot xf(x,t) =p 5 (1.4.5)

then

. (X ()]
1 ———— > 0|, a.s. 1.4.6
Tiigp 2tloglogt — lol, a5 ( )

Moreover,

t X?(s) ds
lim inf 20 G+ 7

> 2 2, as. 1.4.
m in ozt >2u+0°, a.s (1.4.7)
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Proof. We begin with a change in both time and scale on X to transform it to a stationary

process. Let Y () = e !X (5(e?" — 1)). By Itd’s rule, it can be shown that for ¢ > 0

dY?(t) = [ —2Y2(t) + 2Y (H)e' (Y ()€, %(e% -1)) + 02] dt + 20/Y2(t) dW (t)

with Y2(0) = x%, where by Doob’s martingale representation theorem given in the prelim-

inaries, we have replaced

/Y(s)dB(s) by /\/Y2(5)dW(s).
0 0

W is another Brownian motion in an extended space (Q,]} , HS’) Consider the processes

governed by the following two equations,

dYyi(t) = (=2Y1(t) + 2u + 02) dt + 20/ [Y1(t)]| AW (1), (1.4.8)

dYa(t) = (—2Ya(t)) dt + 20/|Ya ()] dW (1) (1.4.9)

with 23 > Y1(0) > Y2(0) = 0. Instead of applying Lemma 2.3.1 directly, we give more
details on estimating the asymptotic growth rate of Y7 using Motoo’s theorem. By Yamada
and Watanabe’s uniqueness theorem (cf.[49, Proposition 5.2.13]), Y2(t) = 0 for all £ > 0 a.s.
for all t > 0. Applying the comparison theorem twice, we have Y?2(t) > Y1(t) > Ya(t) = 0
for all ¢ > 0 a.s. So the absolute values in (1.4.8) can be removed. Now it is easy to check

that a scale function and the speed measure of Y7 are

_ 1 Ty 2pto? 1 9 1 -z 2u+02_1
sy, (x) = e o2 esly 202 dy, my,(dz)= J0e ZeaZx 202 dx
1

respectively. Without loss of generality, we can choose u € (—02/2,02%/2]. Then sy, (c0) =
00, 8y, (0) > —oo and my, (0,00) < co. In addition, the v function of Y] as defined in
(0.2.4) satisfies v(0) < co. So by Feller’s test for explosions, Y; reaches zero within finite
time on some event. A direct calculation confirms that my; ({0}) = 0. By the definition

of an instantaneously reflecting point in [71, Chapter VII, Definition 3.11], we conclude
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that zero is a reflecting barrier for Y7, hence for almost all w € 2, Y7 is a recurrent process
with finite speed measure to which Motoo’s theorem as stated in the introduction of this
chapter can now be applied. Let o(t) = o%logt. Since u € (—0?%/2,02%/2], by L’'Hopital’s
rule

sy, () _ 2ut0?

lim — = lim = 222 =0.
T—00 52 T—00

This implies that there exists z, > 0 such that for all z > z,, sy, (z) < /7", Since g is an

increasing function, there exists top > 0 such that for all ¢ > g, o(t) > x4, so sy, (o(t)) < t.

& 1 1
/ ——dt > / —dt = oo.
to Vi (Q(t)) to t

Therefore, by Motoo’s theorem

Hence

Yi(t) 2

, Y2(t) _
limsup ——= > limsup ——= > ¢“, a.s.
t—oo ogt t—o00 ogt

Using the relation between X and Y, we get the desired result (1.4.6).

For the second part of the conclusion, consider the following equation
dZ(t) = (2 + o?) dt +20+\/|Z(t)| dW (t), >0,

with Z(0) < 2. Then X?(t) > Z(t) for t > 0 a.s. Again, by applying Lemma 1.4.1 to Z,

(1.4.7) is proved. O

The following corollary combines Theorem 1.3.2 with Theorem 1.4.1 and Theorem 1.4.2.
Corollary 1.4.1. Let X be the unique continuous adapted process satisfying the equation
dX (t) = f(X(t),t)dt + g(X())dB(t), t >0,

with X (0) = xg. Suppose g : R — R is even and satisfies

Ve eR, g(x)#0, lim g(x)=o0 e R/{0}. (1.4.10)

|z|—o0
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(i) If there exists a positive constant p such that f satisfies (1.4.1), then X obeys (1.4.2).

(ii) If there exists a constant u such that

we H@H L
(zt)eRxRT  g%(x) 2’

then X obeys (1.4.6).

Proof. Without loss of generality, we can choose p > ¢2/2. Consider the equation

dX,(t) = X:(t) dt + g(X.u(t))dB(t), t>0

with X, (0) > |zo|V0. It is easy to check that the scale function of X, satisfies sx, (00) < oo
and sx,(0) = —oo. Thus P [lim;_c Xy (t) = co] = 1. Moreover vy, (o0) = vy, (0) = oo,

which implies that P [X,(¢) > 0; V0 < ¢ < co] = 1. Hence
dX3(t) = [2p+ ¢ (Xu(t)] dt + 2X,(H)g(Xu(t)) dB(t), t>0.
Also by Theorem 1.3.2, X, obeys

lim sup = lo|,

t—oo  +/2tloglogt -

a.s.

Now since
dX2(t) =[2X(t)f(X(t),t) + g2(X(t))] dt +2X(t)g(X(t))dB(t), a.s.

Therefore X2(t) > X?(t) for all t > 0 a.s., which implies (1.4.2). For the second part of the
theorem, applying the same random time change to X as in the proof of Theorem 1.3.2, we

obtain the first member of (1.3.22). Combining this result with (1.4.10), we get (1.4.6). O

Next corollary applies the ergodic-type theorems (Theorem 1.4.1, 1.4.2 and Lemma 1.4.1)
to the growth process with non—constant diffusion coefficient which is dealt in Theorem

1.3.2. We supply the proof here which is similar to that of Lemma 1.4.1.
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Corollary 1.4.2. Let X be the unique continuous adapted process which obeys (1.2.1).
Let A := {w : limy_,00 X(t,w) = co}. If there exist positive real numbers Lo, and o such
that Lo > 0%/2, f obeys (1.3.8), and g obeys (1.3.20), then X satisfies

t X2(s)
0 (ixs2ds

=2Lo + 0%, a.s. conditionally on A. (1.4.11)
t—oo  logt

Proof. Applying the transformation Y (t) := (e=*/2X (e* — 1))? for t > 0, we get

Y(t):xg—/o Y(s)ds+/0 2X(s)f()2(s))ds+/0 g*(X(s))ds
+/ 2% (s)eF g(X(s)) dB(s), (1.4.12)
0

where X (t) := X (e! — 1), and as before, B is another standard Brownian motion in an

extended probability space. It can be verified that for almost all w € A,

i = [ X () (X)) ds = Lo, Tim & [ (X (s)) ds = 0% (1.4.13)

t—oo t 0 t—oo t 0

Let

We have
M)(t
lim t< )®) = 40%, a.s. conditionally on A. (1.4.14)
t=oo [ Y (s)ds

e T

Suppose D := {w : limy_.oo (M)(t) < co} with P[D] > 0. Then [;°Y(s)ds < oo, a.s. on

AN D. Thus
tlg& Yit) =2Lo +02%, as. on AND,
which contradicts
X(t)

lim sup |o|, a.s. conditionally on A. (1.4.15)

t—oo  /2tloglogt -
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Therefore P [limy—.(M)(t) = oo] = 1. Note that (1.4.15) implies lim; .o Y (¢)/t = 0 a.s.

conditionally on A. Also,

im — 2O, MO OO
Pl f(f Y(s)ds t—oe (M)(1) gY(s) ds

=0, a.s. conditionally on A.

Now since for all t > 0, Y (¢) > 0 a.s., we have

/Y(s)dsgx3+/ zX(s)f(X(s))ds+/ P(X(s)) ds + M(1).
0 0 0

Dividing both sides by fg Y (s) ds, taking limits as ¢ — oo using (1.4.13), and rearranging

the resulting inequality, we get

1
lim inf

> , a.s. conditionally on A.
t—oo fOtY(S)dS - 2LOO+U2 Y

That is
. fOtY(s) ds 5 .
lim sup B < 2Ly + 0%, a.s. conditionally on A.
t—o0
Finally, since
t
M(t M(t Y(s)d
lim 7() = lim — ®) . 40 (s) ds =0, a.s. conditionally on A,
t—oo 1 =00 [1Y (s)ds t

by (1.4.12) we get

1 t
lim ~ [ Y(s)ds = 2L + 0%, a.s. conditionally on A,

t—oo t 0

from which the desired result (1.4.11) can be obtained.

O]

Besides being of independent interest, the following result deals with SDEs wih integrable

drift coefficients, and will be used extensively in Section 1.5 to prove comparison results.

Theorem 1.4.3. Let X be the unique continuous adapted process satisfying (1.2.15) with

X(0) = z¢. If f € LY(R;R), then there exist positive real numbers {Ci}i—1234 such that

X(t)

C; <1l ——— < (9, .8,
T n:lilolp V2tloglogt — 2 @3
o X(t)
-C3 <1 f—— < - .8.
3= MRS 2tloglogt — S
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where

|0|6;72 sup,eg fo f(2)dz |U|€i§infxeR I f(2)dz
eo? Jo° f(2)dz ’

C - [=S) ) C -
! co? Jo° f(z)dz 2
;—22 infoer [y f(2)dz ‘0”6;72 sup,eg [y f(2)dz
, Cy=
! JENLNIEYE

_ lole

C
’ o3 [0 Sz

Proof. Consider the scale function of X defined as the following

Then s € C%(R;R) and for all z € R we have

s'(x) f(z) + %023”(32) =0. (1.4.18)

Since f € L', there exist real numbers ki and ka, such that [;° f(z)dz = ki and

e—2k1/0'2 2ky /02

f_ooo f(2)dz = ko, which implies lim, . §'(z) = and lim, ,_ ' (z) = e
So s(0c0) = 0o and s(—o00) = —oo. Thus limsup,_, ., X () = co and liminf; o, X (t) = —oc0

a.s. Also by L’Hopital’s rule,

_ et (1.4.19)
Let Y (t) = s(X(t)), by It6’s rule and (1.4.18),
dY (t) = os'(X(t))dB(t), t>0,

with Y'(0) = s(X(0)). Now since s is strictly increasing, the above equation can be written
as

dY(t) - g(Y(t))) dB(t)7 t=>0,

where g(z) = os'(s71(x)), for all € R. Y also is a recurrent process on R. Moreover,

(1.4.19) gives

su Y (s —2k inf, Y 2k
lim M —e? and lim w = 672, a.s. (1.4.20)
t—00 SUP)< s<; X(s) t—oo info<s<t X ($)
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For 0 <t < o0, define the continuous local martingale

M(t) = /0 9(Y () dB(s)

which has the quadratic variation (M)(t) = 592(}/(8)) ds. Thus (M) (t) > 0 for t > 0

and (M) is an increasing function. Now

inf g?(z) = in{{ojsl(s_l(x))2 = o inf e o

zeR TE zeR

=0

Similarly

sup g*(z) = o
zeR

Let g7 = inf,er g?(z) and g3 = sup,cp g°(z), so for all t > 0,

git < (M)(t) < g3t, as.

26% sup,cg Jo f(2)dz > 0.

QQ%infmeR Iy f(z)dz < 0.

(1.4.21)

Thus lim;—.(M)(t) = co almost surely. Now Define, for each 0 < s < oo, the stopping

time A(s) = inf{t > 0; (M)(t) > s}. It is obvious that A is continuous and tends to infinity

almost surely. So (M)(A(t)) = t, and A71(t) = (M)(¢) for t > 0. By the time-change

theorem for martingales in [49], the time-changed process W (t) := M (A(t)) is a standard

one-dimensional Brownian motion with respect to the filtration G := Fy.

have

At)
Z(t) = Y(\(t) = YA(0) + /0 9(Y (s)) dB(s) = Z(0) + W(2)

where Z is Gy-adapted. So the Law of the Iterated Logarithm holds for Z, that is

V(A1)

Y(t)

1 = limsup = lim sup

t—oo  /2tloglogt t—00 2(M)(t)loglog (M)(t)

Note that by (1.4.21) for all ¢ > 0,

log g% + logt < log (M)(t) < log g5 + logt,
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We have

o loglog (M)(t)

=1 .S.
t—oo  loglogt A

which implies

: Y(t)
lim sup = a.s.
t—oo  /2(M)(t)loglogt
Similarly
lim inf Y =-1, a.s.

t—oo \/2(M)(t)loglogt

Now as (M)(t) < g3t, we have

. Y (t) /M Y(®) <
im su = limsu ,
t_mp 2tloglogt t—>oop \/2 (M)(t)loglogt 92

Similarly
lim su & > a.s
t_)oop V2tloglogt — v o
And

Y (t
—go < hmmf ®)

———— < —g;, as.
t—oo 4/2tloglogt N

Finally combine the above results with (1.4.20), we get

2k ) X(t) 2k
e +? g1 < limsup <eo? gy, a.s.

t—oo V2tloglogt —

—2k X(t) —2kg
—e o2 go < hmlnf < —e % g1, as.

—oo 4/2tloglogt —

The proof is complete.

a.s.

1.5 Recurrent Processes with Asymptotic Behaviour Close

to the Law of the Iterated Logarithm

In this section, we again study solutions of (1.2.15), where the drift coefficient satisfies

o? o?

lim zf(x) = Lo < and lim zf(x) =L_ <

T—00 2 LT——00 2
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As mentioned previously, the solutions are no longer transient but are now recurrent on
the real line. Results vary according to the values of Lo, and L_,,. We classify these
results into four main cases. The first result is a direct and easy application of Motoo’s
theorem. However, we state as a theorem here for two reasons: first, it shows that —o?/2
is another critical value for the process; second, it provides a way to construct a process

of known nature to which we can compare processes in the other three cases.

Theorem 1.5.1. Let X be the unique continuous adapted process satisfying (1.2.15). If f
satisfies (1.5.1) and Lo € (—00,—02/2), L_o € (—00,—0%/2), then X is recurrent and

has finite speed measure. Moreover X obeys

Jimn sup log X (t) V1 _ 1 Jimn sup log (=X (t) V1) _ 1 s
oo logt 1—2Ly /0% oo logt 1—-2L_ /0%’ o
Hence
lim sup log | X(1)] = L a.s

Proof. Condition (1.5.1) implies that for any e > 0, there exists z. > 0 such that
o2
Lo —e<xf(x) <Loo+e<—?, T > Xe;

2

L w—€e<zf(x)<L_oo+e< —%, T < —Te.

It can be shown that setting ¢ = z, in (0.2.3), for any = > x, the scale function satisfies

—2(Loo+e) —2(Loc—¢)
z y o2 z y 2
/ () dy < s(x) < / <> dy. (1.5.2)
ze \Te ze \Te
Since Lo, € (—00,—02/2), we have s(00) = oo. A similar estimate can be used to get

s(—o00) = —oo. For some constants K . and K», the speed measure is given by

2(Loo+e)

[ee)
m(0,00) < K¢+ nge/ - o2 dx < oo.
Te

Similarly m(—o0,0) < oo, so m(—o0,00) < co. Hence X is recurrent on R and has finite

speed measure. We can therefore apply Motoo’s theorem to X. By L’Hopital’s rule, we
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have
(@) s It [ e
0 <limsup ——7—5 < lim ST
T—00 xlfs‘ié £—00 (1 _ 02—6))1.—2(Loo—6)/02
__ Ksa
1 2(L;%—e)
for some positive real number K3, . So if o1(t) = 1/1-2(Loc=€)/0%] e get

© 1 |
—_dt> / dt = oo,
/1 s(o1()) 1 Kyt

for some positive real number Ky .. Hence

. X(t
lim sup# > 1, a.s. on an a.s. event (),
=00 $1-2(Loc—e€)/02

which implies

log (X(t)v1 1
lim sup og (X(t) V1) > , a.s. on ).
00 log ¢ 1—-2(Le —€)/0?
By considering the a.s. event 2* = N.cqf2e, we have
. log (X (t) V1) 1
1 > .S. Q*. 1.5.3
i log ¢ T 1—-2Ly /0% a5 o ( )
Similarly using (1.5.2) for some positive constant Ks,
K5
lim inf s(@) > 5 >0

z—00 pl=2(Loote)/o? = 1— 2(Loo+e€)

1+e€
If we choose pa(t) = t1-2(Leota)/o® | then for some positive constant Kg,

o0 1 o0 1
——dt < / — dt < 0.
/1 s(02(t)) 1 Ketlte

Hence

. X(t
lim sup 1(+e)
=00 41-2(Loo+e)/02

<1, as.on €. (1.5.4)

Letting € | 0 through rational numbers, and combining with (1.5.3) we get

. log (X (t) V1) 1
] _ 5. on QF 15
RO 1—2Ljo2 %0 (1.5.5)
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Now let Y (t) = =X (t), g(z) = —f(—x) and B(t) = —B(t). Then

lim xg(z) = lim —af(-2)= lIm yf(y)= Lo

Tr—00 r—00

and

dY (t) = g(Y (t)) dt + o dB(t).
Hence by applying the line of argument above we obtain

: Y(t -
lim sup # >1, a.s. on some a.s. event €,
t—o0 t1-2(L g —€)/0?

Y(t
lim sup 1(+5)

_ , a.s. on €,
t—o0 t1-2(L_ote)/o?

<1

and so as before, we have

log(Y(t) V1 1 ~
h?isogp Og(logg,l)t ) =1 T a.s. on some a.s. event Q.

Finally combining the above equation with (1.5.5), we get

i log | X (t)| 1
11m su = a.s.
P T logt 1—2(Loo VL o0)/0?’

O

The previous theorem is not part of the main focus of this section. Indeed, it shows that
solutions are asymptotically stationary, and do not behave asymptotically in a manner
close to the LIL. However, taking the results of Theorem 1.5.1, Theorem 1.3.1 and Theo-
rem 1.3.2 together, we can exclude the necessity to study these regions of (Lo, Lo, ?)
parameter space further.

The rest of our analysis focusses on the parameter regions not covered by these results.
Before moving on to the next theorem, we give a lemma which is a building block for the

construction of appropriate comparison processes.

Lemma 1.5.1. Suppose f: R — R is locally Lipschitz continuous and satisfies (1.5.1). If

Loo € [—0?/2,00) and L_o, € [-0%/2,00) and f(0) = 0, then for every ¢ > 0 there exists
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an odd function q. : R — R such that

e 18 locally Lipschitz continuous on R; (1.5.6a)
. o?
zgrfoo xqe(z) = 5 6 (1.5.6b)
f(@) 2 ge(x), =0 (1.5.6¢)
f(@) < qe(z), <0, (1.5.6d)
Moreover, the function G, : (—o0,00) — R defined by G(x) = \/|z|g(\/|z]) is globally

Lipschitz continuous on (—00, 00).

Proof. For every € > 0 there exists z. > 1 such that

Loo—g < zf(x) <Loo—|—§, T > Te, (1.5.7)
L_ — % <zf(r) < Lo + %, T < —x. (1.5.8)

Since f is locally Lipschitz continuous, there is a constant K > 0 such that
[f(z) = fy)l < Klz —yl, |z vy <1 (1.5.9)
Now define f; : [re,00) — R by fo(2) = (Loo A L_oo —/2)z~ ! and

Ce=1+K+ {( min f(z))V max f(z)V 0} + [~ fe(z)] .

z€[1,xe] T€[—ze,—1]

where
x, x>0,
2] =
0, <0
Then
Ce>14+K; Cec+ fe(xe) > 1. (1.5.10)
Also
—Ce < f(z), z€[l,x] (1.5.11)
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and

Ce> f(z), =z €[z —1]. (1.5.12)

By the second inequality in (1.5.10), and the fact that Loo A L_o > —0?/2, we may define
e : [xe,00) — [0,00) by
Lo AL o+ 5

o2 €

i"l‘Loo/\Lfoo"F*

2 2 _
fe(me)"rCe z Le

de(x) =

, T > Te.

Now we define the candidate function ¢.. It is given for = > 0 by
—Cez, x € [0,1],

ge(x) = —C., z € (1,2,

fe(x) = dc(x), x>,

and extended for x < 0 according to g.(z) = —q.(—x). Clearly g, is odd by definition, and

is obviously Lipschitz continuous on (—z.,z.). Since

im ge(7) = fe(ze) = 0e(we) = fe(ze) — fe(ze) — Ce = —Ce = ge(xe),

T—T¢

we have that ¢, is locally Lipschitz continuous on R. Noting that

0.2

lim xf.(z) :LOOAL_OO—%, lim xd(x) = ——i—Loo/\L_oo—f—E,

we get

2
. € g € g

Since ¢, is odd, the same limit pertains as x — —oo.
Finally, we show that zf(x) > zqc(x), z € R. For x € [0, 1], because f(0) = 0, and

(1.5.9) holds, we have |f(z)| < K|z| = Kz. Hence
flx)> —Kx > Kz —z> —Cex = ¢(x).
For x € [—1,0] we have |f(z)| < K|z| = —Kx. Hence

f(z) < =Kz < —Kz — 2 < —Cex = qc(z),
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where we have used the first inequality of (1.5.10) to deduce the third inequality in each
case, and the definition of g. and the fact that it is an odd function at the last steps.

By (1.5.11), for = € [1,z.] we have g.(z) = —C. < f(x), and as ¢ is odd, for x €
[—x¢, —1] using (1.5.12) we get g.(x) = Cc > f(x). It remains to establish inequalities
on (x.,00) and (—oo, —x.). We noted earlier that d.(x) > 0 for z > z.. Hence, by the

definition of ¢, this fact and (1.5.7) yield

Loo NL_oo —€/2 < Lo —€/2 <
T T

qe(x) = fe(w) — de(x) < fe(z) = f(x),

for x > z., as required. We now consider the case when x < —x.. Since ¢ is odd, we get

e(7) = —ge(—2) = —fe(=2) + be(—2) > —fe(—2),

the last step coming from the fact that d(—z) > 0 for —x > x.. By the definition of f,

we have

Lo ANL_o —€/2
() > LN e m €2
X

Thus, as x < 0, we get

€ €
2qe(x) < Lo N L_oo — 3 <L _— 3 < zf(z),

using (1.5.8) at the last step. Hence zq.(z) < zf(z) for x < —z..

We conclude by dealing with the continuity of G.. For x € [0, 1] we have G¢(x) = —Cex,
so G. is Lipschitz continuous on [0, 1). Since for any M > 1 the functions x +— /z and x +—
ge(z) are Lipschitz continuous from [1, M] — [1,v/M] and [1,vV/M] — R respectively, the
composition [1, M] — R : z — q.(y/z) is Lipschitz continuous. Thus, as [1, M] — [1,v/M] :
x +— +/z is Lipschitz continuous, the product Ge : [1, M] — R : 2z — G(x) = Vxg(\/x) is
Lipschitz continuous. Since M > 1 is arbitrary, recalling that G, is Lipschitz continuous
on [0, 1) and continuous at x = 1, we have that G is locally Lipschitz continuous on [0, c0).

Moreover, as /- and ¢c(-) are actually globally Lipschitz continuous on [1,00), and G, is
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Lipschitz continuous on [0, 1], it follows that G is globally Lipschitz continuous on [0, c0).

Finally since G, is an even function, it is also globally Lipschitz continuous on R. O

Armed with this result, we are now in a position to determine the asymptotic behaviour

for X when Lo, € [~02%/2,0%/2], L_o € [-0%/2,02/2].

Theorem 1.5.2. Let X be the unique continuous adapted process satisfying (1.2.15).
Suppose [ satisfies (1.5.1) and there exists at least one x, € R such that f(x.) = 0. If

Loo € [-02/2,02/2] and L_o, € [~02/2,02/2], then X is recurrent and satisfies

limsupﬂ <lol|, a.s.
t—oo +/2tloglogt —
Moreover
log | X (t 1
limsupM =—, as (1.5.13)
l—00 logt 2

Proof. Again, the first part of the conclusion can be obtained immediately by Theorem

1.4.1. Therefore we also have the following upper estimate

log | X (¢
limsup70g| (®)l

<
t—00 logt -

1

5, a.sS.

For the rest of the proof, the main idea is to compare X? with a squared stationary process
described in Theorem 1.5.1. In what follows we fix € € (0,1). By hypothesis, there exists
at least one x, € R such that f(z.) = 0. Consider the process X governed by the following

equation,
dX(t) = f(X(t))dt + o dB(t), t>0,
where X (t) = X (t) — #, and f(z) = f(z + 2,). Thus f(0) = 0. By Itd’s rule, we have

dX*(t) = 2X () f(X(t)) + 02) dt + 2X (t)o dB(t)

= 2(X(O)F(X(t) — X(1)ge(X (1)) +2X (t)qe(X (1)) + 0%] dt + 2X (t)o dB(2).
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If g, is defined as in the previous lemma, then for all z € R, ¢(x) := xf(x) — xq.(z) > 0,
with ¢(0) = 0. Since g is odd, we can rewrite the above equation governing X2(t) =: Y ()

as

dY (t) = 20(Y (1) + 2V Y (Olac(VIY (D)) + o) dt + 2¢/[Y (t)|o dW (t)

where Y (0) = (29 — x4)2, W is another Brownian motion in an extended space (Q, F, ]?’),

and ¢ (z) = ¢(1/|z|). Consider now the processes governed by the following two equations

dY(t) = 2V|Ye(D)lae(VYe(®)]) + 0%) dt + 2¢/[Ye(t)]o dW (1)

dYo(t) = (2v/[Yo(t)lge(V/[Yo(8)])) dt + 2V/[Yo (t)]o dW (1)

with Y (0) > Y.(0) > Y5(0) = 0. Since the drift coefficient of Yy is globally Lipschitz
continuous by the previous lemma, we can use Yamada and Watanabe’s uniqueness the-
orem again to show that for every € € (0,1), there exists an a.s. event ¢, such that
Y(t) > Ye(t) > Yo(t) = 0 for all £ > 0 a.s. on Q.. Therefore all the absolute values can
be removed. Now by the definition and properties of g, it is easy to check that the scale

function and the speed measure of Y, satisfy
s(o0) =00, s(0) > —oo, and m(0,00) < 0o

respectively. A similar argument to that used in Theorem 1.4.2 shows that zero is a
reflecting barrier for Y.. Therefore Y, is a recurrent process on RT with finite speed
measure to which we can apply Motoo’s theorem in order to determine the growth rate
of its largest deviations. Now since lim, .o, v/2q(y/Z) = —02/2 — ¢, for the same ¢, there

exists x, such that for all z > x,

2 0.2

o
T el ) < Vag(VE) < =% — el =),
Let s be the scale function of Y¢, then for some real positive constants K1,
e(1+€)

x 0'2
0 < li S(IE) 1; fxe (3%) dy — Kl’e
= RSP /et = o0 T 30/t 1+ e(l+e)/o?
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1
If we choose o(t) = t1+<(+9)/o* then

a o J =

Again by Motoo’s theorem we have

: Ye(t) ]
h?’if:;lp W Z 1, a.s. on an a.s. event Q€,
which implies
log Y (t 1
lim sup og Ye(t) > a.s. on Q.

t—oo  logt T 14+e(l+e€)/o?

Hence on the a.s. event Q07" = Q. N7,

. log Y (t) S 1
im su
P logt ~ 1+4¢€(l+4¢€)/o?

a.s.

Considering the a.s. event 2* = Ncqf2™, we have

log Y (t
lim sup L() >1, as.
t—o0 logt

which implies

log | X
lim sup og | X (1)] >

1
—_— -, a.s.,
t—00 10gt 2

and hence the result. O

Using the same technique as was employed to prove Theorem 1.5.2, we may construct
a locally Lipschitz continuous function g, such that for all x € R, f(z) > g¢.(z), and
im0 2Ge(7) = —02/2 — e. Instead of comparing pathwise with X2, we manufacture a
solution with drift coefficient g. and directly compare it with X. The proof is left to the

reader.

Theorem 1.5.3. Let X be the unique continuous adapted process satisfying (1.2.15).
Suppose [ satisfies (1.5.1) and there exists at least one x, € R such that f(z.) = 0. If

L_o € (—00,—02/2) and Lo, € [-02/2,0], or Loo € (—00,—02/2) and L_o, € [—02/2,0],
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then X s recurrent and obeys

X(t
lim sup X ()] <|ol|, a.s.

t—oo +/2tloglogt —

Moreover,

: log | X(t)] 1
limsup ———= = -, a.s.
l—00 logt 2

Remark 1.5.1.

Even though zeros are not included on the intervals for L4, in Figure 1 in Section 3,
the construction of ¢, in either Theorem 1.5.2 or Theorem 1.5.3 covers the case when one
or both of Lo and L_ is zero. Therefore we can always get the result (1.5.13) if the
drift coefficient f reaches zero along the real line at least once. However, if f changes its
sign an even number of times, more precise estimates on the growth rate can be obtained,
despite the fact that at least one of Lo and L_., is zero. Lemma 1.5.2 and Theorem
1.5.4 deal with this case. In particular, if f remains non-negative (or non-positive) on the
real line, we could compare X with the Brownian motion {oB(t)};>o directly. This fact
is stated in Corollary 1.5.1 without proof.

In order to apply a comparison argument to the next category of parameter values, we
need to construct an appropriate drift coefficient, just as was done in Lemma 1.5.1 and

Theorem 1.5.2.
Lemma 1.5.2. Suppose f: R — R is locally Lipschitz continuous and satisfies (1.5.1).

(i) If L_oo € (—00,0] and L € [0,00), and there exists x. > 0 such that for all |x| > w,
f(z) > 0, then there exists an even function q,, : R — R such that for all x € R,

(11) If Log € (—00,0] and L_ € [0,00), and there ezists x. > 0 such that for all |x| > x,
f(x) <0, then there exists an even function q,, : R — R such that for all z € R,
Moreover, q,, in either case is globally Lipschitz continuous.
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Proof. Under the conditions in Part (i), define C' := min,¢_y, 4,1 f(7) A0 and construct

Gz, according to:

C, |z| < @,
—Cr4+C+Cry, 2z <zx<x4+1,
Cx + C + Cuxy, —zy — 1 <z < —ny,

0, |x| > x\ + 1.

It is obvious that g¢,, is even, globally Lipschitz continuous, and f(z) > ¢,,(x) for all

x € R. By a similar argument, we get the second part of the assertion. O

Theorem 1.5.4. Let X be the unique continuous adapted process satisfying (1.2.15), and

suppose f satisfies (1.5.1).

(i) If L_oo € (—00,0] and Lo € [0,0%/2], and there exists x. > 0 such that for all
|z| > x4, f(z) > 0, then X is recurrent and there exists a deterministic ¢ > 0 such
that

X(t
¢ < limsup ®) <o, a.s.

t—oo /2tloglogt —

(i) If Loo € (—00,0] and L_o € [0,0%/2], and there exists x, > 0 such that for all

|z| > 2z, f(z) <0, then X is recurrent and there exists a deterministic ¢ > 0 such
that

X(t)

—lo| <liminf ———— < —¢, a.s.

t—oo +/2tloglogt —
Proof. We show assertion (i) first. Consider another process Y governed by the equation

dY (t) = qu, (Y (t)) dt + 0 dB(t), t>0,

with Y(0) < X(0), where ¢,, is the function defined in Lemma 1.5.2. Note that ¢,, €

LY(R;R), so by Theorem 1.4.3, we have

Y
¢ < limsup (t)

t—oo  /2tloglogt’
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where

‘0"6%22 Sup, e Jo Gz« (2) dz

B Io e ()
By Lemma 1.5.2 part (i), f(z) > g, (x) for all z € R, so a comparison argument gives

Y(t) . X(t)

¢ <limsup ———— < limsup ——=——, a.s.

too V/2tloglogt = t—oo +/2tloglogt’

Combining this with the result of Theorem 1.4.1, we get the first part of the theorem. For
part (ii), let X (t) = —X(¢), f(z) = —f(—x) and B(t) = B(t). Then X obeys

dX(t) = F(X(t)) dt + o dB(t).

Now

lim zf(x) = lim (=y)(=f(y)) = lim_yf(y) = Lo > 0.

T—00 Yy——00 Yy——00

Similarly limy—,— oo ¥f(y) = Loo < 0. Therefore by the first part of the proof we get

<l X(1)
imsup ———, a.s.
= t—>oop V2tloglogt
which implies
X(t
lim inf¢ < —¢, as.

t—oo +/2tloglogt —

Combining this limit with the result of Theorem 1.4.1, the second assertion is proved. [

Corollary 1.5.1. Let X be the unique continuous adapted process satisfying (1.2.15).

(i) Suppose f remains non-negative on the real line. If L_o € (—00,0] and Ly €

[0,02/2], then X is recurrent and satisfies

limsupﬂ = lim sup _ X0 =lo|, a.s.
t—oo /2tloglogt t—oo /2tloglogt

(ii) Suppose f remains non-positive on the real line. If Lo € (—00,0] and L_o €

[0,02/2], then X is recurrent and satisfies

liminfﬂ = lim sup XL =—lo|, a.s.
t—oo /2tloglogt t—oo +/2tloglogt
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The lower estimate on the asymptotic growth rate of partial maxima of |X| in this
section can also be obtained when the limit in condition (1.5.1) is replaced by a limit
superior or limit inferior in the appropriate way. For example, in Theorem 1.5.2, we can
alter (1.5.1) to liminf, , o xf(z) = L_o and limsup,_ ,. xf(z) = L. Hence we are
able to estimate the growth rate of the partial maxima (or minima) of solutions in this
section in terms of either the Law of the Iterated Logarithm or the polynomial Liapunov

exponent for all real values of Lo, and L_ ..

1.6 Generalization to Multidimensional Systems

In this section, we generalize some of the main results in the scalar case to finite-dimensional
processes. We show that analogous results can be obtained by using the same technique

under adjusted conditions.

Theorem 1.6.1. Let X be the unique continuous adapted process satisfying the d-dimensional
equation (1.2.18), where X(0) = z9 € R4, f: R4 x RY — R?, g : R? x RT — R¥>™ qgnd

B is a m-dimensional Brownian motion. If there exist positive real numbers p, Cy, and Cy

such that
V(z,t) e REx RY, 2l f(z,t) < p; (1.6.1a)
V(z,1) R XRY, |lg(@,t)llop < Cas 279w, 1)] = Chlal. (1.6.1D)
then
X(t
lim sup X () Ca, a.s. (1.6.2)

— <
t—oo +/2tloglogt —

Proof. By Ito’s rule,
dIX (1) = 2XT () F(X (), 1) + |lg(X (1), )P dt +2XT (£)g(X (¢),£) dB(t).  (1.6.3)

Let N be the martingale N(t) = fg XT(s)g(X(s),s)dB(t), which has quadratic variation

(N)(t) = fg lg7 (X (s),5)X(s)|?ds. Then by the martingale representation theorem, there
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exists a scalar Brownian motion B on an extended probability space with measure P such

that

N(t) = /O 07 (X(5), )X ()| dB(t), P—as.
We can therefore rewrite (1.6.3) as
dX®F = @XTOAX@®) + [lg(X@), 0|7 dt + 2[X(0)|P(X(1).t) dB(b),

where

O(z,t) = (1.6.4)

Note by (1.6.1b) that
Cy < ®(z,t) < C,, forall (z,t) € R x RT. (1.6.5)
If Y(t) := | X (¢)|?, then
dY (t) = 2XT () f(X (1)) + |l9(X (), )IP) dt + 2/Y () B(X (1), 1) dB(?).

Now define the martingale M (t) = fg ®(X (s), s) dB(s) which has the quadratic variation
(M)(t) = fg ®2(X (s),s)ds. For each 0 < s < oo, define the stopping time n(s) := inf{t >
0: (M)(t) > s}. Again by the time-change theorem for martingales, the process defined by
W (t) := M(n(t)) is a standard Brownian motion with respect to the filtration KC; := F ).

By Proposition 3.4.8 in [49], we have, almost surely

n(t) t
/0 2/Y (s)dM(s) = /0 VY (n(s))dW(s) foreach 0 <t < oo.

Hence it can be shown that

[ 2X () K (). 0(s)) + (X (n(s)). (s
20 =zt + | $2(X(n(s)), 7(5))
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where Z(t) := Y (n(t)). Now it is easy to see that the drift coefficient of (1.6.6) is bounded
above by K, = (2p + mC2)/C% due to (1.6.1). Consider the process governed by the
equation

dZ,(t) = Ky dt + 20/ [Za()]dW (), t >0,

with Z,(0) > 22. A similar argument as given in the proof of Theorem 1.4.2 shows that Z,,
is non-negative. Applying the comparison theorem again, we have, for almost all w € €,
0 < Z(t) < Zy(t) for all t > 0. Let V,(t) := e 'Z,(e! — 1). By It6’s rule, it can be shown
that

AV (t) = (=Vu(t) + Ky) dt + 24/|Vu ()| dW (t), ¢ >0,

where W is another one-dimensional Brownian motion. Applying Lemma 2.3.1, we obtain

t
lim sup Vul?) a.s.

t—oo 2logt -

Using the relation between V,, and Z,, and then comparing Z,, with Z, we get

VA Zy
lim sup *) < limsup ®)

< ——— <1, as.
t—oo 2tloglogt t—oo 2tloglogt

Since n~1(t) = (M)(t) for t > 0, and Z(t) = Y (n(t)), we have

| Y (1)
s S A (D) Tog log (A0 (®) =~ &

By (1.6.5), C2t < (M)(t) < C2t for all t > 0 a.s. Thus

Y () <2

lim sup i

t—oo 2tloglogt — a5
Since Y (t) = | X (¢)|?, the assertion (1.6.2) is therefore proved. O

We now establish the corresponding lower bound.

Theorem 1.6.2. Let X be the unique continuous adapted process satisfying the d-dimensional

equation (1.2.18), where B is a m-dimensional Brownian motion. If (1.6.1b) holds and
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there exists a positive real number p such that

inf <2fotmt)4Hg@ntHV> .

(z,t)ERIXR+
then

lim sup ﬂ >Cp, a.s. (1.6.8)

t—oo /2tloglogt —

Proof. Proceeding in the same way as in the previous theorem, we arrive at the process

Z governed by (1.6.6), i.e

T 2
iz~ PO oKD AN o /a0

where ® is as defined in (1.6.4). By condition (1.6.7), it is obvious that the drift coefficient
is bounded below by K; := u/(mC?). Let Z; be the non-negative process with Z(0) >

Z;(0) > 0 which satisfies the SDE
dZy(t) = K;dt + 2~/ Z;(t) dW (t), t>0.

Then Z(t) > Z;(t), for all t > 0 a.s. Applying the same change in time and scale to Z; as

in the previous proof, and defining V(t) := e7'Z;(e! — 1), we get
dVi(t) = (—=Vi(t) + K)) dt + 2/ [Vi() [ dW (t), t > 0.

Applying Lemma 2.3.1 again yields

i
im sup =1, as.

t—oo 2logt

Following a similar argument as in Theorem 1.6.1, we get the desired result (1.6.8). [

Our last theorem covers the special case where the diffusion coefficient is constant,
diagonal and invertible. In this result, we use the notation (x,y) to denote the standard

inner product of z and y in R?, and e; as the i-th standard basis vector.
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Theorem 1.6.3. Let X be the unique continuous adapted process satisfying the d-dimensional
equation

dX(t) = f(X(t),t)dt + TdB(t), t>0 (1.6.9)

with X(0) = 29 € R, f: R4 x Rt — R? and T is a d x d diagonal and invertible matrix

with diagonal entries {v;}1<i<q. B is a d-dimensional Brownian motion.

(i) If there exists a positive real number p such that
V(z,t) e RTx RY, 2T f(x,t) < p, (1.6.10)

then

X(t
lim sup X ()] < max |y, a.s. (1.6.11)

t—oo +/2tloglogt — 1<i<d

(ii) If there exists i € {1,2...d} such that

2
. Vi
f e (f(m,t),e) = p > —L 1.6.12
it et = p > = (1.612)
then
X(t
lim sup X ()] > |yl a.s. (1.6.13)

t—oo +/2tloglogt —
(i1i) Moreover, if (1.6.10) holds, and there exists i € {1,2...d} such that (1.6.12) holds

and |y;| = maxi<j<q |vj|, then

limSUPw = |il,
t—oo V/2tloglogt

a.s.

Proof. 1t is obvious that part (iii) of the conclusion is a consequence of part (i) and (ii).

To prove part (i), let Y () := I2X(¢), f(x,t) = D71 f(Tx, ), so that
dY (t) = f(Y(t),t)dt + I;dB(t), t>0.

Therefore
dY#))? = YT f(Y (t),t) +d)dt +2YT(t)dB(t), t>0.
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Define Z(t) := |Y(¢)|%. Then the above equation can be written as
dZ(t) = QYT() f(Y (t),t) +d) dt + 2/ Z(t) dW (t), t> 0.
where W is another one-dimensional Brownian motion. If we can show that
V(y,t) e RTx RY, yTf(y,t) <K, (1.6.14)
for some positive K, then the non-negative process governed by
dZ,(t) = (2K + d) dt + 2/ Z,(t) dW (t), >0,

with Z,(0) > 3 satisfies Z,(t) > Z(t) for all t > 0 almost surely. As in the proof of the

previous theorem, we have

Z(t) < limsu Zu(?)

li — _— .S.

lfiiljp 2tloglogt — t—oo 2tloglogt — a5
Thus

2 2 2
%&p+xm+ 4 X
lim sup i i it <1, as
t—00 v/2tloglogt -

Since

1 X2(t
N ORI O et N 1CIREA 2
maxi <i<q |Vl g 2 Vd

assertion (1.6.11) is proved. Now it is left to show (1.6.14). Let y := I'"'x, so that for

1 <4 < d, the i-th components are related by y; = x;/~;. Hence condition (1.6.10) gives

yT f(y,t) =y T f(Ty,t) = S %fﬂfy,)

1 P
=xf, 2fz($ )< —— 5 i fi(, ) < ————.
Yi ming <i<d v; ming <i<d v;

The proof of part (i) is complete. For part (ii), note for each 1 <4 < d and all ¢t > 0, that

| X (t)] > |X;(t)|. Consider a particular X; which is governed by

Xi(t) = fi(X(t),t) dt + i dB;(t), t>0.
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Here by (1.6.12) and Theorem 1.4.2, we have

Xi(t
lim sup X (®)] > |y, as.

t—oo /2tloglogt —

and so the inequality (1.6.13) is obvious. O

1.7 Application to a Financial Market Model

In this section, for the purposes mentioned in Section 1.2, we present an ergodic-type

theorem for the solution of the equation

dX (1) = F(XO)L — oLy pysrovsy]) dt + 0 dB(D). (1.7.1)

A detailed discussion can be found in the end of Section 1.2.

Theorem 1.7.1. Suppose f is locally Lipschitz continuous and odd on R, and satisfies,

lim zf(z) =L e (0,02/2], f(z)>0 forallz>0. (1.7.2)

|z| =00
Let xg be deterministic, 0 < a <1, 0 >0, k > 0 and I be the indicator function. Then

there is a unique strong continuous solution X of (1.7.1) with X(0) = xg. Moreover, X

obeys
limsupﬂ =0, a.s
t—oo V/2tloglogt
and
t X2(s) d
0 (1+s)2 §
— = A .8. 1.7.
t—o0o logt L7‘77a’k' a.s ) ( 7 3)
where
292 -z o2t — o242L(1—a)
' fokg €22y = d$+ (k%0?) f2 €22 202 dx 9
AL,U,a,k = kg2 2 22 N . 2h(-a) o2 >o0". (174)
fO e202 20’ daj+ (k202) fk2026202x 202 dx
Remark 1.7.1.

In the case when f(z) = 0, then L = 0, and we can independently prove (1.2.14), which
is consistent with (1.7.3) (AL sk = 02). On the other hand, letting L — 0 in (1.7.4)

yields th*)(]Jr AL,U,a,k = 0’2.
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Remark 1.7.2.

As claimed earlier, we have Ar 5 o1 > o2 under the hypotheses of Theorem 1.7.1. To

see this, for L € (0,02/2], let
k202 —w 2L—0o2
::/ e202x 202 dx
0

and

2 9 Lo o0 =z 2L(17a)702
J = (k“c%)o? e’y 22 du.
k

2,2
Integration by parts gives
ko? o242L —k2 2L 2L
/ 3071 207 dr =22 k' g ToE 4 (02 +2L)I
0
and

Lo [ & o*42L(1-q) k2 2L 2L
(K*0?) o / ety a7 dr =23 k'ToTottoE 4 (0* +2L(1 — a))J.
k202

Then by (1.7.4)

2L +2L(1 — «)J
Aok =0+ 7 +(J ) > o2,

as claimed.

Proof. We first discuss the existence of a strong solution of (1.7.1), which is not directly
obvious because the drift coefficient of (1.7.1) is discontinuous. However, by condition
(1.7.2) and the continuity of f, the drift coefficient of X is uniformly bounded on [0, c0) xR.
Therefore, we may apply Proposition 5.3.6 and Remark 5.3.7 in [49] to obtain a weak
solution. Moreover, by Corollary 5.3.11 in [49], the weak solution of (1.7.1) is unique in
the sense of probability law. On the other hand, Theorem V.41.1 in [73] by Nakao and
Le Gall gives us the pathwise uniqueness of the solution. This, together with the weak
existence implies the existence of a strong solution by Corollary 5.3.23 in [49]. For a given
initial value xg, and a fixed Brownian motion B, this strong solution is unique.

By the Ikeda—Watanabe comparison theorem [73, Theorem V.43] which only requires
the continuity of one of the drift coefficients in the two equations being compared, the

first part of the theorem can easily be obtained by Theorem 1.4.1 and 1.4.2.
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Now consider the transformation Y (t) := e 7! X2(ef —1). By Ito’s rule, and the fact that

f is odd, there exists a standard Brownian motion W such that

dY (t) = (= Y(t) + 0 + 2/ Y (0)e2 f(V/Y ()e2)[1 — alpymsrzoz(1—c—y]) dt
+20/Y()dW(t). (1.7.5)

For any 0 < £ < 1/2, there exists a deterministic 7} ¢ > 0 such that for allt > T} ., e~ ! < ¢,
so k202(1 — ) < k?02(1 — e7') < k%02, Due to (1.7.2) and continuity of f, there exists a
K > L(1 + ¢) such that for all z € R, zf(z) < K, and there exists a deterministic x. > 0
such that for all z > ., L(1 —¢) < zf(x) < L(1+¢). For any 0 < n < 1 A k?0%(1 — &),
there exists a deterministic 15, > T . such that eTZEv’?/Q\/ﬁ = z.. Thus for all t > T .,
and Y (t) > n, L(1 —¢) < /Y (t)e!/2f(\/Y (t)e!/?) < L(1 +¢). Choose 0y, 5 > 0 so small

that 6, < 2L, 61V 63V n < k?0? /6, which implies n + 6, < k?02(1 —¢) — 63. Now consider

Yy = Yyeno 0, and Y, :=Y, . 9 0, governed by the following two equations respectively:
fort > Ty, p,

dY,(t) = [-Y,.(t) + o? + 2G,(Yyu (1)) dt + 204/ Yy (t) dW (1), (1.7.6)

ay;(t) = [-Y(t) + o2 + 2G(Yi(t))] dt + 20~/ Y (t) dW (1) (1.7.7)

with ¥} and Y, chosen so that 0 < Yi(Tar,) < Y(Toey) < Yu(Toey) as., where Gy, :

R* — R*/{0} is defined by

(

K, 0<z< m,
B 4 (k + Ky, <o <+,
Gu(z) = L(1+e¢), n+6 <w<ko?,

Ll 4 L1+ e)(1 4 2B k202 < o < k202 4 ),

2 [

L(1—-a)(1+¢), k0% + 0, < z.
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G;:RT — R is defined by

p

0, 0<x<n,
Loy Lizeh, n<a<n+o,
Gi(z) = L(1—¢), n+6 <z <k — 0o,
Ll LA —a)(1—e) + Kk gy <a <k,
L(1—a)(1—e), ke <,

where k. := k?0%(1 — ). Note that G, and G are globally Lipschitz continuous on
R*. Again by Tkeda—Watanabe’s comparison theorem, it can be verified that Y;(t) <
Y(t) < Yy(t) for all t > Tp., a.s. on an a.s. event Q, := Q.9 9,. Choose ¢ €
(n+61,k%02(1 —€) — 63) in definition (0.2.3). Then direct calculations on a scale function

and speed measure of Y; give that

o0
Clen 01,05 ::/ mez(dx)
0

1 N c—2L(1—¢) 0 o?42L(1-¢) —2L(1-¢)1/01 +0> —z .1
- / e 202 (D 252 Ui 252 €202 (,)2 dr
202 | Jo c n+60: n
01 c—ar(-o)(n+01)/01 §: . o242L(1—c) 2L(1-e)/01-1 T o2—2L(1-e)n/6;
+/ e 202 (n + 1 202 [ 202 :L’( 202 dx
n c n+ 0
k*o?(1—g)—02 ,__ 1. o24+2L(1—¢)
+f it (5T g
n+01 ¢
k202 (1—e) k202(1 _ 5) — 0 o?42L(1—¢) c—w—2La(l—c)(z—k202(1—€)+0)/05
_|_ ) 202 e 202
k202(1—e)—02 c
T o2 42L(1—a)(1—e)+2Lak?02(1—¢)2 /0,
(522 207 dx
k?c (1 - E) - 02
e —62-2L(1—¢) c—2La(l—¢) 2La(1—e)—2Lak?02(1—¢)2 /04
+ / ¢ 22 e 22 (K*0*(1—¢)—6) 207
k202(1—¢)

2Lak?(1=e)®  _, o242L(1-a)(1—¢)

(k*0%(1—¢)) 22 exlx 202 dr| <oo. (1.7.8)

Similar calculations give fooo my, (dz) =: (2,6,,01,0o < 0o. Hence by the ergodic theorem
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[73, Theorem V.53.1], for almost all w € Q,,

t
hm mf / Y(s)ds = hm inf 1 / Y (s)ds

t—o0
Ts.e,n

1 t
> him L [ vi(s)ds = Shenduts

t=o0 t T2,s,n <275777701792

(1.7.9)

Now we let the parameters tend to zero through rational numbers in the order ¢, 61, 6o

and 7. We consider each term in the square brackets in (1.7.8) in turn. As e | 0, the first

integral on the interval (0,7) becomes

c—2L —o2-2L L 0 n —z
J1i=e2? ¢ 252 (n+0)a2(n+ 1)091/ €202 ;z;zdaj
n 0

Hence

. . . e=2L —o?—21 L L (" —a 1
lim(lim J;) = lime 202 ¢ 202 po2eo? e20?x2 dr = 0.

Similarly, as € | 0, the second integral becomes

c—2L(n+01)/07 —o2_2L L+Ln/o; [1t01 2L/61-1  o®-2Lu/6y
J2 = e 202 C 202 (’[’] + 91) o2 e

n

Since 07 < 2L, we have

c Ln L _4s2_9op L+Ln/6; L(n+01)

J2§e2a2 20, 02620.72(7]_1_91)0.726 0102 (7]4_91)%91,

202 €T 202 dx.

Hence limg, ¢ Jo = 0. For the third integral, as ¢, 61,62 and 7 tend to zero, it tends to

k*0? . o242L
ez? (=) 22 du.
0 C
Also as ¢ | 0, the fourth integral becomes
c LakQ_Lia —o 72 9 9 La Lak2
Jyi=e2?" %2 ¢ (k0” — 0g) 0% 02
k202 2 2 2
—(142La/0g)z o“+2L(1—a)+2Lak“c” /6o
/ e 2052 T 202 x.
k202—04

It can be verified that

L(l—«a) k20'2 Lak?

o* (k202 _ 92)

52 91, c7k2cr2+92 La 1
Ji<c 2?2 e 27 (k%02 —6) % (K2o?)2t
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. . . 2 o\ Lak® Lo . .
Letting 62 | 0, since limg, .o (#‘7_92) %2 = e+?, we have limp, o Jy = 0. Finally, as
€ | 0, the last integral becomes

—¢2-2L ¢ —La La k252 Lak? [ 4 o%42L(1-q)
J5 = ¢ 202 e202¢ o2 (l{j2o'2 — 92) 2 (?) 02 e202 202 dl‘
k?o? — 92 k252

Letting 65 | 0, we have

62—0

. —o?-2L _c_ 9 9\ La © _z o*42L(1-a)
lim Js =c¢ 227 e2%(k“c”) o2 ey 202 dx.
k202

Hence

252
. ]_ —g2-2L c k2o —x 02+2L
lim (1 ep0,,0, = 55C 202 €202 €202y 202 dx
0

£,01,02,1—0 202
9 o Lo [ & o2 42L(1-a)
+ (k*0%) e’y 207 dr .
k252

In a similar fashion, it is easy to check that as e | 0, 01 | 0, 62 | 0 and n | 0, (2.2.1.0,,6-

also tends to a finite limit. Indeed,

2.2
. 1 —o2_2L c k2o —x 2L—c2
lim <2,€,77,91,92 =53¢ 202 @202 e202x 202 dx
0

€,01,62,n—0 20
9 gyLa [ -z 2L0-a)-0®
+ (k“0*) o2 e2?x” 202 dx|.
k202

This implies that

t—o0

1 t
lim inf t/ Y(s)ds > Apgak, a8 on Q= Ngep o, 6,0} (1.7.10)
0

where A ;o is given by (1.7.4) and Q,, is an a.s. event. In an analogous manner, by
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the definition of G,,, we have

o0
K1,e,0,01,0 ::/0 xmy, (dx)

1 [/n€c+2K—22L(1+E) 77_|_01 J2+§§£1+5) n g2+2K+2(K—2L(1+e))n/91
0

20

= — 20
202 c n+ 601
2
—x . oS+2K
€202 (—) 202 dx
n
N+H01 oK L(1+e))(n+61)/04 40 o2+2L04e)  142(K—L(1+¢))/6;
n o o R v I 7= Rt
n c
T 242K +2(K—L(1+€))n/01
( 202 d:[;
n+ 61
L 1. o2+2L(14e)
+ €202 (—) 202 dx
n+01 ¢
k202402 ciop(ire)ake?/0y k202 o2+2L(1+e)  142L(1te)a/0y
+ é 202 202 67 202 z
k252 C
r . o2H2L(te)(1+ak?e?/69)
(-2 dz
k202
o0 c—20(4e)a kg2 P+2L(4e) k252 4 @, o2 42L(1+e)(1+ak?02/05)  _,
+ e 202 202 — 252 0202
k20240, C k20'2
T o24+2L(1—a)(1+¢)
(W 202 dr| < oo
k?c +92

Similar calculations give fooo my, (dx) =: Ko e 6,6, < 00. Also by the ergodic theorem,

I 1 [
lim sup / Y(s)ds < lim — [ Y,(s)ds = w, a.s. on {1,. (1.7.11)
t—oo t.Jo t=oo t Jo K2,e,m.01,02

Again, let € | 0, 01 | 0, 03 | 0 and 1 | 0 through rational numbers and proceeding as
for Y}, we get the same limit Ay ;. 1 as obtained the lower bound. Combining this with

(1.7.11) and (1.7.10), we have

t

1
lim = [ Y(s)ds=ALoak, as. on Q.
t*)m t 0 b 9 b

Using the relation Y () = e X?2(e! — 1), the desired result (1.7.3) is obtained. O
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Chapter 2
Extension Results on Non-Linear SDEs using the

Motoo-Comparison Techniques

2.1 Introduction

In this chapter, we study the almost sure asymptotic growth rate of the partial mazima

t > supg<s<; | X (s)|, where {X(t)}¢>0 is the solution of the following d-dimensional SDE.
dX(t) = f(X(t),t)dt + g(X(t),t)dB(t), t>0 (2.1.1)

with initial value X (0) = zg € R%. Here f : R x R — R% and g : R x RT — R¥™ hoth
f and g satisfy the local Lipschitz condition. We attempt to find deterministic upper and
lower estimates on the rate of growth of the partial maxima by finding constants C and

(3, and a function g : (0,00) — (0,00) such that

X
0 < C < lim sup “Posest X ()]

<Ci, as. (2.1.2)
We often refer to such a function g as an essential rate of growth.

In this work, we do not attempt to give a comprehensive theory about large deviations,
but rather to demonstrate for particular classes of problems, three different, general and
complementary methods for determining growth estimates. Two of the methods are vari-
ants of existing estimation techniques, with which we can even find the large deviations
of certain stochastic functional differential equations (SFDEs); one is, to our knowledge,
a new method. These methods, and the basic ideas behind them, are indicated in the
introduction.

In [57, Chapter 2] and [55], Mao considered some classes of SDEs whose solutions are
closely related to the Ornstein—Uhlenbeck processes, or which obeys iterated logarithm-

type growth bounds. The results in these works are achieved mainly through the com-

bination of the exponential martingale inequality (EMI) and Gronwall’s inequality (GI)
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(see also [54, 56]). More precisely, the process is transformed by It6’s formula to a one—
dimensional process. The transformation is determined by hypotheses on the drift and
diffusion coefficients, and also guided by the conjectured rate of growth. With the expo-
nential martingale inequality, the size of the fluctuations of the It6 integral term can then
be estimated in terms of its square variation. If the transformation is well-chosen, the
square variation is a Riemann integral with an integrand which does not grow faster than
linearly in the new scalar state variable. This results in a Riemann integral inequality,
which depends on random times, to which Gronwall’s inequality can be applied.

This general approach is quite powerful, because it allows us to reduce a stochastic
differential equation to a integral inequality that can be treated by deterministic tech-
niques. This method has proved effective not only in the estimation of the growth rates of
large deviations, but also in estimating moments of solutions. Furthermore, as illustrated
in [57], it can play an important role in numerical approximations of solutions, such as
Caratheodory’s or Cauchy—Maruyama’s methods. Mao adapts and generalizes this EMI-
GI technique to a variety of non-linear SDEs not covered in [55, 57]. The results are stated
in Section 3 without proofs.

As mentioned in Chapter 1, in [67], Motoo gave a proof of the Law of the Iterated
Logarithm (LIL) for a finite-dimensional Brownian motion. In chapter 1, this technique
was generalized to a class of SDEs whose solutions obey the LIL, mainly by means of the
stochastic comparison principle. This method produces an upper estimate on the growth
rate o which is consistent with that obtained by the EMI-GI technique. Moreover, it
supplies a shaper upper estimate on C; in (2.1.2). There is another advantage associated
with this comparison approach: it allows us to obtain a lower estimate in (2.1.2), which
we have been unable to establish to date using the exponential martingale inequality. In
fact, in certain cases we can even show that the constants C1 and Cy in (2.1.2) coincide.
These results are interesting because they show that the general exponential martingale
approach correctly predicts the essential rate of growth o. Also, the gains made using
the comparison approach come at a cost, requiring more restrictive conditions, especially
when dealing with multi-dimensional cases.

In Section 2.3.1, we present generalisations of results in Chapter 1 using the stochastic
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comparison technique. We consider the same nonlinearities in the drift and diffusion
coefficients covered by results in Section 2.2 , which eases comparison between hypotheses
and conclusions. The proofs are postponed to Section 2.5.

In Section 2.3.2, we also state a result which improves upon the EMI-GI technique to
produce a more accurate upper bound on the growth rate for a one-dimensional process
obeying the LIL. As in the results in [55, 57] we start by applying Itd’s rule, but instead
of using the exponential martingale inequality, we apply the LIL for martingales to the
It6 integral term. An estimate on the size of the fluctuations of this integral can be
furnished by means of the upper estimates already found in Section 2.2. This leads to
a Riemann integral inequality involving random times, in common with those found in
EMI-GI-type proofs. This integral inequality can be used to formulate an equivalent
differential inequality, just as is used in the proof of the classical Gronwall inequality. The
next step, which is entirely novel, involves the construction of a random, but differentiable
process which satisfies a related differential inequality. By applying standard theorems on
deterministic differential inequalities, we can improve the estimates established using the
EMI-GI method, without requiring any additional conditions. Like the EMI-GI results,
this result gives upper estimates only. The proof of this theorem is also postponed to
Section 2.5.

All the techniques in this chapter are quite general and exhibit distinct advantages
and disadvantages. Both techniques and results have the potential for extension. For
example, one could use an alternative Ito transformation, an alternative Riemann integral
inequality, or even a different differential inequality. Transformation techniques can be
used to map other SDEs onto those studied in this paper. Moreover, it seems fruitful
to apply Motoo’s theorem together with appropriate comparison arguments to certain
stochastic functional differential equations exhibiting monotonicity in the delay, and the
start of such a programme of work is indicated in this chapter.

Since 1960’s, a number of papers has emerged concerning deterministic differential equa-
tions with maximum delay functionals on the righthand side. Halanay [40], as well as Baker
and Tang [16], studied the stability theory of solutions of linear differential equations with

a maximum delay which is taken on a time interval with a fixed length. To date, there
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has been comparatively little literature in the corresponding SDEs with maxima delay in
either the linear or nonlinear cases. In a recent paper (cf. [11]), Appleby and Wu studied

the following scalar equation

dX(t) =[—g(X(t))+ sup f(X(s))]dt+ocdB(t), t=>0, (2.1.3)
—r<s<t
where g and f are of linear order. Both recurrent and transient solutions were investigated,
with the results applied to inefficient financial markets.

In Section 2.4, we again study (2.1.3), where g and f are now asymptotically polynomial
functions. For reasons of consistency in this paper (particularly with respect to techniques
used), we do not concern ourselves with the case when the solution is transient. Instead
we focus on the case when the solution is recurrent. This happens when the reinforcing
historical term f is dominated by the mean-reverting instantaneous term g, in the sense
that g grows at least as fast as f when |z| tends to infinity. The results are proved
using a combination of Motoo’s theorem and the type of stochastic comparison principles
described in Section 2.3.1. Moreover, we also use another type of comparison argument
which involves the construction of a random but differentiable process which satisfies a
differential inequality, as described in Section 2.3.2. This technique has been exploited
in [11] and in Appleby and Rodkina [9] for highly nonlinear SFDEs with a fading noise
intensity. The results show that the presence of the delay does not affect the essential
growth rate {o(t) }+>0 in (2.1.2), but that it does affect the estimates C and Cy. However,
it is the degree of non-linearity of g determines p. The proof is postponed to Section 2.5.

The work in this chapter appears in a paper joint with John Appleby and Xuerong
Mao [7].

2.2 Results Obtained by the Exponential Martingale In-
equality

The following theorem is given in Mao [57]. It generalises a similar result proven in [55].

Note that X*(t) := supg<g<; X(s), for all £ > 0.
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Theorem 2.2.1. Assume that there is a pair of constant p > 0 and o > 0 such that
(2, f@,t) <p and |g"(@,0)|2, <o (22.1)
for all (z,t) € R x R*, then the solution of equation (2.1.1) obeys

. X*(t)
1 -~ < .S. 2.2.2
Y v o A (2:2.2)

We remark that this result gives the correct iterated logarithm rate of growth modulo
the constant on the righthand side in the scalar case where f = 0 and ¢ is constant. See
[57, Theorem 5.4] and following remarks [57, pages 69 and 70].

The following is a generalisation of Theorem 2.2.1.

Theorem 2.2.2. Let § € (0,1), p >0 and o > 0 be three constants such that

(@, f(z,t)) < p(L+ [2P1) and g (z,0)]3, < p+ ol 70 (2.2.3)

for all (z,t) € R* x R*. Then equation (2.1.1) has a unique global solution which obeys

X*(t
lim sup % < (0206)716) a.s. (2.2.4)
t—oo  (2tloglogt)2e

In comparison with Theorem 2.2.1, Theorem 2.2.2 may allow both f and ¢ to grow

sub—linearly. The following corollary describes this situation more precisely.

Corollary 2.2.1. Assume that there are positive constants «, 3, K1 and Ks such that

a€f0,1),0<26<1+aq,
(@, O < Ki(L+[e])  and g (z,1)|I2, < K1+ Kalz* (2.2.5)
for all (z,t) € R? x RY. Let X be the solution of equation (2.1.1).
(i) If 28 < 1+ «, then

X*(t
lim ®) T
t=o0 (2tloglogt) ==

=0 a.s (2.2.6)
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(ii) If 20 =1+ «, then

1

X* 1 a
lim sup ®) — < ((1 - a)2K26> a.s. (2.2.7)
t—oo  (2tloglogt)T-= 4

The next corollary covers the situation where f decays like |z|™® as |z| — oo for some

a € (0,1) while g may still grow sub-linearly.

Corollary 2.2.2. Assume that there are positive constants «, 3, K1 and Ko such that
a€(0,1),0<28<1—aq,
2| f(x, )| < K1 and  |lg"(x,8)||%, < K1 + Kalz|* (2.2.8)

for all (z,t) € R x R*. Let X be the unique solution of (2.1.1).

(i) If 28 <1 — «, then

X*(t
lim ®) — =0 as. (2.2.9)
t=o° (2tloglogt) T+
(ii) If 28 =1 — «, then
| X (1) Lo el
lim sup — < | -(1+a)"Kae a.s. (2.2.10)
t—oo  (2tloglogt)T+e

Roughly speaking, these new results show that when f obeys a polynomial growth or

decay condition with exponent o € (—1,1), and (x, f(x)) dominates ||g(z,t)||5, for large

[
|z|, then the a.s. partial maxima of the solution still exhibits an iterated logarithm-type
of growth bound.

We now turn to consider asymptotic behaviour in the cases when the linear growth
bound on f is sharp. Since the results above cover the case when the drift coefficient
behaves according to |z|* for a € (—1,1), and o > 1 corresponds to cases where f does
not obey a linear growth bound, by covering the case o = 1, we have a reasonably complete

picture of the asymptotic behaviour when the drift exhibits polynomial behaviour in |z|.

More precisely, we build on work in Mao [54, 57] in which it is assumed that
(x, f(x,1)) < £Al2* +p and gz, t)]| < K.
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Our main aim here is to show that we can remove the condition that the diffusion coefficient
g be bounded. The following theorem is a generalization of [57, Theorem 5.3 on page

66], and deals with the case when f can grow linearly and (x, f(x,t)) slightly dominates

lg(, )12,

Theorem 2.2.3. Assume that there are positive constants p, o,y and 0 such that 6 € (0, 1],

(2, f@,t)) <Alal +p and [ (x, D2, < p+ ole20- (22.11)

for all (z,t) € RY x RT. Then the solution of equation (2.1.1) obeys

X (1)

—— =0 a.s 2.2.12
t=00 et (log log t)% ( )

We note that the rate of growth is essentially €?* modulo an iterated logarithmic factor.
This exponential rate of growth is the best estimate one can expect in the deterministic
case when g = 0, suggesting that the estimate is quite sharp in some cases at least.

We now consider the case where f is linear, but tends to push the solution of the related
deterministic system z’(t) = f(x(t),t) towards a bounded domain. Once again we assume

that |(z, f(x,t))| dominates |7 (z,1) The following theorem is an extension of [57,

155

Theorem 5.5 on page 69].

Theorem 2.2.4. Assume that there are positive constants p, o, and 0 such that 0 € (0, 1),
(w, f(,0)) < —|zP+p and g7 (x,0)[3, < p+ ol (2:2.13)
for all (z,t) € RY x RT. Then the solution of equation (2.1.1) obeys
X*(t foe
limsupi()1 < (£> s (2.2.14)
t—oo (]og t)% v
In the scalar and autonomous case, the condition (2.2.13) implies that X is a recurrent

process with a finite speed measure. In the case that f(z) ~ —yz and ¢%(z) ~ o|z|?(1~?

as x — 00, we may use Motoo’s theorem to show that the solution obeys

, X*(1) (%) 2
limsup ——5 = | — ,  a.s.
t—00 (]og t) 26 v

and so the estimate for the essential rate of growth obtained in Theorem 2.2.4, which

covers finite-dimensional and non—autonomous equations, is sharp.
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2.3 Results Obtained by Comparison Principles

In Chapter 1, we gave a different approach to finding both upper and lower bounds on
the asymptotic growth rates of solutions of scalar autonomous SDEs based on comparison
arguments and Motoo’s theorem.

The following lemma is a direct application of the above theorem and it plays an im-

portant role in this section. The details of the proof are omitted.

Lemma 2.3.1. Let U be the unique continuous adapted solution of the following equation
dU(t) = (—aU(t) + b)dt + c/|U(t)|dB(t), t >0,

with U(0) = u, where a,b and ¢ are positive real numbers. Then for all t > 0, U(t) > 0

a.s. Moreover U is stationary and obeys

) Ut) o
lim sup =— a.s
t—oo logt 2a

2.3.1 Comparison principle results

Our first results are analogues of Theorem 2.2.2 and Corollaries 2.2.1 and 2.2.2 which
give iterated logarithm—type estimates on the growth rate of the partial maximum of
the solution of (2.1.1) when the drift and diffusion coefficients obey polynomial growth
conditions. We supply both upper and lower estimates on the rate of growth of the partial
maxima.

Firstly, note that the following Lemma from Chapter 1 is an analogue of Theorem 2.2.1.

Lemma 2.3.2. If there exist real positive numbers p, o1 and o9 such that for all (x,t) €
R x RT,

zf(x,t) < p and oy <|g(z,t)? < o1, (2.3.1)
then the solution of the one-dimensional equation (2.1.1) obeys

X
lim sup X @)l

— < .8. 2.3.2
t—oo +/2tloglogt — Vo as ( )
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A lower bound on the solution is also given in Chapter 1:

Lemma 2.3.3. If there exist real positive numbers o1 and o9 such that for all (z,t) €

R x RT,

t 1
z/(z, ) =L>—— and oy <|g(x,t)* <o, (2.3.3)

inf
2t 2

for some real number L, then the solution of the one-dimensional equation (2.1.1) obeys

lim sup X ()

t—oo /2tloglogt

We now state an analogue of Theorem 2.2.2. The following result uses Lemma 2.3.2,

> /o2 a.s. (2.3.4)

and is an extension of Lemma 2.3.2 to the multi-dimensional case.

Theorem 2.3.1. Let 0 € (0,1), and suppose there exist positive real numbers p, o1 and

o2 such that for all (z,t) € R x R,

2T f(x,t) < plzP0-9; (2.3.5a)
lg(a, D)2, < o127 and [T g(x,t)* = ofaP*7; (2.3.5b)
lzlg(z,t)| =0 iff z=0¢ecR% (2.3.5¢)
If in addition
f(0,t)=0 and g¢(0,t) =0, forallt>0, (2.3.6)

then the solution of the finite-dimensional equation (2.1.1) obeys

X(t
lim sup |—()‘1
t—oo  (2tloglogt)2e

< (9201)% a.s. (2.3.7)
In [57], if a equation with drift and diffusion coefficients satisfies the above assumption
(2.3.6), then the solution does not reach zero almost surely, provided that it starts from a
non—zero point. The condition is technical here; it is not needed to establish a comparable
upper bound in Theorem 2.2.2.
Note that the estimate on the righthand side of (2.3.7) is smaller than that obtained in

(2.2.4) in Theorem 2.2.2 by a factor of !/(2¢). This is a common feature of the technique
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combining Motoo’s theorem and comparison principle: all results in this section have
shaper estimates than those stated in the last section. However, (2.3.5¢) and the lower
bound on |#Tg(x,t)| in (2.3.5b) are not needed in Theorem 2.2.2, whose proof uses the
exponential martingale inequality. Such extra technical conditions are simply needed to
complete the proof using the comparison principle approach. The presence of additional
conditions of this type are another common feature and a disadvantage of the results
stated in this section.

By a similar argument, we have the following theorem on the lower estimate from Lemma

2.3.3. There is no comparable theorem available using the exponential martingale inequal-
ity.

Theorem 2.3.2. Let 0 € (0,1), if there exist L € R, 01 > 0 and o3 > 0 such that for all
(z,t) € RT x RF

o eP (22T f () + ||g(z, 8)]?)
inf
zeRd laTg(z,t)[?

=L >2—26; (2.3.8)

and (2.3.5b) and (2.3.5¢) also hold. If in addition f and g obey (2.3.6), then the solution

of the finite—dimensional equation (2.1.1) obeys

X
lim sup X(®)]

— 2L > (0%05)  as. (2.3.9)
t—oo  (2tloglogt)2e

The results of Theorem 2.3.1 and 2.3.2 together show that the partial maximum has
an identifiable deterministic essential rate of growth given by o(t) = (2t loglog t)?le As
indicated in the introduction, this shows that both the exponential martingale approach
and the upper bound identified by the comparison argument produce sharp bounds on the
growth rate.

We now consider results which parallel Theorem 5.5 in [57, page 69]. In addition, we

provide results regarding the lower estimates.

Theorem 2.3.3. Suppose there exist positive real numbers -, p, o1 and oo such that for

all (z,t) € R x Rt

lg(z, 5y < o1 and |aTg(z,1)]* > osla], (2.3.10)
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and g obeys (2.3.5¢).

(i) If 27 f(x,t) < —y|z|? + p, then the solution of equation (2.1.1) obeys

1

. | X (1)] (01>2
lim su <[ —= a.s. 2.3.11
t—»oop Viegt = \ vy ( )

(i3) If T f(x,t) > —v|z|?, then the solution of equation (2.1.1) obeys

lim sup X )] > <02> ’ a.s
t—oo V0ogt T \ vy

Note once again that the estimate on the righthand side of (2.3.11) is smaller than that
obtained in [57, Theorem 5.5] by a factor of \/e. However, as before, the extra technical
conditions (2.3.5¢) and the lower bound on |7 g(x,t)| in (2.3.10) are required to obtain
the upper estimate.

The following result may be compared directly with Theorem 2.2.4. It is a generalisation

of Theorem 2.3.3.

Theorem 2.3.4. Suppose 6 € (0,1), and there exist positive real numbers v, o1 and o9

such that for all (z,t) € RY x R,
g, D12, < a0 and a7 g(a, ) > alaft (23.12)
Suppose moreover that g obeys (2.3.5¢), and f and g obey (2.3.6).

(i) If 7 f(x,t) < —v|z|?, the solution of equation (2.1.1) obeys

1

X(t 0 20

limsup|7()‘1 < <01> a.s.
t—oo  (logt)2e Y

(ii) If 27 f(x,t) > —v|z|?, the solution of equation (2.1.1) obeys

1

X 0 20

limsupyi()‘1 > <02> a.s.
t—oo (logt)2e v

Again, in the above theorem, as a trade off for getting a shaper estimate, we sacrifice

the positive constants in (2.2.13) for technical reasons.
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2.3.2 A comparison result using a priori estimates

In this subsection, we state a result which further improves a theorem given in Section
2.2, by reusing the idea of estimation on the Itd integral when constructing a Riemann

integral inequality.

Theorem 2.3.5. Let f,g : R — R and B be a one—dimensional standard Brownian

motion. Suppose that X = {X(t);t > 0} is the unique adapted continuous solution of

dX (1) = F(X(B)dt + g(X (1) dB(t), >0,

with X (0) = xg. If there exist positive real numbers p and o such that for all x € R,

zf(z) < p; (2.3.13)
limsup |g(z)] =0 and g¢*(x) >0, (2.3.14)
|| —o00
then
X(t
limsupi <V20 a.s. (2.3.15)

t—oo V/2tloglogt
In this theorem, the global bound on g which appeared in the upper estimates in all
previous sections has been reduced to an ultimate bound o for large values of |z|. No extra
technical conditions are imposed on the lower bound of |g|, as are needed in the comparison
arguments, while the factor independent of the diffusion bound on the righthand side of
(2.2.2) in Theorem 2.2.1 is reduced from /e to v/2 in (2.3.15). Based on Lemma 2.3.2, we
conjecture that the optimal factor is unity, and that the size of the large deviations of the

process will depend on the behaviour of the diffusion coefficient as |z| — oo.
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2.4 Recurrent Solutions of Stochastic Functional Differen-

tial Equations with Maximum Delay

In this section, we investigate the large deviations of SEFDEs of the following type:

dX(t) = [~g(X (1) + sup F(X(s))]dt+odB(t), t>0, (2.4.1)

—7<5<t

X(t) =), tel-70,

where g and f are asymptotically polynomial functions.

The first theorem in this section concerns SDEs without delay. It provides the funda-
mental essential growth rate of the partial extrema of the solutions despite the presence
of delay. The result is obtained by a direct application of Motoo’s theorem; however we

state both the result and give details in order to make the paper more self-contained.

Theorem 2.4.1. Let V be the unique continuous adapted process obeying the following
equation

AV (t) = —g(V(t)) dt + o dB(t), t >0, (2.4.2)

with V(0) = vg. If there exist positive real numbers 6 and a such that

m @9 _ (2.4.3)
jal o0 |z]f ’
then V is recurrent on R. Moreover,
1
t 2(1460)] 7
lim sup V()l = [J( i )] ,  a.s. (2.4.4)
t—o0 (logt)m 2a
1
t 2(1+0)]™0
lim inf Vi )1 =— [J (1+ )] ,  a.s. (2.4.5)
t—o0 (logt)m 2a

Theorem 2.4.1 shows that for SDEs with polynomial drift coefficients of degree 8 and
additive noise, the growth rate of the partial maxima is logarithmic with the degree of
logarithmic growth increasing as the strength of mean-reversion decreases. The result
can certainly be generalized to equations with non-constant diffusion coeflicient as shown
in Chapter 1. To ease later analysis on delay equations using comparison arguments, we

retain throughout the condition of a constant diffusion coefficient.
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Before moving on to delay equations, we state a lemma which will prove to be convenient

in the proofs of later theorems.

Lemma 2.4.1. Let g : R — R be a continuous, odd and non-decreasing function. If there

exists a real number C > 1 such that

Vz,y € R, gz +yl) < C(g(z]) + g(ly])) (2.4.6)

then
V>0, yeR, —Cgz+y)<—g(z))+(C+1)g(ly)); (2.4.7)
Ve <0, yeR, Cgx+y)<—g(z])+ (C+1)g(ly]). (2.4.8)

The following theorem deals with the situation when 6 € (0, 1).

Theorem 2.4.2. Let X be the unique continuous adapted process obeying (2.4.1). Suppose

that g is an odd function, both g and f are non-decreasing on R, and

Vo,ye RT, gz +y) <glx)+g(y); (2.4.92)
Vz,y € R, [f(z+y)| < f(z]) + f(|y])- (2.4.9b)
Furthermore
Jim Sgn(‘iieg(w) —a>0 (2.4.10)
where 0 < 6 < 1.
(i) If
1 Sgn(x)gf(w) =b>0 (2.4.11)
jw[—oo |z
with a > b, then
X (t
;< limsupli()‘1 <(Cy, a.s. (2.4.12)
t—oo  (logt)T+e
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where
1 1 1
o?(1+6)]™° 3a+b\?| [0?(1+0)] T+
_ |4 +0) — |1 T (241
o= |qasg] - e[+ [T e
(ii) If
o g(x)
lim =—~< = oo, 2.4.14
jz|—o0 f(z) ( )
then
1 1
2 50 2 1+
[0(1—1—9)] i < limsupL(t)L < (3% +1) [0(1—1—9)] . , a.s. (2.4.15)
2a t—oo (logt)T+o 2a

It is obvious that the second part of the theorem is a special case of the first part
and can be obtained by letting b | 0. It can be seen that because the function ¢ in the
instantaneous term dominates the function f in the delay , the essential growth rate of
the solution of the delay equation is the same as that of the equation without delay. In
fact, in case (ii) where f is negligible relative to g, we can obtain sharper estimates on
the growth rate, which are moreover close to those seen in (2.4.4) and (2.4.5) for the non-
delay equation. Clearly, if f dominates g, we cannot expect solutions to be recurrent, so
an analysis of large deviations using Motoo’s theorem cannot be applied. If 6 € (1, 00),

we have the following theorem.

Theorem 2.4.3. Let X be the unique continuous adapted process obeying (2.4.1). Sup-
pose that g is an odd function, both g and f are mon-decreasing on R, and there exists

C > 1 such that g obeys (2.4.6). Furthermore, suppose g obeys (2.4.10), where 6 > 1.

(i) If f obeys (2.4.11), with b < a2'~9C~1 < a, then

X
C1 < limsup &

— < (3, a.s. (2.4.16)
t—oo  (logt)T+o

where C is defined as in Theorem 2.4.2 and

1 1
p2f—1 24 1 g 201 1+6
Cy = 1+<j10)“ 1 [U(W} '
6& — b20— 2a
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(ii) If f and g obey (2.4.14), then

1

o?(1+6)] 1+
2a

< limsup|Xi(t)|1 < [(2C + 1)é + 1} [

(2.4.17)
t—oo  (logt)T+e

[02(1 + e))] T+

2a

As in Theorem 2.4.2, the second part of Theorem 2.4.3 is also a special case of the first
part. Theorem 2.4.2, together with Theorem 2.4.3 suggests that when the historical delay
term is dominated by the mean-reverting instantaneous term, the solution is recurrent.
Also because of the autocorrelation provoked by the delay term, solutions tend to expe-
rience slightly larger extreme fluctuations. Therefore we would expect the exact growth
rate to be greater than that seen when the non-linear term involving f is instantaneous.

It is worth noticing that 7 does not appear in the estimates on either side of inequal-
ities (2.4.12) and (2.4.16). These estimates are global. If we replace “sup_,.«;” with
“sup;_,<s<¢ , by the stochastic comparison principle, results remain the same. This means
that the essential growth rate of the long-run large fluctuations is insensitive to the length
of the time interval on which the maximum value is taken. However, this does not nec-
essarily mean that the size of the fluctuations is independent of the delay. An example
which shows that the delay can matter is given in the next chapter. However, in the next
chapter, we only deal with SFDEs which are linear, or which have negligible nonlinearities

at infinity.

2.5 Proofs of Section 2.3 and Section 2.4

Proof of Theorem 2.3.1 Let Y (t) :=|X(¢)|?. By the It6 formula, we compute

V(1) = IO RXTOSXD.0 + 19X 0.0])
(0~ SB)X O IXT (X (1), ) | dr

+ 01X @)X (1)g(X(¢), 1)dB(1).
Let M(t) = f(f 01X (s)|°72X T (s)g(X (s), s)dB(s) which has the quadratic variation

<M>(1t)=/0 6% X ()72 XT (5)g (X (s), 8) [ ds.
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Then by Doob’s martingale representation theorem (see e.g., [49, Theorem 3.4.2]), there

is a one—dimensional Brownian motion B in an extended probability space with measure

P such that
M(t)—/o 01X ()2 X7 (s)g(X (5), 5)|dB(s), P —as.
Hence
O = g [IXOP 2 RXTONXO0 + lo(X0.0IF)

(0~ SPNX WP X (09X (1), 1) de
+ 01X XT (1) g(X (t),t)|dB(¢). (2.5.1)

We now show that the drift and diffusion coefficients of above equation are bounded by

some positive real numbers as (2.3.1). Since § — 6% > 0 and (2.3.5), we have

SO (27 £, ) + g, D) — (0 — 360~ 1a g, )
< SOl (2 £, 1) + llg(a, 1))
<0Op—+ %Halm.
Also
Olel’1a g, )] < Ol alllg(e ) lop < Olal’~anlel '~ = /a7,
and
Olel’1a g, )] 2 Ol Voalal>~" = 0/,

Hence by Lemma 2.3.2, we get the desired result (2.3.7).

Proof of Theorem 2.3.2 By (2.5.1) and Lemma 2.3.3, we see that the conclusion

(2.3.9) is obvious if we can show that for all (z,t) € R? x R,

i {%9m|29‘2(2fo<x,t> +llg(= OI*) (6 - 592>|x1294\xfg<x,t>,2} 1
(z,t)ERIXR+

02|42 g (. 1)]? 02|~ |2Tg(x, t)]? 2

But the above is equivalent to part (a) of condition (2.3.8), therefore the proof is complete.
Proof of Theorem 2.3.3 (i) By Itd’s formula, for all ¢t > 0,
dIX(0)* = 2XT (1) F(X (1), 1) + [|g(X (8), )[]°] dt + 2X T (£)g(X (¢), ) dB(2).
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Again, by the martingale representation theorem, we can replace the martingale defined as
M(t) := fg XT(s)g(X(s),s)dB(s) by M(t fo X7 (s)g(X (s),s)| dB(s) in an extended

probability space which has measure P and supports the one—dimensional Brownian motion

B. So
dIX () = 2XT () F(X(2), 1) + [|g(X (¢), 1)[|*)dt + 21X (1) (| X (£)], t)dB(2)

where

r.t) — UE[\/O'»Q,\/E], r =0,
o ’”‘{ @7y, D) /]z], x#0.

Due to the above definition of ®, (z,t) € RY x R, \/o3 < ®(x,t) < \/o1. Now define
N(t) := fg ®(X (s), s)dB(s), which has the quadratic variation (N)(t) = fg P2(X (s), s) ds.
Thus

YVt >0, oot < (N)(t) <ot (2.5.2)

limy 0o (N)(t) = oo due to (2.3.10). For each 0 < s < oo, define the stopping time
A(s) := inf{t > 0; (N)(¢) > s}. Hence for all t > 0, (N)(A(t)) =t and \(t) = (N)~L(2).
By martingale time-change theorem (see e.g., [49, Theorem 3.4.6]), the process W defined
by
A(t) -
W) ::/ B(X(s),s)dB(s) Vi>0
0

is a standard Brownian motion with respect to the filtration G; := F)(;). Proposition 3.4.8

in [49]gives us, almost surely
A(t)
/ | X (s)|dN(s) / | X (A\(s))|[dW (s) for each 0 <t < oc.
0

Thus if Y (¢) := | X (A\(¢))|?, from (2.3.10), we have

2yt = XM XA + s KN ADIE | gaw o

D2(\/Y (t), A(t))
< <_27Y(t) + 24 mal)dt +2V/Y (1) dW (1)
01 () ()]

Consider the process governed by

dZ(t) = (WJF mal)dt+2\/ )dw (t
o2

01

87



Chapter 2, Section 5 Extension Results on Non-Linear SDEs using the Motoo-Comparison Techniques

with Z(0) > |zo|?>. By Lemma 2.3.1, we have V¢ > 0, Z(¢t) > 0. Using the comparison

theorem (Proposition 5.2.18 in [49]) Vt > 0, Z(¢) > Y (¢) a.s. Also by Lemma 2.3.1, we

get,
Y(t Z(t
lim sup ®) < limsupL = ﬂ, a.s.
t—oo lOg t—oo logt v
That is
X(A(t v
limsup‘ ( ()1)| < Ul, a.s.
t—oo  (logt)z Nal
which implies
X(t v/
lim sup X @) < o1 a.s.

oo (logA\=1(t)2 ~ V'
Combining the above inequality with (2.5.2), the desired result is obtained. The proof for

part (ii) is essentially the same as part (i), except that the process Z is constructed to go

below Y pathwise using the condition z” f(z,t) > —~|z|2. We omit the details.

Proof of Theorem 2.3.4 As in the proof of Theorem 2.3.1, we set Y (t) := |X(¢)|°
t > 0 which obeys (2.5.1). Now since (§ — £6%) > 0 and (2.3.12) it is easy to see that for

all (x,t) € R x R*, the drift coefficient of (2.5.1) satisfies

92

P2 )+ g DIP) — (0 2)

1
o2y, )] < —0y]af* + S0orm,
and the diffusion coeflicient satisfies

052 < O]l g(a,1)] < O]zl 2lalllg e, 1) |op < Oy/1

Therefore by applying Theorem 2.3.3, we get the desired result in part (i). Part (ii) follows

a similar argument.

Proof of Theorem 2.3.5 Given (2.3.14), for any € € (0,1), there exists z. > 0 such

that for all x > z., ¢*(z) < o?(1+ 25)%. Moreover, there exists a real number C' such that
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for all z € R, g?(z) < C?. Hence
t
| X)) ds
0
t t
= [ XPE D ety s+ | XX o0

t t
< 0'2(].4-2!':‘)é / X2(8)1{X2(5)>x3}d8+02/ XZ(S)l{XQ(s)Szg} ds
0 0

ol

t
< o?(1+ 2) / X?(s)ds + C%22t. (2.5.3)
0

Let M(t) = f(f 2X (s)g(X(s))dB(s) for t > 0, which has quadratic variation
(M)(t) = 4/ X2%(s)g*(X(s)) ds. (2.5.4)
0

Define A = {w : lim;_,oo(M)(t) < oo}. Then there exists a real number L such that
limy_oo M(t) = L a.s. conditionally on A. Then for almost all w € A, the result is
obviously true. Consider the complement A° of A. For almost all w € A¢ and € € (0, 1),

there exists a random time 7, ; > 0 such that for all ¢ > T} 1,

ol

M (t) < /2(M)(t)loglog (M) (t)(1 + 2¢)5. (2.5.5)

Now by Lemma 2.3.2 (or Theorem 2.2.1),

X2(t) <2

lim sup C*, as. (2.5.6)

t—oo 2tloglogt —
For the same € € (0,1), there exists 7. 2 > 0 such that for all t > T} 5,

X%(t) < (1+ 25)%C22t loglogt, a.s.

By L’Hopital’s Rule

t
' ng ,2s log log s ds _ 2t log log t
lim —= = lim =1L
00 t2loglogt t—oo 2t loglogt + t2tlogt
Hence
t
o fixsyds . Jr,X(s)ds
lim sup = lmsup —5—————

t—oo  t2loglogt t—oo  t?loglogt

t
|7 . 2sloglog sds
< limsup C?%(1 + 26)% Lo
t—00 t2loglogt

<C*(1+ 25)%, a.s.
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Letting € | 0 through rational numbers, we get

t 2
X d

lim sup 711)2 (s) ds <C?

i—oo t*loglogt

Thus by (2.5.3) and (2.5.4)

M) (t
lim sup ﬂ < 40%C?, a.s. conditionally on A°.
t—oo t2loglogt

Therefore

oy 108192 () (1)

<1, a.s. conditionally on A°.
t—00 loglogt

So there exists 77 3 > 0 such that for all ¢ > T} 3,
loglog (M)(t) < (1 + 25)% loglogt, a.s. conditionally on A°.

Let T, 4 = T.1 V 1T, 3, then by (2.5.5), we have

Vt>Tes, M) < /2(M)(t)loglogt(l+2¢)3, as.
Now for all t > T 4,

X2(t) < a2+ (2p+ Ot + M(t)

<22+ (20+CHt+(1+ 25)%\/2(M>(t) loglogt, a.s.

Define Y (t) = fg X?(s)ds for t > 0. Then for any 7 > 23/C? > 0 and t > T, 4,

Y'(t) <2(p+ CH(t+ 1)

+(1+ 2£)§ \/8(10g log (t+ 7))[02(1 + 25)%Y(t) + C222(t + 7)),

with Y (7% 4) = y. > 0. Now suppose the following
T > e
C%x2
Ceo22:(1+ 25)%
2(p+C?)
ea/8C:

2 Ye
loglog T > =;
7% log log T C

Tloglog T >

7

loglog T >

90
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where
C. = 2(1 +2¢)%02. (2.5.9¢)
Define
yi(t) = Co(t +7)loglog(t +7), t>Tey. (2.5.10)
By (2.5.9Db),

o?(1+ 25)%y+(t) + C%g(t +7)

=o%(1+ 25)%05@ +7)%loglog (t + 1) + C*x2(t + 1)

< 02 (1426)3C.(t + 7)2loglog (t + ) + 02C.2e(1 + 2€)3 (t + ) log log (£ + 7)
= (1+ 2€)30%C.(t + 7)2loglog(t + 7).

Hence

(1+ 25)%\/8(10g log (t + 7)) [02(1 + 26)3y4 (t) + C222(t + 7)]

<1+ 2&?)%0 8C.(t + 7)loglog(t + 7).

Next since (2.5.9¢) holds, we have

(14 2€)3 \/8(log log (t + 7))[02(1 + 26) 3y () + C2a2(t + 7)]
+2(p+ C?)(t+ 1)
< eo/8C.(t+ 7)loglog(t + 1) + (1 + 25—:)%7@(75 + 7) loglog(t + 7)
= (14 2¢)%0/8C.(t + ) loglog(t + 7). (2.5.11)
Now by (2.5.9d)
Yi(Tea) = Co(Tea + 7)*loglog(Te s + 7) > Cem?loglog T > ye = Y (TL4). (2.5.12)

(2.5.9¢) together with (2.5.11) gives

C.(t+7)2
(t+ 7)log(t + 7)

Y (t) = 2C(t + 7)loglog(t + 7) +
> 2C:(t + 7)loglog(t + 1)
= (14 2¢)20/8C.(t + 7) loglog(t + T)

>2(p+C?)(t+7)

(14 20)3/8(loglog (¢ + 7))[02(1 + 26) Sy (£) + C2a2(t + 7)) (2.5.13)
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Thus by (2.5.8), (2.5.12) and (2.5.13), we have
Vit >Toq, Y(t) <yi(t)=2(142e)'0*(t+7)%loglog(t+7), a.s. conditionally on A°.

Combining above with (2.5.12), for almost all w € A® and any ¢t > T} 4,

X2(t) < a2+ (2p+ CH)(t+7)+ (14 28)5/(t + 7) loglog(t + 7)

X \/8 [204(1 + 25)?3( t +7)(loglog(t + 7)) + 02:[:3] .

This implies that for almost all w € A and any ¢ > T 4

X2(t) - x2 2p + C?
(t +7)loglog(t+7) — (t+7)loglog(t+7)  loglog(t+ )
2 13 C?a?
(1+2¢)3 204( 2e)s = .
* 83\/ ot(1+2e)% +(t+7)loglog(t+7)]

Letting t — oo, we get

X2
lim sup ®)

m su m <41+ 25) (1 + 35)% , a.s. conditionally on A°.

Finally letting € | 0 through rational numbers, the desired result is obtained.

Proof of Theorem 2.4.1 (2.4.3) implies that for any fixed 0 < ¢ < 1, there exists

z. > 1 such that

Vo >z, 2%a(l—¢)<g@) <2%a(l+¢); (2.5.14)

Vo < -z, —|z/%a(l+¢) < g(z) < —|z)%a(l —¢). (2.5.15)

Consider the scale function s, of V' defined as

r o —9(2)
sy(aﬁ):/ e 2N gy zeR.
1

Due to (2.5.14), it is easy to verify that for y > z.,

T 2a(1 5)y1+0
sule) 2 Ko [ et ay,
1

where

_ 2a(l—¢) 146
Kl = e 0'2(1"!‘9) €

+% [ 9(2)dz
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Hence s,(00) = oo. Similarly, s,(—o00) = —oco. The speed measure m, of V is defined as

2 2 u
my (dz) = 52 7z I 9@z g,

Again, using both (2.5.14) and (2.5.15), it can be shown that m,(—00,00) < co. Hence
V' is asymptotically stationary on R, and therefore we can apply Motoo’s theorem to

determine the growth rate of its large deviations. Now, for y > z.,
T 2q(1—¢) 0 T 2q(14¢) 0
Kz/ e o7 Ty < s () < Kg/ e o2 Je gy,
1 1

where Ky := %/ o? 1= 9(2)dz Dividing both sides of this inequality by the quantity

e(2a(146)/(0*(140)2" where § > 0, and letting 2 — oo, we get

) Sy(x)
Jim — o, =0
602(1+9)

Thus there exists zg > 0 such that

2a(1+e) 146
Va>uxg, Sp(z)<es?0+0

For t > 0, define
1
a%(1+0) 1+6
t) = | ———=logt
a1(t) [2@(1+6) Og}

There exists t,, such that for all ¢ > t,, 01(t) > x¢, which in turn implies s,(p1(t)) < t.

© 1 1
——dt> / ~dt = o0,
/t sv(01(t)) tag t

0 0

Hence

By Motoo’s theorem,

‘H
Bl

V(t) - [02(1 - 9)} T+

I
e 2a(1+¢)

t—o0 (logt)ﬁ B

Letting € | 0 through the rational numbers, we have

V() >[02(1+9)}1ie’ .

lim sup (2.5.16)

For t > 0, define

1

o? 1+6
02(t) := [/m logt] +1,

where A > 1. Since s,(z) is increasing, for ga(t) > =, we get

2a(l—¢) (92(15)71)1_4_9

Kies+0) < sv(e2(t)),
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that is

2a(1—¢)
L < Kf167 02(1+9)(Q2(t)71)1+9
sy(02(t))

Hence

log —L
n Bae® o
t—00 logt -

For any fixed 0 < € < 6 — 1, there exists t. > 0 such that

Vt>te, log < (=A+¢€)logt,

I
sv(02(t))

e 1 * 1
/ . _dt< / —— dt < o
t. Sv(02(t)) te t°

Applying Motoo’s theorem again, we have

which implies

V(t) - [)\02(1 + 9)} T+

lim sup < ,  a.s.
t—oo (logt)T+e 2a(1 +¢)

Letting A | 1 and € | 0 through the rational numbers, it follows that

lim sup

t—oo  (log t)ﬁ B

Vo [Furon

Combining this inequality with (2.5.16), we get the first part of the theorem. For the second
part of the theorem, for t > 0, let V(t) := =V (t), §(z) := —g(—=) and B(t) := B(t). Then
we have

AV (t) = —g(V(t)) dt + o dB(t), t>0.

where ¢ also satisfies

sgn(z)g(z)

FEC T

Hence by (2.4.4),

1

Vi) [02(1 +9)} T+

lim sup

- , a.s.
t—oo  (logt)T+o

2a

which in turn implies (2.4.5).
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Proof of Lemma 2.4.1 We first prove (2.4.7). For x > 0, we first consider the case

when y < 0.If x +y > 0,

Cg(z +y) —g(|z]) + (C+ Dg(ly|) = Cg(x +y) — g(z + y + (=y)) + (C + Dg(ly|)
> Cg(r+y) —Clg(z +y) +9(~y)) + (C+ g(|yl)
=Cg(z+y) — Clg(xz +y)) +Cgy) + (C + 1)g(lyl)

> Cyg(y) + (C+ Lg(lyl) >0,

where we have used (2.4.6) in the second line. If x +y < 0, then y < —z. Since g is

non-decreasing and odd, g(y) < g(—z) = —g(z). Also as g(x +y) > g(y), we have

Cyg(z +y) —g(z]) + (C + Dg(ly|) = Cg(x +y) + g(y) + (C + 1)g(|y|)

> Cyg(y) +9(y) + (C+ g(ly[) = 0.

When y > 0, since C' > 1,
—Cyg(z +y) < —Cg(x) < —g(|z]) + (C + Dg(ly]).

Therefore we have proved (2.4.7).

Now we prove (2.4.8). For z < 0, we also consider y < 0 first. Note z + y < x and

g(x) <0< g(|y|), so

—Cg(z +y) — g(|z]) + (C+ Dg(ly|) = —=Cg(z) + g(z) + (C + L)g(|y])

=9(z)(1=C)+(C+ Dg(lyl) = 0.
When y > 0, if z +y > 0, then g(|y|) > g(z +y) > g(z), thus
—Cy(z +y) —g(z]) + (C+ Dg(jyl) = =Cyg(z +y) + 9(z) + Cg(lyl) + 9(y])
= Cy(lyl) — Cyg(z +y) + g(lyl) + g(z) = 0.
Finally when y > 0 and = +y < 0,
—Cy(z +y) — g(Jz]) + (C + Dg(lyl) = Cg(=z —y) + Cg(lyl) — g(=]) + g(|yl)

> g(—z—y+y)—g(lz]) + g(y)

= g(=2) = g(|z|) + g(y) = 0.
Hence (2.4.8) is also proven.
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Proof of Theorem 2.4.2 (i) Consider the process Y governed by the following SDE:
dY (t) = [—g(Y (¥)) + f(Y ()] dt + o dB(t), t=0,

where Y (t) = ¢(t) < ¢(t) for t € [—-7,0]. Then by the comparison principle, for all ¢ > 0,
X(t) > Y(t) a.s. We notice by (2.4.10) and (2.4.11), and the fact that a > b, that Y obeys
all the properties of V' in Theorem 2.4.1. Therefore,

Y (¢t
lim sup # =C1, as.
t—oo  (logt

1
1+0

)
where C1 is given by the formula in (2.4.13). For the upper estimate, consider the process

Z governed by the following equation
dZ(t) = —g(Z(t))dt + cdB(t), t=>0,
with Z(t) = 9(t) for t € [-7,0]. For all t > —7, let Q(t) := X (t) — Z(t), then

Q') =—g(Qt) +Z(t) +9(Z(t)) + sup f(Q(s)+ Z(s)), t=0,

—7<s5<t
with Q(t) = 0 for t € [—7,0]. Now, if Q(t) = 0, then DT|Q(¢)| = |Q'(¢)|. If Q(t) > 0, by

(2.4.9), Lemma 2.4.1 and the fact that both g and f are non-decreasing,

DT =Q'(t)

< —g(IQMD +29(12(1)]) + 9(1Z2(H)) + sup_ f(IQ(s)[ +[2(5)])

<~ + 35200 + 5 s (WD + 7 s 1Z(O.
It Q(t) < 0,
DR = ~Q1)
= 9(QU) + 2(0)) = 9(Z() — swp>_[(QLs) + ()
< g(QU|+ 120 +1o(Z()] + s £(@()+ Z(6)
< —6(QWI) + 39120 + 1 su_[QE)) +/( sup_|Z(s)).

where we have chosen C =1 in Lemma 2.4.1. Now by Theorem 2.4.1, Z obeys

() :[a%ueqlie,

lim sup -
t—o0 (10g t) 1+60 2a

(2.5.17)
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Let (2.5.17) be true on the a.s. event *. Then for every w € QF, for any fixed ¢ €
(0,(a —b)/(a+b)), there exists Tj(g,w) > 0 such that

o?(1+0)

o :
5 ] (logt)™+0(14+¢€), on Q*. (2.5.18)
a

Vt>Ti(s,w), sup |Z(s)| < [

—7<s<t

Since f is non-decreasing, (2.5.18) implies on Q* that

2 T4 )
Vit >Ti(e,w), f( sup |Z(s)]) < f <{U(1+0)} (logt)T+0 (1 —1—6)) . (2.5.19)

—r<s<t 2a

Also (2.4.11) implies that for the same ¢, there exists z. > 0 such that
Vo >z, brl(l—e) < f(z) <bxl(1+e).

Now there exists T}, > 0 such that

o2(146)]T

1
T+0
V> Ty, [ > } (logt) ™0 (1 + €) > ..

Choosing Ty (e,w) := Ti(e,w) V T, we see that

Vs Thew), f( sup |Z<s>|>§b[“2“+ﬂ”g
—7<s<t 2a

(log )T (1 + )™, on OF.
Similarly for some T3(g,w) > 0,

(14 6)
2a

_6

0
1+6
Vit > Ty(z,w), g(|Z<t>\>§a[ ] (log )75 (1 + £)*°, on "

Hence if T)(e,w) := Ta(e,w) V T3(e,w), then for all t > Ty(e,w),

DiQ@)| < —g(IQ@M)]) + F( sup_[Q(s)])

—7<s5<t
%)
0

2 o
0(1—1_9)] (logt)™0 (14 €)' on Q*.

+(3a+b)[ ”

Let t4 be a positive real number such that logt; > 0. Consider the randomly parame-

terised function U, given by

1

U (t) L Ks(logt) 1+f + p(s,w), t e [t+, OO), (2 5 20)

e = .
Ko(logt )™ + ple,w), 1€ [-m 1),

where K., p(e,w) > 0. Hence U, is a continuous, positive and non-decreasing function on

its domain. By (2.4.10) and (2.4.11), for the same &, there exists T5(e,w) > 0 such that
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for all t > Ts(e,w), —g(U(t)) < —aU?(t)(1 — ¢) and fup_ <1 Ue(s)) = f(U(t)) <
bU?(1)(1 +¢). Let Ty(e,w) := Ts(e,w) Vti V Ty(e,w). Choose

S

6

(Ba-+) (ZG2) T (14 2y

Ke = a(l—¢e)=b(l+¢)

and let pe, > 0 be such that U.(—7) > max;c[_, 1, |Q(t)]. For all £ > Tg(e,w),

o2(1 + )] T

UL() + 9(U () — F( sup Ue<s>>—<2a+b>[ } (log )57 (1 1 2)1+9

—7<s<t 2a
K. -6 1 0
> - _ )
21 e(logt) 140 . + (a(l—¢)=b(1+¢))U(t)
[’}
[o?2(1+0)] 7
—(2a+10) o(1+96) (log t)ﬁ (14¢)t+?

2a |
> (a(1 — £) — b(1 + &) K? (log t) 750

[o2(1+0)] ™0
2a

—(2a+10) (logt)ﬁ(l +e)tt =,

Therefore by [52, Theorem 8.1.4, volume II], for all t € [T, 00), U-(t) > |Q(¢t)|. Hence

Q(t, w 3! Ue(t,w)

lim sup — =K., onQ".
t=oo (logt)T+0 = (logt) T+

Letting € | 0, we have

lim sup — <
t—oo  (logt)T+o

Qt.w)| _ {(3a+b)r [UQ(HQ)]IL} (2.5.21)

a—b 2a
Because w € Q" and P[Q2*] = 1, (2.5.21) holds a.s. Now for all ¢t € [—7,00), |X(t)] <
|Q(t)| + |Z(t)|. Therefore combining with (2.5.17) and (2.5.21), we get the desired upper
estimate for C in (2.4.13).

(ii) Let b = ¢ > 0 and ¢ be so small that € < (a —€)/(a + ¢). Then we can reprise the
proof of part (i) with b = ¢, from which we obtain

1
L g

Qe _ o _ [Gata (T5) T 4o
limsup ———— < K,

t—oo (log)THo a(l—¢)—e(l+e) ’

on O*.

Let ¢ | 0, we get the upper bound in (2.4.15).
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Proof of Theorem 2.4.3 Proceeding in the same way as in the proof of the previous
theorem, we arrive at
Q1) = ~g(QU) + Z() + 9(Z(1) + s [(Q)+Z(s)). 1=0.
—TSSS
Due to the fact that § > 1 and g satisfies (2.4.10), C' is guaranteed to be greater than
1. Then in a similar manner as in the proof of the previous theorem, it is not difficult to

show that for all t > 0,

1 20 +1

DLIQW)| < —#9(IQM) +

o 9ZOD + f(sup_|Q(s)| + sup_ |Z(s)]).
—7<s<t —7<s5<t

By an analogous argument as in the previous proof and the conditions (2.4.10) and (2.4.11),
as well as the inequality (z + y)? < 2071(2? + ¢?) for 2,y > 0 and 6 > 1, it can be shown

that there exists Tr7(e,w) > 0 such that for all t > Tr(e,w),

DLIQ()] < —=g(1QWM)) +b(1+)21( sup_[Q(s))

C —7r<s<t

2 4 (24 é)a) [

0
Uzg; 0>] T (149 (log 1) .
Here we require € € (0, (2—b2971)/(2+b2971)). Now again consider the function U, defined
as (2.5.20), there exists a Tg(e,w) > 0 such that for all t > Tg(e,w), g(U:) > a(1 —)UY.
Let Ty(e,w) := T7(e,w) V t4+ V Tg(e,w). This time we choose

0
(]. + E)1+9(626’—1 4 (2 + %)a) (cﬂ(%ﬂj—@)) 146
Ga(l—e) —b(1+¢)20-1

K. =

and p(e,w) > 0 large enough such that U.(—7) > |Q(Ty)|. Then by a similar calculation

as before, we get the desired results in both part (i) and (ii) of the theorem.
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Chapter 3
Stochastic Affine Functional Differential

Equations

3.1 Introduction

Increasingly real-world systems are modelled using stochastic differential equations with
delay, as they represent systems which evolve in a random environment and whose evo-
lution depends on the past states of the system through either memory or time delay.
Examples include population biology (Mao [59], Mao and Rassias [61, 62],), neural net-
works (cf. e.g. Blythe et al. [20]), viscoelastic materials subjected to heat or mechanical
stress Drozdov and Kolmanovskii [32], Caraballo et al. [26], Mizel and Trutzer [64, 65]),
or financial mathematics Anh et al. [1, 2], Arriojas et al. [14], Hobson and Rogers [46].

In such stochastic models of phenomena in engineering and physics it is often of great
importance to know that the system is stable, in the sense that the solution of the math-
ematical model converges in some sense to equilibrium. Consequently, a great deal of
mathematical activity has been devoted to the question of stability of point equilibria of
stochastic functional differential equations and also to the rate at which solutions converge.
The literature is extensive, but a flavour of the work can be found in the monographs of
Mao [56, 57], Mohammed [66], and Kolmanovskii and Myskhis [50].

However, in disciplines such as mathematical biology or finance, it is less usual for
systems to converge to an equilibrium; more typically, the solutions may be stable in the
sense that there is a stationary distribution to which the solution converges (see e.g. Reif3
et al. [69], Kiichler and Mensch [51], Mao [58]).

Mao and Rassias [62] have established upper bounds on the partial maxima growth rate of
solutions some special stochastic delay differential equations (SDDEs) with fixed delays,

with their results having particular application to population biology. Their methods
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enable them to recover results for highly nonlinear systems which are moreover sharp in
the sense that the rate of growth of the corresponding non-delay systems are recovered
when the fixed delay is set equal to zero. However, their methods do not automatically
extend to differential equations with more general delay functionals, nor can they obtain
lower bounds on the rate of growth of the partial maxima.

This chapter deals with a simpler class of stochastic functional differential equations
(SFDEs) than [62] (in the sense that the equations are essentially linear) but with a
more general type of delay functional, covering both point and distributed delay by using
measures in the delay. In common with [62], but by different methods, we obtain an
upper bound on the rate of growth of the partial maxima. However, in contrast to [62],
we are also able to establish a lower bound on rate of growth of the partial maxima;
indeed, as these bounds are equal, we can determine the eract a.s. rate of growth of
the partial maxima. The results exploit the fact that given an exponentially decaying
resolvent, the finite delay in the equation forces the limiting autocovariance function to
decay exponentially fast, so that the solution of the linear equation is an asymptotically
stationary Gaussian process. The results apply to both scalar and finite- dimensional
equations and can moreover be extended to equations with a weak nonlinearity at infinity.

More precisely, we study the asymptotic behaviour of the finite-dimensional process

which satisfies
t t
X(t) :¢(0)+/ L(Xs)ds+/ SdB(s), t>0, (3.1.1a)
0 0

X(t) = ¢(t), te[-7,0). (3.1.1b)

where B is an m—dimensional standard Brownian motion, ¥ is a d X m—matrix with real

entries, and L : C[—7,0] — R? is a linear functional with 7 > 0 and

L@ = [ s)ols), o€ O 0,

The asymptotic behaviour of (3.1.1) is determined in the case when the resolvent r of the
deterministic equation z/(t) = L(z), t > 0 obeys r € L'([0,00); R¥*9). In particular, we

show that the partial maxima of each component grows according to
(X(1),e:)

X )
h?lsol.elp W = 0y, htIE)IOl;lf W = — 0y, a.s. (312)
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where o; > 0 depends on 3 and the resolvent r. Moreover

X(t
limsupﬂ = max o0;, a.. (3.1.3)
t—00 2logt  i=1,..d

Linear stochastic delay difference equations are commonly seen in the time series mod-
elling of interest rates and volatilities in inefficient markets, in which historical information
is incorporated in the dynamical system at any given time. An autoregressive (AR) model
can be seen as a discretised version of the linear SFDE (3.1.1) when the measure v is
purely discrete. More precisely, if the continuous-time equation has only an instantaneous
term and p point delays equally spaced in time, an AR(p) process results from the discreti-
sation. If the mesh size of the discretisation is chosen sufficiently small, properties such as
stationarity of the continuous equation can be preserved by the AR model. Conversely, an
appropriately parameterised AR(p) model can converge weakly to the solution of (3.1.1)
with a discrete measure as the parameter tends to a limit.

An extension and application in which the conditional variance obeys an autoregres-
sive equation is given by the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model developed by Bollerslev (cf. e.g.,[21, 30]); such models are often used
to model stock volatilities. There is an extensive literature on GARCH and AR models
applied to finance, with nice recent introductions provided in e.g., [35]. A wealth of basic
results on linear time series models is also contained in the classic text [23]. The results in
this chapter concerning Gaussian stationary solutions of linear SFDEs provide the basic
framework for estimating the large deviations of interest rates or volatilities simulated by
continuous time semimartingale analogues of both scalar and vector autoregressive pro-
cesses. An interesting and related literature on continuous time linear stochastic models
also exists in the time series literature (see e.g., [22, 24, 63]), but the emphasis in those
works does not overlap with the thrust of this chapter.

The non-linear problem (3.3.18) illustrated in this chapter deals only non-linearity that
is lower than linear order at infinity in a sense made precise by (3.3.16). It is therefore
interesting to ask how the results here could be developed to deal with other forms of

non-linearity in the presence of additive noise. In Chapter 2, the asymptotic behaviour of
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scalar SFDEs of the form

dX(t) = (aX(t)+b sup X(s))dt+odB(t), t>0 (3.1.4)

t—T<s<t

is considered. Note that (3.1.4) is not in the form of either (3.1.1) or (3.3.18) with the
condition (3.3.16). In Chapter 2, it is shown that if the solution is recurrent on the
real line, then the presence of the maximum functional does not significantly change the
essential growth rate of the solution of the related non-delay linear equation dY(t) =
aY (t) dt+o dB(t) where aw < 0. More specifically, it is shown that there exist deterministic
c1, ¢y such that

. | X (¢)]
0 < 1 <limsup < cg < 400, a.s.
t—00 2logt

which recovers the exact square root logarithmic growth rate of Y

e YO _ I
t—o0 \/QIOgt \/2|()[|7

Since we illustrate in the present chapter that equations of the form (3.3.18) have exact
square root logarithmic growth rate, this suggests that it is linearity, or “near linearity”
that generates Gaussian-like large fluctuations.

For a scalar autonomous SDE which has no delay and whose solution is stationary we
can apply Motoo’s theorem to estimate the growth rate of the partial maximum, even
when the drift coefficient is not of linear leading order at infinity (in contrast to (3.1.4)
and (3.3.18) with the condition (3.3.16)). These techniques can even be extended to finite—
dimensional and non-stationary processes as seen in Chapter 1. Similarly, if we add some
delay factor into a stationary non-linear SDE, provided the order of this delay term is
smaller than that of the instantaneous term at infinity, we show in forthcoming work that
the size of the large fluctuations of the non-delay process are preserved, with the growth
rate depending on the degree of non-linearity of the instantaneous term.

The work in this chapter appears in a paper joint with John Appleby and Xuerong

Mao [6].
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3.2 A Recapitulation on the Fundamentals of Stochastic

Functional Differential Equations

We first turn our attention to the deterministic delay equation underlying the SDE (3.1.1).
For a fixed constant 7 > 0 we consider the deterministic linear delay differential equation
2 (t) = / v(du) x(t+u), fort>0,

[77_70]

x(t) = ¢(t) fort e [—T,0],

(3.2.1)

for a measure v € M([—,0]; R?¥9). The initial function ¢ is assumed to be in the space
C[-7,0] := {¢ : [-7,0] — R? : continuous}. A function z : [-7,00) — R? is called a
solution of (3.2.1) if x is continuous on [—7,00), its restriction to [0,00) is continuously
differentiable, and z satisfies the first and second identity of (3.2.1) for all ¢ > 0 and
t € [—7,0], respectively. It is well-known that for every ¢ € C[—7,0] the problem (3.2.1)
admits a unique solution z = z(+, @).

The fundamental solution or resolvent of (3.2.1) is the unique locally absolutely contin-

uous function 7 : [0, 00) — R¥*9 which satisfies

t
r(t) = Iy -|-/ / v(du)r(s+wu)ds fort >0, (3.2.2)
0 J[max{—7,—s},0]

where [I; is the d x d identity matrix. It plays a role which is analogous to the funda-
mental system in linear ordinary differential equations and the Green function in partial
differential equations. For later convenience we set r(t) = 0 for ¢t € [—7,0).

The solution z(-,¢) of (3.2.1) for an arbitrary initial segment ¢ exists, is unique, and

can be represented as

0
z(t, ¢) = r(t)p(0) + / /[ ] r(t+ s —u)v(ds) p(u)du, fort >0, (3.2.3)

cf. Diekmann et al [31, Chapter I].

Define the function h, : C — C by

hy(A) = det ()\Id - / e Z/(ds)) ,
[—7’,0}

Define also the set

A={AeC:hy,(N)=0}.
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The function h is analytic, and so the elements of A are isolated. Define
vo(v) :==sup{Re () : hy(\) =0}, (3.2.4)

where Re (z) denotes the real part of a complex number z. Furthermore, the cardinality of
A := An{Re(\) = vo(v)} is finite. Then there exists 9 > 0 such that for every e € (0, &)

we have

e Wir(t) = > {p;(t) cos(Im (A))t) + ¢;(t) sin(Im (X))} + o(e™"), ¢ — oo,
AjEN

where p; and ¢; are matrix—valued polynomials of degree m; — 1, with m; being the
multiplicity of the zero A\; € A’ of h, and Im (z) denoting the imaginary part of a complex

number z. Hence, for every € > 0 there exists a C(€) > 0 such that
Ir(t)] < Cle)elo™=9t ¢ >, (3.2.5)

Therefore if vg(v) < 0, then r decays to zero exponentially. This is a simple restatement
of Diekmann et al [31, Theorem 1.5.4 and Corollary 1.5.5]. Furthermore, the following

lemma regarding r is given in [4]:

Lemma 3.2.1. Let r satisfy (3.2.2), and vo(v) be defined as (3.2.4). Then the following

statements are equivalent:
(a) vo(v) < 0.
(b) r decays exponentially as t — oo.
(c) r(t) — 0 ast — oo.
(d) r € L'(Rt; R%¥9),

(e) r € L2(R+;RI¥x9),

Let us introduce some notation for (3.2.1). For a function x : [~7,00) — R? we define

the segment of x at time ¢ > 0 by the function
;1 [-7,0] = RY, xp(u) == z(t + u).
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If we equip the space C[—7,0] of continuous functions with the supremum norm, Riesz’
representation theorem guarantees that every continuous functional L : C[—7,0] — R? is

of the form

L) = /[_ | Vv

for a d x d matrix-valued measure v € M ([—7,0]; R¥*9). Hence, we will write (3.2.1) in

the form
2'(t) = L(zy) for t >0, o= ¢

and assume L to be a continuous and linear functional on C([—,0];RY).

We study the following stochastic differential equation with time delay:
dX(t) = L(Xy)dt + X dB(t) fort >0,
(3.2.6)
X(t)=¢(t) forte[—T,0],

where L is a continuous and linear functional on C([—7,0]; R?) for a constant 7 > 0, and
> is a d X m matrix with real entries.

For every ¢ € C([—,0];R?) there exists a unique, adapted strong solution (X (¢, ®) :
t > —7) with finite second moments of (3.2.6) (cf., e.g., Mao [57]). The dependence of
the solutions on the initial condition ¢ is neglected in our notation in what follows; that
is, we will write z(t) = z(t, ¢) and X (t) = X (¢, ¢) for the solutions of (3.2.1) and (3.2.6)
respectively.

By Reif} et al [70, Lemma 6.1] the solution (X (¢) : t > —7) of (3.2.6) obeys a variation-

of-constants formula

X(t) = {x(t) + [t — s)TdB(s), t>0, (327
(1), t € [-,0]

where r is the fundamental solution of (3.2.1).

3.3 Statement and Discussion of Main Results

3.3.1 One-dimensional SFDEs

We start with some preparatory lemmata, used to establish the almost sure rate of growth

of the partial maxima of the solution of a scalar version of (3.2.6).
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Lemma 3.3.1. Suppose (a,); is a real sequence with limsup,,_, . a, > 0, v is a non-

negative and non-decreasing sequence, with y(n) — 0o as n — oo. Then

maxi<j<n aj Qp,

lim sup = limsup ——.

We also need the following continuous analogue of Lemma 3.3.1, which appeared as

Lemma 2.6.3 in [57].

Lemma 3.3.2. Suppose y : [0,00) — [0,00) and ¥ : [0,00) — (0,00) be a non-decreasing

function with 9(t) — oo as t — oco. Then

y(t)

lim sup w = limsup =—=.

We require the following results about sequences of identically distributed normal ran-

dom variables.

Lemma 3.3.3. If (X,,)22, is a sequence of jointly normal standard random wvariables,

then
. | X
limsup — < 1, .S. 3.3.1
ey 2logn — @ ( )
Moreover

. maxi<j<p Xj

1,
n—o0 \V2 log n -

The next result gives precise information on the growth of the partial maxima of a

a.s. (3.3.2)

sequence of normal random variables which have an exponentially decaying autocovariance

function. The proof was an early work of Appleby which can be found in [6].

Lemma 3.3.4. Suppose (X,)2, is a sequence of jointly normal standard random vari-

ables satisfying

| Cov(Xi, X;)| < ol
for some o € (0,1). Then

TSt ) g, (3.3.3)

I
o) v2logn ’
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These lemmata are used to determine the size of the large fluctuations of the solution
of (3.2.6) in the scalar case, i.e., the case in which d = 1 and the solution X of (3.2.6) is
a one—dimensional process. If m > 1 and ¥ = (X1, X9,...,3,,) is a 1 X m—matrix we note

that the martingale
mo ot
M(t) :Z/ % dB;(s), t>0,
j=170

can be rewritten as

M(t) = /OtadW(s), £>0,

where o = (31, E?)l/ 2 and W is a one-dimensional Brownian motion. Therefore, in the
scalar case it suffices to study the equation

dX(t) = L(Xy)dt +odW(t) fort >0,
(3.3.4)
X(t)=o¢(t) forte|—10],

where ¢ € C([—7,0]; R).

Theorem 3.3.1. Suppose that r is the solution of (3.2.2) with d =1, and that vo(v) < 0,

where vo(v) is defined as (3.2.4). Let X be the unique continuous adapted process which

X(t o
hﬁi‘.fp \L% = |o| //0 r2(s)ds =T, a.s. (3.3.5)

obeys (3.3.4). Then

Moreover,
X(t &
lim sup ®) = |o] / r2(s)ds, a.s. (3.3.6)
t—o00 210gt 0
X(t o
ligg}f 21(0;;15 = —’UM//O r2(s)ds, a.s. (3.3.7)

Theorem 3.3.1 can be applied in the case where X is a mean-reverting Ornstein-Uhlenbeck

process. Consider the OU process governed by the following equation
dU(t) = —aU(t)dt +odB(t), t>0 (3.3.8)

with U(0) = up and « > 0. Then U is a Gaussian process and has a limiting distribution

N(0,02/2a). Tt can easily be shown that e U (t) = ug+M (t), where M (t) = o f(f e**dB(s)
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is a continuous martingale with quadratic variation v(t) := o2(e?*** — 1) /2. By the time-
change theorem for martingales [49, Theorem 3.4.6], M (y~1(t)) is a standard Brownian
motion. Hence by the Law of the Iterated Logarithm for standard one-dimensional Brow-

nian motion,

limsup MLOTOI
t—oo  \/2tloglogt '
which implies
t
lim sup Ol _ o] a.s. (3.3.9)

t—o00 \/210gt a \/20{7

Thus it can be seen in this simple case that a short and independent proof of (3.3.5)
can be given. In the general case with linear distributed delay, the solution of (3.3.4)
can be represented by (3.2.7). Moreover, under the condition vg(r) < 0, the solution is
asymptotically Gaussian distributed with mean zero and variance I'2. However, since the
characteristic equation of r in general has infinitely many roots, it is difficult to write
an explicit solution for r, and hence for X. Consequently the value of I" is not easily
computed. Moreover, since the process given by the stochastic integral in (3.2.7) is not
in general a martingale, the martingale time-change approach given above for the OU
process is not available. We therefore use Mill’s estimate together with Lemma 3.3.4
(both on Gaussian random variables) to prove (3.3.5) on a sequence of mesh points a,,.
Then we investigate the behaviour of the solution in continuous time by choosing a, so
that the distance between the mesh points tends to zero as n — oo. This enables us to
closely control the behaviour of X on the interval [a,, an+1].

The condition vg(v) < 0 is essential in Theorem 3.3.1. If vo(r) > 0, then asymptotic
stationarity of the stochastic solution not assured. The case of vg(r) > 0 has not been
studied in the thesis mainly for two reasons. Firstly, the emphasis of this thesis is on
the large deviations of recurrent rather than transient solutions of stochastic functional
differential equations. Transient solutions are expected in general in the case of vo(v) > 0.
Secondly, although the results in the deterministic case, the asymptotic hehaviour of the
unstable part is relatively straightforward because it is equivalent to a finite-dimensional
differential equation, the analysis for the stochastic case is more complicated. Appleby et

al. (cf.[8]) studied the case when vg(r) > 0 in the case of a simple root of the characteristic
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equation. Their results can be summarized as the following:

(a) If vo(v) = 0, then
X(t
lim sup X )]

t—oo /2tloglogt b
(b) If vo(r) > 0, then

lim "W X (1) = Ly(w), aus.

t—o00

where L; is deterministic and Lo is a random variable. Their theorem requires new
results on the asymptotic behaviour of stochastic convolution integrals. However, these
convolution results are simplified by virtue of the fact the leading root of the characteristic
equation is real and simple. In the case where the roots have multiplicity great than one,
or the roots are complex, new convolution results are needed. Moreover, these results
cannot easily use martingale techniques, because the exponential contribution cannot be
entirely factor outside of the stochastic integrals. Problems of this type are particular to
stochastic convolution integrals. Such analysis is of genuine interest, and worthy of study
in its own right. However, we do not address this question in this thesis.

Theorem 3.3.1, together with these two results, connects the location of the roots of the
characteristic equation to the asymptotic behaviour of the resolvent r, and hence to the
asymptotic behaviour of the stochastic process X. If the underlying deterministic equation
is stable in such a way that the resolvent tends to zero (vo(r) < 0), then the process
is Gaussian and asymptotically stationary. If mean-reverting force is just compensated
by reinforcement (vo(r) = 0), then the process obeys the law the iterated logarithm,
and behaves like a Brownian motion. Finally, if the resolvent is exponentially unstable
(vo(v) > 0), then the process is exponentially transient.

The generalized Langevin equation mentioned at the end of Chapter 2 is an example of
a process to which Theorem 3.3.1 can be applied, provided that vg(v) < 0. We now char-
acterise when this deterministic condition is satisfied in terms of the parameters (a,b, 7).

The discussion summarises the analysis in e.g., Chapter XI.3 in [31].
Example 3.3.1. Let a,b,7 > 0. Consider

r(t)=ar(t)+br(t—7), t>0;r(t)=0, te[-7,0); r(0)=1.
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—ZT

Then the characteristic equation is h(z) = z — a — be and v = adgoy + bof_ry. Let

p(t) = r(tr), for t > —1. Then we have

p'(t) = Tap(t) +1bp(t = 1), t>0;p(t) =0, te[-1,0); p(0)=1.

Let a := 7a and 3 := 7b. Note that v(r) < 0 if and only if p € L1(0, 00) if and only if
r € L'(0,00). Define the smooth parameterised curve Cp in R? by

UV CcOosvV v

Coi={(ef) = < siny siny)’”E (0)}-

Then vg(v) < 0 if and only if (a, ) € S where

S:={(a,p): a< -6, a>C(B)},

and C' : (=00, —1) — (—00, 1] is the strictly increasing function which is implicitly defined
by (C(3),3) € Cy. In fact C is asymptotic to the identity transform as § — —oo, and we
have C'(—1) = 1 (which defines the point of intersection of Cjy with the line & = —f3), and

C(—m/2) = 0. This condition and the definition of S shows that solutions of the equation
pl(t)=Ppt—1), t>0

obey p € L'(0,00) if and only if —7/2 < B < 0. The stability in this case and the

dependence on the delay 7 is discussed further at the end of the chapter.

3.3.2 Finite-dimensional SFDEs

We can extend the result of Theorem 3.3.1 to the solution of the general finite—dimensional
equation (3.2.6). First, we state a lemma which gives the lower estimate on the limsup of
the absolute value of an asymptotic Gaussian stationary process. The proof of the lemma

is due to Appleby, and it can be found in [5].

Lemma 3.3.5. Let B be an m-dimensional standard Brownian motion. Suppose that
for each j = 1,...,m, ; is a deterministic function such that v; € C(]0,00);R) N
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L%(]0,00); R¥*4). Define

Then

(a) For every 8 € (0,1), there is an a.s. event Qg such that
1/2

: U0 [ o .
lim sup < Z 7v;(s)ds , a.s. conditionally on Q.
j=170

n—oo v2logn —

(b) If there exists ¢ > 0 and o > 0 such that |vj(t)] < ce™ forallt >0 andj=1,...,m

then /
1/2
: \U(?)| - /°° 2
lim sup > vi(s)ds ,  a.s.
t—o00 \/210gt jzl 0 J
Furthermore we have
U(t) [ v
lim sup > / ;i (s)ds , Q.S (3.3.10)
t—o0 210gt _]; 0 J
1/2

t [
lim inf () < - Z/ 7]2(3) ds , Q.. (3.3.11)
0

Theorem 3.3.2. Suppose that r is the solution of (3.2.2) and that vo(v) < 0, where vo(v)
is defined as (3.2.4). Let X be the unique continuous adapted d-dimensional process which

obeys (3.2.6). Then for each 1 <i <d,

X;(t
=o0; and liminf ®) = —0j, a.. (3.3.12)

t—oo 4/2logt

lim su Xi(t)
tﬂoop vV 2 10g t

where

o; = Z/OOO p2.(s)ds (3.3.13)

k=

—_

and p(t) = r(t)S € R>™. Moreover

[ X (1)l

lim sup = max 0j, a.S. (3.3.14)

t—oo V2logt i=1,..d
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The next result shows that (3.2.6) can be perturbed by a nonlinear functional N in
the drift (which is of lower than linear order at infinity) without changing the asymptotic
behaviour of the underlying affine stochastic functional differential equation. To make
this claim more precise, we characterise the perturbing nonlinear functional N as follows:

suppose N : [0,00) x C[—7,0] — R% obeys
For all n € N there exists a K,, > 0 such that if o, 1y € C([—,0]; R%)
obey [[¢llsup V [[¢llsup < n, then [N(E, ) — N(t,9)| < Knll — ¢|lsup, (3.3.15)

and N is continuous in its first argument;

N(t
NG _ g, uniformly in ¢; (3.3.16)
lellsup—o0 [ ]lsup
t — |N(t,0)] is bounded on [0, c0). (3.3.17)

Consider the following nonlinear stochastic differential equation with time delay:
dX(t) = (L(Xy) + N(t,Xy)) dt + XdB(t) fort >0,
(3.3.18)
X(t) =o¢(t) forte [—T,0],
where L is a continuous and linear functional on C([—7,0]; R?) for a constant 7 > 0, and
> is a d X m matrix with real entries.
Since L is linear and N obeys (3.3.15) and (3.3.16), for every ¢ € C([—7,0];R?) there

exists a unique, adapted strong solution (X (¢, ¢) : t > —7) with finite second moments of

(3.3.18) (cf., e.g., Mao [57]).

Theorem 3.3.3. Suppose that N obeys (3.3.15) and (3.3.16). Also suppose that r is the
solution of (3.2.2) and vo(v) < 0, where vo(v) is defined as (3.2.4). Let X be the unique

continuous adapted d-dimensional process which obeys (3.3.18). Then for each 1 < i < d,

X;(t L. X;(t
lim sup ®) =0, and liminf ®) = —0;, a.s. (3.3.19)

t—oo /2logt t—co +/2logt

where o; is giwen by (3.3.13). Moreover

X(t
lim sup X (®)]oc = max o;, a.S. (3.3.20)

t—oo V2logt 1<i<d

The above theorem was due to Appleby, the proof can be found in [6].
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3.4 Proofs of Section 3.3

3.4.1 Proof of Section 3.3.1

Define ®(z) = \/% I e™*/2 du. Mill’s estimate tells us that
1-®(z) < ——e"7, x>0

Indeed, we also have

1-®
lim 2~ =2 (3.4.1)
r—oo 1 1, —%-
—— e 2
2 T

Proof of Lemma 3.3.1 Let

. maxj<;<n aj . an
limsup ——=2="" — [, limsup = Lo

n—oo ’Y(n) n—o0 7(”)

Clearly L1 > Lo. Since limsup,,_,., @, > 0 and v is positive, Ly > 0. If Ly = oo, then
L; = oo and the result holds. It remains to prove Ly < Lo when Ly € [0,00). Note for
all € > 0 that there exists N = N(e) € N such that for all n > N, a, < La2(1 + €)y(n).

Therefore

. maxi<j<n @j

Ly = limsup ———=2="1

n—oo y(n)

MaxX|<j<N ¢j MaXN<j<n aj)

= lim sup max ,
mapme (=) +(n)

If maxi<j<ya; > maxy<j<paj for all n > N, then Ly = 0 < Lo, and the proof is
complete. If maxi<j<y a; < maxy<j<ya; for some n > N, we have that there is Ny > N
such that

max a; > max a; foralln> Nj.

N<j<n N<j<Ny

Therefore

L; = limsup MmaxN<j<n 4j
< lim sup maxy<j<n La(1 + €)7(j)
— Lo(1+ €) limsup 2N <s=n V()
= La(1+e).

Letting € — 0, we get L1 < Lo. The proof is complete.
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Proof of Lemma 3.3.3 For every € > 0, Mill’s estimate gives

B(1X,| > V/2(1 T O logn] <

2 1 1
V271 /2(1 + €)logn n'Te’

so by Borel-Cantelli lemma, for each € > 0, we have

X
lim sup [ Xl <1, as.
n—00 2(1+€) logn

By letting ¢ — 0 through rational numbers we get (3.3.1). Moreover

. maxi<i< X . maxijy<ij< X . X,
lim sup ISR < hmsupAl]| = lim sup [ X

erls)sn g =l <«
n—00 v2logn n—o0 v2logn n—oo V2logn —

where we have used Lemma 3.3.1 at the penultimate step.

Proof of Theorem 3.3.1 Since vg(v) < 0, we have that r(¢) — 0 as t — oo, so the first
term on the righthand side of (3.2.7) tends to zero as t — co. We analyse the behaviour

of the second term. We first establish

: X(¢)] /OO
lim su <lo r2(s)ds, a.s. 3.4.2
mop XL < g1, | [% ) (3.4

Define

€

t n
X(t) == 0'/ r(t—s)dB(s), X(nf):= a/ r(n®—s)dB(s), for some €€ (0,1).
0 0
It is helpful to define
¢
v(t) = 02/ r?(s)ds, t>0, (3.4.3)
0

and so

Then both X (n¢) and X (t) are normally distributed with mean 0 and variances v(n¢) and
v(t) respectively, where v is given by (3.4.3). Since r € L'(]0,00);R) and 7(t) — 0 as

t — 00, we have r € L?([0,00); R) and so

v(t) = o? /Ot r2(s)ds < o* /OOO r2(s)ds =: T2,

Clearly lim; o v(t) = I'? and lim,, .o v(n) = 2. If Z(n) := X (n¢)/\/v(n¢), by using a

similar proof as in Lemma 3.3.3, we obtain

Z €
lim sup M <

<1, a.s.
n—oo V2logn
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Therefore

X (ne
lim sup XmI| <T, as. (3.4.4)
n—00 210gn

Now, by a stochastic Fubini theorem (which is stated in the preliminary), we get

() =o /0 t <1 + /0 - r’(u)du) dB(s) (3.4.5)
— oB(t) + o /Ot/: ¥ (u— )du dB(s)
— oB(t) + o /Ot/ou Y (u— ) dB(s) du.
Thercfore

IX(t)| < o|B(t) — B(n)| + 0 + | X (n9)). (3.4.6)

/nt/ou v (u— ) dB(s) du

We now consider each of the three terms on the lefthand side of (3.4.6). By the properties

of a standard Brownian motion, we have

P sup  |B(t) — B(n®)| >1
ne<t<(n+1)¢

< 2P sup B(t) > 1
| 0<t<(n+1)¢—n¢

— 9P[|B((n + 1) —n)| > 1]

(n+1)¢—ne

=P |Z > ! ]

where Z is a standard normal random variable. Since {(n+1)¢ —n¢}/n ! — ¢ as n — oo,
by Mill’s estimate and the Borel-Cantelli lemma, there exists N(w) € N, such that for all
n>N
sup |B(t) — B(n9)| <1, as.
ne<t<(n+1)c

That is

limsup sup [B(t) — B(n9)| <1, aus. (3.4.7)

n—00 pe<t<(nt1)

For the double integral term in (3.4.6), define

/ni/Our’(u—s)dB(s)du .

U, = sup
ne<t<(n+1)¢

116



Chapter 3, Section 4 Stochastic Affine Functional Differential Equations

Then, by Holder’s inequality

[ t| pru 2k
E[U?*] <E sup </ / r'(u — s)dB(s) du> ]
_nﬁgtg(n—s—l)f n€lJ0
[ t| ru 2k
<E sup  (t—nc)?Ft / / v’ (u — s)dB(s) du]
| ne<t<(n+1)¢ n¢lJ0
i ok—1 [T o 2"
=E |[((n+1)°—n) / / r'(u—s)dB(s)| du
ne 0
op—1 [PV v 2
= ((n+1)°—n) / E / r'(u—s)dB(s)| du.
ne 0

Now, for u > 0, [¢*r'(u—s) dB(s) is a Gaussian process with mean 0, variance [; 7/(s)* ds.
Since r decays exponentially by Lemma 3.2.1, the variance is bounded above by

J°r'(s)?ds =: L. Hence there exists C, > 0 such that

0
(n+1)°
[ E

By Chebyshev’s inequality, we therefore get

2k (n+1)¢
du < / CLF du = CpL*((n + 1) — nf).

€

/Ou ' (u — s) dB(s)

P(|Uy| > 1) < E[U2¥] < CRLF((n + 1) — n%)*".
If we choose an integer & > (1 — €)™, as {(n + 1) — n}/n°"! — € as n — oo, by the

Borel-Cantelli lemma we obtain

lim sup sup
n—0o0 ne<t<(n+1)c

/nt/ou r'(u—s)dB(s)du| <1, as. (3.4.8)

Gathering the results from (3.4.4) to (3.4.8), we see that

. X@l T
lim sup sup < a.s
n—oo n€§t§(n+1)€ 210gt \ﬁ
which implies
X(t r
lim sup X )] < — as
t— 00 2logt ~ /e
Finally, letting e — 1, we obtain
: X . X (1)
1 =1 <TI as.,
lﬂigp 2logt Tligp 2logt — s
which is (3.4.2). We next show that
X(t
lim sup X () >T as. (3.4.9)

t—oo /2logt —
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Define the discrete Gaussian process (X (n))n>1 where X (n) := o Jo r(n—s)dB(s). X(n)
has variance v? =02 fo s)ds, so (Z,)22 is a sequence of standard normal random

variables where Z,, := X (n)/v(n).
We next prove that there exists a constant a € (0, 1), such that | Cov(Z;, Z;)| < ol

To find this constant «, let A > 0 and n = m + h. Then
| fo (s + h)r(s)ds|

\/f0m+h r2(s)ds [)" r?(s)ds

| Cov(Zmins Zm)| =

By the Cauchy-Schwarz inequality

" r2(s + h) d " r2(s)d
’COV( m+h;Z )’2§ Omih(s_’_ ) 8:1_%.
o r%(s)ds fo r2(s)ds
Next define I'y = [~°72(s) ds. Then fm+h 2(s)ds < T, so
h 92 h 2 oo, 2
d d d
| Cov(Zis Zon)|? < 1—% <1 dor)ds T (s)ds (3.4.10)
Jo " r2(s)ds Iy Iy
Now define
a :=supa(h), where a(h) :=exp | — log &
heN 2h Iy

We show that a € (0,1). Since r € L'(0,00), by (3.2.5) there exists C > 0 and A > 0 such

that |r(t)| < Ce ™ for all t > 0. Hence

fhoo r2(s) ds 02 28 g C2e—2M
Fl - Fl 2>\Fl ’
SO
[ (s) ds C?
— l e ) O 1 . 4.11
on 7T, *on 8 T, (3-4.11)

Let [z] denote the minimum integer which is greater than x € R. If b’ := 1+[(1/)) log(C?/2AT'1)],
then for all h > A/
(3.4.12)

Substituting (3.4.12) into (3.4.11), we obtain 0 < a(h) < e=*/2 for all h > h/. For h < I/,
since r is continuous and r(0) = 1, f s)ds > 0 for all h > 0, and therefore we have
that [, r2(s)ds < [;°r?(s)ds for all h > 0. This implies a(h) € (0,1) for all integers h

such that 0 < h < I/, and so « € (0,1). Therefore

o I () ds

2h F1 , heN,

o > exp —
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which gives

he {0}UN. (3.4.13)

Combining (3.4.10) and (3.4.13), we get | Cov(Zy, Zm)| < a/*~™|. Thus by Lemma 3.3.4,

lim maxi<;j<n X(n)/v(n)

n—00 Vv2logn

=1, as.

Since Lemma, 3.3.1 implies

limsup /) o maxigsn X ()] /0(n)

n—oo  V2logn n—00 v2logn

combining these relations gives

X (1)]/v(n)

limsup ——+ =1, a.=s.

n— oo \/210gn

Therefore

lim sup & = lim sup m
t—oo L'v/2logt t—oo L'v/2logt
[ X(@®)]/v(?)

X
= limsup ——=——= > lim sup M

t—oo  V/2logt n—oo  V2logn
which implies (3.4.9). Since (3.4.2) also holds, we have established (3.3.5).

It remains to prove (3.3.6) and (3.3.7). We prove (3.3.6). First, note by (3.3.5) that
(X ()]

X(t
lim sup ®) < limsup =TI, as.

t—o00 \/210gt t—oo \/210gt

By the definitions of X, Z and v, we deduce that

X(t t Z,
lim sup ® = limsup ® > lim sup (n) = lim sup nv(n)

t—oo 2 log t t—oo V 2 lOg t n—oo log n n—oo 2 log n '

Using the fact that v(n) — T' as n — oo, Lemma 3.3.1, and then Lemma 3.3.4, we obtain

S

l\')><1

n—oo 2logn n—oo 2logn n—o0 \/m

. maxi<j<n Zj
= lim ——=="

n—oo  4/2logn

and so (3.3.6) holds. (3.3.7) may be obtained by a symmetric argument.

T =T,

119



Chapter 3, Section 4 Stochastic Affine Functional Differential Equations

3.4.2 Proof of Section 3.3.2

Proof of Theorem 3.3.2 Let x be the solution of (3.2.1). Then z(¢) — 0 as t — oo,

because vg(r) < 0. Then X (t) = X(t) — (t) where

X(t):= /Otr(t —5)2dB(s), t>0.

Notice that X () € R? for each ¢t > 0. Also X (¢ fo (t — s)dB(s), t > 0, where
p(t) = r(t)¥ is a d x m—matrix valued function in which each entry must obey |p;;(t)| <
Ce W2 >0 for some C' > 0. Hence X;(t) := (X(t),e;) obeys

m

%0 =Y [ polt-9dBiGs), =0

j=1
Define p;(t) > 0 with p?(t) = Py pw( ), t > 0. Then X;(t) is normally distributed with
mean zero and variance v;(t) = |, pi ?(s)ds. Since p; € L?(0,00), we have that v;(t) —
Joopi(s)ds = [7° 3750, pi;(t) dt =: 07 as t — oo. Moreover |p;(t)| < Cme= W2 >,

Then by part (b) of Lemma 3.3.5, we have

X;(t
> o, liminf i®) <o, as. (3.4.14)

. | Xi(1)] . Xi(t)
lim sup > o;, limsup >
t—o0 2log t—o0 2log t—o0 2logt

We now wish to prove

, |Xi(1)]
1 < 8. 3.4.15
lﬂigp 2logt — i A ( )

Also by part (a) of Lemma 3.3.5, for each 0 < € < 1, we have

%, (n .2
limsupwg U—l, a.s. (3.4.16)
n—o0 210g(n5) €

In a similar manner to (3.4.5), we can rewrite X according to

/ (ng [y du) aB;(s)
+Z / / Pl (u Bj(s) du.

Hence for t € [n, (n + 1), we get

- - m m t u
i) — X0 = 3 pis 0) (B () — Bi(n) + > / / o (u— 5) dB;(s) du,
j=1 j=17m 70
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which implies

sup | Xi(t) = Xi(n)[ <Y 1 (0)]  sup |Bj(t) — By(n)| + Y U,
ne<t<(n+1)¢ j=1 ne<t<(n+1)¢ j=1

where we have defined

UT(Zi’j) = sup
ne<t<(n+1)¢

/nt /Ou,o;j(u_ s)dB;(s) dul .

Then using the technique used to prove (3.4.8), we can show that

lim sup U,(Li’j) <1, as.

n—oo

By (3.4.7), we have

limsup sup |Bj(t) — B;(n9)| <1, as.
n—oo ne<t<(n+1)¢

Therefore, } .
su € n € XZ t - X’l ne
lim sup Preseg( %) ()l =0, a.s. (3.4.17)

Using this estimate and (3.4.16), we obtain

lim sup sup ’XZ(M <4/ U—? a.s
n—oo neStS(n+1)e \/210gt - € ’ ’

which implies

Letting ¢ — 1 through the rational numbers implies (3.4.15). Combining (3.4.14) and
(3.4.15) yields

X(t
lim sup [X: ()] < o0;, a.s.

t—oo /2logt —

Proceeding as at the end of Theorem 3.3.1, we can also establish (3.3.12).

To prove (3.3.14), note that there is an i* € {1,...,d} such that o+ = maxj<;<q40;.

Then max)<;<q|X;(t)| > | X;=(t)|. Hence

i<d | X;(t X (t
lim sup maxi<i<d | Xi(?)] > lim sup | X ()] =04+ = max o0;, a.. (3.4.18)

t—00 v2logt t—oo /2logt i=1,...,d
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Let p be an integer greater than unity. Note that maxj<;<q |x;| < (Zle |z [P)1/P, so we

have

5 (maxi<i<d | Xi(t)])"
= limsup
t—o00 (\/ 2 log t)p
d
C |1 X ()P
S hm sup Zz:l ’ 2( )’
t—o00 (\/ 2 10g t)p

: | Xa(t)[”
< 1 —_—
- ; ey (v2logt)p

d
X; P
= E lim sup [Xi(t)] =
, 2logt

limn sup PX1<i<d | Xi(t)\?
t—o0 vV 2 IOg t

M-
kY

Hence

d 1/p
. maxi<i<d | Xi(t)]
lims == < E b ,  a.s.
I?Lololp 2logt - iilaz

Letting p — oo through the natural numbers, it yields

i<d | Xi(t
lim sup max; <isa | Xi(t) < max 0;, a.s., (3.4.19)

t— 00 2logt T 1<i<d

1/
since (Zgzl Jf) ' maxj<;<q0; as p — o0o. Combining (3.4.18) and (3.4.19) yields

(3.3.14).

3.5 A Note on the Generalized Langevin Delay Equations

As mentioned in the comments of Theorem 3.3.1, the Ornstein-Uhlenbeck process governed
by the Langevin equation (3.3.8) obeys (3.3.9). We now take the following special case
of the linear scalar SFDE (3.3.4), namely the generalized Langevin delay equation, as an
example

dX(t) = (—aX(t) + bX(t — 7)) dt + 0 dB(t), t>0, (3.5.1)

with X (t) = ¢(t) € C([-7,0;R) and @ > b > 0. Kiichler and Mensch [51] studied the
stationarity and the covariance function of this equation in great detail. It can be shown
that the solution of (3.5.1) has the explicit form

0

X(t)zr(t)w(0)+b/ T(t—S—T)w(s)ds—Fa/o r(t—s)dB(s), t>0, (3.5.2)

—T
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where 7 is the fundamental solution of the corresponding deterministic differential equation
and satisfies

r'(t) = —ar(t) +br(t—7), t>0 (3.5.3)

with 7(0) = 1, r(t) = 0 for t € [-7,0). For X be stationary, it is necessary and sufficient

that r € L'([0,00); R). Then by Theorem 3.3.1, X satisfies

X oo
Iiirisogp\‘/% = ||y //0 r2(s)ds, a.s. (3.5.4)

In common with the non-linear delay SFDEs studied in Chapter 3, when the historical
term is dominated by a mean reverting polynomial instantaneous term, the solution is
recurrent on the real line. Moreover, the growth rate of the partial maxima of the corre-
sponding non-delay equations are recovered when the fixed delay 7 is set equal to zero.
In other words, the general growth rate is determined by the polynomial degree of the
instantaneous term.

However, the distribution of the solution of affine SFDEs is Gaussian. In this case,
the large fluctuations given in (3.5.4) are not unexpected. For a general linear SFDE, it
is possible to write an explicit solution in terms of the resolvent. However, because the
characteristic equation of the resolvent has in general infinitely many roots, it is difficult
to write down a useable explicit formula for » which satisfies (3.2.2). This makes the
computation for the constant on the right-hand side of (3.3.5) much less straightforward
in comparison with the non-delay case. Even in the special case of (3.5.4), where X and
r obey (3.5.1) and (3.5.3) respectively, the exact value of the constant K may not be
easily computed. However, by obtaining an explicit solution for r on each time interval
[nT, (n+ 1)7] (cf. Appendix A), we can approximate the size of the large deviations of X
at any given time ¢ in the long-run.

Despite the inconvenience of computing the exact value of K, we at least know that
K > |o|v/2a. This is due to the autocorrelation provoked by the delay term, which causes
the process to fluctuate at greater amplitudes, especially at extreme values. This feature
of linear SFDEs is shared with non-linear SFDEs, and it could be used to capture a
phenomena present in financial markets, namely that feedback trading tends to induce

more extreme events. Since prices or returns are correlated in some way due to feedback
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trading strategy used by traders, the size of the large fluctuation of prices and returns in
the presence of this feedback tends to be greater than when there is no memory.

We also note that the growth rate of the partial maxima of the solution depends on the
length of the delay 7, because the resolvent depends itself on 7. If we look at the following
SFDE

dX(t) =bX(t—71)dt +ocdB(t), t>0

where b > 0, then the solution X is still stationary as long as br < 7/2, but the growth
rate of the partial maxima of X is very sensitive to 7 as 7 approaches 7/2b from below.

Indeed, when 7 = 7/2b, the resolvent is no longer square integrable (cf. [38]).
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Chapter J
Existence and Uniqueness of Stochastic Neutral

Functional Differential Equations

4.1 Introduction

Over the last ten years, a body of work has emerged concerning the properties of stochastic
neutral equations of It6 type. Of course, one of the most fundamental questions is whether
solutions of such equations exist and are unique. A great many of these results have been
established by Mao and co-workers.

In this chapter, for simplicity we concentrate on autonomous stochastic neutral func-
tional differential equations (SNFDEs), and establish existence and uniqueness of solu-
tions under weaker conditions than currently extant in the literature. The solutions will
be unique within the class of continuous adapted processes, and will also exist on [0, 00).
Also for simplicity, we assume that all functionals are globally linearly bounded and glob-
ally Lipschitz continuous (with respect to the sup—norm topology). The most general

finite-dimensional neutral equation of this type is

d(X(t) — D(Xy)) = f(X))dt + g(X,)dB(t), 0<t<T; (4.1.1)

X(t) =(t), tel[-7,0] (4.1.2)

where 7 > 0, ¢ € C([-7,0];R%) (i.e., the space of continuous functions from [—7,0] —
R¢ with sup norm), B is an m-dimensional standard Brownian motion, D and f are
functionals from C([—7,0];R?) to R? and g : C([—7,0]; R? x R™) — RY. It is our belief
that the results presented in this chapter can be extended to non—autonomous equations,
to equations which obey only local Lipschitz continuity conditions, and to equations with
local linear growth bounds. Naturally, in these circumstances, we cannot expect solutions

to necessarily be global; instead, one can talk only about the existence of local solutions.
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To the best of the authors’ knowledge, all existing existence results concerning stochastic
neutral equations in general, and (4.1.1) in particular, involve a “contraction condition”
on the operator D on the righthand side. We term the operator D the neutral functional
throughout this chapter, and the functional E : C([—7,0];R?) — R? defined by F(¢) :=
¢(0) — D(¢) the neutral term. The contraction condition on D is that there exists a

k € (0,1) such that
[D(¢) = D()| < £ll¢ — @llsup, ~ for all ¢, ¢ € C([~7,0];RY), (4.1.3)

where [|]lsup 1= SUp_,<4<o |¢(s)| and ¢ € C([—7,0];R?). Under this condition, as well as
conventional Lipschitz conditions on f and g, it can be shown that (4.1.1) has a unique
continuous adapted solution on [0, 7] for every T > 0.

While the condition (4.1.3) is certainly sufficient to ensure existence and uniqueness
of solutions, until now it has not been understood whether this condition is necessary.
However, comparison with the existence theory for the deterministic neutral equation

corresponding to (4.1.1) viz.,

—(x(t) = D(z¢)) = f(z), 0<t<T; (4.1.4)
z(t) =¢(t), te[-T,0]. (4.1.5)
would lead one to suspect that the condition (4.1.3) is too strong, at least in some circum-

stances. To take a simple scalar example, suppose that f : C([—7,0];R) — R is globally

Lipschitz continuous, and that w € C([—7,0]; R™) is such that

/0 w(s)ds > 1. (4.1.6)

—T

Then the solution of

exists and is unique in the class of continuous functions. On the other hand, extant results

do not enable us to make a definite conclusion concerning the existence and uniqueness of
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solutions of

d(X(t) — /0 w(s)X (t+ s)ds) = f(X;)dt + g(X;)dB(t), 0<t<T; (4.1.7)

X(t) =(t), te[-7,0] (4.1.8)

when g : C([—7,0];R) — R is also globally Lipschitz continuous, because the functional

D defined by
0
D(¢) :/ w(s)p(s)ds (4.1.9)

does not obey (4.1.3) if w obeys (4.1.6).

It transpires that the condition of uniform non—atomicity at zero of the functional D,
which was introduced by Hale in the deterministic theory, and ensures the existence and
uniqueness of a solution of the equation (4.1.4), also ensures the existence of a unique
solution of (4.1.1), under Lipschitz continuity conditions on f and g. We discuss this non—
atomicity condition presently, but note that it entails the existence of a number sy € (0, 7)

and a non—decreasing function & : [0, sg] — R such that x(sp) < 1 and

1D(¢) = D(9)| < ()16 = ¢llsup ~ for all ¢, p € C([=7,0;;R?),

such that ¢ = ¢ on [—7,—s] and s € [0, sp]. (4.1.10)

Roughly speaking, it can be seen that (4.1.10) relaxes (4.1.3) by allowing the functions ¢
and ¢ to be equal on a subinterval of [—7,0], thereby effectively reducing the Lipschitz
constant in (4.1.3) from a number greater than unity to a number less than unity. As
an example, the functional in (4.1.9) obeys (4.1.10) even under the condition (4.1.6) on
w. Therefore, we can conclude that (4.1.7) has a unique solution; existing results would
however require w to obey fET w(s)ds < 1.

The condition (4.1.3) has to date played a very important role in the analysis of prop-
erties of solutions of (4.1.1). It is a key assumption in proofs of estimates on the almost
sure and p-th mean rate of growth of solutions of (4.1.1). It is also required in results
which deal with the almost sure and p—th mean asymptotic stability of solutions. Results
on the LP continuity of solutions, and even results on numerical methods to simulate the

solution of (4.1.1), rely on the condition (4.1.3). However, corresponding results for the
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underlying deterministic equation (4.1.4) regarding asymptotic behaviour, regularity of
solutions, and numerical methods can be established under the weaker condition (4.1.10).

It is therefore reasonable to ask whether fundamental results on e.g., asymptotic be-
haviour, can still be established for solutions of (4.1.1) under the weaker condition (4.1.10),
which is shown in this chapter to be sufficient to ensure solutions exist. Towards this end,
in this chapter we prove results on p—th mean exponential estimates on the growth of the
solution of (4.1.1) using the condition (4.1.10) in place of (4.1.3). Although we confine
our attention here to the study of these exponential estimates, it is of obvious interest to
investigate further the properties of solutions of stochastic neutral equations under the
weaker non-atomicity condition (4.1.10) which have, owing to the absence of existence
results, remained unconsidered until now.

It is worthy mentioning that Turi et al. (cf. [25], [48] and [47]) studied the existence of
solutions of NFDEs with weakly singular kernels. Their results show that Hale’s condition
is sufficient but not necessary. We do not consider the measures which are weakly singular
in this work.

Neutral functional differential equations (NFDEs) have been used to describe various
processes in physics and engineering sciences [44, 75]. For example, transmission lines in-
volving nonlinear boundary conditions [42], cell growth dynamics [15], propagating pulses
in cardiac tissue [29] and drillstring vibrations [17] have been described by means of

NFDEs.

4.2 Preliminaries

In this section, we give some definitions of the notation, state and comment on known
results on the existence of solutions of the SNFDEs, and introduce in precise terms the
weaker conditions used here on the neutral functional D which will still guarantee existence
and uniqueness of solutions of (4.1.1).

Let ¢ be a function from [—7,#;] — R Let ¢t € [0,¢;] C R. We use ¢; to denote the

function on [—7, 0] defined by ¢¢(s) = ¢(t + s) for —7 < s < 0.
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4.2.1 Existing Results for Stochastic Neutral Equations

Let (2, F,P) be a complete probability space with the filtration {F(t)}+>0 satisfying the

usual conditions. Let 7 > 0 and 0 < T < oco. Let the functionals D, f and ¢ defined by
D C([_Ta O]7Rd) - Rdv f : C([_T7 O]7Rd) - Rda g: C([_T7 O]7Rd) - Rde

all be Borel-measurable.

Consider the d-dimensional neutral stochastic functional differential equation
d(X(t) — D(Xy)) = f(Xy)dt + g(Xy)dB(t), 0<t<T. (4.2.1)
This should be interpreted as the integral equation
¢ t
X(t)—-D(Xy) = X(O)—D(X0)+/ f(Xs)ds+/ 9(Xs)dB(s), foralltel0,T]. (4.2.2)
0 0

For the initial value problem we must specify the initial data on the interval [—7, 0] and

hence we impose the initial condition
Xo =t ={¢(0) : =7 <0 <0} € Ly ([—7,0]; RY), (4.2.3)

that is ¢ is an F(0)-measurable C([—7, 0]; R%)-valued random variable such that E[|s|?] <
+o0o. The initial value problem for equation (4.2.1) is to find the solution of (4.2.1)

satisfying the initial data (4.2.3). We give the definition of the solution in this context

Definition 4.2.1. An R%valued stochastic process X = {X(t): —7 <t < T} is called a

solution to equation (4.2.1) with initial data (4.2.3) if it has the following properties:
(i) t— X (t,w) is continuous for almost all w € Q and X is {F(¢)}+>0—adapted,;
(i) {f(X0)} € L'([0,T];R?) and {g(X,;)} € L*([0, T|; R¥*™);
(iii) Xy =1 and (4.2.2) holds for every t € [0,T].
A solution X is said to be unique if any other solution X is indistinguishable from it i.e.,
P[X(t) = X(t) forall -7 <t <T]=1.
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We now make the following assumptions on the functionals f and g in order to ensure the

existence and uniqueness of solutions of (4.2.1). They will hold throughout the chapter.

Assumption 4.2.1. There exists K > 0 such that for all ¢, € C([—7,0];R%)

1f(e) = F(@D) < Kllo = bllsup,  19(0) — 9(D)|] < Kl — &l sup- (4.2.4)

There exists K > 0 such that for all ¢, € C([—,0];R%)

1f(0) < KA+ [lellsup), 9@ < K1+ [[@llsup)- (4.2.5)

The following result is Theorem 6.2.2 in [57]; it concerns the existence and uniqueness

of solutions of the stochastic neutral functional differential equation (4.2.1).

Theorem 4.2.1. Suppose that the functionals f and g obey (4.2.4) and (4.2.5) and that

the functional D obeys

There exists k € (0,1) such that for all ¢, p € C([—T,0]; RY)

[D(¢) = D(9)] <l = Pllsup- (4.2.6)

Then there exists a unique solution X to (4.2.1) with initial data (4.2.3). Moreover the

solution belongs to M?([—,T]; R?).

On the other hand, a restriction of this type on the neutral functional D such as (4.2.6)
is not needed in the case when it depends purely on delayed arguments. See [57, Theorem

6.3.1].

4.2.2 Assumptions on the Neutral Functional

In order to orient the reader to the question of existence which is addressed in this chapter,
we must first introduce some results and notation from the theory of deterministic neutral
differential equations. Consider systems of nonlinear functional differential equations of
neutral type having the form

d

ﬁE(xt) = f(z), (4.2.7)
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where the operator E : C — R? is atomic at 0 and uniformly atomic at 0 in the sense of
Hale [41, pp 170-173], and where f : C — R? is continuous and uniformly Lipschitzian in
the last argument. In (4.2.7), instead of the atomicity assumption on E, we may assume

that E is of the form

where D : C'— R% is continuous and is uniformly nonatomic at zero on C' in the following

sense.

Definition 4.2.2. For any ¢ € C, and s > 0, let

Q(d,s) ={p € C:9(0) = ¢(0),0 < —s,0 € [-7,0]}.

We say that a continuous function D : C' — R? is uniformly nonatomic at zero on C' if, for
any ¢ € C, there exist 17 such that 0 < 17 < 7, independent of ¢, and a positive scalar

function p(¢, s), defined for ¢ € C, 0 < s < T, nondecreasing in s such that

pO(s) = Sup p(¢a 8)7 p0<TI> =k <1, (428)
ocC

and

[D(p1) — D(p2)| < po(s)llp1 — @2llsups for @1, p2 € Q(¢,s) and all 0 < s < T1. (4.2.9)

We note that the definition implies both that pgp is non-decreasing and that pg is inde-

pendent of ¢. Therefore a consequence of (4.2.9) is

[D(1) = D(@2)| < po(s)ll1 — @2llsup, for o1, w2 € Q(, 5),

and all 0 < s <Tj and all p € C. (4.2.10)
We tend to use this consequence of the definition in practice.
It is instructive to compare the conditions (4.2.8) and (4.2.9) with Mao’s condition

(4.2.6) on the neutral functional D. We first note that (4.2.6) implies both (4.2.8) and

(4.2.9) and so implies that D is uniformly nonatomic at 0 in C([—7,0]; R?), so that (4.2.6)
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is not a weaker condition that uniform nonatomicity. Indeed, as shown by the functional
given in (4.1.9), the condition (4.2.6) is a strictly stronger condition.

It is known ([28, 41, 43]) that under these assumptions on D, and f for each ¢ € C
there is a unique solution of (4.2.7) with initial value ¢ at 0. The solution is continuous
with respect to initial data. For definition of solutions see [43]. In the sequel 77 is fixed
and is in the interval of definition [0, T, of solutions of (4.2.7).

We make the following related assumption on the functional.

Assumption 4.2.2. Let ¢ € O([—7,0];R?) and assume Dy, Dy : C — R such that

D(é) = Dol@) + Di(@). (42.11)
Suppose there exists § > 0 and H : C([—7,0]; R?) — R? such that
Do(¢) :== H{é(s) : —1 < s < =8 < 0}), for all ¢ € C([—7,0];RY).

Suppose further that Dy is uniformly non—atomic at zero on C, so that there exists 0 <

Ty <6 and k € (0,1) as given in definition 4.2.2 such that (4.2.8) and (4.2.10) hold.

We can choose T1 < § without loss of generality in order to ensure that the pure delay
functional Dy which depends on ¢ € C([—7,0];RY) only on [~7,—d] does not interact
with the functional D; which can depend on ¢ on all [—7,0]. One consequence of the
decomposition of D in (4.2.11) is that the continuity condition on k required in Hale’s
definition of uniform non—-atomicity can be dropped for Dy.

We make a linear growth assumption on D which is slightly non—standard also.

Assumption 4.2.3. For all ¢ € C([—7,0];R?), there exist k € (0,1) and Kp > 0 such

that

ID(¢)] < Kp(l+  sup [¢(s)]) +k sup |d(s)]. (4.2.12)
—7<s<-T1 —T1<s<0

The numbers k& and T} can be chosen to be the same as those in Assumption 4.2.2

without loss of generality, and we choose to do so. One reason for this is that the choice
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that T1 < ¢ in Assumption 4.2.2 ensures that the pure delay functional Dy does not make a
contribution to the constant k in the second term on the right hand side of (4.2.12) which
might force £ > 1. The linear growth bound on D(¢) arising from the dependence on ¢
over the interval [—7, —T}] guarantees the existence of second moments of the solution of
(4.1.1). Notice that no restriction is made on the size of the constant K p, while we require

ke (0,1).

4.3 Discussion of Main Results

In this section we state and discuss the main results of the chapter. We state our main
existence result, and give examples of functionals to which it applies. We then show, under
the condition that D is uniformly non-atomic at zero in C([—7,0]; R?), that the solution
X of (4.2.1) enjoys exponential growth bounds in a p—th mean sense. Finally, we give
examples of equations for which the neutral functional D is not uniformly non—atomic at

zero, and for which solutions of (4.2.1) do not exist.

4.3.1 Existence result

The main result of this chapter relaxes the contraction constant in (4.2.6) in the case when
the functional D is composed of a mixture of pure delay and instantaneously interacted
functional. For any 7' > 0 and 7 > 0 we define M?([—7, T];R%) to be the space of all

R?valued adapted process U = {U(t) : =7 <t < T} such that

E| sup [U(s)P

—7<s<T

< +00.

Theorem 4.3.1. Suppose that the functionals D obeys Assumption 4.2.2 and Assumption
4.2.3, f and g obey Assumption 4.2.1. Then there exists a unique solution to equation

(4.1.1). Moreover, the solution is in M?([—7,T];R?).

We now give two examples to which Theorem 4.3.1 can be applied.
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Example 4.3.1. Consider the neutral functional D defined by

N

D(g) = ho(g(0)) + 3 hi(p(—7)) + / w(s)h(p(s)) ds, (43.1)

i=1 [—70,0]

where ¢ € C([—7x,0]; R?) where 7, := max;>1{7;} V 7o; h is global Lipschitz continuous
and linearly bounded; w is continuous; For each ¢ € N, 7; > 0, h; is continuous and globally
linearly bounded. Hence, it is easy to see that under either of the following two conditions,

a unique solution exists:

(i) If ho is also globally Lipschitz continuous and linearly bounded, moreover, for any

z,y € RY, |ho(x) — ho(y)| < |z —y| with 0 < k < 1.

(ii) If ho(z) = Az, A € R¥? and det(I — A) # 0. In this case, equation (4.1.1) can be
rearranged by dividing both sides by (I — A)~! to obtain a unique solution regardless

the value of k.

This is because for some L > 0,

/ w(s) (b1 (s)) — hlpa(s))) ds < L / w(s)[1(s) — pa(s)| ds
[—70,0]

[_7_010}

<L sup |¢1— 902]/ w(s)ds,
[_7_070]

—7.<s<0

we can choose T € [0, 70| such that

L/ w(s)ds+k <1,
[—70,—T1]

which ensures that D satisfies the condition of being uniformly non-atomic at zero. The
two cases illustrate the importance of both invertibility and non-atomicity in ensuring a

unique solution of equation (4.1.1).

Example 4.3.2. Consider D(yp) = Kmax_,<s<_, |¢(s)| where 0 < 7/ < 7. If 7/ > 0,
then for all K € R, a unique solution exists. In this case, D plays the role of Dy in (4.1.1).

However, if 7/ = 0, then we require that |K| < 1.

134



Chapter 4, Section 3 Existence and Uniqueness of Stochastic Neutral Functional Differential Equations

4.3.2 Exponential estimates on the solution

In this subsection we state our results on the existence of moment of the solution of (4.1.1).
Results of this kind have been proven by Mao in [60, Chapter 6] under the condition (4.2.6).
However, in this chapter we establish similar estimates under the weaker assumption that
D is uniformly non—atomic at zero. In our proof, this relaxation of the condition comes
at the expense of a strengthening of our hypotheses on the functionals D, f and g. The
new hypotheses, which tend to preclude the functionals being closely related to maximum
functionals, are nonetheless very natural for equations with point or distributed delay. The

proofs rely on differential and integral inequalities, in contrast to those in [60, Chapter 6].

Theorem 4.3.2. Suppose that f and g are globally Lipschitz continuous and that D
is uniformly non—atomic at zero. Then there exists a unique continuous solution X of

equation (4.1.1). Suppose further that there exist positive real numbers Cy, Cy and Cp

such that
uwnsq+ﬂ;mwwm@m (132)
o)l < Cot [ ntas)lo(o (433
DI Co+ [ pds)e(s)l (13.4)

where v, n and p € M([—7,0];R"). Let p > 2, ¢ > 0 and define

1= i) 1= T N@u) = M) = o)+t P

E 2

Then there exists a positive real number 6 = 0(p,e) such that X obeys

lim sup 1 log E[| X ()] < 0 + w

4.3.
t—o00 t 2 ’ ( 35)

where 0 satisfies

—0r

/ 6(0+ﬂ1)s'u(ds)_’_/ 698/ eﬂw)\(du) ds + 69 / eﬁl’uf)\(du) = 1.
ol 0 50 (=)
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We make no claims about the optimality of the exponent in (4.3.5), although ¢ > 0
could be chosen so as to minimise ¢ — 0(p,e) + [1(p,e) for a given value of p > 2. In
a later work we show that an exact exponent can be determined in the case p = 2 for a
scalar linear stochastic neutral equation.

Remark 4.3.1. We notice that a functional of a form similar to (4.3.1) satisfies the condi-
tions (4.3.2), (4.3.3) or (4.3.4). Suppose for i = 1,..., N that h; : R? — R? is globally
linearly bounded, and satisfies the bound |h;(x)] < K;(1 + |z|) for 2 € R? and that

v; € M([—,0; R and let

where 7 = max;—,._ n7; € (0,00). Then

N N
< K;|v;|(ds K;lv;|(ds S)|.
LCIE S SR ZIOES By S RS

—73,0]
Now set Cy = Zfil f[_n’o] K;|v;|(ds) and v(ds) := Zfil K;|vi|(ds) where we define
v;(E) = 0 for every Borel set E C [—7,—7;), so that f obeys (4.3.2).

Remark 4.3.2. First, we note that the conditions (4.3.2), (4.3.3) and (4.3.4) imply As-

sumption 4.2.1 and Assumption 4.2.3, with which Lemma 4.4.1 can be applied. Second,

for any p > 2, the conditions (4.3.2), (4.3.3) and (4.3.4) imply

SP <O [ rase (4.3.6)
I < Cot [ naletolP (437
PP <Co+ [ ptas)e(o) (133)

respectively for a different set of Cy, Cy and Cp, and rescaled measures v, n and p.
Therefore, for the reason of convenience, we will be using conditions (4.3.6), (4.3.7) and

(4.3.8) in the proof of Theorem 4.3.2.
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4.3.3 Non-existence of Solutions of SNFDEs

In this section, we give examples of scalar stochastic neutral equations which do not have a
solution. To the best of our knowledge, examples of stochastic neutral equations which do
not have solutions have not appeared in the literature to date. Our purpose in construct-
ing such examples is to demonstrate the importance of the existence conditions (4.2.10)
and (4.2.6) in ensuring the existence of solutions. We show that both these sufficient
conditions are in some sense sharp in two ways. First, we show that if either condition
(4.2.10) or (4.2.6) is slightly relaxed, then solutions to our examples do not exist. Second,
by considering the equations for which solutions do not exist as members of parameterised
families of equations, we can show that small changes in the parameters lead to equations
which have unique solutions. We emphasise in each case that the underlying determin-
istic equation is also ill-posed. Therefore in the examples we consider, the presence of
a stochastic perturbation does not make the stochastic NFDE well-posed. In fact, our
theory in this chapter shows that the addition of a well-behaved stochastic term (e.g.,
Lipschitz continuous) does not modify the existence or uniqueness of solutions. It is an
open and interesting problem as to whether there are a class of NFDEs or of reasonable
stochastic perturbations which can give differing existence and uniqueness results. How-
ever, as this question is not required for the analysis of the pathwise large deviations of
affine equations in the following chapter, we do not pursue it here.

Regarding ill-posed equations, we consider both equations with continuously distributed
functionals and with maximum type functionals. The first class of equation shows the
condition (4.2.10) cannot readily be improved for such equations. On the other hand, the
more conservative condition (4.2.6) is shown to be quite sharp for equations with max—type

functionals.

Equation with continuously distributed delay

Let the functional f defined by f : C([—7,0];R) — R be Borel-measurable. Let h €

C(R;R), w € C*([~7,0];R) and o # 0. Consider the one-dimensional stochastic neutral
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functional differential equation

0
d <6X(t) +/ w(s)h(X(t+s)) ds> = f(Xy)dt+odB(t), 0<t<T. (4.3.9)

—T
where € € R. For the initial value problem we must specify the initial data on the interval

[—7,0] and hence we impose the initial condition
Xo= 9= {(4(6) : 7 <0 <0} € L) ([-7, 0] B), (43.10)

that is 1 is an F(0)-measurable C([—7, 0]; R)-valued random variable such that E[[|?] <
+00. (4.3.9) should be interpreted as the integral equation
0

0
eX(t) + / w(s)h(X(t+s))ds =eX(0) + / w(s)h(y(s)) ds

—T —T

t t
+/ f(Xs)ds +/ o0dB(s), forallte[0,T], as.. (4.3.11)
0 0

The initial value problem for equation (4.3.9) is to find the solution of (4.3.9) satisfying
the initial data (4.3.10). In this context a solution is an R-valued stochastic process
X = {X(t) : =7 <t < T} to equation (4.3.9) with initial data (4.3.10) if it has the

following properties:

(i) t— X (t,w) is continuous for almost all w € Q and X is {F(¢)}+>0—adapted;
(i) {f(X0)} € LY([0, T]; R);

(iii) Xo =1 and (4.3.11) holds.

Proposition 4.3.1. Let 7 > 0. Let h € C(R;R), w € C([-7,0];R), ¥ € C([~7,0];R)
and o # 0. Suppose also that t — f(x;) is in C(]0,00);R) for each x € C(|—1,00);R). Let
T >0 and € = 0. Then there is no process X = {X(t) : —7 <t < T} which is a solution

of (4.3.9), (4.3.10).

We note that a solution does not exist for any T > 0.
It is the hypotheses € = 0 that is crucial in ensuring the non—existence of a solution. In

(4.3.9) we may define the neutral functional D by
0
wa:u—awm—/‘w$Mﬂ@Ma o € O([-, 0:R).

-7
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Suppose that h is globally Lipschitz continuous with Lipschitz constant k. Let ¢ €
C([—7,0];R) and suppose that ¢1,ps € Q(¢, s) for s < 7. Clearly D cannot be uniformly
non-atomic at 0 on C([—7,0];R) for otherwise (4.3.9) would have a solution.

We now show, however, for € € (0, 2) that D is uniformly non-atomic at 0 on C([—7,0]; R),

and so (4.3.9) does have a solution. First note that

0

D(p1) = D(pa) = (1 = €)(¢1(0) = #2(0)) - / w(w) (h(p1(w) = h(p2(u))) du.

Since 1 (u) = pa(u) = ¢(u) for u € [-7, —s), we have

D(g1) = D(g2) = (1 = €)(1(0) — 92(0)) — /Osw(U) (h(p1(u)) = h(p2(u))) du. (4.3.12)
Therefore by (4.3.12) we have
[D(¢1) — D(2)] < [1 = €l|91(0) — 2(0)] + /0 w(w)l|h(p1(u)) = h(p2(u))| du

—S

0
< [1 = €l[1(0) — 2(0)] + k‘h/ |w(w)||e1(uw) — pa(u)| du

—S

0
< 1= elller = @2llsup + Fnller = soz\lsup/ |w(u)| du

—S

= po(s)ller — @2llsup,

where we define
0

po(s) =11 —¢|+ k:h/ |lw(u)|du, s € [—T,0].

—S

Clearly po is non-decreasing. For every e € (0,2) we have |1 — €| < 1, so because w is
continuous, there exists a 0 < T < 7 such that po(71) < 1. In this case, D is uniformly
non-atomic at 0 on C([—7,0];R). Therefore for € € (0,2) we see that (4.3.9) has a unique
solution by Theorem 4.3.1. In the case when € > 2 or ¢ < 0, simply divide (4.3.9) by e.
The properties on f, w and h etc. guarantee the existence and uniqueness by Theorem

4.3.1 using the above arguments in the case ¢ = 1.

Proposition 4.3.2. Let 7 > 0 and € # 0. Suppose h € C(R;R) is globally Lipschitz
continuous, w € C([—7,0];R), ¢ € C([-7,0];R) and o # 0. Suppose also that there is

K>0

1f(¢) = f(@)| <K sup [o(s) —(s)], forall , € C([—7,0];R)

—7<s<0
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Let T > 0. Then there is a unique solution X = {X(t): —7 <t < T} of (4.3.9), (4.3.10).

Equations with maximum functionals

Let k > 0 and suppose that g : C([-7,0];R) — R is globally Lipschitz continuous.

Consider the SNFDE

d(X(t)+r max |X(t+s)|)=9(Xy)dB(t), 0<t<T,as. (4.3.13)

—7<5<0

In the case when x € (0,1), (4.2.6) holds for the functional D defined by

D(p) = r max |p(s)], ¢ €C({=7,0R), (4.3.14)

and for any given T' > 0, (4.3.13) has a solution by Mao [57, Theorem 6.2.2]. This could
also be concluded from the fact that D is uniformly non-atomic at 0 on C([—7,0];R), in
which case Theorem 4.3.1 applies.

We suppose now that x > 1. We note that (4.2.6) does not apply to the functional D in

(4.3.14). To see this consider ¢y € C([—7,0],R) and let p; = aps for some o > 0. Then

[D(p2) = D(p1)| = [klle2llsup = #ll@1lsupl

= #llle2llsup = allpallsup| = [ = afl[@2lsup-

On the other hand |2 = ¢1llsup = Kllp2 — ap2llsup = #|1 = ll|¢2llsup, so

’D(QOQ) - D(901)| = ’QHQOQ - Wl”sup,

which violates (4.2.6), as k > 1.
Also, we see that D in (4.3.14) does not satisfy (4.2.9). To see this suppose that o1, p2 €

Q(s,0) is such that 2(0) > 0, @9 is non—decreasing, and ¢1 = aps for a > 0. Then

D(p2) =k max [pa(u)| =k max |pa(u)| =k max o(u) = rp2(0).
u€[—7,0] u€[—s,0] u€[—s,0]

Similarly

D(¢1) =k max |pi(u)] =k max aps(u) = kaws(0).
u€[—s,0] u€[—s,0]

Hence |D(p2) — D(p1)| = k|1 — a]p2(0). On the other hand

lp2 = @rllsup = max fpa(u) —@1(u)] = max |1 —aflpz(u)] =1 — afp(0).
u€[—s,0] u€[—s,0]
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Thus |D(p2) — D(e1)| = kllw2 — @1lsup, so (4.2.8) and (4.2.9) cannot both be satisfied,
because xk > 1.

We now prove that (4.3.13) does not have a solution.

Proposition 4.3.3. Let 7 > 0. Let ¢ € C([—7,0];R). Suppose also that

There exists 6 > 0 such that § := inf 2(p). 4.3.15
L (¢) ( )

Let T > 0 and k > 1. Then there is no process X = {X(t) : —7 < t < T} which is a

solution of (4.3.13).

4.4 Auxiliary Results

The proofs of the main results are facilitated by a number of supporting lemmata. We
state and discuss these here.
We first give a lemma which is necessary in proving the uniqueness and existence of the

solution.
Lemma 4.4.1. Let X be the unique continuous solution of equation (4.2.1) with initial

condition (4.2.3). If both (4.2.5) and (4.2.12) hold, then for any p > 2, there exist positive

constants K1 and Ko depending on T such that

E[ sup |X(s)]P] < Kief2T, (4.4.1)
—7<s<T

In our proofs of moment estimates, we will need to use the fact that the p—th moment
of the solution is a continuous function. Although the continuity of the moments is known
for solutions of SNDEs, the contraction condition (4.2.6) is used in proving this continuity.
Therefore, under our weaker assumptions, we need to prove this result afresh. To prove

the continuity, we first need an elementary inequality.

Lemma 4.4.2. Let p > 1. Suppose that U,V € R® are random variables in L*®P=1 . If
cp > 0 is the number such that
(a+b)2P~Y < ¢,(a®P~D 4 p2P=Dy  for all a,b > 0,
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then

ENUP] - EIVI) < p (e B0 + o E[VI20-0)) " By - v,

The continuity of the moments applies to general processes; since we will also employ it
for an important auxiliary process, we do not confine the scope of the result to the solution

of (4.2.1).

Lemma 4.4.3. Let p > 1. Let 7,7 > 0. Let X = {X(t) : t € [-7,T]} be a R valued

stochastic process with a.s. continuous paths, such that

2 2(p—1)
ELTH%%E(T‘X(S)’ ] < 400, ELE%?;HX(S)‘ ] < +o0. (4.4.2)
Then
lim B[ X () — X(s)*]=0, forallsel0,T), (4.4.3)
and so
71im E[|X()|’] = E[| X (s)[P] for all s € [0,T]. (4.4.4)

We find it useful to prove a variant of Gronwall’s lemma. The argument is a slight
modification of arguments given in Gripenberg, Londen and Staffans [39, Theorems 9.8.2
and 10.2.15]. The result gives us the freedom to construct an upper bound via an integral
inequality, rather than relying on precise knowledge of the asymptotic behaviour of a
solution of an equation. We avail of this freedom in proving a.s. and p-th mean exponential

estimates on the solution of the neutral SFDE.

Lemma 4.4.4. Suppose that k € M([0,00); RT) is such that (—k) has non—positive resol-
vent p given by

p+ (—K)*xp=—kK.
Let f be in L}, (RT) and z € L}, (R") obey
2(t) < (k% 2)(t) + F(B), >0, (4.4.5)
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Ify € L}, (RT) obeys

y(t) = (kxy)(@) + f(t), t=0; y(0)==(0), (4.4.6)
then x(t) < y(t) for all t > 0.
4.5 Proof of Section 4.4 and Section 4.3
Proof of Lemma 4.4.1 First, consider ¢ € [0, 71]. Define
Em =Ty ANinf{t € [0,T1] | |X#)|>m}, meN.
Set X™(t) = X (t N&n). Hence
t t
X7(0) = 0(0) = D)+ DO + [ Fds+ [ () as)
By the inequality (cf. [57, Lemma 6.4.1]),
—Lo\p—1 |b|P
la+bP < (1+er-1)P " (|al? + ?), Vp>1 >0, and a,b € R, (4.5.1)
it is easy to show that
1 1
X" < (14T (D) - DWP + L OP),
where
p—1
e (A ) 452
k3p—3
k is defined in (4.2.12), and
TI(E) = / FX™) ds + / g(X™) dB(s).
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Given (4.2.12),and using (4.5.1), for any £ > 1, we have

X (8P
) 2 e
< T IDW)P + (L4 7 )P AD(X P I )P
(14c71)202 (14erypt
< D) PP
p
+(1+ 69%1)2”_2 [KD (1 + sup | XT(t+ S)|> +k sup | X(t+9)|
—7<s<-T1 —T1<s5<0
) )
< D) P
1
+(1+em1)?2[Kp+ (Kp+k) sup [¢(s)|+k sup [X™(s)[”
—7<s<0 0<s<t
(1+e7T)%2 A+eript
< D)+ 0P
+(L+e71)P 3 sup [X™(s)P
0<s<t
1
1+ ep-1)3P73
P ) e (Kp+E) sup ()P
g —7<s<0
Thus
sup | X™(s)|?
0<s<t

L \2p—2 77 )3p—3
umw)‘u M[KD+(KD+I€) sup [¢(s)[]”
c e —7<s<0

1
1 14 erT)p1
(1t sup X+ LT e
0<s<t € 0<s<t

<

1
Due to (4.5.2), (1 4+¢e7-1)3P3kP < 1, the above inequality implies

sup [ X" (s)|” < T
0<s<t 1— (1 + 8ﬁ)3p—3kp

771)3p—3
P e ) s [P}
e —7<s<0

1
(1+er1)pt
: sup |7 (1)
6[1 — (1 + gpr—1 >3p—3kp] Ogsgt

S

9

Since

sup | X (s)[P < sup |¢(s)[P + sup |X(s)[P,
—7<s<t —7<5<0 0<s<t
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we get

: B iy
1-(1+ 575)319—31/.:? €

sup | X ()P < { D()P

—7<5<t

U:%siﬁ)@_g
+————[Kp+(Ep+k) sup [P(s)]]’| + sup [(s)
3 —7<5<0 —7<5<0
1
1+ ep1)pl
PR U sup [JM)P. (4.5.3)
[1 — (1 + ep— 1)3p 3kp] 0<s<t

Now

sup [J7"(s)]”

0<s<t
P
= sup /f du+/ g(X") dB(u)
0<s<t
1+er-1
LN
€ —7<5<0

p

—i—(l—i—eﬂl sup / f(X du+/ g(X") dB(u)
0<s<t

1
1+Ep_1 p—1 1_|_€p12p2 S
< W pep+ DT /
0

3 —7<5<0 € 0<s<t

/O (X1 dB(u)

Taking expectations on both sides of the inequality, and let o = gl/=1), by Assumption

FXT)

p
du> +

+ (1 4er1 1)2p 2 sup
0<s<t

4.2.1, we have

p—1
E[ sup |J7"(s)P] < (1 - “) sup (s)]?

0<s<t « —7<s<0
(1 —|—Oé 2p 2
+

p
sup < 1+|\Xm|sup)du> ]
0<s<t

p
/ (X™) dB(u) ]

oP

+ (14 a)?P~ QE[ sup
0<s<t
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By the Burkholder-Davis-Gundy inequality, let C), := [pP™!/(2(p — 1)P~1)]P/2, the above

inequality implies that

p—1
E[ sup [ (s)P] < (1 *“) sup (5P

0<s<t o —7<5<0

P s ([ @ 1w ) |

Q

wrapr2ce|( [ lgxmI? ) g]

1+« p—1
< ( ) sup [$(s)]?
« —7<s5<0

1+ o) %2 g
+ I oy e | [ (XD )P

] :
+ (1 +a)2p20pKPEK/O (1+ HX{L”HSHP)?du) ]
where we have used Hoélder’s inequality in the second line. Thus
(141X [sup)? < (14 )P~ H e P + || X7 [By)

and

t z -2p [t
([ ixzo?an) <15 [0 X7 o
0 0

p—2)

( P
<@ tapin T /O (@17 4 || X7|[B,) du

Hence

p—1
E[ sup [/ (s)7] < (1 “‘) sup p(s)P?

0<s<t « —7<5<0

1 3p—3 )
[ Ryt o gk e [0 g, do
o 0
(4.5.4)
Taking expectations on both sides of (4.5.3), and inserting the above inequality into (4.5.3),

we have

1 L1
- +E[ sup |X™(s)|P] < K1+ fi2/ ( +E[||Xm”sup]> du
0

—7<s<t

1 tr1
<Camtm [ (D4E s X@P) du
0

—1<u<s
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where
1
1 1+4ep-1)%2
oy = 1 UL D
1—(1+4¢ep-1)3p=3fp €
(1+e7-1)33
+———"—[Kp+ (Kp+k) sup [¢(s)|]"
€ —7<s<0
1
1+ep1)p1
" [1 " H] sup_[p(s)P,
€ —7<5<0
and

(14 81’%1)7’*1
Rg = 1 X
e[l — (1 +ep1)3p=3fP]
(1+er1)3-3
£

| 1 3p—3 = p (p—42)p
KPTY " + (1 +er 1) Cp KT .
Now the Gronwall inequality yields that

1 m 1 kT

—+E[ sup [X7(s)]] < (2 +r1)e™,

€ —7<s<T} €

Consequently

1
E[ sup |X™(s)|P] < (=+ ml)eHQTl.
—7<s<Ty €

Letting m — oo and € — [1/kP/GP=3) — 1]P~1 we get

E[ sup |X(s)\p]§[< 3 1>p_1+m]e“ﬂ’1.

—7<s<T] ]{;31)73

For t € [nTy,(n+ 1)T1] (n € N), assertion (4.4.1) can be shown by applying the same

analysis as in the case of ¢t € [0, T1].

Proof of Lemma 4.4.2 Let z,y > 0 and p > 1. Then there exists 6(x,y) € [0, 1] such
that
a? —y? = plfz + (1 - O)ylP~ ' (z — y).
Thus for U, V € R? we have (U, V) € [0,1] such that
U = [VIP = plolU| + (1 = o)V (U] = V).
Therefore
E[[UP] - E[[V[P] = pE[8|U| + (1 = )|V (|U] — [V])]
< pE[[0[U] + (1 = 0)|V[**- D]V E[(jU| — [V)*)?

< pE[|U| + V2=V 2E[(U] — [V])2]H2.
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Similarly, as [V[? — [U[P = p[g|U] + (1 — 0)[V]]*"1(|V| - |U]), we have
E[|V[P] - E[|U"] = pE[[0|U] + (1 — O)|V[]P= (V| = |U])]
< pE[|U] + (1 — O)[V PP~ DI2E[(|V] — |U])?)/?
= pE[[6|U] + (1 — )[V )PP~ VI2E[(jU| — |V])*)/?

< pE[[JU] + [V[PP-DI2E[([U] — V)22,
Therefore

[ENU ]~ E[VI]| < pE[[U| + [VIPEDIPE[(U| — V)]

= pE[[|U] + |V [[2P=D]2E[| U] - [V|?]/2

Now ||U| - V|| < |U = V|, so ||U| — [V||?> < |U — V|2, Therefore
[ENUP] — EIV ]| < pE[[U| + VPP~V 2E(U - VIP]V2,
Since (a + b)2P~1) < ¢,(a?P=1) 4 p2P~D) for all a,b > 0, we have
1/2
ENU] - ENVP]) < p (B0 ]+ 6BV Bju - v

as required.

Proof of Lemma 4.4.3 Let 0 < s <t < T. We first prove (4.4.3). By the continuity
of the sample paths, we have lim; s X (t) = X (s) a.s. for each s € [0,7]. On the other

hand, because

X)) < X
X()] < max X))

we have that | X (¢)| is dominated by a random variable which is in L? by (4.4.2). Then by

the Dominated Convergence Theorem, we have that X (t) converges to X (s) in L? viz.,

lim E[| X (t) - X ()" = 0,

t—s

which is (4.4.3). Now we prove (4.4.4). Let 0 < s < t < T. Define My(T) :=

E[max_,<s<7 |X(s)[*P~Y]. Since (4.4.2) holds, by Lemma 4.4.2

EIX (0] - B[ X ()P
< p (cBIIX O] + ¢ EIX (o0]) " Blx (1) - X(5)2

< p (26, M, (T)) 2 E[|X (t) — X ()2,
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Now (4.4.3) implies (4.4.4).

Proof of Lemma 4.4.4 By (4.4.5) and (4.4.6), there are ¢ > 0 and a h > 0, both in
Ll

loc

(R*) such that
2(t) = (Rx2)() + f(8) —g(t), y(t) = (xxy)() + f(t) + h(t), =0
Since p is the resolvent of —#, we have the variation of constants formulae:
v=f—g=px(f=9), y=F+h—px(f+h)
Therefore
pxr=rx(f—g)—rmxpx(f-g)=[k—rmxplxf—[p—rxplxg=—pxf+prg
Similarly %y = —p* f — p * h. Hence
2(t) < (x2)() + £(2) = =(px ))() + (px 9)(&) + F() < (&) = (p* F)(®),

where we have used the fact that ¢ is non—negative and p is non—positive at the last step.

Similarly

y(t) = (ko y)(t) + F() = =(px ))E) = (px h) (@) + f(t) = f(£) = (p* [)(),

where we have used the fact that h is non—negative and p is non—positive at the last step.

Therefore z(t) < f(t) — (p* f)(t) < y(t) for all £ > 0, which proves the claim.

Proof of Theorem 4.3.1 We first establish the existence of the solution on [0,77],
where T7 € (0,0) as defined in Assumption 4.2.2. Define that for n =0,1,2,..., X7y = ¢
and XV (t) = v(0) for 0 < ¢t < Ty. Define the Picard Iteration, for n € N, ¢ € [0,T1],
t t
Xp(0) = D) = 00) = D)+ [ 1 s+ [ aBe). (455)

Hence

t

0

X1(t) - XV(t) = D(X0,) — D() + / X0, ds + / g(X0,) dB(s).
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By Assumption 4.2.3,

X1~ XYOP < |DXD) ~ DW)P + |10

1
g(KDm sup X0t + 5)])
(6% —7<s<-T}
2 1
ek swp XY+ D)+ 0P
—T1<s<0 -«
where
t t
I(t) = / X0, ds + / g(X9,) dB(s).
0 0
It follows that
sup X} (t) — X0(0)]?
0<t<Ty
1
g(KDm sup [B(s)) Lk sup  [XO(s)]
o —7<5<0 —T1<s<Ti
2 1
HIDW) + 2y s (0P
— O 0<s<Ty
1 2 1
— (Ko + Ko+ 8)_swp [0+ DWI) + 12 sup 1P
o —7<5<0 — O 0<s<Ty

By Assumption 4.2.1, it can be shown that

JE[ sup |I(t)|2] <2KT(T) +4)( sup  |9(s)> +1).
0<t<Ty —T1<s<0

This implies that

1 2
[ sup X1 - X0P] < 2 (Ko + (Ko+8) sup_[0(s) + D))

0<t<Ty —7<5<0

2KT\(T) + 4
+11(1+)( sup  |(s)]2+1]) =: C. (4.5.6)
-« —T1<s<0

Now for allm € Nand 0 < ¢ <Tj <4 (¢ is defined in Assumption 4.2.2), follow the same

argument as in the proof of the uniqueness, we have Do(XT,) — Do (X{tt_l) = 0. Therefore

XPH(t) = XT'(8) = Da(X7y) = Da(X7 )

+ / (FXP,) — FXTY) ds + / (9(XT,) — g(XP51)) dB(s).
0 0
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Again by (4.2.10), we have

IDy(XT,) — Di(XT7)]
< kIXT — XT7 lsup

=kmax{ sup |XP(t+s)— X7 (t+s),

—r<s<—Ty
sup | X7 (t+s) — X{L_l(t +s)|}
~T1<5<0
=k sup |X](t+s)— XNt +s)
—T1<5<0
=k sup |X7(s) — X771 (s)|.
0<s<t

Apply the same analysis as in the proof of the uniqueness, we get

E[ sup \X{Hl(t)—X{l(t)\Q] (4.5.7)
0<t<Ty

2
gkIE[ sup ]X{L(t)—X{ll(t)ﬂ

« 0<t<Ty
2K(Ty +4) [
+(1+)/ E[ sup |X{L(s)—X{L1(s)|Q] dt
0

-« 0<s<t
k> 2KT, (T, +4
< (—I—l( 1+ )>E[ sup |X{L(8)—X{L1(s)|2].
« 11—« 0<t<Ty

Now let
k2 o2KTy (T, + 4
oo B KT £ )
a 11—«

We show that there exist such 77 and « so that v < 1. Fix 0 < p < 1. Choose 17 such
that k = po(T1) < p and 2KT1(Th +4) < (1 — p?)?/[2(1 + p?)]. Let a = (1/2)p? + (1/2),
then k? < % < o < 1, which implies v < 1. Combining (4.5.7) with (4.5.6), we have
E[ sup | X7(t) —X{‘(t)|2] <A"C. (4.5.8)
0<t<T;

Choose € > 0, so that (14 €)y < 1. Hence by Chebyshev’s inequality,

P{ sup |XPH(0) - X7(0)] >

=LY<+ eync.
0<t<Ty (1+6)"}_( "

Since Y7 (1 +¢€)?"y"C < oo, by Borel-Cantelli lemma, for almost all w € Q, there exists

no = no(w) € N such that

1
sup | X7H(t) - XT(1)] <

———, forn > ng.
0<t<Ty (1+e)?’
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This implies that
Xl _|_ Z Xerl Xz( )]

converge uniformly on ¢ € [0,77] a.s. Let the limit be X;(¢) for t € [0,73] which is
continuous and F(t)-adapted. Moreover, by (4.5.8), {X7(t)}neny — X1(t) in L2 on t €

[0,T1]. By Lemma 4.4.1, X;(-) € M?([~7,T1]; R?). Note that

sf] [ sextoas= [ sonaf J<s[( [ 1o sonie)

t 2
gn«:K/ K\|Xﬂs—xl,susupds> ]
0

T
sWﬁAlwmfxmam

— 0, as n— oo,

and
H/ (X7,) dB(s / (X1,) dB( )T
=) [/ (sxr ~o(%10) 4B |
—EU lg(X7,) _9(X1,5)|2d8]
SWA B[ X7, — X1.0l%] ds
S0, as oo,
and

E[ID(X,) — D(X10)l] < KE[|XT, — X1.l] =0, as n — .

Hence let n — oo in (4.5.5), almost surely that

&@zM@—MW+M&ﬁ+AﬂM@%+AngMM$

Therefore {X1(t)}4ep0,7y) is the solution on [0,73] on an almost sure event Q7. We now

prove the existence of the solution on the interval [17,27}]. Define X)r, = Xin for

n=0,1,2..., and X3(t) = X1(T}) for t € [T}, 2T1]. Define the Picard Iteration, for n € N,
t

t
;Ww—Dmgw=me—Dwua+Tfmg5¢+ﬁgwg%w@.
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Following the same argument as in the case of ¢ € [0, T}], it can be shown that there exists
continuous {X2(t) }ye[ry 2my] such that X2(t) — Xa(t) in L? for t € [T1,2T}] almost surely.
Moreover, Xa(-) € M2([Ty,2T1];R?), and X3(-) almost surely satisfies the equation
t t
Xo(t) = X1(Th) — D(X11y) + D(Xa4) + . [(Xa2s)ds+ /7’1 9(Xo5)dB(s).

Therefore {X2(t)}te[r, 2] is the solution on [T7,271] on an almost sure event Qory. Let
X (t) == {Xu(t) Iiteint, (n+1)11]} fnenugoy, then X (-) is the solution of (4.1.1) on the entire
interval [0, 7] which is in M?2([0, T]; R).

For the uniqueness, consider ¢t € [0,77], suppose that both X and Y are solutions to

(4.1.1), with initial solution X (¢) = Y (t) = #(t) for ¢t € [-7,0]. Then

X(0) =Y () = DolX0) ~ Do(¥) + Da(x0) = Di() + [ (700 = £0) s
+/ (9(Xs) — g(Ys)) dB(s).
0

Let s € [—71,—0], by (4.2.12), we have t + s < T} —d < 0, and so X(t+s) =Y (t +s) =

¥(t+s). Then |Do(X:) — Do(Y:)| = 0. Hence

| X (t) =Y (t)| < [D1(Xy) — D1(Y)]

T /0 (F(X0) — F(¥a)) ds + /0 (9(X.) — g(¥2)) dB(s),.

Let k2 < a < 1, where k is given by (4.2.8). Then we get
2 _ 1 2 1 2
1X(t) =Y ()" < 5|D1(Xt) —Di(Y)|" + EU(W ;
where we have used the inequality (cf. [57, Lemma 6.2.3])
(a+b)2<la2+Lb2 0<a<l (4.5.9)
e l—a ’ ’ e

and define
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Now by (4.2.10), since 0 < ¢t < T,
|D1(Xt) — D1(Y2)]
< K[| Xt — Yillsup

=k{ sup |X(t+s)—Y(t+s), sup |[X({t+s)—Y({t+5s)|}

—7<s<-T" —T1<s<0
=k sup |X(t+s)-Y(t+9)|
—T1<s<0
Therefore
o _ K 2 1 2
X@) =Y (@)"<— sup [X(t+s)=Y(t+5)|"+——[J()
a _T,<s<0 11—«
— 2 up 1X(5) - Y + ()
o ogslg)t -« '
Moreover,
o _ K 2 2
sup [X(5) = Y(s)2 < = sup [X(5) = V(s) 2+ —— sup ()2
0<s<t  g<s<t 1 —ao<s<t
Since « has been chosen such that 0 < k%2 < a < 1, it follows that
X(s)=Y(s)* < 1 J(t)?
sup |X(s) =Y (s)|” < - sup [J(¢)%
0<s<t (1—a)(1— %) o<s<t

Now, by (4.2.1) and similar argument as in the proof of Lemma 4.4.1, it is easy to show

that

E[ sup yJ(t)P} < 2K(Ty + 4) /OtE[ sup |X(u)—Y(u)|2] ds.

0<s<t 0<u<s

It follows that

E[ sup |X(5)—Y(s)|2] < 2K(M+4) )/OtIE{ sup |X(u)—Y(u)y2} ds.

0<s<t (11— - % 0<u<s

Using Gronwall’s inequality, we have that

VO<t<Ti, E{ sup \X(s)—Y(s)Q} =0,

0<s<t
which implies that

B[, 1X0) - Y@OF] =0

Therefore we can conclude that on an a.s. event Qr,, for all 0 <¢ < T3, X(t) = Y(¢) a.s.
Apply the same argument on the interval [T7,277] given X (¢) = Y (t) on [—7,T1] a.s., it

can be shown that X (¢) = Y (¢) on the entire interval [—7,T] a.s.
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Proof of Theorem 4.3.2 Let Y (t) := X (t) — D(X}), then by the inequality (4.5.1), we
have

1 1
XD < (147 (Y (P + ZIDX)P). (4.5.10)
By It6’s formula,

Y(r = 1w - WP + | (p!Y(S)!”_QYT(S)f(Xs)

YO I o LAY Tl a5t
0

Hence if
t
E[/ \Y(8)|2p‘2Hg(Xs)Hst] < 00, (4.5.11)
0

we get,
E[Y (6)P] = [$(0) - D) + E[ / <p|Y(8)|p_2YT(8)f(Xs)
2Dy 2| s

We assume (4.5.11) holds at the moment, and will show that it is true at the end of this

proof. Define z(t) := E[| X (¢)[P], and y(t) := E[|Y (¢)|’]. Then

y(t+h) —y(t)

t+h _
| Py e o) + Dy ) gl ds

t+h _
< [ B O+ P er o) ds

E
< [T o[ Dy L0

pep~1

+ p(pZ_ 1)E|:5(p —2) Y (s)[P + QZLL%EOXQS))/QP] } ds

t+h _ _
= [0y + SR+ AElla e} as

< [T gEfo [ vanixoesp]

where we have used the inequalities (cf. [57, Lemma 6.2.4])

(p—1)a? bP
p peP~1

Vp>2, and e,a,b >0, o’ 'b< £
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and
e(p — 2)aP 2bP

VS T e

in the second inequality, conditions (4.3.6) and (4.3.7) in the last inequality. By the

continuity of ¢ — E[| X (¢)[P] and t — E[|Y (¢)|P], it is then easy to see that

ep(p—1 C Cy(p—1
Do) < PEy 4 S SO [ )
where
A(ds) = v(ds) - —— +n(ds) - T (4.5.12)
£ 2
Hence
t
y(t) < Py0) + [ (ﬁz o [ A(ds>m<u+s>) B, (4513)
0 [—7,0]
where
_eplp—1) _ G _Gylp—1)
ﬁl C ?a 62 Ca Epi—l’ /63 - 8;7?'
Now since

X ()] < 1X(t) — D(Xe)| + |D(Xe)],
again by (4.5.1),
X()P < (47 TP DO + X () ~ D)),
it follows that

oft) < (71 (LEIDCR T +400) )

1 1
-1 \p—1 -1 \p—1
<(1+€::1) CD+(1+5P T) /
[-7

wu(ds)z(t + s)
0]

1
+ (1 +er1)Ply(t),

Combining the above inequality with (4.5.13), we get

2(t) < (147 1)~ 1ePity(0) + B4Cp + 54/[ 0 pu(ds)z(t + s)

0

t
4 (14 erTypL / efrlt—w <62+63+ / )\(ds)x(u—l—s)) du,
[_7_70]
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where (4 := (14 e/@=D)=1/c Let z.(t) = e Pa(t) for t > —7. Since e /1t < 1 for

t > 0, then

ze(t) < (1+e7 TP y(0) + fiCpe Pt + B5(1 — et

Fou [ uldse ()
[_T’O}

t
b (14Tt / ¢ / Ads)a(u + 5) du
0 [—7,0]

< [(1 + e )Py (0) + B4Cp + 55] + B / P15 u(ds)ze(t + 5)

[_7_70]

t
+/ / P15\ (ds)ze(u + 5) du,
0 J[-7,0]

(L4 T T8y + Bs).

where
1

A
Let s := (1 + aﬂ%l)p_ly(O) + B4Cp + Bs, pe(ds) := eP5u(ds) and \.(ds) := P15 \(ds),

Bs =

thus

%@s%+m/

[_7—70]

t
te(ds)xe(t + s) + / / Ae(ds)ze(u + s) du.

0 7,0]
Now let u(E) = A(E) =0 for E C (—00,—7), 80 pe(E) = Ae(F) = 0 for E C (—o0, —7).
Define uf (E) := pe(—F) and A\J(E) := A\(—FE) for E C [0,00). Hence

/ pe(ds)ze(t + s) = / pe(ds)ze(t + s)
[—TO] ( ooO]

/ pd (ds)ze(t — s)
[0,00)

/ pd (ds)ze(t — s) +/ pl (ds)ze(t — s)
[0,¢] (t,00)

/ pd (ds)ze(t — s) +/ pt (ds)ibe(t — 8),
(t,t47]

where 1) (t) := e P1¥|3)(t)|P and 1 is the initial condition for X on [—7,0]. Similarly,

$)xe(u+8) = T(ds)ze(u—s T(ds)e(u — s).
o) = [ N@su =9+ [ @) —s)

(t,t+7]

Consequently,

xdﬂé@ﬂ#ﬁ/ qumaﬁw%+&/1 i (ds)e(t — 5)

[0,¢] (t,t+7)
/ / M (ds)ze(u — s du—i—/ / F(ds)the(u — s) du. (4.5.14)
[0,u] ourT
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Let AF(t f[o 1 Al (ds). By Fubini’s theorem and the integration-by-parts formula,
t t
/ / A (ds)ze(u — 5) du = / A (ds) / Ze(u —s)du (4.5.15)
0 J[0,u] s=0 u=s
t t—s
= /\j(ds)/ xe(v) dv
s=0 v=0

t

= /t—s x(v)dv- Af(s)
0

t
= / A (s)ze(t — s)ds.
0
Also

¢
/ / A (ds)pe(u — s) du
0 J(u,u+r]
SAL
:/ )\j(ds)/ Ye(u — s) du
[0,t+7] (s—7)VO0
sAL sAt
= / )\j(ds)/ Ye(u — s) du + / A (ds) / Ye(u — s)du
[0,t] (s—7)VO0 (t,t4+7] (s—1)VO0

s t
= / Xe"(ds)/ Ye(u — s) du + / A (ds) / Ye(u —s)du.  (4.5.16)
[0,¢] (s—7)VO0 (t,t+7] (s—7)VO0

Now, if ¢t > 7, the second integral in (4.5.16) is zero; if 0 < ¢ < 7, then

t t
/ A (ds) / Ye(u —8)du = / )\;"(ds)/ Ye(u — s) du (4.5.17)
(t,t+7] (s—7)VO0 (t,7] (s—7)VO0

+ /t A (s)zo(t — s)ds

s=0 0

(t,7] —s
< /( )l
t,T

< Tuweusup/ MF(ds).

)

For the first integral in (4.5.16),

/[07,:} A (ds) /(:_T)vo (u—s) /[O,T] A / w (u— s)du (4.5.18)
/[ : /\ (ds) / te(u — )
[ xrs [ wya

/ A:<d8>r|rwe||sup

[0,7]

< 7/}4bel o / M (ds).
[0,7]

(=]

IN
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Inserting (4.5.17) and (4.5.18) into (4.5.16), we have

t
/ / AF(ds)pe(u — s) du < 2T||¢e\|sup/ M (ds). (4.5.19)
0 J(uu+t7] [0,7]
Moreover, if t > 7, then
o[ s -5 =0
(t,t+7]

if 0 <t <7, then

B4 /(t’HT] pd (ds)pe(t — s) = 54/ p (ds)ibe(t — s) (4.5.20)

(t.7]

gmﬁ]@wﬂwmw

< /84H7/]e||sup/ Mj(ds)'

077-]

Therefore combining (4.5.15), (4.5.19) and (4.5.20) with (4.5.14), we have

%m§&+/

<ﬂ4,uj(ds) + AL (s) ds) ze(t—s), t>0. (4.5.21)
[0,¢]

where
Br o= o + (ﬁhuﬁn )+ }Az<ds>)\1weumm-
0,7 0,7

Choose small p > 0 and define

awe&+/

<ﬂ4uj(ds) + AF(s)ds + pds)z(t —s), t>0.
[0,¢]

Then by Lemma 4.4.4, we get z(t) > x.(t) for t > 0.

Next we determine the asymptotic behaviour of z. Note that the measure
a(ds) == Bapt (ds) + AF(s)ds + pds (4.5.22)

has an absolutely continuous component. Moreover « is a positive measure. Also, we
can find a number # > 0 such that f[o 00) e~ %a(ds) = 1. Now, define the measure ay €
M([0,00);R) by ag(ds) = e %a(ds). Then ay is a positive measure with a nontrivial

absolutely continuous component such that ay(RT) = 1. Also, we have that
/ sag(ds) :/ se % a(ds)
[0,00) [0,00)
= [ st (ot ds) + AL (s)ds+ s
[0,00)

= ﬁ4/ se %t (ds) + / se P AT (s)ds + p/ se” %% ds,
[0,7] [0,00) [0,00)
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since uf(E) = 0 for all E C (7,00). Now, we note that because Af(t) < Af(o0) =
f[o . Al (ds) < 4oo for all t > 0, the second integral on the righthand side is finite, and

therefore we have that f[o o) Lo (dt) < +oo. Next define zy(t) := e %2(t) for t > 0 so that

zp(t) = Bre —I—/ ap(ds)zg(t —s), t>0.
[0,2]

Now, define —y to be the resolvent of —ay. Then, by the renewal theorem (cf. [39,
Theorem 7.4.1]), the existence of v is guaranteed. Moreover, 7y is a positive measure and

is of the form

Y(dt) = mi(dt) + 71 ([0,¢]) dt
where 41 € M(RT;R) and v, (R") = 1/ [ tag(dt), which is finite. Since (—v) 4 (—ayg) *
(=) = —ap, let h(t) := Bre %, we have
zo=h+dag*xzg=h—+v*xzg—ag*xy*z

=h+v* (20 — g * zg)

=h+vx*h,
that is
29(t) = Bre 0 4+ 67/ ’y(ds)e’e(t’s)
[0,¢]
= Bre % + 57/ <’yl(ds) + y1([0, s])ds) e 0t=s),
[0,¢]
Thus
) Te(t) _ .. 2(t) . Br Br
limsup —= < limsup —= = limsup zg(t) < + .
msup =5 < limsup ~g7 = limsup 2o(f) < Jer tag(dt) 0 s tag(dt)

Hence there exists C' > 0 such that z.(t) < Ce® for t > 0. Therefore E[| X (t)|P] = z(t) =
eMlz,(t) < Celf*Bt for t > 0, which implies

. 1

limsup — log E[| X (¢)[P] < 6 + (1.

t—o0 t

Now in (4.5.22), let p — 0, then § — 0., where

/ efo*sa(ds) — / 66*S<,uj(d8) 4 Aj(s) d3> =1. (4.5.23)
[0,00) [0,00]
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Note

%) T 0 0
/ —0Oys +(d8) — / —0Oxs +(d8) — / B—O*SMG(dS) = / 6(_9*+'61)3M(d5)7
0 0 -7 -

and

/ G_G*SA;'_(S) ds = / e—e*sA(—i&-(s) ds +/ e 0xs )\;"(du) ds
0 0 T [017—]

T —0uT

_ / e—0n / N (du) ds + € / A (du)
0 [0,5] 0 Joq
T Cos 679*7'

= e Ae(du) ds + Ae(du)
0 [—5,0] O Ji—ro)

T —0.7
:/ 6_9*5/ PN (du) ds + ‘ / U\ (du).
0 [—5,0] O Ji—r0]

where X is defined in (4.5.12). Replace 0, by 6, we get the desired result.

Finally, we show that (4.5.11) holds for ¢ > 0. By Hoélder’s inequality, we get

t t ) )
E{ /0 |Y<s>12p-2|rg<xs>ﬂ ds = /0 E[JY ()|~ *)2El|lg(X.)[I*)2 ds
Given (4.3.7), by Lemma 4.4.1, let ¢ = 1 in (4.5.1), there exist positive real numbers K;

and K5 such that

sllsCe <B[ (G + [ i) |
<SE {04 (/{ N n(du)|X(s+u)|>4}
<scies([ ) ([ waeis+art)

4
< 86’;1 + 8(/ n(du)> Kpef2s,
[—T,O}

There also exist positive real numbers K3 and Ky such that
E[|Y (s)|"~"] = E[|X(s) — D(X;)|*"~")
< 25 (B ()1 + BID(X )
< 245 (ngK48 + E[|D(XS)|4P—4}>.

Apply the same analysis to E[|D(X,)[*~4] as E[||g(X,)||*] using (4.3.8), it is easy to see

that
/o E[Y (s)[** 47 E[||g(Xs)||1]? ds < oo,

Hence (4.5.11) holds.
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Proof of Proposition 4.3.1 Let ©; be an almost sure event such that ¢ — B(t,w) is
nowhere differentiable on (0,00). Let T > 0. Suppose that X = {X(t): —7 <t < T} is a
solution of (4.3.9), (4.3.10). Then X is {F(¢)}+>0—adapted and is such that t — X (¢,w)
is continuous on [—7,T] for all w € Q9, where 9 is an almost sure event. Define Cp =

{w: X(-,w) obeys (4.3.11)} and
Ap = Cr N Q1N Qo,
Thus P[C7] > 0 and so P[Ar]| > 0. Hence for each w € Ay, we have for all ¢ € [0, T

0 0 t
/ w(s)h(X(t—}—s,w))ds:/ w(s)h(¢(5))ds—|—/0f(Xs(w))ds+JB(t,w),

-7 -7
SO

oB(t,w) = F(t,w), te][0,T], (4.5.24)

where we have defined

0 0 t
ﬂmm_/uwwxwmwnwi/w@mmm@—éfa&m@

—r .,
It is not difficult to show that the righthand side of (4.5.24) viz., t — F(t,w) is differen-
tiable on [0,7] for each w € Ar, while the lefthand side of (4.5.24) is not differentiable
anywhere in [0, T for each w € Ap. This contradiction means that P[A7] = 0; hence with

probability zero there are no sample paths of X which satisfy (4.3.9), (4.3.10).

Proof of Proposition 4.3.3 Suppose X is a solution on [—7,7]. Then with A :=

¥(0) + kmax,e—r o) [1(5)]

X@+mmw\ﬂﬂ:A+Ag@ww@,t€Mﬂ,&&

SE[t—T,t]

Clearly X (t) + kmaxX,ep_rg [ X(s)] > —|X(#)| + 6| X(t)] = (k — 1)|X(¢)| > 0. Therefore
t
M(t) ::/ —g(X5)dB(s) < A, te€l0,T], as. (4.5.25)
0

Note that A > 0. Clearly M is a local martingale with (M)(t) = (fgg(XS)ds > Ot
by (4.3.15). By the martingale time change theorem, there exists a standard Brownian

motion B such that M (t) = B((M)(t)) for t € [0, T]. Therefore by (4.5.25) we have

max B((M)(u)) < A, as.

0<u<T
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Since (M)(T) > 6T and t — (M)(t) is increasing on [0,7] we have

B(s) < B < S.
oJmax B(s) < max B((M)(u)) <4, as.,

which is false, because B is a standard Brownian motion 67 > 0 and A > 0 is finite,
recalling that |W(6T")| and maxop<s<s7 W (s) have the same distribution for any standard

Brownian motion W. Hence there is no process X which is a solution on [—7,T].
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Chapter 5
Large Deviations of Stochastic Neutral Functional

Differential Equations

5.1 Introduction

In the previous chapter, we studied the existence and uniqueness of solutions of stochastic
neutral functional differential equations (SNFDEs). In this chapter, we continuous our
study in the large deviations of solutions of SNFDEs.

We focus on linear SNFDEs with distributed delay and additive noise. Moreover, the
solutions of these equations are Gaussian and asymptotically stationary. The main idea of
the theory is analogous to that in Chapter 3. The characteristic equation determines the
behaviour of the fundamental solution (resolvent), which in turn determines the behaviour
of the stochastic solution. As a result, the statements of the theorem is very similar to
those in Chapter 3 concerning non-neutral SFDEs. In the proof of Theorem 3.3.1, the
differentiability of the underlying resolvent plays a crucial role in controlling the behaviour
of the process between mesh points. Due to the uncertainty of the differentiability of the
resolvent of the SNFDE, we cannot apply the same analysis as in Theorem 3.3.1.

More precisely, we study the equation

d X(t)—/ w(ds)X(t+5) | = / W(d$)X(E+5) | di+odB(t), +>0 (5.1.1)
[—7,0] [—7,0]

with X (t) = ¢(t) for t € [—7,0], where 7 > 0, p,v € M = M([—7,0];R). The initial
function ¢ is assumed to be in the space C[—7,0] := {¢ : [-7,0] — R : continuous}.
We first turn our attention to the deterministic delay equation underlying (5.1.1). For

a fixed constant 7 > 0 we consider the deterministic linear delay differential equation

;;(x(t) - /[_T,O] u(ds)a:(t+s)> = /[_Tm v(ds)z(t+s), fort>0,

x(t) = ¢(t) fort e [—T,0],

(5.1.2)
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A function z : [—7,00) — Riis called a solution of (5.1.2) if x is continuous on [—7, c0) and
x satisfies the first and second identity of (5.1.2) for all ¢ > 0 and ¢ € [—7, 0], respectively.
From the existence result for both stochastic and deterministic neutral equation discussed
in Chapter 4, for every ¢ € C[—7,0] the problem (5.1.2) admits a unique solution x =
x(-, ¢) provided that u({0}) # 1. This condition on y is equivalent to the notion of uniform

non—atomicity at 0 of the functional D : C[—7,0] — R given by

D)= [ pasis), v e O 0hB)

For p({0}) € R/{1}, (5.1.2) can be rescaled, so that a unique solution exists. Hence

without loss of generality, we assume that

u({0}) = 0. (5.1.3)

The fundamental solution or resolvent of (5.1.2) is the unique locally absolutely contin-

uous function p : [0,00) — R which satisfies
d
o)~ [ utdspters) ) = ([ vidspers)). ezo G
dt [—7,0] [—7,0]
p(t) =0, te[-7,0); p(0)=1

Similar to Chapter 3, for a function z : [—7,00) — R we denote the segment of x at

time ¢ > 0 by the function
xp: [-7,0] = R, z(s) == x(t + s).

If we equip the space C[—7,0] of continuous functions with the supremum norm, Riesz’
representation theorem guarantees that every continuous functional D : C[—7,0] — R is

of the form

D)= [ ) o)
for a scalar measure p € M. Hence, we will write (5.1.2) in the form
d
ﬁ[x(t) — D(xt)] = L(xy) fort >0, To=¢
where

pw)= [ v
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and assume D and L to be continuous and linear functionals on C'([—,0]; R).

Fix a complete probability space (2, F, P) with a filtration {F(t) };>¢ satisfying the usual
conditions and let (B(t) : ¢ > 0) be a standard m—-dimensional Brownian motion on this
space. Equation (5.1.1) can be written as

d[X(t) — D(X;)] = L(X;) dt + o dB(t) for t >0,
(5.1.5)
X(t)=¢(t) forte|-T,0],
where D and L are as previously defined, and o € R.

The dependence of the solutions on the initial condition ¢ is neglected in our notation
in what follows; that is, we will write z(¢) = x(t, ¢) and X (¢) = X (¢, ¢) for the solutions
of (5.1.2) and (5.1.5) respectively.

We also constrain ourselves with the condition

1-— / e*’u(ds)
[_7—70]

It is easy to see that the above condition implies that

inf >0 for somea > 0. (5.1.6)

Re(z)>—a

ho:=1-— / e*’u(ds) #0 for everyz € C with Rez > 0. (5.1.7)
[_7—70}
Define the function A, : C — C by

Bw(\) = )\<1 _ /[_T,O] e’\su(ds)> _ /[_T,O] Au(ds).

The asymptotic behaviour of p relies on the value of

vo(p, v) := sup {Re()\) A€ Chyu(N) = 0} (5.1.8)

We summarize some conditions on the asymptotic behaviour of p in the following lemma:

Lemma 5.1.1. Let p satisfy (5.1.4), and vo(u,v) be defined as (5.1.8). If (5.1.7) holds,

then the following statements are equivalent:
(a) w0l v) < 0.
(b) p decays to zero exponentially.

(c) p(t) — 0 ast — oo.
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(d) p € L'(R;R).

(e) p € L*(RT:R).

In Chapter 1 and Chapter 6 of [36], it is shown that a condition on the zeros of hy
suffices to determine the asymptotic behaviour of the differential resolvent p. In our work,
we have found it necessary to also assume a restriction on the zeros of hy. In Chapter 1 in
[36], Frasson analysed the relationship between the zeros of hg and hy,,. For u with jumps
and zeros of sufficiently large modulus, there is a one-to-one correspondence between the
zeros of hg and the zeros of hy, , .

Frasson’s asymptotic analysis suggests that condition (5.1.6) and/or (5.1.7) maybe
dropped. It is interesting to probe however why we find it useful to retain these con-
ditions. The condition 5.1.6 implies that the neutral operator is “D-stable”. Under
this condition, Staffans has shown in [74] that a deterministic NFDE in R? of the form
dD(z¢)/dt = f(z4,t) ( where D is a linear operator from the space C[—7,0] to RY) into
a retarded FDE with infinite delays. We exploit a similar reformulation of the stochastic
equation in this chapter in order to derive a representation of the solution and to study
large deviations. We do this in order to avail of the variation of constants formula due
to Reiss, Riedle and van Gaans for retarded SFDEs, and to make use of our asymptotic
analysis of large fluctuations of affine SFDEs studied in Chapter 3. Our philosophy in
some sense parallels that of Staffans. But we have a technical reason for our approach
also, which necessitates the assumption of D— stability of the neutral operator. In the
proof of the result on the large deviations of the stochastic solution, we need to write the
differential resolvent p of the neutral differential equation in terms of a continuously dif-
ferentiable function x and the integral resolvent py of (—uy) (which is a reflection version
of the measure p). Condition 5.1.6 ensures that p; a finite measure on R™, which is an
important fact in the proof.

The solution of the neutral equation can be represented in terms of the deterministic

solution and the fundamental solution.

Theorem 5.1.1. Suppose that L and D are linear functionals and that p obeys (5.1.3).
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If x is the solution of (5.1.2) and p is the continuous solution of (5.1.4), then the unique

continuous adapted process X which satisfies (5.1.5) obeys
t
X(0) =olt)+ [ plt = )7 dBl). t=0 (5.1.9)
0

and X (t) = ¢(t) fort € [—1,0].

5.2 Statement and Discussion of Main Results

We start with some preparatory lemmata, used to establish the almost sure rate of growth

of the partial maxima of the solution of a scalar version of (5.1.5).

Theorem 5.2.1. Suppose that p is the solution of (5.1.4) and that p satisfies (5.1.7).
Moreover, vo(pu,v) < 0, where vo(u, v) is defined as (5.1.8). Let X be the unique continuous

adapted process which obeys (5.1.5). Then

lim sup Xl _ o] /OO p(s)ds =T, a.s. (5.2.1)
t—oo V2logt 0
Moreover,
X(t X(t
lim sup ®) =TI, and liminf ® _ -I',  a.s.

t—oo /2logt t—oe \/2logt
The results of Theorem 5.2.1 is very similar to those of Theorem 3.3.1. The proof
of Theorem 3.3.1 depends on two key properties of the differential resolvent r satisfying
(3.2.2) with initial condition zero on [—7,0). The first is that r decays exponential fast
because vo(r) < 0. This is in common with the condition vo(y,v) < 0 in Theorem
5.2.1. The second is that r is in C*((0,00); R), which plays a crucial role in controlling
the behaviour of the process between mesh points. In contrast with the differentiability
of r, the neutral differential resolvent p may not be differentiable everywhere on (0, c0).
Therefore the proof of Theorem 5.2.1 deviates from Theorem 3.3.1 in controlling the
behaviour of the process between mesh points.
One could extend Theorem 5.2.1 to finite-dimensional and non-linear problems in the

same way as in Theorem 3.3.2 and Theorem 3.3.3. Since the technique (which involving
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constructing differential inequalities for Theorem 3.3.3 as seen in Chapter 2) and the result

are essentially the same as in Chapter 3, we do not supply theorem here.

5.3 Proofs of Section 5.2

Proof of Lemma 5.1.1 We extend the measures p and v to M ((—oo, 0]; R) by assuming
w(E) = v(F) = 0 for every Borel set E C (—o0, —7). Introduce the measures p4 and vy
in M([0,00);R), related to g and v in M((—o00,0];R) by us(F) := u(—FE), vi(E) :=
v(—FE), where (—F) :={z € R: —x € E}. Then for ¢t > 0,

/ u(ds)p(t + 5) = / e (ds)plt — s) (5.3.1)
[—7,0]

[0,7]

- /[Om) pe@s)olt =)~ [ udsipte -9

(7,00)
— [ et -9
[0,00)
= / p(ds)p(t — s) + / py (ds)p(t — s)
[0,4] (t,00)

- / s (ds)p(t — 5).
[0,2]

The last step is obtained by the fact that p(t) = 0 for t € [—7,0) and u({0}) = 0. Similarly

/ v(ds)p(t+s) = / vi(ds)p(t—s), t=>0. (5.3.2)
[—7,0] [0,]
Define

_ p) = [ g m(ds)p(t+s), t >0,
rlt) = { 0, o te[-7,0).

Also since p(0) =1 and pu({0}) =0, x(0) = 1. Moreover, by (5.3.1) and (5.3.2), we have

w(t) = p(t) — /[0 Jpeds)olt=s), 120

and
W (1) = / v (ds)p(t—s), £>0. (5.3.3)
0,

That is k = p— pq *xp and £'(t) = (V4 xp)(t). Then p = Kk — pg * k, where pg is the integral

resolvent of (—p4). Given 5.1.6, by Corollary 4.4.7 in [39], pp € M(R™;R). Moreover,
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k' (t) = (B*K)(t), where 8 := vy —v4 * pg. Hence, under (5.1.7) and using Theorem 3.6.1

in [39], we have

lim k(t) =0 < lim p(t) = 0; (5.3.4)
t—o0 t—o00
k decays to zero exponentially < p decays to zero exponentially; (5.3.5)
ke L)'RT;R) < peLl'(RT:R); (5.3.6)
ke L (RTR) < pec L*(RT;R). (5.3.7)

Now by Theorem 3.3.17 from [39], if 3 € M(RT;R) has a finite first moment, i.e.

f[O,oo) t|B|m(dt) < oo, where 3 := vy — v * pg, then

lim k(t) =0 < reL'RT;R). (5.3.8)

t—o0

We now show that 3 has a finite first moment. Note that

/ t18lm (dt) < / o ln(dt) + / s * polm(dt)
[0,00) [0,00) [0,00)
:/ t]y+|m(dt)—l—/ tlvg x polm(dt).
[0,7] [0,00)

Since pg decays exponentially, there exists o > 0 such that f[o 00) e po|m (dt) < oo. Thus

by Young’s inequality,

1
| vl < [ s e pln(a
[0,00) @ J10,00)

1
<L / iy | () / e | polm (i)
@ J[0,00) [0,00)

1
= / eat\y+|m(dt)/ | polm (dt)
a [O,T] [0,00)

< oQ.

So [ has finite first moment. Therefore (5.3.8) holds. Moreover,

/ e Bl (dt) < 00 (5.3.9)
[0700)

So by (5.3.4), (5.3.6) and (5.3.8), statement (c) and (d) are equivalent. Now if k €
LY(R*;R), due to (5.3.9), we have that x decays to zero exponentially, which by (5.3.5) im-
plies that p decays to zero exponentially. Hence (b) and (c) are equivalent. If lim; o p(t) =

0, then p decays to zero exponentially, which implies p € L?(R*;R). On the other hand,
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if p € L2(R*;R), then k € L*(RT;R). Also v € L?*(R*;R). Let f := x2. Then
If'| = 2|kk'| < |K]? + |&'|?, so f/ € L'(R*;R). Therefore as f € L'(R*;R), we have
lim;_. k(t) = 0, consequently lim; .o, p(t) = 0. Hence (b)—(e) are equivalent. For part

(a), suppose p € L, which holds if and only if x € L', which in turn is equivalent to
A—B(\)#£0, Re(\) >0. (5.3.10)

Now po(A) = fir(A)/(fir-(N) — 1) for all Re X > 0, because 1 — fi1(\) # 0 for all ReA > 0
due to (5.1.7). We have, for Re A > 0,

A= B = A= (N) + 21 (N)po(N)

= A= 54 = 2 (Wit (N =55

o [ ) = ) = ) = 2 ) )
1 [ ~ ~

— oy [N ) = 2 )

— # i _ e)\s s)) — 6)\81/ s

IEECY) -)\(1 /[T,O] ) /[T,o] . )]

Clearly, under (5.1.7), (5.3.10) holds if and only if

A1 — / e u(ds)) — / eMu(ds) #0, for all ReA >0
[—7,0] [—=7,0]

which is true if and only if vo(u,v) < 0. Hence statement (a)—(e) are all equivalent.

Proof of Theorem 5.1.1 First, as in the proof of Lemma 5.1.1, we extend the measures

wand v to M ((—o0,0];R) by assuming
u(E)=v(E) =0 for every Borel set £ C (—o0,—T).
For any Borel set £ C R we use the notation
—E:={reR:—zx € E}

to define the reflected Borel set (—FE). Now, we introduce the measures py and vy in

M ([0, 00); R), related to p and v in M((—o0,0]; R) by
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Therefore for ¢ > 0, X satisfies

d (X(t)—/[o ]u+(ds)X(t—s)> = </[0 ]1/+(ds)X(t—s)> dt + o dB(t),

with X (¢) = ¢(t) for t € [—7,0]. Similarly the deterministic solution x satisfying (5.1.2)

d (x(t) _ /[O ]u+(ds)x(t—s)> _ ( /[O ]V+(ds)x(t—s)> dt,

with x(t) = ¢(t) for t € [—-7,0]. In a similar manner as in the proof of Lemma 5.1.1, it

satisfies

can be shown that

/[—T,o] p(ds)p(t+s) = /[o,t] p4(ds)p(t—s) and /[—T,o] v(ds)p(t+s) = /[O,t] vy (ds)p(t—s).

Hence, for t > 0, the fundamental solution p satisfies

< (p<t> - /[0 peds)oti s>> - /H vi(ds)p(t - s), (5.3.11)

with p(t) = 0 for ¢t € [—7,0) and p(0) = 1. Define W(t) := X(¢) — x(¢) for ¢ > —7, then

W obeys
d(W(t) - / p(ds)W(t — s)) = / vy(ds)W(t —s)dt +odB(t), t>0;
[0,t] [0,]
W(t) =0, te [_Ta O]a
and is the unique solution of the above equation. Now define k by
)=o)~ [ eldsiplt =), 1e R
it
Then x(0) = 1 and (t) = 0 for all ¢ < 0. Moreover, kK € C1((0,00); R). We may write
K=p—py*xp. Let
Z(t) =W(t) — / pt(ds)Wit—s), teR.
[0,7]

Then Z(0) = W(0) = 0, and we may write Z = W — py « W. Clearly Z is continuous. By
definition, py € M([0,00);R), then by Theorem 4.1.5 (half line Paley-Wiener theorem)

in [39], we may define py to be the integral resolvent of (—pu.y), i.e.,
PO = Pt * PO = — [l (5.3.12)
where pg € Mpe([0,00); R). Then by Theorem 4.1.7 in [39],
p=FK—po*K, (5.3.13)
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and W = Z — pg * Z. Therefore
dZ(t) = (v4 x W)(t)dt + o dB(t)
= [14 x (Z — po * Z)} (t)dt + o dB(t)

= [(v+ — vy % po) * Z] (t)dt + o dB(t)

Now by (5.3.11), k' = vy x p=v4 x (k — po * k) = (v4 — vy * pg) * k. Since £(0) =1 and
Z(0) = 0, we have that Z obeys

Finally, note that

W(t):Z(t)—(po*Z)(t):U/O Ii(t—s)dB(s)—a/[Ot]pg(ds)/O_sﬁ(t—s—u)dB(u).

By Fubini’s Theorem, we have for all t > 0,

W(t) = U/O k(t —s)dB(s) — U/u:() /se[o,tu] po(ds)k(t — s —u) dB(u)
= 0/ k(t —s)dB(s) — O'/ (po * k)(t —u) dB(u)
0 0
= [ st =5) = (o # m)(t = )] 4B
= 0/ p(t — s)dB(s).
0
Hence X (t) = z(t) + W(t) = z(t) + o [; p(t — s)dB(s), t>0.

Proof of Theorem 5.2.1 By Theorem 5.1.1, following the same argument as in the

proof of Theorem 3.3.1 in Chapter 3, it can be shown that

moup 20 7
1 ——= < 2(s)d S. 5.3.14
mow g < N, #Eds s ©3.14

where 0 < ¢ < 1. The proof for the above upper estimate in Theorem 3.3.1 does not
depend on the differentiability of the resolvent. However, for the lower estimate, Theorem
3.3.1 does depend on the differentiability of the resolvent. Since the differentiability of p

on RT is uncertain in the neutral case, we cannot apply the same argument as in Theorem
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3.3.1 which connects the result on the mesh points with that on continuous time. Now

| X (t)] <|X(t) — X(n°)| + | X (n)| for n° <t < (n+1)°. Since

X(t)—X(n)=a(t) —z(n)+ Z(t) — Z(n
/Otpo (ds)Z(t — ) — /[W] o(ds)Z (n—s))
=x(t) —x(n)+ Z(t) — Z(n

</[0t] polds)Z(t = s) - /[one] o(ds)Z(t — s)
+/[7n6} po(ds)Z(t —s) — /[o,ne] po(ds)Z(nf — 5)>

0
— 2(t) — 2(n) + Z() — Z(n°) — / po(ds)Z(t — 5)
ne

_ /[Om po(ds) <Z(t )= Z(nf — s)>.

Therefore

sup | X() — X(n%)|
ne<t<(n+1)¢

<  sup |x(t)—z(n9)|+ sup |Z(t)—Z(n®)|+  sup

ne<t<(n+1)¢ ne<t<(n+1)¢ ne<t<(n+1)¢

po(ds)Z(t —s)

[
/[0 ; po(ds)(Z(t — s) — Z(n® — s))‘ (5.3.15)

nevt]

+ sup
ne<t<(n+1)¢

We now consider each of the four terms on the right-hand side of (5.3.15) in turn. It is
easy to see that

lim sup  |z(t) — z(n)| = 0.
00 pe<t<(n+1)¢

Applying the same argument as in the proof of Theorem 3.3.1 for X, it can be shown that
limsup sup |Z(t) —Z(n®)| <2, as. (5.3.16)
n—oo ne<t<(n+1)c

For the third term,

/[ a9z

sup
ne<t<(n+1)¢

< swp / Polm(ds)|Z(t — 5)]
ne<t<(n+1)€ J[ne]

< s sup \Z(t—s>|/[ Polm(ds)

ne<t<(n+1)c nc<s<i

R —- t—sr/ Polm(ds)

ne<s<t<(n+1)¢

— s |Z()- / 9ol (ds),
[0,00)

0<u<(n+1)¢—n¢
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which implies
im  sup  |Z@)| [ |polm(ds) < Z(0)] [ Ipolm(ds) =0, as. (5.3.17)
N0 g<uL (nd1)e—ne [0,00) [0,00)

For the last term on the right-hand side of (5.3.15), we note that for ¢ > 0,

2(t) = k(t)2(0) + /0 w(t — ) dB(s)

_ /t(1+/ts '(v) dv) dB(s)
— 0Bt +a//ts v) dvdB(s)
+a/0t t

K (u — s) dudB(s)
¢
+U/ k' (u — s) dB(s) du.
0

o\,\

So for n¢ <t < (n+1)¢,

Z(t—s)—Z(ne—s):a<B(t—s) B(n* _S>+U/n€s/ (u — v) dB(v) du.

Hence

sup
ne<t<(nt1)e

| w9 - 2 )
[0,n<]
<ol s [ Il B~ )~ B )

ne<t<(n+1)¢
/ / '(u—v)dB(v)du|. (5.3.18)

+lo|l  sup / |p0lm (ds)
ne<t<(n+1)¢ J[0,n¢]
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For the first term on the right-hand side of (5.3.18), for some p. > 1 and ¢. > 1 such that

1/1)6“‘1/% =1,

E

( sup /[07716} |po|m (ds)|B(t — s) — B(n® — s)])

ne<t<(n+1)¢
( /{0 Ipobn(ds)|B(5) - B - s>rpe) }

Pe

q
SE[ sup (/ \po\mus))
ne<t<(n+1)¢ [0,n€]

o~

Pe -

< / Po\m(d8)> E| sup </ |Polm (ds)|B(t — s) —B("E—S)\pé)]
[0,00) | ne<t<(n+1)¢ [0,n€]

E/ Polm(ds)  sup rB<t—s>—B<nf—s>|pe]
[0,n€] ne<t<(n+1)¢

< (/[0700) P0|m(d5)) /[07716] |polm(ds) E _ne—sgusg(lr)b—f—l)ﬁ—s |B(u) — B(n® — s)|p€]

‘If i u Pe
[ ipln@E| s [ B ]
[0,n€] [ ne—s<u<(nt+l)¢—s | Jnc—s

where we have used the Holder inequality and Burkholder-Davis-Gundy inequality in the

second and penultimate lines respectively. Hence by the Chebyshev inequality

Pl sw /[0 mrporm<ds>|B<t—s>—B(ne—s>|>1}

ne<t<(n+1)¢
Pe
SE[< sup / |Po|m(d5)B(t—s)—B(ne—5)|> }
ne<t<(n+1)c J[0,n¢]

Petqe

< (ff) ( /[O . rpo\mus)) NGRS Ly

Now since lim,, oo [(n + 1)¢ — n]/n{¢=1) = ¢, if we choose p. = 4/(1 — €) > 1, then by the

Borel-Cantelli lemma, we get

limsup  sup / |po|m (ds)|B(t —s) — B(n°—s)| <1 as. (5.3.19)
n—o0 ne<t<(n+1)¢ J[0,n€]
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For the second term on the right-hand side of (5.3.18), define I(u) := [, #'(u — v)dB(v)

/n(_s/ (1 — v) dB(v) du
/ (u—wv)dB(v)

and H,(s) == [TV |1(u)| du. Then

né—s

A, = sup / |po|m (ds)
0,n¢]

ne<t<(n+1)¢ J|

< Sup / ’p0’m dS /
ne<t<(n+1)¢ J[0,n¢] f—s

< [ loobn(as)Hs).
[0,n€]

du

Therefore if p. > 1 and g > 1 are such that 1/p. + 1/¢. = 1, then by Hélder’s inequality

we have

Pe
Ape < ( /[ | \po\mws)Hn(s))
0,n¢

Pe

< (/ \po\m(d8)> / |polm (ds) Hn(s)"
[0,n€] [0,n€]

Pe

qe (n+1)¢—s
S(/[o }\po\mus)) [ o) (s 1y =yt [ e

Since I(u) is normally distributed with zero mean and variance [’ x'(u)? du, and £’ € L?,

we have that

E[I(u)?] < /000 K'(s)%ds, u>0.

Therefore there exists K (p) > 0 such that E[|I(u)[P] < K(p) for all u > 0. Therefore

pe/qe
BAZ] < ((n-+ 1) = 0! (/[ )|porm<ds>>
(n+1)¢—s
< f obnta) [ B

Pe/qe
<((n+1)°— ne)prl </[0 ) |p0|m(ds)>

" /[O,ne] |polm (ds)((n + 1) = n) K (pe)

Pe/qe+1
< K(pe) (n+ 1) —n)Pe </[0 ) |p0|m(ds)> .

Therefore we have
pe/Qe+1
P[A, > 1] < E[A%] < K(p.) ((n + 1) — n)P" ( / \pgwmus)) . (5:3.20)
[0,00)
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Let p = 2/(1 — €); then p. > 2. Then the righthand side of (5.3.20) is summable in n,
because {(n + 1)¢ —n¢}/n"! — € as n — oo, so by the Borel-Cantelli Lemma we have

that

t—s u
/ / k' (u—v)dB(v) du
né¢—s J0
=limsup A4, <1, as. (5.3.21)

n—oo

limsup  sup / |p0|m (ds)
[0,n<]

n—00 ne<t<(nt1)e

Combining (5.3.18), (5.3.19) and (5.3.21), it follows that

SUbneciztuiay | o @920~ 5) = 20 = 9)
lim sup =0, as. (5.3.22)

N0 v2logn

Gathering the results (5.3.14), (5.3.15), (5.3.16), (5.3.17) and (5.3.22), it gives

: [ X ()] /°o
lim su <lo 2(s)ds, a.s.
m Sup @Bg’—|| ; p*(s)

For the lower bound, we can apply the same analysis as in the proof of (3.3.1). Therefore

(5.2.1) is proved.
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Appendixz A

Explicit Formula for the Fundamental Solution of the

Deterministic Delay Differential Equation (3.5.3)

Theorem A.0.1. Suppose r satisfies r'(t) = ar(t) + br(t — 1) for t > 0; r(0) = 1 and

r(1) =0 fort € [-7,0). Here a,b € R and 7 > 0. Then

fort € [nt,(n+1)7], r(t)=e™ Z (bej;")](t —4§7), n>0. (A.0.1)
§=0 ’

Proof. On the interval [0, 7], 7/(t) = ar(t). So for t € [0, 7], r(t) = e®. Let z(t) = e~ %r(t),

for t > —7. Then z(t) =0 for t € [-7,0), 2(0) = 1 and for ¢t > 0 we have
2 (t) = e U (t) — ae”r(t) = be r(t — 1) = be Ta(t — 7).
Let o = be 7. Then 2/(t) = ax(t — 1), t > 0. Consider ¢ € [0, 7], then
t t
x(t) = z(0) —I—/ 7'(s)ds =1+ / azr(s—71)ds = 1.
0 0
For t € [r,27],
t t
x(t) :x(T)—l—/ ax(s—71)ds = 1+a/ lds =1+ a(t—r71).

In general for ¢ € [n7, (n + 1)7], we have

t t—1

arp_1(s —7)ds = xp_1(nT) + a/ Tn—1(s)ds, (A.0.2)
(n—1)7

T (t) = Tp—1(n7) +/

nTt
where z,,(t) := z(t) when t € [n7, (n+1)7]. We proceed the rest of the proof by induction.
Suppose

(t—j7)!, fort e [nr,(n+ 1)7].
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If we could should that

ntl 4
—(t = gy, fort € [(n+ )7, (n+2)7], (A.0.3)

(6%
Tpt1(t) = Z
=0 7

then the proof is complete. Now by (A.0.2),

t—1

Tpi1(t) = zp((n+ 1)7) + a/ Tn(s)ds

nrt

143 S+ Dy —grY +a [

J: nT

t—1

1+Z ((s — jr)’ ds

j aj+1 t—7
?((n+1)7—jr) +a(t—7‘)—an7’+z / (s —j7)7 ds
j=1 j=1

:1+Z(;‘J((n+1)7—ﬂ) balt—7)—ant

j=1
ot 1 j+1 j+1
. . o
+j:1 G 1)![( (1+7)7) (n7 —jT) "]
n+l L n Oéj '
=14+ () — o (t—kn)* +alt—7)| + D> = ((n+1)7—j7) —anr
k=2 j=1""
LI VARS -
-y ———(nT —j7)’"
— (J+ 1)!( )
n+1 Ozk . n Ozj ) n+1 ak .
- 1+Zg(t— kr)F + F((n+ )7 —jr) — ZE((n—F 1)7 — k7)
k=1 j=2 k=2
n+l L
(6
=> (- k)",

k=0
We get the final line in the above equation by the fact that the last two terms in the
penultimate line are equal. Since r(t) = e®x(t), we therefore obtain the desired result

(A.0.1). O
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