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Abstract

Content Based Multimedia Information Retrieval (CBMIR) is characterised by the combi-

nation of noisy sources of information which, in unison, are able to achieve strong perfor-

mance. In this thesis we focus on the combination of ranked results from the independent

retrieval experts which comprise a CBMIR system through linearly weighted data fusion.

The independent retrieval experts are low-level multimedia features, each of which contains

an indexing function and ranking algorithm. This thesis is comprised of two halves. In

the first half, we perform a rigorous empirical investigation into the factors which impact

upon performance in linearly weighted data fusion. In the second half, we leverage these

finding to create a new class of weight generation algorithms for data fusion which are

capable of determining weights at query-time, such that the weights are topic dependent.
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Chapter 1

Introduction

Content-Based Multimedia Information Retrieval (CBMIR) systems are complex

retrieval platforms which leverage multiple areas of research from signal processing

and machine learning through to relevance feedback and classification. Multimedia

data is inherently noisy by nature, often as a result of the capture of an event and

its translation to a digital format introducing some form of signal loss. One of the

fundamental characteristics of any of the approaches to multimedia retrieval is to

utilise multiple noisy sources of data and combine them in such a way that the

performance of the end system is greater than the sum of its parts, a point which

this thesis will reinforce.

The combination of various forms of data to answer an information need for a

given query has generated many different types of solutions to the CBMIR prob-

lem. One area of active research, for instance, is that of high-level semantic concept

detection, where the noisy signals are classified into an ontology of concepts which

can then be exploited for retrieval. Our focus in this thesis however is to treat

each of these separate sources of information as an independent retrieval authority,

otherwise known as a retrieval expert. The CBMIR systems we build make use of

multiple retrieval experts which are independently queried with each query compo-

nent, to generate a ranked lists of documents for combination into a final result. This

combination – the merging of result lists from separate retrieval systems – is known

1



as data fusion. As we have stated, multimedia data is inherently noisy, for certain

topics, certain retrieval experts will perform better than others. To maximise per-

formance weighting schemes are employed to effectively combine these ranked lists

and promote those which offer more relevant results. This thesis studies weighted

data fusion and its application to CBMIR.

1.1 Motivation

The determination of the weights to employ for data fusion with CBMIR is a non-

trivial research problem which has seen numerous approaches developed. Fundamen-

tally however, the application of weights to the ranked results from retrieval experts

is only part of the problem to be addressed. For ranked lists to be effectively com-

bined their scores require normalisation such that raw values from differing lists do

not saturate any combination function. How should normalisation occur? Should it

occur based upon document scores or based upon document ranks? Likewise, how

many results from each expert should be read? With the use of multi-part queries,

where experts return multiple ranked lists for a single topic, how should these re-

sults be aggregated? Hierarchically, for example? And, if so, what form of hierarchy

should be used? Many combination operators have been previously developed, such

as CombSUM and CombMNZ (Fox and Shaw, 1994). Which is the most effective

when used with weighting? Finally, to the weights themselves: is there any com-

monality to weight distributions or is their form collection-dependent? And, in any

event, can this information be exploited?

This set of incomplete questions demonstrates the sheer number of variables

which come into play when weighted data fusion is employed within the domain of

CBMIR. Many of these factors may be considered as engineering details, or may

be thought to provide only a minor impact upon the final result for a query. We

believe, however, that the impact of these factors is underestimated, and that they

can play a far more significant role in retrieval performance than previously thought.
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As such this thesis is comprised of two halves, in the first of which we conduct a

thorough examination of weighted data fusion and all of its variables. This allows us

to determine which variables impact upon performance, whether experimental data

from other domains such as text retrieval is consistent with our outcomes, and what

level of performance can we expect an optimised data fusion scheme to provide. In

The second half of this thesis we present a review of weight generation schemes for

data fusion and present novel algorithms which experimental knowledge presented

in the first part of this thesis allowed us to develop.

We believe this work is of crucial performance as the development of data fusion

algorithms cannot occur within a vacuum. This study is in part designed to de-

termine what is the maximum performance that can be achieved with data fusion,

such that we obtain an upper bound on empirical performance. Without knowing

this, the evaluation of data fusion algorithms is constricted to measuring improve-

ment against other approaches, rather than against a global maximum which would

inform us as to how effective our algorithms really are.

This thesis is thus driven by two key research objectives:

1. We believe that the complex nature of weighted data fusion within CBMIR

involves the interplay of a significant number of factors, each of which can

potentially impact upon retrieval performance. Our objective is to conduct

a rigorous empirical evaluation of these factors so as to determine their im-

portance within data fusion schemes. We achieve this through a study of

the ideal topic-level weights, thereby determining weighting attributes which

weight generation algorithms for data fusion should seek to emulate.

2. Our second objective is to apply the findings of this examination to produce

a novel weighting scheme for data fusion which leverages our observations for

improved retrieval performance, offering capabilities which we believe are not

matched by existing algorithms.
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1.2 Thesis structure

In this section we describe the layout of this thesis, with an overview of the chapters

comprising it. The thesis is comprised of five main content chapters, followed by a

concluding chapter revisiting the major outcomes of this research.

Chapter 2 In Chapter 2 we provide an overview of multimedia information

retrieval, the impact of multimedia data on the retrieval process and work which

aims to leverage multimedia data to aid retrieval. Multimedia information retrieval

is a wide area of research which incorporates techniques from many sub-fields of

research from signal processing through to machine learning. This chapter provides

context for where our research sits within this wider research domain. We cover the

properties of multimedia data and how these create noisy sources of data compared

to authored text, the representation of multimedia data, alternative methods for

resolving the ambiguities of multimedia data and finally the evaluation metrics we

use in this thesis.

Chapter 3 As we’ve highlighted, CBMIR systems are highly complicated as

they incorporate many forms of evidence in order to arrive at a response to a query.

The task of our CBMIR system is to combine multiple ranked lists of results from

multiple low-level retrieval experts through linearly weighted data fusion. In this

chapter, we present an explanation of data fusion and previous research into its

study. The application of data fusion involves the use of several algorithms or

variables, each of which can have a demonstrable impact upon retrieval performance.

We identify each of these methods or variables and explain their application and

purpose. Whilst several of these variables have been studied before, we believe that

this is the most thorough examination of both explicit and implicit variables and

methods which can affect weighted data fusion performance.

4



Chapter 4 Chapter 4 presents a methodical, rigorous examination of the fac-

tors which impact upon weighted data fusion performance identified in Chapter 3.

The significance of our examination compared to previous studies lies in the use of

an optimisation technique known as coordinate ascent. This method allows us to

determine, for any given set of inputs, what the near-ideal linear set of weights for

combination are. We deviate from the standard experimental model by perform-

ing these optimisations directly on the test data. In this chapter we provide a full

explanation and justification for this approach; our primary motivation is that it

allows for direct study of the ideal weights to determine if there are properties of

their distribution which should be emulated. Our examination is thorough, and we

contrast our evaluation with to the early data fusion experiments of Lee (Lee, 1997)

to review our findings against previous experimental conclusions.

Chapter 5 Having established in Chapter 4 the ideal distribution of weights

for data fusion, and the variables which have the most impact upon retrieval per-

formance, in chapter 5 we present a review of related work on weighted data fusion

and the approaches which can be used for the creation of weights. This chapter

reviews approaches such as query-independent weighting, query-class research and

machine learning approaches. We find that whilst many of these approaches offer

several advantages and achieve good performance, none of the defined approaches

satisfy all the criteria we establish in Chapter 4 as necessary for achieving optimal

performance with data fusion.

Chapter 6 In this chapter, we define our own set of algorithms for creating

the weights to be used in linear weighted data fusion. We first define the motivation

for our proposed approach, so as to establish where it fits within the ‘family’ of

weighted data fusion algorithms. Second, we provide an overview of some of the

characteristics of ranked result lists which we aim to exploit. Third, we present

our novel algorithms for generating linear weights, followed by experiments on the

corpora we have utilised throughout this thesis. Finally, we analyse our results, and
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attempt to determine why aspects of our algorithms work.

Conclusions The conclusions chapter summarizes the outcomes of each of the

chapters within the thesis. Following this we provided a brief reflection on these

outcomes, and highlight our perspective on CBMIR and current research in the

field with emphasis on how the work of this thesis compliments the area.
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Chapter 2

Overview of Content-Based

Multimedia Information Retrieval

In this chapter we give an overview of multimedia information retrieval, the impact

multimedia data has on the retrieval process and research which aims to leverage

multimedia data to aid retrieval. The field of multimedia retrieval is a very broad

research area, with many disparate approaches falling under its banner. Our aim

in this chapter is to provide some context of the relevance of our work in investi-

gating weighted data fusion for multimedia retrieval and how it fits into the general

multimedia research domain.

Research into Information Retrieval (IR) incorporates the representation, stor-

age, organisation and the access of information. The key task of IR is given a

stated information need, the IR system is to return useful information for that need

(Baeza-Yates and Ribeiro-Neto, 1999). This is distinct from returning data for an

information need, such as a database query, where the stated request is explicit, the

data is stored and organised in a relational form, and what is returned must be a

precise match. IR systems therefore operate with a degree of uncertainty, which is

resultant from the many components which comprise an IR system, such as how a

natural language document is represented within the system, the translation of an

information need into a form which the IR system can interpret and the presentation
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of the final result for a request (Baeza-Yates and Ribeiro-Neto, 1999).

Multimedia Information Retrieval (MIR) builds upon IR research by incorporat-

ing forms of information which are not restricted to textual sources of data. Typi-

cally when we refer to IR we implicitly mean IR with regards to natural language

documents. MIR on the other hand can refer a multitude of data types including

audio, video and visual sources of data. The use of the term MIR implies that we

are studying some aspect of IR research utilising at least one form of data which is

non-textual (Blanken et al., 2007).

The evolution of MIR research has in many ways mirrored the evolution of text

based IR research. Early IR systems evolved from the use of libraries, where a library

patron would describe to a librarian what information they were trying to find. The

librarian would utilise expert knowledge and resources such as card indexes, which

described for each book its authors, title, potentially a summary or key terms de-

scribing the content, and the books location. Early IR systems could be considered

as metadata retrieval systems, where a search was conducted within manually con-

structed data such as that available in card catalogues, and the search was against

information which described the books rather than the books themselves (Baeza-

Yates and Ribeiro-Neto, 1999). Likewise early experimental MIR systems utilised

metadata to retrieve non-text data, such as image retrieval techniques which utilised

the captions assigned to an image allowing for keyword based retrieval (Smeaton and

Quigley, 1996). Just as text based IR systems evolved to incorporate the content of

the documents it was searching, so to do MIR systems.

Content-Based Multimedia Information Retrieval (CBMIR) therefore is con-

cerned with the representation, storage and retrieval of multimedia data at a content

level. For visual data this may be the colour histogram of an image which is stored

and retrieved against, whilst for audio this may be a temporal segment which has

undergone Automatic Speech Recognition (ASR) and is then indexed. This chapter

will provide an overview of CBMIR, including how data is represented, how we re-

trieve it and how we evaluate what is retrieved. In the next section we will review

8



some of the properties of multimedia data which highlight the challenges it presents

for CBMIR.

2.1 Properties of Multimedia Data

Multimedia data has several properties which impact upon its performance in re-

trieval tasks, especially when compared to that of text data. Two of these key

properties which effect retrieval are known as the Sensory Gap and the Semantic

Gap which combine to make the MIR task more difficult. In summary, the sensory

gap concerns the introduction of noise when multimedia content is generated, whilst

the semantic gap concerns the difference between how a retrieval system interprets

a document and how a human may interpret that document.

2.1.1 The Sensory Gap

One of the interesting properties of multimedia data is that often it is a digital

capture of some natural scene or event. Whilst text documents are now typically

authored digitally, many multimedia sources undergo an Analogue to Digital Con-

version (ADC) process. This digitisation has allowed very large quantities of mul-

timedia data to become exploitable by information systems, but also is inherently

coupled with a degree of additional noise which can impact upon the quality of any

system operating on that data. Smeulders et al. (2000) characterises this for visual

data as the ‘sensory gap’:

“The sensory gap is the gap between the object in the world and the

information in a (computational) description derived from a recording of

that scene” (Smeulders et al., 2000).

This observation is generally applicable to most forms of multimedia data which

require some form of capture. Smeulders et al. elaborate with regards to visual

data that the sensory gap introduces a degree of uncertainty about what is being
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captured, factors such as the positioning of a camera, the illumination of the scene,

is it a 2D recording of a 3D or 2D scene etc, can all impact upon the quality of the

signal and how it should be treated by a retrieval system.

Coupled with noise which may be introduced at capture time, raw multimedia

signals require very large amounts of data to store. For instance, taking a 800 × 600

image stored with colour data, where the colour is represented as Red, Green and

Blue (RGB) of one byte each, the resulting uncompressed image requires 1.44Mb of

storage space (Blanken et al., 2007). The situation is worse for digital video, where

storing a colour video of 25 frames per second (fps) with a duration 90 minutes

requires 112 Gigabytes (Smeaton, 2004). Because of this compression of multimedia

data is required, with popular standards such as MPEG-1 and JPG in common

use for video and still images (Manjunath et al., 2002). All of these compression

standards however are ‘lossy’, and as such after compression we lose some of the

information that was present in the original representation. Whilst this can further

contribute to noise present in multimedia signals, the benefits of compression have

made ubiquitous access to multimedia content possible today.

As a comparison of different sources of data, the .GOV document collection from

TREC had a total size of 18.1 Gb and contains 1.25 million text documents. As a

comparison, 18 Gb of TRECVID MPEG-1 digital video provides us with approx-

imately 50 hours of content. Detailed later in the chapter, when we handle video

data we typically decompose the video into ‘shots’, which are small visually homo-

geneous segments of video at least two seconds in duration, and which become our

unit of retrieval for video retrieval tasks. Therefore for equivalently sized collections,

we have from the text collection a corpora of 1.25 million documents in which to

experiment, whereas for digital video we have approximately 90,000 retrieval units.

This poses challenges for the experimentation and evaluation of CBMIR systems,

particularly within digital video, as we are required to operate with comparatively

smaller corpora in terms of retrieval units.
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One may now think that because of the reduced size in the corpora of retrieval

units, that retrieval experiments should perhaps be easier than text equivalents.

A fundamental problem however is the representation of multimedia data typically

provides no clues as to what the content may be about. Whilst text data certainly

has research issues with the interpretation of documents, particularly in areas such

as disambiguation or sentiment analysis, if a text document contains the keywords

‘kitten’ and ‘cat’ multiple times, it is likely to have something to do with cats,

whereas a multimedia document may have a feature vector of ‘0 4 3 7 1’. This

problem of interpretation of low-level multimedia data is often referred to as the

‘semantic gap’.

2.1.2 Semantic Gap

The semantic gap was explicitly defined by Smeulders et al. (2000) to address the

disappointment felt by the performance of early content-based image retrieval ap-

proaches, and has achieved near ubiquitous use in multimedia publications. Smeul-

ders et al. define the semantic gap within the context of visual data:

“The semantic gap is the lack of coincidence between the information

that one can extract from the visual data and the interpretation that

the same data have for a user in a given situation” (Smeulders et al.,

2000).

As with the previous sensory gap, the applications of the semantic gap can be widely

applied to other forms of content-based multimedia data, not just static images.

Effectively the use of the term semantic gap refers to the discrepancy between the

system’s representation of multimedia data and how that system may relate and

process the data, compared to how an end user perceives that data. For instance,

if we have two images for which the system extracts visual features and finds both

have a large blue area, a yellow circle and a green block, then the system would

consider these two images to be very similar. An end user examining these images
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however would see one was a scene on a sunny day in a park, and the other a sports

shot of tennis being played.

At a more general level the semantic gap can be considered to be a specialisation

of the interpretation of relevance, which is the fundamental cornerstone of any IR

system (Van Rijsbergen, 1979). Indeed Smeulders et al. in their definition of the

semantic gap make reference to the interpretation of the data being situation specific,

one of the potential types of relevance, along with algorithmic relevance, topical

relevance, cognitive relevance and affective relevance (Saracevic, 2007). A detailed

discourse on relevance is beyond the scope of this work, however the comparison to

relevance research highlights the research difficulty of the task of a retrieval system

inferring some form of semantics onto raw multimedia data. Given that we know

there are many types of relevance for a given retrieval scenario, equally there are

likely to be many semantic interpretations of multimedia content dependent on

the multimedia retrieval scenario. As with relevance however multiple branches

of multimedia research attempt to tackle the problem, notably areas of relevance

feedback and high-level semantic concept detection (Datta et al., 2005). Later in

this chapter we will briefly examine the area of semantic concept detection.

Proponents of relevance feedback highlight its ability to help overcome the se-

mantic gap as the inclusion of a ‘human in the loop’ enables a system to better

interpret the information need and provide more relevant results (Zhou and Huang,

2003). There is no doubt that the inclusion of direct feedback from a user regarding

an information need will lead to demonstrable improvements in retrieval perfor-

mance. As stated previously the focus of our thesis is on weighted data fusion,

which would occur prior or in conjunction with relevance feedback, and as such

the two approaches can be considered as complimentary. We conduct a review of

relevance feedback approaches for CBMIR in section 5.6.1.

For any CBMIR system to interact with multimedia data, the data requires some

form of representation. In the following section we will briefly review representations

of multimedia data and their application to CBMIR systems.

12



2.2 Representing Multimedia Data

For multimedia content to be exploitable by a CBMIR system the data needs to

be transformed into an appropriate format. In this section we will briefly examine

standards such as MPEG-7 which are designed to represent multimedia content to

allow interoperability between systems, low-level feature extraction which takes a

raw multimedia signal and produces some form of data, and finally high-level seman-

tic concepts which attempts to infer some meaning or interpretation to multimedia

data. Broadly speaking, MPEG-7 is a markup standard that can encompass both

low-level features and semantic concepts. Low-level feature extraction refers to tech-

niques and algorithms which process multimedia data using unsupervised methods.

Finally semantic concept detection is typically supervised a approach which utilise

prior training data or domain knowledge.

2.2.1 Metadata Representations

Formally known as the Multimedia Content Description Interface, MPEG-7 is an

all encompassing standard whose focus is on the description of multimedia content

(Chang et al., 2001; Manjunath et al., 2002). In terms of multimedia it is able to

handle multiple modalities including image, video, audio, speech, graphics and com-

binations of these. MPEG-7 allows for multimedia content to be described not only

temporally but spatially as well. MPEG-7 is comprised of descriptors, descriptor

schemes and a description definition language. Descriptors define the syntax and

semantics of audio-visual content, covering attributes such as colour, motion and

energy. Implementations of descriptors are what we use in our work for our visual

retrieval experts, which we define later in Section 3.3.2. Description Schemes allow

for specifying the semantics of relationship between descriptors and other descrip-

tion schemes. Finally the Description Definition Language allows for the flexible

specification of descriptors and description schemes based on XML schemas. This

flexibility and the general size of MPEG-7 whilst giving it great expressive power,
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can make its use at times cumbersome or ambiguous. To counter this, research

groups such as Joanneum Research (JRS) have developed a Detailed AudioVisual

Profile (DAVP) to provide more structure to the standard (Bailer and Schallauer,

2006). As part of the consortium which developed MPEG-7, a reference implemen-

tation known as the MPEG-7 experimentation software was built, which members

of our research group have extended and implemented to provide access to MPEG-7

features (O’Connor et al., 2005). Further details on MPEG-7 can be found in the

works of Chang et al. (2001) and Manjunath et al. (2002).

2.2.2 Low-Level Features

The extraction of low-level features from multimedia data is analogous to the ex-

traction of terms from text documents and can be considered as part of an indexing

phase in a CBMIR system. Low-level feature extraction is typically a fully automatic

process. We use the phrase ‘low-level’ to describe these features as they impart no

semantic or higher level understanding of the data, but rather they output either

data patterns or statistics of the data which is being analysed. Low-level features

are the foundation of most CBMIR systems upon which either more advanced fea-

tures can be built or retrieval systems constructed from. Their independent use

for retrieval however, particularly ad-hoc retrieval in unconstrained domains illicit

poor performance (Smeulders et al., 2000). In general there are three major types of

multimedia data, images, audio and video. Images are a static form of data, whilst

both audio and video have a temporal component.

Images can be processed for several low-level features, notably for colour, texture

and shape. Colour is one of the most widely used features in visual processing and

one of the most effective. We can compute for an image the distributions of its colour

and represent these as histograms. These can be averaged across an entire image,

or the image can be divided into sub-regions where the averages can be computed

for each. Representations of colour are dependent upon the colour space, which

provides a model for representing colours as numbers. Common colour spaces such
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as RGB are hardware oriented, tailored for displaying images on monitors, whilst

colour spaces such as HSV (Hue, Saturation, Value) are based more on how colours

are perceived. The text by Humphreys and Bruce (1989) provides a good discussion

of how we perceive colour and the impacts this can have. Texture based features

examine patterns which occur within an image, as opposed to colour where each

pixel can be considered independent. Texture features can determine if there are

dominant orientations or patterns in an image and can be very useful for certain

classes of query. Shape based features are able to capture local geometric regions

within an image. An overview of visual features can be found in Rui et al. (1999);

Smeulders et al. (2000); Datta et al. (2005, 2008), whilst the visual features we will

be utilising are detailed in Section 3.3.2.

Audio features can be extracted from amplitude-time sequences, where we can

detect attributes such as periods of silence, the average energy of a signal or the zero

crossing rate (ZCR) which indicates how often the sign of the amplitude changes

(Blanken et al., 2007). In our work, we will not deal with low-level audio features

directly, however we will be utilising text derived from automatic speech recognition

(ASR) algorithms. Whilst ASR approaches themselves may not be characterised as

a low-level feature, as many approaches require some form of a model to be derived

in order to operate, the output from ASR is often noisy. Considering that the audio

signal may often not be ‘clean’, that is that apart from a speaker talking there may

be background noise or additional speakers, so high accuracy cannot be expected.

As such in our work we treat the text output of ASR as a low-level feature as like

other low-level features it is not noise free.

Video is a sequence of moving images, displayed at a rate of at least 25 Frames

Per Second (fps) to provide the illusion of motion (Smeaton, 2004). A multi-modal

form of data itself, it incorporates both visual and audio features. Our previously

described low-level features for images and audio can be utilised in the analysis of

digital video. The fundamental difference between images and video is the temporal

nature of video. In order to apply many of the low-level image features to video we
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are required to extract frames from the video and treat each of these as a separate

images. The question when dealing with video is at what sample rate or method

should we extract the keyframes. One approach is to select a uniform time, and

consistently sample at that interval, for example extracting an image every five

seconds. An alternative approach is to determine what structure exists within the

video and sample from these identified units. One common unit used is that of

a ‘shot’. A shot, as defined by TRECVID, is a visually homogeneous segment of

video which is of at least two seconds duration. Shot boundaries can be computed

automatically from video, a review of which is provided by Smeaton et al. (2009).

An alternative segmentation is to utilise a more semantic unit from which to sample,

this however is dependent upon the corpus of video under consideration and requires

uniformity within that corpus. One example is to use ‘story bounds’ in broadcast

news video (Kraaij et al., 2004), where in this context, the content within the story

bound was all semantically related to the news story it was representing.

As stated previously, the majority of low-level features are unsupervised ap-

proaches which require no human intervention or effort. If human effort is available,

such as to conduct annotation activities, then more complex feature extraction activ-

ities become available, notably for multimedia retrieval the application of High-Level

Semantic Concept Detection.

2.2.3 High-Level Semantic Concepts

High-Level Semantic Concepts are a rapidly expanding area of multimedia research

which aims to bring some form of interpretation to multimedia data to allow for

easier querying. In the general sense High-Level Semantic Concepts (henceforth

referred to as ‘concepts’), take a multimedia signal, and apply to it some label

which represents the content of the multimedia signal. For instance, these methods

allow us to assign labels such as ‘outdoor’, ‘sky’, ‘person’, ‘face’, etc, to multimedia

content, so that an end user can specify the keywords ‘person outdoor’ and should

have returned for that query content of people in an outdoors setting. As such, they
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offer a potential avenue for helping to bridge, or at least reduce, the semantic gap

as noted by Hauptmann:

“this (High-Level Semantic Concepts) splits the semantic gap between

low-level features and user information needs into two, hopefully smaller

gaps: (a) mapping the low-level features into the intermediate semantic

concepts and (b) mapping these concepts into user needs” (Hauptmann,

2005).

The general requirements for concept detection is a corpus of video split into training

and test collections, a set (or potentially an ontology) of concepts which occur in that

video and a set of annotations which define both positive and negative occurrences

of the concepts in the training data. Early work in concept detection was focused

on domain specific applications, such as that of Zhang et al. (1995), where the

domain was news video, and the shots were classified into news shots or anchor-

person shots. Other examples of concept detection within fixed domains include the

detection of advertisements from broadcast television (Sadlier et al., 2002), and the

detection of significant events occurring within sports videos such as scores, fouls,

etc, (Babaguchi et al., 2002; Sadlier et al., 2003).

Concept detection has evolved into a multi-modal process, which incorporates

evidence from visual, audio and text based modalities, whilst leveraging research

developed in computer vision and machine learning communities. The emphasis

on concept detection now is the move to more generalised semantic indexing, rather

than utilising specific cues within the multimedia data which correlate with semantic

events which are known because of domain knowledge. Concept detection has proven

to be a key component of digital video retrieval systems, and the TRECVID bench-

marking workshops have proven crucial to the development of generic approaches

to semantic indexing. This was achieved by requiring groups who participate in the

semantic concept detection activity of TRECVID to submit results for all of the

concepts specified (typically between 20-30 concepts), rather than implementing a

handful of detectors with hand crafted heuristics.
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Figure 2.1: LSCOM-Lite ontology as used in TRECVID 2005 and
2006 (Naphade et al., 2006).

One of the primary challenges for concept detection is the specification of what

are the semantic concepts that should be detected. An early initiative in this area

was the development of the LSCOM annotations (Large Scale Concept Ontology

for Multimedia) (Naphade et al., 2006). This activity was designed to develop

a taxonomy of 1,000 semantic concepts for describing broadcast video, developed

in conjunction with multimedia researchers and domain experts. Of these, 449

concepts had annotations created for them from the TRECVID 2005 development

data collection, resulting in 61,901 annotations per concept. A reduced subset of

these concepts, known as LSCOM-Lite was used for the concept detection tasks in

TRECVID 2005 & 2006 and are shown in Figure 2.1. This extensive annotation

activity subsequently allowed the development of large scale generalised semantic

concept frameworks.

Notable amongst these are the MediaMill 101 set (Snoek et al., 2006), the

Columbia374 semantic detectors (Yanagawa et al., 2007) and the Vireo 374 set
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(Jiang et al., 2007). The MediaMill system captures the influence of the production

style in the creation of processed video, recognising that the creation of video is the

result of an authoring process. Their system incorporates content analysis, style

analysis and context analysis in an iterative learning framework. The Columbia

system takes an alternate approach, opting for greater breadth of coverage in its

semantic concept detectors by creating lightweight classifiers which utilised three

visual features, which allowed for a greater number of detectors to be constructed.

The Vireo 374 set takes a similar approach to Columbia, but integrates visual words

and keypoint features into their classifiers. All of the aforementioned concept detec-

tors achieve good performance on the concept detection task in TRECVID and have

been shown to assist in the retrieval process. Whilst the utilisation of semantic con-

cept detectors has demonstrable performance benefits for retrieval, their application

is not without challenges.

The sensitivity of the models trained from one type of corpus when tested on

another is of concern, and is an area of active research. Examining the results of

the transition of corpus in TRECVID 2007 from 2006, models which were trained

using 2006 training data performed poorly on 2007 data (Over et al., 2007), whilst

a majority of groups utilised newly created annotations on the 2007 training data

rather than reusing the 2006 annotations. Recent work by Jiang et al. (2008) ad-

dresses the cross domain issue by specifically examining the application of models

trained on one particular corpus of data, tested with a corpus from a different do-

main. Efforts such as these are required, because the cost of completing annotation

exercises consumes considerable resources, it is far more desirable to reuse existing

annotations then having to generate new annotations every time a corpus changes.

More fundamental issues are raised by both Zhou and Huang (2003) and Santini

and Dumitrescu (2008). Both sets of authors make fundamentally the same claim,

that different users at different times will have different interpretations of what a

semantic label may mean. In particular Santini and Dumitrescu argue that the in-

terpretation of a document is context-dependent rather than its meaning being an
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independent property of the document. This argument is quite similar to that of

information scientists who disagree with the use of static relevance judgements for

the evaluation of information retrieval systems, arguing that relevance has various

properties which make it dependent upon the context and situation of the user at the

time of the query. The counter-claim from the perspective of laboratory IR experi-

ments is that the use of fixed test collections and relevance assessments has allowed

rigorous cross comparison of retrieval algorithms and a demonstrable improvement

in their performance (Saracevic, 2007). In a similar fashion the application of se-

mantic concept detectors, particularly in the case of digital video retrieval, has been

shown to offer significant performance gains, however the study of these detectors

is outside the scope of this work.

Our work however in this thesis is concentrating on the application of linearly

weighted data fusion to noisy data sources to determine what factors, such as features

and combinatorial algorithms, impact upon performance, and what performance can

be achieved with what methods to successfully combine results. Whilst there is no

doubt the use of semantic concepts will boost retrieval performance, the development

of robust classifiers of wide semantic coverage is in itself an area of massive research,

whose application would make the study of data fusion more problematic as we

would need to disambiguate where performance influences originate whilst having

to ensure that the classifiers we utilised were optimised to achieve good performance.

As such we will not utilise them in this study.

The use of semantic concept detectors can compliment systems which utilize low-

level features and data fusion and can be utilized in numerous ways. Firstly, concept

detectors can be employed in the retrieval process to handle more generic information

seeking tasks from a user, whereas QBE driven data fusion approaches require some

concrete examples of the information need to start a query. For instance, a user

looking for people outdoors may find it easy to examine the results of an intersection

of a person and outdoor detector results. In this case data fusion could be employed

to generate a ranking on this subset of images. Similarly a user may use both
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approaches in the formulation of a query, where they have concrete examples of

what they are trying to find, and the system utilizes relevant concept detectors to

reduce the search space in which to rank. These examples are simple cases of how

these techniques can interact, so as to demonstrate the compatibility of a system

employing both approaches to addressing the retrieval problem. Indeed many system

participating in TRECVID would utilize both of these approaches (Snoek et al.,

2005)(Smeaton et al., 2008).

2.3 Our CBMIR Environment

In this section we will present a high level overview of the organisation of our CBMIR

system, the resources it will utilise and the types of operations it can undertake. The

system we will be utilising in this thesis can be considered as an experimental sys-

tem as our experiments are being conducted within the confines of a laboratory IR

experiment (Van Rijsbergen, 1979). This system is designed to handle ad-hoc search

tasks. An ad-hoc search task is where the documents we have indexed within the

system remain static, whilst new queries are introduced (Baeza-Yates and Ribeiro-

Neto, 1999). Whilst components of this system have previously been utilised for

interactive retrieval experiments involving controlled groups of users, our investiga-

tion will only be conducted by operating as a fully automatic search system. Figure

2.2 provides an overview of the different types of operation that a search system

can engage in, the other two variants being interactive and manual search. In our

experimentation there will be no humans in the loop, as such queries will be pro-

cessed as defined by our experimental corpora with no intervention. This allows for

a robust examination of the retrieval experiments as there should be no variation in

the queries any one particular algorithm will handle.

Smeulders et al. (2000) defines content-based search systems as either handling

narrow or broad based domains. Narrow domains exist where the content to be

indexed is relatively homogeneous, such as images of aircraft, which in that environ-
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Figure 2.2: Query models for search (Smeaton et al., 2006)

ment heuristics can be crafted to exploit domain knowledge of the underlying collec-

tion. Our retrieval system can be considered as handling broad domains, where we

handle data from both digital video and image collections from a variety of sources.

Furthermore the retrieval algorithms we will evaluate and develop will make no use

of any domain specific information in order to aid performance.

The retrieval resources we will be using in this thesis will be comprised of low-

level features. We are not making use of any semantic concepts or domain knowledge

in our experiments. For the purposes of this experiment, we consider text evidence

to be a form of a low-level feature. Each of these retrieval resources has associated

with it an index and a ranking function, making each low-level feature a complete

independent search engine. Henceforth we refer to the combination of low-level fea-

tures and a ranking function as a retrieval expert, where each expert is independent

of the other experts utilised.

The queries which we will investigate will be multi-modal queries consisting
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Figure 2.3: CBMIR Investigation Overview

of multiple examples. This will involve multiple visual examples illustrating the

information need and a text description of the information need. The paradigm of

using visual examples for search is known as ‘Query-By-Example’ (QBE) (Chang and

Hsu, 1992; Jin and French, 2003), where the system is submitted a visual example

and is to return results ranked in order of their similarity to the submitted image.

Querying multiple query examples against multiple low-level retrieval experts

produces many ranked lists of results which must be combined into a final result for

the given information need. The focus of this thesis is given that we are employing

multiple noisy retrieval experts, how do we effectively combine these results into a

single ranked list, and what factors influence the performance of this combination.

Figure 2.3 illustrates the retrieval process utilising low-level retrieval experts and

highlights the focus of this work. Central to performance of combining noisy retrieval

experts is the implementation of an effective weighting scheme. In this thesis we will

be investigating the role of linear weighting of retrieval experts for data fusion. Other

types of non-linear weightings do exist, however a majority of existing approaches

implement linear weighting due to its predictability and performance gains. Part of

our work will be examining what is the maximum performance that can be obtained
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utilising linear weights.

Our CBMIR system will be utilizing text based experts, either derived from ASR,

ASR and MT or textual annotations. There are some questions if it is appropriate

to address these features as low-level features, as traditionally they are seen as quite

a rich source of very descriptive information (Hauptmann and Christel, 2004). We

believe that it is appropriate in this case given the wild fluctuations we have seen

exhibited by the text experts in our experimental corpora, where often retrieval

performance is actually exceeded by individual visual experts. This is because of

the noise introduced by both ASR and MT into the quality of the ‘signal’ of the

text expert, and as such we believe it is appropriate that we treat it the same as

any other of our sources of noisy data.

2.4 Evaluation

To conduct our experiments into CBMIR utilising low-level retrieval experts we

require both multimedia data and a means in which to evaluate our experiments.

In this section we will detail the evaluation metrics we will be utilising in this

thesis. Firstly however we will detail the resources from which we get our data, the

multimedia retrieval benchmarking activities of TRECVID and ImageCLEF.

2.4.1 Evaluation Campaigns

In order to conduct our investigation we require datasets with which to experiment.

The datasets which we will utilise come from the TRECVID and ImageCLEF bench-

marking activities. Both of these activities follow a setup similar to that established

in the Cranfield IR experiments of the 1960’s (Cleverdon et al., 1966) where a collec-

tion of documents was fixed, along with a test query set and accompanying relevance

judgements. This model is considered as a systems view of IR, where the needs of

the user are represented by the defined topic set and the information satisfying the

user’s need by the relevance assessments. Typically this form of evaluation is known
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as the traditional or laboratory IR model (Saracevic, 2007).

TRECVID, formally known as the TREC Video Retrieval Evaluation, is organ-

ised by the National Institute of Standards and Technology (NIST) of the United

States, and has been running since 2001. The goal of TRECVID is “to encour-

age research in information retrieval by providing a large test collection, uniform

scoring procedures, and a forum for organisations interested in comparing their re-

sults” (Smeaton et al., 2006). TRECVID promotes research in content-based video

retrieval and compares differing approaches by utilising open, metrics-based eval-

uation. For video retrieval evaluation to take place, a specification of a common

retrieval unit is required. For TRECVID the common retrieval unit is a ‘shot’. A

shot is a segment of video that is at least 2 seconds long, and is bookended by cuts,

where a cut can be considered as a transition to a visually different segment of video.

The evaluation of the relevance of a shot in TRECVID is based only upon the visual

information. If only the audio of a shot discusses the search topic but there is no

visual evidence, then the shot is considered as non-relevant. For each TRECVID

benchmark, NIST provides access to:

• Digital video in MPEG-1.

• MPEG-7 XML detailing the shot boundaries within that video.

• ASR transcripts of the audio from each video.

• If the video was not in English, a Machine Translated (MT) output is provided.

• For evaluations 2003-2006 keyframes extracted from the video. A keyframe is

a still image extracted from within a shot boundary as a JPEG image.

The collections we are utilising from TRECVID are the five benchmarks from 2003-

2007. Between the years 2003-2006 the data collections of TRECVID for the search

activity were comprised of produced broadcast news video. For the years 2003-2004

this video was mono-lingual from English sources, whilst for the years 2005-2006 tri-

lingual data was utilised from Arabic, Chinese and English sources. The broadcast
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news was from commercial sources and included advertisements within the corpora.

Broadcast news is characterised by the presence of many anchor person shots which

typically bookend news stories within the video. Several research groups leverage

data such as this to tune their retrieval performance to exploit this organisation

(Hauptmann and Christel, 2004), however in this thesis we employ no domain spe-

cific optimisations. The 2007 corpus for TRECVID was a shift away from broadcast

news to ‘magazine’ video. Provided by the Netherlands Institute for Sound and Vi-

sion, this corpus was mono-lingual in Dutch and contained documentaries, science

shows and news magazine videos. This corpus was quite different to the preced-

ing data collections, with artefacts such as the average shot length being much

greater than broadcast news, and the videos themselves being organised differently

to broadcast news (Over et al., 2007). An explanation of the sampling strategy for

the extraction of keyframes from these corpora is provided in 3.4.1.

ImageCLEFPhoto1 is a retrieval track activity that occurs within CLEF (Cross

Language Evaluation Forum). Similar to TRECVID, CLEF promotes research and

development in multilingual information access and is an activity of the Treble-

CLEF coordination action under the Seventh Framework Programme of the Euro-

pean Commission. ImageCLEFPhoto specifically is interested in the promotion and

evaluation of multilingual visual information retrieval. ImageCLEFPhoto provides

a multilingual annotated photograph corpus and like TRECVID compares differing

approaches with open, metrics-based evaluation. The corpus used within Image-

CLEFPhoto is a subset of the IAPR TC-12 Benchmark, consisting of a collection

of 20,000 still natural photographs, each with an accompanying annotation (Clough

et al., 2008). Like TRECVID, evaluation of relevance in ImageCLEF is conditional

only on the visual data present in the retrieved image, not the text annotation ac-

companying the image. ImageCLEFPhoto is a track within the ImageCLEF activity,

which explores cross-language image retrieval. As part of ImageCLEF they are nu-

merous other tracks which have different objectives to that of ImageCLEFPhoto,

1http://imageclef.org
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and as such any reference in this thesis to ImageCLEF implies the ImageCLEFPhoto

track.

Both evaluations for their respective test topics provided both a textual de-

scription of the information need and visual examples. Therefore both evaluations

provided data to allow for multi-modal querying. For ImageCLEFPhoto accompa-

nying the query text were always three still natural photographs illustrating the

information need. In the case of TRECVID, accompanying the statement there

were at least several visual examples which were either still photographs from an

external collection, or segments of video from the development collection for that

respective year. Where video was given as part of a query we sampled a represen-

tative keyframe from the middle of that segment of video and used that as a visual

example for search. We selected the middle keyframe from a segment of video as

the example video’s provided by TRECVID are of shot duration and typically are

visually homogeneous. Details of the actual corpora used in our experiments are

given in Section 4.1.4.

2.4.2 Evaluation Measures

Throughout this thesis we will be utilising the common evaluation metrics defined

in IR literature. Here we provide a summary of the metrics which will be utilised,

complete descriptions of evaluation metrics can be found in Van Rijsbergen (1979);

Baeza-Yates and Ribeiro-Neto (1999); Blanken et al. (2007). The objective of any

IR system is to return for a given information need relevant documents of use in

fulfilling the required need. Therefore when we evaluate retrieval algorithms in a

laboratory experiment, we are primarily concerned with the degree to which we

ranked relevant documents above non-relevant documents, and what relevant docu-

ments were excluded from a ranking. The key concepts for evaluation after relevance

are precision, recall and fallout. Given a set of returned documents, precision is the
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degree to which those documents returned were considered relevant

Precision =
|relevant ∩ retrieved|

|retrieved|
(2.1)

Similarly, recall determines what amount of the total set of relevant documents were

retrieved in the result set.

Recall =
|relevant ∩ retrieved|

|relevant|
(2.2)

Finally, fallout can be considered as the converse of recall, where it determines the

degree to which non-relevant documents were returned from the complete set of

non-relevant documents.

Fallout =
|non − relevant ∩ retrieved|

|non − relevant|
(2.3)

Each of these measures can be considered as a set measurement, that is they

do not regard the ordering of the documents as presented. Clearly if two systems

return the same proportion of relevant documents, but one systems ranks these first

whilst the other system ranks these last, then we would like an evaluation metric to

reflect the difference between the two, which neither precision or recall can achieve.

Average Precision (AP) performs this function, it is designed with a bias towards

retrieval runs which rank relevant documents higher in a ranked list, which we

formally define in 2.4.

AveragePrecision =

∑N

n=1 Precision(n) · Relevance(n)

|Relevant|
(2.4)

In AP the function Precision(n) is the precision value at n documents and Relevance(n)

is a binary function which indicates if document n is relevant, variable N is the size

of the ranked list and |Relevant| is the total number of relevant documents in the

collection under consideration. AP is the most common metric used in the evalua-
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tion of IR systems, however it provides a per topic score. Mean Average Precision

(MAP) is a single scored metric which provides an indication of performance over

an entire retrieval run, where a retrieval run consists of the results of multiple top-

ics. MAP is simply the mean of all the AP scores in a retrieval run. For system

comparisons, MAP is considered as the most common metric in use in IR research.

For our evaluation we also employ statistical testing, coverage of which is provided

in section 4.1.1.

MAP is not without criticisms however, notably as it relies upon the mean of

the AP scores it is sensitive to outliers, where if there are a handful of queries which

achieve exceptional performance, then performance on these topics will dominate

the MAP values. One potential solution to this we believe is the application of the

standard score, also known as Z-Scores, to the AP values. Z-Scores determine for

a given series of observations, how far each individual observation deviates from

the mean observation in terms of standard deviations. By calculating the Z-Score

of AP (ZAP) and then averaging these values (MZAP), we get an indication for

any given retrieval run how far it may deviate from the average retrieval run. The

benefit of this proposed metric is that it would discount the potential skewing that

MAP can introduce when there are outlier AP measurements in an evaluation. This

metric however is only useful when comparing large numbers of retrieval runs, for

example the overall evaluation of a TRECVID benchmarking activity. For our given

experiments here it is of less use as we do not have a very large set of retrieval runs

to compare against as would be the case in a benchmarking activity.

As such for the majority of our experiments in this thesis we will be utilising the

metrics of AP and MAP for our comparisons and evaluation. Whilst there may be

some concern about the use of these metrics, we believe we alleviate these concerns

somewhat by employing multiple experimental corpora (see Section 4.1.4). We will

be utilising six corpora for our experiments which range in size and types of data.

Therefore if we observe patterns in our experiments across all of the corpora utilised

we can have a degree of certainty in the robustness in those observations as being
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corpora independent.

2.5 Conclusion

In this chapter we have presented a high level overview of the various aspects of

CBMIR. We have highlighted that multimedia data is in general a relatively noisy

source of information for the purposes of information retrieval. This is due to the

effects of both the sensory gap and the semantic gap. The processing of this data

can involve the use of either unsupervised low-level features or supervised high-level

features (such as trained concept detectors). We have presented our motivation for

restricting our experiments to the use of low-level features, or low-level retrieval

experts for experiments in weighted data fusion, notably because we believe that

whilst there is significant research being conducted on the construction and appli-

cation of concept detectors, we believe that low-level features can have substantial

impacts upon performance if correctly exploited.

Because each of our low-level information sources is relatively noisy, to obtain

good retrieval performance we are required to combine these multiple noisy signals

into a coherent response to an information need. To achieve this, we require the

use of weighted data fusion so that if a particular source of evidence is performing

better than others it can be appropriately weighted in order to improve retrieval

performance. The open questions therefore are what factors influence the perfor-

mance of data fusion, what properties does an ideal weighting scheme for data fusion

have, and do existing methods of generating weights for data fusion exploit these

properties or can better approaches be developed? In the following chapter we will

review the history of data fusion and examine current approaches for weighted data

fusion.
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Chapter 3

Factors Impacting on Multimedia

Retrieval Performance

One of the objectives of this thesis is to conduct an in-depth investigation into

weighted data fusion for Content-Based Multimedia Information Retrieval (CBMIR)

and to propose, develop, evaluate and access a scheme for the generation of weights

to be used for weighted data fusion. In order to reach this objective we first need to

study weighted data fusion itself within the context of a CBMIR application. This

is necessary as it will allow us to objectively assess what an ideal weighted data

fusion scheme should look like and therefore allow us to implement an approach

which attempts to match this.

Our investigation into weighted data fusion consists of two key components, the

identification and description of what factors impact upon data fusion, and the sys-

tematic testing of these factors to measure the impact they have upon data fusion

performance. This chapter is concerned with the first of these steps, the identifi-

cation of these factors which may impact upon performance, whilst the following

chapter will present our experimentation and measurement of these factors.

The CBMIR system which we have constructed here is similar to many other

CBMIR systems seen in the literature, in that it leverages multiple retrieval experts,

each of which can be considered as a relatively noisy retrieval expert. The field of
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CBMIR itself and indeed successful approaches to it are characterised by the effective

combination of these noisy sources of information, such that a response is produced

which is of greater performance than that of its constituent parts (Smeaton et al.,

2006). Within this context we can see that effective weighted data fusion is crucial

to obtaining good levels of performance in CBMIR tasks.

The fundamental action that our CBMIR systems conduct is that of data fusion.

Data fusion is described by Belkin et al. (1995) as “the combination of evidence

from differing systems” with the aim of maximizing retrieval performance. This is

as distinct from the Collection Fusion problem, which Voorhees et al. defines as the

combination of “retrieval runs on separate, autonomous document collections that

must be merged to produce a single, effective result” (Voorhees et al., 1995).

One of the key features of our CBMIR system, is that it is a late fusion system.

Within the domain of multimedia search there are two approaches for the combi-

nation of data known as early fusion or late fusion (Snoek et al., 2005), these are

conceptually illustrated in Figure 4.12. Early fusion is essentially the combination

of data prior to indexing, meaning that data is first somehow aggregated, and then

a ranking model is placed over this aggregated data. There are multiple examples

of this type of system, such as combined document representations, classification

tasks or learning to rank applications (see Chapter 5). Therefore the combination

of evidence is typically handled in an ‘indexing’ phase. Late fusion instead assumes

each source of data has associated with it some form of a ranking function, each

of which can be independently queried. Once each source has been queried, the

outputs of each of these queries can be aggregated together to form a final response

to the initial query. Examples of late fusion include metasearch, and a majority of

the text information retrieval experiments of combining ranked lists from different

retrieval systems (see Chapter 5). Our choice of employing late fusion for our data

fusion experiments means we do not need to explicitly model any particular source

of data, as that is the function of the retrieval expert associated with each source of

data. This allows us to add or remove retrieval experts at any stage in the retrieval
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Figure 3.1: Early vs. Late Fusion

process, allowing for a relatively free environment in which to conduct our data

fusion experiments. As such this is a generic approach which therefore has wide

areas of application. If building an operational retrieval system clearly it would be

beneficial to tailor such a system to the retrieval experts employed, however in this

study, by keeping a generic approach we seek to demonstrate the impact of ideal

late fusion frameworks.

The choice not to study early fusion primarily is that to utilize early fusion, a

ranking metric for that combined feature space needs to be developed and tested,

typically in other work (Snoek et al., 2005) this would be within a machine learning

framework. By studying only late fusion we can treat each source of evidence as

independent, as each will have its own data representations and ranking functions,

allowing a degree of generality to our methodology as these sources can be added or

removed without any re-engineering or other complications arising for our setup.

Furthermore this should make our observations more generalized as we are not

dependent on the behaviour of any one particular type of ranking function.

As we are using a late fusion framework, our CBMIR retrieval workflow can be

described as follows. First we begin with a multi-part multi-modality query, such

as two pictures of a flower and the text ‘flower’. Second this query is then sent

to each of our retrieval experts, being processed by whichever of the experts are
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capable of handling parts of the query. Once this is complete we have for each

query component from each relevant expert a ranked result list, which we term

‘raw’ results. Third, as each of these lists needs to be combined somehow we need

to perform some form of normalisation that will allow results from each of these

ranked lists to be combined. This normalisation may be based on the scores in the

ranked lists or on the rank positions. Fourth, we conduct some form of weighting

of the ranked lists to be combined, giving greater importance to those results we

think are more likely to perform better. Fifth and finally, once the results have been

weighted we then combine them, using one of a variety of combination operators

or combination levels available to us. Each of these distinct steps in the retrieval

process has several different ways in which that step can be achieved. This chapter

is concerned with identifying each of these different factors, such that they can be

defined and tested in the following chapter. Our retrieval workflow is illustrated in

Figure 3.2, and forms a guide for the layout of this chapter.

3.1 Terminology

For reasons of clarity we will now formally define the terms used throughout the

remainder of this section. We will assume that a CBMIR system will be combining

multiple retrieval experts together for queries which contain multiple components.

For these definitions we will be using set and matrix notations, however our use of

matrix notation is slightly unorthodox, as matrices typically contain numbers. In

our notation, the matrices we define will contain ranked lists of documents. The use

of matrix notation is for conceptual reasons to assist the reader in comprehending

the number of variables at work.

3.1.1 Retrieval Expert

A Retrieval Expert is treated as a black box, it is a service which can process a

query and return a ranked set of documents on a given collection. Formally our
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Figure 3.2: Data fusion workflow, from the issuing of a multi-modal
query, through to the computation of a final result.
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system will have Retrieval Experts E = {expert1 ... experti} where 1 6 i 6 |E|.

3.1.2 Query

A Query within our context is a multi-modal request which describes an information

need and is to be processed by the CBMIR system. A query may be comprised of

text, multiple visual examples, etc. Within this context, each component of a query

is treated as a separate query to be processed, e.g. a text component would go to the

text expert, each individual visual component would go to visual experts. Therefore

a Query Q is comprised of {query1 ... queryj} where 1 6 j 6 |Q|. As an example,

if a user is searching for pictures of boats, the query may be the text ‘boats’ and

two images of boats, therefore in this case the individual components of the query

are {‘boats′, imagea, imageb} otherwise referenced as {query1, query2, query3}, each

of which may be individually processed by the retrieval experts available.

3.1.3 Documents

Documents in this context are the semantic unit of information that is indexed

and retrieved. Typically the term refers to entire text documents or webpages for

ranking. In the case of MIR, the unit of retrieval can be a video, a ‘shot’ (i.e. a

segment of video which is visually consistent), audio recording, etc. The use of the

term ‘documents’ will refer to any retrieval unit that can be handled by a CBMIR

system.

3.1.4 Result Set

A result set is the product of a unique pair of Retrieval Expert and Query 〈experti, queryj〉,

which produces an ordered set of documents R such that R = {document1 ... documentm}

where 1 6 m 6 |R|. Every unique pair 〈experti, queryj〉 produces a Result Set,

which collectively form the matrix RS = [rsi,j] i = 1 ... |E|, j = 1 ... j = |Q|.

The row index i represents experts, while column index j represents query compo-
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nents. Therefore, rsi,j represents the result set R generated by expert i and query

component j.

Every documentm in R will have associated with it a triple 〈name, rank, score〉

where name is a unique identifier for the document, rank is in the set N and score

is in R. Every value of rank will be unique in the set and it is desirable that every

score value is also unique, however depending on the ranking function this may not

always hold. As the set R is ordered, the values of both rank and score will change

monotonically as one iterates through the set. In order to compute a final response

to a query, a set of coefficients is typically required so that we can give greater weight

to those sets R which are likely to enhance retrieval performance.

3.1.5 Retrieval Coefficients

We define a matrix of weights which are used to alter the impact of different rsi,j

when they are combined into a single result. This matrix is RC, where RC =

[rci,j]i = 1 ... |E|, j = 1 ... j = |Q|. Individual coefficients have the properties

rci,j ∈ R
+ and

∑

rci,j = 1. Every result set in matrix RS will have a corresponding

entry in RC. For instance if no weighting was desired, all entries in RC would be

set to the same value, thus providing a uniform weighting.

The final result set therefore, is some combination of the result sets rsij gener-

ated by pairs 〈experti, queryj〉 from sets E and Q, and application of the retrieval

coefficients RC. Taking our previous example of finding images of boats with an

CBMIR system which has available 3 retrieval experts (one text expert, two visual),

we have potentially 5 result sets in which to combine into a single result set (one

text result and four visual results), and up to 5 weights that can be applied.

3.1.6 Example CBMIR System

To help illustrate the various approaches that different weighting schemes employ

and how they impact upon retrieval, we will refer back to this section to help il-
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Example System and Multi-Example Query

E Expert Set Q Query Set
expert1 Text Expert query1 “Flowers”

expert2 Colour Expert query2

expert3 Edge Expert query3

expert4 Texture Expert
|E| 4 |Q| 3

Result Set matrix RS

rs1,1 “Flower” 7→ Text Expert rs3,2 7→ Edge Expert

rs2,2 7→ Colour Expert rs3,3 7→ Edge Expert

rs2,3 7→ Colour Expert rs4,2 7→ Texture Expert

rs4,3 7→ Texture Expert
Non-zero entries in matrix RS : 7

Retrieval Coefficients matrix: RC
rows i experts, columns j query components









rc1,1 0 0
0 rc2,2 rc2,3

0 rc3,2 rc3,3

0 rc4,2 rc4,3









Non-zero entries in matrix RC : 7

Table 3.1: Example system and query, where there are 4 experts in
the system and the query has 3 components.

lustrate how various approaches may work. Defined in this section is an example

CBMIR system and a multi-example query to it, as shown in Table 3.1.

In this example system, there are four retrieval experts (E) available within the

system (where each of these experts is considered a black box with its own index and

ranking function). We have also defined a query (Q) that is issued to the CBMIR

system, which consists of the text “flowers”, an image of a red flower and an image

of a yellow flower. The system presented with this query, generates seven result sets

(R), one for the text query, then six more from the two query images against the

three visual experts. Technically there are more instances R than listed here, such
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as querying a visual expert with the text query, however this will produce a null set

of results which for reasons of clarity we do not show here.

3.1.6.1 Terminology Summary

To summarise, we have defined within our CBMIR system, retrieval experts E,

multi-part queries Q, individual result sets R and the matrix which contains all

result sets RS. To weight each ranked list contained in the matrix RS we have the

retrieval coefficients matrix RC which is used to weight each ranked lists so that

they can be combined into our final response to a query.

E = {expert1 ... experti}

Q = {query1 ... queryj}

R = {document1 ... documentm}

documentm 7→ (name, rank, score)

RS = [rsi,j]|E|×|Q|

RC = [rci,j]|E|×|Q|

3.2 Previous Studies

There have been previous studies into the factors which impact upon data fusion

in Information Retrieval. A review of data fusion literature and current techniques

for generating weights for data fusion is presented in Chapter 5. Here we briefly

summarise work which has explicitly looked at what factors impact on data fusion

and retrieval performance.

Early work into the investigation of data fusion and information retrieval was

conducted by Lee (1997) who combined text experts together to achieve a perfor-

mance gain. His study on what were the driving factors which caused data fusion
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to work focused on an examination of the relevant documents found in common be-

tween ranked lists, and the non-relevant documents in common. Exploring this he

defined two measures, ROverlap and NROverlap, which measures the degree to which

expert results agree on relevant and non-relevant documents. These measures are

presented as Equations 3.1 and 3.2.

ROverlap =
R ∩ S1 ∩ S2.... ∩ Sn

(R ∩ S1) ∪ (R ∩ S2) ∪ ...(R ∩ Sn)
(3.1)

NROverlap =
NR ∩ S1 ∩ S2.... ∩ Sn

(NR ∩ S1) ∪ (NR ∩ S2) ∪ ...(NR ∩ Sn)
(3.2)

where S1...Sn are ranked lists being combined. Roverlap measures the intersection

of relevant documents between ranked lists over the set of all relevant documents,

whilst NRoverlap does the same for non-relevant documents. Lee’s finding was that

data fusion appeared to work between good quality text retrieval experts as good

quality ranked lists shared similar sets of relevant documents, but dissimilar sets

of non-relevant documents. Therefore when combined, the common relevant docu-

ments are promoted up the ranked list (Lee, 1997). Beitzel et al. (2004) however

examined Lee’s hypothesis and draws different conclusions. Performing a system-

atic approach to identifying individual factors which may impact on data fusion,

an approach which we emulate, Beitzel found that when combining different rank-

ing models where stemming and stopping are held constant, that effective ranking

models already highly rank relevant documents and that system performance was

degraded as common non-relevant documents were promoted up the ranked list.

Therefore, whilst the combination of ranked lists from retrieval systems improved

performance (where systems may have different stemming, stopping etc), combi-

nation of high-performing ranking models alone did not produce an improvement.

Nevertheless the definition of the two overlap measures provides a good mechanism

for inspecting the effect of data fusion. Furthermore in the case of CBMIR we are

using weak retrieval experts, quite distinct in performance from traditional text
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ranking models, where weighting must be employed to achieve good performance.

Further examinations of data fusion in text retrieval include work by Montague

and Aslam (2001) who proposed and investigated the use of various score normal-

isation approaches for ranked list combination (see Section 3.5.1). Hawking and

Robertson (2003) investigated the effect of the size of the collection on retrieval

performance. Robertson et al. (2004) provided an examination of attempts to intro-

duce weighting of specific fields of text documents into the BM25 ranking algorithm.

Robertson et al. found that to effectively weight field components using BM25, that

weighting should be conducted before the ranking model calculations, effectively an

instance of early fusion.

Likewise for multimedia there have been several investigations into data fusion

and its effects on performance. Yan and Hauptmann (2003) conducts a theoretical

investigation into the use of linear weighting and expert combination for multimedia

retrieval. McDonald and Smeaton (2005) performs a thorough empirical investiga-

tion into the differences of using scores, ranks and probability fusion methods for

multimedia retrieval. Urban and Jose (2004) conducts an investigation into vari-

ous statistical combination strategies for multiple example visual queries. de Sande

et al. (2008) compares the use of various colour experts and their performance for

the task of object and scene recognition.

There are several key distinguishing factors that differentiate our work from these

examples just provided. Firstly, in comparison to many of the text data fusion in-

vestigations, we are using very weak retrieval experts, where weak is a reference to

typical performance of these experts as measured by MAP. Because of this, not only

are we investigating the combination of these experts but also the best distribution

of linear weights which must be employed in order to obtain the best performance

possible from the inputs provided. Secondly, a majority of the multimedia inves-

tigations contain some implicit level of expert aggregation (see Section 3.7), such

as aggregating the results from a colour expert together and then combining those

results with the result of a text expert. Thirdly, to our knowledge, we are unaware

41



of work which examines data fusion for multimedia retrieval examining all of the

variables which we will identify in this chapter. Typically in previous investigations

(Yan and Hauptmann, 2003)(Urban and Jose, 2004)(McDonald and Smeaton, 2005),

some aspect is fixed and assumed to offer no variation in performance. Furthermore,

the novelty of our work is in taking all of the factors we identify in this chapter, and

conducting an optimisation process directly on the test data of a collection using

these factors. This process, discussed in the next chapter, will allow us to make

absolute observations about the impact various factors may have on retrieval per-

formance as we will first find what the optimal weighting combination for that set

of factors should be.

The first stage in identifying what factors may impact data fusion performance

in CBMIR is the definition of the retrieval experts we will be using for this study.

3.3 Retrieval Experts Used

In this section we will briefly detail the retrieval experts that our CBMIR system

will employ throughout our investigation into data fusion and multimedia retrieval.

This is not intended to be a comprehensive overview of the workings or capabilities

of these retrieval experts, but rather an overview of what is being used. Whilst in

previous parts of the thesis we have commented on the broad range of components

that can be integrated into a CBMIR system, for our implementation we focus on

two distinct classes of retrieval experts, text experts and visual experts. This restric-

tion is more of a practical consideration as a consequence of the feature extraction

tools available within out research group. Notable features which could also have

been included are motion and audio experts, however these experts would not have

been of use on the ImageCLEF corpora. In a similar vein, an operational retrieval

system presumably would have some expert knowledge about the collection being

indexed. In this work we make no accommodation for collection specific tweaks or

enhancements, again employing a generic framework. However an operational sys-
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tem would be foolish not to undertake some tailoring towards the collection being

indexed so as to enhance retrieval performance.

3.3.1 Text Experts

Text retrieval experts have traditionally been one of the best performing retrieval

experts in multimedia retrieval within the benchmarks we are exploring (Hauptmann

and Christel, 2004), and for that reason we employ a text retrieval expert in our work.

A text retrieval expert, as the name implies, works off text documents on which to

index and retrieve. Depending on the benchmarking collection used, what comprises

those text documents differs. The ImageCLEFPhoto 2007 collection (Clough et al.,

2008) provided multi-lingual image annotations which accompanied every image.

These annotations could be considered as being of very high quality, they are free of

any noise which may distort the documents, and so offers good performance when

retrieved.

For digital video data the picture is somewhat different. The text available for

indexing from video is typically via Automatic Speech Recognition (ASR) (Blanken

et al., 2007; Huijbregts et al., 2007). This process uses statistical models to take

an audio signal from digital video and generate a text transcript of any speech

from within that video. Whilst the accuracy of ASR techniques are continuously

improving, they are inherently more noisy than a manually created transcription of

the audio. The TRECVID 2003, 2004 and part of the 2005 and 2006 collections have

available straight ASR transcripts from English speech. However the TRECVID

2005, 2006 and all of the 2007 collections have video in which other languages are

also used. This means that the ASR being detected is in a language other than

English, and first requires translation into English for it to be of use for our retrieval

system. As our search topics and would be users speak English, being able to

process English queries is a requirement of this system. The task of translation is

given over to Machine Translation (MT) techniques which automatically translate

the text from its original language into English. However, this process introduces
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a second layer of noise to the text expert, as the raw data is first extracted from a

noisy process (ASR), then is transformed through an additional noisy process (MT)

to be ready for indexing. We will see at the end of this section how the performance

of text varies throughout the various benchmarks we investigate.

The text retrieval expert which we utilised for the TRECVID collections is a vec-

tor space model, implemented within the Terrier search engine (Ounis et al., 2007).

All text documents are stemmed and stopped. For the ImageCLEF collection, our

text expert uses English query to English document elements of the text corpus.

The ImageCLEF text retrieval results we used were implemented as part of a pre-

vious collaboration we had with the University of Tampere, Finland, and utilised

a language modelling approach, implemented by the Lemur toolkit (Metzler et al.,

2006; Järvelin et al., 2007). The utilization of the vector space model for our work

was primarily that the text documents we are using are typically very short, and

as such the vector space model offered good performance with minimal parameter

tuning.

A complete review of the various text retrieval models which could be utilised

in retrieval is beyond the scope of this work, however many texts exists, such as

Van Rijsbergen (1979); Salton (1989); Witten et al. (1999) which provide extensive

coverage of the area of text retrieval.

3.3.2 Visual Experts

Visual experts are experts which given a visual source of data, typically an image,

seek to describe that image from some particular viewpoint, such as the colours

distributed within the image or whatever textures may be present. Once an image

has been described by a particular expert it is then available for retrieval. The

visual experts which we utilise in this thesis can be referred to as using ‘low-level’

features. That is, they describe the visual data in terms of some transformation or

statistical inference about the data, but they do not make any semantic inferences

about the visual data. The extraction of ‘low-level’ features from a visual corpus is
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unsupervised, and can be thought of as an analogue to term extraction techniques

from text information retrieval. For instance, ‘low-level’ visual features may tell

us that an image is predominately blue, with a bright yellow circle in the top left

corner. What a ‘low-level’ feature will not tell us is what this image may represent,

which is typically the task of semantic concept detectors (see Chapter 2).

The majority of the visual experts we employ in this work are derived from the

MPEG7 XM (eXperimentation Model - see 2.2.1), a reference implementation of

features described in the MPEG7 standard (MPEG-7, 2001). The MPEG7 standard

is a multimedia content description interface whose objective was to standardise

multimedia content descriptions to improve interoperability between multimedia

systems. Visual features within MPEG7 are referred to as ‘descriptors’, and these

are typically compact descriptors, that is they are not overly verbose in describing

the visual content of an image. The implementation of the MPEG7 visual descriptors

which we use was created within our research group as part of the aceMedia project

and based upon the MPEG7 XM (O’Connor et al., 2005). The similarity metrics we

use to facilitate querying and ranking of visual features are those defined within the

MPEG7 XM and are typically variations on geometric distances such as Euclidean

distance. We will now briefly describe the six visual features which we will utilise

in our experimentation. The visual experts we define here will either have global

or spatial properties. Global properties can be thought of as giving details of the

overall image as a whole, whilst spatial properties would segment an image into

smaller regions within an image and describe each of those (e.g. overlaying a 3 × 3

grid over an image and examining each square).

Further details on the MPEG7 features can be found in (O’Connor et al., 2005;

Manjunath et al., 2002) whilst general details on low-level visual features can be

found in Blanken et al. (2007). Within our work we utilise two broad classes of

visual experts, colour experts and texture experts. We selected these six experts

so as to give a degree of variability within the experts with regards to their per-

formance. There is no standard number of experts employed within the research
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literature, many systems may make use of only one feature, whilst others which

have supercomputing resources at their disposal will make use of several, particu-

larly for classification tasks. Our use of six visual features we would consider to be

on the higher end of the scale with regards to the number of experts typically used.

3.3.2.1 Colour Visual Experts

Colour visual experts are among the most popular of the visual experts, they pro-

vide an intuitive method of querying a database and can offer good performance

depending on the task and the collection (Blanken et al., 2007; Datta et al., 2008).

However there are many different ways in which colour can be represented, each

having advantages or disadvantages given the particular retrieval task. Therefore

we employ a range of colour features which capture different aspects of colour, such

as global colour averages, which colours occur in which regions or even altering the

colour space that is used to represent the colour. A discussion on colour and how

we perceive it with its impact on various computing applications can be found in

Humphreys and Bruce (1989). We will now discuss the visual experts which we

utilised.

Scalable Colour Descriptor is derived from a colour histogram defined in the

Hue-Saturation-Value (HSV) colour space. It uses a Haar transform coefficient

encoding, allowing a scalable representation, and is constrained to 256 bins.

This is a global visual expert and can be thought of as a more compact standard

colour histogram.

Colour Structure Descriptor is also based on colour histograms, but it aims at

identifying localised colour distributions using a small structuring window. In

other words, it represents an image by both the colour distribution (similar to

a colour histogram) and the local spatial structure of the colour. Therefore it

aims to capture elements both of a global and spatial nature.

Colour Layout Descriptor is a very compact descriptor which captures the spa-
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tial layout of the representative colours on a grid superimposed on an image.

It is designed to efficiently represent spatial distribution of colours. The image

is divided into an 8×8 grid, and the average colour in each region is recorded.

Colour Moments Descriptor This descriptor provides a means of describing the

colour of an image which is alternative to the Colour Layout descriptor. An

image is divided into 4x4 subimages and for each subimage the mean and the

variance on each is computed. Whilst Colour Layout utilises the YCbCr colour

space, the Colour Moments descriptor utilises the LUV colour space.

3.3.2.2 Texture Visual Experts

Colour, whilst useful in image retrieval, is not the only source of visual experts which

we will utilise. The second class of visual expert we will employ are known as texture

experts. Texture experts are useful because they extract patterns from the visual

data, for instance an aerial photograph of a full car park would demonstrate a strong

pattern which could be searched against to find other similar images regardless of

the colours used in those images.

Edge Histogram Descriptor This descriptor represents the spatial distribution

of edges in an image. The image is divided into 4 x 4 subimages and the local-

edge distribution for each subimage is represented by a histogram. To generate

the histogram, edges are categorised into five types: vertical, horizontal, 45

degrees diagonal, 135 degrees diagonal and non directional.

Homogeneous Texture Descriptor Provides a quantitative representation using

62 numbers, consisting of the mean energy and the energy deviation from a

set of 30 Gabor frequency channels.

3.3.3 Expert Performance

For illustrative purposes we conduct a simple experiment here where we measure

the performance of each individual expert against each of our test corpora. The
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Figure 3.3: Average Expert Performance, Chapter 4 will highlight
the performance gains of correctly combining these fea-
tures.

specifics of this test are that for each expert if there are multiple query-components

(e.g. the query contains multiple visual examples), then the results of these are

uniformly weighted and combined to provide an average indication of that expert’s

performance. The results of this experiment are presented in Figure 3.3, with the

X-axis representing the different test corpora which we will be using, and the Y-

axis representing Mean Average Precision (MAP). These results were generated

by utilizing MinMax normalization and CombSUM for combining multiple query-

components within the one expert (i.e. as our queries are typically made up of three

or more images, the result for a single expert is the aggregation of the results of

those three queries for the one expert).

From this graph we can draw several conclusions. The first conclusion is that

individual retrieval experts perform very badly in terms of MAP across the majority

of evaluation corpora. This is demonstrated by the majority of the lines for each
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expert residing in the range 0.001 - 0.03 of MAP. The second conclusion is the vari-

ation in the text expert, correlating with the corpora. We see better performance

for TRECVID 2003 and 2004, however for the multi-lingual and Dutch collections

of TRECVID 2005, 2006 and 2007 we see a large deterioration in performance.

Conversely with the ImageCLEF 2007 corpus, the only corpus with noise free text,

we see that the baseline text expert performs well. Coupled with this is our final

observation on the corpora themselves, where we note that there is significant per-

formance shifts across corpora with different experts, re-enforcing the selection of

multiple corpora on which to test so as to hopefully gain more generalised knowl-

edge of the behaviour of data fusion across a wide range of retrieval environments.

We would note that this section is to illustrate the relatively poor performance of

low-level features when used for retrieval in isolation. Chapter 4 will demonstrate

how these features when combined achieve excellent retrieval performance.

3.4 Retrieval Factors

Key factors that can influence the outcome of data fusion in CBMIR, involve the

granularity at which we sample from video keyframes for indexing, and secondly, for

each individual retrieval expert, how many results we request from each expert. We

will refer to these two factors as the sample rate and the read depth. These factors

come into play when a request is made of an expert to provide results for a query.

3.4.1 Sample Rate

As we previously identified in Chapter 2, some of the multimedia data collections

we will be using came from the TRECVID benchmarking activity (Smeaton et al.,

2006). TRECVID is primarily concerned with the advancement of techniques for

content-based retrieval of digital video. Digital video as previously discussed is a

temporal medium, where frames (images) are presented at a rate of a least 25 frames

per second to give the perception of a continuous view (Blanken et al., 2007). For the
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visual experts we use in our CBMIR system, we must sample frames from the video

which we can then index so we can have discrete retrieval objects. Therefore the

sample rate which we utilise may have an impact upon the performance of different

retrieval experts.

Again as previously discussed (Chapter 2), the unit of retrieval when working

with TRECVID data is the ‘shot’, which is a segment of video which is visually

similar and has a duration of at least 2 seconds in length (Smeaton et al., 2003).

However, within ‘shots’ there may be ‘sub-shots’, which are segments of video that

are visually dissimilar to the ‘shot’ in which they are contained. They are less than

2 seconds in duration however, so are aggregated into a shot. For TRECVID 2003-

2006, NIST provided keyframes as part of the data set to be used for each year’s

evaluation. There were two groups of keyframes, RKF and NRKF. RKF keyframes

are Representative KeyFrames (RKF) and are a single keyframe extracted from

the temporal centre of a shot. Non-Representative KeyFrames (NRKF) represent

images from ‘sub-shots’, where this frame was taken from the temporal centre of

that ‘sub-shot’. In TRECVID 2007, NIST provided no official keyframe set as

part of the official data set, leaving it up to individual research groups to select

the sampling strategy they wished to implement (Over et al., 2007). As part of our

research group’s participation in TRECVID that year, we implemented an aggressive

sampling strategy, extracting frames at a rate of approximately 1 frame from every 30

frames of video. Specifically we sampled every second I-Frame, where the I-Frame,

known as the Intra-Frame and defined in the MPEG standard, is a frame which

can be decoded independent of any other frame (Smeaton, 2004). The resulting

frames extracted are referred to as K-Frames (Wilkins and et al., 2007). Therefore

within our video corpora, we have three levels of sampling strategy available to us

for indexing video, which are:

• RKF One keyframe per shot.

• NRKF At least one keyframe per shot.
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• K-Frame Regular temporal sampling of frames, many frames per shot.

For our experiments into factors influencing data fusion we will examine these

different levels of keyframe sampling. We will investigate the levels RKF and NRKF

in TRECVID collections 2003-2006 and RKF and K-Frame in the TRECVID 2007

collection. For clarification, the retrieval unit is the ‘shot’, so when we retrieve

results from a visual expert we aggregate results to the level of the shot. Using the

RKF sampling strategy this is straightforward as there is only ever one keyframe

per shot, therefore the result of an RKF keyframe is the result of the shot. For the

NRKF and K-Frame sampling strategies we implement MAX behaviour, where if

for a given query we have multiple results from a single shot, as the retrieval score

for that shot we take the value of the highest ranked keyframe. In unpublished

experimental work we also attempted using the average and MIN behaviour for

aggregation, and found that MAX behaviour provided the best results with regards

to retrieval.

3.4.2 Read Depth

We define read depth as the number of results we request from a retrieval expert

for any given query. In text retrieval there is known to be an inverse relationship

between recall and precision, such that as recall increases precision will decrease

(Buckland and Gey, 1994). However as we request more results from a given re-

trieval expert, recall will increase as we are obtaining more documents from the

collection. Typically, however, we perform some truncation of the results we request

from a given expert, otherwise if we do not and return the entire collection indexed,

we would get the benefit of 100% recall but also return a very large amount of

non-relevant data (Van Rijsbergen, 1979; Salton, 1989; Buckland and Gey, 1994).

Clearly the size of the result sets we request from any given expert will impact upon

performance.

Traditionally in benchmarking activities such as TREC, the truncation of result
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sets is typically the top 1000 results for ad-hoc retrieval tasks (Harman, 1993). The

task of CBMIR utilising weak retrieval experts is very dependant on data fusion in

order to achieve good retrieval performance. A broader question therefore is what

is the impact of result set truncation on data fusion within the context of CBMIR,

and indeed how does this vary as we either increase or decrease the size of result

sets to be combined through data fusion. Therefore an additional set of variables we

will examine for their impact on data fusion, is the depth to which we read results

from retrieval experts, and how this varies as we add or subtract retrieval experts.

3.5 Equivalence Transformations

One of the fundamental challenges of data fusion for Information Retrieval is the

combination of result sets generated from different retrieval experts. As each ex-

pert is essentially a separate retrieval system, it will have its own ranking function

and as such the result sets that an expert may generate may be quite different in

distribution to that of another expert. For instance, a visual expert which uses

a dissimilarity metric for ranking would produce ranked lists where the scores are

ranked in ascending order, with the lowest score being the best, whilst a probabilis-

tic system would rank documents by score in descending order, with the highest

score being the best. What we can assume from retrieval experts is that the lists

generated are indeed ranked, and that the change in scores through a ranked list is

monotonic, that is that the documents should be ranked in order of their likeliness of

being relevant for a query (Robertson, 1977). There are two broad classes of trans-

formations which we can apply to ranked lists in order to allow them to be easily

combined. These are rank based transformations and score based transformations.

3.5.1 Score Normalisation

As previously identified, when a retrieval expert ranks a document, we have access

to the document’s rank and score assigned by the expert. The score of a document
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is often seen to be a desirable attribute to work with, as it is assumed that the

score provides additional information such as the distribution of scores from an

expert or the strength of a ranking decision (McDonald and Smeaton, 2005; Yan

and Hauptmann, 2003; Renda and Straccia, 2003). The difficulty however is in

combining multiple sets of scores together, as the scores may have different ranges

or different sortings (i.e. ascending or descending). We require therefore methods

to normalise the scores, such that they can be combined.

3.5.1.1 Z-Score

A second normalisation strategy comes from general statistics and is known as the

standard score or the Z-Score (McClave and Sincich, 2006). Whilst this normalisa-

tion strategy has seen some use (Renda and Straccia, 2003; Montague and Aslam,

2001) its general use in data fusion appears less widespread than MinMax. Z-Scores

are also known as shift and scaling normalisation, where given a list of scores to be

normalised, we first shift the mean of the scores to 0, then scale the scores such that

the standard deviation of the scores becomes 1. This is shown in Equation 3.3.

Normscore(x) =
scorex − µ

σ
(3.3)

where µ is the average score of the ranked list, σ is the list’s standard deviation

and scorex is the value to be scaled. Like MinMax, Z-Score normalisation is a linear

transformation of the scores as it preserves the shape of the distribution of those

scores, however as identified by Montague and Aslam (2001), this normalisation

process has several key differences to MinMax normalisation. The major difference

is in the scale transformations where Z-Score transformations are scale invariant.

For simplicity, if we assume that the scores of a ranked list are normally distributed,

then we could expect the range of the Z-Score values to span [−3 : 3]. However

there is no fixed maximum or minimum value as there is in MinMax normalisation

(1 and 0 respectively).
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Therefore we have two score normalisation approaches, both of which are linear

transformations of the scores, but have variability in the scaling of the range of

the values that scores can take. In MinMax normalisation, as the top ranked score

becomes 1, it means that when combining against multiple experts, each expert

is treated uniformly, in that each expert’s top ranked score has equivalent values.

Alternatively, Z-Score normalised scores preserve the scale of the initial ranking. If

a ranked list has very similar scores with no outliers, we would expect the scores

to be clustered within a very tight range, whilst if a ranked list is populated with

outliers, the range of scores could be very broad. This would impact when combining

multiple ranked lists together, as the top ranked score of each ranked list is no longer

equivalent.

Another class of transformation which is guaranteed to provide equivalence for

ranked lists when combining them, is to perform transformations on the ranks of

the documents.

3.5.1.2 MinMax Normalisation

The first normalisation strategy we will examine is known as MinMax normalisation

and has seen extensive use in the field of data fusion beginning with Fox and Shaw

(1994). MinMax is defined in Equation 3.4.

Normscore(x) =
Scorex − Scoremin

Scoremax − Scoremin

(3.4)

Assuming that our ranked list of results is sorted, Scoremin is the value of the

last element in the ranked list, Scoremax is the top ranked element, and Scorex is

the current score being normalised. This transformation is a linear transformation

which produces a set of scores in the range [1 : 0], where the top score is guaranteed

to be 1 and the lowest score is 0. As this transformation is linear it preserves the

shape of the distribution of the scores.
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3.5.2 Rank Transformations

Rank-based transformations only consider the rank information of a ranked list, and

as such the scores of a ranked list are only required in order to generate the rank-

ing of the list. Popular in metasearch applications, where the assumption is often

made that the aggregator will only have access to the ranks of documents from a

search engine and not its scores, rank transformations can take several forms. Rank

transformations have been examined by several authors including Jeong et al. (1999);

Dwork et al. (2001); Renda and Straccia (2003); Aslam and Montague (2001). Oper-

ationally we can consider rank transformations as the same as score transformations,

in that we take in some raw value (in this case the initial rank as opposed to score)

and apply some form of transformation which generates a new ‘score’ which we can

be used to combine documents between ranked lists.

3.5.2.1 Borda Count

One of the most well known and utilised rank transformation techniques is Borda

Count. Initially developed as a voting method in the 18th century as an implemen-

tation of preferential voting, it has seen application in Information Retrieval tasks

(Aslam and Montague, 2001). Given a ranked result set of documents rs of length

N , the Borda method in its simplest form is that for any given document x, subtract

the rank of x from the value of N . Formally this is expressed in Equation 3.5.

Normscore(x) = N − rankx (3.5)

For example, given a ranked list of 1000 documents, the top ranked document

would have a Borda count of 999, the second ranked document a Borda count of 998

etc. This transformation like the previous score transformations is linear, however

problems are encountered when ranked lists are to be combined which are of different

lengths. For instance, if we have one ranked list of size 1000, and a second ranked

list of 100 documents, then the top ranked document in the first list will be given a

55



score of 999, whilst the second list’s top ranked document will only be given a score

of 99. Depending on the data fusion application, this may or may not be a desirable

quality, a short result list may indicate that few documents were found and therefore

are unlikely to be relevant. Conversely it may indicate the presence of a very precise

query and the small set of returned results are of a high quality. Like Renda and

Straccia (2003) we briefly propose two extensions to the basic Borda method to

address the list imbalance problem. Whilst the work of Renda et al. extended

Borda by assigning non-ranked documents a uniform low score, our approach differs

as the documents returned from our experts may be quite different sets as opposed

to different text experts which work off the same symbols (i.e. words).

The first extension is given that multiple lists are to be transformed, we first

determine what is the size of the largest ranked list to be normalised, and use this

value instead of N from which to subtract the current rank. We will refer to this

approach as BordaMAX, and it is formally given in Equation 3.6:

Normscore(x) = max(|rs|) − rankx (3.6)

where the function max(|rs|) returns the size of the largest ranked list being nor-

malised. Taking our previous example of two ranked lists of size 1000 and 100, with

this approach the top ranked documents of both lists are assigned the score 999.

This in effect creates the opposite problem to that which we discussed with Borda

count, as short ranked lists relatively speaking are having greater impact than longer

lists. Again however this is a decision up to the system implementer to decide which

approach is more suited for their retrieval task.

Our second approach takes a middle ground between Borda count and Bor-

daMAX, which we term rankMM. The rankMM method is the traditional Borda

count method applied, followed by a normalisation of the resulting Borda count

values by applying MinMax normalisation. This final extension has the property

that all top ranked documents from the ranked lists to be combined will all have
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the same score of 1, whilst the lowest ranked documents across all sets will have a

score of 0. These approaches can all be considered variants of the Borda method,

however there are other rank transformations that can be explored.

3.5.2.2 Reciprocal Rank

Reciprocal rank is an alternative method of rank transformations that has been used

in information retrieval (Ogilvie and Callan, 2003). Reciprocal rank is simply one

over the current rank, formally given in Equation 3.7.

Normscore(x) =
1

rankx

(3.7)

Unlike the previous transformations we have seen, this transformation is non-

linear with respect to the initial ranking. Whilst the previous transformations always

maintained the distribution that was present in the raw values being transformed

(either scores or ranks), reciprocal rank introduces an exponential decay to the rank

values, such that it highly weights documents which appear at the beginning of

a ranked list versus those that appear further down. To visualise the difference

between the Borda and reciprocal approaches, we took a list of 100 ranks ([1 :

100]), and applied both the Borda and reciprocal transformations, normalising the

resulting scores to Z-Scores. The results are presented in Figure 3.4.

We can see clearly demonstrated the difference between the two rankings gen-

erated, with the Borda transformation presenting as a linear function, whilst the

reciprocal approach generates a reciprocal distribution. The two graphs intersect at

rank positions 5 and 60, demonstrating the aggressive weighting of the reciprocal

approach for the top 5 ranked documents, with less decay in score given after rank

60. Clearly systems which implement reciprocal ranking transformations are seek-

ing to bias combinations such that the top ranked results of each result list become

heavily weighted.

These approaches, both score and rank transformations, allow the documents
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Figure 3.4: Borda vs. Reciprocal Rank Normalisation

from multiple ranked lists to be combined into a single response for an information

need. The next section details approaches that can be employed for merging multiple

ranked lists.

3.6 Combination Operators

Once the results from multiple ranked lists rsi,j have been normalised, they can

then be combined to form a single ranked result for a given information need. In

our discussion of the combination operators that can be used, we are assuming that

one of the previously discussed transformations have been applied. If this is the

case, then the combination approaches which we will now discuss can be applied to

either the scores of a ranked list or to the rank of a ranked list. For convenience we

will refer to a document’s score when discussion combination approaches, however

the normalised rank can be easily substituted and take the place of a score. The

linear weighting of ranked lists and their subsequent combination has been proposed
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several times, with early work in linear weighting completed by Vogt and Cottrell

(1999). A review of weighted data fusion approaches is presented in Chapter 5.

3.6.1 Round-Robin

Round-robin combination is one of the simplest methods that can be implemented

and has seen use throughout the years (Savoy et al., 1996; McDonald and Smeaton,

2005). Given a set of ranked lists to be combined, take the top ranked document from

each list and add it to the final list, then move onto the second ranked documents

and so on, iterating through each of the lists. If a document is encountered multiple

times it is assigned the highest rank it was given by any expert. Whilst this approach

is easy to implement, and has some application in tasks of collection fusion where

there may be little overlap in the documents being combined in ranked lists, its major

drawback is in the introduction of randomness in the ranking. As this process takes

documents from ranked lists, the order in which those lists are iterated through has

a massive impact on performance with regards to metrics such as Average Precision.

As no order is explicitly defined, this process of ranked list iteration is essentially

random, and is the equivalent of a ranking where multiple scores which have the

same value. Whilst documents with the same score are conceptually equal, as a

ranking must be produced this forces an ordering of these equally scored documents

which is random.

The more common approaches to combination of ranked lists is to use variants

of linear interpolation. Fox and Shaw (1994) in early work defined six approaches

for linear combination, of which two have seen the most success, CombSUM and

CombMNZ. In defining their combination approaches Fox and Shaw first applied

MinMax normalisation then combined. However this approach is unweighted, which

has some justification for the combination of text retrieval experts (Lee, 1997; Beitzel

et al., 2004), however as we have seen earlier in this chapter, the retrieval experts we

are utilising in CBMIR are very noisy and any combination approach will require

the use of weights in order to maximise performance.
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Before explaining the combination approaches CombSUM and CombMNZ with

weighting extensions, we will briefly recap our terminology. We have in our system

the matrix of result sets (ranked lists) RS and we have a corresponding matrix

of weights RC. Each ranked list rsi,j in RS has a corresponding weight rci,j in

RC. The task of any combination operator (such as CombSUM or CombMNZ) is

to apply the weight rci,j to the documents in the ranked list rsi,j, and then fuse

these weighted ranked lists into a final ranked list which forms the system’s output

for a query.

3.6.2 CombSUM

CombSUM is defined as the weighted sum of a documents score’s in each of the

result lists in which it appears. For instance, if we have our multi-part query Q

and set of retrieval experts E, we will generate the matrix of result sets (ranked

lists) RS and have along side it our weighting matrix RC. Given a document x, we

examine each individual ranked list, rsi,j, obtain the score of document x and apply

the weight rci,j to this score. The final score for document x therefore is the sum of

each weighted instance of x occurring in the matrix RS. Formally this is described

in Equation 3.8.

CombSUM(scorex) =
RS
∑

rsi,j

(scorex ∈ rsi,j) × rci,j (3.8)

3.6.3 CombMNZ

An alternative implementation developed by Fox and Shaw (1994) is CombMNZ.

CombMNZ extends CombSUM by introducing a variable which heavily weights doc-

uments that appear in more than one result set. This variable is the number of times

that a document appears in result sets, i.e. the number of non-zero entries that a

document has in the set of ranked lists to be combined (hence MNZ). In our ter-

minology, this equates to the number of times a document x appears in a ranked
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Figure 3.5: CombSUM vs. CombMNZ - hypothetical progression of
scores of a single document

list (rsi,j) in our result list matrix RS. We define weighted CombMNZ in Equation

3.9, where the weight has already been incorporated as part of the calculation of

CombSUM.

CombMNZ(scorex) = CombSUM(scorex) × α (3.9)

where α is the number of result sets in which a document was found, and 1 6 α 6

|RS|. Similar to some of the previous tools that we have examined, the choice of

CombSUM versus CombMNZ is down to the intention of the system designer and

the type of behaviour they would like present in the search system. CombMNZ

aggressively promotes documents which occur in a majority of ranked lists to be

combined, whereas CombSUM can be seen as a linear addition. We can visualise

this with an hypothetical example shown in Figure 3.5.

Assume we have a set of 30 ranked lists which are being combined, listed on the
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X-axis, and we have a document x which if found in a ranked list always receives the

same score. In Figure 3.5 we plot the difference in the final score of document x as

it is found in between 1 and 30 ranked lists. From this diagram we can see that with

CombSUM, as more instances of document x are combined, that the final score of

document x linearly increases. Conversely with CombMNZ we can observe a concave

curve, which increases in gradient towards the end of the line, demonstrating the

aggressive weighting of a document found in a majority of ranked lists, versus being

found in only some of the ranked lists.

3.7 Combination Levels

As previously illustrated, the CBMIR system which we are using in our work is

capable of handling multiple retrieval experts and multi-example multi-modality

queries. We have seen that each unique pair 〈experti, queryj〉 is able to generate

a ranked result set rsi,j. The objective of the CBMIR system is to combine all of

these into a coherent single response. The nature of this setup is that it allows for

hierarchical partitioning of the ranked results to facilitate this final combination.

That is, systems may employ a multi-stage combination process, either to allow

for easier training of weights to populate the weighting matrix RC, or because

employing a combination hierarchy was the accepted practice. For a late fusion

CBMIR system, there are three basic levels of combination which could be employed,

which we refer to as ‘query level’ combination, ‘expert level’ combination and ‘direct

level’ combination. Each of these levels is illustrated in Figure 3.6.

Earlier in the definitions of our terminology, we stated that a CBMIR system

could handle multi-example multi-modality queries Q. The set Q defined a single

search topic which the CBMIR system is to process. The example as given in Figure

3.6, is that our query may be comprised of a yellow flower image and a red flower

image, the intent of this query may be to find images of flowers regardless of colour

(Jin and French, 2003). In the example in Figure 3.6 there are also two visual
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Figure 3.6: Combination levels for single search, with 2 experts (E)
and 2 query images (Q), giving 4 ranked lists (pairs
〈Qj, Ei〉).

63



experts present, a colour expert and an edge expert. Applying our queries to the

experts generates 4 result lists to be combined. Using our notation the four result

set we have generated are:

E = {colour, edge}

Q = {yellowflower, redflower}

RS =







colour, yellowflower edge, yellowflower

colour, redflower edge, redflower







3.7.1 Expert Level Combination

The first of the three levels we’ll discuss is ‘expert level’ combination. For a specific

expert (experti) we query against it all query components in Q, merging the results

to produce for each expert, a single ranked list. Typically the combination of the

individual results from an expert into a single result for that expert are uniformly

weighted. Therefore, for every experti we have one combined result set (rsi). The

final merger therefore is to combine each result set rsi into a single response. In

systems which implement this style of combination, it is at this level of aggregation

that weighting would occur, that is each rsi would be assigned a weight. This means

that the number of weights which must be determined using this level of aggregation

is |E|. To illustrate this with the example from Figure 3.6, the result sets from pairs

〈colour, yellowflower〉, 〈colour, redflower〉 from one merged result set which is then

weighted, whilst pairs 〈edge, yellowflower〉, 〈edge, redflower〉 form the other result

set to be weighted. As there are two experts (|E| = 2), then two weights are used

to calculate this query. Referring back to our result set matrix RS with individual

elements rsi,j, we can think of this approach as first aggregating the result sets in

each column i, weighting each of these, then combining all instances of the columns

rsi into a single response.
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3.7.2 Query Level Combination

If ‘expert level’ combination is the processing of the columns of the result set ma-

trix RS, then ‘query level’ combination is the same processes except that we in-

stead process the rows of matrix RS. Given a set of query components Q with

members queryj, we combine with uniform weights the results of queryj queried

against every expert in E. Similarly to ‘expert level’ weighting, the aggregated

result set for each queryj is then weighted and combined to compute the final re-

sponse to the query. Therefore, each rsj is weighted, and the total number of

weights used in tuning the system is |Q|. Illustrating this with our example from

Figure 3.6, there are two result sets rsj , the first generated from a merger of the

pairs 〈colour, yellowflower〉, 〈edge, yellowflower〉, and the second from the pairs

〈colour, redflower〉, 〈edge, redflower〉.

3.7.3 Direct Level Combination

Finally we have the “direct” level of combination, where if the ‘expert level’ of

combination was the aggregation and weighting of columns rsi, and ‘query level’

combination was the aggregation and weighting of rows rsj, then ‘direct level’ is

the direct weighting of each individual result set rsi,j, in other words, process-

ing the matrix RS directly without any intermediate levels of aggregation. This

level specifies weights for every coupling of a query component and retrieval expert,

meaning that using this approach, |E| × |Q| weights are required. Applying this to

our example from Figure 3.6, this means that the four pairs 〈colour, yellowflower〉,

〈edge, yellowflower〉, 〈colour, redflower〉 and 〈edge, redflower〉 each have their own

weight.

In summary, these three levels of combination allow for different levels of gran-

ularity to be specified for combining results through data fusion. The more coarse

combination levels are the ‘expert level’ allowing |E| weights to be set, ‘query level’

allowing |Q| weights and finally the ‘direct level’ of combination, which requires
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|E| × |Q| weights to be specified. The selection of which level a system designer im-

plements comes down to what mechanisms are available for estimating the weights

to be used. For instance, if only coarse levels of training data are available, then

the ‘expert level’ of combination may make sense. However what is clear is that the

imposition of a combinatorial hierarchy will have a direct impact upon performance.

In the next chapter as we examine the various factors which impact on data fusion

we will demonstrate the degree to which the selection of combination levels has upon

performance. We expect that the ‘direct level’ would perform the best, and what

has currently not been shown in literature is how big of a performance impact is

resultant from these design decisions.

3.8 Conclusion

In this chapter we have identified, isolated and defined factors which will impact

upon performance in weighted data fusion. Many of these factors in previous studies

have not have been explicitly identified and tested, such as read-depth, combination

levels, normalization strategies and their interplay. Our intention here is to highlight

the wide variety of factors which need to be taken account of when designing a

data fusion framework for weighted combination, particularly within the context

of CBMIR. In the following chapter we will perform rigorous experimentation with

these various factors to determine what impact they may have upon data fusion.

This will allow us to define what an ideal data fusion scheme should consist of and

what factors require close attention. The factors we have identified are summarised

in Table 3.2.
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Summary of Data Fusion Factors
Query & Experts

Single/Multiple Modality Queries
Single/Multiple Retrieval Experts

Retrieval Factors
Sample rate of keyframe extraction (video)
Read depth from each expert

Equivalence Transformations
Score normalisations:
- MinMax, Z-Score
Rank transformations:
- Borda Count, Reciprocal Rank

Combination Operators
Weighted CombSUM
Weighted CombMNZ

Combination Levels
Query-level
Expert-level
Direct-level

Table 3.2: Factors impacting on data fusion performance

67



Chapter 4

Evaluation of Factors Impacting

on Multimedia Retrieval

Performance

In this chapter we will be conducting a rigorous examination of the factors identified

in the previous chapter which may impact upon retrieval performance in the context

of Content-based multimedia information retrieval (CBMIR). CBMIR systems as a

result of employing multiple low-level retrieval experts which are of poor individual

quality are required to employ some form of a weighting scheme to combine this

evidence so as to obtain a final result. This problem can be phrased as a combination

of experts problem and is a case of Data Fusion. CBMIR is characterised by the

use of multiple ‘noisy’ signals such as the colour of an image, or the textures it

contains, and through combining multiple sources of noisy information, reasonable

performance can be achieved Smeaton et al. (2006). However this makes the role

of data fusion, particularly weighted data fusion, paramount to the success of many

CBMIR systems.

Because of the employment of weighting schemes for combining evidence, the

impact of various components within a retrieval system can become obfuscated, as

the success or failure of any given set of weights will dominate retrieval performance.
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Therefore there are two key components for the successful evaluation of different fac-

tors which may impact on retrieval performance. The first of these is the weighting

employed itself, whilst the second are the additional factors such as how evidence

is combined which are required to formulate a final response. The challenge is in

creating a process where these two components can be disambiguated to allow for

robust empirical testing of each part of a data fusion system.

To this end we utilise in this chapter an unconventional method of empirical

testing where we conduct an optimisation of the retrieval process directly on the

test data, so that we maximise the performance of the current set of variables under

consideration. A complete description and justification for this is given in Section

4.1, but the key benefits of employing this empirical approach are:

1. We establish for any given query, what the ideal form of linear weighting is

for that query. This allows us to identify and observe what form of weighting

a data fusion algorithm should seek to emulate.

2. The capability of finding the ideal set of weights for any given query or set of

retrieval factors allows us to essentially freeze the impact that the weighting

scheme has on retrieval performance. Therefore we can robustly test fac-

tors such as combination operators, normalisation approaches and combina-

tion levels, where for each as the ideal set of weights has been used we can

cross-compare results knowing that the performance achieved is the best per-

formance possible using that particular combination of factors.

Cleverdon et al. remarked in some of the earliest robust empirical IR investi-

gations, that the most important factors to be measured in the evaluation of in-

formation retrieval systems are recall and precision (Cleverdon et al., 1966). The

experimentation we perform in this chapter will be cross compared using primarily

the measure of average precision. Therefore the impact of each of the factors we will

investigate will be assessed in terms of how it affects average precision.
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The remainder of this chapter is organised as follows. We will first describe our

experimental setup, including details of our experimental model and optimisation

procedures. Next we will conduct our first optimisation operations and examine the

weights which are generated so as to observe if there are any forms an ideal weighting

scheme takes. Third, we will then begin our experimentation of the factors identified

in the previous chapter, where we will demonstrate the several data fusion operators

are not as effective as is generally believed in the data fusion community. Finally we

will revisit the work of Lee (1997), who conducted some of the earliest investigations

into data fusion performance, so as to investigate and contrast the findings we make

in the chapter to what has been reported. The observations of this chapter will be

utilized in Chapter 6 where we will develop our own novel algorithms for data fusion

which will leverage the findings of this chapter.

4.1 Experimental Setup

In this section, we provide the motivation for our approach to examining the factors

which impact on Content-Based Multimedia Information Retrieval. The context of

our experimentation is an ad-hoc search task, where a system is given an expression

of an information need and is required to return as many relevant matches as possi-

ble. For our investigation we performed ‘fully automatic’ retrieval which processes

a query and produces a response with no human intervention.

Our experimental setup will detail the measures we use for examining the signif-

icance of our results, the experimental model which we will employ, the test corpora

which will be used in the investigation and finally the optimisation model which

forms the core of our experimental work.

4.1.1 Significance Testing

Testing for the significance of an experimental result is an important component

of any empirical investigation. At its core, significance testing informs us of the
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probability of an empirical result occurring due to chance, or due to a deterministic

process. An overview of significance testing and its application for Information Re-

trieval is given in Blanken et al. (2007). The significance test we will be utilising for

our experiments is a partial randomisation test as implemented by NIST for signifi-

cance tests in TRECVID. This approach has the benefit of being a non-parametric

test which assumes no underlying distribution. Further details on the significance

test are available from the TRECVID website1.

Throughout our experimentation we will make extensive use of significance tests,

where typically ρ will be set to 0.05. To present our significance results we will

employ a consistent format, where the results are presented in a table, an example

of which is given in Table 4.1. The top of the table indicates the test corpora and the

ρ value. The table should be read left to right, not top to bottom, as the symbols

used within the table convey direction. These symbols are; (1) ≡, which means

the two runs have no significant difference, (2) ≫ which indicates that the runs

performance is significantly different and greater than what it is being compared to,

and (3) ≪ which indicates that the run is significantly worse.

ρ = 0.05 TRECVID 2004
A B C D

A - ≪ ≪ ≪
B ≫ - ≡ ≪
C ≫ ≡ - ≪
D ≫ ≫ ≫ -

Table 4.1: Example Significance Table: ≡ indicates runs have no
significant difference, ≫ indicates the run is statistically
better, ≪ indicates the run is worse, read from left to
right, not top to bottom.

Using the example from Table 4.1, we can infer the following. Run ‘A’ is a poor

performer, every other run out performs it. Run ‘B’ produced performance greater

than ‘A’ but there was no significant difference between it and Run ‘C’, whilst run

‘D’ outperformed it.

1http://trecvid.nist.gov/
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4.1.2 Experimental Model

The study of information retrieval, like any branch of science, has established var-

ious methodologies for advancing our body of knowledge. These techniques are

implementations of the scientific method, where scientists make empirical observa-

tions about a body of data, formulate hypotheses and test these against the data in

ways which can be accurately measured and crucially reproduced. For information

retrieval, watershed moments were the Cranfield experiments and later the TREC

series organised by NIST (Cleverdon et al., 1966; Harman, 1993). These events es-

tablished many of the norms which can be taken for granted when conducting IR

experiments, the establishment of common data collections, the specification of the

experimental scenario (i.e. the topics) and the relevance assessments used to evalu-

ate the performance of the search topics against the common data. The success of

these experimental models has undoubtedly brought a great many advances to the

field of information retrieval. Figure 4.1 demonstrates the traditional empirical IR

model.

In this model we have some form of training data, either topics, data or both,

some proposed model which we want to test and some form of parameters which

require tuning and a set of evaluation metrics and relevance assessments. Also

included in this model is a test set from which final results will be reported. The

common sequence of events is that a model is first optimised on training data, then

the optimised model is used on the test data. The final result typically reported is

the outcome of the evaluation metrics run on the output of the model on the test

data. There are several well founded justifications for employing this approach, most

of which are concerned with overfitting the model and obtaining non-representative

evaluation figures. The typical argument is that in a ‘real’ system, the system

designers will not have access to the queries that will be used a priori but will

have access to some form of training data. Therefore by training the model on

the training data and executing that model with the unseen test data we have

an objective measure of how well the model performs operationally on new search
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Figure 4.1: Traditional IR Empirical Model

73



queries. This approach is particularly useful when testing a model to see how well

it generalises, training the model on one form of data then testing it on completely

different test data, giving an indication if the model has general properties which

make it widely applicable, or if the model has been too tailored to a particular type

of data.

The application of this model however has become de rigueur amongst informa-

tion retrieval systems researchers, with little thought as to why we are employing

this experimental model and the validity of alternative approaches. It is seen as the

‘correct’ way to undertake a study, ipso facto deviations from this produce ‘invalid’

results as they break the experimental model.

The major problem with the established empirical model is that of evaluation,

a problem which is more acute when applied to data fusion tasks. In data fusion

tasks we will have a range of input sources of evidence, which we will then combine

in some manner in order to compute a final response. The fundamental problem

is that using the established empirical model, we can evaluate two different fusion

models, and after executing both on the test collection we can make the observation

that model ‘a’ outperforms model ‘b’ by 15%. On the surface this seems fine, model

‘a’ has achieved a good performance improvement over model ‘b’. However, this

15% is a relative increase, it is only meaningful when comparing the two models

under observation.

The problem is that we would like to know what the performance of each model

is not with respect to each other, but against what the theoretical maximum per-

formance achievable is, or in other words against the ideal data fusion combination.

For instance, model ‘a’ scores a MAP of 0.115, model ‘b’ scores a MAP of 0.100,

however if the theoretical maximum for the task is a MAP of 0.555, then the ob-

served improvement whilst good indicates there is a lot more that could be done.

Conversely if model ‘a’ scored a MAP of 0.523 and the maximum achievable remains

0.555, then we can make fairly good claims that model ‘a’ is achieving near peak

performance and fewer performance gains can be expected.
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Figure 4.2: Optimisation on Test Data

A better use determining what the maximum performance may be, is to allow

the study of what are the properties of a maximally performing model. Rather than

being primarily concerned with what is the maximum performance value, to flip this

around such that given we have a model which achieves excellent performance, what

are the properties of this model that led to this performance. In order to achieve

this it necessitates optimisation directly on the test data.

We present this alternative experimental model in Figure 4.2. There are two key

characteristics of this model. Firstly that we only have one data set, the test data

set along with relevance judgements, which enables the loop in the process to exist,

allowing the tuning of the model sufficiently until its peak performance is reached.

The second key characteristic of this model is in the outputs. Not only do we obtain

a final ranked set of results for a given set of queries, but we also have from the

model what parameters were used in order to obtain the peak performance.

Whilst this preamble justifying our approach is extensive, we feel it is necessary

as we want to make clear our purpose in optimising retrieval performance directly

on test collections, as this activity is quite unusual. By performing optimisation on

the test set it allows us to identify what are the properties of an ideal weighting

scheme for data fusion. Furthermore, as the optimisation generates the weights, it
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allows us to independently test other aspects of retrieval performance objectively,

such as the effect of normalisation or combination operators, so that we can obtain

strong observations as to the impact of these different methods.

All of the experiments presented within this chapter except where noted will

make use of this experimental framework, directly optimising linear combination

weights on test data. In so doing this will allow us to make robust observations

as the variable of the impact of the linear weights utilised is always held constant.

This constancy is achieved by those weights being set to what is the most effective

set of weights for the variables under consideration. Nevertheless empirical testing

of the type where the test collection is unknown is important for the development

and testing of new algorithms. In Chapter 6 where we introduce new algorithms for

the generation of weights for data fusion, we will employ the traditional empirical

evaluation model.

At this point we would like to note that frequently in this Chapter, we will refer

to an optimal run from which we compare the current factors under consideration.

Due to the optimization process requiring significant processing time, we had to

take best guesses as to what was the optimal set of factors to use to generate the

best possible run for comparison. Completing this Chapter, we found that at times

our guesses whilst close were at times incorrect (notably as we shall observe that

rank based methods achieve superior performance to score based methods, contrary

to accepted wisdom). Nevertheless, the optimal run for each experiment is directly

comparable with the factor under consideration. Except where otherwise noted,

all optimal runs utilized all available experts and query-components, CombSUM

for combination, direct-level combination, score-based MinMax normalization and

read-depth of 1000 documents. Deviations from this will be noted where applica-

ble. In cases where one of these factors is being examined, then whilst that factor

changed, the other variables would remain constant. E.g. for testing CombSUM

against CombMNZ, except where noted, we used a read-depth of 1000 documents

with direct-level of combination and score based normalization, whilst obviously
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CombSUM and CombMNZ were interchanged.

Fundamental to implementing this experimental framework is the implementa-

tion of an appropriate optimisation framework. Several approaches were considered

including standard grid searches and statistical approaches such as Expectation

Maximisation. We selected the approach known as coordinate ascent. This ap-

proach was recently adapted for linear combination information retrieval tasks with

direct optimisation on the relevance assessments by Metzler and Croft (2007). The

following section will introduce this method and our extension to it.

4.1.3 Optimisation Technique and Extensions

To determine the optimal topic weights for all pairs 〈Experti, Queryj〉 in set RC we

require an optimisation method which will directly maximise the evaluation function

we are interested in, which for our purpose is Average Precision (AP). The method

we use is an extension of Coordinate Ascent (also known as Alternating Variables

Method (Fletcher, 1987)); its use in optimising Information Retrieval systems is

described by Metzler and Croft (2007).

The overview of this approach is that to determine each topic’s weighting matrix

RC, we first assign each pair 〈Experti, Queryj〉 a random weight (rcij), such that

rcij > 0 and
∑

rcij = 1. For each rcij we increment its assigned weight (whilst

ensuring that the
∑

rcij = 1; Metzler and Croft term this projecting the weights to

a multinomial manifold (Metzler and Croft, 2007)) then apply the current weight

set to each 〈Experti, Queryj〉 and re-evaluate against the evaluation function (AP).

If there is an increase in AP then we continue to increment the current weight until

AP no longer increases. Once the current value for rcij is optimised we move onto

the next weight in the set. This process loops through RC successive times until

further increments produce no performance increase. As commented by Metzler and

Croft, in a multi-dimensional parameter space the evaluation function is unlikely to

be concave in shape and the risk exists that we may finish on a local maximum.

To alleviate this we instantiate this process with random weights multiple times,
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selecting as the optimal matrix RC which achieved the highest AP value.

Our extension of Coordinate Ascent introduces an extra step in the optimisation.

The standard version of Coordinate Ascent terminates once no further increases can

be made through incrementing the values of RC. In our approach, a second round of

optimisation occurs, except that instead of incrementing each weight, we decrement

each weight in the RC. We refer to this extension as Coordinate Ascent/Descent.

To demonstrate the advantage of using this extension, we compare the perfor-

mance of runs optimised by standard Coordinate Ascent and our Coordinate As-

cent/Descent. Both algorithms were executed with 50 random restarts on each of

our corpora and we found that in all cases, Coordinate Ascent/Descent produced an

optimised matrix RC which was statistically significantly better than the standard

implementation (using a ρ value of 0.01). Conversely we found that if we used the

standard implementation, but varied the amount of random restarts between 50 and

200, no significant difference could be found in the resulting outputs.

Our use of Coordinate Ascent differs to that of Metzler and Croft. The objective

in their work was to test Coordinate Ascent as a method for determining the best

parameter set to be used for ad-hoc retrieval from a training collection, then to

apply those weights to a test collection and compare Coordinate Ascent to other

training models, including SVMs. Their conclusions were that as Coordinate Ascent

optimises directly on the evaluation metric (average precision) it produces superior

weight sets for linear combination than the other methods they investigated (Metzler

and Croft, 2007).

So as to demonstrate the effectiveness of the optimization process, in Table 4.2

we present the result of the optimization process run for each corpus with visual only

experts, contrasted with a uniformed weighted run and the best reported automatic

run from each of the corpora.

We show the comparison to the best reported runs in that year’s evaluation, as

78



Eval. MAP Recall P10 Uniform BR
TV2003 0.1224 0.3027 0.3880 0.0593 N/A
TV2004 0.1084 0.2318 0.3826 0.0288 N/A
TV2005 0.1407 0.1725 0.6750 0.0646 0.1259
TV2006 0.0563 0.1493 0.4875 0.0164 0.0867
TV2007 0.1304 0.3231 0.6167 0.0422 0.0874
IC2007 0.2156 0.4379 0.5900 0.1283 0.1890*

Table 4.2: Optimised Results, column ‘BR’ is the best reported
MAP for automatic search from that year’s pub-
lished results. ‘Uniform’ represents using all pairs
〈Experti, Queryj〉 but with no weighting. *IC2007 BR
is visual only.

it demonstrates the effectiveness of our optimisation, producing retrieval runs which

achieve excellent performance. The comparison highlights the maximum of what

can be achieved with data fusion and global low-level visual experts, particularly

when compared against the top performing runs which made use of multiple evidence

modalities including text and semantic information. We note that this comparison

to published retrieval runs (‘BR’) is not a fair comparison as we optimised on the test

data, again however the intention of this work is to demonstrate the gains achievable

with optimised weights, even when compared against retrieval runs that used high

quality signals such as text.

4.1.4 Corpora Review

Whilst our experiments are making use of coordinate ascent for optimisation so

as to isolate as many variables as possible in our investigation, one key aspect of

variance is our actual test corpora. To determine if observed results are general

or corpus specific we conduct our experiments over six test corpora. Five of these

test corpora came from TRECVID (Smeaton et al., 2006) and are digital video

collections, and one from ImageCLEF (Clough et al., 2008), a collection of travel

photographs. These two campaigns share similar objectives as both seek to promote

research in content-based retrieval by utilising common test collections and open,

metrics-based evaluations. Within the five TRECVID corpora however we also have
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variation, with the data including mono and multilingual video, video from broadcast

news and news magazine video. The following is a summary of our experimental

corpora:

• TRECVID 2003: Approx. 60 hours of monolingual English news broadcasts.

There are 72,624 total keyframes, of which 37,104 are ’NRKF’ keyframes and

35220 are ‘RKF’ keyframes. There are 138 topic images spread across 25

topics. Text evidence is provided through ASR transcripts. Abbreviated to

‘TV2003’.

• TRECVID 2004: Approx. 70 hours of monolingual English news broadcasts.

There are 48,818 total keyframes, of which 33367 are ’RKF’ keyframes and

15451 are ’NRKF’ keyframes. There are 160 topic images across 24 topics, and

text evidence is provided through ASR transcripts. Abbreviated to ‘TV2004’.

• TRECVID 2005: Approx. 80 hours of trilingual news broadcasts in Arabic,

Chinese and English, represented as 78,206 keyframes. Of these 45765 are

’RKF’ keyframes and ’32215’ are ’NRKF’ keyframes. Topics are represented

by 228 topic images, across 24 topics. Text evidence is provided through ASR

transcripts for English, whilst for the additional languages the ASR is run

through an MT system. Abbreviated to ‘TV2005’.

• TRECVID 2006: Approx. 160 hours of trilingual news broadcasts in Arabic,

Chinese and English, represented as 146,497 keyframes. ’RKF’ accounts for

79848 keyframes whilst there are 66844 ’NRKF’ keyframes. There are 169 topic

images across 24 topics, text evidence is provided through ASR transcripts for

English, whilst for the additional languages the ASR is run through an MT

system. Abbreviated to ‘TV2006’.

• TRECVID 2007: Approx. 50 hours of Dutch news magazine video, repre-

sented as 295,350 keyframes in total. Of these 19702 are ’RKF’ images, whilst

for this collection we took the aggressive sampling strategy of extracting ’K-
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Frames’, which make up the remaining 275648 images. For the topics there

were 205 topic images across 24 topics. The audio for this video was nearly

all Dutch, so all text was first detected by ASR which was then run through

an automatic Machine Translation (MT) process. Abbreviated to ‘TV2007’.

• ImageCLEFPhoto 2007: 20,000 natural still images which form the IAPR

TC-12 Benchmark and 180 topic images across 60 topics. Text evidence comes

from well-formed, noise free text annotations which accompany each image.

Abbreviated to ‘IC2007’.

In the remainder of this chapter we will be presenting an investigation into

the variables identified in the previous chapter as to their impact upon weighted

data fusion. In the following section we will first present an examination of the

weights that are generated from the optimisation process, so as to determine what

is the distribution of optimal weights for a given test corpus and if there are general

patterns that can be observed in the ideal weighted set which may inform data fusion

development.

4.2 Weighted Data Fusion

In this section we will be exploring the form of an ideal weighting scheme so as to

determine if any unique properties exist within it which may guide future data fusion

algorithm development. As previously stated our mechanism for doing this will be

the execution of the coordinate ascent optimisation technique directly on our test

corpora and relevance judgements. The first results of this process are presented in

Figure 4.3, which is a histogram of the distribution of the ideal weights generated

over all corpora. The y-axis represents frequency, whilst on the x-axis, the assigned

weights have been transformed into Z-Scores, to allow for cross-comparison between

topics and corpora. Again, Z-Score’s shift and scale values to have a mean score of

zero and standard deviation of one allowing us to express a value in terms of how
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Figure 4.3: Histogram of weight distribution, all corpora

many standard deviations it is away from the mean. Therefore this normalisation

allows us to examine how clustered assigned weights are. For clarity, each topics

weights were normalized, meaning for each topic the average weight after normal-

ization is zero. The results of the Z-Score’s for each topic are aggregated into the

presented graph and data.

From the histogram we can see demonstrated a highly positively skewed distri-

bution, with a long tail of values extending up to Z-Score values of nearly 8σ. The

shape of this distribution closely resembles that of a log-normal distribution, char-
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acterised by the extended positive tail. To further examine the skewness of the ideal

weight distribution, we present various measures of central tendency in Table 4.3.

From this we can see that whilst the mean of the weights is approximately zero and

the standard deviation has a value of one, measurements that could be expected

of a normal distribution after a Z-Score transformation, the median value is less

than the mean value, correlating with our positive skew observation. Furthermore,

an examination of the quantiles reveals a very high degree of clustering with an

extended tail, as the 75th quantile has a value of only 0.0036, whilst it isn’t until the

90th quantile that values exceed one.

Mean Median σ 75 Quantile 90 Quantile
0.0004 -0.2978 1.0004 0.0036 1.1192

Table 4.3: Measures of central tendency for ideal weight distribu-
tion, all corpora.

We can infer multiple insights from the presented distribution and measures of

central tendency. Firstly, that whilst the distribution of weights has some properties

of that of a normal distribution, such as a majority of the data points clustered

around the mean and within the range ±3σ, there does exist a very definitive positive

skew. Secondly, as part of this positive skew approximately 10%-11% of the weights

were assigned values > 1σ. The implications of this are that overall the initial

observations would suggest that a minority of the pairs 〈Experti, Queryj〉 received

the majority of a topic’s weight.

The histogram presented is an amalgamation of the weights for all topics over

all corpora. Without other evidence there remains the possibility that the effect

presented is a corpora-specific event and that the weights are indeed more normally

distributed. To account for this we present in Figure 4.4 corpora-specific plots of the

weight distributions in the form of quantile-quantile (Q-Q) plots. In each of these

figures, the x-axis represents a theoretical normal distribution of weights, whilst the

y-axis is the actual weight which was assigned. The dashed line displays the trend

line of the weights if they were normally distributed.
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Figure 4.4: Q-Q Plots of Weight Distributions
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Examining each of the six Q-Q plots, we can see that all of our experimental

corpora follow the same distributional pattern, as each demonstrates a significant

departure from a normal distribution, particularly once the normalised weights val-

ues exceed 1σ. The pattern shown in each plot is similar to what would be expected

if the distribution of the weights was log-normal, again we can also see demonstrated

in each plot a positive skew.

Therefore, the evidence presented suggests that from the optimisation process,

the ideal weighting form for data fusion constitutes a majority of pairs 〈Experti, Queryj〉

being assigned relatively low weights, whilst a handful of select pairs being aggres-

sively weighted. Once again there remains the possibility that this observation

whilst corpora-independent may be topic dependent. To explore this, we examined

the distribution of weights within each topic for each corpora, the results of which

are presented in Figure 4.5.

In this figure there is a graph for each of our experimental corpora. These graphs

were constructed to examine for each topic, how many of the pairs 〈Experti, Queryj〉

were assigned a high weight, and of the total weight for a topic, how much of the

weight did these highly weighted pairs account for. Therefore we examined for every

topic what proportion of pairs 〈Experti, Queryj〉 were assigned normalised weights

greater that 1σ, and for these highly-weighted pairs, what the sum of their weights

was, or in other terms what proportion of the total weight did these highly-weighted

pairs constitute.

Within each graph the x-axis represents individual topics for each corpora. For

every topic there are two bars, a yellow bar which represents the proportion of pairs

〈Experti, Queryj〉 which received weight greater that 1σ, and a blue bar which

demonstrates what percentage of the total weighting did that represent. Taking

as an example the first topic in corpora TRECVID 2003, we can see a yellow bar

at approximately 16% and a blue bar at approximately 78%. This indicates that

for topic ‘0100’ in TRECVID 2003, 16% of the pairs 〈Experti, Queryj〉 used for

that topic received 78% of the total weighting. From these graphs we can see that
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generally across topics the pattern remains the same, that between 10%-20% of

the pairs 〈Experti, Queryj〉 used for that topic attracted between 60%-80% of the

weight. Unlike our previous observations, these graphs were also generated from an

optimisation process which utilised visual only experts. This was selected so as to

further determine if it was just one modality, i.e. text, having a significant impact

upon the distributions. From these results we can see that the general effect holds,

that a minority of pairs attract a majority of the weight. The possibility does exist

that even in this case, it may be one particular visual expert which is dominating the

weighting and thereby causing the skewed weighting distribution. Table 4.4 shows

the break down of visual experts and the proportion of the weight assigned. There

is a slight bias towards the Edge Histogram and to a lesser extent the Homogeneous

Texture experts, however as there are only two texture but four colour experts,

this bias can be accounted for. Taken together, the data presented in Figure 4.5

and Table 4.4 shows that highly weighted 〈Experti, Queryj〉 are distributed across

different experts.

CL CM CS SC EH HT
15% 17% 13% 13% 24% 18%

Table 4.4: Distribution of Retrieval Experts in 〈Experti, Queryj〉
with rci,j > 1σ

We have observed that the key to maximising AP is to correctly identify salient

pairs 〈Experti, Queryj〉 and ensure that these are highly weighted, rather than

weighting the overall performance of any given retrieval expert. Therefore the task

now is to test this observation to determine how robust it is. We have devised a

series of experiments that utilise only highly weighted pairs 〈Experti, Queryj〉 to

see if we still achieve good performance, or if the remaining lowly-weighted pairs

are contributing to maximising performance. For clarification, a highly-weighed

pair 〈Experti, Queryj〉 is a pair whose weight rcij is greater than +1σ of the mean

weight for that topic.
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4.2.1 Highly Weighted Pairs Experimentation

To test our observations we devised four experiments in order to (1) determine to

what extent the highly-weighted pairs 〈Experti, Queryj〉 impact upon performance;

(2) to determine if the weighting of these pairs needs to be exact or if merely iden-

tification is enough; and finally, (3) to determine the impact the remainder of the

pairs 〈Experti, Queryj〉 which do not have much weight allocated to them have upon

performance. The conditions of this experiment are that visual only experts were

utilised, with CombSUM for combination and MinMax score normalisation. The

four experiments we defined to test our observations are as follows:

• (1σ) 1σ: For each topic, only use highly-weighted pairs 〈Experti, Queryj〉

(i.e. pairs 〈Experti, Queryj〉 whose assigned value from optimisation was +1σ

for the mean weight). The value of wij will be the value determined during

optimisation (Section 4.1.3). This test will examine the impact of precisely

weighted high-performing pairs 〈Experti, Queryj〉. It can be thought of as a

high-precision experiment as for each topic we will be using only 5%-20% of

the available ranked lists for that topic.

• (1σU) 1σ Uniform: Using only the highly-weighed pairs 〈Experti, Queryj〉,

assign each a uniform weight. This will examine if just the identification of

high-performing pairs 〈Experti, Queryj〉 is sufficient to yield performance in-

creases, specifically determining if accurate weighting of pairs is required, or if

they can be assigned a binary weight [0,1]. As the task of determining the op-

timal set wij is realistically only viable post-experiment, this experiment tests

if realistic fusion approaches can be developed, as it does not require perfect

weights, only identification of likely high performing pairs 〈Experti, Queryj〉.

• (1σU-T) 1σ & Tail: We extend experiment 1σ, by taking the remaining

weight mass that isn’t assigned to high-performing pairs and allocate it uni-

formly amongst the remaining pairs in RS. This experiment complements the

previous, we assign a large weight to the high-performing pairs, whilst a low
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weight to the remainder. As the high-performing pairs constitute only 5%-20%

of available pairs for a topic, this experiment is testing the impact of recall,

i.e. can we include the remainder of the data without accurate weighting so

as to increase our recall.

• (1σU-T) 1σ Uniform & Tail: As above we find each of the high performing

pairs then taking the weight assigned we give each a uniform weight from

the high-performing weight mass. The remainder of the weight mass is then

equally assigned amongst the remaining pairs. For example, if we have 4 pairs,

whose optimised weights were 0.5, 0.4, 0.02 and 0.08, the high performing pairs

would get ((0.5 + 0.4)/2) weight each, i.e. 0.45, and the last two pairs would

each receive 0.05 weight.

The results of this experiment are presented in Figure 4.6 for each of our six corpora,

with significance data given in Figure 4.7 and finally the results graphed in Figure

4.8. To provide context for the presented results we also include the runs uniform

and optimised which provide a lower and upper bound on performance, where the

uniform run has no weighting employed, whilst the optimised run is the result of

all pairs 〈Experti, Queryj〉 being assigned their ideal weights. Next to each of our

runs we include in brackets how close that run came to achieving the performance

of the optimised run.

Generally from these results we can see that the run 1σU-T is the best performer,

although this is not an unexpected result as it is the closest weighting form to the

fully optimised weights. This run usually achieved a significant difference to all

other runs. A notable exception to this is the TRECVID 2004 corpora, where none

of the executed runs achieved a significant difference to each other. The inclusion

of the ‘tail’ pairs assigned the remainder of the weighting mass, never significantly

hurt performance, which is to be expected as primarily we should expect them to

assist in improving recall. Generally these lowly-weighted pairs helped to improve

performance, indicating that whilst they are not a significant driver of retrieval
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Legend
Run
Uniform All
1σ Uniform
1σ Uniform & Tail
1σ
1σ & Tail
All Optimised

TRECVID 2003
MAP Recall
0.0593 0.2375

0.0966 (79%) 0.2786
0.0958 (78%) 0.2829
0.0989 (80%) 0.2805
0.1025 (83%) 0.2852

0.1224 0.3027

TRECVID 2004
MAP Recall
0.0288 0.1440

0.0738 (68%) 0.2268
0.0764 (71%) 0.2251
0.0770 (71%) 0.2246
0.0805 (74%) 0.2229

0.1084 0.2318

Legend
Run
Uniform All
1σ Uniform
1σ Uniform & Tail
1σ
1σ & Tail
All Optimised

TRECVID 2005
MAP Recall
0.0646 0.1140

0.1037 (74%) 0.1484
0.1109 (79%) 0.1513
0.1108 (79%) 0.1574
0.1198 (85%) 0.1600

0.1407 0.1725

TRECVID 2006
MAP Recall
0.0164 0.0926

0.0460 (82%) 0.1332
0.0453 (80%) 0.1379
0.0496 (88%) 0.1393
0.0498 (88%) 0.1409

0.0563 0.1493

Legend
Run
Uniform All
1σ Uniform
1σ Uniform & Tail
1σ
1σ & Tail
All Optimised

TRECVID 2007
MAP Recall
0.0422 0.2007

0.0701 (54%) 0.2853
0.0742 (57%) 0.2961
0.0862 (66%) 0.2895
0.1011 (78%) 0.3000

0.1304 0.3231

ImageCLEF 2007
MAP Recall
0.1283 0.4095

0.1404 (65%) 0.3809
0.1715 (80%) 0.4128
0.1439 (68%) 0.3814
0.1755 (81%) 0.4172

0.2156 0.4379

Figure 4.6: Highly Weighted Experimental Results, all corpora.

90



ρ = 0.05
Legend
1σ Uniform (1σU)
1σ Uni. & Tail (1σU-T)
1σ (1σ)
1σ & Tail (1σ-T)

TV2003
1σU 1σU-T 1σ 1σ-T

- ≡ ≡ ≪
≡ - ≡ ≪
≡ ≡ - ≡
≫ ≫ ≡ -

TV2004
1σU 1σU-T 1σ 1σ-T

- ≡ ≡ ≡
≡ - ≡ ≡
≡ ≡ - ≡
≡ ≡ ≡ -

ρ = 0.05
Legend
1σ Uniform (1σU)
1σ Uni. & Tail (1σU-T)
1σ (1σ)
1σ & Tail (1σ-T)

TV2005
1σU 1σU-T 1σ 1σ-T

- ≪ ≪ ≪
≫ - ≡ ≪
≫ ≡ - ≪
≫ ≫ ≫ -

TV2006
1σU 1σU-T 1σ 1σ-T

- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≡
≫ ≫ ≡ -

ρ = 0.05
Legend
1σ Uniform (1σU)
1σ Uni. & Tail (1σU-T)
1σ (1σ)
1σ & Tail (1σ-T)

TV2007
1σU 1σU-T 1σ 1σ-T

- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

IC2007
1σU 1σU-T 1σ 1σ-T

- ≪ ≪ ≪
≫ - ≫ ≪
≫ ≪ - ≪
≫ ≫ ≫ -

Figure 4.7: Significance Testing, Highly Weighted Pairs

performance, their inclusion if assigned an appropriately low weight can boost recall.

The ImageCLEF 2007 corpora however does stand out as behaving differently

to the TRECVID corpora, notably by the performance discrepancy between the

‘tail’ and non-tail runs. This indicates that recall plays a significant part in driving

performance for this corpora, and therefore the inclusion of all pairs, no matter how

weighted, contributes significantly to performance. This is highlighted by the rela-

tively high performance achieved by the ‘uniform’ run for ImageCLEF 2007 where

no weighting is applied, where the distance in performance between the ‘uniform’

and ‘optimised’ runs is the closest of any of our test corpora. This is particularly

noticeable when the recall level is examined, with the difference in recall being less

than 8%. The ImageCLEF 2007 corpora is the smallest of our test corpora, and in

comparison to the TRECVID collections is certainly the most ‘noise free’ with high

quality, non-redundant images and good quality textual data.
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Figure 4.8: Targeted Weighting Performance

92



The results of these experiments clearly demonstrate the impact of correctly

identifying the highly-weighted pairs, as they provide a massive impact in terms of

driving retrieval performance. The run 1σ highlights that when using a subset of

pairs 〈Experti, Queryj〉 from RS, very good performance can be achieved despite

a reduction in potential recall by not using all pairs. Far more encouraging is the

performance of runs 1σU and 1σU-T, which on average achieved 70% and 74%

respectively of the fully optimised run performance. Whilst run 1σ had value as an

illustrative run, it is hard to conceptualise a data fusion algorithm that would create

the exact optimal weights for these pairs a priori. The runs 1σU and 1σU-T however

did not use the optimal weights, but rather only identified from the matrix RS which

were the high-performing pairs. As 1σU and 1σU-T were essentially employing a

binary weighting scheme yet still achieved excellent performance, it provides a clear

direction for development of data fusion algorithms.

The fundamental finding of these experiments nevertheless remains that topic-

specific pairs of query components and retrieval experts (〈Experti, Queryj〉) are the

key to obtaining maximal performance for low-level data fusion. The identification

of these pairs will lead to demonstrable large increases in retrieval performance. This

can only be obtain by the employment of query specific approaches, but the increase

in performance dictates that investigations into approaches which can exploit and

identify these pairs will provide the next leap in CBMIR performance where low-level

features are used.

4.2.2 Weighted Data Fusion and Overlaps

A key class of metrics used in examining data fusion was the overlap metrics, defined

by Lee (1997) which measured either how many relevant documents did result sets

share, or how many non-relevant documents were shared. One of the major outcomes

of Lee’s work was the definition that data fusion performance was driven by these

overlaps, that result sets when being combined would share large sets of relevant

documents but share few non-relevant documents.
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The measure of overlaps which we defined in the previous chapter are not directly

applicable to our task of examining overlaps in multimedia retrieval. As we have

previously noted, the retrieval experts used for CBMIR are very noisy, particularly

when compared to text retrieval counterparts. Because of this, the standard overlap

measures fail, both Roverlap and NRoverlap as in both cases there are no documents

which are common across all of the result sets being compared, meaning the overlap

coefficients are always zero. Furthermore, in the work of both Lee (1997) and Beitzel

et al. (2004) who have used the overlap metrics, they examined the overlaps from the

context of an entire retrieval run, whereas for our examination we will be examining

the overlaps at the topic level.

Therefore for our examination we modify the overlap formulas such that for each

individual set rsi, j we calculate the overlap of its documents versus the remaining

result sets in RS. We then complete this for every result set, meaning that for each

result set we have Roverlap and NRoverlap values. That means for every topic, we

now have a set of Roverlap and NRoverlap values, which allows us to take the average

of these so as to derive an average topic overlap measure.

By doing this we are left for each topic, in each corpora, average measures of

Roverlap and NRoverlap. This allows us to examine the data fusion hypothesis by ex-

amining the correlation of the overlap measures with average precision, to determine

if there is a relationship between the two for CBMIR. There are two correlations

we wish to examine, both of which utilise these topic dependent measures. Follow-

ing the work of both Lee and Beitzel, the first correlation we will examine is the

correlation of average precision with the ratio of
Roverlap

NRoverlap
(abbreviated to R/NR).

The higher the value of this ratio, the greater the difference between the measures

Roverlap and NRoverlap. A score of one for this ratio indicates that both Roverlap

and NRoverlap are in equal proportion, greater than one that Roverlap dominates and

conversely NRoverlap. The second correlation we will examine is the relationship

between average precision and Roverlap only. For both of these tests we examine

the correlation on optimised runs where we utilised both visual only experts and
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AP & Ratio R/NR AP & ROverlap Avg. R/NR
Year Image Only Text/Image Image Only Text/Image Text/Image

TV 2003 0.88 0.75 0.77 0.66 2.609
TV 2004 0.87 0.79 0.67 0.64 1.956
TV 2005 0.90 0.88 0.90 0.88 2.594
TV 2006 0.91 0.88 0.86 0.81 2.020
TV 2007 0.92 0.92 0.91 0.90 2.321
IC 2007 0.93 0.70 0.82 0.60 2.987

Table 4.5: Correlation of AP to Overlap measures.

visual and text experts. The results of these tests are presented in Table 4.5, the

correlation statistic used was Pearson correlation measure.

From the presented results we observe a strong correlation between AP and

R/NR, with a positive correlation also existing between AP and Roverlap although

this is slightly weaker. The high correlation between AP and R/NR indicates that

good retrieval performance was gained when the R/NR ratio was maximised. This

fits with the data fusion hypothesis, as it indicates that when multiple result sets

returned similar relevant documents but dissimilar non-relevant documents that

performance in terms of AP was maximised.

In the rightmost column of Table 4.5 we show the average value of R/NR over

each of our testing corpora. This figure is quite large, as it indicates that on average

as a result of our optimisation process, there were twice as many relevant documents

found in common as there were non-relevant documents. This proportion is quite

high, particularly when compared to the overlap statistics reported by Beitzel et al.

(2004), where for text IR data fusion, the overlap ratios being reported were demon-

strating a difference of between 20% and 25% for their test corpora within the same

system, and 50%-70% for overlaps between different systems.

One of the main outcomes of the work of Beitzel et al. was demonstrating

that for highly effective retrieval systems, such as text retrieval, data fusion with

CombMNZ and the use of R/NR ratio’s for determining the potential success of

data fusion were not effective as highly effective systems already returned relevant

documents in highly ranked positions, therefore often documents promoted through
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data fusion up a ranked list were common non-relevant documents. The result we

present here of the strong correlation between AP and R/NR for linear weighted

data fusion in CBMIR highlights the differences between data fusion utilising highly

effective retrieval systems, as is the case in many text IR systems, versus using poor

individual retrieval systems which are employed by CBMIR systems. This indicates

that the behaviour of data fusion when studied within the domain of text IR may

not be directly applicable to data fusion within CBMIR, as the elements being fused

together within CBMIR have different properties which distinguish themselves from

text IR systems, notably that raw performance is much worse and necessitates the

use of weighted data fusion.

We would also note that whilst we have been observing that on the whole, low-

level retrieval experts are particularly noisy sources of information, especially when

evaluated by MAP, that for specific topics, various retrieval experts can attain good

levels of performance. In particular, different experts will present different, useful,

sources of information for the query being processed. As such this goes to the heart

of the data fusion problem, where we have sources of information which vary greatly

in quality, and thus we require a topic dependent weighting in order to properly

combine these sources such that we achieve good retrieval performance. The data

presented in this section highlights that low-level features do in fact return relevant

information, just that it is very topic dependent which expert with which query

component will perform well, and as such this high level of variability distinguishes

the problem from text retrieval empirical observations.

Therefore we have observed a degree of difference between the observed effects of

data fusion from text IR approaches and CBMIR data fusion tasks. In the remainder

of this chapter, we will systematically test the data fusion variables identified in

the previous chapter. For each set of variables examined we will be utilising the

optimisation process defined earlier in this chapter. As a result, in each of the

upcoming experiments the weights utilised are close to the optimal for that particular

set of conditions under examination. This will allow us to make robust observations
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of the variables under consideration.

4.3 Retrieval Factors

In this section we will examine two ‘retrieval factors’ which we identified in the

previous chapter, namely the effect of increasing the read depth and the number of

experts we use for retrieval. Read depth is the number of documents we request

from an expert for combination. Traditionally this has been 1,000 documents, the

level that TREC requests participants to provide results for. We would note the

distinction between increasing read depth and increasing the amount of results re-

turned as the final response to a query. In these experiments we are altering the

number of documents that are read from an expert for the purposes of data fusion,

however the number of documents returned for a query is still fixed to 1,000. There-

fore our evaluation metrics should be cross-comparable to other results as we are

not returning more documents for evaluation. The second variable we are testing is

the impact of adding in more retrieval experts for a given query, to determine the

impact of adding in additional sources of evidence.

For both of these experiments we utilised only visual retrieval experts. We did

this because for several of the topics across various corpora, the text expert returned

far less than 1,000 results. For our read depth experiments we are examining reading

amounts of 500, 1000, 3000, 5000 and 10,000 documents from each expert, whilst

again restricting the final result to 1,000 documents. In all experiments, we used

CombSUM and MinMax normalisation along with our optimisation process to obtain

our results.

Our first experiment combines a read depth examination with varying the num-

ber of experts used. It is an optimisation of TRECVID 2005 topic ‘0165 - Find shots

of basketball players on the court’. The results of this experiment are presented in

Table 4.6 and visualized in Figure 4.9.

From this data we can firstly observe that adding in additional experts, partic-
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Read Depth
Experts 500 1000 3000 5000 10000

1 0.0786 0.0784 0.0881 0.0919 0.0854
2 0.1221 0.1346 0.1450 0.1478 0.1460
3 0.1479 0.1755 0.2199 0.2324 0.2241
4 0.1525 0.1754 0.2168 0.2294 0.2163
5 0.2386 0.2834 0.3199 0.3215 0.3123
6 0.2502 0.2975 0.3305 0.3307 0.3178

Relative Changes
Experts 500 1000 3000 5000 10000

1 0% 0% 12% 17% 9%
2 0% 10% 19% 21% 20%
3 0% 19% 49% 57% 51%
4 0% 15% 42% 50% 42%
5 0% 19% 34% 35% 31%
6 0% 19% 32% 32% 27%

Table 4.6: Read Depth and Expert Variation, Topic 0165

ularly when optimised, increases retrieval performance. Whilst hardly a surprising

outcome, it reinforces earlier observations about the ability of data fusion to en-

hance retrieval performance when we contrast these figures to the results that single

retrieval experts achieve alone. Secondly, we can generally see that significant per-

formance increases are actually obtained up to read depths of 3,000 documents per

expert. After this point the metrics begin to saturate and either stabilise or even

deteriorate slightly. There is an outside chance that this is a topic effect, rather

than general behaviour. We would note that clearly there is an implicit ordering in

the addition of the experts in this experiment. We knew a priori the performance

of each expert, and as such we added the experts together in performance from

best to worst. Nevertheless, we find that we continue to get an improvement in

retrieval effectiveness with each additional expert added. What may be questioned

is the magnitude of the increase, but our primary concern in this experiment was

the demonstration that there was never a decrease in retrieval performance with the

addition of more retrieval experts. Our second experiment is a further investigation

into read depth, again using read levels of 500, 1,000, 3,000, 5,000 and 10,000. This

experiment is utilising an entire retrieval run, rather than a single topic, the results

98



Figure 4.9: Topic 0165 from TRECVID 2005, Depth and Expert
variance

are presented in Figure 4.10.

The results presented generally confirm that across evaluations, increasing the

read depth for individual experts up to a level of 3,000/5,000 results in consider-

able performance improvements, whilst increases in depth after this point tend to

saturate and level off. Certainly this relationship between read-depth, or its more

conventional name recall, and precision is long established, as Cleverdon remarks

there is “an inevitable inverse relationship between recall and precision” (Cleverdon

et al., 1966). It is well established that as we increase recall we lower precision, al-

though because of our optimisation we find that this behaviour instead of lowering

precision, increasing recall has little positive effect on precision.

Interestingly there are some outliers, notably the TRECVID 2006 corpus, which

continues to improve in performance with the increase in read-depth. TRECVID
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Legend
Depth
500
1000
3000
5000
10000

TRECVID 2003
MAP Recall
0.1142 0.2984
0.1278 0.3103
0.1437 0.3060
0.1468 0.3259
0.1476 0.3155

TRECVID 2004
MAP Recall
0.0919 0.2312
0.1084 0.2312
0.1259 0.2279
0.1274 0.2502
0.1312 0.2557

Legend
Depth
500
1000
3000
5000
10000

TRECVID 2005
MAP Recall
0.1317 0.1656
0.1431 0.1796
0.1573 0.1934
0.1595 0.2040
0.1529 0.2139

TRECVID 2006
MAP Recall
0.0507 0.1433
0.0581 0.1521
0.0697 0.1608
0.0750 0.1732
0.0798 0.1821

Legend
Depth
500
1000
3000
5000
10000

TRECVID 2007
MAP Recall
0.1186 0.3008
0.1294 0.3201
0.1457 0.3484
0.1487 0.3639
0.1504 0.3682

ImageCLEF 2007
MAP Recall
0.2063 0.4239
0.2156 0.4398
0.2264 0.4509
0.2265 0.4481
0.2253 0.4812

Figure 4.10: Depth examination, all corpora
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Type TV2003 TV2004 TV2005 TV2006 TV2007
RKF 0.2243 0.1638 0.1764 0.0985 0.1433

SubShots 0.2232 0.1774 0.1668 0.0989 0.1562

Table 4.7: Comparison of Shots vs SubShots

2006 is the lowest performing corpora we have, this continued increase likely points

towards the query-images which are used as visual examples for the topics are not

adequately capturing the desired information need in a form which can be exploited

by the indexes.

What is of interest however is that it is a read-depth of 3,000 documents per

expert, rather than 1,000 documents where this saturation begins. The level of

5,000 documents could also be considered to be this point where saturation begins,

we believe it is up to the system builder to determine which of these levels to utilize in

the trade-off of processing requirements versus retrieval performance gains, however

in either case performance is clearly superior to 1,000 documents as the retrieval

level. Whilst for the remainder of this chapter we persist with using 1,000 documents

as our read-depth for extracting results from experts, particularly as this allows for

greater compatibility with the text expert, the general position that extracting 1,000

documents per expert is adequate can be revised upwards.

The other variable under consideration was for digital video retrieval, and if

extracting more than one keyframe per shot lead to large performance increases.

We created two runs for each of the TRECVID evaluations, the first being one

keyframe extracted per shot (RKF), the second being multiple keyframes extracted

per shot (SubShot). Where a shot had multiple keyframes being scored we took

the maximum value and used that as the final score for that shot. Our results are

presented in Table 4.7.

From this data we can see that there is a difference generally favouring subshots,

but that this difference is not particularly large. Of note is the performance of

TRECVID 2005 which performed better with only a single keyframe extracted from

the shots. For two of our evaluations, TRECVID 2003 and 2004 it is not until
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the third significant number that we begin to see a difference between the two.

This result is both interesting and not-interesting at the same time. Effectively

it is corpora dependent, in particular on the average length of a shot. We see

that for news video, where the shot length is not great, there is no substantial

difference between single keyframe and multiple keyframe sampling. This in effect

means that for corpora of short shot-length, the selection of the middle frame as a

representative image of the shot is appropriate, and no further advanced techniques

are necessarily required. Conversely, the TRECVID 2007 corpus has the longest

average shot length, and here we can see a marked difference between using single

versus multiple keyframes. Therefore, the argument presented is that the selection

of the sampling strategy for extracting frames from shots must be dependent on

the average shot length. Where the average shot length is quite long, multiple or

more intelligent sampling will be required. In the remainder of our experiments we

will use subshots where available, but this result indicates that their impact upon

performance is not as great as anticipated.

4.4 Equivalence Transformations

In this section we will examine the role of equivalence transformations and their

impact on retrieval performance. To recap equivalence transformations, or more

generally ‘normalisation’, can be defined into two broad classes, score and rank based

transformations. The objective of any of the normalisation approaches examined

is to perform transformations on the set of rsi,j which are being combined, such

that the effects of different factors like score ranges, numbers of retrieved results or

score distributions does not adversely impact upon performance. Recall that our

candidate result sets to be combined (rsi,j), that each is comprised of documents

m, where documentm 7→ (name, rank, score). Score based normalisation approaches

alter the scores of documents to be combined, thereby allowing combination to occur

utilising scores, whilst conversely rank based transformations alter the ranks such
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that the rank of a document is what is used for combination.

Z-Score Score based transformation which converts the score of a document into

the Standard Score (McClave and Sincich, 2006) (Z-Score) within the rsi,j

from which it came, the Standard Score being a measurement of how many

standard deviations a score is from the mean score. This approach has no

range restriction.

Min-Max MinMax normalisation considers the best and worst scoring documents

of a given rsi,j and assigns these scores of 1 and 0 respectively. Scores are then

normalised within the range [0:1].

Borda Borda ranked based transformation, given a set size of N the Borda trans-

formation assigns a score of N − x, where x is the rank. As N is the size of

the result set being transformed, it produces lower scores for result sets which

do not contain many documents.

BordaMAX Extends Borda, where N becomes the value of the size of the largest

result set being combined, which is then used for all result sets. This is to

discount the bias against small result sets present in the standard Borda ap-

proach.

RankMM MinMax normalisation based upon ranks. Conceived as a middle ground

between Borda and BordaMAX, RankMM normalises the range of ranks be-

tween [0:1].

Reciprocal Reciprocal rank is a rank transformation which is heavily biased to-

wards the top ranked documents. The rank transformation is 1
rankx

For these experiments, documents were combined using CombSUM, CombSUM

being a linear combination operator. With the exception of the Z-Score approach, all

approaches combined both text and visual experts. Because the Z-Score approach

does not perform any range restriction, we restricted this approach to visual expert
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Score-Based Rank-Based
Year Z-Score∗ Min-Max Borda BordaMAX RankMM Reciprocal

TV2003 0.0095 0.1958 0.2127 0.2232 0.2206 0.1462
TV2004 0.0040 0.1524 0.1655 0.1774 0.1673 0.0892
TV2005 0.0117 0.1554 0.1654 0.1668 0.1670 0.1069
TV2006 0.0089 0.0846 0.0962 0.0989 0.0969 0.0645
TV2007 0.0195 0.1338 0.1433 0.1562 0.1459 0.0808
IC2007 0.0093 0.3148 0.3480 0.3678 0.3491 0.2503

Table 4.8: Normalisation Results Comparison. n.b.∗ values for ap-
proach Z-Score are based on visual experts only.

only combination so that result set sizes would not be a factor. The results of our

experiment are presented in Table 4.8 with accompanying statistical tests presented

in Figure 4.11.

From these results we can infer that rank based approaches generally outperform

any of the score based approaches. The Z-Score method is a distinct failure with

these data sets, and is excluded from further analysis. Likewise for the rank based

approaches, the Reciprocal method performs poorly, although nowhere near as bad

as the Z-Score approach. The failure of the Z-Score approach is likely due to the

lack of any range restriction of the scores being combined. This would have made

the optimisation process problematic, as there would be no equivalence between the

documents to be combined, meaning that any weight generated would be required

to factor this in. In the case of the reciprocal method, its failure, whilst less severe

than that of the Z-Score approach, highlights that the in-built aggressive weighting

of the top ranked documents of any result set was too severe (see Chapter 3 Figure

3.4). Given that earlier we established that the ideal weights for expert combination

take the form of a log-normal distribution, the optimisation process would have had

to devise a weight which appropriately scaled the result sets to be combined whilst

discounting against the heavily weighted top documents of each result set.

From our remaining four approaches, MinMax and the three Borda variants, we

can see demonstrated that the score based approach of MinMax is outperformed

by all of the Borda based approaches. To compare the three Borda variants, we
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ρ = 0.05
Legend
MinMax (MM)
Borda (B)
BordaMAX (BM)
RankMM (RMM)

TV2003
MM B BM RMM

- ≡ ≪ ≪
≡ - ≪ ≡
≫ ≫ - ≡
≫ ≡ ≡ -

TV2004
MM B BM RMM

- ≪ ≪ ≪
≫ - ≪ ≡
≫ ≫ - ≡
≫ ≡ ≡ -

ρ = 0.05
Legend
MinMax (MM)
Borda (B)
BordaMAX (BM)
RankMM (RMM)

TV2005
MM B BM RMM

- ≪ ≪ ≪
≫ - ≡ ≡
≫ ≡ - ≡
≫ ≡ ≡ -

TV2006
MM B BM RMM

- ≪ ≪ ≪
≫ - ≪ ≡
≫ ≫ - ≡
≫ ≡ ≡ -

ρ = 0.05
Legend
MinMax (MM)
Borda (B)
BordaMAX (BM)
RankMM (RMM)

TV2007
MM B BM RMM

- ≪ ≪ ≪
≫ - ≪ ≪
≫ ≫ - ≫
≫ ≫ ≪ -

IC2007
MM B BM RMM

- ≪ ≪ ≪
≫ - ≪ ≡
≫ ≫ - ≫
≫ ≡ ≪ -

Figure 4.11: Significance Testing, Equivalence Transformations

can observe that in terms of performance the standard Borda approach is the worst

performer of the three. Given that the text expert often would not have returned the

full 1000 results, the standard Borda approach would have penalised this evidence.

In terms of significance, the standard Borda approach is significantly worse than the

BordaMAX approach, whilst for TRECVID corpora 2003-2006 there is no significant

difference between it and the RankMM approach.

The BordaMAX approach appears to generally be the best performer, however

there is no statistical difference between it and the RankMM approach for TRECVID

corpora 2003-2006. Indeed in the case of TRECVID 2005 RankMM claims the top

result. The main interpretation of this result is that rank based approaches produce

very successful results, but should not penalise result sets being combined which are

of smaller size.

Whilst not a bad performer in itself, across all collections the MinMax approach

is significantly worse than all of the Borda based approaches (with the exception
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of the standard Borda approach for TRECVID 2003, however in raw performance

terms standard Borda is still superior). We note that the combination of results

in this experiment was utilising CombSUM. The question of why the score based

approach is less successful than the rank based approaches we believe is due to the

non-linear nature of scores and the application of linear weighting.

Given a result set rsi,j, the sorted scores of this set are unlikely to exhibit a linear

progression, and as such introduce a large degree of variability between the relative

performance of individual documents. That is, given any two adjacent ranked docu-

ments in rsi,j the difference between the scores will vary considerably between pairs,

whilst for ranks the difference between pairs will always be constant. Once a linear

weight is then introduced, the impact of this weight will vary dependant upon the

value of the score to which it is being applied, whereas for rank approaches the

impact of the weight is constant and predictable. This effect has been previously

identified by Lee (1997), which he termed the “independent weighting effect” which

effectively introduces a second weight for combination. Upon reflection we can see

that this observation is equally relevant for both the Z-Score and reciprocal ap-

proaches. In the case of the Z-Score approach, the independent weighting effect is

present in the variation of the range which scores can take, whilst for the reciprocal

approach it is evidenced in the aggressive weighting of highly ranked documents.

The question of the use of score or rank for data fusion is one which is not

always fully considered by researchers. Many papers suggest that the use score’s

are better than rank as they provide more information, such as the distribution

of values or other variables (Renda and Straccia, 2003)(McDonald and Smeaton,

2005)(Croft, 2000), whilst many others would provide no justification at all, as

described by Lee (1997). One reason for this is that much of the work in data

fusion, particularly in the text domain, has been the non-weighted combination

of similarly performing retrieval experts, where the scores (similarity values) once

normalised have a degree of cross-comparability, as the experts from which they

came are utilising similar retrieval techniques on the same types of index (Beitzel
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et al., 2004). CBMIR alternatively combines experts of wildly varying performance

from completely different indexing representations, and as such perhaps too much

value is inferred onto the benefit of using scores from research experience found

in text IR applications. Indeed as authors such as Robertson (2007) and Dwork

et al. (2001) note that the score in many cases is just an artefact which is utilised

for generating the ordering of a ranked list, the value of a score itself beyond this

function is meaningless.

In Lee’s seminal work on data fusion he hypothesized that rank combination

rather than score combination should perform better, given that scores are impacted

by the “independent weighting effect”. However experimentally he found that this

is not the case (Lee, 1997), his work using normalised scores provides the better

results. Croft (2000) provides an interpretation of Lee’s result:

“This can be interpreted as evidence that the normalised score is usually

a better estimator for the probability of relevance than the rank. Using

the ranks is a more drastic form of smoothing that appears to increase

error except when the systems being combined have very different scoring

characteristics” (Croft, 2000).

This interpretation fits exactly to the characteristics of CBMIR, where as previ-

ously established we have very noisy sources of evidence being combined which vary

wildly in performance. In the final section of this chapter we will revisit Lee’s ex-

periments and offer explanations as to why his initial hypothesis may have actually

been correct.

4.5 Combination Operators

In this section we will examine the difference in performance between the two most

common combination operators for data fusion, CombSUM and CombMNZ (Fox and

Shaw, 1994). To recap, for both of these operators we are examining their weighted

form, that is each individual component is first weighted, then combined. These
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Figure 4.12: Comparison of Normalisation approaches, n.b. Z-Score
approach not shown.
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CombMNZ CombSUM
Year Score Borda Score Borda

TV2003 0.1720 0.1458 0.1958 0.2127
TV2004 0.1321 0.1258 0.1524 0.1655
TV2005 0.1329 0.1230 0.1554 0.1654
TV2006 0.0770 0.0701 0.0846 0.0962
TV2007 0.1157 0.1131 0.1388 0.1433
IC2007 0.2991 0.2861 0.3148 0.3480

Table 4.9: CombSUM vs. CombMNZ for score & rank based ap-
proaches.

operators utilise the normalised scores of result sets (see previous section), therefore

they work with either score or rank based approaches. CombSUM is the summation

of the weighted normalised scores to be combined, whilst CombMNZ extends this by

adding an additional variable, the number of times a document appears in the result

sets and multiplies this value against the CombSUM value. In behavioural terms,

CombSUM can be thought of as a linear operation, whilst CombMNZ produces a

non-linear response. Full details on these operators are provided in the previous

Chapter (see section 3.6).

For this experiment, we will investigate the impact of CombSUM and CombMNZ

on both score and rank based normalisation approaches. To test the score based

approach we will utilise the MinMax score normalisation technique. For rank we

will utilise the standard Borda approach. The experts used for combination involve

both text and visual experts and result sets rsi,j are truncated to 1,000 results. The

results of this experiment are presented in Table 4.9, visualized in Figure 4.14 with

significance data presented in Figure 4.13.

There is little ambiguity in the presented results as we can quite clearly ob-

serve a constant ordering across all corpora with regards to performance. Comb-

SUM utilising Borda normalisation is the most effective combination operator, whilst

CombMNZ using ranks is consistently the worst performer.

However there is one curious artefact, which may explain the preponderance of

data fusion literature which advocates the use of CombMNZ. From our results we ob-
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ρ = 0.05
Legend
Score MNZ (SCZ)
Borda MNZ (BCZ)
Score SUM (SCS)
Borda SUM (BCS)

TV2003
SCZ BCZ SCS BCS

- ≫ ≪ ≪
≪ - ≪ ≪
≫ ≫ - ≡
≫ ≫ ≡ -

TV2004
SCZ BCZ SCS BCS

- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

ρ = 0.05
Legend
Score MNZ (SCZ)
Borda MNZ (BCZ)
Score SUM (SCS)
Borda SUM (BCS)

TV2005
SCZ BCZ SCS BCS

- ≫ ≪ ≪
≪ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

TV2006
SCZ BCZ SCS BCS

- ≫ ≪ ≪
≪ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

ρ = 0.05
Legend
Score MNZ (SCZ)
Borda MNZ (BCZ)
Score SUM (SCS)
Borda SUM (BCS)

TV2007
SCZ BCZ SCS BCS

- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

IC2007
SCZ BCZ SCS BCS

- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

Figure 4.13: Significance Tests for CombSUM vs. CombMNZ ap-
proaches

serve that when scores (MinMax) rather than ranks are used, CombSUM achieves

greater performance than CombMNZ once fully optimised. Whilst in raw MAP

terms this effect always holds, in terms of significance tests only TRECVID collec-

tions 2003, 2005 and 2006 demonstrate a significant difference between CombSUM

and CombMNZ when using scores. But when CombMNZ is considered in isolation,

score based CombMNZ consistently outperforms rank-based CombMNZ, reversing

the observation found with CombSUM. This result is of interest particularly when

coupled with our previous observations about the popularity of using scores for data

fusion in the research literature (Lee, 1997; Croft, 2000).

Given that the use of scores for data fusion is prevalent, with the exception of

metasearch applications where scores are assumed not to be available, CombMNZ

is more effective when using score based normalisation rather than using rank based

normalisation, perhaps indicating why it has found such popularity in the data fusion

community. Despite this however, if we examine the performance of score based
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Figure 4.14: Performance Comparison: CombSUM vs CombMNZ,
score and rank based approaches.

CombMNZ versus score based CombSUM, we find that CombSUM is consistently

better. This level of performance is again improved if rank normalisation rather

than score normalisation is used in conjunction with CombSUM. Furthermore there

is always a significant difference in performance between score based CombMNZ and

score based CombSUM, with weighted CombSUM clearly outperforming CombMNZ.

What this means is that if a researcher examining data fusion takes the position

a priori that CombMNZ will be superior to CombSUM, based upon published re-

search in data fusion from the text IR domain, they will maximise its potential by

making use of score rather than rank normalisation techniques. This in turn leads to

a situation where CombMNZ and score normalisation becomes the default case for

conducting data fusion experiments. We have empirically demonstrated, certainly

for the case for CBMIR, that to maximise performance for weighted linear combi-
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nation that CombMNZ and score based normalisation are not appropriate default

positions for maximising performance. Furthermore as indicated previously, we will

revisit Lee’s early experiments and demonstrate that the case for CombMNZ and

score normalisation may be overstated for text IR as well.

4.6 Combination Levels

One of the major implicit variables in CBMIR is that of combination levels, that

is, the aggregation of results at different parts of a query in order to form a single

response. In this section we will be examining three classes of aggregation previously

detailed in Section 3.7 of Chapter 3. The three levels to be examined are ‘query

level’, ‘expert level’ and ‘direct level’. In our CBMIR system for any given query

we will have available |E| experts and |Q| query components. For ‘expert level’

combination, we take each query component and issue it against an expert, com-

bining the results uniformly for that given expert to create a single result set which

represents the results for that expert (rsi). Then each of these ‘expert sets’ can then

be weighted and combined to form a response to the query. Alternatively for ‘query

level’ combination, for every query component we query it against every expert and

uniformly combine the results, creating for each query component a single result set

(rsj). Each of these aggregated query component result sets can then be weighted

and combined to form a response to the query. Direct level combination involves no

combinatorial hierarchy, it is the direct weighting of every unique result set rsi,j. A

complete discussion of these levels is found in the previous chapter in Section 3.7.

To simplify the task we restrict our investigation to visual only experts, so as to

avoid issue of result set size impacts. However, for the majority of our experiments

we have run both text and visual, and visual only versions and whilst there are differ-

ences in performance, the patterns of performance remain constant, i.e. observations

from text and visual experiments are consistent with observations from visual ex-

perts only experiments. We use MinMax score normalisation for our investigation,
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with CombSUM used for combination and linear weighting.

For each experiment we include the minimum and maximum achieved for that

corpus. The minimum is a ‘Uniform’ run, where all pairs 〈Experti, Queryj〉 are

equally weighted, demonstrating the performance achieved if no weighting scheme

at all is employed. The maximum is the fully optimised result, demonstrating the

best performance that can be achieved. These two figures provide a lower and upper

bound for data fusion performance comparisons, allowing us to make decisions using

absolute observations with regard to the bounds, rather than relative observations

by comparing only to existing data fusion approaches. As a reference we also include

two additional runs featured earlier in this chapter, the runs 1σ and 1σ-U. These

runs are those which only make use of highly weighted pairs 〈Experti, Queryj〉, the

run 1σ using the ideal weights that were assigned to these pairs, and the run 1σ-U

which uses only these pairs and assigns them a uniform weight.

Our results are presented firstly in terms of MAP in Figure 4.15 and visualized

in Figure 4.17. For the MAP results, next to each run in parenthesis we display how

close in terms of performance the run came to matching the fully optimised score.

Significance test for the four runs examined are given in Figure 4.16.

One of the major purposes in conducting this experiment is that many existing

approaches for data fusion would impose some form of a hierarchy when implement-

ing a weighting scheme. This is understandable as the task of weighted data fusion

is difficult, and levels of aggregation allow for a degree of generalisation to occur

in setting weights for a retrieval scenario. What has not been explored however

to our knowledge is any form of cap that the imposition of a hierarchy can place

upon performance. From the retrieval figures presented here we can clearly see that

with respect to optimal weighting that quite a significant upper bound is place on

performance.

On average, both the query and expert level approaches achieve only 58% of

the theoretical maximum performance achievable, keeping in mind that this is after

both of these approaches has been fully optimised, meaning that any data fusion
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Legend
Run
Uniform All
Expert Level
Query Level
1σ Uniform
1σ
All Optimised

TRECVID 2003
MAP Recall
0.0593 0.2375

0.0752 (61%) 0.2653
0.0776 (63%) 0.2729
0.0966 (79%) 0.2786
0.0989 (80%) 0.2805

0.1224 0.3027

TRECVID 2004
MAP Recall
0.0288 0.1440

0.0519 (47%) 0.1684
0.0543 (50%) 0.2018
0.0738 (68%) 0.2268
0.0770 (71%) 0.2246

0.1084 0.2318

Legend
Run
Uniform All
Expert Level
Query Level
1σ Uniform
1σ
All Optimised

TRECVID 2005
MAP Recall
0.0646 0.1140

0.0827 (59%) 0.1344
0.0850 (60%) 0.1456
0.1037 (74%) 0.1484
0.1108 (79%) 0.1574

0.1407 0.1725

TRECVID 2006
MAP Recall
0.0164 0.0926

0.0299 (53%) 0.1138
0.0262 (47%) 0.1150
0.0460 (82%) 0.1332
0.0496 (88%) 0.1393

0.0563 0.1493

Legend
Run
Uniform All
Expert Level
Query Level
1σ Uniform
1σ
All Optimised

TRECVID 2007
MAP Recall
0.0422 0.2007

0.0655 (56%) 0.2500
0.0700 (60%) 0.2614
0.0680 (58%) 0.2840
0.0772 (66%) 0.2615

0.1175 0.3121

ImageCLEF 2007
MAP Recall
0.1283 0.4095

0.1648 (76%) 0.4133
0.1544 (71%) 0.4148
0.1404 (65%) 0.3809
0.1439 (68%) 0.3814

0.2156 0.4379

Figure 4.15: Combination Levels Performance Comparison
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approaches which implement one of these combinatorial hierarchies places a signifi-

cant ceiling on the performance that can be attained. This contrasts to the average

performance of our target weighted runs, where rather than a combination level

we used instead specific pairs 〈Experti, Queryj〉 from the matrix RS. On average

this targeted approach achieves 73% of the theoretical maximum achievable. When

contrasted against the maximum performance attainable when using a combina-

tion level, this result emphasises our findings earlier in this chapter, that targeted

weighting of specific pairs 〈Experti, Queryj〉 can produce considerable performance

gains. Of interest is that with the exception of the Clef2007 corpora, that there is

no significant difference between the query or expert combination levels.

The Clef2007 corpus is something of an outlier in this set of experiments. Through-

out the experiments in this chapter we have typically found broadly similar be-

haviours among each of our test corpora. In this case however we notice a significant

deviation, which to a lesser extent is also present in the TRECVID 2007 corpus. In

the Clef2007 corpora, the expert level performs clearly the best with performance

significantly greater than all other approaches. The cause for this is unclear, one

artefact of note is that this collection has the highest density of query topic images

to the collection, with one query image for every 6667 collection images per topic.

This indicates that recall played a more prominent role in the corpus, and that the

selection of highly-weighted pairs may have been too restrictive to provide adequate

topic coverage.

Our fundamental conclusions from this section however remain that with regards

to combination level, for the most part, there is no significant difference between

either the query or expert combination levels. What has been established is the

relatively low cap that these levels place on the maximum performance that can

be achieved employing either of those two combination levels. That is, even if the

ideal set of weights was employed in a query or expert combination level weighting

scheme, that we are on average likely to only obtain 58% of the performance of

the ideal direct level combination’s performance. This result reinforces our earlier
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ρ = 0.05
Legend
Expert Level (E)
Query Level (Q)
1σ Uniform (1σ-U)
1σ Optimised (1σ-O)

TV2003
E Q 1σ-U 1σ-O
- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≡
≫ ≫ ≡ -

TV2004
E Q 1σ-U 1σ-O
- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≡
≫ ≫ ≡ -

ρ = 0.05
Legend
Expert Level (E)
Query Level (Q)
1σ Uniform (1σ-U)
1σ Optimised (1σ-O)

TV2005
E Q 1σ-U 1σ-O
- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

TV2006
E Q 1σ-U 1σ-O
- ≡ ≪ ≪
≡ - ≪ ≪
≫ ≫ - ≪
≫ ≫ ≫ -

ρ = 0.05
Legend
Expert Level (E)
Query Level (Q)
1σ Uniform (1σ-U)
1σ Optimised (1σ-O)

TV2007
E Q 1σ-U 1σ-O
- ≡ ≡ ≡
≡ - ≡ ≡
≡ ≡ - ≪
≡ ≡ ≫ -

IC2007
E Q 1σ-U 1σ-O
- ≫ ≫ ≫
≪ - ≫ ≡
≪ ≪ - ≪
≪ ≡ ≫ -

Figure 4.16: Significance Tests for Combination Level variations

observations about the distribution of highly weighted pairs and the importance

of attempting to specifically upweight specific pairs 〈Experti, Queryj〉 in order to

obtain high performance.

4.7 Lee’s TREC-3 Data Fusion Experiments

One of the major papers in data fusion is that by Lee, who performed a series

of data fusion experiments investigating the role of various combination operators

(Lee, 1997). This paper is highly cited (as of May 2009, 311 citations according to

Google scholar), and serves as the primary justification for utilising techniques such

as MinMax score normalisation and the use of CombMNZ. It was this paper that

formulated the hypothesis as to why data fusion works, namely that:
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Figure 4.17: Combination Levels Performance

117



different runs might retrieve similar sets of relevant documents but re-

trieve different sets of non-relevant documents (Lee, 1997).

This hypothesis was arrived at through the examination of prior work, notably

Belkin et al. (1993) who observed that combinations of multiple query formulations

of the same information need led to performance improvements, Turtle and Croft

(1991) who noted overlaps of relevant documents returned by between retrieval

systems, and finally Saracevic and Kantor (1988) who found that the more runs

a document is retrieved by the higher it should be ranked. All this informed the

creation of the data fusion hypothesis and the establishment of the overlap metrics

which we previously explored.

Lee examined the earlier work of Fox and Shaw (1994) where the majority of

combination operators for data fusion were originally defined. Fox and Shaw found

that of the approaches they explored, CombSUM and CombMNZ performed well,

with CombSUM performing the best. This contention was one which Lee felt was

incorrect, as he thought that documents which appear more often in ranked lists

should be promoted higher up the final ranking, that is CombMNZ should work

better than CombSUM.

To investigate this, Lee ran a series of experiments on the combination of multiple

text retrieval runs from the TREC-3 ad-hoc retrieval task (Harman, 1993). For refer-

ence, the runs which Lee combined were (TREC identifiers): westp1, pircs1, vtc5s2,

brkly6, eth001 and nyuir1. In his experiments, retrieval runs were first normalised

using MinMax then linearly combined using either CombSUM or CombMNZ. There

was no weighting used in the combination.

Lee’s major conclusions from this study were that CombMNZ provided better

retrieval effectiveness than the other combination methods (e.g. CombSUM), and

that score normalisation approaches typically worked better than rank aggregation,

except in cases where the retrieval runs being combined have different distributions

of normalised scores.
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CombMNZ CombSUM
Experiment Score Borda Score Borda

Lee Orig. (no weights) 0.3991 0.3915 0.3972 0.3934
Weighted data fusion 0.4567 0.4461 0.4620 0.4621

Table 4.10: TREC-3 Six System Data Fusion Results

Lee’s observations appear to run counter to what we have established empirically

in this chapter. Given that Lee’s work informs a large body of data fusion research, it

is appropriate that we revisit the experiments to determine why there are differences

between our observation and that of Lee’s.

We devise two sets of experiments for investigation, the first being a repeat of

Lee’s six system combination of TREC-3 data, whilst the second is the combination

of the six systems, but utilising our weighted optimisation techniques so as to de-

termine what the best combination of these runs would produce. For each of these

two experiments we test the effect of CombSUM and CombMNZ, using both Borda

rank and MinMax score normalisation. As the majority of the topics for all systems

returned 1,000 results, standard Borda count is utilised as it will not have an adverse

impact upon performance. Results from these experiments are presented in Table

4.10, visualized in Figure 4.18 and significance tests are reported in 4.19.

We note that our reproduction of Lee’s results produced the same MAP scores

as reported in his work (Lee, 1997). For the unweighted combination, the highest

performer was indeed score based CombMNZ, followed by score based CombSUM,

then the two Borda approaches. However an examination of the statistical signifi-

cance tests for this runs paints a slightly different picture. The only certainty from

the unweighted experiment was that the run Borda CombMNZ was significantly the

worst run of the four, with each of the other three runs out-performing it. This is the

same as our experimental findings where Borda CombMNZ was our worst performer.

The runs score CombSUM and score CombMNZ exhibit no statistically significant

difference, indicating that the reported difference between the two is likely due to

chance.
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Figure 4.18: TREC-3 Data Fusion Performance

ρ = 0.05
Legend
Score MNZ (SCZ)
Borda MNZ (BNZ)
Score SUM (SCS)
Borda SUM (BCS)

TREC 3 - No Weights
SCZ BCZ SCS BCS

- ≫ ≡ ≫
≪ - ≪ ≪
≡ ≫ - ≡
≡ ≫ ≡ -

TREC 3 - Weighted
SCZ BCZ SCS BCS

- ≫ ≪ ≪
≪ - ≪ ≪
≫ ≫ - ≡
≫ ≫ ≡ -

Figure 4.19: Significance Tests for TREC-3 experiments

120



The optimised runs present an entirely different set of results which contradicts

the conclusions of Lee regarding the superiority of CombMNZ as a combination op-

erator. Examining the statistical difference between the optimised runs, we observe

that both Borda CombSUM and score CombSUM are statistically significantly dif-

ferent to both of the CombMNZ runs, matching the observations we make in this

chapter. However between the two CombSUM runs there is no statistical difference.

A reason for the difference between our findings and that of Lee’s we believe

is related to Lee’s investigation into the effect of rank based normalisation and its

application when the distribution of scores varies between systems. Lee hypothe-

sized in his paper that rank based normalisation should perform better than score

based normalisation because of what he termed the ‘independent weighting effect’,

which is that effectively a score acts as a weight for a document. Lee found that

using ranks where scores have very different score distributions did improve retrieval

effectiveness. We believe that in the case we are examining here, strong performing

text IR systems which work off the same ‘symbols’ (i.e. indexable elements), that

the scores produced are relatively similar in distribution and therefore there is little

difference between rank or score based normalisation if the score distributions are

similar. Conversely this also explains why rank normalisation works well in our

CBMIR experiments as we would expect the underlying score distributions of each

result set to be quite different.

Of more interest however is the result of CombSUM and CombMNZ, particularly

given the popularity that CombMNZ holds in data fusion, whilst in our experiments

performing empirically worse. Lee’s motivation for demonstrating the effectiveness

of CombMNZ was an extension of the work of Saracevic and Kantor (1988) where

they observed that a document which appears in multiple ranked lists should be

ranked higher. Lee saw CombMNZ as a mechanism which gave a boost in ranking

to documents which appeared in more lists.

Thinking of CombMNZ in terms of providing a boost to documents which ap-

pear in multiple lists gives an impression of a function which is positive, that it

121



Doc. E1 E2 E3 CombSUM CombMNZ
a 0.8 0.0 0.9 1.7 3.4
b 0.6 0.3 0.6 1.5 4.5

CombSUM ranking a > b
CombMNZ ranking b > a

Table 4.11: CombSUM vs CombMNZ behaviour

promotes documents up a ranked list. An alternative way however when thinking of

CombMNZ is negative, that in fact the function’s purpose is to penalise documents

which do not appear in all ranked lists. We can illustrate this with a toy example

given in Table 4.11.

In this table we have two documents, ‘a’ and ‘b’, and three experts ‘E1 ... E3’.

Document ‘a’ is only found in two of our three experts, however it is highly ranked

positions in both of these experts. Document ‘b’ on the other hand is found in

all three experts, but it appears around the middle of each experts result set. The

combination behaviour of CombSUM and CombMNZ in this case produces two quite

different orderings. CombSUM will rank document ‘a’ before document ‘b’, whereas

CombMNZ will reverse the ranking putting ‘b’ before ‘a’ as it appears in all three

of our result sets. The question for system builders becomes what sort of behaviour

do they want present in their retrieval system

Compounding this is the non-linear behaviour that CombMNZ produces com-

pared to the linear behaviour of CombSUM, highlighted in the previous chapter.

Figure 4.20 shows a hypothetical scenario where we have six retrieval experts (as in

the TREC-3 experiment) and in each expert we find the same document which is as-

signed the same score by each expert. This graph demonstrates how the cumulative

score of that document changes as it is found in more experts for both CombSUM

and CombMNZ. The third line in this graph demonstrates the relative difference in

scores between CombSUM and CombMNZ.

From this graph we can clearly see that CombSUM is a linear function whilst

CombMNZ is not. Compounding this, is that in relative terms, a document which
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Figure 4.20: CombSUM vs CombMNZ differences
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is found in either 3 or 4 experts in CombMNZ receives a larger score penalty than

a document which is found in either 2 or 5 experts. This is of crucial importance,

because in practice, documents will rarely be assigned the same score by a retrieval

expert, meaning that once this non-linerality is taken into account the ranking be-

comes much more unpredictable for CombMNZ. For CombSUM as the behaviour is

linear, the response to the combination can be considered more stable, that is as a

document is found in more ranked lists its score will increase linearly. We believe

that the CombSUM behaviour is more desirable, particularly considering that once

any large number of result sets are to be combined through data fusion, that the

probability of a document being found in every, or a majority of result sets, must

decrease. This has been empirically justified in the results we have presented in this

chapter for CombSUM and CombMNZ.

We are not the first to go back and examine various aspects of Lee’s work, notably

authors such as Beitzel et al. (2004) have re-examined the data fusion hypothesis of

the overlaps between relevant and non-relevant documents being the key driver for

retrieval performance. Beitzel et al. conclude that when fusing different retrieval

algorithms within the same system, that no benefit is derived from data fusion, as

relevant documents are already highly ranked. Therefore the promotion of docu-

ments up a final ranked lists is typically from overlapping non-relevant documents.

Our earlier work disagrees with this sentiment, in that earlier in this chapter we

found that the ratio of Roverlap/NRoverlap correlated highly with average precision.

Our work is not cross-comparable however, as the work of Beitzel et al. is deal-

ing with high quality retrieval algorithms within the same system, whereas we are

examining the combination of multiple disparate, noisy, retrieval sources.

The use of weighting in data fusion for text IR is not widespread, particularly as

many text retrieval algorithms can produce comparable performance which is not

subject to the wide variation in performance seen in CBMIR. In these cases the

application of CombMNZ can be seen to be used as a surrogate for linear result set

weighting. As we have established, CBMIR applications utilise sources of evidence
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which can vary wildly in performance, which requires that weighting is employed

in order to maximise performance. Given that, the use of rank normalisation and

CombSUM appears to be the most appropriate methods for combining ranked lists

together. Furthermore we have demonstrated that for the case of text IR, using

ranks and CombSUM produces equally the best weighted combination performance,

indicating that if text based data fusion approaches were to adopt these operators

rather than the more common CombMNZ score MinMax combination, performance

improvements can be achieved.

4.8 Conclusions

In this chapter we have conducted an extensive empirical investigation into weighted

data fusion and its impact on CBMIR retrieval performance. To achieve our observa-

tions we employed a non-conventional experimental model, which directly optimised

retrieval performance on test corpora which were being examined. The major ben-

efit of this approach was that for every subsequent experiment that was run within

this framework, the ideal set of linear weights for data fusion was always used. This

in effect held constant the effect of weighting on retrieval performance and allowed

us to make robust observations as to the impact of different factors which effect the

data fusion process.

The following observations were made in this chapter (summarised in Table 4.12):

• The ideal weighting form for data fusion is a highly positively skewed distribu-

tion, where specific rsi,j in a topic are highly weighted, whilst the remaining

results receive the remainder of the weight. We found that approximately

10%-20% of the result sets being combined in a query attracted 60%-80% of

the weight when ideally weighted.

• The ‘read-depth’ whilst by convention is set at 1,000 documents, is for the case

of CBMIR too small. Given that very noisy form of evidence are being com-
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bined, increasing the ‘read-depth’ to 3,000 documents produces demonstrable

improvements in recall and precision.

• Normalisation plays a crucial component in putting evidence into a form which

allows it to be easily combined. For score based normalisation we found that

MinMax normalisation produces the best results. For rank based normalisa-

tion we found that our BordaMAX or RankMM approaches produced the best

performance. Overall we found that when ideal weighting is used, rank based

normalisation out-performed score based normalisation.

• We examined the performance of the two most common combination operators,

CombSUM and CombMNZ. Whilst CombMNZ is the most popular form of

combination operator in text retrieval data fusion literature, we found that

CombSUM clearly outperformed CombMNZ.

• Combination levels are often employed in data fusion approaches to make the

task of combining evidence from sources more manageable. We found that

combining at the ‘expert’ or ‘query’ level produced no difference in retrieval

performance. Combining at the ‘direct’ level though produced a very large

performance gain over combining results at any arbitrary level, greater than

what was anticipated. Typically imposing a combination level restricted re-

trieval performance to between 50%-75% of what could be achieved with direct

combination. This level of performance is better when we consider the first

point of this list, that specific pairs correctly weighted drive retrieval perfor-

mance. The direct level of combination is the only level of combination which

allows for the specific weighting of pairs, and therefore is the most effective

level of combination.

• We re-examined the early data fusion experiments of Lee, and found that con-

trary to reported results, for text retrieval when linearly weighted, CombSUM

outperforms CombMNZ. Furthermore we found that despite the reporting of

126



Summary of Major Findings
Ideal Weight Distribution Highly Positively skewed Log-Normal.
Read Depth Between 3,000-5,000 documents.
Keyframe Sampling Dependent upon average shot length.
Equivalence Transformations
Score based MinMax
Rank based BordaMAX or RankMM
Overall Rank superior with ideal weights.
Combination Operators CombSUM outperforms CombMNZ.
Combination Levels Direct-level far superior to alternatives.
High Impact Queries Approx. 10% of query-components

provide 80% of performance.

Table 4.12: Summary of Major Findings

CombMNZ performing better than CombSUM when no weights are utilised,

that in fact there was no significant difference between the two approaches.

This chapter has explicitly examined many data fusion variables to a very fine

level of detail and discovered several properties of data fusion which were masked by

sub-optimal weighting being employed. Notable was the assumptions that CombMNZ

is the ideal form of evidence combination. From these observations, we find that

many of the earlier examined algorithms for data fusion do not have properties

which would allow for the full exploitation of the ideal data fusion form which we

have observed in this chapter. Notably, none of the examined data fusion algorithms

allows for the direct weighting of individual pairs 〈Experti, Queryj〉 at query time,

with most data fusion approaches employing a combination level approach which

aggregates results at the ‘expert’ level. In the next chapter we will review current

approaches to weighted data fusion and determine if they leverage the findings we

have made.
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Chapter 5

Existing Approaches for Weighted

Data Fusion

In this chapter we will expand upon the initial data fusion concepts and operators

introduced in Chapter 3. Specifically in this chapter we will examine approaches

which not only combine the outputs of various retrieval experts, but also allow for

their weighted combination. As demonstrated in Chapter’s 3 and 4, weighting is cru-

cial to achieving optimal performance in the context of Content-Based Multimedia

Information Retrieval (CBMIR), where individual queries and experts may perform

poorly, but their successful weighted combination achieves far greater performance

than the sum of their parts. We begin with a revision of past data fusion research

and implementation mostly within the text information retrieval domain. This is

followed by a detailed examination of combination approaches that either explicitly

define or can be modified to allow for weighting of the output of specific ranked lists.

Finally we finish the chapter with a brief examination of other approaches within

information retrieval which utilize the combination of data but are outside the scope

of this thesis. A high-level description of multimedia retrieval and the more general

problems facing it is detailed in Chapter 2.
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5.1 Data Fusion

To recap our definitions introduced in Chapter 3, when we refer to Data Fusion we

are conducting “the combination of evidence from differing systems” (Belkin et al.,

1995) with the aim of maximizing retrieval performance. This is a distinct from

the Collection Fusion problem, which Voorhees et al. defines as the combination of

“retrieval runs on separate, autonomous document collections that must be merged

to produce a single, effective result” (Voorhees et al., 1995). Fusion is an overloaded

term, within the multimedia processing community it can also refer to Information

Fusion which includes activities such as the combination of various modalities such

as the information from a visible light camera and an Infra-Red camera into a single

signal (Kludas et al., 2008).

As further revision, we reintroduce the variables we used for describing data

fusion within the context of a CBMIR system. In a CBMIR system we have available

a set of multi-modal Retrieval Experts E where there are 1 6 i 6 |E|. The CBMIR

system can process a multi-example multi-modal query Q, which is composed of

multiple components j, where 1 6 j 6 |Q|. Each unique pairing of an expert

and query component 〈experti, queryj〉, produces an ordered set of documents R =

{document1 ... documentm}, and every document has associated with it a name, rank

position and real valued score. Again we note the use of the term ‘document’ to

refer to the retrieval unit being used within a multimedia corpus, where a document

may be any of a speech transcript, segment of video, an image etc. The processing

of the query Q against the expert set E produces the sparse matrix of results RS

where each element in the matrix rsi,j corresponds to the result set generated by

pair 〈experti, queryj〉. Finally, in order to combine the elements of RS into a single

result list, we need a corresponding matrix of weights RC, such that each individual

element of the matrix rci,j contains the weight which will be applied to the result set

rsi,j. Therefore the final result of a multi-part query is the application of the weights

contained within RC to the result sets RS which are then linearly interpolated to
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Retrieval Experts E = {expert1 ... experti}
Multi-Modal Query Q = {query1 ... queryj}
Expert-Query pair 〈experti, queryj〉
Ranked Result R = {document1 ... documentm}
Document documentm 7→ (name, rank, score)
Result Set Matrix RS = [rsi,j]|E|×|Q|

Result Coefficient Matrix RC = [rci,j]|E|×|Q|

Table 5.1: Summary of Data Fusion Variables for CBMIR

create the final ranking. These variables defined in Chapter 3 are summarized in

Table 5.1.

5.1.1 History of Data Fusion

The history of data fusion and Information Retrieval (IR) is long and extensive,

incorporating many facets of the retrieval process. Areas of research that fall within

combination of evidence for retrieval include the combination of document repre-

sentations and the combination of queries. For our work we will be concentrating

on specifically late fusion (Snoek et al., 2006) and what Croft terms “Frameworks

for Combining Search System Output” (Croft, 2000). For an examination of other

types of data fusion refer to Croft (2000) for an overview.

Early data fusion research began with experimentation into the combination

of different retrieval models, document representations and query representations

(McGill et al., 1979; Das-Gupta and Katzer, 1983; Saracevic and Kantor, 1988).

Research by Belkin et al. (1993, 1995) noted that varying these different factors

produced different sets of relevant documents, yet exhibited no major changes in

performance metrics. Croft (2000) notes that observations from these early studies

suggested that it was beyond the capabilities of a single system to retrieve all the

relevant documents for a given query. According to Croft this then resulted in two

streams of IR systems being developed, one stream was to create single models which

can combine multiple sources of evidence such as the INQUERY system based on

an inference network (Turtle and Croft, 1991). The alternative stream is the de-
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velopment of systems which effectively combine the outputs of multiple searches

from different retrieval models (Fox and Shaw, 1994). Interestingly Croft in his re-

view notes for the task of multimedia retrieval, as different modalities are combined

this requires the development of systems which combine the ranking from multiple

subsystems (what we would term experts) (Croft, 2000). Two notable exceptions

to this however are language modelling approaches for multimedia retrieval (West-

erveld, 2004; McDonald, 2005) which implement a generative and discriminative

approach respectively. Both of these approaches however still combined visual and

text data through the use of weighting schemes, and as such the research presented

thus far is equally applicable to these approaches. The Garlic system developed

by IBM is an early example of a multimedia information system which combined

multiple information systems for retrieval through fuzzy sets (Fagin, 1996).

Broadly speaking we can roughly separate data fusion research into two classes,

development of approaches to conduct data fusion and investigations into the data

fusion phenomena and why it leads to performance improvement. These two classes

are not mutually exclusive and several who developed new approaches often exam-

ined why they may have worked, however more research would appear to exist on

the development and application of methods for data fusion than why data fusion

works. In Chapter 3 we reviewed many of the data fusion operators defined in the

literature. This included CombSUM and CombMNZ for score combination (Fox

and Shaw, 1994), linear combinations (Bartell et al., 1994; Vogt and Cottrell, 1999),

rank aggregation approaches (Aslam and Montague, 2001; Montague and Aslam,

2002) and investigations into score normalization (Montague and Aslam, 2001).

Investigations into the behaviour of data fusion began as referenced earlier with

observations about the low overlaps of the documents returned by different ranking

models (McGill et al., 1979; Das-Gupta and Katzer, 1983; Saracevic and Kantor,

1988). Belkin et al. (1993) noted that “Different representations of the same query,

or of the documents in the database, or different retrieval techniques for the same

query, retrieve different sets of documents (both relevant and nonrelevant)”. Lee
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(1997) examined this research but contrasted it against the findings of Turtle and

Croft (1991) and Saracevic and Kantor (1988), where Turtle et al. in experiments

combining probabilistic and Boolean retrieval results found that the relevant docu-

ments retrieved were shared by both approaches, whilst Saracevic & Kantor found

that different query formulations found different documents, but that a document’s

odds of being judged as relevant increased monotonically as a document appeared

in multiple result sets. Lee took these two findings to formulate a new hypothesis

for the effectiveness of data fusion:

“different runs might retrieve similar sets of relevant documents but re-

trieve different sets of nonrelevant documents” (Lee, 1997).

Testing this hypothesis Lee introduced two evaluation metrics to measure the de-

gree of overlap between relevant documents and nonrelevant documents, termed

Roverlap and NRoverlap, which we have defined and used in Chapter 4. Lee (1997)

finds that the best result from data fusion was achieved when result sets were com-

bined in which relevant documents had high overlap and low overlap for non-relevant

documents. The work of Vogt and Cottrell (1999) confirms Lee’s observations by

conducting pairwise experiments combining 61 TREC submissions. Vogt and Cot-

trell term the relevant overlap as the ‘Chorus Effect’, that multiple retrieval sys-

tems return the same relevant documents. Smeaton (1998) conducted pair-wise and

triple combinations of retrieval runs from TREC-4 data, and found that from the

9 different classes of retrieval system, only 10 of the 36 pairs examined produced a

performance improvement. This unweighted linear combination agreed with earlier

findings for text IR of the need to be combining effective retrieval systems to observe

a performance increase.

Croft (2000) interprets the findings of the work of Lee and of Vogt and Cottrell

as being the result of combination of uncorrelated classifiers. Assuming that the

retrieval systems being combined are good, that as the result lists being combined

are truncated to 1000 results, and that for a given TREC query there are typically

only 100-200 relevant documents, that most good systems will return within the 1000

132



results the 100-200 relevant documents, but as the ‘classifiers’ (search systems) are

uncorrelated, they will return different sets of nonrelevant documents. Furthermore

this emphasizes earlier observations that combinations of independent good search

systems, produce gains in performance when fused (Croft, 2000).

The data fusion hypothesis of Lee was critically examined by both McCabe

et al. (2001) and Beitzel et al. (2004). Both conducted approaches where various

system parameters were held constant whilst varying one aspect, such as the rank-

ing model, stemming, stopping, relevance feedback etc. The work of McCabe et

al. found that when systemic parameters are held constant, that the combination

of vector, probabilistic and Boolean retrieval models did not improve performance

of retrieval, contrary to previous accepted wisdom. This was further demonstrated

by a lack of performance improvement when combining results from TREC-6, 7

and 8 queries which produced high overlaps in both Roverlap and Noverlap, meaning

that each of the approaches were returning very similar content. Nevertheless this

work found that the overlap coefficients were a good predictor of the potential for

performance improvement with data fusion, particularly when systems were com-

bined with weights, such that a poor performing system could be discounted. The

combination of a poor system with a good system, using weights where the good

system was weighted highly, produced performance increases, lending support to the

application of weights for expert combination (McCabe et al., 2001).

Beitzel et al. (2004) like McCabe also conducted experiments where system pa-

rameters are held constant to measure the impact of combination of different aspects

of retrieval systems. The work of Beitzel et al. specifically examined the combina-

tion of “highly effective retrieval strategies”. Assuming this, Beitzel et al. hypoth-

esize that combination of highly effective systems through voting mechanisms like

CombMNZ are more likely to harm performance, as the highly effective systems

have already been optimized and will rank relevant documents highly, therefore the

candidates for promotion up a ranked list are lower ranked common nonrelevant

documents as the relevant documents are already highly ranked. They further hy-
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pothesize that as constants such as the query and stemming for each retrieval model

are held constant, that different models will produce approximately the same set of

documents for a query, only the relative ranks of these sets are likely to be different.

For highly effective systems Beitzel et al. find that the combination of retrieval mod-

els (e.g. vector space and probabilistic) hurts performance, rather than helps, whilst

the overlap coefficients defined by Lee (1997) provide a poor indicator of potential

for improvement through data fusion (Beitzel et al., 2004).

These two results however give credence to the application of weighted data fu-

sion to the task of CBMIR. Given that CBMIR is characterized by the combination

of multiple poor retrieval experts (Smeaton et al., 2006), we are unlikely to be com-

bining multiple experts that actually perform consistently well for any set of queries.

Furthermore as the work of McCabe shows (and indeed our earlier experiments in

this thesis), weighted combination of poor retrieval experts can lead to significant

performance improvements.

Therefore the task of data fusion in a CBMIR system is to employ methods

which generate an effective weight matrix RC such that when applied to the result

sets which are then fused, an improvement is made in retrieval performance. The

following sections will review methods which can be applied for data fusion and

retrieval coefficient estimation.

5.2 Query Independent Weighting

Query Independent Weighting is one of the simplest methods that can be employed

when combining retrieval experts. Popular in earlier research in CBMIR (Cooke

et al., 2004; Amir et al., 2004; McDonald and Smeaton, 2005; Jeong et al., 1999)

because of its simplicity, query independent weighting is an empirical method which

requires either a training corpus or domain knowledge of the collection being indexed.

Weights are statically assigned for each expert in the system and do not change,

regardless of the query being issued. For all queries being processed by the system,
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this single weight matrix, which weights only experts, is always used.

5.2.1 Expert Weight Matrix

Therefore we define a variant of our weight matrix termed RCi, which sets only

the values of rci, meaning that only the experts are weighted. In this variant the

weight matrix RC values of rci,j vary only when the expert (i, rows) changes, query

components (j, columns) are uniformly weighted for each expert, effectively reducing

our weighting matrix to a vector. This is illustrated in Equation 5.1.
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(5.1)

In the query-independent weighting scheme the creation of the weight matrix

RCi occurs offline, either as the result of a training phase, or with domain knowl-

edge. Only one instance of RCi is created for the system. An illustrative example

of this process would be weight optimization for participation in TRECVID. A

research group participating in TRECVID 2004, would have the TRECVID 2003

collection, queries and relevance assessments for use as training data. The group

would set initial weights for their experts and perform batch retrieval runs on the

TRECVID 2003 training data whilst examining the MAP scores being generated.

Expert weights would then be modified so as to improve the MAP score on the 2003

collection. Once complete, these weights form the final set of weights to be used

for experimentation on the TRECVID 2004 corpus (Cooke et al., 2004). As this

optimization process used multiple queries, the expectation is that the weight set

generated should not be optimized for any single query, but rather be a set that

produced decent performance on a range of queries. As a concrete example, given

our example system (Table 3.1), static weights could be set as: text expert (0.5),

colour expert (0.3), edge expert (0.15) and texture expert (0.15). In that setup the
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Figure 5.1: Query Independent Weighting

primary expert would be the text expert, followed by colour, then edge and tex-

ture. These weights would remain constant for all queries to the system. Figure 5.1

illustrates this scheme.

The advantages of this approach are that implementation is straightforward,

weights are statically assigned, therefore when results from a retrieval expert are

returned the weight can be directly applied and the experts combined. This also

results in the fastest type of weight assignment that can occur, as the weights are set

prior to the system accepting queries. Acceptable performance can be obtained using

this method in fairly constrained retrieval scenarios. For instance, if the CBMIR

system has indexed a very specific content domain, such as X-Ray images, and a

domain expert is available with representative queries, a good static combination of

experts can be found. This is an example of a narrow domain, as opposed to the

broad domain in which we are operating in, and is an example of where CBMIR has

been effective (Smeulders et al., 2000).

There are several disadvantages to the use of query independent weighting.

Firstly, the collection being indexed needs to be relatively homogeneous, such that

a generalized set of weights can be deployed. Coupled with this, the training queries

would need to be representative of what the operational system may have to deal

with. However as there are only one set of weights being used, either the range

of queries the system will handle is anticipated to be quite narrow and therefore

good weights can be set for this ‘class’ of query, or the system will have to deploy
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a ‘general’ class of weighting which would hopefully achieve moderate performance

on a range of queries. Secondly, issues of overfitting on the training collection are

difficult to avoid when using this approach, particularly if the optimization metric

being used is MAP. An example of this is found in the TRECVID (Smeaton et al.,

2006) benchmarking campaign. Taking the 2004 campaign (Kraaij et al., 2004), we

see that three of the top four performing search topics are sports topics (ice hockey,

golf and tennis). These queries can be quite different to other queries against a news

video collection. Typically they perform well with colour features (e.g. ice hockey

will have huge swathes of white in a frame), whilst the associated speech may not be

as helpful, so a weighting set would upweight colour and downweight text. Whilst

this set of weights will perform well for these sports topics, it may do poorly with

the other 21 topics in the collection. A problem arises in that if the optimization

done is using MAP, then the MAP value will be dominated by these three high

performing queries, and as such, optimizing weights on MAP is in effect optimizing

weights on these high scoring topics, resulting in a weight set that is heavily skewed

to a subset of potential topics the system may handle. In effect, this subset of sports

queries can be viewed as a distinct ‘class’ of query. The next approach we examine

implements this approach of defining ‘query classes’ and optimizing on each.

5.3 Query Class Weighting

Query-Class weighting can be seen as an evolution of query independent weighting

as it directly addresses many of the failings of query independent weighting and

as such has proven popular in the multimedia community. The central concept of

this approach is that given a training collection and an appropriate set of training

queries, query clusters (i.e. query-classes) can be found such that queries within each

cluster share some similar ‘properties’ which differentiate them from other queries

in the collection (where ‘properties’ may be artefacts such as semantic similarity,

performance similarity, distance etc). By partitioning a set of training queries into
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Query Independent Weighting Summary
Weighting
Granularity |E| for all queries (i.e. one instance of RCi)
Pros

Simple to implement.
Once training complete, very fast as no additional
query time computation.
Appropriate for narrow domains and associated queries.

Cons
Performance poor for more generalized collections
and/or queries.
Requires adequate training content which captures
likely query space.
Very prone to overfitting problems, particularly
if optimization metric is MAP.

Table 5.2: Query Independent Weighting Summary

discrete query classes, it is then possible to optimize for each query-class an instance

of the weighting matrix RC, such that each class should have a different set of

weights for combining retrieval experts. When a test/live query is then processed,

it is first mapped to a query-class so that the relevant matrix RC can be applied

for the retrieval experts used. As such, this provides a considerable improvement

over query independent weighting, notably in the granularity of how experts can

be weighted as every query-class has an associated weight matrix RC. Whilst the

query independent approach only has one instance of RC to weight queries, in the

query-class approach there are |query-classes| available for weighting. However like

the query independent approach, our weighting matrix only weights at the expert

level, not at the level of 〈experti, queryj〉, therefore we refer to these matrices again

as RCi. Figure 5.2 provides a high level overview of the query-class approach.

5.3.1 Early Approaches

The query-class approach was initially developed by Yan et al. (2004) closely followed

by Chua et al. (2004) for content-based video retrieval on the TRECVID corpora.

Both share a degree of similarity in implementation as both statically define a priori
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Figure 5.2: Query Class Weighting

the query-classes to be used by the system. Yan et al. define four query-classes based

on the intent of the query (providing perhaps a degree of generality to the chosen

classes), namely “Named Person” (find shots of Ronald Reagan), “Named Object”

(find shots of the White House), “General Object” (find shots of cats) and “Scene”

(find shots of beaches) (Yan et al., 2004). Chua et al. define six classes, however these

are based on perceived information needs of searching within broadcast news video

and observations from previous TRECVID queries. Those six classes were “Person”

(find shots of Ronald Reagan), “Sports” (find shots of ice hockey), “Finance” (find

shots of stock graphs), “Weather” (find shots with rain), “Disaster” (find shots of

flooding) and “General” (catch-all for everything else) (Chua et al., 2004). For these

approaches to be successful a mechanism is required to assign test queries to the

predetermined query classes.

Both approaches analyse the text component of any given query to determine its

assignment to a query-class via a heuristic framework. Yan et al. (2004) first con-
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duct named entity extraction which assigns queries to either of the ‘Named’ classes,

followed by part-of-speech (POS) tagging, noun phrase (NP) and verb phrase (VP)

identification with syntactic parsing. They assign queries with one longest matched

NP to the “General Object” class, whilst those with more than one NP are assigned

to the “Scene” class. Similarly Chua et al. (2004) also perform named entity extrac-

tion for query assignment to the “Person” class, however for the remaining classes

(except “General”), a set of keywords for each class is defined and queries which

contain those keywords are assigned to the matching class. If no keyword matches

are found which map a query to a class, then the query is assigned to the “General”

class. Once query-classes have been populated with training examples, the weight-

ing matrix RCi can be set. Chua et al. (2004) employ domain knowledge for weight

selection, whilst Yan et al. (2004) treat the task as a maximum likelihood estima-

tion problem and utilize the Expectation Maximization (EM) algorithm (Whitten

and Frank, 2005). Yan et al. (2004) also implement a hierarchy when determining

the weights for expert combination, firstly combining visual experts into a single re-

sult, then combining the aggregated visual expert with the text expert (illustrated

in Figure 5.3). This was based on the examination of previous TRECVID evalu-

ations (pre 2004) that indicated that performance was driven by text retrieval on

the speech or transcription content of the video (Hauptmann and Christel, 2004),

however in more recent TRECVID evaluations this would no longer appear to be the

case (Over et al., 2007, 2008). Nevertheless both of these approaches demonstrated

improvement over query independent weighting strategies for the corpora on which

they were tested.

There are several issues with this initial implementation which posed problems

for system builders and users. Firstly, the definition of the query-classes is performed

manually, potentially with the assistance of a domain expert, typically by manually

examining a set of training queries and performing some sort of partitioning of the

training space. This partitioning being a manual process implicitly captures any bias

that the human performing the partitioning may impart. The result is illustrated
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Figure 5.3: CMU Query Class Combination Hierarchy (Yan et al.,
2004)

by the two approaches previously discussed, where of the defined classes there is

only one in common to both approaches (“Named Person”) (Kennedy et al., 2008).

Secondly from a user’s perspective, the interpretation of the meaning of the label of

the query-class can be misaligned between a user’s interpretation of the label and

what the system designer intended the label to represent (Saracevic, 2007; Santini

and Dumitrescu, 2008). Finally as this manual grouping is conducted using intuition

and perceived topicality, it makes the assumption that queries which belong to the

same class will in fact perform to similar levels to other queries in that class and

will benefit from the same weighting combination. For instance the ‘General’ class

previously defined would need to employ relatively generic set of expert weights, as

it is a catch-all for any query not assigned to a specific class (Kennedy et al., 2005).

5.3.2 Current Approaches

Kennedy et al. (2005) extend the initial approaches by automatically discovering

query classes in a training set, free of any manual involvement. Their approach

is based on the observation that the intent of query class weighting is to group

queries together such that they share the same set of expert weights to achieve good
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performance. Therefore Kennedy et al. hypothesize that given a set of retrieval

experts and training queries, that those queries which share similar performance

variations between experts (where performance is measured by an evaluation metric,

i.e. average precision) should belong to the same query class. For example, if we

have available in our CBMIR system a text and colour expert, those queries which

produce good performance from the text expert, but poor performance from the

colour expert should be clustered together into the same class (Kennedy et al.,

2005). Kennedy et al. refer to this as clustering in the Performance Space.

Performance Space clustering however is dependant upon ground truth data

(i.e. relevance judgements) being available for clustering the search queries, and is

therefore only applicable to clustering training queries, as for test queries there is

no ground truth data available. To address this issue they also define a Semantic

Space in which to cluster, which similar to the previously discussed methods utilizes

various Natural Language Processing (NLP) techniques (named entity, POS tagging

etc). The task becomes to align these two spaces such that query classes (i.e. query

clusters) retain some consistency both with the clustering in the Performance Space

and with the Semantic Space. Kennedy et al. define a Joint Performance/Semantic

Space, matrix D which is a weighted summation of pairwise distance matrices of the

Performance Space and the Semantic Space. With this combined matrix created,

clustering occurs within it (either K-means or Hierarchical Clustering (Whitten and

Frank, 2005)) to discover the final query classes, with the selection of the number of

clusters arrived at through empirical testing. Once the classes have been established

and populated with training queries, each class can then be optimized to produce the

weighting matrix RCi, in a similar fashion to previous implementations. This ap-

proach demonstrated improvements over the aforementioned manual class creation

techniques (Kennedy et al., 2005).

Yan and Hauptmann (2006) like Kennedy et al., extend their earlier work to

address the issues present with the first implementation of query-classes, notably

the creation/assignment of query-classes. Yan and Hauptmann define a framework
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termed “Probabilistic Latent Query Analysis (pLQA)” in which query classes are

latent variables and the process of query-class discovery and parameter tuning for a

query-class are combined into a single phase. There are several distinguishing fea-

tures between this and the approach of Kennedy et al. The main distinction, is that

whilst the work of Kennedy et al. defines the Performance Space which is based on

the retrieval evaluation scores of individual experts, Yan and Hauptmann instead

utilize the weights learned for expert combination directly for class discovery. In

both the manual query-class approach and that of Kennedy et al., the definition of

the query classes occurs first, followed by expert optimization of the training data

assigned to those classes, whereas in this work of Yan and Hauptmann the query

classes are expressed as latent variables which can be estimated directly from the

training data along with the weights for expert combination. A further advantage of

this approach is that the mapping of queries to query-classes is a probabilistic mem-

bership assignment which allows mixtures of classes to occur (Yan and Hauptmann,

2006).

The performance of this approach demonstrates improvement over both query

independent weighting and manual creation of query-classes (Yan and Hauptmann,

2006). Of interest however is the reported performance of the manual query class

creation approach, which whilst being outperformed still achieves good performance.

Furthermore, when Yan and Hauptmann utilized larger sets of training data (i.e.

pooled queries from the TRECVID benchmarks 2004 and 2005, coupled with 40

additional queries defined in house, optimized on the TRECVID 2004 development

collection, in total 88 training queries), the performance of the manual query class

approach demonstrated performance increases, highlighting the need for adequate

and representative training data (Yan and Hauptmann, 2006).

Kennedy et al. (2008) notes that this approach by Yan and Hauptmann is likely

to achieve greater improvement over Kennedy’s earlier work based upon the reported

evaluation metrics on similar collections. However this observation is difficult to sub-

stantiate as direct comparison is hampered for several reasons. Firstly the experts
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utilized are different, and without reporting on individual expert performance it is

difficult to gauge comparable performance increases through expert combination.

Secondly the collections utilized have little overlap, particularly with the extended

training corpus developed by Yan and Hauptmann, which again makes direct com-

parison difficult. Whilst it would appear that the approach of Yan and Hauptmann

offers certain theoretical advantages over Kennedy’s work, it may be that some

combination of the two approaches produces further improvement (e.g. transform

Kennedy’s Performance Space from optimizing on retrieval evaluation scores, to

clustering based on the similarity of weights for class creation, similar in spirit to

that of Yan and Hauptmann).

One of the latest evolutions in the query class approach is provided by Xie

et al. (2007), whose work concentrates on creating dynamic query-class weighting

during system operation, rather than the previously described approaches which

learned classes from training data. The approach by Xie et al. like the majority of

the previous approaches, processes the text component of a query to arrive at the

query-classes. Xie et al. first use the PIQUANT engine to tag the query text, using

semantic tags from a broad ontology of over 100 concepts designed for intelligence

and news domains with question answering applications (Xie et al., 2007). As the

tags relate to semantic concepts, they need to be mapped to a visual domain for

video retrieval, as such Xie et al. define seven ‘features’ in a ‘semantic query fea-

ture space’ which are: “Sports”, “Named-Person”, “Unnamed-Person”, “Vehicle”,

“Event”, “Scene” and “Others”.

From these seven ‘query features’ they construct three approaches, two of which

emulate the previously discussed approaches plus their own approach. Qclass is the

standard query-class approach, where each of the seven ‘query features’ becomes a

query-class, training queries are mapped to one of the seven and then weights are

learned from these to provide the weights for the class (i.e. generation of matrix

RCi for each class). To process an unseen query, the query is mapped to a class,

and the previously optimized weights for that class are used.
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The second approach Qcomp is similar in intent to the work of Yan and Haupt-

mann (2006), as each ‘query feature’ becomes a ‘query component’, where a query

may have membership with multiple ‘query components’. Once the training queries

have been mapped to ‘query components’, the weights are learned through the usual

optimization process. Processing an unseen query involves determining the ‘query

components’, then taking the average of the weights for each of the components

matched for the unseen query. That is, each ‘query component’ will have generated

from its mapped training queries, a weighting matrix RCi. When an unseen query

is processed, the final weighting matrix to be used will be the average matrix of each

of the matched ‘query components’.

Finally, Xie et al. define their own approach which introduces a variation to

the Qcomp approach, which they define Qdyn. Like Qcomp, queries are parsed

and their ‘query components’ identified, however once these are found a nearest

neighbour matching is performed to identify similar training queries. These training

queries are then dynamically optimized to produce the weighting matrix RCi to be

used for the unseen query, producing the ‘dynamic query class’ (Xie et al., 2007).

In their evaluation, they found that both Qcomp and Qdyn generally outper-

formed query-independent weighting and the standard Qclass approach, with min-

imal variation between the two. What is of interest in their experimentation is

the high performance achieved by the query independent weighting approaches (Xie

et al., 2007). Xie et al. account for this as an artefact of sports queries in the

TRECVID search corpus (previously discussed in Section 5.2). The approach de-

fined by Xie et al. performs more robust semantic processing of the query than in

previous approaches, as an ontology of over 100 semantic concepts is utilized, it is

in effect only clustering queries on the query text, as opposed to the approaches

of Kennedy and Yan which take into account how each the queries cluster in an

empirical space.
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5.3.3 Observations

In this section we have presented techniques for query-class weighting, each of which

produces for every class, a weighting matrix RCi. All presented techniques in this

section demonstrated performance improvements when compared against query in-

dependent weighting. This is not surprising, given that the granularity of weighting

possible with the query-class approach is greater than that of the query independent

approach, with a separate weighting matrix for each class defined. This approach has

also proven popular in the research community, with several groups in TRECVID

making regular use of this approach for expert combination.

Nevertheless there are several issues with this approach. Firstly, it is interest-

ing to note that across all the different approaches examined, the reported number

of query-classes created did not vary greatly, with the range being between 4 - 7

classes. Even in the case of the dynamic approaches such as Yan and Hauptmann

(2006) using an augmented training collection which contained 88 search topics,

only 6 query-classes were used. This is likely an artefact of the utilization of single

TRECVID corpora for training in many of the approaches, which typically contain

only 24 topics, however general questions remain about the capacity for correctly

weighting unseen queries which have no representative in the training corpora. This

problem’s become particularly apparent in activities such as the TRECVID bench-

marking activity when entirely new corpora are introduced for which no training

queries with relevance judgements exist.

Secondly, the approaches as described here contained some level of expert ag-

gregation, such that the generation of any weighting matrices were restricted to

weighting at only the expert level (RCi). As we have demonstrated in Chapter 3,

by not considering the full set of result sets to be combined, an artificial handicap

is placed upon performance.

Third, the majority of the approaches conducted classification on only the query

text associated with a query, the rationale for this is given as “query text accurately

describes the information need in a multimedia query, it also serves as the sufficient
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Query Class Weighting Summary
Weighting
Granularity |E| (i.e. RCi) for every query class
Pros

Performance improvement over query independent.
Number of classes variable.
Classes can be dynamically created after initialization
with training data.
Dependant on approach, can have fast runtime
execution (pre learned classes).

Cons
Weighting restricted to RCi for each class.
Requires adequate training content which captures
likely query classes.
Approaches dependant on accurate text processing
of the query text.
Requires that the query contain text.

Table 5.3: Query Class Weighting Summary

criteria for the human judging on whether or not a query is relevant” (Xie et al.,

2007). Query disambiguation is a major research problem in itself, whilst query text

provides to the system a more easily translated statement of user intent, caution

should be applied in relying solely on it when the user provides other forms of

information as part of a query. An example of this is illustrated in the TRECVID

2007 benchmark with the ambiguous query “(0199) Find shots of a person walking

or riding a bicycle”, which by query text alone is relatively ambiguous (e.g. shots of

people walking OR riding, or shots of people pushing or riding a bicycle), and lead

to confusion among participants, however the visual query components helped to

provide clarity (Over et al., 2007). Furthermore, given corpora such as TRECVID

which incorporates multilingual sources of information, the analysis of the query

text may become far noisier if it needs to undergo machine translation.
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5.4 Machine Learning Methods

Machine learning applications can be considered as techniques which discover struc-

tural patterns in data that allow us to explain and make predictions from that data

(Whitten and Frank, 2005). They provide us with tools to help make sense of and to

organize data. The field of machine learning is incredibly broad and a general review

is outside the scope of this work. In this section, we will restrict ourselves to a brief

review of approaches which can be characterized as supervised and discriminative,

that is approaches which require training data which has been manually labelled,

and models which learn directly on the data provided to them.

The power of machine learning approaches stems from being able to learn pat-

terns within very large volumes of data. However because of this, careful attention

needs to be provided over what data is given to a machine learning algorithm as

any method is only as effective as the data it leverages. This presents several sig-

nificant challenges in the application of machine learning approaches to search and

data fusion. As a toy example, consider a general image collection of photographs

and we wish to find all images of cars. If the collection size is 100 images and the

collection only contains two instances of cars, then a classifier could easily be pro-

duced which would annotate the entire collection as containing no cars and have

achieved an accuracy of 98%, yet still be completely useless to us for the purposes

of search, as it provides no information to the user as to which images are relevant

for their information need. From the perspective of the learning algorithm it has

learnt an approach which is highly successful, yet illustrates the need for careful

data preparation, algorithmic selection and optimization/evaluation criteria.

This example highlights one of the major hurdles for the application of supervised

machine learning methods to tasks like search and data fusion. That is, the classifier

was provided with positive examples, such as an image of a car, of what we are trying

to find. However discriminative approaches typically also require adequate negative

examples, that is things that we do not want as part of our information need. Section
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5.4.1 provides approaches for multimedia retrieval that generate pseudo-negative

examples to assist in this problem. Section 5.4.2 proposes a different approach,

typically applied in text retrieval, which leverages very large amounts of annotated

training data (queries and relevance judgements) to learn what makes documents

relevant to a query and as such produce a generalized ranking model.

Other major problems which apply to the use of machine learning approaches are

the class imbalance problem and the curse of dimensionality (Akbani et al., 2004).

These two problems are interrelated for the application of search. Put simply, the

class imbalance problem for search is that often there are far more irrelevant than

relevant items in a corpus, hampering classification, as the classifier can be biased

towards the larger of the imbalanced classes. Similarly, when learning from data,

such as using visual feature vectors as described in chapter 2, that as the size of the

feature vector grows, an exponential increase occurs in the size of the feature space,

correspondingly requiring an increase in the number of examples we require in order

to achieve a stable model (Bellman, 1961; Beyer et al., 1999; Tešić et al., 2007a).

5.4.1 Generation of Pseudo-Negative Examples for Search

Natsev et al. (2005) explicitly addresses the issue of multi-example, multi-feature

search, such as the scenario defined by our example CBMIR system and query (Sec-

tion 3.1.6), making use of machine learning methods, specifically the use of Support

Vector Machines (SVM) (Vapnik, 1995). Natsev et al. conduct retrieval experiments

using the TRECVID 2003 corpus and topics, where each topic contains not only a

statement of the information need but also relevant visual examples (see Chapter

2 for further detail). However, as traditional SVMs conduct discriminative classi-

fication, they require not only positive training samples (e.g. the visual example

queries) but also negative training samples, which are rarely provided during ini-

tial query formulation (the exception is iterative feedback from a user, see Section

5.6.1 regarding Relevance Feedback). Natsev et al. propose several mechanisms for

generating ‘pseudo-negative’ examples, however the best approach was a random
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sampling of the collection. As TRECVID search topics are typically relatively com-

plex information needs (e.g. find shots of George Bush walking versus a classification

task of find outdoor shots), the actual number of relevant shots in a collection is

relatively small.

Empirically Natsev et al. select 50 as the number of pseudo-negative exam-

ples to sample per topic, whilst the number of positive examples is typically 5-6.

To improve retrieval performance, they repeat the selection of the pseudo-negative

examples whilst keeping the positive examples 10 times per query, each iteration

producing a model, all of which they statistically average and then merge into a

single model. Natsev et al. refer to this as bagging, however it distinguishes itself

from traditional machine learning bagging approaches as only the negative examples

are randomly sampled, whereas in traditional bagging approaches, both classes are

randomly sampled and multiple classifiers are built and averaged from these ran-

dom samples. Therefore for each query, a modified bagging approach is conducted,

where 10 ‘bags’ are defined, each of which shares the same positive examples, but a

random selection of negative examples.

This learning process is conducted per expert. In their work they had 4 visual

experts available and through prior empirical testing they select the top 3 per-

forming experts to use for any particular query. The fusion of retrieval experts

is through statistical normalization (Z-score normalization), followed by unweighted

linear combination. Each of the experts when trained implicitly combines the multi-

ple examples into the learned model, and as such they can be seen to be individually

weighted, however the final combination of the retrieval experts uses uniform weight-

ing. Natsev et al. (2005) highlight that performance gains could be made through

the adoption of techniques such as query-class weighting (Section 5.3) to appropri-

ately combine expert outputs. Furthermore, as an SVM is utilized in this process, a

training phase with appropriate data was required for SVM parameter tuning. As

there was no appropriate training data for the search topics, this parameter tun-

ing was query-independent. Nevertheless this approach has proven popular in the
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TRECVID community, recently used by both MediaMill (Snoek et al., 2008) and

Microsoft Research Asia (Mei et al., 2008) in TRECVID 2008. This approach was

also adopted by Tešić et al. (2007b) for semantic video search.

Tešić et al. (2007a) also address the issue of imbalanced and sparse learning

instances for visual retrieval in multimedia search, by extending the work of Natsev

et al. (2005). Tešić et al. examine the modified bagging approach of Natsev et al.

(2005) offering improvements to both the bagging approach itself and to the selection

of the pseudo-negative examples. The number of pseudo-negative samples is dictated

by the bagging parameters K × N , where K is the number of bags to use, and N

is the depth of each bag. Natsev et al. (2005) kept the number of bags (K) fixed to

10, whilst the depth of each bag (N) was 50 random pseudo-negative examples plus

the positive query examples (P ). Empirically Tešić et al. again selected K = 10,

however the value of N became a function of the number of positive examples P .

Implementing the work of Akbani et al. (2004) they define the sample of negative

examples to be N = 10 × P , and in experimentation found that this ratio offered

improvement for more difficult topics, whilst not over-sampling the negative space.

Tešić et al. improve upon random sampling for pseudo-negative training exam-

ples. Using k-means clustering (Whitten and Frank, 2005) where the number of

clusters to be found is defined as k = 2×N ×K, they randomly select the centroids

of N of the clusters. This approach provides a more representative sampling of the

negative example space, as each of the selected pseudo-negative examples belongs to

a different cluster. Further experiments found a similar approach could be applied to

the positive examples by clustering around the positive example space, thus gener-

ating additional pseudo-positive examples. Tešić et al. (2007a) found this approach

offered improvement over the pure random selection approach proposed by Natsev

et al. (2005).
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5.4.2 Learning To Rank

Learning to rank is a rapidly expanding area of research which is seeing an influx

of machine learning researchers and machine learning methods tackling the ranking

problem, most frequently within the domain of text information retrieval. Such is

its rapid growth that the last three SIGIR conferences have featured learning to

rank workshops (2007-2009). Learning to rank is a catch-all term that encompasses

machine learning approaches, typically discriminative, which seek to learn a ranking

model given example queries, documents and relevance assessments or implicit user

judgements (such as click logs). Their discriminative power comes directly from

having massive amounts of data (certainly in comparison to CBMIR) in which to

sample and learn (Geng et al., 2007; Xia et al., 2008).

There are fundamental differences between classification tasks and ranking tasks,

and many machine learning methods cannot be applied directly to the ranking prob-

lem without modification. The major differences between ranking and classification

are that in ranking, the order of instances is important, whilst in classification they

are not. Secondly, the evaluation metrics differ as ranking places a higher emphasis

on ranked precision rather than recall, whilst in classification both recall and pre-

cision are equally important and as the ordering of instances is not important all

classification errors are equally important (Geng et al., 2007).

Broadly speaking, learning to rank approaches can be classified into three sub-

types; Pointwise, Pairwise and Listwise (Liu, 2008; Xia et al., 2008). The ap-

proaches primarily differ on what is used for training data and relevance assessments.

The pointwise approach treats the problem as similar to regression or classification

problems where each sample (single document), is treated as independent and rel-

evance assessments have binary values and are considered absolute. The pairwise

approach as the name suggests, randomly samples pairs of documents from training

ranked lists, and learns the relative difference in relevance between the two docu-

ments. This approach can utilize non-binary relevance judgements, using metrics

such as NDCG. These previous approaches learn at the document, or document
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pair level. The most recent iteration developed is the listwise approach which rather

than examining single documents or document pairs, takes as the learning instance

a ranked list of documents associated with a query and the respective relevance

information, and as such is better able to capture the properties of the query which

generated the ranked list (Cao et al., 2007; Geng et al., 2007; Liu, 2008; Xia et al.,

2008; Geng et al., 2008; Liu et al., 2009).

The attraction of learning to rank approaches is their ability to learn ranking

models which incorporate large numbers of document features. For example, the

LEarning TO Rank (LETOR) dataset, provided by Microsoft Research Asia (Liu

et al., 2007a), provides 44 extracted features per document for the .gov document

collection from which models can be learned, including both ‘low-level’ features such

as term frequency through to ‘high-level’ features such as BM25 scores. Commercial

search engines in implementing learning to rank approaches take this number far

higher, providing at least 600 features for learning a ranking model (Cao et al., 2007).

Typically the product of the learning is a single, very well generalized, ranking model

which successfully incorporates all the feature data, therefore producing an effective

query-independent model (Geng et al., 2008). In order however to leverage these

massive amounts of features and build an accurate ranking model, equally large

numbers of training queries and relevance assessments are required. For the .gov

LETOR collection, 450 queries and relevance assessments are available, whilst the

work of Cao et al. (2007) using commercial search data had 25,000 queries leveraged.

Whilst no doubt effective, these approaches face significant hurdles in their trans-

lation to CBMIR applications and data fusion. Firstly, in the text benchmark

datasets it is often only the queries which are partitioned into training and test

sets, whilst the document data itself remains unchanged. This contrasts to CBMIR

benchmarking datasets such as TRECVID, where not only are the search queries

partitioned into training and test sets, but the data itself is also partitioned between

training and test, illustrated in Figure 5.4. This significantly complicates learning

approaches, as when the document data is static, models are able to learn for that
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collection what features impact upon relevance. When the documents themselves

also change, as well as the queries, the generated models at best estimate what fea-

tures impact upon relevance, assuming that the training documents are an accurate

sample of the eventual test documents. Whilst this later problem is common in

classification tasks, the difference is that for classification tasks, the ‘query’ does

not change between the training and test collections, whereas for search tasks on

TRECVID data both the queries and the data changes between training and test

activities. In addition, to learn a generalized model which is not overfitted to any

particular type of query, a very large amount of training data and associated rele-

vance assessments are required. Typically this is not available for CBMIR bench-

marking datasets. Nevertheless learning to rank techniques have been applied to

tasks of multimedia and query-dependant search, which we briefly review.

5.4.2.1 Multimedia, Expert Combination and Query-Dependent Appli-

cations of Learning To Rank

Liu et al. (2008b) propose a pointwise approach for ‘query-independent’ learning

for video retrieval, contrasting it to the methods developed by Natsev et al. (2005).

Liu et al. utilize a pointwise approach for TRECVID data where mining either

relevance judgements or search logs, they associate queries with individual video

shots along with a relevance judgement, from which they mine various textual and

visual features. Their experiments demonstrate a performance gain over the query-

dependent approach of Natsev et al. (2005), however their documentation of their

implementation of that approach is sparse, and performance gains could be due to

the use of features which are biased towards their model. The motivation for the

approach is that a generalized ranking model can be learnt which the avoids over-

fitting problems of query specific learning approaches. This motivation is contrary

to our findings in Chapter 4.

Liu et al. (2007b) tackle the issue of metasearch and rank aggregation for expert

combination by proposing a ‘Supervised Rank Aggregation’ approach. Utilizing the
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Figure 5.4: Differences between tasks and training/test partition-
ing; text ad-hoc search, traditional classification, CB-
MIR search
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relative ranks of training result sets and associated relevance judgements, they learn

a weighted Markov chain to combine the top-100 results of six commercial search

engines. Their experiment utilized 500 queries mined from a commercial query-log.

Interestingly they found that the weight assigned to a search engine through this

process did not correlate between search engines which returned similar documents.

That is if search engine a and search engine b returned similar documents, a may

receive a high weight whilst b does not. Conversely if a search engine c returns

dissimilar documents to a and b it was given a high weight. The result appears

counter intuitive to the data fusion hypothesis (Lee, 1997), and is perhaps a result

of a generalized model being learned over incomplete document collections with a

large range of queries.

Geng et al. (2008) highlight the problem of previous approaches to learning

to rank, which build a generalized model from a very large amount of training

data, that specific types of queries will perform better with a more specific rather

than generalized ranking model (thus in direct opposition to the work of Liu et al.

(2008b)). Geng et al. propose a K-Nearest Neighbour (KNN) approach which

performs ‘soft’ classification of a test query into the query space, which is populated

with an expansive set of training queries. The distinction between ‘soft’ and ‘hard’

is that ‘hard’ classification would classify a query into query clusters defined a priori

whereas ‘soft’ classification projects into the query feature space and dynamically

defines a nearest neighbour query cluster, very similar to the approach of Xie et al.

(2007) (despite the assertion by Geng et al. of no prior relevant work). Geng et

al. then utilize a pairwise learning to rank approach, specifically Ranking SVM

(Joachims, 2002), to learn the ranking model for the dynamically created query

cluster. Like all the previous learning to rank approaches, this work leverages very

large amount of training data with relevance judgements. Specifically when defining

the dynamic query cluster using KNN, the value of k queries to assign to the cluster

from which to learn the ranking model, was varied between 100 and 1500 training

queries with optimal performance achieved at k = 300 − 800.
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5.4.3 Observations

Unquestionably the influence of machine learning methods in Information Retrieval

is rapidly expanding, the performance of these methods offering significant improve-

ment over unsupervised methods (Liu, 2008). The ability to learn from data which

incorporates vast numbers of features, whilst utilizing massive amounts of training

data, produces discriminative models that offer ‘unreasonable effectiveness’ (Halevy

et al., 2009). Often the proof of effectiveness is in an approaches uptake and popu-

larity, anecdotally it would seem that the major commercial search engines employ

these sorts of machine learning methods for ranking web documents (Liu et al.,

2007b; Halevy et al., 2009). Whilst these approaches seem likely to be the future

of search, their current application to Content-Based Multimedia search and data

fusion offers significant challenges.

The main challenge is a lack of large amounts of training data, specifically train-

ing queries and relevance judgements. The aforementioned approaches success is

largely due to the exploitation of massive quantities of explicit and implicit training

data, such as relevance assessments or click-logs, which on a large scale reveal rela-

tionships between relevance and the features that make something relevant. Coupled

with this is the dimensionality curse. Whilst text based approaches used over 600

features per document on which to train, many of these features could be regarded

as ‘higher-level’ such as BM25 scores, whereas content-based features are often val-

ues such as histogram bins and operate on a much lower level of abstraction. Not

reviewed here, but some multimedia practioners avoid some of these problems by

incorporating semantic concept detection (see Chapter 2) as features for training,

such as Tešić et al. (2007b). This offers some way forward but shifts retrieval prob-

lems into issues of query-independent concept detection and the adequacy of concept

ontologies coverage over the potential search space.

As content-based multimedia retrieval continues to become more mainstream,

approaches such as learning to rank can be re-evaluated for their applicability as

training data becomes more common place. This does not mean that multimedia
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Machine Learning Summary
Weighting
Granularity Dependant on approach, RCi through to RCi,j

Pros
Potential weighting of pairs 〈experti, queryj〉.
Learns from data.
Can produce very effective generalized models.
Pseudo sampling approaches allow for runtime generation
of discriminative models of an information need.

Cons
Requires significant levels of training data.
Must handle class imbalance problem and the
curse of dimensionality.
Learning to rank approaches typically work on the same
corpus of documents for training and test (Figure 5.4).

Table 5.4: Machine Learning Summary

search will then become a solved problem. These approaches only provide a frame-

work in which generalized models can be learned for retrieval, they are only as good

as the data on which they are learned. Considerable effort can be spent in the de-

velopment of attributes which can be found to populate feature vectors for training

(e.g. a CBMIR equivalent score for BM25) from which a machine can learn. Finally,

many of these approaches produced very good generalized retrieval models, yet we

have seen from Chapters 3 and 4 the performance of correctly weighted individual

pairs 〈experti, queryj〉 indicates the need for query-dependent weighting.

5.5 Score Distribution Methods

In our definition of the terms used in this thesis, we stated that a documentm 7→

(name, rank, score), that is for every retrieval expert used we assume it is under

our control and that we have full access to not only the ranked list of documents for

a query, but also the scores that the retrieval expert assigned to those documents

in order to produce that ranking. One class of method which has been proposed

for combining the outputs of retrieval experts, is to model the score distributions

of ranked lists of retrieval experts. The central idea is that a score distribution for
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relevant documents and a separate distribution for non-relevant documents can be

identified. Once these are known they can be compared against the ranked scores

of a retrieval expert, such that inferences can be made as to which expert’s ranked

list is more likely to contain relevant documents, and therefore combine these lists

accordingly.

The idea that two distributions exist which can model relevant and non-relevant

document scores has existed for some time as explained by Robertson (2007), be-

ginning with Swets (1963) who proposed two Gaussian distributions of equal vari-

ance, and later two exponentials (Swets, 1969). Tangentially, our own proposed

approaches for weighted data fusion involve an examination of retrieval expert score

distributions, however we do not explicitly model any particular type of distribution

(See Chapter 6 for details).

Utilizing score distributions of relevant and non-relevant documents enables sys-

tem creators to explore multiple applications. Proposed areas of application for this

research include expert combination, multi-lingual retrieval, filtering applications,

distributed retrieval and topic detection (Manmatha et al., 2001; Arampatzis and

van Hameran, 2001).

5.5.1 Current Approaches

Currently, the most popular form of modelling score distributions is the use of an ex-

ponential distribution to model non-relevant documents and a Gaussian distribution

to model relevant documents. These observations were developed independently by

Manmatha et al. (2001) and Arampatzis and van Hameran (2001). Figure 5.5 from

the work of Arampatzis and van Hameran (2001) visualizes these distributions for

topic ‘FT-352’ of the TREC-9 filtering task (Ault and Yang, 2002).

The motivation of the work of Arampatzis and van Hameran (2001) is a document

filtering task, i.e. to monitor a temporal stream of documents (e.g. news reports)

with a persistent information need, and to return to the user relevant documents

from that stream as quickly as possible (Ault and Yang, 2002). As such the system
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Figure 5.5: Exponential and Gaussian distributions for non-relevant
and relevant documents (Arampatzis and van Hameran,
2001)
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built is an adaptive binary classifier, where the task is to threshold the scores of

retrieved documents, such that scores above the threshold are returned, whilst those

below are assumed to be non-relevant and discarded. Using training data with known

relevance judgements, Arampatzis et al. derived the distributions of relevant and

non-relevant document scores and utilized this to maximize a utility function which

determined the optimal threshold for returning documents to a user. A Rocchio

inspired approach, this work required query expansion of approximately 250 words

in length. This approach was later extended to incorporate Maximum Likelihood

Estimation for the selection of the threshold parameters (Zhang and Callan, 2001).

Manmatha et al. (2001) also utilize the analysis of score distributions (again with

a Gaussian for relevant and exponential for non-relevant), however the application

which they tackle directly is the combination of retrieval experts. Manmatha et al.

perform experiments combining the results of a probabilistic search engine and a

vector space search engine. Their work differs from that previously described, as no

explicit use of relevance assessments is made in their combinatorial model. Having

previously observed the form of the score distributions, Manmatha et al. develop

a mixture model which consists of both the Gaussian and exponential distribu-

tions, and fit this to the score outputs of a retrieval expert using the EM algorithm

(Whitten and Frank, 2005), where the task is to identify the mixing parameters and

component densities. Once the model has been fitted the scores of a retrieval expert

can then be converted into probabilities of the score being relevant.

The results reported by Manmatha et al. (2001) are interesting, showing that

experts combined using the mixture model fitted by EM performed on a par with

combining experts using CombMNZ (see Chapter 3). When relevance data was

incorporated so that the distributions could be fitted directly to the experts, im-

provement was found, indicating that the fitting of the mixture model without rel-

evance data could be improved. Manmatha et al. however list some caveats with

their approach. First is the application of EM for fitting the mixture model and

the cold-start problem, i.e. the initial set of parameters selected for running EM
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need to be carefully chosen or else the algorithm may settle on parameters which

form a local rather than global maxima. Second, the fitting of the distributions was

contingent on the retrieval experts being ‘good’, they found the distributions a poor

fit for retrieval experts which performed below average. Finally the retrieval experts

being combined need to perform to a similar level, or else performance is degraded.

Implicit in this is that no actual weighting of retrieval experts is performed, the

transformation of the scores into probabilities is in itself allowing the experts to be

directly combined, if the transformation is accurate enough weighting would not be

required.

5.5.2 Theoretical Examination

Robertson (2007) reviews the work conducted in the area of score distribution anal-

ysis and conducts a theoretical review of the various approaches, examining each

of the proposed distributions of relevant and non-relevant documents to determine

their theoretical validity. We review this theoretical examination as the approach

of utilising score distributions is one we will follow in the development of our own

weight generation algorithms detailed in Chapter 6. Robertson begins with the

probability ranking principle, which states that a search system should rank docu-

ments in order of their probability of evidence (Robertson, 1977), to formulate the

“Convexity hypothesis” which states that:

“For all good systems, the recall-fallout curve (seen from the ideal point

of recall=1, fallout=0) is convex” (Robertson, 2007).

where the ‘recall-fallout curve’ is a Receiver Operating Characteristic (ROC) curve

(Whitten and Frank, 2005) which plots recall against fallout (proportion of rele-

vant documents retrieved against non-relevant documents retrieved, see Chapter 2),

shown in Figure 5.6. A straight line on this graph (running from (0,0) to (1,1))

represents a random ordering of documents in response to a query, and therefore

identical distributions of scores for relevant and non-relevant documents. If the line
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Figure 5.6: Recall-Fallout ROC curve (Robertson, 2007), convex in
shape. Straight lines indicate random orderings, devia-
tions from that highlighting biased ordering.

plotted is convex in shape (i.e. biased towards recall), the ranking is good as it is

able to distinguish relevant from non-relevant documents. Conversely if the curve,

or parts of the curve, are concave, the ranking is poor, and can be trivially improved

by randomly reordering the documents such that the curve moves to a straight line

(Robertson points out that better than this the ordering could simply be reversed

to transition the curve from concave to convex).

Taking the ‘convexity hypothesis’ and the probability ranking principle, Robert-

son examines the proposed score distribution pairs of relevance and non-relevance

to determine if they violate these hypotheses. Of the earlier proposed distribu-

tions, the approach of modelling both relevant and non-relevant as exponentials,

and modelling relevant and non-relevant as Gaussian with equal variance does not

violate these conditions. However for the case of an exponential for non-relevant and

Gaussian for relevant distributions, Robertson found that this combination violated

the convexity hypothesis, producing a concavity in the initial rankings, as well as

potentially at the end of the ranking. This finding is acknowledged by Manmatha

et al. (2001) who also observed this phenomena, which produced non-monotonic
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probabilities in some of their topics. Their solution to this was to redefine the

probability of relevance when this occurred, assigning the top ranked document a

probability of 1, then having a linear decrease in probability with the scores until

the top of the curve of estimated probabilities is reached, then resuming from that

point downwards (Robertson, 2007; Manmatha et al., 2001). The implied justifica-

tion for this procedure is that the probabilities should be a monotonic function of

the score. Robertson‘s alternative to this approach is to randomly re-order those

top ranked documents, such that when plotted on the recall-fallout graph a straight

line is produced, thus providing a well founded form of extrapolation (Robertson,

2007).

Having established these theoretical inconsistencies, Robertson (2007) further

highlights impacting factors, including distributional changes through result set

truncation and the issue of score normalization and non-linear transformations (e.g.

converting to log-odds probabilities, then re-normalizing to the range [0,1] using a

linear transformation), which in themselves may also be producing the phenomena

which is being observed. As such, Robertson concludes that whilst empirically the

normal/exponential pair might approximate the distributions of relevant and non-

relevant documents, the approach violates the convexity hypothesis and calls into

question its general validity (Robertson, 2007).

5.5.3 Observations

The nature of score distribution research is appealing, as it provides a mechanism in

which to potentially generate weights for every pair 〈experti, queryj〉, such that we

can populate the full weighting matrix RCi,j rather than just populating expert level

weights (such as discussed in 5.2 and 5.3). However, the application of this area to

the task of CBMIR appears problematic. Leaving aside the theoretical issues raised

by Robertson (2007), there are several pre-requisites that CBMIR would appear not

to meet. Firstly, as defined by Manmatha et al. (2001), this approach only works well

when ‘good’ retrieval experts are used, which as demonstrated in earlier Chapters
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Score Distribution Fitting Summary
Weighting
Granularity RCi,j

Pros
Potential for very fine grained ‘weighting’.
Demonstrated performance improvement over
using individual experts.

Cons
Requires either retrieval experts to be of
similar standard, or for verbose query expansion.
Dependant on experts processing the same query.
Based on empirical observation but theoretically
invalid.

Table 5.5: Score Distribution Fitting Summary

for various experts is far from the case. Similarity in the case of Arampatzis and

van Hameran (2001), verbose query-expansion was required to illicit the required

scores from experts in order to observe the two distributions.

Secondly in the described approaches the experts being combined, whilst having

different retrieval algorithms, had the same document representations and as such

each expert could be given the exact same query. However when the queries issued

to retrieval experts are completely different queries, as in the case of a CBMIR

multi-example query with a text and visual component, combining expert results

using an absolute measure (such as provided by Manmatha et al. (2001)) presents

problems, as the variance and diversity of an expert’s results makes absolute com-

parison problematic. To alleviate this, weighting could be employed to make the

results more cross-comparable, but in so doing we are back to our initial problem of

having to estimate correct weights for each set of results.

5.6 Other Methods

In this section we will briefly review other methods which have application for data

fusion. We list these approaches under ‘other methods’ as they either occur after the

initial retrieval process, or leverage aspects of the underlying data which we cannot
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for CBMIR.

5.6.1 Relevance Feedback

Relevance Feedback has long been an area of active research within the information

science community (Ruthven and Lalmas, 2003)(Zhou and Huang, 2003), dating

back nearly 40 years (Rocchio, 1971). The idea behind relevance feedback is that

it can be difficult for a user to formulate a query to an Information System which

will effectively capture what is being sought, but that a user presented with relevant

information will recognize it. A system can utilize these user judgements to better

refine the ranking presented to a user, typically in an iterative process (Ruthven and

Lalmas, 2003). As such it is a valuable technique for bridging the information need

of a user to a form that the system can better exploit.

Typically however, relevance feedback is an interactive process, or at the very

least occurs after an initial ranking by an information system. Therefore for the pur-

poses of this thesis, we do not consider relevance feedback as one of the approaches

which we will examine in depth, as we are concerned with data fusion with regard

to the generation of the best initial ranking. Whilst the study of relevance feedback

does have some applicability to data fusion, as often multiple forms of evidence need

to be combined, we state that the insights we obtain in this thesis can be applied to

relevance feedback as a separate activity in order to improve it, and indeed relevance

feedback can be applied to any of our techniques explored here in order to improve

retrieval performance.

Zhou and Huang (2003) conduct a thorough review of relevance feedback ap-

proaches in image retrieval, whilst Datta et al. (2008) in their general review of

image retrieval provides some additional updates to this work.

MARS, an early content-based multimedia retrieval system by Rui et al. (1997),

implemented relevance feedback similar to what is found in many text retrieval

systems. Utilizing textures as the content-based feature, it uses a vector space rep-

resentation and investigates both tf.idf and Gaussian normalization for determining

166



the weight vector.

Machine Learning approaches feature prominently in image relevance feedback

literature, their popularity due in part in being able to explicitly label non-relevant

images, so as to achieve a better separation between relevant and non-relevant items

(Datta et al., 2008). Hong et al. (2000) implement relevance feedback using a Sup-

port Vector Machine (SVM) (Vapnik, 1995). Their paper demonstrates the use-

fulness of SVMs for the relevance feedback problem, but they highlight the need

for multiple positive and negative examples to achieve good accuracy. Tong and

Chang (2001) utilize an SVM with active learning. Rather than after each round

of relevance feedback presenting to the user the top ranked relevant images from a

static classifier, their approach is to present images for which the classifier is most

uncertain and after each round the classifier determines new decision boundaries.

This approach offered improvement over the use of regular SVMs. Hoi et al. (2004)

addresses the class imbalance problem, that is for a typical relevance classification

task there are far more non-relevant than relevant images. They build a modified

SVM referred to as BSVM (Biased Support Vector Machine) which uses spheri-

cal hyperplanes to encompass relevant images. Liu et al. (2008a) also address the

class imbalance problem, through utilizing Semi-Supervised Learning (SSL) and di-

mensionality reduction in a method they term “Relevance Aggregation Projection

(RAP)”. The authors refer to the asymmetry problem in subspace CBIR machine

learning, which is that images labeled as ‘relevant’ share some semantic properties,

whilst ‘non-relevant’ images have no common properties, only that they differ from

the relevant images. By performing dimensionality reduction and SSL they are able

to capture nearby unlabeled data points to relevant points, thus leveraging the un-

labeled data to improve classification accuracy. For clarity, the difference between

active learning and SSL, is that in active learning, the user is required to annotate af-

ter each iteration, unlabeled data which a classifier is most unsure of, whilst in SSL,

unlabeled data is assigned to relevant and non-relevant labels through transduction.

The two approaches can be complimentary.
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Relevance feedback has also seen use in video retrieval domains. Yan et al. (2003)

use pseudo-negative relevance feedback in experiments on the TREC Video 2002

corpus. In this work, positive examples for feedback are items in the TREC topic

description, whilst negative examples are sampled from low ranks from an initial

search using the positive examples (although later research demonstrates a better

sampling strategy for pseudo-negative examples is a random sampling (Natsev et al.,

2005)). An SVM is used as the classifier, the results of which are combined with

the initial ranking, with the approach showing some improvement over the baseline

ranking.

Amir et al. (2005) highlight the problem that for users of CBMIR systems query

formulation is a complex process, as often it is expressed as a multimodal query

which may incorporate text, visual and semantic concept data. Their work is in

query reformulation, such that at the end of either a manual or interactive search

session, the user is left with a “well crafted multimodal search query” (Amir et al.,

2005). Their approach is heuristic and does not utilize SVM’s, rather making use of

static weights for feature combination, term updating through relevance feedback,

and Boolean operators for negative examples (i.e. use of NOT).

Luan et al. (2008) propose a method for interactive video retrieval which lever-

ages multiple forms of feedback for a search session. After an initial ranking, three

types of feedback are available to the expert user, for the novice user a recommen-

dation mechanism exists to suggest the type of feedback to select. The three modes

are ‘Recall-driven Relevance Feedback’ (RRF), ‘Precision-driven Active Learning’

(PAL) and ‘Locality-driven Relevance Feedback’ (LRF). RRF is designed to illicit

as many relevant annotations from the user as possible, by updating the initial rank-

ing using only text and semantic concepts, resulting in quick query times. PAL is an

active learning approach, similar to those previously described, whilst LRF exploits

the temporal nature of video by returning along with ranked shots, shots which are

temporally adjacent. The intention of this work is that different types of queries

for different video domains require different feedback strategies to achieve optimal
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performance.

5.6.2 Query Performance Prediction

Query Performance Prediction is a related area of work which may have application

in the task of weighted data fusion. The objective of query performance prediction

is for any given query to a search service, determine how likely it is to provide good

results to a user. The typical application for this is to identify queries which may

perform poorly and are therefore good candidates for query re-formulation (Cronen-

Townsend et al., 2002). The potential application for these approaches is that as they

have some discriminating power to determine good from poor performing queries,

they may be able to provide a good estimation for values of RCij .

The clarity score, defined by Cronen-Townsend et al. (2002), is one of the first

post-retrieval methods to attempt to determine how likely a query is to perform

well, where performing well means achieving a good Average Precision (AP) score.

The main idea is that once a query has been issued, the top set of documents

returned can be analysed to determine the level of ‘ambiguity’ they contain. Using a

language modelling approach, they compare the models of the top ranked documents

to that of the collection. If the models are similar, then the results are likely to be

poor (i.e. ambiguous) as the result set’s documents contain similar distributions of

indexed terms to that of the document collection. Alternatively if the models greatly

differ, it indicates the top documents are about a single topic and are more likely

to produce a good ranking (i.e. would produce a high AP value). This approach

was extended by Hauff et al. (2008), termed Improved Clarity which incorporated

an automatic approach for selecting the number of ‘top ranked’ documents and

improved smoothing.

Zhou and Croft have also been very active in this area, proposing a number

of measures for query performance prediction (Zhou and Croft, 2006)(Zhou and

Croft, 2007). The first of these, the robustness score, takes a document collection

C and generates a corrupted collection C’. A query is then issued against both
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collections, if the two result lists are similar, the proposed inference is that the

ranking is ‘robust’ and therefore the query is good. Alternatively if the result lists

are different the query is poor as the result was adversely effected by noise which was

not ignored by the ranking algorithm. This approach showed some improvements

over the clarity score, however it assumes that a good ranking is always possible,

which in the case of some experts, such as low-level visual features (Chapter 3) does

not always hold. Additional methods proposed by Zhou and Croft include Weighted

Information Gain (WIG) and Query Feedback (Zhou and Croft, 2007). WIG is an

entropy based approach which computes for the ‘top’ documents for a given query,

how likely they are to be relevant compared against the likelihood of relevance from

the average document for a collection. Query Feedback is similar to the robustness

score, it posits that a retrieval system is like a noisy communications channel which

transforms a query into a result set. By reversing this and generating a synthetic

query from a result set, it is possible to issue this synthetic query to obtain an

alternate ranked list. The two ranked lists are then compared and the degree of

overlap measured, where high overlap indicates a good query.

These approaches demonstrate some promise, particularly for uses such as query

reformulation. However there are drawbacks for their implementation in our CBMIR

setting. Firstly many of these approaches appear to have a collection effect impacting

upon performance (Hauff et al., 2008), whilst still maintaining a range of variables

that are required to be set. Secondly, these approaches typically involve a content-

based inspection of a subset of the returned documents for a given query. Whilst

this may be possible to implement in a language model based CBMIR system, open

questions remain regarding the cross-comparability of query prediction scores across

heterogeneous experts. That is, it may be that an additional weighting scheme is

required in order to appropriately compare these scores, which brings us back to our

initial data fusion problem.
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5.7 Conclusions

In this chapter we have reviewed approaches to weighted data fusion for the com-

bination of evidence. We began with an examination of past research into data

fusion, and hypotheses as to why data fusion improves the effectivness of retrieval

systems. Following this we examined the major approaches which can be utilized for

the weighted combination of result sets in our matrix of results RS. The majority

of approaches we identified typically only allowed the generation of weights to the

level of RCi, that is only at the expert level or potentially just beyond that. Few

approaches allowed us to generate or apply weights at the granularity of individual

result sets rsi,j. Therefore there exists a gap for the development of approaches

which can construct the weighting matrix RCi,j. As demonstrated in the previous

chapters, the imposition of a hierarchy to weighting approaches places an artificial

ceiling on the potential performance achievable, compared to what could be obtained

with weighting of all elements in the system.
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Chapter 6

Query-Time Data Fusion Using

Score Distributions

In this chapter, we will define our own set of algorithms for creating the weights to

be used in linear weighted data fusion. We first elaborate on the motivation for our

proposed approach introduced with the outcomes of Chapter 4 and the observation

of current techniques in Chapter 5, so as to establish where it fits within the ‘family’

of weighted data fusion algorithms. Secondly we provide an overview of some aspects

of ranked result lists which we aim to exploit. Third we present our algorithms for

creating our linear weights, followed by experiments on the corpora we have utilised

throughout this thesis. Finally we analyse our results, and attempt to determine

why aspects of our algorithms work, where improvement can be found, and how our

algorithms relate to existing approaches.

The work we are presenting in this chapter has seen previous application in

benchmarking evaluations, with the initial version first described in Wilkins et al.

(2006b). We subsequently utilized our approach in the TRECVID 2007 benchmark

and achieved the top run for visual only sources of evidence. More recently our

approaches were extended by the Chinese Academy of Sciences (CAS) to incorporate

semantic concept detection outputs, the resulting algorithms claiming the top runs

in automatic search in TRECVID 2008 (Cao et al., 1998). We have also applied
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the approaches described in this chapter to the task of merging semantic concept

detector outputs in order to improve effectiveness (Wilkins et al., 2007b).

6.1 Motivation

In this thesis so far, we have reviewed the approaches which are currently utilised for

creating the weights to be used for weighted linear data fusion. We have also con-

ducted what we believe to be a thorough empirical investigation of linear weighted

data fusion and in particular we have determined what attributes are key to max-

imising weighted combination for CBMIR. For clarity we re-iterate our terminology

used in this thesis:

E = {expert1 ... experti}

Q = {query1 ... queryj}

R = {document1 ... documentm}

documentm 7→ (name, rank, score)

RS = [rsi,j]|E|×|Q|

RC = [rci,j]|E|×|Q|

From the previous chapter we have established several criteria that can be used

to evaluate the likely success or capabilities of a weighting scheme for data fusion.

Firstly, we identified that the imposition of combination ‘levels’ such as combining

the results of queries from experts into a single result for that retrieval expert, places

a cap on the performance that can be obtained as compared to combining individual

rsi,j without any intervening aggregation. Secondly, we established that it is the

specific weighting of pairs 〈Experti, Queryj〉, in other words rsi,j, that contributes

to good retrieval performance. This means that a data fusion scheme needs to be

able to generate weights at the level of rci,j. Finally, an examination of the ideal
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weights produced for linear data fusion reveals that these weights approximate a log-

normal distribution, that is the majority of weights are clustered around the mean

weight whilst specific pairs 〈Experti, Queryj〉 are assigned large weights, resulting

in the extended tail seen in a log-normal distribution.

Reviewing the approaches we examined in Chapter 5, the majority of these ap-

proaches only allowed weighting at the expert level, that is weights were only created

for RCi, and therefore are unable to create weights for pairs 〈Experti, Queryj〉. The

task of creating a complete weighting matrix RC by necessity becomes a query time

operation, as we cannot know in advance what multi-modal multi-part query may

be submitted to the CBMIR system. Of the approaches examined in Chapter 5, the

two approaches which allowed this functionality to occur were the score distribution

approaches (see 5.5) and to a lesser extent the query-performance prediction ap-

proaches (see 5.6.2). The drawbacks of the query-performance approaches were that

the established methods appeared to have a degree of collection dependence (Hauff

et al., 2008), whilst requiring some degree of content inspection post-retrieval.

As we have previously covered, the use of score distributions for inferring the de-

gree of relevance has a long history. These various techniques each have attempted

to determine if the distribution of relevant documents has some unique proper-

ties which allows for the identification of relevant documents from a ranked result

set. These techniques have seen various applications, amongst them the creation of

weights for data fusion (Manmatha et al., 2001). Robertson (2007) identified vari-

ous theoretical problems with the current score distributional approaches however,

which indicates that there may be issues with applying these approaches to retrieval

data fusion problems.

The key characteristic of these approaches were that they were attempting to

infer the absolute degree of relevance of a given result set. When we are creating

weights for result set combination, the weights are not applied in a vacuum, rather

the weights are relative to what information is being combined. When we have two

ranked lists, α and β, and we assign weights respectively of 0.8 and 0.2, we are saying

174



that α is four times more important than β for the purposes of combination. We are

not making any absolute judgement through weight assignment of the likelihood of

absolute performance. Therefore the objective of any weighting scheme should not

be to infer absolute performance, but rather what is the relative performance of the

elements being combined.

6.2 Score Distribution and Average Precision

Our approach to query-time weight determination is an examination of the score

distribution for each result set rsi,j and how it differs from the other rsi,j used for

that query, so as to determine the relative differences between them. Based upon

observation of the variance of score distributions generated for each rsi,j for any

given query, we observed that a weak correlation appeared to exist by the rate at

which the early normalised scores of a rsi,j changed, relative to the other rsi,j, and

average precision. In other words, a rsi,j whose initial normalised scores changed

rapidly was more likely to have a higher AP score than rsi,j which had a more

gradual change in document scores. We illustrate this with an example of topic

‘0135’ from TRECVID 2005 in Figure 6.1.

In this graph we see distributions from four rsi,j one each from a text, edge,

colour layout and colour structure expert, truncated to the top 1,000 results, with

all scores normalised to the range [0..1] using MinMax normalisation. Corresponding

to this we can see what AP score each of these achieved. We can see in the table

that the ‘edge’ result scored the highest AP value, and correspondingly in the graph

we can see present that it featured the greatest initial change in scores as compared

to the other results. For instance, at rank 175, the edge result has a score of

approximately 0.2, whilst the colour experts have scores of 0.3, therefore the edge

result has undergone a more rapid change in score earlier in the ranking. From this

data however, the text result performs well but does not distinguish itself from the

other results in the graph presented. In this case, this is because the results are
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Figure 6.1: Score Distributions from topic ‘0135’ TRECVID 2005
and AP scores, normalized score on the Y-axis, rank on
the X-axis.
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truncated to 1000 results. In Figure 6.2 we present the same data, but this time

without any result set truncation.

 0
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 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000

colour struct
colour layout

edge
text

Figure 6.2: Score Distributions from topic ‘0135’ TRECVID 2005,
no truncation, normalized score on the Y-axis, rank on
the X-axis.

In this view of the data we can see more clearly demonstrated the different rates

of score decrease between the result sets examined. From this wider view of the

result sets we can see a more clear stratification of the score progression from each

of the result sets examined, allowing the text expert to better demonstrate that it

too does undergo a more rapid change in score, like the edge expert, in comparison

to the two colour experts. This indicates that any comparison of the rate of change

of scores between different result sets needs to take into account the relative amounts

of the results returned. Nevertheless there appears to be properties of the rate of

change of the scores of result sets that weakly correlate with AP such that it is

worth investigating if these properties are exploitable.

We are not making the observation that there is a clear, unambiguous correlation
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between the rate of change of the scores of a result set and AP, however we believe

there is some relationship between these two properties. Table 6.1 presents the

results of an analysis we conducted of the correlation between the ‘area’ of the

normalised scores of the top 500 results for each rsi,j and AP. Area in this case is

determined as the sum of the MinMax normalised scores for the top 500 documents

in each rsi,j.

TV2003 TV2004 TV2005 TV2006 TV2007 IC2007
-0.264 -0.278 -0.122 -0.052 -0.004 -0.276

Table 6.1: Pearson correlation of area to scoring function and AP.

From this data we can see that a weak correlation is present between the area of

the score of the top 500 documents and AP, particularly for corpora TRECVID 2003-

2004, ImageCLEF 2007 and to a lesser extent TRECVID 2005. This correlation is

quite weak, however it is consistent. If the relationship was an artefact of random

noise, we would expect to see at least some of the correlations in the positive range.

Furthermore the weakness of the correlations are partially attributable to the dismal

performance that individual rsi,j achieve, as we have previously demonstrated and

can be seen again in Figure 6.1 with the performance of the colour results. Figure

6.3 presents a scatter-plot of the area of the top 500 documents for each rsi,j and

AP for the TRECVID 2003 collection, demonstrating the negative correlation that

as the area decreases, the AP score increases. Again of note in this graph is the

conflation of multiple topics, each of which varies greatly in performance.

From the data we have presented, we believe we have established a case that a

weak correlation exists between the rate of change of the normalised scores of a result

set and AP. This correlation however is a relative correlation between the result sets

used in any given topic, it does not provide any indication of the likely performance

of any individual rsi,j. What this observation does allow for is the development of

methods which can create weights which allow for the relative weighting of result
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sets and their likeliness to perform better than the other result sets used for that

particular query. In the next section we will present our methods for attempting to

leverage these observations.

6.3 Algorithms

As stated in our introduction, we have developed approaches which leverage these

relative changes in score distributions to create methods which generate weights for

linear data fusion. The key characteristics of these approaches are that the weight

generation occurs at query-time, which therefore allows for a complete populating of

the weighting matrix RC. As such, the algorithms we have defined are unsupervised

and are not reliant on training data being available. These two key characteristics

distinguish our approaches from current approaches to weight generation. In this

section we define two approaches, known as Mean Average Distance (MAD) and

Maximum Deviation Method (MDM). The first approach, MAD, is the approach

our previously published research is based upon (Wilkins et al., 2006b), whilst MDM

is our recent development which offers performance improvement.

6.3.1 Mean Average Distance (MAD)

Our model for relative weight determination is based upon an examination of the

differences between the scores of adjacent documents in one list and contrasting that

to the differences between the scores of adjacent documents in another result list.

We refer to this as the Mean Average Distance (MAD), and formally this is given

by:

MAD =

∑N

n=1(score(n) − score(n + 1))

N − 1
(6.1)

Where score is the MinMax normalised document score, N is the total number

of documents to be examined in the result set. For example, if document ‘A’ has a
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normalised score of 0.85 and document ‘B’ has a normalised score of 0.80, then the

difference we measure between the two is 0.05. We can then sum these differences

for each result set to provide an indication as to the progression of the document

scores for a result set.

A direct comparison of these differences in itself will not yield much useful in-

formation as the differences could be accounted for by the ranking metric or even

the nature of the distribution of the raw feature data. Therefore to achieve a score

that is comparable between lists we define a ratio which measures MAD within a

top subset of a result list, versus that of a larger set of the same result list. The

resulting score we refer to as a Similarity Cluster (SC), and can be defined as:

SC =
MAD(subset)

MAD(largerset)
(6.2)

In effect the variables subset and largerset are substituted into Eq 6.1 for the

variable N . The selection of the values of subset and largerset dictates how ag-

gressively we weight the change in document scores for a rsi,j which occur earlier in

the ranking. Whilst rsi,j from visual experts will always retrieve the same number

of documents for a given query, as visual expert rankings are based on a similar-

ity measure, results set sizes from a text expert will vary in size of the number of

non-zero scored documents returned, highlighted in our earlier examination of score

distributions for topic ‘0135’. Therefore we assign the values of subset and largerset

as percentages of the result set size, which through testing we have determined to

be 5% and 95% respectively. This means that we compare the change in score of the

top 5% of a result set, versus the change in score of 95% of the result set. This ratio

provides us with a measure of how much the initial scores of a result set change in

comparison to the overall change in scores for a result set. If the average change

of the subset is greater than the overall average change, a large SC value will be

generated, and vice versa for a small SC value. The final weight for each rci,j is the

scaling of the SC values to the range [0..1] where
∑

rci,j = 1, as given by Eq 6.3.
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rci,j =
rsi,j SC Score

ΣRS SC Scores
(6.3)

6.3.2 Maximum Deviation Method (MDM)

The maximum deviation method (MDM) is an evolution of the previously detailed

MAD algorithm both of which share the same intent, to create greater weights for

those rsi,j whose scores undergo a more rapid initial change in score as compared to

the other rsi,j used for that particular query. Whilst the previous method examined

the average change in scores for given sizes of a result set and compared these

changes, the MDM algorithm instead uses a fixed reference point from which to

compare all result sets.

From Section 6.2 we observed that a rapid change in score was an indicator

of potential better AP performance as compared to the other results sets used.

Therefore the converse of this position is that a gradual change in document scores

is an indicator of likely poor relative performance. An example of a poor score

distribution would be a linear progression from the maximum to the minimum score,

which we refer to as a linear ranking.

If we compare the normalised scores of a rsi,j to that of the normalised scores of a

linear ranking we can determine two key variables. The first is that we can compare

for each rank the distance between the actual rank’s score and the score of the linear

rank, which we refer to as d. By comparing both distributions we can determine what

the maximum value of d is, which would correspond to the point which maximally

deviates from a linear ranking. The second variable is the rank position at which

the maximum deviation occurs, which we refer to as r. We can illustrate both of

these variables in Figure 6.4, which compares a rsi,j score distribution, plotted as

the green line, against the reference linear distribution, plotted as the dashed black

line. We can more formally define the variables d and r in Equations 6.46.5.

d = max ( linear(x) − current(x) ), for x ∈ X (6.4)
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Figure 6.4: MDM Algorithm Visualisation

r =
rank(d)

|X|
(6.5)

where max is a function which returns the maximum value of the comparison, x is

the rank position being examined from the set of all ranks X for any given rsi,j.

The functions linear(x) and current(x) return the scores at rank position x for the

linear and rsi,j distributions respectively. The function rank(d) returns the value of

x where the maximum deviation occurred, and |X| is the size of rsi,j. One caveat for

these formulae is if the difference between the linear score and the current score is

negative, that is that the score is actually more than the linear score. In cases where

this occurs we set the difference to 0. If for a given rsi,j the maximum difference is

0, that means the actual score distribution was above linear for all ranks x, therefore

we assign an arbitrary low weight of 1
1000

for that rsi,j. The final calculation of the

weight for each rsi,j is given in Equation 6.6. Like the previous MAD method, we

also scale these values to the range [0..1].
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MDM(rsi,j) =
d

r
(6.6)

We believe the MDM method better captures the differences between score dis-

tributions where the criteria for comparison is the initial change in scores. By

comparing against the fixed linear distribution we can determine not only how great

a score distribution deviates from the linear distribution, but where this deviation

occurs. For instance, if the deviation is greatest towards the end of the ranking,

then a low weight will be generated, as the value for r will be high. Likewise, if two

rsi,j demonstrate the greatest deviation at approximately the same location, but

one instance has a greater deviation, then it will receive the greater weight. This

method also improves upon our previous MAD method as it is parameter free.

Both of these methods we have defined have the capability of fully populating the

weighting matrix RC, rather than just setting expert level weights. A consequence

of this is that these approaches are unsupervised, as the weight generation occurs

at query-time and is query-dependent. Our selection of direct-level combination for

this approach is because the motivation for the development of these algorithms is

that they can create weights at the direct-level of combination, an attribute current

weighting schemes do not possess.

6.4 Experimental Results

In this section we will be present the experimental results of applying our query-time

weight generation algorithms to the data sets we have been exploring throughout this

thesis. For these experiments we will conduct both rank and score-based variants

of these experiments. Score-based combination will use MinMax for normalisation,

whilst for rank-based normalisation we will use BordaMAX. The combination of

result sets will be through weighted CombSUM.

Our previously published experiments utilising the MAD approach had employed

combination levels in that investigation (Wilkins et al., 2006b)(Wilkins et al., 2007b).
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In this series of experiments we will perform the direct level of combination. This

is a more challenging environment in which to operate, as the raw number of result

sets to be combined is quite high. Table 6.2 demonstrates for each corpora when

using a direct level of combination what the average number of result sets to be

combined is. All available retrieval experts will be utilised for this experiment, our

six visual and one text expert. As such we consider this a more stern test of the

capability of our approaches to generate applicable weights, particularly as direct

level combination is the position we advocated earlier in this thesis.

TV2003 TV2004 TV2005 TV2006 TV2007 IC2007
32.88 37.25 57.75 43.25 52.25 19

Table 6.2: Average number of rsi,j to be combined per query, per
corpora.

We present our results in Figures 6.5 and 6.6, first the rank-based results, then the

score-based results. Our comparison for this experiment is the uniform combination

of result sets to demonstrate the effect of no weighting. For each result we compare

MAP, recall and P10. Runs whose MAP is in bold are significantly different to

the baseline run. To demonstrate the difference in performance between our query-

dependent approaches and the baseline, we present in Figure 6.7 the percentage

improvement for each approach over their respective baselines for MAP, and in

Figure 6.8 the improvement when P10 is examined.

The presented results demonstrate many aspects of performance. Firstly in a

majority of cases, our query-dependent approaches are able to create weighting

matrices RC which improve performance over the baseline results. The one notable

exception to this is the TRECVID 2007 corpus, which would appear to be somewhat

of an outlier. Secondly we observe that in these cases, score based normalisation

clearly outperforms rank-based normalisation, contrary to our earlier findings when

the ideal weighting set was employed. Again there is one exception to this, which
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Legend
Run
Uniform Rank
MAD Rank
MDM Rank

TRECVID 2003
MAP Recall P10
0.0506 0.2815 0.0880
0.0544 0.2738 0.0960
0.0638 0.2704 0.1080

TRECVID 2004
MAP Recall P10
0.0280 0.1673 0.0957
0.0306 0.1729 0.1043
0.0327 0.1833 0.1261

Legend
Run
Uniform Rank
MAD Rank
MDM Rank

TRECVID 2005
MAP Recall P10
0.0602 0.2215 0.2208
0.0619 0.2205 0.2458
0.0632 0.2164 0.2375

TRECVID 2006
MAP Recall P10
0.0189 0.0984 0.0958
0.0197 0.1020 0.1083
0.0201 0.1143 0.1083

Legend
Run
Uniform Rank
MAD Rank
MDM Rank

TRECVID 2007
MAP Recall P10
0.0445 0.2700 0.1833
0.0427 0.2640 0.2000
0.0368 0.2545 0.1917

ImageCLEF 2007
MAP Recall P10
0.1269 0.4950 0.3183
0.1360 0.5318 0.3150
0.1423 0.5473 0.2967

Figure 6.5: Rank based query-dependent weighting

is the TRECVID 2006 corpus, which throughout our experiments has consistently

been the worst performing of our six corpora. In TRECVID 2006 the rank-based

normalisation approaches outperform the score-based approached. TRECVID 2006

as the poorest performing corpora can also be considered the most noisy, which

indicates that the extreme smoothing offered by ranking is of greater benefit (Croft,

2000).

It is of interest however the discrepancy between the benefits of using ranks with

optimal weights, as in our previous experimentation chapter, versus using scores with

sub-optimal weights. Clearly appropriate weights are the key to obtaining strong

performance for noisy data fusion tasks such as CBMIR. From the presented data,

we observe that our greatest performance improvements with our query-dependent

weighting approaches came when ranks were utilised (see Figure 6.7), whilst these

relative improvements were less when score-based normalisation was utilised. Con-

versely however in absolute performance the score-based methods out-performed the

rank-based methods. An examination of the uniform runs demonstrates that score-

based combination typically outperforms rank-based combination when no weighting
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Legend
Run
Uniform Score
MAD Score
MDM Score

TRECVID 2003
MAP Recall P10
0.0618 0.2719 0.1080
0.0640 0.2715 0.1160
0.0672 0.2688 0.1200

TRECVID 2004
MAP Recall P10
0.0296 0.1708 0.1000
0.0316 0.1746 0.1043
0.0336 0.1837 0.1217

Legend
Run
Uniform Score
MAD Score
MDM Score

TRECVID 2005
MAP Recall P10
0.0643 0.2172 0.2250
0.0669 0.2191 0.2458
0.0678 0.2204 0.2542

TRECVID 2006
MAP Recall P10
0.0177 0.0972 0.0792
0.0186 0.1009 0.1042
0.0172 0.1040 0.1083

Legend
Run
Uniform Score
MAD Score
MDM Score

TRECVID 2007
MAP Recall P10
0.0532 0.2567 0.1750
0.0552 0.2605 0.1792
0.0509 0.2545 0.1792

ImageCLEF 2007
MAP Recall P10
0.1420 0.4922 0.3700
0.1558 0.4881 0.3867
0.1636 0.5148 0.3767

Figure 6.6: Score based query-dependent weighting

Figure 6.7: MAP Improvement over baseline
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Figure 6.8: P10 Improvement over baseline
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is employed. Therefore we have observed that if the weights are optimal, rank-based

normalisation produces the greatest performance, as the weights purely dictate per-

formance. If the weights are sub-optimal, score-based normalisation provides a level

of performance improvement as the scores regulate the impact of the weights. That

is, as the scores themselves are non-linear, they provide an indication of which docu-

ments are more important than others, thus the application of the weight to a score

has less impact than the application of the weight to a rank.

Comparing our two approaches MAD and MDM, we can see demonstrated that

the MDM outperforms the MAD approaches in a majority of cases. Again the

notable exception to this is the TRECVID 2007 corpora which appears to behave

quite differently to each of our other corpora under examination. Both approaches

offered improvement for P10 over the baseline, demonstrating that the weights were

successfully promoting more relevant documents higher in the ranked list, however

at times this was at the expense of recall. Overall however the MDM approach

appears to more successfully exploit differences in score distributions than the MAD

approach. We can demonstrate this by comparing the correlation of the improvement

each approach obtained, versus the data in Table 6.1 which demonstrated which

corpora had higher correlations of ‘area’ and AP. The results of this correlation are

presented in Table 6.3.

Rank Score
MAD -0.88 -0.55
MDM -0.96 -0.85

Table 6.3: Correlation of MAP percentage improvement and area
correlations from Table 6.1

This table demonstrates a very strong correlation between the improvement achieved

over the baseline result, and the degree to which a given corpus displayed a corre-

lation between the area under a score distribution and AP. We can see that for

both MDM approaches, a strong correlation is present, indicating that performance
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is dictated by this underlying association of area and AP (see Section 6.2). What

is of particular interest, is that TRECVID 2003, 2004 and ImageCLEF 2007 dis-

played the highest levels of correlation between area and AP, and that these corpora

were the best performing with regards to improvement over the baseline approach.

This is useful as it points towards the development of collection-based tests which

may be employed to determine the benefits of using our query-dependent weighting

approach within that domain.

The results when examined for statistical significance are disappointing, as only

one run in the rank-based evaluation demonstrates a significant difference, whilst for

the score-based runs only three runs demonstrate a difference. We believe however

that this artefact is due partly to the nature of the significance test, coupled with

nature of TRECVID topics. The significance test as indicated previously tests for

significance between pairs by randomly flipping several topic results of the two lists.

The issue as we have highlighted previously, with respect to MAP and TRECVID,

is that in several TRECVID evaluations performance is dominated by a handful

of very high performing topics. This is effect can mask performance differences

in the aforementioned statistical test. For several of the evaluations if we remove

one of the high performing topics, whilst we see a degradation in overall MAP,

the significance test reports significant differences between the runs. However the

selective removal of topics from evaluation benchmarks is an unwise practise, so it

will not be further pursued. Nevertheless an examination of the results, particularly

the percentage increase graphs demonstrates a deterministic process as the ordering

and magnitude of the differences remains constant across corpora. Specifically the

MDM runs consistently out-perform the MAD runs across all corpora, with the

exception of TRECVID 2007 where the magnitude of the decrease in performance

is also consistent.
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6.5 Analysis

From the results from our experiment we have demonstrated that it is possible to

leverage the relative difference of score distributions in order to create query-time

weights for data fusion. Whilst there’s no doubt that the methods we have presented

can be improved upon, a more fundamental question is why do these approaches

achieve any success at all? Firstly however, we need to examine the output of the

two algorithms we have created, namely what was the final distribution of weights

generated by the two approaches. Using the methods we utilised in Chapter 4, we

present for both MAD and MDM the histograms of the weights generated, and an

analysis of their distribution through Q-Q plots against normal distribution. These

graphs are given for the MAD approach in Figure 6.9 and MDM in Figure 6.10

Examining these graphs we can see demonstrated that they do in fact generate

quite different sets of weights, despite having the same motivation for their imple-

mentation. The weights generated by the MAD approach approximate a normal

distribution, which is evidenced by both the histogram, and the tracking along the

dashed line in the Q-Q plot. Encouragingly, the MDM approach, which we would

consider the more successful of the two approaches, generates a weight distribution

which is far closer in shape to what the ideal weight distribution shape is. The

MDM approach approximates a log-normal distribution, which we can see in the

histogram and on the Q-Q plot. Compared to the ideal weight distributions which

we examined in the previous Chapter, this log-normal is more compact, however

the general form of the weights it is generating is very encouraging. From the per-

formance figures there is clearly room for improvement, however the indications are

that this method is proceeding in a promising direction.

The fundamental issue as mentioned in the beginning of this section is why

this attribute occurs at all. We have developed a working hypothesis of what we

believe to be the cause. The benchmarks for multimedia data are typically fairly

sparse with relevant data (Natsev et al., 2005), therefore we believe that when a
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Figure 6.9: MAD Weight Distributions, all corpora
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Figure 6.10: MDM Weight Distributions, all corpora
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result set undergoes a rapid change in its initial normalised scores, that the expert

which is generating these results is making more definitive judgements, or has greater

confidence, in the rank positions it is assigning those documents. Conversely, if there

is a gradual decline in the normalised scores, then the expert is ranking multiple

documents in similar rank positions and is making less determined decisions about

the rank position. Both of these viewpoints are not absolute but are made when

observing the set of score distributions to be combined, as such these are relative

inferences.

Our justification for this hypothesis is based upon the work of Robertson and his

investigations into score distributions and probabilistic ranking (Robertson, 1977,

2007). Robertson highlights that the only purpose of a score generated by the system

is to allow the system to assign a rank to a document (Robertson, 2007). Robertson

has also previously defined the Probabilistic Ranking Principle (PRP) which is the

assumed link between relevance and ranking, that a system will rank documents in

order of their probability of being relevant. Finally we know that as the output of

a search system is ranked, its scoring function must be monotonic, that is as the

ranking is produced by the ordered scores, we know that when plotted the score

distribution will never have a positive inclination.

Given the above, the worst case for any retrieval system therefore is for docu-

ments to be assigned the same score, which will produce ties in the ranking. When

plotted, the score distribution which contains tied documents will produce a hori-

zontal line. This horizontal line effectively means that for the length of that line,

the ordering of the rank positions which it occupies is effectively random. This is

the worst possible scenario for a search engine as it has been unable to distinguish

any differences between the documents with regards to relevance, yet has produced

a ranking which assigns an importance to a document which it does not possess.

Therefore we can state that the worst case for a score distribution is a horizontal

ranking.

Conversely we can take the position that the best case by extension, is that in
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which the scoring function assigns unique values to documents such that they are

unambiguously ordered. A rapid change in score represents documents of a ranked

list which are likely to have the greatest differentiation from the other documents

ranked. In an ideal ranking where documents are ordered by their degree or likeli-

hood of relevance, we would expect documents with greater degrees of relevance to

appear earlier in the ranking, with the change in score representing this. Equally we

would like all non-relevant documents to be assigned the same score, as they are all

equally non-relevant. The assignment of uniform scores to non-relevant documents

would produce a horizontal ranking, whilst as there are small amounts of relevant

documents we would expect a steep gradient representing the progression from very

relevant through to non-relevant documents. These properties of score distributions

which we have identified represent our best approximation as to the causes of the

observed effect and provide us with a justification for its exploration.

6.6 Conclusions

In this chapter we have presented our own approach to weighted data fusion which

is capable of generating the complete weighting matrix RC which few other data

fusion algorithms are capable of. These approaches are query-dependent, but as a

consequence is unsupervised. We have demonstrated reasonable performance im-

provements utilising our algorithms which point to its potential for enhancing re-

trieval performance.

The task in which we chose to evaluate was weighted data fusion where we

employed no weighting hierarchy. This task is quite difficult, as we are generating in

some cases over 55 weights for combining sources of evidence. Nevertheless we chose

this evaluation as our previous investigation has demonstrated that direct levels of

combination are capable of offering superior performance.

Whilst we have advocated our data fusion algorithms, their application does

not need to occur in isolation. The algorithms we have defined we believe could
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quite easily be incorporated into existing data fusion algorithms such as query-class

classification. For instance, once the query classes have been established through

training, our methods could be utilised at query-time to modify the query class

weights such that they suit the specific query being issued. Furthermore our ap-

proaches are computable with other retrieval approaches for improving performance,

such as relevance feedback, as they can be utilised to improve the initial ranking

before feedback.
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Chapter 7

Conclusions

Multimedia retrieval, to borrow a cliché from World Wide Web research (WWW),

is growing at an exponential rate, with the continued adoption of digital capture

devices ensuring an ever-increasing stream of data being generated. Just like search

evolved on the WWW with the move to content-based searching, search within mul-

timedia documents is embracing content-based methods in order not just to cope

with the deluge of new data, but also to provide relevant results to new search vec-

tors which were not previously available. The development of low-level features has

allowed the unsupervised extraction of searchable data from multimedia documents,

however the use of just one low-level feature is unsatisfactory as such features gen-

erally perform poorly in isolation. Therefore, we must combine multiple low-level

feature results in order to obtain acceptable retrieval performance, and this is often

achieved though weighted data fusion. This thesis has been concerned with an in-

vestigation into the task of weighted data fusion of noisy sources of information in

order to improve retrieval effectiveness.

In Chapter 2 we presented a high level overview of Multimedia Information

Retrieval (MIR), specifically of Content-Based Multimedia Information Retrieval

(CBMIR). We presented the sensory gap and the semantic gap to highlight the

noisy properties of multimedia data which makes the task of retrieval for CBMIR

difficult. Whilst we highlighted approaches such as semantic concept detection as
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a means for attempting to bridge, or mitigate, the effect of the semantic gap, we

demonstrated the significant challenges that affect that research field. We presented

our motivation for focusing our attention on the use of low-level features, otherwise

known as low-level retrieval experts. Having shown that these experts produce noisy

evidence, it demonstrated the need for the employment of effective weighting schemes

to appropriately combine these forms of evidence. The combination of these forms

of evidence is far from straightforward, however, with many techniques available for

achieving this aim.

The objective in Chapter 3 was to identify all explicit and implicit variables

which impact upon the performance of the combination of multiple ranked results.

The mechanism for this combination is data fusion, and we thus provided an intro-

duction to this topic along with an overview of previous general data fusion research.

Whilst there have been numerous prior studies examining various aspects of data

fusion performance, there have always been variables which are implicitly set and

not examined, (such as the use of combination levels) which impact upon perfor-

mance and required exploration. The factors we identified include normalisation

approaches, combination operators such as CombSUM and CombMNZ, hierarchical

combination levels and read-depths. In this Chapter we also introduced terminology

to help define these factors and their interactions, highlighting that our investiga-

tion and subsequent system would be processing multi-part multi-expert queries.

Having multiple Experti and Queryj available meant that at query time a matrix

of results was generated to be combined, RS which if each element was weighted

would require the weighting matrix RC.

In chapter 4, we presented an empirical evaluation of the variables identified in

chapter 3 in terms of their impact on weighted data fusion. We introduced an alter-

native experimental model to that commonly used in the evaluation of IR systems,

directly optimising on the test collections so as to find the ideal sets of weights for

data fusion. This allowed us to neutralise the impact of the weights on performance

so that we could evaluate the actual impact of the other variables, which may oth-
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erwise have been masked by the performance of the weights. As a result we made

several fundamental observations which challenged accepted wisdom about the pa-

rameters to be used for weighted data fusion tasks. These observations included the

following: the ideal weights for data fusion approximate a log-normal distribution,

when ideal weighting is used rank normalisation outperforms score normalisation,

CombSUM clearly outperforms CombMNZ contrary to accepted wisdom and the

imposition of combinatorial hierarchies places quite low ceilings on the maximum

performance that can be obtained. This chapter also revisited earlier data fusion

experiments to test these observations on previously published data sets.

In Chapter 5 we presented a review of approaches which can be used for weighted

data fusion. The majority of these approaches typically only allow the generation of

weights to the level of RCi, that is only at the expert level. Few existing approaches

allowed us to generate or apply weights at the granularity of individual result sets

rsi,j. In chapter 4, we demonstrated a need for the development of algorithms for the

generation of weighting schemes capable of producing the complete weighting matrix

RC. This class of algorithm is difficult to develop however, primarily because such

an approach would need to generate query dependent weights. Query-dependent

approaches by definition can only make limited use of training data, which can be

an issue when heterogeneous document collections are utilised, such as those we

have experimented with.

Finally in Chapter 6 we presented our novel approach to weighted data fusion

which comprises an unsupervised query-dependent set of algorithms capable of gener-

ating the complete weighting matrix RC. Our approach demonstrates a reasonable

performance improvement, leveraging properties of the score distributions of the re-

sult sets to be combined in order to create weights which aid retrieval performance.

We conducted an evaluation using a direct level of combination where in some testing

corpora we were on average creating 55 weights per query. Whilst showing promise,

we highlighted that this approach could easily be incorporated into other data fusion

schemes so as to provide them with a degree of query-dependent weighting.
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In this thesis we have focused on an examination of the use of low-level retrieval

experts for weighted combination within the task of CBMIR. Low-level experts are

often derided or overlooked as sources of retrieval effectiveness, with much research

today focused on areas such as semantic concept detection as the panacea to the rel-

ative poor performance of multimedia retrieval (Smeulders et al., 2000)(Hauptmann

and Christel, 2004)(Blanken et al., 2007). This position is understandable,: as we

saw in Chapter 3, many individual experts across corpora averaged only 0.01 - 0.03,

barely above the level of random noise. Despite this, data fusion is the key process

for leveraging these sources of data in order to improve retrieval performance, par-

ticularly weighted data fusion. The combination of these forms of evidence through

uniform weighting was surprising in the level of retrieval performance that was ob-

tained,: simply fusing these sources of evidence together typically saw an order of

magnitude improvement over the performance of individual experts.

Our testing methodology of optimising directly on the test collection such that

the ideal weights are used was justified when considered against the empirical obser-

vations which we made. The creation of weights was performed within a vacuum in

many previous cases as a thorough grid search of the parameter space is infeasible

at a topic dependant level. This process meant that the weights used would impact

upon the experimental observations. By having the weights at close to their ideal

values, the weights themselves became a fixed constant which allowed for the accu-

rate measurement and observation of other factors which impacted upon retrieval

performance. This leads to two of our key findings: the demonstration of the effec-

tiveness of CombSUM over CombMNZ contrary to accepted wisdom, and the very

large performance cap created by utilising combinatorial hierarchies.

In this thesis, we have conclusively demonstrated that that low-level experts,

when weighted with ideal weights and using the appropriate combination opera-

tors, achieves a level of performance that runs totally against previous experimental

knowledge. The application of the ideal weights sees an order of magnitude improve-

ment in retrieval effectiveness as measured by MAP. This result provides significant
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impetus for the continued development of approaches for generating weights for data

fusion using low-level features, as the performance gains of the correct weighting ex-

ceed expectations. This task is certainly non-trivial and as likely to be solved in the

near term as finding a solution for determining relevance with complete accuracy.

Nevertheless, our research has shown that many noisy signals when used in unison

are far greater than the sum of their parts, regardless of weighting, and that using

the correct data fusion variables and an ideal set of weights retrieval performance is

far in excess of all expectations.

7.1 Future Work

There are multiple avenues for work to progress on from this thesis. However there

are two key related outcomes which we would like to see receive wider attention,

domain specalization, and the observation on the distribution of weights approxi-

mating a heavily skewed log-normal distribution.

Firstly, our work in this thesis has been at a generic level, where we experimented

on six different corpora so as to get generalised results. However in an operational

system, the corpus may be more well known. We would be interested in examining if

the techniques we have developed so far can have extension to the corpus level. This

would allow for a degree of specialization to occur and enhance retrieval performance.

In a similar vein, we treated the retrieval experts we used as equal, making no prior

assumptions about their behaviour. An extension we would be keen to explore is if

any of these techniques could be used to categorize or tailor the retrieval techniques

to specific experts.

Second, the observation that a minority of pairs

〈Experti, Queryj〉 drives performance, readily dictates that we should develop fur-

ther improvements to our query-time algorithms to exploit this property. Our initial

attempts whilst achieving some success can clearly be improved upon when com-

pared against what performance could be attained. This direction of research is
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challenging and will likely need to incorporate some form of specific content-analysis

step, rather than the generic approaches which we have utilised in this thesis. Never-

theless the degree to which performance can be improved overall for CBMIR makes

this task a worthy objective.

7.2 Publications

Listed below are some of the major publications that were either worked on, or con-

tributed to, this thesis during my tenure as a PhD student at Dublin City University.

As mentioned in my acknowledgements, I am very grateful and lucky to have com-

pleted these studies within the Centre for Digital Video Processing (CDVP), which

has allowed me to work on and explore a wide variety of research areas.

Publications which directly deal with the algorithms detailed in Chapter 6 in-

clude (Wilkins et al., 2006a)(Wilkins et al., 2006b), the application of our algorithms

to classifier combination (Wilkins et al., 2007b), whilst also being featured in the

SIGIR doctoral consortium 2007 (Wilkins, 2007).

Whilst the majority of this work has been concerned with laboratory style exper-

iments, we have also examined the role of users and their interactions with CBMIR

systems (Byrne et al., 2008)(Wilkins et al., 2009). The study of users and the use

of CBMIR systems is a thesis in itself and throws up many more challenges than

we have covered here, however given the variety of methods in which a user may

interact with a CBMIR system we are finding that user variability plays a very large

part in retrieval performance.

Throughout the years 2005-2008 the algorithms developed as part of this thesis

found testing grounds in the benchmarking activities of TRECVID and ImageCLEF-

Photo for these years. In the proceedings of these workshops are papers from Dublin

City University (DCU) which will highlight what we developed for that year, and

show the evolution of our thoughts, notably (Järvelin et al., 2007)(Wilkins et al.,

2007a). Our recent journal (Smeaton et al., 2008) written with several other groups
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who participate in TRECVID, provides an overview of the types and variations of

retrieval systems which TRECVID participants create.
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