
Constraint-based Validation of e-Learning Courseware

Mark Melia

Bachelor of Science in Software Systems

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Claus Pahl

September, 2009

Declaration

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work,that I have

exercised reasonable care to ensure that the work is original, and doesnot to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed:

Student ID: 50057436

Date: September 18, 2009

i

Contents

Abstract x

Acknowledgements xi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Problem Context . 1

1.2 Research Problem and Challenges . 4

1.3 Solution and Evaluation . 6

1.4 Contributions . 9

1.5 Thesis Outline . 11

2 Background 13

2.1 Introduction . 13

2.2 Courseware . 13

2.2.1 Courseware Scope . 15

2.2.2 Courseware Structure and Sequencing 16

2.2.3 Learning Content in Courseware 18

2.2.4 Pedagogical Strategy . 19

2.2.5 Courseware Quality . 20

ii

2.2.6 Courseware Standardisation Efforts 22

2.3 Software Modelling Technologies . 25

2.3.1 Meta Object Facility (MOF) . 27

2.3.2 Unified Modelling Language (UML) 27

2.3.3 Eclipse Modelling Framework (EMF) 28

2.4 The Object Constraints Language (OCL) 28

2.4.1 OCL Language Constructs . 29

2.4.2 OCL Applications . 33

2.5 Model Driven Engineering . 35

2.6 Model Transformations . 36

2.7 Chapter Conclusion . 37

3 State of the Art 40

3.1 Introduction . 40

3.2 Courseware Construction . 40

3.2.1 Specification-based Courseware Construction 41

3.2.2 Adaptive Educational Hypermedia (AEH) Courseware Authoring

Tools . 44

3.2.3 Ontology-based Authoring of Courseware 46

3.2.4 Constraint-based ITS . 50

3.2.5 Model Driven Courseware Engineering 52

3.3 Courseware Validation . 59

3.3.1 Concept-based Course Analysis (CoCoA) Tool 59

3.3.2 Logic-based Course Planning and Verification 61

3.3.3 Ontology-based Guideline Definition for Courseware 63

3.3.4 Trap Detection in IMS Simple Sequencing 64

3.4 Comparison Framework . 65

3.4.1 Courseware Construction Approaches 65

3.4.2 Courseware Validation Approaches 67

iii

3.5 Chapter Conclusion . 69

4 Defining a Courseware Validation Framework 71

4.1 Introduction . 71

4.2 Courseware Actors . 72

4.3 Courseware Construction Concerns . 73

4.4 Validation Focus of our Research . 76

4.4.1 Course Scope Validation . 77

4.4.2 Courseware Structure and Sequencing Validation 77

4.4.3 Validation of Learning Objects in Courseware 79

4.4.4 Pedagogical Validation . 80

4.5 Chapter Conclusion . 81

5 Defining the CAVIAr Data Models 83

5.1 Introduction . 83

5.2 Language Notation, Syntax and Semantics 85

5.3 The Domain Model . 87

5.3.1 Defining the Domain Model Abstract Syntax 88

5.3.2 Defining the Domain Model Semantics 89

5.3.3 Domain Model Interoperability 90

5.3.4 Defining a Candidate Concrete Syntax Definition 91

5.4 The Learning Context Model . 92

5.4.1 Defining the Learning Context Model abstract syntax 93

5.4.2 Defining the Learning Context Model Semantics 95

5.4.3 Learning Context Model Interoperability 97

5.4.4 Defining a Candidate Concrete Syntax Definition 97

5.5 The Learning Resource Model . 98

5.5.1 Defining the Abstract Syntax . 99

5.5.2 Defining the Learning Resource Model Semantics 100

5.5.3 Learning Resource Model Interoperability 101

iv

5.5.4 Defining a Candidate Concrete Syntax Definition 101

5.6 The Courseware Model . 102

5.6.1 Defining an Abstract Syntax for Courseware Definition 102

5.6.2 Defining the Courseware Model Semantics 104

5.6.3 Courseware Model Interoperability 106

5.6.4 Defining a Candidate Concrete Syntax Definition 107

5.7 Chapter Conclusion . 108

6 Courseware Validation 110

6.1 Introduction . 110

6.2 Defining a Domain Specific Language for Constraints 111

6.2.1 OCL Helper Operations . 111

6.2.2 Towards a Model-Driven OCL Generation 117

6.3 Validation Approach . 119

6.4 Courseware Validation Pre-requisites . 121

6.5 Courseware Model Validation . 122

6.5.1 Courseware Attribute Validation 123

6.5.2 Courseware Integrity based on Courseware’s Learning Content .. . 126

6.6 Learning Context Validation . 127

6.6.1 Domain Model Constraints . 128

6.6.2 Learner Context Constraints . 129

6.6.3 Validating Courseware Adaptivity 134

6.7 Chapter Conclusion . 135

7 Courseware Validation Process and Activities 137

7.1 Introduction . 137

7.2 Example Case-Study Course Specification 138

7.3 Validation Process Overview . 141

7.4 Determining the Domain Model . 142

7.4.1 Developing a Domain Model . 143

v

7.4.2 Incorporating an External Domain Model 144

7.4.3 Case-study . 144

7.5 Defining the Learning Context Model . 146

7.5.1 Defining the Conceptual Pre-requisite Constraints 147

7.5.2 Defining Learner Stereotypes . 147

7.5.3 Case-Study . 149

7.6 Determining the Validation Model . 151

7.6.1 Determining the Instructional Design 154

7.6.2 Deriving Instructional Constraints 154

7.6.3 Formulating Instructional Constraints in OCL 155

7.6.4 Case-study . 155

7.7 Rendering the Courseware Definition into CAVIAr 160

7.7.1 Case-study . 160

7.8 Validation of Courseware . 161

7.8.1 Validation Engine Initialisation 162

7.8.2 Validation Outcome . 162

7.8.3 Case-study . 163

7.9 Correcting Invalid Courseware . 164

7.9.1 Case-study . 164

7.10 Chapter Conclusion . 164

8 CAVIAr Implementation 166

8.1 Introduction . 166

8.2 CAVIAr and Courseware Construction 167

8.3 MIKAEL Architecture . 168

8.4 The Eclipse Platform . 172

8.4.1 Graphical Modeling Framework (GMF) 172

8.4.2 Model to Model Transformation (M2M) 172

8.4.3 Model to Text Transformation (M2T) 174

vi

8.4.4 Model Development Tools (MDT) 174

8.5 CAVIAr Model Manager . 175

8.6 Model-based Editors . 175

8.6.1 Domain Model Editor . 176

8.6.2 Courseware Model Editor . 177

8.7 MIKAEL Perspectives . 177

8.7.1 Domain Perspective . 178

8.7.2 Learning Context Perspective . 180

8.7.3 Courseware Perspective . 181

8.8 Model Transformation Manager . 183

8.8.1 Importing a Domain Model . 185

8.8.2 Importing a Courseware Model for Validation 187

8.8.3 Courseware Model Generation . 191

8.8.4 Exporting a Courseware Model 191

8.9 Validation Manager . 192

8.10 Learning Object Repository (LOR) Manager194

8.10.1 Screen-Scraping LOR Queries . 194

8.10.2 Service-based LOR Queries . 195

8.11 Chapter Conclusion . 196

9 Evaluation 198

9.1 Introduction . 198

9.2 Evaluation Strategies . 200

9.2.1 Empirical Study . 201

9.2.2 Analytical Study . 201

9.2.3 Comparison with the State of the Art 202

9.3 Usability . 202

9.3.1 MIKAEL User Trials Overview 203

9.3.2 MIKAEL User Trials Participant Details 205

vii

9.3.3 MIKAEL User Trial Survey Results 207

9.3.4 Discussion . 209

9.4 Cost Effectiveness . 212

9.4.1 MIKAEL User Trial Survey Results 213

9.4.2 Discussion . 214

9.5 Effectiveness . 215

9.5.1 Analytical Evaluation of the CAVIAr Data Models 215

9.5.2 Empirical Evaluation of Course Creator’s Perception of Validation

Effectiveness . 220

9.6 Modifiability . 222

9.6.1 Native Domain Knowledge Specification Change 222

9.6.2 Courseware Specification Change 223

9.6.3 Validation Criteria Change . 224

9.7 Performance . 225

9.8 Chapter Conclusion . 227

10 Conclusions 229

10.1 Introduction . 229

10.2 Research Summary . 230

10.3 Discussion . 232

10.4 Future Work . 234

10.4.1 Intuitive Validation Model Definition 235

10.4.2 Enhancement of the Courseware Model 236

10.4.3 Categorisation of Courseware Problems 237

10.4.4 Correction integration . 237

Bibliography 237

A Case-Study Documents 258

B Implementation Documents 261

viii

C User Trial Survey 276

D Acronyms 281

ix

Abstract

Today e-learning courses, known as courseware, are expected to provide a highly en-

gaging learning experience that adapts to a learner’s needs and is interoperable with the

learner’s learning environment. This makes finding problems in the courseware increas-

ingly difficult, tedious and expensive. A course creator may attempt to validate courseware

manually by simulating a variety of possible learner paths through the courseware, but this

is very laborious and time-consuming, and in most instances does not consider all possible

variances in the courseware.

Courseware validation automatically checks that courseware conforms to aset of re-

quirements and limits the risk of problems at delivery time. Traditional approaches to

validation simulate learner instances going through a given courseware. This can lead to

performance problems in highly adaptive courseware due to the complexity of simulation.

These approaches are also inflexible as validation criteria are defined in software program-

ming logic.

Courseware specifications define courseware in terms of its components.The compo-

nentisation of courseware into a collection of annotated Learning Objects (LOs) presents

an opportunity to validate courseware based on its compositional structure.In this thesis,

we present a novel approach to courseware validation based on Model Driven Engineering

(MDE), using the component structure of courseware. We define a setof Domain Specific

Language (DSL), known as the Courseware Authoring Validation Information Architecture

(CAVIAr), and show how it can be used to capture courseware construction concerns. We

then demonstrate how, by defining model constraints on a coursewares compositional struc-

ture, it allows for a flexible approach to courseware validation. We also investigate how

CAVIAr-based tools can be integrated with the state of the art in e-learning.Our approach

has been validated using a software implementation that allows course creators to validate

courseware using CAVIAr.

x

Acknowledgements

First of all I would like to express my huge gratitude to my supervisor, Dr. Claus Pahl,

for his patience, guidance and support. Thank you Claus for everything, you have been an

exemplary supervisor and I have truly enjoyed working with you.

In the course of my research, I have been amazed at the generosity of senior researchers

and academics with their time and knowledge. Many researchers in the Technology En-

hanced Learning field provided me with invaluable feedback and help throughout my re-

search. One person who I must mention is Dr. Dragan Gas̆evíc. All through my Ph.D.

Dragan has never been too busy to help me out, sharing his immense wisdom withme.

I would like to thank my parents, Yvonne and Brendan, for their support and guidance

throughout my (many) years of schooling. Nothing I have achieved couldhave happened

without them and their belief in me. Mam and Dad thank you for always havingtime,

from helping me with my spellings in Scoil San Carlo to those nights looking at project

presentations. You have been a great example for me to live up to. Also, my grandmother

and grandfather, Pat and June, who have encouraged me throughoutnot only my college

years but also my school years, and by providing me with my “second” workplace. Thanks

nanny and granda, I promise you can have the back bedroom back now. I am endepted to

you all, I hope you know how much I appreciate all you have done for me.

Thanks to all my CA friends and colleagues past and present, who at this point are too

numerous to name, but there are a couple who I have to mention. Firstly, I want to thank

all the members of the OntAWare and MIKAEL projects, Edmond, Declan, Wong and Mo.

In particular I would like to thank Wong and Mo, who helped me bring the MIKAEL tool

to reality. Thanks guys for all the effort you put in, much appriciated. I would also like

to thank Veronica and Claire, for watching all my presentations and providing me with

insightful feedback.

A special mention has to go to Dr. Ronan Barrett. Ronan is an incredibly talented and

devoted software engineer and researcher, and has always been there for encouragement, in-

sightful conversation, and banter. Ronan thanks for everything, your input, advice, feedback

xi

and friendship.

Finally, I would like to thank my girlfriend Clare, who has been a rock of support. Clare,

you never had any doubt in your mind that I would be able to do this, even when I tried to

convince you otherwise. Thank you for your love, patience, encouragement and faith.

xii

List of Tables

2.1 MOF modelling stack . 27

2.2 Analysis of OCL Tools . 35

3.1 Courseware construction approaches comparison 66

3.2 Courseware validation approaches state of the art comparison 68

6.1 Derived CAVIAr operations for Learning Context Modelling constructs . . 115

6.2 Derived CAVIAr operations for Courseware Model constructs 116

7.1 Definition of anticipated learner knowledge defined in terms of CAVIAr

knowledge elements . 152

xiii

List of Figures

2.1 Sequencing clusters as defined in IMS Simple Sequencing [IMS, 2003c] . . 24

2.2 IMS LD Information Model [IMS, 2003b] 25

2.3 Basic concepts of model transformation [Czarnecki and Helson, 2006] . . . 37

3.1 Screen-shot from the Reload Tool . 43

3.2 Screen-shot of MOT tool showing a lesson map with each attribute givena

weight . 47

3.3 Domain model editing in ASPIRE . 52

3.4 The ACCT - Demonstrating the use of PEDE design elements [Dagger, 2006b] 54

3.5 Screen-shot of the MOT+ tool . 57

4.1 Courseware actors . 72

4.2 Courseware construction and validation concerns 73

5.1 Overview of the CAVIAr Models . 84

5.2 Domain model abstract syntax defined in MOF 89

5.3 CAVIAr Domain Model concrete syntax example 92

5.4 Learning context model abstract syntax 94

5.5 Learning Context concrete syntax example 98

5.6 Learning resource model abstract syntax 99

5.7 Learning resource model data types . 100

5.8 Abstract syntax for courseware defined using MOF 103

5.9 Example Courseware Model concrete syntax108

xiv

6.1 Extract of the CAVIAr Courseware Model’s metamodel112

6.2 CAVIAr Courseware Model extract .113

6.3 MOF model used to capture data about the topic structural constraints . .. 118

6.4 Model-based definition of a courseware topic timing constraint119

6.5 Using OCL to define constraints on a metamodel that must be true for mod-

els that conform to that metamodel . 120

6.6 Classification of CAVIAr validation constraints 121

7.1 UML Activity Diagram of the Methodological Framework 141

7.2 UML Activity Diagram for determining the CAVIAr Domain Model 143

7.3 Databases domain model defined using SKOS 145

7.4 UML Activity Diagram outlining the activities for determining the CAVIAr

Instructional Constraints Model . 146

7.5 UML Activity Diagram detailing the definition of the CAVIAr Validation

Model . 153

7.6 UML Activity Diagram outlining the steps involved in loading a Course-

ware Model into the validation framework 161

7.7 CAVIAr metamodels in the USE tool . 163

8.1 CAVIAr Courseware Authoring defined in terms of an UML Activity Diagram168

8.2 Layer view of the MIKAEL Architecture 169

8.3 Component-based view of the MIKAEL architecture 169

8.4 MIKAEL Components . 170

8.5 Defining the CAVIAr metamodels in ECore using Eclipse 176

8.6 Screen-shot of domain model view . 177

8.7 Screen-shot of domain perspective .179

8.8 Screen-shot of learning context perspective 180

8.9 UML Activity Diagram outlining tasks involved in defining learning context 182

8.10 Screen-shot of the courseware perspective 183

8.11 Transformation of ontology XML file to CAVIAr Domain Model 186

xv

8.12 CAF metamodel defined using ECore . 188

8.13 LAG defined as ECore metamodel . 189

8.14 Transformation of LAG model to CAVIAr Courseware Model 190

8.15 Transformation from Courseware Model to SCORM XML binding definition 192

8.16 UML Sequence Diagram depicting how the EDNA LOR is queried using

the screen-scraping approach . 194

8.17 UML Sequence Diagram depicting how SQI-compliant LORs can be queried

using PLQL . 195

9.1 Breakdown of participant knowledge . 206

9.2 The number of courses participants have managed and delivered, and the

number of courses participants have adapted or created207

9.3 Domain Model editing survey results . 208

9.4 Learning Context Model editing survey results209

9.5 Courseware model editing survey results 210

9.6 Usability survey results after validating courseware211

9.7 Participant understanding of the main aspects to CAVIAr and CAVIAr-

based courseware construction through MIKAEL 213

9.8 MIKAEL survey results relating to the cost effectiveness of MIKAEL. . . 214

9.9 Course creator reflections on validation effectiveness 221

A.1 Databases domain model defined using SKOS (part 1)259

A.2 Databases domain model defined using SKOS 260

B.1 Excerpt from SKOS to CAVIAr domain model transformation defined in ATL262

B.2 Excerpt from CAVIAr courseware model to SCORM model defined in ATL 263

B.3 SCORM model to SCORM manifest XML transformation definition in ATL

(part 1) . 264

B.4 SCORM model to SCORM manifest XML transformation definition in ATL

(part 2) . 265

xvi

B.5 SCORM model to SCORM manifest XML transformation definition in ATL

(part 3) . 266

B.6 ATL transformation definition, transforming the learning context model into

a courseware model (part 1) . 267

B.7 ATL transformation definition, transforming the learning context model into

a courseware model (part 2) . 268

B.8 ATL transformation definition, transforming the learning context model into

a courseware model (part 3) . 269

B.9 ATL transformation definition, merging the learning context model with

courseware model (part 1) . 270

B.10 ATL transformation definition, merging the learning context model with

courseware model (part 2) . 271

B.11 ATL transformation definition, merging the learning context model with

courseware model (part 3) . 272

B.12 ATL transformation definition, merging the learning context model with

courseware model (part 4) . 273

B.13 Plugin.xml file defining plugin to provide functionality for and handle OCL

validation model (part 1) . 274

B.14 Plugin.xml file defining plugin to provide functionality for and handle OCL

validation model (part 2) . 275

xvii

Chapter 1

Introduction

1.1 Problem Context

Courseware defines a course in terms of its learning content, by defining what learning con-

tent to deliver to a learner, when it should be delivered and how. Courseware is generally de-

livered and managed using some type of Virtual Learning Environment (VLE) or Learning

Management System (LMS). Courseware authoring, also known as courseware construc-

tion, is a rapidly evolving research area that is concerned with the tools andmethodologies,

a course creator uses, to define and create courseware.

Understanding how people learn and using that knowledge to create bettercourses

has always been a challenge for course creators. The literature provides the course cre-

ator with general course construction methodologies, embedded in pedagogical principles

[Gagńe et al., 2005, Reigeluth, 1999a, Reigeluth, 1983a, Briggs et al., 1991].Course cre-

ators may also apply their own pedagogy in courseware construction. Forexample se-

quencing courseware topics in a particular way or ensuring that learningresources do not

take an unreasonable amount of time to complete. Although course creators aim to apply

pedagogical principles to the courseware they construct, when developing large course-

ware this can be difficult, especially when there are seemingly more pressingissues, such

as standards compliance and delivery deadlines. When pedagogical principles are not

adequately applied in courseware it can can lead learner confusion, motivational prob-

1

lems, learner isolation and ultimately to the rejection of the courseware [Samples,2002].

Ensuring the application of pedagogical principles is therefore of paramount importance.

To this effect the literature highlights the importance of post-construction course valida-

tion or auditing as an essential part of a holistic courseware construction methodology

[Rosmalen et al., 2006, Persico, 1996]. Courseware validation ensures there are no prob-

lems in the courseware and pedagogical principles, as defined in the literature and by the

course creator, have not been neglected and have been applied correctly.

Recently there has been a move towards adaptive or personalised courseware. This is

courseware that moves away from the “one size fits all” paradigm of traditional courseware

and instead looks to adapt to the individual needs of learners in terms of their learning goals,

knowledge of a subject and their learning style, amongst other things [DeBra and Calvi, 1998,

Eklund and Brusilovsky, 1999]. The construction of adaptive or personalised courseware is

a “very complex, time consuming and expensive task” [Dagger, 2006b].Recent advances

in dedicated tools, such as My Online Teacher (MOT) [Cristea et al., 2007]and the Adap-

tive Courseware Construction Toolkit (ACCT) [Dagger, 2006b, p2],have raised the level

of abstraction that the course creator works at when creating adaptivecourseware. These

tools go some way towards providing a more intuitive interface for constructing adaptive

courseware, but do not provide a method for validating the adaptive courseware created.

Validation is particularly important in adaptive courseware as it is important to ensure that

each individual learner, or defined learner grouping, will be given apedagogically sound

courseware instance that satisfies the course’s learning goals.

In addition to the pedagogical challenges that the course creator must deal with, we can

observe the following trends in courseware construction:

• Componentisation - Courses are increasingly composed of Learning Objects (LOs)

which are small, reusable instructional units typically a lesson, assessment quiz, or

possibly a tutorial [Wiley, 2001]. Through reuse the course creator saves time and

money, and can use learning resources that have been tried and tested inother course-

ware. Discovery of LOs has been aided with the advent of the IEEE Learning Object

Metadata (LOM) standard [IEEE LTSC, 2002].

2

• Standards Compliance - There has been a move towards standard and specifica-

tion compliance in defining courseware, allowing courseware to be moved from one

Learning Management System (LMS) to another [Hummel et al., 2004, ADL,2004].

The formal separation of learning process logic from content in courseware standards

and specifications, such as SCORM [ADL, 2004] and IMS LD [Hummel et al., 2004],

and the annotation of LOs using a standardised LO metadata, such as IEEE LOM,

enables automated courseware validation, as metadata descriptions can be parsed to

ensure the LO satisfies some validation criteria.

• Collaborative Courseware Construction - As courseware constructionis getting more

complex, it is usually now a collaborative, multidisciplinary effort [Ismail, 2001].

Due to this, misunderstandings can easily occur between those involved in courseware

construction leading to problems being introduced to the courseware constructed.

These trends have also caused a change in the course creator’s role incourseware con-

struction. The course creator now looks to reuse pre-existing LOs in courseware con-

struction instead of producing all learning content needed for courseware. The course

creator’s role becomes composition-oriented where courseware is composed from exist-

ing LOs. Courseware construction is therefore conducted at a higher, more abstract level

[Melia and Pahl, 2006a]. Tool support has been developed based onthis higher level of ab-

straction. These tools allow for the production of standard compliant courseware, based on

the combination of LOs [RELOAD Project, 2005, Paquette et al., 2006], andthe authoring

of personalised courseware [Cristea et al., 2003b, Dagger, 2006b]. However, the existing

tool support does not provide the course creator with any facility to ensure that the course-

ware constructed is as originally designed and envisioned by the course creator. The onus

is firmly on the course creator to ensure there are no problems in the constructed course-

ware. With courseware becoming ever more complex, through personalisation, and course

creators now developing courseware at a higher level of abstraction,this is an extremely

difficult, if not impossible, undertaking for the course creator.

3

1.2 Research Problem and Challenges

In section 1.1 we identified the need for validating courseware where validation ensures the

courseware constructed is as envisioned by the course creator. Our research investigates the

automated analysis of courseware allowing for the identification of the following types of

courseware problems:

• Scope - Learning goals cannot be achieved with given courseware. The courseware

assumes incorrect knowledge for learners.

• Structural - Problems with the composition of courseware and how it is structured.

• Sequencing - Problems with the sequence of how courseware elements will be deliv-

ered to the learner.

• Content - Problems with the content used in courseware.

• Pedagogical - Problems with the implementation of a learning approach definedin

courseware. Sequencing and content problems can be defined as part of a pedagogical

problem.

Courseware validation cannot exist in isolation, it must be part of a holistic courseware

construction methodology. It is therefore necessary to investigate the integration of course-

ware validation into existing courseware construction methodologies.

We have defined our research question as:

Can courseware requirements in terms of content, structure, sequencing, course

scope and pedagogical concerns, which are implicit in courseware creation, be

explicitly defined by the course creator and used in the automated validation

of a constructed courseware, where validation is integrated with established

courseware construction methodologies?

In addressing our research question we can break down the anticipatedresearch chal-

lenges as follows:

4

1. Identify the data available for courseware validation pre-delivery in terms of course-

ware requirements as defined by those involved in courseware construction.

2. Investigate how the courseware requirements can be represented explicitly.

3. Develop an approach to validate courseware using the courseware requirements. This

approach should be optimised towards personalised and personalisable courseware, as

it is a major trend in Technology Enhanced Learning (TEL) [Wade and Ashman, 2007].

4. Investigate how courseware validation can be integrated with existing courseware

construction tools.

5. Design and implement a proof of concept application that clearly validatesour re-

search in terms of its feasibility.

6. Evaluate the research by investigating user acceptance of courseware validation within

courseware construction in general and our approach to validation in particular. User

acceptance looks at the following:

• Usability - The validation approach and its tool support must be usable by the

course creator.

• Cost Effectiveness - The validation approach must be cost effectivein terms of

course creator effort.

• Effectiveness - The approach captures courseware problems and requirements

effectively. The validation approach must be able to validate problems in course-

ware that the course creator deems to be important.

• Modifiability - The course creator must be able to customise the validation con-

straints criteria according to his or her own requirements. Validation support

must be flexible enough to be integrated with the TEL specifications used by

the course creator in courseware construction.

• Performance - The performance of our validation approach must be acceptable

when compared with the state of the art.

5

Our research question addresses courseware that is defined using an Educational Mod-

elling Language (EML) [Mart́ınez-Ortiz et al., 2007]. We also assume that the courseware

is componentised in that it can be broken up into LOs that are annotated with a view to

being repurposed and reused.

Validation is not seen as a replacement for formative [Dick and Carey, 1991] or sum-

mative [Carey and Dick, 1991] evaluation of courseware, but as a complementary activity.

Validation does not address complex pedagogical issues such as the clarity of instruction,

LO quality and LO’s impact on learners or learner motivation issues.

1.3 Solution and Evaluation

Our solution for addressing the research question and challenges outlined in the previous

section is to explicitly model the courseware design in terms of its requirements. This

courseware model is then constrained using a model constraint language. To do this our

approach defines a Domain Specific Modelling Language (DSML) to capture courseware

requirements and uses a constraint language to allow the course creator define what is valid

and invalid courseware.

Our approach consists of five components, as outlined below:

• A Validation Framework - Definition of what can be validated in courseware at the

pre-delivery/post-construction stage of the courseware life-cycle and the courseware

requirements to be used in validation.

• Domain Specific Modelling Language (DSML) - Definition of a modelling language

for capturing courseware, courseware content and the constructedcourseware require-

ments. We have chosen to develop a new DSML for the purposes of validating course-

ware for the following reasons:

– There is currently no formalised way to capture the courseware requirements at

the pre-delivery/post-construction stage of courseware construction.

– Courseware validation is an activity that must be integrated with courseware

6

construction. The specifications used in courseware construction are influx as

they are being standardised. Our approach limits the effects of this standardisa-

tion process by defining an independent courseware definition and interoperat-

ing with the state of the art.

• Validation Constraint Language - Definition of a constraint language that can capture

what is valid and invalid courseware.

• Courseware Validation Process - Outline of how the course creator validates course-

ware using our approach.

• Proof of Concept Implementation - Courseware construction tool that allows for val-

idation, exemplifying how validation can be integrated into courseware construction.

The validation framework sets the scope of our research, by defining thecourseware

construction concerns. These are courseware requirements that mustbe addressed in course-

ware construction. The courseware construction concerns represent the information avail-

able for courseware validation at the pre-delivery/post-construction stage of the courseware

life-cycle, when validation takes place. The validation framework also outlines the types of

courseware validation our research addresses.

The purpose of the DSML is to capture all the data available at the pre-delivery/post-

construction stage of the courseware life-cycle. This data is the courseware that has been

constructed, the content used in courseware and the courseware construction concerns that

were used in defining the new courseware.

Courseware validation criteria are formulated using a model constraints language. The

model constraints language is used to constrain what is an allowable courseware definition.

A valid courseware is one that satisfies these modelling constraints. Model constraints can

be defined using the courseware construction concerns defined in the DSML.

We define a courseware validation process as a set of activities that the course creator

undertakes to validate courseware. This process involves firstly definingall data available at

the pre-delivery/post-construction stage of courseware constructionusing the DSML, then

7

defining the courseware validation constraints, after which the courseware is checked to

ensure it adheres to the constraints defined.

Courseware validation must be integrated with the state of the art in courseware con-

struction. Interoperability with courseware construction tools and platformsis achieved

through model transformation technology (section 2.5). We illustrate this in ourproof of

concept implementation.

The proof of concept implementation is also used to validate the feasibility of our

courseware validation approach.

We evaluate our approach to courseware validation in the following ways:

• An evaluation of the suitability of our DSML is carried out by analytically comparing

the expressivity of the DSML defined in this thesis with languages that represent

similar data from the state of the art.

• A software implementation is used in user trials to assess user acceptance of amodel-

driven approach to courseware construction that leads to validation. This also serves

to assess the user acceptance of the DSML we have defined for courseware validation.

• We investigate how our approach compared with state of the art courseware valida-

tion approaches in terms of performance and modifiability. We also consider how

easy it would be for the course creator to modify the validation criteria, the course-

ware specification or the knowledge infrastructure used in validation. In looking at

performance we compare our novel approach to courseware validationwith the vali-

dation approach used in the state of the art generally. This evaluation centres around

a discussion on the difference between constraint-based validation, used in our so-

lution, and learner simulation based validation, which is prevalent in the state ofthe

art.

8

1.4 Contributions

In this section we highlight the contributions the research documented in this thesis makes

to the state of the art in TEL.

• This research looks at courseware validation at the pre-delivery/post-construction

stage of the courseware life-cycle. This stage of the courseware life-cycle has only

limited data to use in validation, most notable is that there is no learner experience

data to use. In this thesis we identify the “courseware construction concerns”. The

courseware construction concerns are the complete data about a givencourseware

at the pre-delivery/post-construction stage of courseware construction. This data is

identified through systematic analysis of the pre-delivery/post-construction stage of

courseware construction. To our knowledge this is the first time the data available

for courseware validation at the pre-delivery/post-construction stageof courseware

construction has been defined.

• We formally define a new DSML for courseware validation at the pre-delivery/post-

construction stage of the courseware life-cycle. This DSML is known as the Course-

ware Authoring Validation Information Architecture (CAVIAr). CAVIAr is apur-

pose built DSML for courseware validation. It allows for the formal definition of the

courseware construction concerns for the purpose of coursewarevalidation.

• A novel constraint-based approach to validating a courseware definitionis defined

that focuses on validating the courseware structure and composition rather than val-

idating the possible learner paths learners can take in courseware. This validation

approach is courseware composition-oriented, by examining structural definition of

courseware. This is different to the state of the art which, in general, looks to vali-

date courseware by simulating learner progression through courseware. Composition-

oriented validation is more suited to personalised courseware due to the variance in

it.

• A model-driven validation process is defined, outlining the activities that the course

9

creator must perform for validation. Models provide an intuitive way for the course

creator to define the courseware construction concerns through CAVIAr. Through

these activities we also outline our approach to interoperability with the state of the

art in TEL and knowledge representation specifications and standards through model

transformation technology.

We also describe how model transformation technology can be used to provide for in-

teroperability in TEL. We also provide details of a software implementation as a proof of

concept, demonstrating the feasibility of our validation approach.

The contributions detailed in this thesis have also appeared in numerous peerreviewed

publications the most significant of which are:

• Melia, M. and Pahl, C. (2009)Constraint-based Validation of Adaptive e-Learning

Courseware. IEEE Transactions on Learning Technology (IEEE TLT) 2(1), pp 37-

49.

• Melia, M. and Pahl, C. (2008)Towards the Validation of Adaptive Educational Hy-

permedia using CAVIAr. The Sixth International Workshop on Authoring of Adaptive

and Adaptable Hypermedia A3H2008 AH2008 Workshop Proceedings Hannover,

Germany.

• Melia, M. and Pahl, C. (2007)Pedagogical Validation of Courseware. The Second

European Conference on Technology Enhanced Learning (EC-TEL2007). Springer-

Verlag, LNCS Series. Crete, Greece.

• Melia, M. and Pahl, C. (2007)An Information Architecture for Validating Course-

ware. The First International Workshop on Learning Object Discovery andExchange

(LODE2007) at EC-TEL’07. CEUR Workshop Proceedings, ISSN 1613-0073 Crete,

Greece.

• Melia, M. and Pahl, C. (2006)Semantically-enabled Model Driven Course Compo-

sition. The First European Conference on Technology Enhanced Learning (EC-TEL

2006) - Doctorial Consortium Session. Crete Greece.

10

1.5 Thesis Outline

In this section we outline the structure of this thesis.

Chapter 2 presents a review of technologies, approaches and terminology in TEL. The

chapter also presents an overview of software modelling technologies, asthese technologies

are central to our solution.

In chapter 3 we provide context for our research by presenting the state of the art in

courseware authoring tools and approaches and then present the stateof the art in course-

ware validation research. In concluding this chapter we present a comparison framework,

which summarises our review of the state of the art.

Our research contribution begins in chapter 4, where we define a conceptual framework

for validation, outlining the overall scope for courseware validation in ourresearch.

In chapter 5, we present the Courseware Authoring Validation Information Architecture

(CAVIAr), a DSML that allows the course creator to model the courseware construction

concerns and the constructed courseware in the context of these concerns.

To validate the constructed courseware, CAVIAr includes a constraint-based validation

model, where validation rules are defined on the constructed coursewareusing the course-

ware construction concerns. We describe the CAVIAr Validation Model inchapter 6, out-

lining the constraint types that can be defined using CAVIAr.

We present the courseware validation activities and define a courseware validation pro-

cess in chapter 7. This section also provides an example case-study whereby a course creator

has created courseware for undergraduate computing students on the basics of databases.

We describe how the course creator validates this courseware using CAVIAr.

A proof of concept implementation of CAVIAr is outlined in chapter 8. This implemen-

tation is known as MIKAEL (Management Infrastructure for Knowledge-based Adaptive

E-Learning) . MIKAEL allows the course creator to construct courseware based on defin-

ing the CAVIAr courseware construction concerns. Once the courseware has been devel-

oped MIKAEL also provides the course creator with courseware validation functionality.

MIKAEL is specification and standard agnostic. We outline how MIKAEL caneasily be

11

integrated with current and upcoming standards and specifications in TEL and related areas,

such as knowledge management and the Semantic Web [Daconta et al., 2003].

We evaluate our work in chapter 9. The chapter evaluates the user acceptance of

CAVIAr and CAVIAr-based courseware validation, as defined in our research challenges

in section 1.2.

In chapter 10, we summarise our research, present our final conclusions and outline

future work in this area.

12

Chapter 2

Background

2.1 Introduction

In this thesis we will outline how courseware can be validated. Our validation approach

is based on the definition of a Domain Specific Modelling Language (DSML), tocapture

the courseware conceptual design and its requirements, with a constraintslanguage that

constrains the allowable courseware configurations.

In this chapter we firstly describe what courseware is and how courseware is constructed

(section 2.2). We then outline software modelling technologies used in our courseware val-

idation approach. Section 2.3 gives an overview of the classical approaches to conceptual

modelling in software engineering and section 2.4 describes the Object Constraint Lan-

guage (OCL), a complimentary constraint language for software models used to eliminate

ambiguity. Section 2.5 looks at Model Driven Engineering (MDE), a software engineering

approach based on modelling. We conclude this chapter by summarising the mainpoints

made and outlining the connection between courseware design and software models.

2.2 Courseware

For the purposes of our study, we define a course as a planned body of instruction with a

recognised start-point(s) and end-point(s), which is delivered over aspecified time period.

13

We define courseware as an explicitly defined, machine-readable course definition. Course-

ware uses software to deliver Technology Enhanced Learning (TEL)content according to

some defined instructional design.

TEL content is interactive and non-interactive learning content delivered to learners in

a software environment that aims to enhance the learner’s learning experience. An instruc-

tional design specifies what TEL content is delivered to an individual learner and when it

is delivered. An instructional design is an instantiation of a more general-purpose instruc-

tional design theory. Instructional design definitions in courseware canallow for dynamic

courseware, where the courseware decides at delivery time what TELcontent to deliver and

how it will be delivered

Based on the literature, we have identified six key levels of courseware granularity

[NQAI, 2003, Bajnai and Stienberger, 2003, Jovanović et al., 2006a]. These are as follows:

• Qualification Programme - This is typically a very large course leading to a qualifi-

cation as defined in the National Framework for Qualifications (NFQ) in Ireland.

• Course - This is a large course, which takes over 15 hours to complete. Itis typically

one 12-13 week course covered in a university semester as part of a qualification

programme.

• Module - Many modules make up a course. Each module in a course covers one of

the core concepts in the course. A module can be broken down into lessons.

• Lesson - A lesson is generally taught to the learner in a single sitting. A lesson

generally teaches the learner about a single concept. A lesson can be broken down

into LOs.

• Learning Object (LO) - A LO is interactive and non-interactive TEL content that aims

to bring the learner to a learning goal. LOs can be broken down into contentunits.

• Content unit - LOs are made up of content units, which are typically a pictureor a

piece of text.

14

It is important to note that the courseware granularity levels stated above are not com-

monly accepted but are exclusively used in this thesis to allow for clarity whendiscussing

courseware granularity levels.

2.2.1 Courseware Scope

The courseware scope defines what a course covers. It specifiesthe course start-point and

end-point. The courseware start-point is defined in terms of the learner’s assumed initial

knowledge of a subject domain, while the courseware end-point is defined as a point in

the courseware when the learner can finish the course and the learner’s learning goals are

satisfied. The courseware scope is therefore defined in terms of knowledge. The courseware

structure defines how a learner can get from the courseware start-point to the courseware

end-point.

For the purposes of our research we follow a pragmatic rather than formalised approach

to defining knowledge, based on instructional design literature [Albert and Stefanutti, 2003].

In our research we make a distinction in the types of knowledge imparted through course-

ware, conceptual knowledge and skills knowledge. Conceptual knowledge is typically at-

tained though classroom or didactic learning, while skills knowledge is typicallyattained

though practical training [Kenny, 2006]. Conceptual knowledge learning can be mapped to

“verbal information” in Gagńe’s learning outcomes, while skills knowledge can be mapped

to “intellectual skills” [Gagńe et al., 2005]. A knowledge level can also be defined as a nu-

meric value between 0 and 1, where 0 represents no knowledge and where 1 represents full

knowledge [Melia and Pahl, 2009].

2.2.1.1 Learner’s Learning Goals

The learner’s learning goals define the desired post courseware delivery knowledge state

for each learner. Learning goals are therefore defined in terms of knowledge. The course

learning goals are the starting point of course development, on which assessment and in-

structional design are based [Dagger, 2006b, ch. 3].

In order to accurately assess whether or not courseware satisfies each course learning

15

goal, a formative evaluation (post-delivery) can be carried out to insure a learner will attain

the desired knowledge [Dick and Carey, 1991].

At the pre-delivery stage of courseware construction we can assessif the scope of the

courseware is sufficient to satisfy all learner’s learning goals and thatthe type of TEL con-

tent used is suitable for the desired type and level of knowledge.

2.2.1.2 Learner’s Assumed Initial Knowledge

Assumed initial knowledge is a statement of the knowledge we expect learners to begin

a given courseware with. Assumed initial knowledge can also be expressed in terms of

conceptual and skills knowledge. The aim of a course is to define instructionthat will

take the learner from assumed initial knowledge to the learner’s learning goal. Capturing

assumed knowledge in courseware validation is crucial, as courseware instruction should

build on existing learner knowledge in order for the learner to achieve a learning goal.

2.2.2 Courseware Structure and Sequencing

The courseware structure facilitates instruction by bringing each learnerfrom some as-

sumed initial knowledge state to the learning goal. The courseware structuredefines how the

courseware is brought together but also normally has sequencing definitions embedded in

the structure. For this reason, we look at the courseware structure andsequencing together

in this section.

In looking at courseware structure a distinction can be made between the micro and

macro (strategy) levels as defined by Reigeluth [Reigeluth, 1983b]. The micro level is con-

cerned with how a single idea or concept is taught, e.g. addressing the sequencing of LOs

that address the same concept. The macro level addresses course concerns at the concept

level, e.g. what concepts are learnt by the learner and in what order?

2.2.2.1 Micro-Level Courseware Structure

Micro-level courseware structure is concerned with the instructional design used in teaching

a core courseware concept. It is at the micro-level that the course creator makes decisions

16

on the best instructional design for teaching a concept and ensuring that the instructional

design used in the courseware accurately implements that strategy. An example of an an ap-

proach the looks in detail at intra-conceptual sequencing of learning content can be found in

[Ullrich, 2005], where Ullrich investigates how Hierarchical Task Network (HTN) planning

can be used to define an instructional design to teach a given concept.

The course creator may define a default sequence of learning events,where each event

must take place for a concept to be taught. For this purpose, Gagné et al. outline the “Events

of Instruction”, a series of instructional events which must take place formicro-level learn-

ing to take place [Gagńe et al., 2005]. These instructional events are; gaining attention, in-

forming the learner of lesson objective, stimulating recall of prior learning,presenting stim-

uli with distinctive features, guiding learning, eliciting performance, providing informative

feedback, assessing performance and enhancing retention and learning transfer. Gagńe et al.

believe that all events are necessary in roughly this order. The exclusion of any event must

be a deliberate and conscious decision of the course creator based on the learning audience,

the learning task or both.

2.2.2.2 Macro-Level Courseware Structure

The macro-level courseware structure is concerned with how the teaching of concepts is

sequenced in courseware. In defining the courseware structure the course creator attempts

to define courseware sequencing that brings the learner from an assumed initial knowledge

state, to a learning goal, in the most effective and/or efficient manner.

Learning takes place in the context of other knowledge. Knowledge that isrequired for

learning is known as pre-requisite knowledge. Gagné et al. describes pre-requisite knowl-

edge as “critical for the rapid, smooth learning of [a] new skill”, the absence of which would

make learning the new skill impossible [Gagné et al., 2005, p184]. In traditional courses,

sequencing is dictated by the instructor. In courseware the learner becomes a more active

player, and can influence the delivery sequence of course material. This can be done know-

ingly or unknowingly. The course creator can still specify a sequence but can also empower

the learner to choose their own sequence. This extra dimension to courseware sequencing

17

makes courseware structure validation very important, where validation mustensure that

any topic sequence that is available to the learner is instructionally sound.

2.2.3 Learning Content in Courseware

As mentioned in section 1.1, Learning Objects, used in courseware, can beannotated using

the IEEE Learning Object Metadata (LOM) standard. LOM is used to “facilitate search,

evaluation, acquisition and use of learning objects” [IEEE LTSC, 2002].The standard is

quite large incorporating many characteristics of LOs. Due to its coverage the LOM stan-

dard can be used to validate LOs used in courseware. There are sevensections of the LOM

standard, these are:

• General - General cataloguing information such as the LO name, language, keywords,

natural language description, structure, aggregation level and a unique identifier.

• Life Cycle - Information about versioning, status and who has contributedto the LO.

• Meta-Metadata - Information about the metadata such as who is cataloguing theLO

and the language of the metadata.

• Technical - Information such as the format of the LO, the file size, file location and

system requirements.

• Educational - Metadata describing pedagogical details, such as the difficulty, the in-

teractivity type, learning resource type and semantic density of the LO.

• Rights - Details of the LO cost and copyright.

• Relation - How this LO is related to other LOs. The relation can express a range

of relation types such asbasedOn, isPartOf, isVersionOf, isFormatOf, referencesand

requires.

• Annotation - Comments on how, by whom and when people are using this LO. This

allows for educators to supply some feedback on the LO.

18

• Classification - This section of the LOM allows the LO to be classified using some

specific external classification system. The person annotating the LO must provide

details on what classification system is being used, where this LO falls in the classi-

fication system and what the classification means.

The range (allowable values) for the majority of the LOM attributes is free text(e.g.

description in thegeneralsection), while some only allow for a set of restricted values (e.g.

structure in thegeneralsection allow only the following values: atomic, collection, net-

worked, hierarchical and linear). LOM attributes can also be set to reference some external

classification system, or reference external resources such as otherLOs. An XML schema

can also be used within LOM to enhance meaning of LOM values. For example,when

annotation refers to a person thevCard standard can be used [Dawson and Howes, 1998].

The course creator can use this metadata to define validation concerns. Wewill look at this

in more detail in section 4.4.3.

2.2.4 Pedagogical Strategy

A pedagogical strategy sets out a strategy for learning. In courseware we are limited in

the extent to which pedagogical strategy can be realised. We confine it to defining what

LOs are delivered to which learners and when. Pedagogical strategy overlaps with many of

the other courseware construction concerns, such as the courseware sequencing, as both are

concerned with how the courseware is delivered to learners.

Courseware pedagogical strategy allows courseware to adapt to the needs of individual

learners. The learner is the most complex concern in course constructionas the character-

istics of a learner are infinite. When representing a learner we generally restrict ourselves

to representing key characteristics that dictate the way the learner learns.To limit the com-

plexity the learner introduces to the courseware definition, the course creator can use learner

stereotypes where a stereotype groups learners according to some common attribute(s) (e.g.

software engineering students as opposed to electrical engineering students) [Kay, 2000].

Adaptive behaviour in adaptive courseware is defined using learner characteristics. Dag-

19

ger outlines the learner characteristics that courseware can adapt to as; prior knowledge and

competence, learner aims and goals, learner preferences, learner courseware interaction his-

tory, cultural background, cognitive and learning style, preferred communication style and

needs and the learner delivery environment [Dagger, 2006b].

2.2.5 Courseware Quality

The quality of courseware can be assessed by evaluating particular attributes of the course-

ware, known as quality attributes. The validity of a given courseware is judged on the

combination of these attributes.

Grützner et al. identify four central quality attributes to which courseware validity can

be judged, these are [Grützner et al., 2004]:

• The Content of Learning Materials - What content is taught to the learner,the format

the content takes and its suitability.

• The Presentation of Learning Materials - Addresses how courseware materials are

presented to the learner, addressing courseware sequencing and courseware structural

issues.

• How Learning Materials are Taught (i.e. pedagogic content) - This dimension of

quality addresses the pedagogical approach to content delivery.

• How Well Courseware Engages - Looks at the level of learner engagement with the

courseware.

In validating courseware, we aim to pinpoint problems in courseware by identifying course-

ware elements that violate quality attributes. The quality attributes outlined above offer

general guidelines for evaluating courseware.

Various educational bodies also specify guidelines for evaluating courseware, using a

variety of quality attributes. The Texas Education Agency has defined a comprehensive

evaluation matrix for evaluating courseware [Blackerby et al., 2002]. The quality attributes

used in this matrix are:

20

• Course Design - Ensures the learner’s learning goals are addressed. This looks at

the syllabus used to address the learning goals and also at how well the courseware

engages the learner.

• Course Content - Looks at the how course content is organised, and ifthe course

content provided is sufficient to achieve each learner’s learning goals.

• Instructional Strategies and Activities - Does the instructional strategy suitthe course

learning outcomes and learners?

• Learning Community - The course affords the opportunity to create a learning com-

munity and encourages collaborative methods.

• Student Assessments - Can the course effectively assess learner’s knowledge at any

given point in the courseware.

• Technology Integration - Technology used enhances the learner’s learning experience,

technology and media integration is seamless and the potential of technology failure

is addressed through the instructional design and alternative delivery methods.

• Course Effectiveness - Addresses the summative evaluation concernsof the course-

ware.

Other efforts in the area of courseware quality have concentrated on establishing the

quality of learning content in courseware. One such effort is the Learning Object Review

Instrument (LORI), which provides users of a given LO a common framework with which

to evaluate the LO [Nesbit et al., 2003].

The quality attributes presented in the literature specify general courseware quality at-

tributes. For the purposes of courseware validation we focus on those quality attributes that

can be evaluated before the course is delivered to the learners, knownas the “courseware

construction concerns”. We define these concerns in section 4.3. The courseware construc-

tion concerns are focused, measurable qualities of courseware and can also be assessed prior

to courseware delivery, allowing for correction before delivery to learners.

21

2.2.6 Courseware Standardisation Efforts

Standardisation efforts in courseware have allowed for the de-couplingof TEL content from

instructional logic, where instructional logic is the explicit machine-readabledefinition of

an instructional design. Many approaches to defining instructional logic can be found in the

literature in the form of Educational Modelling Languages (EMLs) [Martı́nez-Ortiz et al., 2007].

Two of these approaches are recognised IMS specifications, IMS SimpleSequencing

[IMS, 2003c] and IMS Learning Design (LD) [IMS, 2003b]. More specialised EMLs have

also be defined for specific types of e-learning environments, for example the LAOS lan-

guage, developed by Cristea & de Mooij, allows the course creator to define Adaptive Edu-

cational Hypermedia (AEH) [Cristea and de Mooij, 2003]. AEH is described in more detail

in section 3.2.2.

Recently, LOs have grown in popularity due to their advantages in courseware con-

struction, such as a reduction in courseware construction time and effort,and also allow-

ing course creators to reuse tried and tested TEL content. Specifications have also been

developed that allow for the packaging of LOs, such as IMS Content Packaging (CP)

[IMS, 2003a].

Learning Management Systems (LMSs), such as Moodle1, Blackboard2, and Sakai3,

provide a delivery platform for courseware delivery. LMSs can usethe courseware specifi-

cations to import and export courseware from one LMS to another. This allows for course-

ware to be developed independent of the eventual courseware delivery platform. The main

courseware specifications used in the import and export of courseware are the ADL SCORM

[ADL, 2004] and the IMS Learning Design (LD) [IMS, 2003b] specifications. As the vast

majority of courseware is delivered through a LMS, in this section we look in more detail

at the specification efforts that allow for interoperability with LMSs.

1http://www.moodle.org
2http://www.blackboard.com
3http://www.sakaiproject.org

22

2.2.6.1 SCORM

The Shareable Content Object Reference Model (SCORM), is a specification that defines

collection of standards and specifications used to describe coursewarefor the purposes of

courseware portability. The most recent published SCORM specification isthe SCORM

2004 specification [ADL, 2004]. This specification is made up of three parts, SCORM

Content and Aggregation Model (CAM), SCORM Sequencing and Navigation (SN) and

SCORM Run-Time Environment (RTE). The previous version of this specification was the

SCORM 1.2 specification which did not have the sequencing and navigation definitions.

The SCORM CAM, allows for the packaging and description of a given courseware.

The main specification used to define the SCORM CAM is the IMS Content Packaging

specification [IMS, 2003a]. Metadata standards, such as the IEEE LOMstandard, can be

embedded into the SCORM CAM to describe courseware.

The SCORM SN, allows for the definition of how learning content in SCORM is se-

quenced for the learner. The principle specification used in SCORM SN is the IMS Simple

Sequencing (SS) specification [IMS, 2003c]. The SCORM SN is definedin two main ways,

through “sequencing control modes” and “sequencing rules”. Sequencing control modes

define how a learner can interact with a sequencing “cluster” where a cluster is an aggre-

gation of learning content with an aggregation level of one. We have outlined sequencing

clusters in the diagram in figure 2.1. Sequencing rules allow the course creator to define

condition-action rules for SCORM courseware.

The SCORM RTE allows for communication between a SCORM package and a LMS.

The principle standard used for this is the IEEE ECMAScript Application Programming

Interface for Content to Runtime Services Communication [ADL, 2004].

2.2.6.2 IMS Learning Design (LD)

The IMS LD specification aims to capture learning (instructional) designs to bedeployed

for a specific learning situation [Koper, 2005]. The IMS LD specificationstarted as the Ed-

ucational Modelling Language used at the Open University of the Netherlands (OUNL), but

23

Figure 2.1: Sequencing clusters as defined in IMS Simple Sequencing [IMS, 2003c]

has since been brought under the IMS umbrella, integrated with the other IMS specifications

and renamed IMS Learning Design (LD).

IMS LD is based on a theatre script metaphor. A learning design is made up ofa set

of plays, which in turn containacts. An act has a set ofrole-parts. There are two types

of roles in a learning design,staff roles andlearner roles. The learning design workflow

is managed by themethod, which is designed towards a set ofprerequisitesand learning

objectives. A role-part in IMS LD links anactivity to a role [Olivier and Tattersall, 2005].

An activitydefines a learningenvironment, which is a set oflearning objectsandservices.

Learning design has been designed in levels, allowing the course creatorto increase the

complexity of the learning design they are using incrementally. These levels are as follows

[Olivier and Tattersall, 2005]:

• Level A - The core of the LD language, allows for the description and packaging of

courseware. Everything described thus far has been level A.

• Level B - Allows sophisticated adaptive learning specification using properties and

conditions.

• Level C - Allows for notifications.

Level B properties and conditions allow for the capturing of information about the learn-

ers, and the state of the learning design itself. Conditions can be then defined on these

24

properties. Level C provides for greater interactivity and control over LD during delivery,

allowing for a form of event-driven messaging in the learning design.

Figure 2.2 illustrates the conceptual structure of the IMS LD specification.

Figure 2.2: IMS LD Information Model [IMS, 2003b]

2.3 Software Modelling Technologies

The courseware validation solution, defined in this thesis, is based on the definition of a

DSML, using conceptual modelling technology. In [Daconta et al., 2003, ch.7], Daconta

et al. outline a series of ontology types with varying levels of expressivity,known as the

ontology spectrum. To define a DSML for courseware validation we require an ontology

expressivity level that can define a fixed vocabulary. We have determined that the level

of expressivity needed for our research is that of a “conceptual model” in the ontology

spectrum [Daconta et al., 2003] for the following reasons:

• We expect course creators to use the DSML in courseware constructionfor this reason

25

it must be as intuitive as possible and therefore limit its complexity.

• The DSML is expected to capture courseware and be interoperable with courseware

specifications. To allow for this the expressivity level of the DSML definedin this

thesis must be the same as or less than that used to define the state of the art. The

state of the art is defined using conceptual models.

• In order to capture courseware requirements defined in terms of knowledge the DSML

must be defined using an expressivity level the same as or less than that ofthose

standards and specifications used to define knowledge. Knowledge standards are

generally defined using the expressivity of a conceptual model or higher.

To this effect we examine software modelling technologies used to capture conceptual mod-

els, these being the Meta Object Facility (MOF) [OMG, 2003a] and the UnifiedModelling

Language (UML) [Eriksson et al., 2003]. Both MOF and UML are ObjectModelling Group

(OMG) standards. The OMG is an industry consortium that “maintains computer-industry

specifications for interoperable applications” [Eriksson et al., 2003]. We will also look at

the Eclipse Modelling Framework (EMF) [Steinburg et al., 2008]. EMF provides a mod-

elling language that allows for a generative approach to software development within the

Eclipse IDE [Czarnecki and Eisenecker, 2000]. MOF and EMF modelling constructs are

similar to UML modelling constructs and as UML is a widely known modelling language

we will only briefly introduce MOF and EMF.

Software models are traditionally used as a design artefact in software development.

Improvements in their semantics have allowed for them to become actual development arte-

facts, capable of generating code. The use of software models as development artefacts in

software engineering is known as Model Driven Engineering (MDE) [Schmidt, 2006]. In

this thesis, we will outline how MDE can be used with our DSML in courseware construc-

tion, and can also be used to allow for interoperability between the DSML and TEL. MDE

is described later in this chapter in section 2.5.

Software modelling technologies are the basis for the courseware validationapproach

defined in this thesis. The software modelling technologies described in this section allow

26

for the definition of a Domain Specific Modelling Language (DSML) in the “metamodelling

technical space” [Djuríc et al., 2006]. When this DSML is used with the Object Constraint

Language (OCL) it allows for the validation of courseware by constraining the allowable

courseware definitions. As OCL is not widely known, we therefore define OCL in a tutorial

like format, in section 2.4.

2.3.1 Meta Object Facility (MOF)

The MOF is a universal mechanism for defining modelling constructs. The MOF itself is

self-defined. A MOF modelling architecture has a four layer modelling stack for defining

modelling languages. We outline the MOF modelling stack in table 2.1.

Table 2.1: MOF modelling stack

Metalevel Description

M3 The meta-metamodel
level, defined using MOF

M2 The metamodel level de-
fined using MOF. The
M2 layer used to define
modelling languages e.g.
UML metamodel

M1 The model level defined
using modelling elements
defined in a metamodel at
the M2 layer e.g. UML
model

M0 The actual runtime in-
stance of the software
model defined at M1

2.3.2 Unified Modelling Language (UML)

The Unified Modelling Language (UML) is used to describe software and software require-

ments. The UML metamodel is defined by the OMG using MOF [OMG, 2007]. There

are two types of UML models, structural and behavioural. Structural models define how a

system is composed, while a behavioural model documents the dynamic behaviour of a sys-

27

tem. In table 2.1 we have also noted the modelling levels that the UML metamodel (UML

definition) and a UML model is defined at in the MOF modelling stack.

2.3.3 Eclipse Modelling Framework (EMF)

EMF is an open source modelling framework which integrates into the Eclipse platform

[Steinburg et al., 2008]. The primary purpose of EMF is to allow for generative program-

ming within the Eclipse IDE. Developers can define software using an ECoremodel, a

modelling language for EMF. ECore models can then in turn be used to generate Java code.

ECore is closely aligned with the Essential MOF (EMOF), a subset of the OMGMOF spec-

ification. An ECore model can be generated from an XML schema, a set ofannotated Java

interfaces or an UML2 model. To allow for the generation of Java code from an ECore

model EMF uses a model-to-text generator such as the Java Emitter Template (JET). We

will describe JET in detail in section 8.4.3.

Many powerful developer applications have been built on top of EMF. One such tool is

the Graphical Modelling Framework (GMF). GMF is a framework for designing modelling

tools based on EMF models. To create a GMF modelling tool an EMF model is defined

as the tool’s metamodel. Model diagrams developed in the GMF application must then

conform to this metamodel. We describe GMF in detail in section 8.4.1.

2.4 The Object Constraints Language (OCL)

In this section we take an in-depth look at OCL, its syntax, semantics and general use. We

will concentrate on the parts of the OCL most applicable to our work. A more detailed

description of the OCL can be found in [OMG, 2003b] and [Warmer and Kleppe, 2003].

OCL is a formal constraint language originally designed to describe expressions to en-

hance the semantics of UML models. OCL typically takes the form of invariant constraints,

defined on modelling constructs in a UML model. An invariant is a rule that must be true

when the model is instantiated. OCL can also be used to query a UML and ECore model.

OCL is a declarative language that has no side effects on the model it is defined on.

28

This means OCL cannot change the information in the UML model, it can only addto the

semantics of the model by constraining the allowable model instances.

The OCL standard, specified by the OMG, states that OCL should be used for the fol-

lowing purposes [OMG, 2003b]:

• “As a model query language.

• To specify invariants on classes and the types allowed in the class model.

• To specify type invariant for stereotypes.

• To describe pre- and post-conditions on operations and methods.

• To describe guards in activity diagrams.

• To specify target (sets) for messages and actions.

• To specify constraints on operations.

• To specify derivation rules for attributes for any expression over a UML model.”

In this section we will provide an overview on defining OCL constraints, we will also

define OCL’s application areas and assess the tool support available for defining OCL.

2.4.1 OCL Language Constructs

In this subsection we outline the major OCL language constructs used to defineconstraints

and queries in OCL. The main reference points used are the OMG standard[OMG, 2003b],

the text by Warmer and Kleppe [Warmer and Kleppe, 2003], and Richters Ph.D. thesis

[Richters, 2001].

2.4.1.1 Expressions

OCL expressions are based on set theory and predicate logic. Formal mathematical se-

mantics for OCL are defined in [Richters, 2001]. OCL does not use any mathematical

notation, as one of the design motivations for the standard was the need forthe rigour

29

and precision of mathematics with the ease of natural language. The result isa precise

unambiguous language that is easily written and read by Object Oriented practitioners

[Warmer and Kleppe, 2003, p17].

Literals and variables can be used to build simple expressions in OCL. More complex

OCL expressions can be defined, such as conditional branches, by using OCL’s if-then-else

notation.

The value of an object property, defined in a class diagram, is specified using the dot

notation in OCL, i.e.classname.propertyname. The dot notation allows the user to build

paths around a given model. To navigate to an associated class the association end role of the

associated class is used as the property name. Properties on collections are assessed using

an arrow “->” followed by the name of a OCL collection operation (see section 2.4.1.8).

2.4.1.2 Types

The most basic OCL types are; Boolean, Integer, Real and String. These types can be

manipulated using logic operations (Boolean), arithmetic operations (Integerand Real) and

string manipulation operations such as substring (String).

Three specialised types of collection classes are also defined in OCL; Set,Bag, and

Sequence. A set is a collection of objects, which does not allow for duplicates, Bag allows

for duplicates and a Sequence is an ordered set. Manipulation of collections is done using

various collection operations. We look at the OCL collection operations in detail in section

2.4.1.8.

2.4.1.3 Context

All OCL expressions have a grounding in a model, which a given OCL constraint is defined

in terms of, this is known as the constraint context. In listing 2.1 the constraint context is

the classCar, this means that the OCL constraints are defined from this model construct.

Herenumwheelsis an attribute of theCar class. The invariant states that thenumwheels

attribute must be equal to four for the invariant to be satisfied.

30

Listing 2.1: Defining an additional operation on the Car class

c o n t e x t Car

inv whee ls : numwheels = 4

2.4.1.4 Invariants

Invariants in OCL are defined with the keywordinv. An invariant must be true for an

instance of a model. It provides a method to constrain the forms objects can take in the

instance space. In listing 2.1 we have demonstrated an invariant stating that acar must have

four wheels.

Invariants may have an optional name, which is defined after theinv keyword and before

the colon indicating the start of the invariant. In listing 2.1 the invariant is named,wheels.

2.4.1.5 Pre-conditions and Post-conditions

Pre-condition states and post-condition states can be defined on class operations using OCL.

The precondition constrains what system state the context class operationcan be invoked in

while the post-condition states what the system state must be once the operationhas been

invoked.

In listing 2.2 we have outlined an example use of a pre-condition and a post-condition

for thestart() operation of the Car class. The Car class’sstart() operation is defined as the

context. To define the operation as the context, we specify the context class and then after

a double colon (“::”), we state the operation. The double colon indicates thatthe operation

call is an instance level event - a system state. The constraint states that thestart()operation

must only be invoked when the car’s engine is off (pre-condition) and theengine must be

on after invoking the operation (post-condition).

Listing 2.2: Defining an additional operation on the Car class

c o n t e x t Car : : s t a r t () : Boolean

pre : eng ine . on = f a l s e

p o s t : eng ine . on =t rue

31

2.4.1.6 Let

The let keyword in OCL allows for the definition of local variables for an invariantand is

defined as a sub-expression. In the example in listing 2.3, an initial local variable is defined

for the invariant using the let keyword. The local variable,old defines what an “old” car

is (i.e. a car more than ten years old), the invariant,serviceis then defined using this local

variable after the keywordin.

Listing 2.3: Defining an additional operation on the Car class

c o n t e x t Car

inv s e r v i c e : l e t o ld : Boolean =

age > 10

i n

i f o ld = t rue t hen

s e r v i c e R e q u i r e d =t rue

e l s e

s e r v i c e R e q u i r e d =f a l s e

e n d i f

2.4.1.7 Def

The OCLdef keyword allows for the definition of extra object attributes and operations

using OCL. These operations and attributes can then be used by other OCLconstraints. In

listing 2.4, we use thedef keyword to define two operations. The first operation isget-

NumPassengers()on theCar class, which evaluates the number of passengers in aCar

instance. The second operationgetPassengerName(x:Integer)gets the name of the passen-

ger at the indexx. This operation illustrates how parameters can be passed into an OCL

operation.

Listing 2.4: Defining an additional operation on the Car class

c o n t e x t Car

de f getNumPassengers () : I n t e g e r = s e l f . passenge rs−>s i z e ()

de f getPassengerName (x : I n t e g e r) : S t r i n g = s e l f . passengers−>a t (x)

2.4.1.8 Collection Operations

OCL offers a variety of collection operations, which aid the user in the manipulation and

querying of OCL collections, these include:

32

• sum()- Returns the sum of all elements in a collection.

• size()- Returns the number of elements in a collection.

• isEmpty()- Returns true if the collection has zero elements.

• notEmpty()- Returns true if the collection has more than zero elements.

• select(expr)- Returns elements in a collection whereexpr is true.

• collect(expr)- Returns collection which results from evaluatingexpr.

• forAll(expr) - Expr must be true for all elements in the collection.

2.4.2 OCL Applications

As we have mentioned the main use of OCL is to enhance the expressivenessof UML mod-

els, by adding additional information to the model that cannot be expressedusing UML’s

visual notation. Since its original standardisation in 1997 OCL has evolved,and its appli-

cations have grown. OCL is now used in the following application areas:

• The largest use of OCL remains refining UML model definitions. The importance of

OCL in this regard is especially important with the advent of Model Driven Engineer-

ing (MDE) in software development [Warmer and Kleppe, 2003, ch1].

• OCL is also being used to refine DSMLs defined in the metamodelling technical

space using meta-metamodel languages such as MOF or Ecore [Gronback, 2009]. To

do this OCL is used to constrain metamodel definitions.

• OCL is used to define some model transformation languages such as the Atlas Trans-

formation Language (ATL) [Jouault and Kurtev, 2005].

Tool support can be provided to the OCL developer in a number of ways.Hussmann

et al. outline the most important aspects of tool support needed in order to ensure the extra

effort needed to define OCL constraints is cost-effective [Hussmann et al., 2000]. In their

work they outline key features that an OCL tool should have:

33

• Syntactic Analysis - Parsing OCL expression for syntactic errors.

• Type-checking - Enables automatic static type checking of OCL.

• Logical Consistency checking - Ensure that OCL constraints are not contradictory.

• Dynamic Invariant Validation - Allow for the building of a snapshot of the system to

test invariants.

• Dynamic Pre-/Post-condition Validation - Again allows for snapshot of system and

the testing of OCL pre/post-conditions.

• Test Automation - Allows for automated Checking of system test results against the

specification.

• Code Verification and Synthesis - Verify safety-critical development projects.

We add one more feature, which we deem important due to the importance of generative

programming in MDE, the facility to transform UML and OCL to programming code.

Richters uses the aspects of tool support outlined above to evaluate a selection of OCL

tools [Richters, 2001]. In our work, we will further this work by adding inadditional tools

and updating the results. The tools we will look at are:

• UML Specification Environment (USE), from the University of Bremen [USE, 2008].

• Open Source Library for OCL (OSLO) - An OCL tool which allows for the evalua-

tion of OCL against UML2 models. This project is managed by Fraunhofer Institute

FOKUS [FOKUS, Fraunhofer Institute, 2006].

• Octopus - Developed by Warmer and Kleppe, implemented as an eclipse plug-in

[Warmer and Kleppe, 2006].

• EMF Validation Project - The eclipse validation project allows for EMF model con-

straints defined in OCL and Java [Steinburg et al., 2008].

34

• KeY Project - this project aims to allow for the formal verification of object soft-

ware as seamlessly as possible, one of the applications of this is an OCL tool, which

translates OCL to first-order predicate logic [Beckert et al., 2002].

• Dresden OCL Toolkit - designed to be integrated into other tools as an OCL library.

There are several applications built on the Dresden OCL Toolkit includingan OCL2

workbench, an OCL checker GUI, a Java code generator and a transformation frame-

work. [DresdenOCL, 2007].

In table 2.2, we have outlined the aspects of tool support provided for byeach of the

tools described above. Question marks in the table indicate unavailable data.

Table 2.2: Analysis of OCL Tools

Feature Tools
USE OSLO Octopus EMF KeY Dresden

Syntactic analysis yes yes yes no no yes
Type-checking yes no yes no no yes
Logical consistency checking no no no no ? no
Dynamic invariant validation yes no ? yes yes yes
Dynamic pre/post-condition val-
idation

yes no ? yes yes yes

Test automation yes no ? no yes no
Code verification and synthesis no no no no yes no
Model transformation facility no no yes yes no yes

2.5 Model Driven Engineering

Model Driven Engineering (MDE), also known as Model Driven Development (MDD) and

Model Driven Software Development (MDSD) is an approach to software development,

where software is modelled at progressively lower levels of abstraction,eventually at the

level where code can be generated from the models. In this thesis we will outline how

MDE technologies and approaches provide for interoperability between TEL and the DSML

defined for courseware validation. The thesis also outlines how our MDE can be used in

courseware construction.

35

One specific MDE approach is Model Driven Architecture (MDA). MDA isan MDE

approach promoted by the Object Management Group (OMG) [Frankel, 2003]. It involves

using the OMG family of modelling languages to define and subsequently generate soft-

ware. In order for UML to be used as a development artefact rather than a mere design

artefact, UML models must be unambiguously defined. To allow for this OCL is defined on

UML.

In MDA three types of models are defined in software development, Computational In-

dependent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM). The CIM model is a requirements model. The CIM can then be used to generate the

PIM model, a systems design model, which is independent of any technology platform. The

PIM is used to generate the PSM, which is the systems design model, modelled around some

technology platform, such as J2EE or .NET. Model transformations are used to transform

from one model type to another.

2.6 Model Transformations

Model transformations play a key role in MDE, allowing for [Czarnecki and Helson, 2006]:

• Generation of lower-level models (and code) from higher level models - as is the case

in MDA’s CIM, PIM and PSM.

• Definition of mappings among models at the same level or different levels of ab-

straction - allowing for mapping from one modelling notation to another modelling

notation.

• Query based views of a system.

• Performing of model evolution tasks, such as model refactoring.

• Reverse engineering of lower level models into higher level models.

Figure 2.3, outlines the basic premises of a model transformation, where the model

transformation definition is defined between two metamodels, and the transformation is

36

then invoked at the model level.

S o u r c e M o d e l

S o u r c e M e t a m o d e l

T a r g e t M o d e l

T r a n s f o r m a t i o n D e f i n i t i o n T a r g e t M e t a m o d e l

T r a n s f o r m a t i o n
E n g i n e

r e fe r s t o re fe r s t o

w r i t e sr e a d s

c o n f o r m s t o c o n f o r m s t o

Figure 2.3: Basic concepts of model transformation [Czarnecki and Helson, 2006]

When considering a model transformation language it is important to assess thetransfor-

mation language in terms of its features. To this effect Czarnecki and Helsen compare nearly

thirty transformation languages using the following features [Czarnecki and Helson, 2006]:

• Specification - Is there a detailed specification mechanism for the transformation?

• Transformation Rules - Looks at how transformation rules are formulated.

• Rule Application Control - Two dimensions, local determination (the model locations

that a transformation is applied to) and scheduling (scheduling the order oftransfor-

mations).

• Rule Organisation - General structuring issues.

• Source-Target Relationship - Looks at how the source and target model are related.

• Incrementally - Ability to update target model with updates on the source model.

• Directionality - Are transformations unidirectional or bi-directional?

• Tracing - Mechanisms for recording different aspects of transformation execution.

2.7 Chapter Conclusion

In this chapter we have outlined the courseware terminology and concepts used in this thesis,

and subsequently outlined the software engineering technologies and approaches used.

37

Initially, we looked at how courseware can be defined in terms of its scope,structure,

content and pedagogical strategy. We also examined how courseware quality is measured.

The two main courseware specifications defined to allow for the portability of courseware

definitions were then described, these being SCORM and IMS LD.

The second part of the chapter detailed the software engineering technologies used in

our research to allow for courseware validation. These are principally software modelling

technologies used in MDE.

Software modelling languages allows for the formal and unambiguous definition of soft-

ware systems and their requirements. Software modelling languages providethe ideal se-

mantic expressivity for defining conceptual models to validate courseware. We use software

modelling technologies to capture courseware design and its requirements because of the

similarities between courseware and software, such as:

• Software is designed to satisfy some business need which is established though de-

tailed analysis, while courseware is defined to satisfy some learning need established

through an analysis of a skills gap.

– Software like courseware has some specific start-point depending on its users.

– Software like courseware has some specific end-point depending on its users.

• Time and money is saved through the reuse paradigm now prevalent in software

engineering, found in software development approaches such as Component Based

Software Development (CBSD) [Szyperski, 2002]. Courseware construction looks to

reuse as much content and instructional design as possible to boost the quality of the

courseware and to save on time and development costs [Motelet et al., 2007].

• Software models such as UML can model software structurally and behaviourally,

which is the two main ways of expressing courseware.

• MDE technologies can be used to generate courseware specifications [Melia et al., 2006,

Melia and Pahl, 2006b].

38

It should be noted that although there are similarities between the reuse paradigm in

software engineering and courseware design at a component level, particularly when com-

paring LOs with software components such as objects, there are some major differences

in their usage and properties. Sosteric & Hesemeier discuss these differences and of the

incorrect comparison some authors have drawn between LOs and software objects

[Sosteric and Hesemeier, 2002].

In chapter 5 we will look at the application of software models to the definition ofa

DSML for describing courseware and its requirements. Then in chapter 6we outline how

OCL can be used to define courseware validation criteria. In chapter 8 wewill demonstrate

how MDE technologies in general allow for the integration of courseware validation with

the state of the art in courseware construction.

39

Chapter 3

State of the Art

3.1 Introduction

In this chapter we survey related research, initially looking at courseware construction (or

authoring) and then at courseware validation.

Our particular focus is to examine where and how courseware validation fitsinto course-

ware construction. After looking at courseware construction, we concentrate on the course-

ware validation state of the art in section 3.3. We examine four approaches tocourseware

validation found in the literature. To analysis the state of the art examined in this chapter in

section 3.4 we compare all the courseware construction and validation approaches covered

in this chapter using a comparison framework. The chapter concludes by summarising our

findings.

3.2 Courseware Construction

In this section we examine the state of the art in courseware construction research to provide

the courseware construction context for courseware validation.

We will examine each courseware construction approach in terms of its method, the

courseware granularity level it addresses and look at examples of applied research demon-

strating an implementation of the courseware construction approach. Each implementation

40

will be examined in terms of its user interface, its interoperability with other TEL tools,

such as LMSs, and any validation functionality provided by the implementation. When ex-

amining an implementation’s user interface we are concerned with the level of abstraction

the course creator constructs courseware at. We are not interested in the tools usability, such

as the tool’s User Interface (UI) layout. We investigate interoperability from the point of

view of how courseware validation can be integrated with courseware construction. These

are central concerns to our investigation and are used to evaluate our research.

3.2.1 Specification-based Courseware Construction

In section 2.2.6, we outlined the various standardisation efforts in courseware construction.

Surrounding the development of these standards has been the development of tool support

for course creators to produce standard/specification compliant courseware or learning con-

tent. This tool support bases its courseware construction paradigm around a TEL specifica-

tion/standard model and work at the same granularity level as the courseware specification.

The primary goal of such a tool is to provide an intuitive user interface fordefining the TEL

specification on which it is based. The primary motivation for using the TEL specification

is that courseware produced using such a tool can easily be exported ina specification-

compliant way and then imported and delivered using any LMS, which is interoperable

with the TEL specification used.

In the following sections we will look at the tool support developed based on the

SCORM specification (see section 2.2.6.1) and then look at tool support based on the IMS

Learning Design (LD) (see section 2.2.6.2) specification.

3.2.1.1 SCORM Authoring Tools

SCORM is a very popular TEL specification for courseware packaging.For this reason tool

support based on the specification is numerous. Here we look at some of the more popular

ones.

The Reload Project is a JISC funded project, managed by the University of Bolton

[RELOAD Project, 2005]. The Reload Editor allows the course creator to create a SCORM

41

2004 package without knowledge of the specification’s XML bindings. Thisis achieved

through a graphical user environment that presents the SCORM XML as afile tree type

structure, where the XML tree is mapped to the file tree structure. The course creator can

open out elements of the XML specification, and drag and drop Learning Objects (LOs)

into a SCORM package - represented as the tree structure. A comparison can be drawn

to a classic file system interface, where the user can drag and drop files into various sys-

tem directories. When all the LOs needed for the courseware have beenadded, the course

creator can then define sequencing information, in the form of an IMS SimpleSequencing

definition, using a form-based UI.

Figure 3.1 depicts a screen-shot of the Reload tool during coursewaredevelopment. As

seen in the screen-shot the course is divided intoorganizationsanditemsin anorganization

as in the SCORM specification.

The Reload editor allows the course creator to create a SCORM package ata slightly

higher level of abstraction, abstracting the XML implementation details. The course creator

must still understand how to implement central concepts of courseware packaging according

to the SCORM specification. The Reload tool does not allow for any kind of validation of

the SCORM courseware created.

InSite Studio from Mississippi State University [Mississippi State University, 2007], is

a diagram-based tool for the production of adaptive, modular learning content. The diagram

view presents the course creator with a visual representation of the presentational flow of

learning content, in flow-chart type notation. This type of presentational flow notation,

allows the course creator to develop courseware in a programmatic way using conditions and

actions. InSite essentially provides a simple modelling notation for defining IMS Simple

Sequencing [IMS, 2003c] within SCORM. InSite does not allow for any kind of validation

of the SCORM courseware created.

XML SCORM Studio [Eifel, 2007] specialises in converting legacy content into SCORM

content that can interoperate with a LMS. The XML SCORM Studio also allows the course

creator to create SCORM packages using a similar tree based approach to that found in the

Reload Editor. There is no validation functionality in the XML SCORM studio.

42

Figure 3.1: Screen-shot from the Reload Tool

3.2.1.2 IMS LD Authoring Tools

The IMS LD specification defines learning environments, including a definition of how and

when to deliver learning resources to the learner. IMS LD is a more complexlanguage than

SCORM, which makes its definition more difficult, in this section we look at tool support

provided for defining IMS LD.

The Reload Project, has also developed an IMS LD editor. This tool works on the

same principle as the SCORM editor, in that it provides a file tree type user interface on top

of the LD XML specification. This raises the level of abstraction the coursecreator defines

LD at, from the XML level to the conceptual level. In order for the coursecreator to use this

tool he or she must be knowledgeable on the LD specification. There is no way to validate

43

LD courseware created in Reload.

ReCourseis the successor to the Reload Project’s IMS LD editor [Griffiths et al., 2009].

The focus of the design of ReCourse was on usability. To this end ReCourse provides a more

intuitive model-based User Interface for defining IMS LD. There is also no way to validate

courseware created in ReCourse.

CopperAuthor is another tool for defining IMS LD [Van der Vegt and Koper, 2005].

CopperAuthor was developed at the Open University of the Netherlands. It provides the

course creator with assistance in editing an IMS LD design through a rathersimplistic table

interface, based on the IMS LD standard. The support provided to the course creator with

this tool is minimal, providing an alternative interface to define IMS LD, than the native

XML. CopperAuthor has a validation function that only allows the course creator to check

that the IMS LD definition complies with the IMS LD syntax specification.

3.2.2 Adaptive Educational Hypermedia (AEH) Courseware Authoring Tools

Adaptive Hypermedia (AH) is an area of research that looks at adaptinga hypermedia page

to a user model, for example eliminating hyperlinks that are not relevant to a particular

user [Brusilovsky, 1996]. Adaptive Educational Hypermedia (AEH),uses AH technolo-

gies in an educational context, for example, using a learner’s prior knowledge to define an

educationally-oriented hypermedia environment to present to the learner.

In general AEH systems operate at a low level of granularity and typically adapt to

a learner’s knowledge at the lesson navigation level. This is typically done by providing

recommendations for a pedagogically sound learning path through the educational hyper-

media to the learner. Examples of such an AEH systems are Brusilovsky et al.’s Inter-

book [Eklund and Brusilovsky, 1999] and ELM-ART [Weber and Brusilovsky, 2001] sys-

tems and DeBra and Calvi’s AHA! system [DeBra and Calvi, 1998]. The AHA! system

also works at the level of the content unit in AEH, adapting even the text presented to the

learner depending on the learner model.

Much of the research in AEH, concentrates on delivery, and the effect AEH-based per-

44

sonalisation has on learning. For this purpose, AEH courses are generally once off imple-

mentations developed by an AEH researcher. One of the main criticisms of AEHis that

its authoring is a time consuming and complex activity [Brusilovsky et al., 1998].Here we

look at one AEH authoring system, the My Online Teacher (MOT) system, thatattempts to

alleviate these problems in AEH authoring.

3.2.2.1 My Online Teacher (MOT)

The “My Online Teacher” (MOT) tool [Cristea et al., 2003a], developedat Eindhoven Uni-

versity of Technology, allows course creators to create adaptive courseware using the “LAOS”

system of layered models [Cristea and de Mooij, 2003]. In LAOS there aretwo types of

models - static and dynamic. The static models describe domain, pedagogical and learner

data, and also the potential delivery environments. The dynamic model describes how AEH

should adapt to variations in the static models. To create AEH using MOT, the course cre-

ator defines the static elements of LAOS using MOT. The LAOS models are layered on top

of each other, with each modelling layer building on the models defined below it. LAOS’s

static models are as follows, starting with the model at the bottom of the LAOS stack:

• Domain Model - Organises and structures knowledge in a particular area,defined in

terms of concepts. Concepts contain attributes that contain learning content.

• Goal and Constraints Model - Used to express educational goals. This isdone by

specifying weights on domain concepts, optional elements in the domain model and

conceptual sequencing definitions.

• User Model - Used to define the learner knowledge levels, interests and learning

styles.

• Presentation Model - Model variables to do with different AEH delivery environ-

ments.

Dynamic modelling elements of LOAS models are encapsulated in the adaptation model.

This model describes how the AEH reacts to variations in the static modelling elements.

45

The adaptation model is based on the 3-tier LAG model of adaptive specification. At the

top level of the LAG model is adaptation strategies, which are collection of adaptation lan-

guages, that in turn, are collections of direct adaptation rules.

The MOT uses a hypertext interface to manipulate the LAOS models. The course cre-

ator can navigate around the LAOS models using a variety of links, where each link is a

connection to another element of a LAOS model. The model is edited using a form based

interface. An example of such an interface can be found in figure 3.2, where the domain

model for biochemistry is being defined. The domain model has been overlaidwith a goal

and constraint model, indicating pedagogical information for this domain. Thepercentages

indicate weights for concepts and attributes within concepts. Each hyper-link causes a nav-

igational action, bringing the course creator to a new concept, attribute or an editing action

to change the models in some way.

Although the MOT tool does not allow for the creation of TEL specification compliant

courseware, such as SCORM packages, there has been an effort todeliver AEH courses cre-

ated by MOT on different AEH delivery platforms, including AHA! [Cristeaet al., 2003a]

and WHURLE [Cristea et al., 2003b]. Two main approaches are taken in order to migrate

the adaptive courses to the different delivery environments. The firstis to use a common

AEH language, the other is to use converters to convert the AEH definition inLAOS to the

data structure expected by the delivery platform. MOT does not allow the course creator to

check the AEH he or she has created for problems. To do this the AEH must be exported to

an AEH delivery system and test-runs of the AEH must be performed by thecourse creator.

3.2.3 Ontology-based Authoring of Courseware

The basic idea of ontology-based courseware authoring is to use structured knowledge in

the form of an ontology as a basis for creating courseware [Pahl and Melia, 2006]. The use

of an ontology provides the following advantages in courseware construction:

• Domain ontologies can be used from other contexts, eliminating the courseware au-

thoring cold start problem.

46

Figure 3.2: Screen-shot of MOT tool showing a lesson map with each attribute given a
weight

• The semantics within the domain ontology can be used to find learning content.

• The domain ontology can be used as a principle navigation tool in the courseware

created.

The tools outlined in this section demonstrate how ontologies are used in the construc-

tion of courseware and fine-grained learning resources such as lessons or LOs.

47

3.2.3.1 TANGRAM

TANGRAM is a tool that has been developed by Jovanović et al. to aid course creators

in reusing and repurposing content units in LOs [Jovanović et al., 2006b]. TANGRAM at-

tempts to cater for the course creator who wishes to create a new LO from content units

of other LOs by decomposing LOs into small, highly reusable, content units. These con-

tent units are then automatically annotated and can be searched by the course creator when

creating a new LO.

Decomposition of LOs is based on the ALOCoM Content Structure ontology definition

[Jovanovíc et al., 2005]. Once LOs have been decomposed into content units TANGRAM

is able to automatically annotate each content unit. Annotation is based on the IEEE Learn-

ing Object Metadata (LOM) standard [IEEE LTSC, 2002]. A domain ontology is used to

capture subject domain information, and a context ontology is used to capture the educa-

tional context of the content unit, such as whether a content unit is a paragraph or a title of

presentation slide. The automatic generation of LOs is done using ontology-based inference

techniques.

The TANGRAM tool produces LOs in the form of openoffice1 documents. The course

creator tests the LOs produced by TANGRAM by exploring them as a learner, there is no

automated validation functionality in TANGRAM.

3.2.3.2 OntAWare

In [Holohan, 2003], Holohan describes how structured knowledge such as ontologies can be

used to create courseware using the OntAWare system. Holohan has developed an algorithm

that takes, as input, a tree-like ontological structure, and generates Microsoft PowerPoint

slides that reflects the knowledge in the ontology. Holohan et al. also demonstrates how

ontologies could be used to create multiple-choice questions to test student’s knowledge on

a given subject [Holohan et al., 2006, Holohan et al., 2005].

More recently an ontology-based delivery system has been developedfor OntAWare.

1http://www.openoffice.org

48

The OntAWare delivery system creates an “active slide” of information about an ontology

component on the fly as the learner navigates the ontology. This means changes to the

knowledge base will be reflected in any of the learning content deliveredby OntAWare

[Melia et al., 2005]. The delivery of the courseware can also be personalised for the learner

in terms of the learner’s knowledge [McMullen, 2007].

The tool provides the course creator with a form-based user interface for editing the

course knowledge base and for editing the courseware instructional design. The editing in-

terface is quite intuitive, but does have scalability issues as the course creator has no way of

viewing the knowledge base at a higher level of abstraction other than an individual concept

level. Courseware constructed using OntAWare can be exported into SCORM 1.2 packages,

to be delivered on LMSs compliant with that specification [McMullen et al., 2005].

To test the courseware produced by OntAWare the course creator mustperform dummy

learner runs to see how the courseware adapts to learner attributes. There is no way to

automatically validate the courseware using OntAWare.

3.2.3.3 Visualized Online Authoring Toolkit (VOAT)

Yang et al. recognise the difficulties in reusing and repurposing LOs in [Yang et al., 2005],

and have created a suite of tools which aim to aid the course creator in the creation of

courseware. Yang and his team have embraced the Semantic Web movement intheir suite

of tools by using Semantic Web ontologies as the basis for courseware creation. The

tool suite has been built on top of one of Yang’s earlier attempts to encourage LO reuse

and repurposing, the SCORM-compliant Content Repository ManagementSystem (CRMS)

[Yang and Tsai, 2003].

There are three components to VOAT; the Ontology-Based Outline AuthoringTool

(OBOAT), the Visual Online Course Authoring Tool (VOCAT) and the Visualized Online

Simple Sequencing Authoring Tool (VOSSAT). The course creator usesOBOAT to create

a conceptual map of the content of the course to be created. The construction of this con-

ceptual map is guided by a domain ontology. The structure of the course the ontology is

displayed in a file tree type structure, such as that found in the Reload tool.

49

Once a conceptual map has been created it is loaded into the VOCAT, which isused

to add and assemble LOs into courseware. Editing of the courseware in VOCAT is done

through a set of eight buttons that are based around the addition and subtraction of LOs to

the course. There is a steep learning curve in using VOCAT as the coursecreator must learn

about the functionality of each button offered and their symbols.

The final tool in the suite is VOSSAT, which allows the course creator to specify LO

sequencing information. Sequencing information is specified through a form-based user

interface. Once sequenced the courseware is exported into SCORM andcan then be used

by learners on a SCORM-compliant LMS. VOSSAT has a form-based interface that uses

the terminology of the IMS simple sequencing specification. To use VOSSAT, in-depth

knowledge of the simple sequencing specification is required.

VOAT concentrates on SCORM-compliant courseware construction. It isnot concerned

with checking the courseware constructed for problems. As such, thereis no validation

functionality in VOAT.

3.2.4 Constraint-based ITS

The SQL-Tutor, developed at the University of Canterbury, is an Intelligent Tutoring System

(ITS) for learning to program SQL for relational database systems [Mitrovic et al., 2007].

This ITS is defined through constraints. Constraints work by checking theexistence of prob-

lems in the solution provided by the learner, violated constraints give clues to how to support

the learner. The constraint based approach of only correcting the learner for known prob-

lems means if the learner does something that the system doesn’t know aboutit, it deems it

to be correct - the learner is therefore “innocent until proven guilty” [Mitrovic et al., 2007].

In order for the course creator to define an ITS for learning SQL almost700 constraints

have to be defined, describing the fundamental principles of SQL.

Constraint-based Intelligent Tutoring System (ITS) authoring support isprovided by the

WETAS-ontology [Martin et al., 2007] and ASPIRE [Mitrovic et al., 2006] systems. The

WETAS-ontology allows the course creator to define an ontology for the desired ITS do-

main and generate constraints from the ontology definition [Martin et al., 2007]. ASPIRE

50

is a complete authoring system for a constraint-based ITS. ASPIRE looks tobe as intuitive

as possible, allowing the course creator to define their own ITS in nine steps, as follows:

1. Specify the domain characteristics - The central domain concepts are broken down

into tasks, steps or parts.

2. Compose a domain ontology - An ontology is defined to represent the subject domain.

3. Model the problem and solution structures - Define how domain problems and their

corresponding solutions and structures are declared.

4. Design the student interface - Based on the problem and solution structures the stu-

dent UI is designed.

5. Add problems and solutions - Example problems and solutions are added.

6. Generate the syntax constraints - Syntax constraints are generated based on the do-

main ontology definition.

7. Generate semantic constraints - Machine learning is used to derive semantic con-

straints from the problems and solutions provided by the course creator.

8. Validate the generated constraints -The system is tested by the course creator to ensure

it can identify an incorrect solution.

9. Deploy the tutoring system - ITS is deployed in the ASPIRE-Tutor system.

The ASPIRE UI is mainly form-based, where much of the steps above have aform

associated with them in ASPIRE. The domain ontology editing part of ASPIRE provides a

graphical model of the ontology as shown in figure 3.3. The syntax and semantic constraints

are displayed in their native LISP [Steele, 1990] and can be edited by the course creator.

The constraint-based approach allows the learner to be right, unless the system “knows”

the learner is wrong. This means that every wrong approach must be explicitly defined for

the course to notify the learner when he or she does something wrong. Theapproach is

excellent for smaller courses, but as seen with the SQL-tutor system, the approach does

51

Figure 3.3: Domain model editing in ASPIRE

have scale problems. The constraints defined in ASPIRE are solely used indefining the ITS,

the constraints cannot be used for validating the ITS in terms of its pedagogy. Validation of

the ITS can only be achieved through manual testing.

3.2.5 Model Driven Courseware Engineering

Courseware engineering is the use of software engineering technologiesand methodologies

in the development and maintenance of courseware [Dwolatzky et al., 2002]. One of the

main software engineering principles used in courseware engineering is abstraction, where

abstraction is a deliberate simplification that picks out the most salient characteristics of

a system [Sommerville, 2004, p170]. Abstraction is used to remove excess complexity in

designing courseware.

Courseware engineering generally works at the courseware or module granularity level,

which mainly focuses on the combination of learning resources into a focused unit of in-

struction.

Here, we look at one particular type of courseware engineering, the use of Model

Driven Engineering (MDE) technologies to capture courseware structure and the learner

52

flow through the courseware, and the subsequent generation of a courseware specifica-

tion based on the model. Melia et al. and Martı́nez-Ortiz et al. have looked at the use

of UML Activity Diagrams to define IMS Simple Sequencing (SS), and investigate how

software model transformation technology can be used to generated a IMSSS XML bind-

ing [Melia et al., 2006, Martı́nez-Ortiz et al., 2009]. Further insights into the use of MDE

can be found in [Laforcade and Choquet, 2006], which looks at the use Model Driven Ar-

chitecture (MDA) methodologies in courseware development.

Here we will examine approaches to courseware creation that are basedaround the

definition of data models that capture the courseware construction concerns. These data

models are then used to create courseware.

3.2.5.1 Adaptive Courseware Construction Toolkit (ACCT)

The design of the Adaptive Courseware Construction Toolkit (ACCT) is based on the sep-

aration of the “key design elements of personalised elearning” [Dagger,2006b]. These

elements are (but not limited to) as follows:

• Narrative Structures - Pedagogical structures that specify a sequence of learning ac-

tivities and tasks.

• Activities - Activities are usually some task that must be performed in the e-learning

environment. There can be tools associated with particular tasks.

• Subject Matter Concept Space (SMCS) - Knowledge about the subject area. The

(SMCS) also provides scope for the the adaptive courseware and limited pedagogic

information such as dependencies between concepts.

• Narrative Attributes - Narrative attributes describe some form of adaptation. It de-

scribes information needed to make decisions on adaptivity, which is passedto “se-

lectors” that select the most appropriate content from candidate contentgroupings

[Dagger et al., 2003].

53

• Learning Resources - Learning resource metadata can be used as the basis for adap-

tation.

• Learner Profiles - A learner profile describes a learner in terms of the knowledge the

learner has.

• Personalised e-Learning Designs (PEDE Narrative) - The resulting personalised course

based on the above personalised e-learning design elements. The PEDE narrative cap-

tures all the information needed to deliver the adaptive course. The PEDEnarrative

typically operates at the module level of courseware.

Figure 3.4 shows a screen-shot of the ACCT, and highlights the use of each of the

personalised e-learning design elements.

Figure 3.4: The ACCT - Demonstrating the use of PEDE design elements [Dagger, 2006b]

Each design element in the ACCT is not dependent on any other design element, which

makes design elements very portable. For example, the narrative structurethat specifies a

good web-based learning pedagogy (Web Quest) can be used in other non-related courses.

54

The combination of a concept map with pedagogic information, found in the ACCT, can

limit the portability of a SMCS to only those courses where the course creator agrees with

the set pedagogy.

To test courseware constructed using the ACCT, it is deployed into the “gAPeLS” de-

livery system allowing the course creator to perform dummy runs of the newcourseware.

The ACCT is interoperable with mainstream TEL, as personalised courseware defined

using the ACCT can be exported to IMS LD [Dagger, 2006a]. Although there are some

limitations in the solution, the integration of the ACCT with IMS LD shows the importance

of interoperability with courseware specifications for courseware construction tools.

3.2.5.2 MD2 Course Authoring

The MD2 method allows the course creator to create didactic materials using a model-based

approach [Padrón et al., 2006]. The method aims to support the course creator in a four-

phase process. The first phase is an analysis of the subject area, thesecond phase involves

selecting the resources to be used according to pedagogical and technical requirements. In

the third phase learning materials are composed into a course and finally in the fourth phase

the didactic material created is evaluated.

The MD2 method uses the MD2 model descriptors to describe the requirementsfor the

didactic material. The MD2 model has four main types of descriptors:

• Knowledge Domain Descriptors - Represents the main features of the discipline or

subject to be taught. This descriptor is used as a reference knowledge structure.

• Pedagogic Descriptors - Captures the pedagogical requirement of the didactic ma-

terial being created, this descriptor is akin to the educational category of the IEEE

LOM standard [IEEE LTSC, 2002].

• Support Descriptors - Ensures the didactic material created is reusable,interoperable

and manageable.

• Usability and Quality Descriptors - Describes the constructed didactic materialin

55

terms of its usability and also check if the created material can effectively support

educational tasks in order for the material to achieve its objective.

The MD2 method implements the four-phase process in thirteen steps, with various

steps associated with each phase. These steps are centred around the definition of a MD2

model. Tool support is provided for the MD2 method. This tool uses a questionnaire in-

terface to quiz the course creator on the didactic material requirements, building up a MD2

model that reflect the didactic material requirements. This is a very simple interface for the

course creator, but can be very restrictive, as the course creator can not add any information

to the MD2 model that is not covered in the questionnaire.

The final step of the MD2 process is the only step concerned with the evaluation phase.

This step defines the usability and quality descriptors of the MD2 model. This stepis based

on learner experience. To evaluate the didactic material’s quality the coursecreator must

evaluate if the material defined “effectively supports educational tasks and helps to achieve

the defined learning objectives” [Padrón et al., 2007]. The usability elements provide the

course creator with the facility to evaluate the didactic material created in terms of; error

frequency and severity, self-evidence, efficiency of use, familiarisation time and memora-

bility. All values are represented as fuzzy sets and are aggregated to obtain a usability and

quality value for the material. This is a form of validation of the material that is created at

the post-delivery stage.

The importance of evaluation in MD2 is demonstrated in [Padrón et al., 2008], where

the usability and quality descriptors are used to drive adaptation, replacingbelow par mate-

rial during the delivery of courseware.

Padŕon et al. mention the use of IMS LD XML bindings as a method to represent deliv-

ery and presentation patterns. Should this be implemented it would allow for interoperabil-

ity with any IMS LD delivery platform [Padŕon et al., 2006].

3.2.5.3 MOT+

MOT+ is a graphical knowledge modelling language for instructional engineering

[Paquette et al., 2006]. It is worth noting that MOT+ has no relation to the My Online

56

Teacher (MOT) tool described in section 3.2.2.1. MOT+ can be applied in a multi-actor

process model aiming to improve the learning design produced. The MOT+ can represent

concept, procedure and principle knowledge types, which are related toeach other through

various relationships such as, specialisation link, precedence link, and input-product link.

These basic model constructs are used to build various knowledge models,such as factual

models, procedural models and processes.

The MOT+LD editor, uses MOT+ defined models, processes and methods todefine

IMS LD. A graphical modelling language is defined for LD. The course creator can use this

vocabulary to define the various LD constructs he or she needs in orderto fulfil the learning

objectives defined for the courseware being constructed.

Figure 3.5: Screen-shot of the MOT+ tool

The MOT+ graphical representation provides a usability benchmark for defining a course-

ware construction modelling language, as MOT+ “has been proven sufficiently simple and

friendly to be used by persons with non-technical background” [Paquette et al., 2006], such

as the majority of course creators. A screen-shot of the MOT+ tool can be found in figure

57

3.5.

Tool support for MOT+ does not provide the course creator with any form of courseware

validation functionality.

3.2.5.4 Sequencing Objects

Su et al. look at how abstraction can be applied to defining courseware sequencing strategies

in [Su et al., 2005]. This research recognised the steep learning curvefaced by the course

creator creating SCORM 2004 compliant courses, and suggest using theObject Oriented

Methodology (OOM), in [Su et al., 2005], to simplify the creation of SCORM compliant

courseware. Using the OOM, complicated sequencing rules are encapsulated into objects,

known as a sequencing object. The types of sequencing objects that areavailable to the

course creator are:

• Linear - The learner flows a set path through learning content. The learner cannot

revisit learning content once completed.

• Choice - The learner chooses what to learn.

• Conditional - The course creator can set conditions which are evaluatedat runtime

and cause the lesson to behave in a certain way.

• Loop - Allows the course creator to force the learner to repeat aspects of a course if

certain conditions are (not) satisfied.

• Exit - Allows the course creator to set conditions whereby a section of the course is

complete.

The course creator must add learning content to sequencing objects, and then joins the

sequencing objects together to create a courseware. This course is thentranslated into a

SCORM 2004 package using the “Course Sequencing to Content Package” (CS2CP) algo-

rithm.

The use of sequencing objects is an excellent example of how models can beused to

alleviate some of the complexity involved in creating SCORM sequencing. Sequencing

58

objects use a self-defined notation, and are not standardised, and therefore do not reap the

benefits of the automated transformation processes developed for standardised OO mod-

elling languages, such as the UML.

A proof of concept implementation is described briefly in [Su et al., 2005], which al-

lows the course creator to define the course in a graph-based, flow-type graphical notation.

The sequencing objects are used as patterns, which can be applied to the courseware graph

representation. The user interface is intuitive, in that the course creatorjust needs to ex-

press the flow of a learner through courseware LOs. It is similar to the user interface used

in MOT+, described in section 3.2.5.3. The implementation does not provide the course

creator with any way to check for problems in the courseware constructedusing sequencing

objects.

3.3 Courseware Validation

In this section, we survey the state of the art research addressing validation of constructed

courseware. We will outline the validation approach, looking at the courseware granular-

ity level addressed by the approach and examples of applied research interms of its user

interface, flexibility and interoperability with other TEL tools.

3.3.1 Concept-based Course Analysis (CoCoA) Tool

The Concept-based Courseware Analysis tool (CoCoA) was developed at Carnegie Tech-

nology Education [Brusilovsky, 2000, Brusilovsky and Vassileva, 2003]. It validates a given

courseware by analysing LOs in the courseware in terms of their type and how they are in-

dexed against a domain model.

“Advanced concept roles” define how a LO is indexed using domain modelconcepts. A

LO is indexed with regard to the prerequisite knowledge required for the LOand the knowl-

edge outcome for a learner who engages with the LO. There are two types of pre-requisites

defined and two types of knowledge outcomes defined, strong and weak.A strong pre-

requisite or outcome indicates that deep knowledge of the concept referenced is required,

59

or obtained from the specified LO, while weak pre-requisite or outcome indicates that only

surface knowledge of the concept referenced is required or obtained for the specified LO.

There are also various levels of prerequisite constraints defined for LOs.

The LO types are recorded as “typed items”. The types of LOs are presentations, exam-

ples, assignments and multiple-choice questions.

CoCoA checks sequential learning paths through LOs in a given courseware. This is

done by simulating a learner’s progression through courseware LOs. The tool can check for

the following characteristics in courseware:

• Content Holes - Where a learner encounters a LO in courseware withouthaving the

necessary prerequisite knowledge needed for the LO.

• Consolidation of Presentation - Ensures concepts are just introduced once, and once

a concept has been taught in detail the introductory material is not shown again,

• Question Placement and Repositioning - The system can place questions fora concept

in the right place for a given courseware.

• Guidelines for Question Design - Enables the course creator to validate thatthe ques-

tions used in courseware cover an adequate amount of concepts.

• Matching Presentations with Examples and Exercises - Checks that examplesand

exercises are placed correctly in the courseware.

• Checking the Course Design Goal Against the Courseware - Allows the course creator

to check that the courseware achieves its learning goals.

• Presentation Density and Sectioning - The number of concepts taught in each course-

ware element is not excessive and there is some consistency about the number of

concepts taught at each courseware element.

CoCoA was prototypical in nature and as such there is no consideration for TEL speci-

fications or standards. Pedagogical problems are defined by the CoCoAsoftware developer,

there is no facility for the course creator to define validation rules. This caused problems

60

with user acceptance, as users did not agree with some of the courseware “problems” flagged

by CoCoA. CoCoA was not developed using an extensible architecture, which would allow

for the inclusion of unforeseen pedagogical rules in the future. It alsodoes not reflect the

complexity of validating modern courseware as all courses validated using CoCoA must be

linear in nature with no branching points. However, CoCoA demonstrates the viability of

courseware validation and also shows that it is not a trivial problem.

3.3.2 Logic-based Course Planning and Verification

The use of logics and reasoning for course planning and validation has been investigated by

the ALICE project at the University of Torino [Baldoni et al., 2004a]. The project looks at

a range of course construction activities including course validation [Baldoni et al., 2004b]

and construction [Baldoni et al., 2004a] using logical reasoning.

Reasoning is performed on an ontological knowledge base. The learnerand learning

resources can be defined in terms of this knowledge base. Learning resources are viewed as

logical actions, with pre-requisites and effects.

The Wlog system, developed by the ALICE project, demonstrates how logics can be

used in courseware creation and validation. The motivation behind the Wlog system is to

validate Italian students study plans for a year with respect to their overall degree course

goals. A study plan is a list of courses a student takes in University. Eachyear students may

alter their study plan, but these alteration can have adverse affects for the students overall

degree learning goal. Study plan creation and validation is at a coarse granularity level

in course creation and management. The Wlog system uses the DyLOG logic language

[Baldoni et al., 2004c] to represent knowledge and to program its behaviour. The ALICE

project, which developed the Wlog system specifies where possible conditional curricula

plans are generated from an initial state to a goal state [Baldoni et al., 2004a]. The initial

state outlines the student’s knowledge at course design-time. The goal statedefines either

the knowledge the learner wishes to acquire or the courses the learner wishes to complete.

Plans are created to bring the learner from the initial state to the goal state. When there are

conditional branches in the plan, the Wlog system uses sensory actions to ask the learner

61

what branch they wish to take.

Temporal projection is used to check that all pre-conditions in the action theory are

respected. Courses are represented using action theory, where each course component is

an action with pre-conditions and post-conditions. Curricula models allow forrestrictions

and constraints to be placed on possible learning resource sequences at the knowledge level.

Curricula models can be formalised using temporal constraints. The models are independent

from the learning resources and operate on the knowledge level. For example a possible con-

straint might be thatknowledgeElementa must be learned beforeknowledgeElementb

can be attempted. Using linear-time temporal logic (LTL) to represent temporalconstraints

allows for the validation of the courseware in terms of the curricula models. Should the

course be deemed invalid, it is important to be able to outline to the course authorthe rea-

sons for invalidating the course. Temporal explanation is used to explain thereasons for a

course failing validation.

An attempt has been made by Baldoni et al. to examine how this technology could

be applied at lower level of courseware creation granularity [Baldoni etal., 2004b], even

embracing courseware specifications and standards, such as SCORM [ADL, 2004] and the

IEEE LOM [IEEE LTSC, 2002]. The main motivation for this is to see if different reasoning

techniques can be used to allow for adaptation to learner stereotypes. LOscan be composed

on the fly based on pre- and post-conditions of SCORM LOs using additional learning

strategy constraints. The learning strategy allows the course creator to specify such things

as:

• Strategies for Learner Stereotypes - for example what LOs to select forbiology stu-

dents learning computer programming.

• Learning Goals.

• LO Sequencing Strategies.

Although the ALICE group has looked at more fine-grained LO composition and vali-

dation, the majority of their work concentrates on the validation and construction of study

plans that define a qualification course [Baldoni et al., 2006, Baldoni etal., 2004a]. This is

62

particularly interesting in the context of the Bologna Process [EU Bologna Agreement, 2000],

which requires course content to be verified against external specification, being promoted

at the European level.

3.3.3 Ontology-based Guideline Definition for Courseware

Sicilia makes the observation that the rationale used to define an IMS LD specification is not

captured. In [Sicilia, 2006] Sicilia outlines an ontology-based approach tomodel the learn-

ing design and the rationale used to create the learning design in a common ontology. The

motivation for this is to allow for the generation of empirical data regarding the application

of a learning theory through a learning design.

Sicilia firstly outlines how the IMS LD specification can be defined using an ontology.

This ontology is defined in terms of the opencyc ontology, an open source knowledge base

containing over 100,000 atomic terms [Lenat, 1996]. The opencyc ontologyis extended to

allow for the definition of the rationale that is used in the design of a LD specification.

Two methods for defining constraints on IMS LD definitions are provided in [Sicilia, 2007],

these are models and guidelines. Models provide a template-like structure fordefining a LD

definition, where the LD should reflect the template when certain conditions hold. Guide-

lines can be defined in the context of the rationale and an LD ontology, whereguidelines

“describe how learning resource design and their outcomes ‘should be’in a propositional

form” [Sicilia, 2006]. Guidelines can be formalised by defining constraints on the IMS LD

ontology, guidelines can be realised using the Semantic Web Rule Language (SWRL) syn-

tax [Horrocks et al., 2004]. This approach allows for the definition of LDguidelines based

on an instructional design theory.

Sicilia’s work outlines an initial effort in defining courseware and its rationale using a

common point of context. The work also demonstrates how constraint structures, in the

form of “models” and “guidelines”, can be used to guide the coursewaredesign process or

generate tentative courseware designs automatically [Sicilia, 2007].

63

3.3.4 Trap Detection in IMS Simple Sequencing

IMS Simple Sequencing [IMS, 2003c] allows for the definition of courseware sequencing

behaviour. It is most commonly used in the SCORM specification. In section 2.2.6 we out-

lined how the IMS Simple Sequencing specification is defined. Defining adaptive course-

ware using IMS Simple Sequencing is not a trivial task. Course creators can unknowingly

embed the following problems in a simple sequencing definition, known as sequencing traps

[Lin and Shih, 2009]:

• Learning Attempt Stuck in an Activity - Even though the learning activity is complete

the learner is blocked in the activity and cannot move on.

• Learning Attempt has Fallen into a Vicious Circle - A deadlock situation where a

learning path has resulted in a loop that it is not possible for the learner to get out of.

• Deserved Activities are not Identified for Delivery - Sequencing rules cannot be fired

and learning resources that should be delivered to the learner are not.

Lin & Shih outline a solution for the detection of these sequencing traps. This solution

is based on the generation of a petri net representation for an IMS Simple Sequencing defini-

tion and the subsequent tracing of the petri net graph in search of sequencing traps. In their

approach Lin & Shih separate “foundation constructs” and “operation constructs”, where

foundation constructs are the definition of the sequencing control mode boolean values that

define the behaviour of a sequencing cluster, while operation constructsdefine the sequenc-

ing rules in a condition-action format. Various combination of foundation constructs and

operation constructs can cause sequencing traps. Lin & Shih have identified some of these,

which are outlined in [Lin and Shih, 2009]. The paper also illustrates each sequencing trap

graphically using a petri net diagram.

Sequencing traps are identified in two main ways. The simplest way is when a petri

net cannot be built for a given IMS Simple Sequencing specification. If a petri net repre-

sentation can be built, the second way is to use the petri net in a sequencing trap detection

algorithm. Lin & Shih outline a detection approach for locating sequencing traps consisting

64

of two algorithms.

The work of Lin & Shih specialises in problems with the IMS Simple Sequencing spec-

ification, where the combination of particular attribute values in the specificationcauses

erroneous behaviour. The approach taken by Lin & Shih is to validate the sequencing spec-

ification for these problems. The problems highlighted by Lin & Shih are a symptom of the

lack of good tool support for defining IMS Simple Sequencing. Good toolsupport would

protect the course creator from themselves when defining Simple Sequencing by raising the

level of abstraction in such a way that these sort of problems could not bedefined.

3.4 Comparison Framework

In this section, we present a comparison of the courseware constructionand courseware

validation approaches. After presenting each comparison we discuss thecomparison and

bring points of interest to the reader’s attention.

3.4.1 Courseware Construction Approaches

Table 3.1 provides a matrix of the features for the state of the art in courseware construction

covered in this chapter. The features used to compare the state of the art represent the

major differences in the approaches presented and provide a useful mechanism with which

to compare each approach. From this comparison we can generalise as to the most common

state of the art courseware construction environment. Our coursewarevalidation approach

must be aligned to this. The comparison attributes used are as follows:

• Granularity Level - Refers to the courseware granularity level the courseware con-

struction approach operates at.

• Internal Data Model - Many courseware construction approaches base their approach

on some well defined data model. Approaches are compared based on this.

• Interoperability - Examines if the courseware construction implementation can inter-

operate with complementary systems or specifications.

65

• User Interface - Looks in general at the approach taken to define a user interface.

• LOR Support - Examines if the implementation of the approach allows for interoper-

ability with LORs.

• External Domain Model Support - Courseware construction can be based around a

domain model allowing for the automation of some of the more trivial tasks in course-

ware construction. This attribute looks at whether the approach allows forthe use of

an external domain model.

• Validation Support - Support provides for the validation of the constructed course-

ware.

A question mark indicates data is unavailable.

Table 3.1: Courseware construction approaches comparison

Courseware Construction
Granularity level Internal data model Interoperability User Interface LOR

Support
Domain
Model
Support

Validation
Support

Reload SCORM Tool Course-lesson SCORM specifications SCORM 2004 Tree-based No No No
Insite Studio Course ? SCORM 2004 Model-based

(course flow)
No No No

XML SCORM Studio Topic SCORM ? ? No No
Reload LD Tool Course - lesson IMS LD specification IMS LD Tree-based No No No
ReCourse Course - lesson IMS LD specification IMS LD Model-based No No No
CopperAuthor Course-lesson IMS LD specification IMS LD Form and tree-

based
No No LD compli-

ance
MOT Lesson LAOS model CAF Web-based forms No Yes No
TANGRAM LO various ontologies open office Web-based forms No Yes No
OntAWare LO - lesson OWL ontology SCORM 1.2 Web-based forms Limited Yes No
ACCT Course variety of unconnected

models
IMS LD Model-based Limited Yes No

VOAT Lesson - course ontology-based SCORM 2004 Tree-Structure
based

No Yes No

Constraint-based ITS
Authoring

Lesson - course constraints defined on a
domain model

SQL Tutor Model-based and
text-based

No Yes No

Sequencing Objects Lesson - course SCORM 2004 SCORM 2004 Model-based No No No
MD2 Lesson - course MD2 Model ? Questionnaire-

based
No Yes No

MOT+ Lesson - course ? IMS LD Model-based No Yes No

As outlined in table 3.1, the majority of the courseware construction state of the art

operates at the “lesson” to “course” granularity level. The internal datamodels can be cate-

gorised into those tools, which use a TEL specification, those which are ontology-based and

those using a custom-built model. The custom-built approaches highlight the courseware

definition requirements currently not in the TEL specifications, such as thatneeded for ex-

tensive personalisation. This is also demonstrated with respect to interoperability, as some

66

personalised and adaptive courseware features can only be delivered through specialised

delivery environments, such as AEH.

Courseware construction tool support provides user interfaces thatare text-based, tree-

based and model-based. The level of abstraction the course creator operates at increases

as you move from text-based UI up to the model-based UI, although some simplistic ap-

proaches to text-based courseware construction have been investigated in the state of the art

(e.g. questionnaire). We believe the most intuitive of the user interfaces is the flow-based

models found in MOT+ and Insite Studio. This approach does have limitations in that it

does not scale to highly adaptive courseware, as displaying all the possible combinations of

adaptivity can get quite verbose.

LOR support is somewhat lacking in the current state of the art, but this may be because

of a lack of standardisation in how to interoperate with LORs we look at recent advances in

this area later in this thesis (section 8.10). The use of a domain model, seems to becommon

practice in courseware construction tools, particularly those in the research arena. Domain

models allow the course creator to quickly define what should be in the courseware and how

the courseware should be structured. This allows for the rapid development of courseware.

We also note that none of the courseware construction tools surveyed allows for the

validation of any kind of pedagogical features of newly constructed courseware. Only the

CopperAuthor tool allows for some kind of validation, but this is purely to validate the

realisation of the IMS LD specification.

3.4.2 Courseware Validation Approaches

Table 3.2 provides a matrix of the features of each of the state of the art courseware val-

idation approaches, covered in this chapter. The comparison attributes used here are as

follows:

• Granularity Level - The granularity level of the courseware that can bevalidated.

• Internal Data Model - How the validation approach represents the validation data.

67

• Interoperability - Examines if the validation implementation can interoperate with

complementary systems and/or specifications.

• User Interface - Looks in general at the approach taken to define a user interface.

• Validation Criteria - Investigates if the validation criteria can be defined separate to

the validation implementation framework definition.

• Domain Model Support - Investigates whether an external domain model can be used

in defining courseware validation data.

Table 3.2: Courseware validation approaches state of the art comparison

Courseware Validation
Granularity
Level

Internal Data Model Interoperability User In-
terface

Editable
Validation
Criteria

Domain
Model
Support

Logic-based
Validation

Qualification
course

Logical model -
learning resources
are actions

SCORM Text No No

CoCoA Lesson-
module

Domain model
based

No ? No No

Ontology-
based guidance

Lesson-
module

IMS LD IMS LD No Yes Opencyc
only

Trap detection Lesson-
module

IMS Simple Se-
quencing

IMS SS No No No

The approaches to courseware validation addressed in this chapter areprototypical in

nature. Only the logic-based approach and CoCoA actually go as far as providing for a

proof of concept implementation. We have also found that Interoperability isa concern that

has not been addressed satisfactorily in the state of the art. The tools we have looked at

either do not provide for interoperability at all or provide for only limited interoperability

with courseware construction tools, considering just one interoperability specification in

TEL. TEL specifications and standards are in flux, courseware validation tools must be

modifiable to new specifications and changes to existing ones. This is not the case with the

current state of the art.

Support for the course creator is limited in the courseware validation state ofthe art.

Little research has taken place looking at how to represent the courseware construction con-

cerns. The state of the art concentrates on allowing the course creator todefine validation

68

criteria for only a pre-defined types of courseware problems. Just one approach (ontology-

based guidance) considers the possibility of separating the validation criteria from the val-

idation framework programming logic, allowing the validation criteria to be exposed and

determined by the course creator. This is significant as we have discovered in the CoCoA

literature that many of the course creators that used the CoCoA tool foundthat the tool in-

validated what they considered valid courseware (i.e. the course creators did not agree with

the valid courseware definition of the CoCoA developers). We have therefore deemed it an

important requirement for courseware validation to empower the course creator by allowing

them to define what they consider to be valid and invalid in courseware.

We also find that the type of courseware that can be validated using the stateof the art is

somewhat limited. The approach taken by the majority of validation state of the artis to sim-

ulate a learner’s behaviour in courseware. This works effectively onsimple, non-adaptive

courseware. As courseware gets bigger and more complex, allowing forpersonalisation, this

approach runs into complexity issues. To effectively validate personalisable courseware an

alternative approach to simulating learner behaviour must be established.

3.5 Chapter Conclusion

In this chapter, we reviewed the state of the art in courseware construction and then looked

in detail at current courseware validation approaches. The chapter has outlined the context

within which we position our research.

The majority of courseware construction tools provide interoperability with a course-

ware delivery environment through the ADL SCORM or IMS LD specification. This has

caused the majority of courseware authoring approaches to be at the samegranularity level

as these TEL specifications, between the “course” and “lesson” granularity level. It should

also be noted that there is a wide variety of internal modelling paradigms used by course-

ware construction approaches. Many base their internal data model on aTEL specification

but some have developed custom internal modelling paradigms. This motivatespositioning

a courseware validation in line with the granularity level the TEL specificationsoperate at.

69

For our research to have maximum impact, it must be able to interoperate using the TEL

specifications, but also be able to change with the TEL specifications as theymature, or

even as new ones are developed.

We have presented four approaches to validation. Three of the approaches (logic-based,

CoCoA and trap detection) are based on simulating a learners progressionthrough course-

ware. The logic-based approach uses planning, CoCoA uses a tree traversal algorithm and

the trap detection approach uses petri nets. There are scalability issues associated with

these approaches and as courseware gets more complex, with personalisation becoming the

norm, we believe this to be a serious limiting factor for these approaches. Thevalidation ap-

proaches addressed in this chapter, with the exception of ontology-based guidance, are also

somewhat limited in what they can validate in courseware. The validation scopeof these

approaches is pre-defined. This motivates the need for an extensible validation approach,

one where the course creator can define the validation criteria, by which courseware is vali-

dated against. Ontology-based guidance (section 3.3.3) could allow for thecourse creator to

define a greater variety of validation criteria. Ontology-based guidance is primarily focused

on the use of templates and guidelines to help the course creator to create better courseware.

The template approach exposes the validation criteria in the form of SWRL rules allowing

the course creator to define templates based on instructional design theory. This could be

extended to define all validation criteria.

70

Chapter 4

Defining a Courseware Validation

Framework

4.1 Introduction

In this chapter we provide an outline of our courseware validation framework. In section 4.2

we introduce the actors involved in courseware validation, then in section 4.3we look at the

courseware construction concerns and finally, in section 4.4, we will outline our validation

approach.

The courseware construction concerns, in section 4.3, are concernsthat must be ad-

dressed by the course creator when constructing courseware. Our research looks to auto-

matically ensure that the course creator has addressed these concernscorrectly. We classify

courseware validation problems using these concerns.

After outlining the courseware construction concerns we will outline the focus of our

validation framework in section 4.4. This section gives a comprehensive overview of what

a valid courseware is and how our validation approach can check if a given courseware is

valid or invalid.

71

4.2 Courseware Actors

There are many actors involved in the construction and delivery of courseware. Each of

these actors define a role that one, or many, persons can fill. One person can also fulfil

many roles. In figure 4.1, we have outlined the main roles in the courseware construction

process.

c o u r s e c r e a t o r

d o m a i n e x p e r t

l e a r n e r

i ns t ruc t i ona l
d e s i g n e r

p r o g r a m m e r

c o n t e n t d e v e l o p e r s u p p o r t
s ta f f

t e a c h e r

L M S a d m i n i s t r a t o rc o u r s e
a d m i n i s t r a t o r

c o u r s e a c c r e d i t i o n

i ns t r uc t i ona l
d e s i g n e r

G e n e r a l i s a t i o n

Figure 4.1: Courseware actors

There are five key roles in the courseware life-cycle, thecourse creator, the content

developer, support staff, the learner andcourse accreditation. Thecourse creatorcreates

the courseware package, he or she is responsible for deciding what content to put into the

courseware and the instructional design used in the courseware to determine how the LOs

are delivered to thelearner. We can divide thecourse creatorrole into three key sub-roles,

domain expert- who is an expert in the subject domain to be taught,instructional designer

- who is an expert in how courseware concepts should be taught in a given context andin-

structional designer programmer- a technical role that encodes instructional design using

a courseware specification. Thecontent developeris responsible for creating the learning

content, such as slideshows, simulations, interactive media, podcasts, andassessments. An

instructional designer programmercan also be acontent developer, for example defining se-

72

quencing logic in a LO.Support staffare staff who support thelearnerthrough the learning

process. Thelearner represents the individuals taking the courseware, who have a training

need.Learnerscan be grouped into stereotypes where all members of the stereotype have

a common training need or some learning characteristic in common. Thecourse accredi-

tation role, is generally the organisation or entity that accredits a course and specifies the

scope of the courseware.

We note that the principle actor involved in courseware validation is thecourse creator.

The course creatorwill design the courseware in accordance to the courseware scope as

defined by thecourse accreditationactor, and compose the courseware using content created

by thecontent developeractor.

4.3 Courseware Construction Concerns

C o u r s e w a r e
S c o p e

C o u r s e w a r e S t r u c t u r e
a n d S e q u e n c i n g

P e d a g o g i c a l
S t r a t e g y

L e a r n i n g
C o n t e n tu s e s

u s e s

u s e s

L e a r n i n g G o a l
V a l i d a t i o n

C o u r s e w a r e S t r u c t u r e
a n d S e q u e n c i n g V a l i d a t i o n

Va l i da t i on o f
L e a r n i n g O b j e c t s

P e d a g o g i c a l
V a l i d a t i o n

C o u r s e w a r e C o n s t r u c t i o n
C o n c e r n s

Figure 4.2: Courseware construction and validation concerns

In this section, we outline each of the courseware construction concernsthat a course

creator must consider during courseware construction. We use these concerns to derive pos-

sible courseware validation concerns, as illustrated in figure 4.2. As outlined in section 2.2

there are four principle courseware construction concerns; courseware scope, courseware

structure and sequencing, learning content and pedagogical strategy. We can refine each

73

of these courseware construction concerns in terms of questions that can serve as a basis

for validation, producing courseware validation concerns. We can alsomap each validation

concern to a courseware actor(s), as follows:

• Courseware Scope- This concern relates to whether the courseware will allow the

learners to achieve the learning goals as defined by the course accreditation actor and

also that the courseware is designed with the correct level of assumed knowledge.

The courseware scope is outlined in detail in section 2.2.1. The concepts that need

to be covered in order for the course scope to be satisfied are defined by a domain

expert. The course accreditation actor defines the course scope. Examples of this

concern are:

– Are each of the learner’s learning goals met?

– What initial knowledge does the courseware assume, is this correct for the an-

ticipated learners?

– Does the courseware fill the gap in knowledge from the assumed initial knowl-

edge to the learning goal for all learners?

• Courseware Structure and Sequencing- Looks at how courseware is structured and

sequenced, in terms of the micro and macro level, as outlined in section 2.2.2. The

courseware structure and sequencing is generally based on pedagogical principles

and is defined by an instructional designer to be implemented in courseware by the

instructional designer programmer. Examples of courseware structure and sequenc-

ing concerns are as follows:

– Is the courseware consistent in terms of the size of its components?

– How are courses, lessons and modules in the courseware structured?

– Should concepts covered in some courseware component be taught before other

concepts (pre-requisites between concepts)?

– How should LOs in a lesson, which teach a particular concept to the learner, be

delivered?

74

– Does the effectiveness of specific LOs depend on some other LO or, more gen-

erally, a concept being covered first, and if so, is this considered?

• Learning Content in Courseware - Here the course creator is concerned with the

appropriateness of the LOs in courseware used to teach a concept to thelearner. LOs

are developed by content developers. LOs in courseware can be evaluated along

various dimensions such as:

– Content Relevancy - Is the content the most recent version and a good fit for the

micro-level courseware structure.

– Technical Issues - Is the format of the content appropriate? Is the sizeof the con-

tent appropriate (e.g. broadband availability could be an issue for the learner).

– Pedagogical Considerations - this considers issues to do with the suitability of

the content for the learner (e.g. are particular learning styles facilitated) ina LO.

Examples of the types of learning content validation criteria the course creator is

concerned with are as follows:

– Is the LO placed at the most suitable place in the courseware?

– Does the content allow the learner to attain the course learning goals adequately

and does the assessment content test the learner to ensure the learning goals

have been met?

– Is the content format correct for the expected courseware deliveryenvironment?

– Is the content format correct for the expected learners?

– Is the content used suitable?

• Pedagogical Strategy Used- This concern is about the approach taken by the course

creator to allow learning to take place, as outlined in section 2.2.4. The domain expert

and instructional designer decide on what pedagogical strategy to use.Examples of

validation criteria that this concern is associated with are:

75

– Does the courseware design consider all possible learner profiles expected to

take this course (courseware personalisation)?

– What learning styles does the courseware accommodate?

– Does the courseware apply an instructional design correctly?

The courseware construction concerns are not completely independent of each other.

For example in defining the pedagogical strategy courseware construction concerns, course-

ware structure and sequencing concerns could be used.

4.4 Validation Focus of our Research

Here we define our courseware validation conceptual framework [Meliaand Pahl, 2007c].

We begin by looking at how the course goal and structure can be validated. Following

this we will look at how LO metadata, such as that found in IEEE LOM, can be used in

validation.

The discussion in this section follows on from the courseware constructionconcerns

identified in the previous section. In figure 4.2 we summarised the relationship between

the courseware construction concern and the validation focus of our research. We have

identified the following types of courseware validation, which we address indetail in this

section:

• Course scope validation

• Courseware structure and sequencing validation

• Validation of Learning Objects in courseware

• Pedagogical validation

We note that the courseware validation concerns we address in this thesis can and do

have relationships between each other. For example courseware sequencing problems that

do not allow the course goal to be achieved will cause a scope and sequencing validation

76

problem. This is known as a cross validation concern, where one type of courseware prob-

lem causes another. In this thesis we do not address the cross validation concerns.

Our approach to courseware validation is knowledge-based. Knowledge-based course-

ware validation uses a conceptual knowledge structure as a common point of reference

for expressing validation specifications for a given courseware definition. Knowledge is

captured in the form of a subject domain model, where a domain model definesdomain

concepts and relationships between domain concepts. The use of a subject domain model

as a common point of reference in validation means that the domain model becomes a focal

point in validation, as validation concerns can be specified in terms of the domain model.

4.4.1 Course Scope Validation

Course scope validation ensures that courseware developed satisfiesthe course’s defined

learning goals and also assumes the correct knowledge for the anticipatedlearners.

In order to verify that courseware satisfies each learner’s course learning goals, it is nec-

essary to define the course goal in terms of the courseware. This can bedone by specifying

courseware and the course goals in terms of a domain model, where the domainconcept

model captures concepts covered by the courseware and defines concepts as learning goals

for learners.

In section 2.2.1.1, we outlined two broad knowledge types that can be used when speci-

fying course goals and a numeric value for knowledge level. Using a concept domain model

as described above does not allow for the validation of the knowledge typeor level. This

dynamic of knowledge must also be modelled when describing the courseware elements

and the course scope details.

4.4.2 Courseware Structure and Sequencing Validation

LOs used in a given courseware are annotated with metadata. This metadata can refer-

ence domain model concepts, from a external knowledge classification system. From this

we can infer what concepts are covered in courseware, where they are covered, and by

which LOs. We can validate courseware structure in two ways by doing this,firstly intra-

77

conceptually looking at how LOs that cover the same concept are structured and sequenced,

and inter-conceptually looking at how concepts in the courseware are composed and se-

quenced. Intra-conceptual courseware structure validation evaluates micro-level course-

ware structure, while inter-conceptual courseware structure addresses macro-level course

structure.

4.4.2.1 Intra-conceptual Courseware Structure

Intra-conceptual courseware structure is concerned with the micro-level courseware struc-

ture, as described in section 2.2.2. Its main objective is ensuring that all potential sequences

of LOs covering a particular concept in courseware is instructionally sound, as defined by

the course creator.

The intra-conceptual courseware structure can be designed using a “planning sheet”,

outlined by Gagńe et al. in [Gagńe et al., 2005, ch12]. Using a planning sheet the course

creator can specify a blue print for teaching a courseware concept, by specifying the type

of LOs needed to teach a concept and also desirable LO type sequences. The planning

sheet can be seen as an effective way for the course creator to define a default structure and

sequence for teaching a courseware lesson.

We investigate how a intra-conceptual courseware structure and sequencing strategy can

be defined, such as that found in a planning sheet, and used to validate a given courseware,

in section 6.5.

4.4.2.2 Inter-conceptual Courseware Structure

Inter-conceptual courseware structure is concerned with how a learner moves from one

course concept to another. Inter-conceptual courseware structure specifications should not

be prescriptive, in that only the inter-conceptual sequences described by the courseware

structure are valid. Instead inter-conceptual courseware structure should use constraints to

indicate undesirable conceptual courseware sequences.

Constraints can be expressed in two ways; the course creator can specify explicit se-

quencing constraints between concepts or domain model constructs can beused to spec-

78

ify implicit sequencing constraints between two concepts. Typically explicit sequencing

constraints are defined by the course creator using a modelling constructto indicate that

one concept is a pre-requisite for understanding another concept. Implicit sequencing con-

straints can be specified based on a domain model structure.

4.4.3 Validation of Learning Objects in Courseware

The IEEE LOM [IEEE LTSC, 2002] allows for the automated analysis of what LOs are

used in courseware and how they are used. Our approach is to evaluatea LO’s suitability

for its position in the courseware structure. To use LOM to validate a LO, we must examine

the types of validation that can be carried out on each LOM attribute. As LOMhas an exten-

sive collection of attributes to describe a LO, we group attributes with similar ranges. Our

motivation for doing this is that a validation approach based on a LOM attribute with a par-

ticular range can be generalised to any LOM attribute with the same range. We distinguish

between three groupings of LOM attributes:

• Simple LOM attributes.

• LOM attributes which reference external resources.

• LOM attributes which classify a LO according to some external taxonomy.

Simple LOM attributes are those attributes, that can be easily compared to a fixedvalue

or another LOM attribute value. These include any attribute with an atomic numericor

pseudo-numeric range. An example of such an attribute is the “interactivity level” attribute

of LOM, which has a range of{very low, low, medium, high, very high}. These LOM

attributes allow for simple rules to be specified based on comparing one LO to another, or

comparing LOM attribute values with explicit values.

LOs often exist as part of some bigger educational entity. To allow for this LOM has

attributes that reference external resources, such as other LOs. The relation section of

LOM allows a LO to reference other LOs. The types of references include; basedOn,

hasPartOfandisRequiredBy. The course creator can choose to ignore when a LO references

79

another resource or may use it in validation, for example, ensuring that there is a sequencing

constraint between courseware components that use LOs that are related through abasedOn

relationship.

LOM can use an external classification systems to catalogue a LO accordingto some

external taxonomy (e.g. The ACM Computer Classification System [ACM, 1998]). A suc-

cessful implementation of this can be seen in the European Schoolnet project, which uses the

classification section of LOM to point to an external competency taxonomy [VanAssche, 2007,

Sicilia, 2005]. The LOM classification section allows LOs to be classified alongany of the

following dimensions;prerequisite, educational objective, discipline. An external classifi-

cation system allows us to plot a given LO in terms of a conceptual knowledgestructure,

allowing LOs to be linked to a domain model and transitively linking courseware as a whole.

Validation rules can then be specified in terms of a LO relation with the external classifica-

tion system.

LOM attributes must also be validated in terms of their surrounding courseware context.

For example, validation may ensure that the sum of the duration time of all LOs in agiven

courseware does not exceed a certain threshold. This type of validationis also important to

ensure a sense of uniformity in the courseware, for example, ensuring the semantic density

of each consecutive LO delivered to the learner remains the same or gets progressively

larger or smaller.

4.4.4 Pedagogical Validation

The pedagogical strategy for courseware defines how the courseware is designed to allow

learning to take place. We define pedagogical strategy in the context of courseware in

section 2.2.4. In validation, we aim to ensure that the pedagogical approach that the course

creator looks to use has been implemented correctly. In our validation approach we have

divided this into two core categories; validation of the implementation of an instructional

design in courseware and the validation of the application of personalisation.

Instructional design defines the probabilistic best approach for learning given a certain

pedagogical context. The instructional design used in courseware could be an implementa-

80

tion of an instructional design theory from the literature [Gagné et al., 2005, Reigeluth, 1999a,

Reigeluth, 1983a, Briggs et al., 1991] or could be his or her own instructional design. Val-

idation should allow the course creator to ensure that the instructional design theory he or

she is using has been implemented correctly in the courseware definition.

Personalisation allows the delivery of courseware that adapts to an individual learner’s,

or group of learner’s (stereotype), learning needs. A coursewaredefinition must define

how adaptive behaviour takes place. Courseware validation should allowthe course creator

to check that adaptive behaviour has been defined correctly and will beimplemented as

anticipated for each learner instance.

4.5 Chapter Conclusion

Our aim in this chapter was to define a conceptual framework for courseware validation.

To do this we identified the principle actors involved in courseware construction. We then

outlined the courseware construction concerns that the course creatormust consider when

constructing courseware. These concerns allowed us to define the overall scope of course-

ware validation for this thesis.

From the courseware validation definition in section 4.4 we define courseware as valid

if the following conditions are satisfied:

1. Courseware satisfies the course learning goal for all learners taking the courseware

(section 4.4.1).

2. The courseware structure and sequencing at the micro and macro level is sound (sec-

tion 4.4.2).

3. Appropriate LOs are used for the courseware (e.g. format is correct, LO scope is

adequate) (section 4.4.3).

4. The right LOs are delivered to the right learners at the right time (section 4.4.3 and

4.4.4).

5. Instructional design is applied correctly (section 4.4.4).

81

6. Adaptive strategies are applied to the courseware correctly (section 4.4.4).

To deal with the validation concerns outlined in this chapter we propose a Domain

Specific Modelling Language (DSML) in chapter 5 to capture the courseware data avail-

able at the post-construction/pre-delivery stage of the courseware life-cycle. In chapter 6 a

constraints-based validation language is defined in the context of our DSML to allow for

the validation of courseware as outlined in this chapter.

82

Chapter 5

Defining the CAVIAr Data Models

5.1 Introduction

In this chapter, we will define theCoursewareAuthoringValidationInformationAr chitecture

(CAVIAr). CAVIAr is a set of models that have been comprehensively defined by the author

to capture courseware and its validation criteria [Melia and Pahl, 2009, Meliaand Pahl, 2007b,

Melia and Pahl, 2007a]. We can divide the CAVIAr model into two parts the CAVIAr data

models, which capture the courseware definition and its construction concern data, and the

Validation Model, which defines what is correct and incorrect in courseware. The CAVIAr

data models are as follows:

• Domain Model

• Learning Context Model

• Learning Resource Model

• Courseware Model

Figure 5.1 outlines the CAVIAr models using UML. The main CAVIAr models are the

Learning Context Model and the Courseware Model. The Learning Context Model con-

tains a domain model and the Courseware Model references the LearningResource Model.

CAVIAr model names will start with capital letters for the rest of this thesis.

83

The Domain Model captures the structure of curriculum knowledge. The learning con-

text is defined in terms of the Domain Model and outlines courseware construction con-

cerns, such as conceptual sequencing constraints and the course scope. The Learning Re-

source Model contains a representation of the learning resources used in the courseware.

The Courseware Model defines the courseware that will be deliveredto learners in a TEL

specification-neutral way. Courseware elements refer to learning resources in the Learning

Resource Model. LOs in the Learning Resource Model can be classifiedusing a Domain

Model concept. This is illustrated in figure 5.1 through the reference fromthe Learning

Resource Model to the Domain Model.

D o m a i n M o d e l

L e a r n i n g
C o n t e x t
M o d e l

1

C o u r s e w a r e
M o d e l

L e a r n i n g
R e s o u r c e
M o d e l

V a l i d a t i o n
M o d e l

u s e s

c o n s t a i n s

re f s

c o n s t a i n s
re f s

Figure 5.1: Overview of the CAVIAr Models

The Validation Model is defined by constraining the allowable structure of theCourse-

ware Model and Learning Resource Model. To do this a constraint language is used to

express constraints on the Courseware Model’s and Learning Resource Model’s abstract

syntax definition, defining what is a valid Courseware Model definition. Constraints can be

defined based on the Learning Context Model. The Courseware Modelis covered in detail

in chapter 6. In this chapter we will concentrate on defining the CAVIAr datamodels.

In order to define the CAVIAr data models, we look at how language notationand

semantics are defined in section 5.2. This is then used to frame the definition foreach

CAVIAr data model discussed in the subsequent sections.

84

5.2 Language Notation, Syntax and Semantics

In this chapter we define a Domain Specific Modelling Language (DSML) forthe pur-

poses of courseware validation. DSMLs are a form of a Domain Specific Language (DSL)

that can be defined and represented using graphical models. DS(M)Lsdiffer from General

Purpose Languages (GPL) in that they can offer domain-specific notations, constructs and

abstractions [Mernik et al., 2005]. An example of a GPL would be Java. Ascourseware

construction is a highly specialised task, we have chosen to design a DSML for this pur-

pose. We have been guided in this decision by the work of Mernik et. al, as we believe that

a DSML offers the following advantages [Mernik et al., 2005]:

• Improved software economics by providing a modelling language that captures the

dynamics of TEL and courseware development.

• Providing for a modelling environment which is familiar to the end-user coursecre-

ator, empowering the course creator.

This language will be used to define the constructed courseware and its courseware con-

struction concerns.

For language to be adequately defined it must consist of three parts [Harel and Rumpe, 2004]:

• Syntax

• Semantic Domain

• Semantic Mapping

Harel and Rumpe note two main forms of language, textual and diagrammatic. A tex-

tual language’s basic syntactic expressions consist of linear character sequences making

up words, sentences, paragraphs and so on. Diagrammatic language’sbasic syntactic ex-

pressions consist of lines, arrow, boxes and so on, and composition mechanisms including

partitioning and connectivity. In order for correct interpretation of a language there must

be a rigid syntax. An abstract syntax defines the structure and allowable elements in a

language’s concrete syntax, that is used by the end-users of a language.

85

A language’s semantic domain provides the meaning for each syntactic expression. The

semantic domain and syntax of a language are two separate entities; it is possible that many

different syntax can specify the same semantics. The definition of a semanticdomain can

be expressed in a variety of ways from formal definitions to natural language.

A language’s semantic mapping relates the language’s syntax to a semantic domain. A

common approach to providing a syntax with a semantic domain is to map it to another

language with a well-defined semantic domain. The language’s semantics are then defined

transitively [Kurtev et al., 2006].

In the following sections, each of the CAVIAr data models are introduced byoutlining

its purpose. We then define an abstract syntax for the model. The model’s abstract syntax

is defined as a metamodel using MOF [OMG, 2003a]. MOF is outlined in section 2.3.1.

We decided to use MOF to define the CAVIAr data models as it offered the mostappropri-

ate semantic expressivity needed for describing courseware validation concerns, as outlined

in section 2.3. A graph-based semantic domain is then defined for the CAVIArmodel

being defined, which is then mapped to the abstract syntax. The CAVIAr semantics are

defined to eliminate ambiguity in the language. Strict semantics will allow for algorithms

to be based on the CAVIAr models. We have used a graph-based notation todefine the se-

mantic domain as it is an established approach for defining adaptive courseware languages

[Vassileva and Deters, 1998, Karampiperis and Sampson, 2004, Cristeaand Aroya, 2002].

Using graph-based semantics allows for easy comparison with such languages.

Languages may also have one or more concrete syntax. The concrete syntax is used

directly by the end user and is defined in the confines of the abstract syntax. To complete

the definition of the CAVIAr model’s a “candidate” concrete syntax is defined. We use the

term candidate as it is a suggestion on how to express the CAVIAr models, other concrete

syntax could be specified. The candidate concrete syntax, outlined in this chapter, are used

throughout this thesis. For CAVIAr to be useful it must be able to interoperate with a

variety of existing TEL standards and specifications. To this effect we willalso outline how

the various CAVIAr models can be mapped to popular TEL standards and specifications,

where appropriate.

86

5.3 The Domain Model

The purpose of the Domain Model is to represent the subject knowledge tobe conveyed to

the learner during courseware delivery. Domain models are used extensively in courseware

and ITS construction. Murray outlines four main motivations for using explicit domain

models as follows [Murray, 2003]:

• To model curriculum knowledge and structure - Allow for visualisation of conceptual

curriculum elements, where a conceptual curriculum element is the conceptual break-

down of a course, but not actual learning material (e.g. topics, lessons, concepts).

• To model simulations of the world - Modelling of physical processes which allow for

learning.

• To model expert knowledge - Modelling of several types of knowledge including

problem solving expertise, procedural skills, concepts and facts.

• To model domain knowledge types - Modelling of the knowledge types coming to-

gether, for example, modelling the different knowledge dimensions (e.g. what, how,

where) of a particular concept.

The use of domain models has become even more relevant as ontologies are used in a

variety of scenarios, such as annotating and organising web resources on the Semantic Web,

or as a basis for inferring knowledge in bioinformatics [Doniger et al., 2003].

The sole purpose of the Domain Model in CAVIAr is to express the structureof curricu-

lum knowledge structure that courseware covers. The Domain Model does not need to be a

comprehensive knowledge source for the subject domain but just a knowledge structure that

is intuitive to the non-technical course creator that describes concepts and common relation-

ships between concepts. This was one of the deciding factors when deciding the expressivity

required for our research in terms of Daconta’s ontology spectrum [Daconta et al., 2003],

as outlined in section 2.3. It is worth noting that all knowledge in the Domain Model does

not have to be covered by the courseware. The knowledge covered by the courseware may

be a subset of the knowledge in the Domain Model.

87

5.3.1 Defining the Domain Model Abstract Syntax

The Domain Model is a formalism of knowledge defined as a concept graph, where a node

represents a concept and an edge represents the relationship betweentwo concepts. The

CAVIAr Domain Model is pedagogically neutral, in that it does not prescribe any teaching

or learning methodology over the knowledge it contains. This allows for the use of domain

models that have been defined for some purpose other than instruction to beused in CAVIAr.

A concept graph for domain modelling in AEH authoring is formally defined by Cristea

and deMooij in [Cristea and de Mooij, 2003]. In AEH the domain model serves as the main

navigational tool, in which learning content is embedded. In courseware the domain model’s

use is most prominent as a semantic point of reference for LO annotation. An example of

this can be seen in the IEEE LOM standard where the “classification” metadatais used to

annotate a given LO using an external classification system (see section 2.2.3).

We define the Domain Model in the modelling technical space using a MOF-based

definition. In figure 5.2, we outline the abstract syntax for the CAVIAr Domain Model

using MOF. It defines theConceptas the primary building block of theDomainModel. A

Concepthas one attribute, thenameof the concept. The conceptnamewill uniquely identify

the conceptwithin a DomainModel. A conceptcan have manySynonyms, a synonymis

another name by which aconceptis known. This can also be used for labelling theconcept

with anameusing an alternative language.

Conceptsare related to otherconceptsby aConceptRelationship. A ConceptRelation-

shiphas a direction from itssourceconcept to itstargetconcept. TheConceptRelationship

has one attribute,type. The typedefines the semantics of the relationship. There are two

types of concept relationships, defined in the enumerationConceptRelationshipType:

• NARROWER- The source concept has a broader semantic scope than the target con-

cept. This allows for a taxonomic relationship between concepts.

• RELATED- There is a semantic relationship between two concepts. This relationship

is symmetric.

The MOF defined abstract syntax is further constrained as follows:

88

C o n c e p t

+ n a m e : S t r i n g

C o n c e p t R e l a t i o n s h i p

+ t y p e : C o n c e p t R e l a t i o n s h i p T y p e

+ s o u r c e

1

1 . . *

+ t a r g e t

1

1 . . *

S y n o n y m

+ v a l u e : S t r i n g

0 . . *

D o m a i n M o d e l

+ c o n c e p t s

1 . . *

< < e n u m e r a t i o n > >

C o n c e p t R e l a t i o n s h i p T y p e

+ N A R R O W E R
+ R E L A T E D

Figure 5.2: Domain model abstract syntax defined in MOF

• All concepts must have a name.

• All concepts must have a unique name.

• All concept synonyms must have a value.

These constraints are defined formally in OCL below in listing 5.1.

Listing 5.1: Domain model abstract syntax constraints defined in OCL

c o n t e x t Concept

i nv c o n c e p t n a m e m u s t h a v e v a l u e : name<> ’ ’

i nv concep t mus t have un ique name : Concept . a l l I n s t a n c e s ()−>any (name<> s e l f . name)

c o n t e x t Synonym

inv synonyms mus t have va lue : va l ue<> ’ ’

5.3.2 Defining the Domain Model Semantics

A concept graphCG is defined asCG ⊆ C ×E whereC is a set of concepts andE is a set

of edges.

• A conceptc ∈ C is described with a set of namesc = {n1, n2, ...nk}, where the

first name in the set shall be the default concept name. Names in the same setare

synonyms of each other. Each concept is uniquely identifiable by its default concept

name.

89

• An edgee ∈ E is a tuple<c1, c2, te> that relates two domain concepts,c1 ∈ C and

c2 ∈ C. The edge type,te, defines the semantics of the edge. We define two types of

edges allowing for simple ontologies to be defined:

– NARROWER- Allowing for a semantic taxonomy working from the concrete to

the more abstract concepts.

– RELATED- Allows for the grouping of concepts, that one concept is related to

another concept.

In order to complete the semantic definition of the Domain Model, we provide seman-

tic mappings between the domain model’s abstract syntax and its semantic domain. The

concept graph defined asCG is mapped to theDomainModelin the abstract syntax. The

MOF-definedConceptis mapped to the setC in the tuple-based domain model definition,

ConceptRelationshipis mapped to the set of edgesE. The firstnamein c is the default name

for c, wherec ∈ C is mapped to the name attribute of a MOF-definedConceptclass, while

the concept’sSynonymsare the remainder of the concept names in the set ofc. The taxo-

nomic relationship and the related relationship in CAVIAr abstract syntax canbe directly

mapped to the taxonomic and related relationship in the semantic domain.

5.3.3 Domain Model Interoperability

For the CAVIAr Domain Model to be useful, it must be interoperable with the state of the

art in domain model definitions. To illustrate interoperability at a conceptual level we define

mappings to the well-defined Simple Knowledge Organisation Structure (SKOS)standard

[Miles and Brickley, 2005].

SKOS is defined using OWL [W3C, 2004]. SKOS is a well-defined candidaterecom-

mendation from the World Wide Web Consortium (W3C), used to express basic concep-

tual structures and schemata. SKOS therefore operates in the ontologicaltechnical spaces,

whereas CAVIAr operates in the metamodelling technical space. Mappings between these

two technical space can be seen in the Ontology Definition Metamodel (ODM),where OWL

classes are defined as MOF classes [Gas̆evíc et al., 2006].

90

The primary component of a SKOS ontology is theskos:concept, which is an instance of

owl:class. Concepts are related by two types of semantic relationships; associative relation-

ships -skos:related, and taxonomic -skos:narrowerandskos:broader. Theskos:narrower

andskos:broaderrelationships are used to define when aconcepthas a narrower or broader

scope than another.

SKOS can be mapped to the CAVIAr Domain Model abstract syntax as follows:

• CAVIAr DomainModelis mapped to the RDF graph which hosts a SKOSontology

• CAVIAr Conceptis mapped to theskos:concept.

• CAVIAr ConceptRelationshipof typeNARROWERis mapped to SKOSskos:narrower

relationships, while the inverse of aNARROWERrelationship from the target to the

source can be mapped to theskos:broaderSKOS relationship

• CAVIAr ConceptRelationshipof typeRELATEDis mapped to the SKOS relationship

skos:related

• The set of names for a given concept, defined as synonyms and as the concept name

attribute, can be mapped to theThesaurusTermin the SKOS definition. Those terms

that are related to theskos:conceptthrough theskos:altLabelare aSynonymin the

CAVIAr Domain Model, while theskos:prefLabelis used to determine the CAVIAr

concept’snameattribute.

5.3.4 Defining a Candidate Concrete Syntax Definition

We propose a simple graphical concrete syntax for the CAVIAr Domain Model. We do this

to define a modelling language that is intuitive enough to be used by a non-technical end

user, such as a course creator. In defining the concrete syntax we willmake reference to the

abstract syntax defined using MOF.

A Conceptis represented as an ellipse, the value of the concept’snameattribute oc-

cupies the centre of the ellipse.Synonymsare represented in the domain model as broken

91

line ellipses, where thevalueattribute of thesynonymoccupies the centre of the ellipse.

Synonymsare related toconceptsby a solid black line.

The two types of concept relationships are represented as follows:

• NARROWER- Broken-line arrow from broader concept to narrower concept. The ar-

row head is placed at theConceptRelationshiptarget concept that being the narrower

concept.

• RELATED- Broken line between two related concepts

In figure 5.3, we outline an example of the Domain Model concrete syntax. This exam-

ple is taken from the databases subject domain. In the example theconceptnamed “SQL”

has aSynonym, “Structured Query Language”. “SQL” is related to “Relational algebra” and

has a broader semantic scope than “Views”, where the arrow indicates “Views” isnarrower

than “SQL”.

S t r u c t u r e d Q u e r y
L a n g u a g e

S Q L
R e l a t i o n a l

A l g e b r a

V i e w s

Figure 5.3: CAVIAr Domain Model concrete syntax example

5.4 The Learning Context Model

The Learning Context Model defines domain-related pedagogic information. The Learning

Context Model extends the Domain Model, by defining courseware requirements as knowl-

edge elements in terms of Domain Model concepts. We can describe the Learning Context

92

Model as layered on the Domain Model. For this reason a Domain Model must be included

in the learning context definition. The Learning Context Model is made up of:

• Conceptual Sequencing Constraints - Defines where knowledge of oneconcept is

necessary to understand another concept (see section 2.2.2.2).

• Learner Stereotype Definitions - Defines what a learner grouping needs to know to

successfully complete the course and what a learner grouping is assumedto know

prior to starting the course.

A learner stereotype definition allows the course creator to define learnergroupings,

defined in terms of the assumed initial knowledge of the learner grouping prior to starting

the courseware and the learner grouping’s learning goals. This is known as the course

scope, where a course scope is defined for each learner stereotype(course scope is covered

in detail in section 2.2.1). The course goal and assumed initial knowledge are defined as

knowledge elements in terms of the Domain Model. A knowledge level, a knowledge type,

and a Domain Model concept define knowledge elements.

The abstract syntax for the Learning Context Model is defined in the following sub-

section. This is then mapped to a graph-based semantic domain definition. The section

concludes with a description of a candidate concrete syntax.

5.4.1 Defining the Learning Context Model abstract syntax

In figure 5.4 we outline the Learning Context Model abstract syntax in MOF. One of the

central elements of the learning context is theConceptmodelling element from the Domain

Model as the learning context is defined in terms of the Domain Model.

In the Learning Context Model an additional concept relationship is defined -Concept-

PreReq. This relationship allows the course creator to define where knowledge ofsome

Domain Model concept is necessary to understand another Domain Modelconcept. A Con-

ceptPreReqrelationship defines a relationship between aconceptand aKnowledgeElement,

where the pre-requisite knowledge is defined as aKnowledgeElement. A KnowledgeEle-

mentis defined with knowledgetype, a knowledgelevel, and also a reference to a Domain

93

Modelconcept.

TheLearningContextis also made up ofLearnerStereotypes. A LearnerStereotype, lsi

is defined by anameand a set ofKnowledgeConstraints. The stereotypenameuniquely

identifies each stereotype. There are two types of knowledge constraintsthat can be defined

on a learner stereotype,Goal andPresumedKnowledge. PresumedKnowledgedefines the

knowledge that the course creator believes the learner stereotype to have prior to starting the

courseware. TheGoalknowledge represents the knowledge state a learner should have after

taking the courseware. ThePartOfRelationshipallows for the construction of composite

goals. If aGoal, g1 is part of anotherGoal, g2, theLearnerStereotypehas an overall goal,

which is the union of the knowledge elements in the twogoal sets,g1 ∪ g2. Alternative

goals are defined using theAltGoalconstruct, where anAltGoal instance is associated with

learning contextgoalsthat are alternatives to each other.

 Goa l

C o n c e p t

+ n a m e : S t r i n g

0 . . *

P r e s u m e d K n o w l e d g e

P a r t O f R e l a t i o n s h i p

+ s o u r c e

1

+ r e l a t i o n s

1 . . *

+ t a r g e t

1

+ i n c o m i n g R e l a t i o n s

1 . . *

K n o w l e d g e C o n s t r a i n t

K n o w l e d g e E l e m e n t

+ l e v e l : i n t e g e r
+ t y p e : C o m p e t e n c y T y p e

+ c

1

L e a r n i n g C o n t e x t

1 . . *

L e a r n e r S t e r e o t y p e

+ n a m e : S t r i n g

+ c o n s t r a i n t s

0 . . *

C o n c e p t P r e R e q

+ s o u r c e

1

1 . . *

< < e n u m e r a t i o n > >

C o m p e t e n c y T y p e

+ V E R B A L _ I N F O R M A T I O N
+ I N T E L L E C T U A L _ S K I L L S

D o m a i n M o d e l

1 . . *

+ t a r g e t

1

L e a r n i n g S t y l e

+ t h e o r y : S t r i n g
+ n a m e : S t r i n g

M e t a d a t a

0 . . *

f r o m L e a r n i n g
R e s o u r c e M o d e l

A l t G o a l

f r o m D o m a i n M o d e l

2 . . * 0 . . *

Figure 5.4: Learning context model abstract syntax

The Learning Context Model also allows the course creator to define the learning styles

that he or she wants to use in validation. Learning styles can then be associated with LO

metadata types. Capturing the anticipated learning styles that will be used in the courseware

allows the Courseware Model to validate the course in terms of how learning styles are

94

used in the courseware. This is a similar approach to the integration of learning styles into

adaptive strategies defined by Stash et al. in [Stash et al., 2004].

The MOF defined abstract syntax is further constrained as follows:

• If a learner stereotype has a goal and presumed knowledge for knowledge elements

that reference the same concept, the knowledge level of the goal must begreater than

the knowledge level of the presumed knowledge.

These constraints are defined formally in OCL below in listing 5.2.

Listing 5.2: Learning Context model abstract syntax constraints defined inOCL

c o n t e x t L e a n e r S t e r e o t y p e

inv g o a l k n o w l e d g e l e v e l g r e a t e r t h a n p r e s u m e dk n o w l e d g e :

−−Get s e t o f c o n c e p t s t h a t a r e goa l and presumed knowledge c o n ce p t s

l e t o v e r l a p p i n g C o n s t r a i n t s : Se t (Concept) = s e l f . c o n s t r ai n t s−>s e l e c t (oc l I sTypeOf (Goal))

−> i t e r a t e (i : Know ledgeCons t ra in t ; r e s : Se t (KnowledgeElement)= Se t{}| res−>un ion (i . knowledgeElements))

−>t e r a t e (j : KnowledgeElement ; r e s 2 : Se t (Concept)= Se t{}| res2−>un ion (i . concep t))

−>i n t e r s e c t i o n (s e l f . c o n s t r a i n t s−>s e l e c t (oc l I sTypeOf (PresumedKnowledge))

−> i t e r a t e (x : Know ledgeCons t ra in t ; r e s 3 : Se t (KnowledgeElement)= Se t{}| res3−>un ion (x . knowledgeElements))

−>t e r a t e (y : KnowledgeElement ; r e s 4 : Se t (Concept)= Se t{}| res4−>un ion (y . concep t)))

i n

s e l f . c o n s t r a i n t s−>s e l e c t (oc l I sTypeOf (Goal))−> c o l l e c t (knowledgeElements)

−>s e l e c t (ke | o v e r l a p p i n g C o n s t r a i n t s−>i n c l u d e s (ke . c))

−>f o r A l l (ke | ke . l e v e l >

s e l f . c o n s t r a i n t s−>s e l e c t (oc l I sTypeOf (PresumedKnowledge))

−>c o l l e c t (knowledgeElements)−>s e l e c t (kk| kk . c = ke . c))−> f o r A l l (l e v e l > ke . l e v e l))

5.4.2 Defining the Learning Context Model Semantics

The Learning Context ModelLCM is made up of the tuple<P, LS, S>, whereP is is a

set of directed edge between Domain Model concept nodes, which specify a pedagogical

pre-requisite relationship between concepts.LS is a set of learner stereotype definitions

andS is a set of learning style definitions

• The basic building block of the Learning Context Model isKnowledgeElement. A

KnowledgeElementke is defined by the tuple<kl, kt, c>, wherekl is a knowledge

level. Knowledge levels is a value between 0 and 1, where 0 indicates no knowledge

of the concept and 1 indicates full knowledge of the concept,c. kt is a knowledge

type, where a knowledge type can be of type verbal information or intellectual skill,

95

the two learning outcomes, defined by Gagné et al. in [Gagńe et al., 2005] that can

be defined in terms of Domain Model concepts (outlined in section 2.2.1).

• A pre-requisite constraintp ∈ P is described using the tuple<c1, ke>, wherec1 ∈

C, andke is a knowledge element. The learner must have achieved the knowledge

defined inke for the pre-requisite defined onc to be satisfied.

• A learner stereotypels ∈ LS is described by the tuple<G, AK, n>, whereG is

a set of learning goal knowledge elements forls, AK is a set of assumed existing

knowledge elements forls andn is the name of the stereotype.

• A goal g ∈ G is described by the tuple<KE, alt, NG>, whereKE is a set of

knowledge elements defining the learning goal,alt defines a set of alternative goals

andNG is a set of nested goals within the goalg. Nested goals create a hierarchy of

goal sets. Thealt in a goal defines an alternative goal set for that goal, allowing for

the definition of alternative learning goals.

• Assumed knowledge element,ak ∈ AK is described by the tuple<KE>, where

KE is a set of knowledge elements defining the presumed knowledge for this learner.

• A learning styles ∈ S is defined by the tuple<st, sn, M>, wheresn is the name of

a learning style within the given theoryst. The learning style is associated with a set

of metadata,M , that identifies LOs that suit the learning styles.

We provide a semantic mapping for the Learning Context Model by mapping between

the abstract syntax and the semantic domain. TheLearningContextMOF class is mapped

to the container, containing the setsP andLS, LCM . The pre-requisite setP is mapped

to the MOF classConceptPreReq. The learner stereotype definitionLS is mapped to the

LearnerStereotypeMOF class. The MOF classKnowledgeConstraintdefines learner rela-

tionships to knowledge, through theKnowledgeElementMOF class, which can be mapped

to the setKE. TheKnowledgeConstraintclass is specialised into two MOF classes,Goal

andPresumedKnowledge, which can be mapped to the setsG andAK respectively.

96

5.4.3 Learning Context Model Interoperability

The learning context model allows for the definition of the anticipated learnerstereotypes

in terms of knowledge elements. The state of the art provides for specifications describing

learners and describing knowledge. Learners can be described using the IMS Learner In-

formation Package (LIP) specification [IMS, 2005]. The learner stereotype definition can

be mapped to the IMS LIP specification in the following ways:

• IMS LIP competency is mapped to learner stereotype presumed knowledge

• IMS LIP goal is mapped to learner stereotype goal

Knowledge can be represented in terms of a competency or educational objective using

the IMS Reusable Definition of Competency or Educational Objective (RDCEO) specifi-

cation [IMS, 2002]. A knowledge element or group of knowledge elementsdefined in the

Learning Context Model can be mapped to the a RDCEO definition or group of RDCEO

definitions.

5.4.4 Defining a Candidate Concrete Syntax Definition

We propose the following concrete syntax to assist in the communication of learning context

definitions. We have defined the concrete syntax through an example, which is illustrated

in figure 5.5.

A learner stereotype are depicted as a stick person, e.g.stereotype1. The stereotype

is associated with the knowledge constraints that define this stereotype. Knowledge con-

straints are depicted as boxes, with instances ofPresumedKnowledgedenoted with a small

line in the top right corner of the box. Knowledge constraints are associated with conceptsin

the Domain Model through aKnowledgeElement. The association between knowledge con-

straint and concept depicts aKnowledgeElement. The knowledge elementlevel is depicted

as a label on the relationship between the knowledge constraint and the concept, while the

arrow head image depicts the type of knowledge, a single head indicates the knowledge

type isVERBALINFORMATIONand a double arrow head isINTELLECTUALSKILLS.

97

s t e r e o t y p e 1

1

0 . 7

0 . 5

0 . 3

D a t a b a s e s

S t o r a g e
s t r u c t u r e s

N o r m a l i s a t i o n

R e l a t i o n a l
a l g e b r a

g o a l 3g o a l 1

g o a l 2

P r e s u m e d K n o w l e d g e 1

0 . 3

V e r b a l i n f o r m a t i o n k n o w l e d g e c o n s t r a i n t

I n t e l l e c t u a l s k i l l s k n o w l e d g e c o n s t r a i n t

A l t e r n a t i v e g o a l s

P r e s u m e d k n o w l e d g e

G o a l

L e a r n e r s t e r e o t y p e

G o a l p a r t - o f r e l a t i o n s h i p

Figure 5.5: Learning Context concrete syntax example

For example, “goal3” has a knowledge element with a type ofINTELLECTUALSKILLS,

with a level of 0.7 in the “Databases”concept.

Alternative goals are denoted using a bidirectional arrow as is the case for “goal1” and

“goal2”. A relationship with a diamond indicates that onegoal is part of anothergoal, as

shown in figure 5.5, where “goal3” is part of “goal1’.

A knowledge element association between two concepts is a pre-requisite relationship

between those concepts. Theconceptat the arrow head end is the target of theConceptPre-

Reqrelationship. In figure 5.5 “Relational algebra” is a pre-requisite of “Normalisation”.

5.5 The Learning Resource Model

The Learning Resource Model contains representations for learning resources used in course-

ware. The learning resource representation is based on the IEEE Learning Object Metadata

(LOM) standard [IEEE LTSC, 2002], enabling a direct mapping from LOM to the Learning

98

Resource Model. This section outlines how learning resources are defined in CAVIAr.

5.5.1 Defining the Abstract Syntax

In figure 5.6 we outline the Learning Resource Model’s abstract syntax inMOF, the data

types used in figure 5.6 are in figure 5.7. ALearningResourceModelis composed ofRe-

sources. There are two types ofResource, LO andService. Where a LO is as defined in

section 2.2.6 and a service is as defined in the IMS LD literature as “any service that is

needed during learning, e.g. communication services, search services,monitoring services,

and collaboration services” [Koper and Olivier, 2004].

T o p i c

+ n a m e : S t r i n g
+ C o m p l e t e : b o o l e a n
+ a g g r e g a t i o n L e v e l : i n t

R e s o u r c e

+ i d : S t r i n g

L O

M e t a d a t a

+ m e t a d a t a

0 . . 1

G e n e r a l

+T i t l e : S t r i ng
+ C o v e r a g e : S t r i n g
+ S t r u c t u r e : L O S t r u c t u r e
+ D e s c r i p t i o n : S t r i n g
+ A g g r e g a t i o n L e v e l : I n t e g e r = 1 - 4

E d u c a t i o n a l

+ i n t e r a c t i o n T y p e : S c a l e
+ In te rac t i v i t yLeve l : I n t e rac t i v i t yLeve l s
+ S e m a n t i c D e n s i t y : S c a l e
+ l e a r n i n g R e s o u r c e T y p e : R e s o u r c e T y p e

R e l a t i o n

+ k i n d : R e l a t i o n K i n d

C l a s s i f i c a t i o n

+ p u r p o s e : C l a s s i f i c a t i o n T y p e

+ g e n e r a l

1

+ e d u c a t i o n a l

1
+ c l a s s i f i c a t i o n s

0 . . *

r e f e r e n c e d R e s o u r c e 1

L e a r n i n g R e s o u r c e M o d e l

+ r e s o u r c e s

0 . . *

T e c h n i c a l

+ f o r m a t : S t r i n g
+ s i z e : i n t e g e r
+ l oca t i on : s t r i ng
+ d u r a t i o n : i n t e g e r

S e r v i c e

f r o m c o u r s e w a r e m o d e l

C o n c e p t

+ n a m e : S t r i n g c o n c e p t

1

f r o m d o m a i n m o d e l

1
0 . . *

Figure 5.6: Learning resource model abstract syntax

TheLO is associated withMetadata, which can be directly mapped to the IEEE LOM

standard [IEEE LTSC, 2002]. TheMetadatais composed of five parts -Relation, Classifi-

cation, General, EducationalandTechnical. All modelling elements contained inMetadata

have attributes that are used to describe the associatedLO. The Classificationassociates

theLO with a Domain Model concept for somepurpose, wherepurposeis an attribute of

theClassificationclass. TheRelationmetadata relates this LO to other resources. The LO

99

< < e n u m e r a t i o n > >

P u r p o s e s

+ D I S C I P L I N E
+ I D E A
+ P R E R E Q U I S I T E
+ E D U C A T I O N A L _ O B J E C T I V E
+ C O M P E T E N C Y
+ A C C E S S A B I L I T Y
+ R E S T R I C T I O N
+ E D U C A T I O N A L _ L E V E L
+ S E C U R I T Y _ L E V E L
+ S K I L L _ L E V E L
+ C O M P E T E N C Y

< < e n u m e r a t i o n > >

S c a l e

+ V E R Y _ L O W
+ L O W
+ M E D I U M
+ H I G H
+ V E R Y _ H I G H

< < e n u m e r a t i o n > >

I n t e r a c t i v i t y L e v e l s

+ A C T I V E
+ E X P O S I T I V E
+ M I X E D

< < e n u m e r a t i o n > >

R e l a t i o n K i n d

+ H A S _ P A R T
+ B A S E D _ O N
+ H A S _ F O R M A T
+ R E F E R E N C E S
+ R E Q U I R E S

< < e n u m e r a t i o n > >

L O S t r u c t u r e

+ A T O M I C
+ C O L L E C T I O N
+ N E T W O R K E D
+ H E I R A R C H I C A L
+ L I N E A R

< < e n u m e r a t i o n > >

C l a s s i f i c a t i o n T y p e

+ D I S C I P L I N E
+ I D E A
+ P R E R E Q U I S I T E
+ E D U C A T I O N A L _ O B J E C T I V E
+ C O M P E T E N C Y

< < e n u m e r a t i o n > >

R e s o u r c e T y p e

+ E X E R C I S E
+ S I M U L A T I O N
+ Q U E S T I O N N A I R E
+ D I A G R A M
+ F I G U R E
+ G R A P H
+ I N D E X
+ S L I D E
+ T A B L E
+ N A R R A T I V E _ T E X T
+ E X A M
+ E X P E R I M E N T
+ P R O B L E M S T A T E M E N T
+ S E L F _ A S S E S S M E N T
+ L E C T U R E

Figure 5.7: Learning resource model data types

relationship is defined by theRelationattribute,kind. The fiveMetadatacomponents are

derived from the metadata types outlined in the LOM standard.

5.5.2 Defining the Learning Resource Model Semantics

We define the semantics of the Learning Resource Model as follows:

• A Learning Resource Model,LRM , is a set of learning resources,LR.

• There are two sets of learning resources captured in theLRM , a set of learning

objectsLO and a set of learning servicesLS, thereforeLR = LO ∪ LS.

• A LO learning resource is further defined by the tuple<REL, CLASS, A>, where

REL is a set of relationships, that relates aLO with anotherLR, CLASSis a set of

conceptual classifications for thisLO. A is a set of annotations for thisLO.

• A relationrel ∈ REL contains the tuple<lr, type>wherelr ∈ LR and the type of

relation, which is defined as a text value.

• A classificationclass ∈ CLASS is defined by the tuple<c, pur>, wherec ∈ C and

pur defines the purpose of the conceptual classification as a text value.

• A learning object’s annotationAlo is a tuple<att, val>, whereatt is the name of the

metadata attribute andval refers to its simple text value.

100

To map the abstract syntax to the semantics we define the abstract syntax in terms of

the graph-based semantics. TheLearningResourceModelMOF class is mapped to the set

of learning resources defined as theLRM set. The Learning Resource Model contains

instances of theResourceclass. There are two types of learning resources defined in the

abstract syntax,LO and Service, which correspond to the setsLO andLS respectively.

The Relationmetadata class is mapped to the setREL, while theClassificationclass is

mapped to the set containing conceptual classificationsCLASS. TheGeneral, Technical

andEducationalclasses define a series of attributes and values, used to describe the LO and

are mapped to the setA.

5.5.3 Learning Resource Model Interoperability

The CAVIAr Learning Resource Model must be able to interoperate with external learning

resource descriptions and metadata specifications and standards. In thissub-section, we

outline how this is achieved by mapping the Learning Resource Model to commonstandards

and specifications in TEL.

There are two types ofResourcein the LearningResourceModel, theLO and theSer-

vice. A Learning Object (LO) is a representation of some learning resource. LOs in the

CAVIAr courseware specification can be mapped to thelearning objectdefinition in IMS

LD and to theResourcein the SCORM specification. The CAVIArServicecan be mapped

to theServicedefinition in IMS LD, which together with a set of LOs creates the IMS LD

environment.

EachLO is defined in terms of metadata. Each element contained in theMetadatacan

be mapped directly to an element of the IEEE LOM standard, for example the CAVIAr

GeneralMOF class can be mapped to the general section of LOM, theEducationalMOF

class can be mapped to the “educational” section of LOM, and so on.

5.5.4 Defining a Candidate Concrete Syntax Definition

The Learning Resource Model is principally about annotating learning resources in course-

ware. This data is verbose in nature and therefore if presented in a diagrammatic notation

101

with the other CAVIAr models could cause confusion due to an overload of information

[Mendling et al., 2007]. We have therefore not defined a candidate concrete syntax defini-

tion for the learning resource metadata. We do, however, demonstrate howa courseware

Topic is associated with a learningResourcein section 5.6.4.

5.6 The Courseware Model

The CAVIAr Courseware Model defines the structure of courseware, from which its be-

haviour can be derived. There is a reference between the Courseware Model and the Learn-

ing Resource Model, and between the Courseware Model and the Learning Context Model.

This allows for the Courseware Model to be evaluated with regard to the learning resources

used and with regard to the learning context definition for the courseware.

In TEL there are two main specifications for describing courseware design, the ADL

SCORM specification [ADL, 2004] and the IMS LD specification. Within the SCORM

specification the IMS Simple Sequencing specification [IMS, 2003c] and content packaging

specification [IMS, 2003a], in particular are used for courseware packaging and definition.

Both SCORM and IMS LD are described in section 2.2.6.

In this section we will outline a language for defining courseware which is independent

of (although inspired by) ADL SCORM and IMS LD. The courseware definition has been

designed with validation in mind, concentrating on the courseware structure and sequencing.

We defined a language independent of the main courseware specifications as this allows for

minimal disruption to courseware validation tools, based on CAVIAr, during the maturing

of the mainstream specifications, such as SCORM and IMS LD. Interoperability between

CAVIAr and the mainstream TEL specifications will be addressed in section 8.8.

5.6.1 Defining an Abstract Syntax for Courseware Definition

The CAVIAr Courseware Model is defined in terms of its structure, in a hierarchical fashion.

Learners move freely through courseware topics unless the course creator does not allow a

certain movement. To allow courseware to be defined in this way we define an abstract

102

syntax for specifying courseware structure. This abstract syntax is defined, in MOF, in

figure 5.8.

C o u r s e w a r e

+ n a m e : S t r i n g

T o p i c

+ n a m e : S t r i n g
+ a g g r e g a t i o n L e v e l : i n t

R e s o u r c e

+ t o p i c s

1 . . *

T o p i c R e l a t i o n s h i p

+ t y p e : T o p i c R e l a t i o n s h i p T y p e

< < e n u m e r a t i o n > >

T o p i c R e l a t i o n s h i p T y p e

+ P A R T - O F
+ S E Q U E N C E D _ A F T E R

1 . . *

+ s o u r c e

1

1 . . *

+ t a r g e t

1

E n t r y L e a r n e r

1

K n o w l e d g e E l e m e n t

+ l e v e l : i n t e g e r
+ t y p e : K n o w l e d g e T y p e

g r e a t e r T h a n

0 . . *

1 . . *

0 . . *

L e a r n e r S t e r e o t y p e

l e s s T h a n

0 . . *

0 . . *

f r o m L e a r n i n g R e s o u r c e M o d e l

f r o m D o m a i n M o d e l
C o n c e p t

+ n a m e : S t r i n g

f r o m L e a r n i n g C o n t e x t M o d e l

T o p i c C o m p l e t i o n C r i t e r i a

+ l e a r n i n g R e s o u r c e s C o m p l e t e : R e s o u r c e []
+ t imeL im i t : i n t
+ s u b T o p i c s C o m p l e t e : T o p i c []

+ c o m p l e t i o n C r i t e r i a

0 . . *

+ l e a r n i n g R e s o u r c e s C o m p l e t e

0 . . *

+ s u b T o p i c s C o m p l e t e

0 . . *

+ c

1

Figure 5.8: Abstract syntax for courseware defined using MOF

Coursewareis defined using a coursewarename. Courseware is principally comprised

of Topic instances. ATopichas anameand anaggregationLevel. Topicsare related to other

topicsvia a TopicRelationship. A TopicRelationshiphas atype. The type is defined as a

TopicRelationshipTypeenumeration. ATopic can be made up of othertopics through the

TopicRelationshipType - PARTOF. A topicwhich is “part of” anothertopic is a sub-topic of

thattopic. Explicit topicsequencing definitions are defined using theTopicRelationshipType

- SEQUENCEDAFTER. TheSEQUENCEDAFTERrelationship specifies when onetopic

must be covered before anotherTopic. Topicscan contain zero to many learningResources.

A topic aggregationLevelallows for the differentiation between different courseware gran-

ularity levels defined in section 2.2. Atopic is generally set at a granularity level between

the lesson granularity level and the course granularity level (defined in section 2.2).

An EntryLearneris a condition, associated with aTopic that must be true for a learner

to enter the associatedtopic. TheEntryLearnerconsists of oneLearnerStereotype, defined

103

in the Learning Context Model, and variousKnowledgeElements, which are related to the

EntryLearnerthrough agreaterThanor lessThanrelationship indicating if the learner must

achieve greater than or less than the knowledge defined in the associatedKnowledgeEle-

ment.

The TopicCompletionCriteriais contained within aTopic, it allows the course creator

to express conditions for when theTopic is deemed to be complete. For example the course

creator may only want the learner to complete two out of three of a topic’s sub-topics. A

TopicCompletionCriteriais expressed for each completion permutation. TheTopicComple-

tionCriteria also allows for a simple time limit on aTopic instance.

The MOF defined abstract syntax is further constrained as follows:

• A Topic instance has anaggregationLevelbetween one and four.

• Topicsreferenced by aTopicCompletionCriteriainstance must be related to theTopic

that contains theTopicCompletionCriteriaby aTopicRelationshipof typePARTOF.

• Resourcesreferenced by aTopicCompletionCriteriainstance must be referenced by

theTopic that contains theTopicCompletionCriteria.

These constraints are defined formally in OCL below in listing 5.3.

Listing 5.3: Courseware model abstract syntax constraints defined in OCL

c o n t e x t Topic

inv : a g g r e g a t i o n L e v e lv a l u e : t h i s . a g g r e g a t i o n L e v e l> 0 and t h i s . a g g r e g a t i o n L e v e l< 5

inv : isEmpty (s e l f . c o m p l e t i o n C r i t e r i a−>c o l l e c t (subTop icsComple te)−

s e l f . r e l a t i o n s−>s e l e c t (e| e . t ype = T o p i c R e l a t i o n s h i p T y p e : : CONTAINS)−>c o l l e c t (t a r g e t))

i nv isEmpty (s e l f . c o m p l e t i o n C r i t e r i a−>c o l l e c t (subTop icsComple te)−

s e l f . r e s o u r c e s)

5.6.2 Defining the Courseware Model Semantics

We consider courseware to be a Learning ActivityLA, where LA is defined as the tuple

<SLA, LO, LP, SP, EP, n>, SLA represents a set of embedded learning activities known

as Sub-Learning Activities,LO is the set of Learning Objects associated with the Learning

Activity, andLP is the set of learning paths.SP andEP represent the start points and end

104

points respectively in the given Courseware Model.SP is optional to learning activities.

A LA absent of aSP can be started at any sub-learning activity that does not have an

incoming learning path. There may also be more than oneSP for a LA. SP, EP 6= LA

andSP, EP 6= LO. Then variable represents the name for this learning activity.

• A learning pathlp ∈ LP is defined by the triple<sla1, sla2, G>, wheresla1 ∈

SLA, sla2 ∈ SLA are the source and target learning activities respectively. G is a

set of boolean guard conditions on the learning path, defining when the learner may

proceed fromsla1 to sla2. G defaults totruewhenG = ∅.

• A gate conditiong ∈ G is defined as the tuple<ls, KC>, wherels is a learner

stereotype defined in the Learning Context Model andKC is a set of knowledge

conditions.

• A knowledge conditionkc ∈ KC is defined by the tuple<com, KE>, whereKE

defines a knowledge element, and thecom is a comparator which defines whether the

learner must be below or above the knowledge defined in thecon.

• A learning objectlo ∈ LO is as defined in theLRM .

To complete the CAVIAr Courseware Model definition it is necessary to provide a map-

ping from the abstract syntax to the semantic domain. The coursewareTopic is mapped to

learning activity setLA. The containment relationship between aTopicand its sub-topics

is mapped to the relationship between a learning activityla wherela ∈ LA and its set of

sub learning activitiesSLAla. There is an implicit learning path,lp, wherelp ∈ LP from

each coursewareTopic to every otherTopic in the Courseware Model except for:

• Where there is aTopicRelationshipof type SEQUENCEDAFTERbetween course-

wareTopic instances and the target topic or its container topics that have not been

completed by the learner.

• Where the learner taking the courseware does not satisfy a topic’sEntryLearnercon-

dition. EntryLearnerconditions also hold for any of the topic’s contained topics.

105

Instances of theLO MOF class are members of theLO set in the activity based syntax.

Each learning activity has a set of start pointsSP and end pointsEP . The start point in a

Topicis any topic which does not have anEntryLearnercondition orSEQUENCEDAFTER

condition (where thatTopic is the source of the relationship) defined on it. The end point

defined by default for aTopic is when all the topic’s resources and contained topics have

been delivered to the learner. A course creator can define a custom EPby defining aTopic-

CompletionCriteriainstance.

5.6.3 Courseware Model Interoperability

In order for courseware validation to be integrated into courseware construction tool support

the Courseware Model must be interoperable with the state of the art in courseware speci-

fications such as IMS LD, ADL SCORM and IEEE LOM. These courseware specifications

are covered in detail in section 2.2.6. Here, we outline how the CAVIAr Courseware Model

can be mapped to these courseware specifications.

The root of the abstract syntax is theCoursewareclass, this provides a container for

the courseware specification.Coursewarecan be mapped to themanifestcomponent in the

ADL SCORM specification and to thelearning-designcomponent of the IMS LD specifi-

cation. These are the root components of their respective specifications.

Courseware is broken down into logical units, known asTopics. A coursewareTopiccan

be mapped to aorganizationanditemin the ADL SCORM CP (Content and Packaging). In

IMS LD the Topiccan be mapped to theplay andact constructs. TheTopicclass attribute

aggregationLevelis used to allow the course creator to define different abstraction levels

for courseware topics. For example an individual course creator may wish to make the dis-

tinction between courses, modules, lessons and learning resources in courseware, the topic

aggregationLevelfacilitates this, where a level is associated with a courseware abstraction

level. The aggregation level can be used to distinguish between an “act ” and “play” in IMS

LD and an “organization” and “item” in SCORM.

The TopicCompletionCriteriacan be mapped to the IMS Simple Sequencing “rollup

rules”, where the course creator can define when a learning activity is complete. As we

106

have mentioned IMS simple sequencing can be defined at an item level in SCORM SN and

can be defined on learning environments in the IMS LD specification. The relationship

between a coursewareTopicinstance and aResourceinstance can be mapped to the “using”

relationship between an activity and resource in IMS LD, and between anItemandResource

in SCORM.

5.6.4 Defining a Candidate Concrete Syntax Definition

We define a concrete syntax for the Courseware Model through an example, as shown in

figure 5.9. The figure shows a Courseware Model with three topics. The“SQL” topic

and “JDBC” topic are sub-topics of the “Databases”topic as indicated by thePARTOF

TopicRelationship, denoted as a solid line with a diamond at the target of the relationship.

In figure 5.9, the “JDBC” is sequenced after the “SQL”topic, as indicated by the broken

arrow between the twotopics. This broken arrow represents aSEQUENCEDAFTERtype

of TopicRelationship. The “SQL” topiccontains a learning resource - “lo1”.

The “JDBC” topic also has an entry learner condition - “EntryLearner1”. The entry

learner has a learner stereotype associated with it - “CSStudent”. The concrete syntax

also allows the course creator to define knowledge level conditions that must be satisfied

for the learner to enter the topic. These are defined below the entry learner name, the first

knowledge section defining knowledge levels of typeVERBALINFORMATIONand the

second knowledge section definingINTELLECTUALSKILLSknowledge levels. The entry

learner condition, in figure 5.9, states that the learner must haveINTELLECTUALSKILLS

knowledge in “Java” of greater than 0.6.

Figure 5.9 also demonstrates the use of theTopicCompletionCriteria, which is denoted

as a small ellipse, with a numeric value in it. The numeric value represents theTopicCom-

pletionCriteria’s timeLimit. In the example, in figure 5.9, the notation also depicts that once

“JDBC” is complete, “Topic1” is complete, or after thirty minutes “Databases” iscomplete.

107

< < C S _ S t u d e n t > >
E n t r y L e a r n e r 1

J a v a > 0 . 6

3 0

S Q L

+ l o 1

J D B C

D a t a b a s e s

D a t a b a s e s

< < C S _ S t u d e n t > >
E n t r y L e a r n e r 1

J a v a > 0 . 6

T o p i c c o m p l e t i o n c r i t e r i a

T o p i c

T o p i c p a r t - o f r e l a t i o n

E n t r y l e a r n e r r e q u i r e m e n t

Figure 5.9: Example Courseware Model concrete syntax

5.7 Chapter Conclusion

In this chapter, we have defined the CAVIAr data models. To ensure eachCAVIAr data

model definition was as sound and as complete as possible, we grounded each CAVIAr

data model definition in the courseware validation framework, defined in chapter 4. Each

of the data models corresponds to one or more of the courseware construction concerns, as

follows:

• The Learning Context Model captures the “courseware scope” concerns.

• The Courseware Model captures the “courseware structure and sequencing” concerns.

• The Learning Resource Model captures the “learning content in courseware” con-

cerns.

• All the CAVIAr data models are used together to capture the “pedagogical strategy”

concerns.

We defined each CAVIAr data model in terms of its abstract syntax using a MOF-

defined metamodel, after this we defined a semantic domain for each metamodel using a

graph-based notation. A semantic mapping was defined from the abstract syntax to the

semantic domain. Interoperability is a key concern for the CAVIAr data modelsand as such

each model has been mapped to a key TEL specification or standard.

108

Through the data models defined in this section it is possible to adequately describe

courseware and courseware construction concerns in a standards neutral way. In chapter

6 we will outline how a constraints language can be used to ensure that the courseware

construction concerns, defined primarily in the Learning Context Model, can be automati-

cally validated. Chapter 6 also outlines how a constraint language allows the course creator

to validate the courseware in other ways, including, ensuring the correctapplication of a

particular instructional design.

In this chapter we have also outlined a candidate concrete syntax for the Domain Model,

Learning Context Model and Courseware Model. The concrete syntaxprovides the course

creator with a facade to the CAVIAr models hiding complexity. This is an importantissue

as the course creator is a non-technical end user, who requires a simplistic, intuitive user

interface with which to define CAVIAr models. In chapter 9 we will evaluate theusability

of this candidate concrete syntax.

109

Chapter 6

Courseware Validation

6.1 Introduction

In this chapter, we outline how CAVIAr allows for constructed courseware to be vali-

dated. Validation involves ensuring that courseware, represented by the CAVIAr Course-

ware Model, satisfies a variety of constraints, ranging from simple courseware structural

constraints to complex constraints based on an instructional design theory.

We will use the OCL to define validation constraints. OCL is a constraint language for

the metamodelling technical space designed to increase the semantic expressivity of UML

and MOF models. OCL, UML and MOF are all defined by the OMG and as suchdesigned

to complement each other [OMG, 2003b]. OCL is a natural choice for defining constraints

in CAVIAr as CAVIAr is defined in the metamodelling technical space using MOF. OCL is

a language designed to be used by software engineers, not course creators. In section 6.2

we will outline our efforts to make defining courseware constraints in OCL more intuitive

for the course creator. The first looks to define a set of common OCL functions for defining

CAVIAr Validation Models that can be reused by the course creator. We also outline our

efforts to develop a model-driven approach to defining constraints, where a model captures

constraint data to be used to generate OCL. Subsequently, in section 6.3 our validation

approach is described. We will identify three main categories of courseware validation;

validation pre-requisites, courseware model validation and learning context validation. The

110

subsequent sections describe each validation category of validation in detail. We summarise

our findings in section 6.7.

6.2 Defining a Domain Specific Language for Constraints

As we have outlined in section 4.2, there are many actors involved in courseware construc-

tion. The instructional designer programmer defines the definition of the CAVIAr Vali-

dation Model. The instructional designer programmer is an expert in the application of

instructional design theory to a specific courseware, defined for a specific learning context.

Converting instructional constraints into OCL is not a trivial task. We aim to support

the instructional designer programmer in this task by defining a Domain SpecificLanguage

(DSL) to define constraints. To do this we have investigated two approaches for this, defin-

ing OCL helper operations and creating an intuitive DSML for OCL. The helper operations

abstract commonly-used and complex constraint patterns in courseware validation, and de-

fine them as an OCL operation. This creates a more high level and intuitive constraint

language for the instructional designer programmer to define the courseware validation cri-

teria with. We describe this approach in the next section. The second approach defines a

DSML for instructional design constraints. The DSML represents courseware validation

constraints using an intuitive graphical notation. The instructional designer programmer

uses the DSML to define validation criteria. The DSML is then used to automaticallygen-

erate the CAVIAr Validation Model in the form of OCL invariants. This approach is outlined

in section 6.2.2.

The two approaches we outline extend research by Wahler et al. This research attempts

to simplify OCL construction by defining an extensible library of generic OCL patterns

[Wahler et al., 2006].

6.2.1 OCL Helper Operations

Our first approach allows for the extension of OCL with a domain specific vocabulary that

queries CAVIAr models for specific elements. This is done by outlining a variety of opera-

111

tions or functions that can be used by the instructional designer programmer when defining

a CAVIAr Validation Model in OCL. It should be noted that this mechanism of raising the

course creator’s level of abstraction is highly customisable and extendable; an instructional

designer programmer may even define their own operations. Operations defined by other

instructional designer programmers can also be used when defining constraints, in much

the same way as programming libraries can be imported to raise the level of abstraction an

application programmer develops at.

A helper operation is defined using the OCLdef construct. The operation is given

a name, parameters and a return type. The operation is basically an OCL query from the

defined modelcontext. The query must return a datatype as specified by the helper operation

return type.

An example of where a helper modelling operation might be used is where a constraint

must be defined on a CAVIAr class that is used to capture relationship semantics between

two instances of the same CAVIAr metamodel class. An example of this type of relationship

can be found at theTopicclass in the Courseware Model’s metamodel and theConceptclass

from the Domain Model’s metamodel. In order for the semantics of the association between

the two modelling elements to be captured, the association itself is represented asa separate

class in the metamodel. In figure 6.1, we illustrate one of the aforementioned relationship

classes, where topics are related to each other using an instance of theTopicRelationship

class, which can relate aTopic instance to anotherTopic instance. The semantics of the

TopicRelationshipare defined in thetypeattribute of theTopicRelationshipclass.

T o p i c

+ n a m e : S t r i n g
T o p i c R e l a t i o n s h i p

+ n a m e : S t r i n g
+ t y p e : T o p i c R e l a t i o n s h i p T y p e

< < e n u m e r a t i o n > >

T o p i c R e l a t i o n s h i p T y p e

+ C O N T A I N S
+ S E Q U E N C E D _ A F T E R

+ r e l a t i o n s

1 . . *

+ s o u r c e

1

+ i n c o m i n g R e l a t i o n s

1 . . *

+ t a r g e t

1

Figure 6.1: Extract of the CAVIAr Courseware Model’s metamodel

112

In order to define constraints on CAVIAr model definitions in OCL theTopicRelation-

shipclass must be considered to evaluate thetyperelationships between topics. To illustrate

this point we have defined an OCL constraint in listing 6.1 stating if a topic contains other

topics, the contained topics must reference more learning resources thanthat of the contain-

ing topic. The invariant must be defined by traversing theTopicRelationshipclass where the

TopicRelationship’stypeattribute isCONTAINS.

Listing 6.1: Invariant definition over two related topics using the TopicRelationship class

c o n t e x t Topic

inv m o r e L O s i n c o n t a i n e d t o p i c s : s e l f . r e l a t i o n s

−>s e l e c t (t ype = T o p i c R e l a t i o n s h i p T y p e : : CONTAINS)

−>f o r a l l (r e s o u r c e s−>s i z e () >= s e l f . r e s o u r c e s−>s i z e ())

The constraint defined in listing 6.1, demonstrates where the semantics of theTopicRe-

lationshipclass are important. Although it is necessary to evaluate the relationship class, it

is not a very intuitive way of constructing invariants. The main cause for confusion is that

relationships are represented in the metamodel as classes. While in a CAVIArmodel, which

is defined and used by the course creator, a relationship is typically represented as a line,

with different types of lines indicating the semantics of the relationship. This is demon-

strated in figure 6.2 where the notation of a line with a diamond at one end is usedto denote

the type isTopicRelationshipType::CONTAINS.

T o p i c 1

T o p i c 2 T o p i c 3

Figure 6.2: CAVIAr Courseware Model extract

Listing 6.2: CONTAINS derived attribute definition

c o n t e x t Topic

de f : g e t C o n t a i n e d T o p i c s () : s e t (Topic)= s e l f . r e l a t i o n s

−>s e l e c t (t ype = T o p i c R e l a t i o n s h i p T y p e : : CONTAINS)

−>c o l l e c t (t a r g e t)

113

In order to make constraints based on these relationships more intuitive, we define an

OCL operation that encapsulates the OCL that is needed to traverse such arelationship in

a metamodel. In listing 6.2 we illustrate the definition of thegetContainedTopics()oper-

ation in the context of theTopic class. This operation provides OCL so that the course

creator is not required to define the OCL to navigate theTopicRelationshipclass. The direct

relationship is more intuitive for the instructional designer programmer.

This operation definition allows for the more intuitive definition of the invariant defined

in listing 6.1 on the Courseware Model’s metamodel. In listing 6.3 we use the new operation

to define the original invariant in listing 6.1.

Listing 6.3: Invariant definition using the CONTAINS derived attribute

c o n t e x t Topic

inv M o r e L O s i n c o n t a i n e d t o p i c s : s e l f−>g e t C o n t a i n e d T o p i c s()−> f o r A l l (r e s o u r c e s−>s i z e ()

>= s e l f . r e s o u r c e s−>s i z e ())

Although we have concentrated onTopichere, the principles presented can be applied

to any relationship in the metamodel where the semantics of a relationship are captured in a

metamodel class. Indeed the general principles can be applied to anywhere in the CAVIAr

model and are of particular use for streamlining the use of commonly used OCL.

In table 6.1 and 6.2, we outline OCL helper operations that we have defined.The

tables are organised by the model element they work on. Table 6.1 outlines operations

defined for the Learning Context Model, while table 6.2 outlines operations defined for the

Courseware Model. The decision on what operations to define were empirically determined

and validated through a related project [Janjua, 2008]. Our approachraises the level of

abstraction that the instructional designer must define the CAVIAr ValidationModel at. This

allows him or her to concentrate on the business of defining instructional constraints rather

than defining complex model navigation using OCL. Table 6.1 and 6.2 do not represent

a complete list of all possible reusable operations in CAVIAr, the instructional designer

programmer may add to this by defining their own OCL operations.

114

Table 6.1: Derived CAVIAr operations for Learning Context Modelling constructs

Operation Name Operation
Context

Description

containedGoals() Goal Operation gets all the goals contained in the
context goal.

altGoal() Goal This operation returns any alternative goals
for the context goal.

narrower() Concept This operation returns Concepts that are re-
lated to the context concept via ConceptRe-
lationship of type NARROWER - direction
source to target.

broader() Concept This operation returns Concepts that are re-
lated to the context concept via ConceptRela-
tionship of type NARROWER - direction tar-
get to source.

siblings() Concept This operation returns a Concept’s sibling
concepts (i.e. concepts with the same parent
in the semantic scope taxonomy).

prerequisite(
level:Integer,includeVB:Boolean)

Concept This operation returns Concepts that are re-
lated to the context topic via ConceptRe-
lationship of type PREREQUISITE. Con-
cepts that are returned must be related via
a knowledge element above the level stated
in the level parameter. Verbal information
pre-requisites are included whenincludeVBis
true.

getPresumedLearnerConcepts() Learner This operation returns a set of concepts the
learner is assumed to know when starting the
course.

115

Table 6.2: Derived CAVIAr operations for Courseware Model constructs

Operation Name Operation
Context

Description

containedTopics() Topic This operation returns topics contained within
the context Topic

sequencedAfterTopics() Topic This operation returns Topics that are related
to the context topic via TopicRelationship of
type SEQUENCEDAFTER.

containerTopic() Topic This operation returns Topics that are related
to the context topic via TopicRelationship of
type CONTAIN.

getTopicConcepts() Topic This operation will get the intersection of the
concepts covered by LOs in the context topic.

getAllTopicConcepts() Topic This operation will get the union of all the
concepts covered by all LOs in the context
topic.

getConceptualPreReqTopics(
level:Integer,includeVB:Boolean)

Topic This operation returns a set of topics that
cover concepts deemed pre-requisite concept
to the concepts covered in this topic. Top-
ics that are returned must be have a concep-
tual relation with a knowledge element above
the level stated in thelevelparameter. Verbal
information pre-requisites are included when
includeVBis true.

getLOPreReqTopics() Topic This operation returns a set of topics that con-
tain LOs which are pre-requisite to the LOs
covered in this topic.

getCoursewareTopics() Courseware This operation returns a set of all topics in a
given courseware.

getCoursewareConcepts() Courseware This operation returns a set of concepts cov-
ered in a given courseware.

getCoursewareResources() Courseware This operation returns all resources in the
context courseware.

getCommonPresumedKnowledge(
level:Integer,includeVB:Boolean)

Courseware This operation gets the union of all the pre-
sumed knowledge for all the learners who it is
anticipated will use this courseware. To be in-
cluded the knowledge level must be above the
level set bylevel, verbal information is only
included if includeVBis true.

116

6.2.2 Towards a Model-Driven OCL Generation

We have raised the level of abstraction that the course creator creates aCAVIAr Validation

Model at using a model-driven approach. This was done through a related project where

we developed tool support for the course creator allowing him or her to define CAVIAr Val-

idation Model constraints using an intuitive DSML [Janjua, 2008]. The tooldeveloped is

based around CAVIAr Validation Model constraint patterns. A CAVIAr Validation Model

constraint pattern is an abstract definition of some instructional constraint.Constraint pat-

terns are determined for each of the CAVIAr Courseware Model constructs. Patterns are

relatively simple, frequently used validation constraints defined on a particular courseware

construct. A constraint pattern is instantiated by the course creator using instance specific

data about the constraint.

We identified CAVIAr Validation Model constraint patterns forTopicandCourseware

constructs from the CAVIAr Courseware Model by analysing the type ofconstraints defined

for validation and identifying frequently used constraint structures. These were as follows:

• Topic Patterns

– Timing - Restriction on the length of time a topic can take.

– Learning Resource - Checks that a learning resource type is presentor not

present in a given courseware topic.

– Adaptivity - Verifies that a particular type of learner is considered for a given

courseware topic.

– Structural - Checks the number of topics contained by a given courseware topic

and the aggregation level of the contained topics.

• Courseware Patterns

– Timing - Restriction on the length of time courseware can take.

– Structural - Checks the structure of the courseware in terms of the topics it

contains and how topics are sequenced in the courseware

117

The data needed to define each of these constraint patterns was elicited and used to

define a constraint pattern metamodel using ECore. An example of such an metamodel

can be found in figure 6.3, where the topic structural constraint metamodelis defined using

MOF. This constraint shows that there are two main pieces of data needed todefine a topic

structural constraint, these being the number of contained topics within a given topic and the

aggregation level of those contained topics. The model allows for the explicit representation

of this data.

S t r u c t u r a l T o p i c C o n s t r a i n t

+ a g g r e g a t i o n L e v e l : i n t e g e r

N u m b e r C o n s t r a i n t

n u m b e r O f C o n t a i n e d T o p i c s

0 . . 2

A g g r e g a t i o n L e v e l C o n s t r a i n t

C o n s t r a i n t

+ v a l u e : i n t e g e r

+ c o m p a r i t o r : C o m p a r i t o r s

c o n t a i n e d T o p i c s A g g r e g a t i o n L e v e l

0 . . 2

Figure 6.3: MOF model used to capture data about the topic structural constraints

Our tool support allows the course creator to define CAVIAr Validation Model con-

straints using an intuitive model-based concrete syntax for each constraint pattern. In figure

6.4 we outline an example of our intuitive model based concrete syntax. In thiscase the

course creator has defined a timing constraint on coursewareTopics. The grey box defines

the set ofTopicsthat this constraint is defined on. In this case the constraint is defined on

coursewaretopicsassociated with the the “Software Quality” Domain Modelconceptand

have anaggregation levelof one. The blue box connected to theTopic represents a timing

constraint. In this case the timing constraint defines a maximum time 30 minutes and a

minimum time of 20 minutes. As this timing constraint is associated with theTopicset def-

inition, all topics in the set defined by the grey box must comply with this timing constraint.

The tool support was developed using the Eclipse Graphical Modelling Framework (GMF).

118

Figure 6.4: Model-based definition of a courseware topic timing constraint

By defining a CAVIAr Validation Model using our GMF-based tool support, the course

creator creates an instance of a constraint pattern metamodel - a constraint pattern model.

Constraint pattern models are formalised into OCL using a model-to-text (M2T) generator,

such as JET (JET is covered in section 8.4.3). The OCL constraint is then integrated into

a CAVIAr Validation Model. As this approach is extended to cover more constraint pat-

terns the course creator will be able to use this intuitive model-driven approach to define a

complete CAVIAr Validation Model.

6.3 Validation Approach

The CAVIAr data models, which define the courseware and coursewareconstruction con-

cerns, are defined using MOF in chapter 5. The abstract syntax (metamodel) of a CAVIAr

data model is defined using MOF. MOF metamodels can be constrained using OCL, as

described in section 2.4. The course creator can define constraints, in OCL, on the Course-

ware Model’s metamodel that must be true for a Courseware Model to be valid. The course

creator can use data defined in the Learning Context Model to define theseconstraints. In

figure 6.5, we illustrate this diagrammatically.

We have identified three principle categories of validation, these are [Melia and Pahl, 2009]:

• Validation Pre-requisites - This type of validation does not check for instructional

119

O C L C o n s t r a i n t s

C o u r s e w a r e M o d e l ’ s
M e t a m o d e l

C o u r s e w a r e M o d e l

i n s t a n c e - o f

d e f i n e d - o n

m u s t - b e - t r u e - f o r

Figure 6.5: Using OCL to define constraints on a metamodel that must be true for models
that conform to that metamodel

features in the CAVIAr models, but checks that a minimum amount of data is avail-

able in the models to allow for validation. Validation pre-requisites do not address

any of the courseware construction concerns covered in section 4.3. The validation

pre-requisites allow the course creator to have greater confidence in validation, as it

guarantees that all data needed for validation is available.

• Courseware Model Validation - validation based on the courseware design repre-

sented in the CAVIAr Courseware Model and it related Learning Resource Model.

This type of validation examines the LOs used in the courseware, and how thecourse

LOs are related to each other and grouped together into topics. Courseware Model

validation is concerned with the following courseware construction concerns:

– Structure and Sequencing - Validates the courseware structural integrity.

– Learning Content in Courseware - Checks what content is in courseware, where

it is in courseware and how it is used.

– Pedagogical Strategy Used - Used to validate the pedagogical strategy such as

the implementation of an instructional design theory.

• Learning Context Validation - This type of validation makes extensive use ofthe

CAVIAr learning context definition (see section 5.4), by comparing the Courseware

Model to the Learning Context Model. Learning context validation is concerned with

the following courseware construction concerns:

120

– Course Scope - Ensures that all learning goals can be reached in courseware and

that the courseware considers the learner’s assumed initial knowledge.

– Structure and Sequencing - Concerned with conceptual sequencing defined in

the Learning Context Model.

Each of the constraint categories can be further classified as outlined in figure 6.6. We

will examine each category in detail as follows:

• Section 6.4 describes how validation pre-requisites can be defined using OCL.

• Section 6.5 examines the courseware model validation category and outlines how to

define these types of constraints using OCL.

• Section 6.6 looks in detail at courseware validation that is based on the Learning

Context Model and how these can be defined in OCL.

C o u r s e w a r e v a l i d a t i o n

C o u r s e w a r e v a l i d a t i o n
p r e - r e q u i s i t e s

C o u r s e w a r e m o d e l
v a l i d a t i o n

L e a r n i n g c o n t e x t
v a l i d a t i o n

L O m e t a d a t a
v a l i d a t i o n

C o u r s e w a r e a t t r i b u t e
v a l i d a t i o n

C o u r s e w a r e m o d e l
i n t e g r i t y b a s e d o n
l e a r n i n g c o n t e n t

D o m a i n m o d e l
c o n s t r a i n t s

L e a r n i n g c o n t e x t
c o n s t r a i n t s

C o u r s e w a r e
a d a p t i v i t y

c o n s t r a i n t s

D i rec t a t t r i bu te
v a l i d a t i o n

C o n c e p t u a l
p r e - r e q u i s i t e

c o n s t r a i n t s

L e a r n e r s t e r e o t y p e
c o n s t r a i n t s

D e r i v e d a t t r i b u t e
v a l i d a t i o n

L O
o r d e r i n g

N e c e s s a r y L O s
c o n t a i n e d i n
c o u r s e w a r e

Figure 6.6: Classification of CAVIAr validation constraints

6.4 Courseware Validation Pre-requisites

The instructional designer programmer sets validation pre-requisites as constraints on the

CAVIAr model that must be true for validation to take place. The main reason behind

validation pre-requisites is to ensure that the data required for validation is present in the

CAVIAr models.

121

Much of CAVIAr validation requires specific LO metadata in order to accurately deter-

mine the validity of courseware. LOs used in the courseware must be annotated with certain

metadata for the course creator to be confident in validation. The course creator can specify

what metadata must be present in the CAVIAr data models in order for validation to go

ahead.

An example of this type of rule is outlined in listing 6.4 where the course creator outlines

that Metadataclasses in a Courseware Model must be fully annotated with educational

metadata (i.e. an educational metadata instance exists and all educational metadata types

do not equal null).

Listing 6.4: Courseware element integrity rule ensuring all LOs have educational metadata

Contex t Metadata

inv m e t a d a t am u s t h a v e e d u c a t i o n a l : ! s e l f . e d u c a t i o n a l . i sO c l U nde f i ned () and

s e l f . e d u c a t i o n a l . i n t e r a c t i o n T y p e<> n u l l and

s e l f . e d u c a t i o n a l . i n t e r a c t i v i t y L e v e l<> n u l l and

s e l f . e d u c a t i o n a l . s e m a n t i c D e n s i t y<> n u l l

6.5 Courseware Model Validation

In CAVIAr, the Courseware Model defines the structure of courseware using courseware

topics. ATopicsequencing strategy can be specified by stating that one topic must be se-

quenced after another coursewareTopicusing theTopicRelationship - SEQUENCEDAFTER.

Learning resources are conceptually contained in topics. Coursewarepersonalisation is de-

termined by specifying guard conditions on courseware topics, known asEntryLearnercon-

ditions. For a learner to enter a given topic theEntryLearnercondition must be true for that

learner.

Courseware model validation looks to validate the Courseware Model in isolation of the

learning context. Validation based solely on the Courseware Model lends itself to two types

of validation:

• Courseware Attribute Validation - This type of validation validates a courseware at-

tribute against an externally defined value.

122

• Courseware Model Integrity Based on Courseware Learning Content- Validates Course-

ware Model, ensuring it is structured correctly for the learning content itcontains.

6.5.1 Courseware Attribute Validation

This is the simplest type of validation the course creator can define. It involves comparing an

attribute of the Courseware Model with an external value, or deriving a value from a defined

set of courseware attributes and comparing that to some external value. The external value

is an alphanumeric value. The comparison tests the relation between that external value and

the one from the Courseware Model using a relational operator.

Here, we will outline a variety of simple instructional constraint rules that the course

creator can use to validate the courseware. Constraints are defined using some simple ex-

ternal requirement that is compared with an attribute from the LO’s metadata orcompared

with a derived value based on a grouping of LOs such as that found in a coursewareTopic.

6.5.1.1 Defining Validation Rules

To define this type of rule the course creator must identify the CAVIAr context class that

the OCL invariant will be defined on. The course creator then defines theinstructional

constraint by comparing a courseware value with an external comparisonvalue. To define

the courseware value the course creator either specifies an attribute of the context class

or defines a collection using the context class’s associations and derives a value from the

collection defined. To derive a courseware value from a collection, the course creator can

use one of the OCL collection operations (see section 2.4.1.8).

If the courseware value and the external value are numeric, a comparison is done using a

relational operator. If on the other hand the values are strings only the equals and not equals

relational operators are valid.

6.5.1.2 Validation of Individual Courseware Model Element Attributes

Defining constraints on individual Courseware Model elements is done byspecifying con-

straints on the courseware and/or Learning Resource Model, constraining the attributes al-

123

lowed in these models.

To demonstrate the validation of individual elements of constructed courseware we de-

fine an example constraint. In this example we constrain what LOs can be used in the

courseware by specifying a maximum duration time for LOs used in courseware. This con-

straint is defined in listing 6.5. This type of rule might be used in an environmentwhere the

learner’s time is an expensive resource.

In our example case, we wish to limit the duration of each LO in the CoursewareModel

to thirty minutes. In order to evaluate this the duration of each LO must be evaluated

ensuring its duration time is below the maximum specified time. The duration of each LO

can be found in the LO’s technical metadata. In listing 6.5, the rule’s contextis theTechnical

class in the Learning Resource Model. The invariant specifies that instances of theTechnical

metamodel class must have aduration(attribute ofTechnicalclass) of less than thirty.

Listing 6.5: OCL rule which specifies LOs in CAVIAr cannot be longer than thirty minutes

in duration

c o n t e x t T e c h n i c a l

i nv L O v i o l a t e m a x d u r a t i o n t i m e : d u r a t i o n< 30

6.5.1.3 Validation of Derived Courseware Attributes

Data can also be derived from the Courseware Model. This data can be used to validate

aspects of courseware. To do this, the course creator queries a set of CAVIAr Courseware

Model elements and derives some data from it. Using OCL, the course creator can specify

constraints on this derived data from the Courseware Model. To demonstrate this we outline

an example that uses OCL to derive the duration of courseware as a wholeand compares

this against some maximum courseware time value. In this example, the LO durationvalues

are used to calculate the duration of the courseware as a whole. This involves specifying

how to evaluate the time of courseware topics and then specifying a courseware invariant

that calculates the sum of all topic times in the courseware. This value is then compared

to the maximum time value that a courseware can take and ensures courseware does not

exceed it.

124

In listing 6.6, the course creator firstly defines the topic operationgetTopicTime()to

calculate the duration of coursewareTopics. The course creator must define this as it is not

one of the helper operations defined in table 6.2. This demonstrates how the course creator

can extend the operations we have defined and define their own helper operation.

ThegetTopicTime()operation is defined with a context ofTopicand recursively traverses

contained topics. A topic’s time is calculated as the sum of the LOs associated withthat

Topicand the duration of its contained Topics. The invariantmaxcoursewaretime exceeded

is then defined in listing 6.6, which uses thegetTopicTime()operation to get the duration

of each of the topics associated with theCoursewareinstance. The sum of the duration

attribute of each topic is then compared with the maximum courseware duration, which in

this case is one thousand (minutes).

Listing 6.6: OCL constraint that evaluates the courseware time from its contained LOs and

specifies a maximum courseware time of 1000 minutes

Contex t Topic

de f : ge tTop icT ime () : I n t e g e r =

s e l f . r e s o u r c e s−>s e l e c t (oc l I sOfType (LO))

−> i t e r a t e (i ; r e s : I n t e g e r =0| r e s = r e s + i . oclAsType (LO) . me tada ta . t e c h n i c a l . d u r a t i o n)

+ s e l f . c o n t a i n e d T o p i c s ()−> i t e r a t e (j ; a : I n t e g e r =0|a= a+ j . ge tTop icT ime ())

Con tex t Courseware

inv max cou rsewaret ime exceeded :

s e l f . t o p i c s−>i t e r a t e (i ; r e s : I n t e g e r =0| r e s = r e s + i . ge tTop icT ime ())< 1000

This type of courseware validation rule can also be used to validate simple elements

of the courseware structure, where the courseware structural feature can be resolved to a

simple data type. An example of such a validation constraint might be enforcinga minimum

amount of LOs contained by each courseware topic. In listing 6.7, we specify that each topic

in the courseware must have at least ten learning objects contained in it.

Listing 6.7: OCL invariant specifying a minimum number of LOs in a coursewaretopic

c o n t e x t Topic

inv m i n L O s i n t o p i c : s e l f . r e s o u r c e s

−>s e l e c t (oc l I sOfType (LO))−>s i z e () > 10

125

6.5.2 Courseware Integrity based on Courseware’s Learning Content

Here, we check that the courseware is structured correctly for the learning content it con-

tains. An example of such validation criterium is to ensure that all courseware learning

resources that are referenced by a LO contained in the courseware are also covered by some

topic in the courseware. More complex integrity checks, check the sequencing of learning

resources that reference each other, ensuring that the delivery sequence in the courseware

corresponds to how the learning resources are reference each other.

6.5.2.1 Necessary Learning Objects contained in Courseware

In listing 6.8 we have outlined an invariant that is deemed valid if all resourcesreferenced

by resources in the courseware are also contained somewhere in the courseware. In defining

this rule the course creator defines how to get a set of all the resourcesthat are needed in the

courseware (i.e. those referenced by a LO in the courseware). This isachieved by defining

the local variableneededResources. This variable is defined by querying each of the LOs in

the courseware to see if it references anotherResource, if it does the referencedResource

is added to the result set. When all resources have been evaluated the result set is returned.

The invariant,all referencedLOs in coursewareis valid if by subtracting the LOs covered

in the courseware results in an empty set.

Listing 6.8: OCL ensuring that referenced LOs are in courseware

Contex t Courseware

inv a l l r e f e r e n c e dL O s i n c o u r s e w a r e :

l e t neededResources : Se t (Resource)=

ge tCou rsewareResou rces()−> s e l e c t (oc l I sTypeOf (LO))

−> i t e r a t e (r : Resource ; l o s : Se t (LO)= Se t{}| l os−>un ion (r . oclAsType (LO)))

−> i t e r a t e (y :LO; a : Se t (R e l a t i o n)= Se t{}| a−>un ion (y . me tada ta . r e l a t i o n s))

−> i t e r a t e (x : R e l a t i o n ; r e s : Se t (Resource)= Se t{}| res−>un ion (x . r e f e r e n c e d R e s o u r c e))

i n

s e l f . neededResources− s e l f . ge tCou rsewareResou rces () = Se t{}

6.5.2.2 Relationships between Learning Objects are Respected in Courseware

The constraint rule in listing 6.9 can be further refined by checking the semantics of the rela-

tionship between learning resources in the courseware. For example, should the relationship

126

be of typeRelationKind::BASEDON, such thatLOb is based onLOa, the instructional de-

signer programmer can ensure thatLOa is sequenced first. This is done by defining an OCL

constraint that specifies there must be aSEQUENCEDAFTERtopic relationship between

the topic that containsLOa andLOb, stating that the topic containingLOa is sequenced

first.

Listing 6.9: OCL ensuring that referenced LOs are in courseware

Contex t Topic

inv L O b a s e d o n r e f e r e n c e r e s p e c t e d : r e s o u r c e s−>s e l e c t (oc l I sTypeOf (LO))

−> i t e r a t e (r : Resource ; l o s : Se t (LO)= Se t{}| l os−>un ion (r . oclAsType (LO)))

−> i t e r a t e (y :LO; a : Se t (Resource)= Se t{}| a

−>un ion (y . me tada ta . r e l a t i o n s−>s e l e c t (k ind = R e l a t i o n K i n d : : BASEDON))))

−

s e l f . s e q u e n c e d A f t e r T o p i c s ()

−> i t e r a t e (t : Topic ; sLos : Se t (Resource)= Se t{}|sLos−>un ion (t . r e s o u r c e s))

= Se t{}

To define this type of rule, the course creator builds up two sets describingthe two

aspects of the courseware, which are to be compared. In this case, the first set defines the

learning resources that the context topic’s learning resources are based on and the second

set defines all the learning resources of the topics sequenced after thecontext topic. A

set operation is then used to compare the sets. In this case we specify that the difference

between the learning resources sequenced after the context topic and the learning resources

that the context topic learning resources are based on must result in an empty set.

This type of rule can also be used to ensure that specific types of LOs aresequenced

in a particular way when teaching a give concept. This allows for the validation of intra-

conceptual sequencing patterns, such as planning sheets defined by Gagńe et al., which is

outlined in detail in section 2.2.2.

6.6 Learning Context Validation

The Learning Context Model, covered in detail in section 5.4, defines courseware learner

stereotypes and also conceptual sequencing constraints, both of whichare defined in terms

of the Domain Model. The learner stereotypes are defined in terms of their conceptual learn-

127

ing goals and presumed knowledge. In this section, we examine the relationship between

the learning context definition and the courseware developed. Our aim here is to define con-

straints on the Courseware Model in terms of the learning context definition.This ensures

that courseware adheres to the course scope and conceptual sequencing requirements stated

in the Learning Context Model.

In order to validate the courseware against the course requirements defined in the Learn-

ing Context Model, the learning context must be defined in the context of theCourseware

Model. We will outline how a relationship between the Learning Context Modeland the

Courseware Model can be established allowing the course creator to define an interpretation

of the learning context. This is done using OCL.

Here, we define the three types of instructional constraints that are defined using the

learning context:

• Domain Model Constraints - Instructional constraints using the Domain Modelonly.

• Learning Context Constraints - Instructional constraints using the overall learning

context including the Domain Model and the learner stereotype information in CAVIAr.

• Courseware adaptivity constraints - These constraints ensure that personalisation used

in the courseware is instructionally valid.

6.6.1 Domain Model Constraints

The Courseware Model is associated with a Domain Model through LO metadata. Each

LO can be classified to one or more Domain Model concepts. This associationcan be used

to examine the Courseware Model structure in the context of the Domain Model structure.

Validation constraints can then be defined based on a comparison between the Domain

Model and the Courseware Model. Here, we will look at how OCL can be used to compare

a Courseware Model with its related Domain Model to determine the courseware’s validity.

Conceptual relationships in a Domain Model define how two concepts are related to

each other. These relationships can be used to derive instructional design rules that can

128

then be validated against constructed courseware. For example the DomainModel’s NAR-

ROWERconcept relationship could be used to define an implicit sequencing constraint be-

tween courseware topics that have LOs, which reference the relationship’s sourceconcept

and LOs, which reference the relationship’stargetconcept.

The narrower conceptual relationship is used in the instructional constraint defined in

listing 6.10. The constraint specifies that topics covering more specialised (narrower) con-

cepts must be sequenced after topics covering more abstract (broader) concepts.

Listing 6.10: OCL constraint using conceptual relationship semantics to define an instruc-

tional constraint where all topics covering broader concepts are sequenced

before those covering more specialised concepts

Contex t Topic

inv : s e l f . ge tTop i cConcep t s ()

−> i t e r a t e (x : Concept ; a : Se t (Concept)= Se t{}| a−>un ion (x . b r o a d e r ()))

− s e l f . s e q u e n c e d A f t e r T o p i c s ()

−> i t e r a t e (y : Topic ; b : Se t (Concept)= Se t{}| b−>un ion (y . ge tTop i cConcep t s ()))

= Se t{}−−empty s e t

To formulate this type of rule the course creator creates two sets to compare,one set

based on a Domain Model traversal, using the inverse of theNARROWERconcept relation-

ship (set A), and one based on a Courseware Model traversal usingtheSEQUENCEDAFTER

topic relationship (set B). The two sets are compared using the differenceOCL collection

operator which should result in an empty set,A − B = ∅. This verifies that all concepts

broader than the concept(s) covered by the context topic are coveredbefore the context top-

ics. In listing 6.10, these two sets are defined and compared using an invariant which is

valid if the difference operation results in an empty set.

6.6.2 Learner Context Constraints

Here we examine the two types of constraints that can be defined using the Learning Context

Model, these are:

• Conceptual Pre-requisite Constraints - Conceptual sequencing constraints on the Do-

main Model. Here we assume one common Domain Model for all LO conceptual

annotations in courseware.

129

• Learner Stereotype Constraints - The course creator can use a learner stereotype to

define learning goals and the presumed knowledge for a learner grouping. This infor-

mation can be used to ensure that the needs of a learner stereotype grouping are met

by courseware.

6.6.2.1 Conceptual Pre-requisite Constraints

A seemingly obvious choice for checking pre-requisite constraints on courseware topics

would be to use the OCL pre- and post-condition constructs (see section 2.4.1.5). After

investigating the use of OCL pre- and post-conditions we found that the semantics of these

OCL constructs were not appropriate for checking conceptual pre-requisite constraints. The

pre-conditions and post-conditions in OCL are designed to check for a particular state prior

to and after executing an operation at runtime. To explain this we consider theOCL pre-

conditions and post-conditions in terms of the OMG modelling layers (see section2.3.1),

where runtime is defined as the M0 modelling layer. M0 is the only layer an operation pre-

and post-condition can be checked as operation execution is a runtime event. Pre- and post-

conditions are therefore defined at the M1 modelling layer. Courseware validation checks

the courseware structure at the M1 modelling layer, and is defined at the M2modelling

layer, therefore OCL pre-conditions and post-conditions cannot be used to define conceptual

pre-requisite constraints specified in the CAVIAr Learning Context Model. To validate the

M1 modelling layer OCL constraints are defined at the M2 modelling layer - the CAVIAr

metamodel. OCL invariants use the data from the Learning Context Model to define what

is a valid and invalid courseware structure. When courseware is defined, an OCL checker

can be used to check that the constraints imposed by the Learning Context Model on the

Courseware Model are satisfied by defining OCL invariants based around the sequencing of

topics and the conceptual pre-requisite relationship defined as part of the Learning Context

Model. The use of the “invariant” type of OCL constraint also limits the OCL diversity used

in formulating the CAVIAr Validation Model. The CAVIAr Validation Model is therefore

constructed in a way where all constraints are defined using a uniform mechanism. This

limits the learning curve the instructional designer programmer is faced with when defining

130

a Validation Model and also limits the diversity that CAVIAr tool support wouldhave to

handle.

The first invariant we define builds on the definition of thegetTopicConcepts()operation

of theTopicclass, defined in table 6.2. This invariant checks that if there is a pre-requisite

relationship between two concepts where conceptcpre is the pre-requisite of conceptc, then

cpre will be covered in the courseware before conceptc. We have defined this constraint as

an OCL invariant in listing 6.11.

Listing 6.11: OCL to ensure that pre-requisite concepts are always sequenced before the

topic which requires it

c o n t e x t Topic

inv c o n c e p t u a l p r e r e q u i s i t e r u l e : s e l f . g e t A l l T o p i c C o n c e p t s ()

−> i t e r a t e (x : Concept ; a : Se t (Concept)= Se t{}| a−>un ion (x . p r e r e q u i s i t e (0 . 5 ,t rue)))

− s e l f . s e q u e n c e d A f t e r T o p i c s ()

−> i t e r a t e (y : Topic ; b : Se t (Concept)= Se t{}| b−>un ion (y . c o n c e p t s))

= Se t{}

In this constraint (listing 6.11) theTopic class is defined as the invariant context, as

each of the topics in the courseware must be checked against this constraint. The course

creator defines two sets, the first containing all the pre-requisite concepts of the concepts

covered by the context topic, set P, and the second set containing the concepts that will def-

initely be covered prior to the learner getting to the context topic, set C. The pre-requisite

constraints set is defined as any conceptual pre-requiste relationship with a knowledge type

VERBALINFORMATIONor INTELLECTUALSKILLSand a knowledge level of greater

than 0.5 (see table 6.1 for details on theprerequisiteOCL operation). The second set is

constructed by getting the concepts covered by LOs at topics that are related to the context

topic through theSEQUENCEDAFTERrelationship. TheSEQUENCEDAFTERrelation-

ship guarantees that the target topic will be sequenced after the source topic. The difference

between these two sets is then sought using the OCL difference operator,which must re-

sult in an empty set (i.e. there are no concepts which are pre-requisite concepts and not

covered by topics sequenced before the topic in question,P − C = ∅). The rule in list-

ing 6.11 illustrates how a basic conceptual pre-requisite constraint can bedefined based on

the Learning Context Model. This constraint could be extended to consider, for example,

131

transitive sequencing relationships in the courseware or Learning Context Model.

The constraint in listing 6.11 allows us to check the sequencing of concepts covered

in courseware ensuring that pre-requisite knowledge is sequenced first. This rule does not

take into account a learner’s knowledge prior to taking the courseware (defined here as set

L). For example if the set resulting from the difference operation resulted inone concept,

c1, wherec1 ∈ P i.e. the concept is a pre-requisite concept, but this concept is presumed

knowledge of a particular learner stereotype taking the courseware. This courseware should

still be deemed valid for that learner stereotype as the concept, although not covered prior

to the topic that needs it, is knowledge the learner already has.

In listing 6.12 a generalistic approach to dealing with learner pre-requisite knowledge

is taken, as follows:(P − C) − L = ∅. The conceptual pre-requisite constraint violation is

sought first as in listing 6.11, then any violating concepts are compared against the common

assumed knowledge for all learner stereotypes to take this courseware.Only when there are

still outstanding concepts will the invariantconceptualprerequisiterule in listing 6.12 be

flagged as invalid.

Listing 6.12: OCL ensuring conceptual pre-requisites are sequenced before topics that re-

quire them and also that assumed learner knowledge is acknowledged

Contex t CAVIAr

inv c o n c e p t u a l p r e r e q u i s i t e r u l e : s e l f . cou rseware . ge tCou rsewareTop i cs ()

−>f o r A l l (

(ge tTop i cConcep t s()−> i t e r a t e (x : Concept ; a : Se t (Concept)= Se t{}|a−>un ion (x . p r e r e q u i s i t e (0 . 5 ,t rue)))

−s e q u e n c e d A f t e r T o p i c s()−> i t e r a t e (y : Topic ; b : Se t (Concept)= Se t{}| b−>un ion (y . c o n c e p t s))

−s e l f . l e a r n i n g C o n t e x t . l s−>

i t e r a t e (x : L e a r n e r S t e r e o t y p e ;

a : Se t (Concept)= s e l f . l e a r n i n g C o n t e x t . l s−>f i r s t () . c o n s t r a i n t s

−>s e l e c t (oc l I sOfType (PresumedKnowledge))

−> i t e r a t e (i ; r e s : Se t (Concept)= Se t{}| res−>i n c l u d i n g (i . competency . c))|

x . c o n s t r a i n t s−>s e l e c t (oc l I sOfType (PresumedKnowledge))

−> i t e r a t e (j ; r e s 2 : Se t (Concept)= Se t{}| res2−>i n c l u d i n g (j . competency . c))

−>i n t e r s e c t i o n (a) = Se t{}

)

To construct the invariant in listing 6.12 the course creator must change thecontext from

Topic to CAVIAr, as the learner stereotypes cannot be navigated to from aTopic context.

The constraint is defined to traverse eachTopic and query each of them for pre-requisite

132

Conceptsthat are not covered by topics sequenced before it. If pre-requisite concepts are

found that are not covered by the topics sequenced before the current topic, the invariant

compares these concepts with the presumed learner conceptual knowledge, derived as the

set of concepts that all learner stereotypes are assumed to know (intersection of all presumed

knowledge concepts). If any pre-requisite concepts are not covered in a previous topic and

not in the set of presumed learner knowledge the invariant is not satisfied.

6.6.2.2 Validating Learner Stereotype Course Goals

The CAVIAr learner stereotype construct is based on two forms of learner model defini-

tions, the overlay learner model and the differential learner model [Kay,2000]. Kay defines

differential modelling as representing a subset of the domain knowledge, and it is only

this subset that a student model will deal with. Differential learner modellingis defined in

CAVIAr using the learner stereotype goal construct. The course creator must ensure that

all the learning goals, defined for a given courseware, can be achieved by all learners. In

the OCL constraint in listing 6.13, we have outlined an invariant that ensuresthat all goal

concepts for all learners are covered somewhere in the courseware.

Listing 6.13: OCL invariant ensuring that the union of all learner stereotype goal concepts

are covered in the courseware

Contex t CAVIAr

inv a l l l e a r n e r g o a l s c o v e r e d : s e l f . l e a r n i n g C o n t e x t . l s−>

i t e r a t e (x : L e a r n e r S t e r e o t y p e ;

a : Se t (Concept)= Se t{} | x . c o n s t r a i n t s−>

s e l e c t (oc l I sOfType (Goal))

−> i t e r a t e (i : Goal ; r e s : Se t (Concept)= Se t{}| i . competency . c)−>un ion (a))

− s e l f . ge tCou rsewareTop i cs ()

−> i t e r a t e (j ; r e s 2 : Se t (Concept)= Se t{}| res2−>un ion (j . ge tTop i cConcep t s ()))

= Se t{}

The OCL rule, in listing 6.13, firstly constructs a set containing all the goal concepts

for all the learner stereotypes. The invariant in listing 6.13 does this the sameway as the

invariant in listing 6.12 constructs a set of the common pre-requisite concepts. In this case

the invariant iterates through each of the learner stereotypes and adds any goal concepts

133

found to a set, setG. This set is then returned and compared with the set of all concepts

covered in the courseware, setC. If there are concepts that are goal concepts and not one

of the concepts covered by the courseware the invariant is invalid, i.e. theinvariant states

G − C = ∅ must be true.

6.6.3 Validating Courseware Adaptivity

As outlined in section 5.6, CAVIAr provides for courseware adaptivity byallowing the

course creator to specify an entry constraint on Courseware Modeltopicsin the courseware,

where the entry constraint is specified as a learner constraint, learnersthat satisfy the entry

constraint may enter the coursewaretopic.

Courseware validation can be used to ensure that the courseware adapts to a variety of

different types of learners in a certain way. For example, validation can check that each

topic has supplementary material for learners who are struggling with a concept covered in

the courseware. In order to define this OCL constraint we must define what a “struggling

learner” is, and what “supplementary support” means. For the purposes of this work we

define a “struggling learner” as a learner who has taken a coursewaretopic that covers some

concept and is deemed to have a knowledge level of less than or equal to 0.3 in that concept.

We define “supplementary support” for this learner as the provision of additional LOs that

cover the said concept and that have a low or very low semantic density, which is delivered

after the main topic that is designed to teach the said concept to the learner.

Listing 6.14: OCL invariant insuring the existence of support material for learners strug-

gling with a concept covered in a topic

Contex t Topic

inv s t r u g g l i n g l e a r n e r s u p p o r t e d :

l e t sameConceptTopic : Topic = s e l f . s e q u e n c e d A f t e r T o p i c s()

−>s e l e c t (ge tTop i cConcep t () = s e l f . ge tTop i cConcep t ())−> f i r s t ()

i n

s e l f . sameConceptTopic . e n t r y C o n s t r a i n t . lessThanCompetency . l e v e l <= 0 .3

and

sameConceptTopic . r e s o u r c e s

−>s e l e c t (oc l I sOfType (LO))−> f o r A l l (e d u c a t i o n a l . Seman t i cDens i t y< Sca l e : :MEDIUM)

To ensure that this type of adaptivity is provided the course creator needs to define a

134

constraint to check for the existence of two topics, both covering the same concept and are

also sequenced after one another, e.g.t2 sequenced aftert1. t1 has no entry requirements,

while t2 is only made available to learners who are struggling on the topic concept(s),

where the topic concept(s) is the concept(s) covered by all LOs associated with a given

topic, defined in thegetTopicConcepts()operation in table 6.2. This will ensure that there is

supplementary material made available for each concept, covered in the courseware where a

learner is struggling with that concept. We have defined this as an OCL constraint in listing

6.14.

6.7 Chapter Conclusion

This chapter has illustrated a constraint-based approach to coursewarevalidation. Con-

straints are defined in OCL by constraining the allowable CAVIAr Courseware Model and

Learning Resource Model structures. This type of validation is focusedon the composi-

tional structure of the Courseware Model, rather than its runtime behaviour.

We outlined a classification system for the different types of validation that CAVIAr

lends itself to. These were:

• Validation Prerequisites - Used to ensure the data needed for validation is available in

the CAVIAr models.

• Validation on Courseware Model Only - Validates Courseware Model elements and

data derived from the Courseware Model. This type of validation does not use any of

the data in the Learning Context Model.

• Validation Using the Learning Context Model - Validates courseware usingthe course-

ware construction concerns defined in the Learning Context Model.

The chapter also looked at the pragmatics of using a constraint language that is designed

for software engineers in courseware validation. We accept that only very specialised course

creators will be able to define a validation model using OCL. Therefore in aneffort to make

Validation Model definition more accessible to the majority of course creators we have

135

attempted to raise the level of abstraction at which the course creator defines the Validation

Model at. To do this we applied two approaches, OCL helper operations and model-driven

OCL generation, in sections 6.2.1 and 6.2.2 respectively. OCL helper operations provide the

course creator with OCL functions to encapsulate the most common and/or complex OCL

used in defining a CAVIAr Validation Model. The course creator defines the Validation

Model using these CAVIAr-specific helper operations. Model-drivenOCL generation is

a MDE approach to defining a CAVIAr Validation Model. The course creator defines the

CAVIAr Validation Model using a Validation Model DSML. This DSML is then used to

generate the Validation Model OCL.

In the next chapter we will outline a validation process to build up the CAVIAr models

and validate courseware. In chapter 8, we will show how OCL validation, as outlined in

this chapter, can integrated into a courseware construction software tool.Our validation

approach is evaluated in chapter 9.

136

Chapter 7

Courseware Validation Process and

Activities

7.1 Introduction

In this chapter we present the courseware validation process and its activities. The chap-

ter demonstrates how one goes about validating courseware in a model-based environment.

The main aim of the courseware validation process is to provide a structuredapproach to the

course creator to validate constructed courseware using CAVIAr. To enhance the reader’s

understanding of what is involved in each validation activity, we will exemplifyeach activity

in the validation process using an example case-study course - “Introduction to Databases”.

The “Introduction to Databases” course is based on a course delivered in Dublin City Uni-

versity (DCU). The learning goals of this course are to teach the basics ofdatabase design

to computing undergraduates. The experience reported from the examplecase-study would

be mirrored in any other well-defined domains. We anticipate our validation approach to

be generally applicable to technical subjects, such as science and engineering, and also

structured subjects such as language learning.

The chapter begins by defining the requirements for the case-study course, in section

7.2. Section 7.3 then presents an overview of the CAVIAr validation process. Following

this overview, we will examine each of the activities in the courseware validation process in

137

detail with section 7.4 describing how a Domain Model is determined, section 7.5 illustrates

how to define a Learning Context Model, section 7.6 shows how to determine aValidation

Model for courseware validation and section 7.7 details how a packaged courseware defini-

tion is converted to a CAVIAr Courseware Model for validation. We outline what happens

at validation time in section 7.8 and after validation is complete in section 7.9.

In each section that covers a courseware validation activity we outline the principles of

that activity, specifying what the activity aims to achieve and how. We also exemplify the

validation activity principles using the case-study course. We conclude thischapter with a

summary of the validation process in section 7.10.

7.2 Example Case-Study Course Specification

In our example case-study, the course creator must create a course explaining the elementary

concepts of database theory and design. The course descriptor we used for this is DCU

module CA218 - “Introduction to Databases”1.

The course accreditation body - Dublin City University (DCU), has defined a module

descriptor. The module descriptor defines the learning goals of the course and any other

pedagogical constraints, such as the presumed learner knowledge before starting the course

as well as learner assessment requirements.

According to the course descriptor the module aims are described as:

“To provide students with an introduction to and an overview of database sys-

tems including database design, Entity Relationship data modelling, the rela-

tional model of data and SQL, as well as an overview of some database prod-

ucts.”

The learning outcomes as defined in course descriptor are:

“As a result of this course, students will be in a position to design and imple-

ment a database for real world application, covering all stages of the [database

1http://www.dcu.ie/registry/module_contents.php?function=2&subcode=
CA218

138

design] process from conceptual design and layout through to writing SQL for

transactions. Students will also be very familiar with SQL.”

The learning outcomes indicate that not only will the learner require conceptual knowl-

edge, but will also require skills knowledge, to “design and implement a database”. The

course creator must therefore ensure that the courseware providesskills knowledge for the

required skills.

The module descriptor defines the course pre-requisites as “none”. DCU defines a pre-

requisite as “any other modules offered by the University in which a student must have

achieved satisfactory performance before enrolling on a particular module”2.

Courseware developed for CA218 - Introduction to Databases must adhere to the fol-

lowing constraints:

• The total timing of all learning material is outlined as follows:

– Lecture material - 24 hours

– Tutorial material - 12 hours

– Laboratory material - 12 hours

In the example case-study the course creator has elected to specify the following additional

constraints to be applied to the courseware to improve the instructional designof the course-

ware:

• All courseware topics must contain at least one lecture LO.

• LOs used in each topic must just address the concerns of the topic (i.e. the LO must

be annotated with the concept the topic addresses).

An indicative syllabus has also been defined by a domain expert based onthe module

descriptor. The indicative syllabus is defined as an unordered collectionof course concepts.

The domain expert has specified the importance of some of the concepts listedas they are

mentioned in the module aims. These concepts are denoted using a bold font, asfollows:

2http://www.dcu.ie/registry/examinations/standards.shtml

139

• Information Systems

• Database Overview

• Storage Structures

• Entity-Relationship Data Modelling

• Relational Model of Data

• SQL

• Overview of Database Products

• The System Catalogue

• Views

• Database Design & Normalisation

• Web Databases and JDBC

The course creator has also defined the following conceptual sequencing constraints:

• Information Systems must be sequenced before all other courseware topics.

• Database Overview must be sequenced before all other courseware topics except In-

formation Systems.

• SQL must be sequenced before Views, as Views are a type of SQL.

• Database Design & Normalisation must be sequenced after the Relational Model of

Data.

The course creator also wishes to ensure that the courseware developed correctly imple-

ments Reigeluth’s Elaboration Theory [Reigeluth, 1999b].

There are two types of learner who take the databases course, ComputerApplications

Information Systems (CAIS) students and Computer Applications Software Engineering

(CASE) students. The CAIS students do not need to learn about “Storage Structures”.

140

CAIS students are also guaranteed to have done a module in Information Systems in year

one of their qualification course.

Based on this course specification a courseware has been developed by the course cre-

ator. To verify that the courseware adheres to the course requirements, described in this sec-

tion, pre-delivery, the course creator must validate the courseware. To validate the course-

ware using CAVIAr the course creator must build up the CAVIAr models andimport the

courseware package for the CA218 courseware for validation and then perform validation.

In the following sections we will outline a validation process that can be used tovalidate

courseware.

7.3 Validation Process Overview

D e t e r m i n e d o m a i n m o d e l

D e t e r m i n e l e a r n i n g c o n t e x t
 m o d e l L o a d i n c o u r s e w a r e D e t e r m i n e v a l i d a t i o n m o d e l

V a l i d a t e

E d i t c o u r s e w a r e

[inva l id]

[va l id]

C A V I A r D e f i n i t i o n

M o d e l G e n e r a t o r s

V a l i d a t i o n E n g i n e

Figure 7.1: UML Activity Diagram of the Methodological Framework

141

Our approach to validating courseware consists of five activities. Theseactivities are

summarised in the UML activity diagram in figure 7.1. We have used UML activitydia-

grams in this chapter to communicate process flow as it is a common notation for defining a

process flow in software engineering and has a well defined metamodel [OMG, 2007]. The

process starts with the assumption that the constructed courseware is described using ei-

ther IMS LD or ADL SCORM, and LOs in the courseware are annotated using IEEE LOM

metadata. In the following sub-sections we present in detail each of the fiveactivities. The

five activities in the validation process are as follows.

• Determine the subject Domain Model for courseware.

• Determine a Learning Context Model in the context of the Domain Model.

• Determine the courseware Validation Model.

• Render the courseware definition as a CAVIAr Courseware Model.

• Validate the courseware.

The validation process is supported by the following:

• CAVIAr definition - see chapter 5.

• CAVIAr model generators - see chapter 8.

• Courseware validation engine - see chapter 6.

7.4 Determining the Domain Model

The initial step in the courseware validation methodology is to locate a definition for the

subject domain that the constructed courseware teaches. The course creator must determine

a subject domain model to use. The course creator can either define a subject domain model

from scratch or reuse an existing domain model definition, perhaps in the form of a Se-

mantic Web ontology, as in [Melia et al., 2005, Holohan et al., 2005, Jovanović et al., 2005,

Aroya et al., 2002, Yang et al., 2005]. In our work we assume that the course creator reuses

142

the subject domain model that is also used to classify LOs used by the courseware. Should

the course creator use a different domain model or define their own domainmodel for val-

idation, this would have to be mapped or merged to the “classification source” used in the

LOM classification for the LOs used in courseware [IEEE LTSC, 2002].The “classification

source” in LOM and the domain model definition are ontologies, as defined onthe ontolog-

ical spectrum in [Daconta et al., 2003]. The mapping and merging of ontologies is beyond

the scope of this thesis, more details can be found in [Gomez-Perez et al., 2004].

I d e n t i f y s u i t a b l e e x i s t i n g d o m a i n m o d e l

D e v e l o p d o m a i n m o d e l T r a n s f o r m d o m a i n m o d e l f r o m n a t i v e
n o t a t i o n t o C A V I A r n o t a t i o n

E d i t d o m a i n m o d e l t o c o n f o r m w i t h
c o u r s e c r e a t o r v i e w o f d o m a i n

[n o d o m a i n m o d e l f o u n d] [d o m a i n m o d e l f o u n d]

[c o u r s e c r e a t o r w i s h e s t o
e d i t d o m a i n m o d e l]

[n o e d i t s r e q u i r e d]

Figure 7.2: UML Activity Diagram for determining the CAVIAr Domain Model

7.4.1 Developing a Domain Model

If there is no domain model that suits the needs of the course creator, he orshe may choose

to create their own Domain Model. Tool support for defining a Domain Modelis outlined in

section 8.6.1. A common approach to defining a new domain model is to use an upper level

ontology, such as the Suggested Upper Merged Ontology (SUMO) [Niles and Pease, 2001]

or OpenCyc ontology [Lenat, 1996].

143

7.4.2 Incorporating an External Domain Model

In most instances where courseware validation takes place, the course creator will use an

existing domain model. A domain model is firstly identified and then transformed into a

CAVIAr Domain Model. Any external domain model definition can be used in CAVIAr as

long as the following conditions are met:

• The domain model has a formal metamodel or abstract syntax.

• The domain model’s metamodel can be mapped and transformed to the CAVIAr Do-

main Model metamodel.

For the domain model to be used in CAVIAr it is transformed from its native representa-

tion into a CAVIAr Domain Model. The following assumptions are made about the domain

models used in CAVIAr:

• The domain model has a taxonomy of concepts, the scope of concepts becomes more

specialised or generalised as you move up and down the taxonomy.

• The domain model is self-contained, in that the domain model does not reference any

external resources.

• There is no pedagogical information in the domain model.

• There are no circular dependencies or relationships within the domain model.

• There are no orphan concepts in the domain model.

Once the external domain model definition has been transformed to a CAVIArDomain

Model the course creator has the option of editing the Domain Model to adaptit into his or

her view of how the domain is conceptually structured.

7.4.3 Case-study

In our case-study, the course creator takes a domain model definition, defined in SKOS,

and transforms it into a CAVIAr Domain Model representation. These are simple syntax

144

transformations where a syntactical element from one notation is mapped to a syntactical

element of the other notation.

In our example case-study, the course creator chooses to use a SKOS ontology that de-

scribes the databases domain. SKOS is a common Semantic Web technology usedfor defin-

ing simple knowledge structures. We envision the Semantic Web to be one of the primary

sources of knowledge structures as common shared conceptualisation, such as those found

in ontologies, form the backbone of Semantic Web technologies [Stollberg etal., 2006].

BCNF

Normalisation

skos:broader

Database_Systems

skos:broader

Database_Architecture

skos:narrower

Information_Systems

skos:broader

DDL

SQL

skos:broader

skos:broader

Relational_Algebra

skos:isRelated

DML

skos:broader

ER_Modelling

Modelling

skos:broader

Relational_Modelling

skos:narrower

First_Normal_Form

skos:broader

Second_Normal_Form

skos:broader

Third_Normal_Form

skos:broader

Fourth_Normal_Form

skos:broader

Fifth_Normal_Form

skos:broader

Functional_Dependency

skos:isRelatedskos:isRelated skos:isRelated

skos:broader

Multivalued_Dependency

skos:isRelatedskos:isRelatedskos:isRelated

skos:broader

Relational_Calculus

skos:broader

SQL_Select

skos:broader

SQL_Views

skos:broader

Storage_Structures

skos:broader

Hashing

skos:narrower

Indexing

skos:narrower

System_Catalog

skos:isRelated

Three_Layer_Model

skos:broader

Figure 7.3: Databases domain model defined using SKOS

In figure 7.3 we outline the domain model defined for the purposes of validating the

CA218 course. This domain model provides a sufficient domain knowledgestructure re-

quired for CAVIAr courseware validation (see appendix A for SKOS XML binding).

This domain model has a central concept,DatabaseSystem. The DatabaseSystem

concept is broken into six more specialised concepts in the domain model usingthe SKOS

skos:narrowerandskos:broaderrelationship, which areinformationsystems, Normalisa-

tion, DatabaseArchitecture, StorageStructures, SQL and RelationalModelling. These

concepts are then broken down even further using the SKOSskos:narrowerrelationship

and its inverse relationship, the SKOSskos:broaderrelationship creating a taxonomy of

database concepts. The other relationship used in the domain model is the SKOS relation-

shipskos:related. This allows the representation of concepts that are related to each other

but are not broader/narrower than each other. For example, the conceptThird Normal Form

145

andFunctionalDependencyare related, as the third normal form is based on the concept of

functional dependency.

The SKOS syntax is mapped to the CAVIAr abstract syntax as defined in section 5.3.3,

creating a CAVIAr Domain Model for database systems.

7.5 Defining the Learning Context Model

After the Domain Model is determined, the Learning Context Model can be defined in

the context of the Domain Model. The Learning Context Model is defined byspecify-

ing additional modelling constructs in the context of the Domain Model. It consists of

learner stereotype definitions and pre-requisite relationships between concepts in the Do-

main Model. Each learner stereotype definition consists of the coursewaregoals and pre-

sumed knowledge of that learner stereotype. Both are defined as knowledge elements in

terms of the Domain Model concepts.

In figure 7.4 outlines the tasks involved in defining a CAVIAr Learning Context Model

using a UML Activity Diagram.

D e f i n e c o n c e p t u a l p r e r e q u i s i t e
c o n s t r a i n t s

E v a l u a t e p r e - e x i s t i n g i n s t r u c t i o n a l
c o n s t r a i n t s m o d e l

[no p re -ex i s t i ng i ns t r uc t i ona l
c o n s t r a i n t s m o d e l]

[p re -ex i s t i ng i ns t r uc t i ona l
c o n s t r a i n t s m o d e l]

[ed i t / de le te
p r e - e x i s t i n g m o d e l]

[u s e p r e - e x i s t i n g
m o d e l]

D e f i n e l e a r n e r s t e r e o t y p e s

Figure 7.4: UML Activity Diagram outlining the activities for determining the CAVIAr In-
structional Constraints Model

146

7.5.1 Defining the Conceptual Pre-requisite Constraints

After the Domain Model concepts have been defined, the course creatormay impose se-

quencing constraints on the ordering of concepts covered in the courseware. This is done

by specifying pre-requisite constraints. The course creator specifiesa pre-requisite rela-

tionship where one Domain Model concept is the source of the relationship and a different

Domain Model concept is the relationship’s target. This means that the Courseware Model

must be sequenced in such a way where the pre-requisite relationship’s target concept is

sequenced before the relationship’s source concept.

7.5.2 Defining Learner Stereotypes

In CAVIAr the course creator must define the anticipated types of learners that he or she

envisions will use the constructed courseware. Each learner stereotype is defined in terms of

its goal concepts and its presumed knowledge entering the courseware. In order to define a

learning context, the course creator must decide on what learner stereotypes he or she wishes

to define. The simplest and quickest approach to defining learner stereotypes is to define

one learner stereotype that all learners fit into. In this case the course will not discriminate

at all between learners, a “one size fits all” approach to courseware design. Although this is

the simplest to develop it does not consider the different pedagogical needs of learners who

take a course [Brusilovsky et al., 1998]. At the other extreme, a learnerstereotype can be

designed for each learner allowing for very personalised courseware validation, but is very

labour-intensive to develop. Using learner stereotypes the course creator may distinguish

between different groups of learners. For example learner stereotypes could be used to

distinguish ability levels in a group of learners, or possibly to distinguish academic and/or

professional backgrounds.

The course creator then defines learner stereotypes in CAVIAr accordingly. For each

of the learner stereotypes defined in CAVIAr the course creator must define the course goal

knowledge and presumed learner knowledge.

147

7.5.2.1 Defining the Course Goals

Course goals are defined in terms of knowledge elements, by specifying a Domain Model

concept, a knowledge level and a knowledge type required for a learning goal, for a specific

learner stereotype. When a concept is defined as a goal concept forcourseware, that Domain

Model concept is essentially tagged as a goal for a particular learner stereotype, with an

expected knowledge level and type of knowledge, as outlined in section 5.4.

The goal concepts are derived from the module specification, such as that outlined in

section 7.2. This is done by identifying the concepts that capture the learninggoals for each

learner stereotype and defining the knowledge type and level required for that concept. This

is not a trivial task and is open to much interpretation by the course creator.The course

creator must take the information supplied in the course descriptor and formulate from it

the CAVIAr knowledge elements. This is done by following the steps below:

1. Identify the key knowledge concepts in the course descriptor.

2. Identify the type of knowledge required, is the knowledge required conceptual knowl-

edge or skills knowledge or both.

3. Identify the level of the knowledge required for each knowledge concept and level.

4. Map these elements to CAVIAr knowledge elements (knowledge elements aredefined

in section 5.4).

CAVIAr also allows the course creator to specify alternative goal concepts, and to im-

port course goals from other Learning Context Models and integrate them into a given

learning context. If the course creator wishes to reuse a learning goal the course creator

simply includesthe pre-defined learning goal in the learning goal he or she is defining, us-

ing the goalPartOfRelationshipdefined in section 5.4. Should the course creator wish to

define one learning goal as an alternative to another learning goal, the goal are related via

theAltGoalgoal relationship, also defined in section 5.4.

148

7.5.2.2 Defining the Presumed Learner Stereotype Knowledge

The presumed learner stereotype knowledge allows the course creator todefine the knowl-

edge he or she expects a particular learner stereotype to have upon starting the courseware.

Again, this is done in the context of the Domain Model by specifying the concepts the

learner should know. The course creator must again define the knowledge type and level for

the presumed knowledge concepts. This involves assessing the knowledge a typical learner

in a particular stereotype will have in terms of the knowledge type and knowledge level for

a specific Domain Model concept.

Presumed knowledge is added to the CAVIAr model through a relationship between the

learner stereotype’sPresumedKnowledgeclass and aKnowledgeElementthat references

the Domain Model concept. This in effect tags the concept as presumed knowledge for a

specific learner stereotype.

7.5.3 Case-Study

Our case-study continues from section 7.4.3. Here we will exemplify the activities involved

in defining a Learning Context Model by outlining how the course creator defines a Learning

Context Model for the databases courseware.

7.5.3.1 Expressing the Case-study in terms of the CAVIAr Instructional Constraints

Model

Some instructional design constraints in the case-study course’s module descriptor, in sec-

tion 7.2, can be expressed in the CAVIAr Learning Context Model. Here,we firstly list the

constraints from the module descriptor defined in section 7.2, as an informallist. We then

define the constraints as CAVIAr learning context knowledge elements in table 7.1.

• The learner stereotypes defined for the courseware are:

– CASE - Computer Applications - Software Engineering students

– CAIS - Computer Applications - Information Systems students

149

• We can also list a number of goal concepts for CAIS and CASE learners.The goals

of the course are applied to both learner stereotypes unless otherwise stated and can

be defined as follows:

– Each element in the indicative syllabus is defined as a required mid-level con-

ceptual goal.

∗ Only CASE students require knowledge on “storage structures”.

– For concepts elicited from the module aims (bold in the indicative syllabus in

section 7.2) learners must achieve a high level of knowledge.

– The learning outcome specifies the learner must be able to “design and imple-

ment a database”. The course creator is able to identify skill concepts needed

to be able to do this and specifies these concepts as mid-level skills knowledge

goals. Theses are:

∗ ER Data Modelling

∗ Normalisation

∗ SQL - for database definition (DDL)

– The course creator recognises that SQL is not only important in the designand

definition of databases systems but also in manipulating a working database, this

too is defined as skills knowledge as the learning outcomes state that learners

must be “very familiar with SQL”, and be able to write SQL for transactions.

Therefore a high level of skills knowledge is required on the SQL concept.

• The course creator must also define the knowledge we expect the learner to enter

the courseware with. To do this the course creator simply assesses what iscovered

in the learner’s previous modules. With this in mind we have defined the following

anticipated knowledge competencies for the typical CA218 learner:

– We expect all learners to have mid-range conceptual knowledge on basic infor-

mation systems, therefore theInformationSystemsconcept is a concept which

150

all learners are expected to have a mid degree of conceptual knowledgebe-

fore taking the course. CAIS students have additional lectures inInforma-

tion Systemsin year 1, and therefore have a slightly higher conceptual knowl-

edge level in this concept.

• The following conceptual pre-requisite constraints are defined on the databases course

specification as outlined in section 7.2. It should be noted that these are conceptual

pre-requisite constraints and are defined for all learner stereotypes:

– Mid-level conceptual knowledge inInformation Systemsis a pre-requisite for

all other goal concepts.

– Mid-level conceptual knowledge inDatabase Overviewis a pre-requisite for all

courseware concepts except theInformation Systemsconcept.

– Mid-level skills knowledge inSQL is a pre-requisite for theviewsconcept, as

views are a type of SQL.

– Mid-level conceptual knowledge in theRelational Model of Dataare pre-requisites

to theDatabase Design & Normalisationconcepts.

From the requirements listed above the course creator can define the Learning Context

Model for the databases course. Table 7.1 defines all the facets of the example case study

learning context model.

7.6 Determining the Validation Model

The OCL-based CAVIAr Validation Model definition is described in chapter6. The course

creator can use the various types of constraints defined in this chapter to specify courseware

validation rules. The constraint rules outlined in chapter 6 can be aggregated to ensure the

correct application of an instructional design theory. This is to say that ensuring the correct

application of an instructional design theory can be defined as part of a CAVIAr Validation

Model using a set of instructional constraints that courseware must adhere to. In this section

151

Table 7.1: Definition of anticipated learner knowledge defined in terms of CAVIAr knowl-
edge elements

Concept Knowledge level Knowledge Type

CASE Student - Goals
SQL 0.7 skill

Normalisation 0.7 skill
Normalisation 0.7 conceptual

Data Modelling 0.5 skill
InformationSystem 0.5 conceptual

JDBC 0.5 skill
ThreeLayer Model 0.5 conceptual

DatabaseArchitecture 0.5 conceptual
StorageStructures 0.5 conceptual

CASE Student - Presumed Knowledge
InformationSystems 0.3 conceptual
CAIS Student - Goals

SQL 0.7 skill
Normalisation 0.7 skill
Normalisation 0.7 conceptual

Data Modelling 0.5 skill
InformationSystem 0.3 conceptual

JDBC 0.5 skill
ThreeLayer Model 0.5 conceptual

DatabaseArchitecture 0.5 conceptual
CAIS Student - Presumed Knowledge
InformationSystems 0.7 conceptual

we outline how a CAVIAr Validation Model is defined to ensure the correct application of

an instructional design theory in courseware.

Figure 7.5 outlines the steps involved in defining an instructional design theory in the

form of CAVIAr Validation Model constraints. These constraints can be used to ensure the

correct application of an instructional design theory in the constructed courseware. This

process begins with the course creator deciding on the instructional design theory to use

and then investigating the possibility of reusing a Validation Model that validatesthe ap-

plication of the chosen instructional design theory in courseware. If oneis found, it can

be reused (and possibly extended). This minimises the Validation Model definition effort

for the course creator. However if a Validation Model cannot be reused the course creator

must define a Validation Model. To achieve this the instructional design theoryis broken

down into instructional constraints that must be satisfied for the instructionaldesign theory

152

to be implemented correctly. To define the instructional constraints, the course creator must

identify the main principles of the instructional design theory being used. Each principle

identified must then be converted into instructional constraints that must be true for the

principle to be applied correctly in the courseware. The course creator then defines each

constraint in terms of the CAVIAr metamodel. CAVIAr constraints are formalised using the

CAVIAr constraint language, OCL.

I d e n t i f y a n i n s t r u c t i o n a l d e s i g n
t h e o r y t o u s e i n c o u r s e w a r e

C o n v e r t i n s t r u c t i o n a l p r i n c i p l e s
i n to i ns t r uc t i ona l cons t ra i n t s

E x p r e s s c u r r e n t i n s t r u c t i o n a l c o n s t r a i n t r u l e
i n t e r m s o f C A V I A r m o d e l s

D e f i n e c u r r e n t r u l e i n O C L

R e u s e i n s t r u c t i o n a l d e s i g n

[i n s t r u c t i o n a l d e s i g n v a l i d a t i o n m o d e l e x i s t s]

[i n s t r u c t i o n a l d e s i g n v a l i d a t i o n m o d e l
d o e s n o t e x i s t]

[w h i l e m o r e i n s t r u c t i o n a l
c o n s t r a i n t r u l e s
t o c o n v e r t = t r u e]

[w h i l e m o r e i n s t r u c t i o n a l
c o n s t r a i n t r u l e s t o c o n v e r t = f a l s e]

 I den t i f y i ng an I ns t r uc t i ona l
D e s i g n t h e o r y

De r i v i ng i ns t r uc t i ona l
c o n s t r a i n t s

F o r m u l a t i n g i n s t r u c t i o n a l
c o n s t r a i n t s i n O C L

D e c o m p o s e i n s t r u c t i o n a l d e s i g n
in to i ns t ruc t i ona l p r i nc i p l es

A d d c o n s t r a i n t t o C A V I A r

Figure 7.5: UML Activity Diagram detailing the definition of the CAVIAr ValidationModel

In this section, we will look in detail at the activities involved in defining the CAVIAr

Validation Model. We have divided the Validation Model definition process intothree main

parts, which we will examine in the following subsections:

• Determining the instructional design used in courseware (principally determined by

the instructional designer).

153

• Deriving informal instructional constraints from the instructional design of choice

(normally derived by the instructional designer and instructional designerprogram-

mer) and forming CAVIAr-based constraints based on the informal instructional con-

straints.

• Defining instructional constraints in OCL (principally defined by the instructional

designer programmer).

We will then look to our running case-study to exemplify the Validation Model definition

process.

7.6.1 Determining the Instructional Design

Instructional design theory defines how knowledge should be taught to alearner given a

learning scenario. The course creator defines the instructional designto ensure instruction

is as effective and efficient as possible in facilitating the learner from an initial knowledge

state to the learning goal knowledge state. A course creator may apply their own instruc-

tional design or may apply one of the many instructional design theories in the literature

[Reigeluth, 1999a, Gagné et al., 2005].

To validate the application of an instructional design theory the course creator checks if

there is a CAVIAr Validation Model that can be reused, which validates the application of

the instructional design theory that the course creator has attempted to applyin courseware.

If such a Validation Model exists the course creator can reuse this Validation Model and if

not the course creator must define his or her own Validation Model.

7.6.2 Deriving Instructional Constraints

In validating courseware, the course creator looks to confirm that an instructional design

theory has been applied correctly in courseware. To validate the courseware against an

instructional design theory, the course creator must break down the theory into instructional

constraints.

154

An instructional design theory can be defined as a set of instructional principles, as

demonstrated by Reigeluth in his outline of each instructional design theory covered in

[Reigeluth, 1999a]. For an instructional design theory to be used correctly, the course

creator must adhere to these principles. In defining the requirements of adhering to in-

structional principles the course creator can define instructional constraints based on these

principles that must be true for the correct application of the instructional design theory.

Once the instructional constraints that make up the definition of an instructional design the-

ory have been defined, the course creator specifies each constraintin terms of the CAVIAr

metamodel. The output of this step is a series of constraints defined informally interms of

the CAVIAr metamodel.

7.6.3 Formulating Instructional Constraints in OCL

At this stage the instructional design has been broken up into instructional constraints that

are defined in terms of CAVIAr. These constraints must then be used to formulate a CAVIAr

Validation Model using OCL. In chapter 6, we have described how constraints are defined.

The instructional designer programmer takes each of the constraints and defines them in

terms of the CAVIAr metamodels and expresses them formally in OCL.

7.6.4 Case-study

The Validation Model is used to define rules on the Courseware Model thatmust be adhered

to for courseware to be deemed valid. The Validation Model provides the course creator

with the facility to express rules and constraints using CAVIAr metamodel definitions.

The first step in defining the Validation Model for our case-study courseware is to estab-

lish the instructional design definition that the course creator wishes to validate courseware

against. In the case-study this is defined by establishing the instructional design theory the

course creator has attempted to implement and any other additional requirements defined

in the course criteria (section 7.2). From the course criteria we establish thefollowing

courseware instructional design requirements:

155

• The courseware must be designed as specified in Reigeluth’s ElaborationTheory.

• All courseware topics must contain a “lecture” LO.

• The LOs used in topics must focus on what that topic is covering.

• All LOs of type “lecture” must not exceed 1440 minutes (24 hours).

• All LOs of type “experiment”, “simulation”, “exercise” and “selfassessment” must

not exceed 1440 minutes (24 hours) as these are collectively the tutorial and labora-

tory material.

To define constraints for the elaboration theory, the course creator checks to see if a Val-

idation Model already exists that checks for the correct application of theelaboration theory

in courseware. If one exists it can be reused. In our case-study no such Validation Model

exists. The course creator must develop a Validation Model that ensuresthe application of

the elaboration theory in the Courseware Model.

The elaboration theory is firstly broken down into its key instructional principles, which

must be true for the theory to be applied correctly. These principles have been defined by

Reigeluth in [Reigeluth, 1999b] (principles are numbered P1-5):

• P1: Tasks, concepts and principles are arranged from simple to complex,starting with

the simplest real-world version of the task, concept or principle moving to ever more

complex versions.

• P2: Pre-requisite relationships between knowledge elements taught in the course

[Reigeluth, 1999b, p431] must be respected in course sequencing.

• P3: Teach supporting content together with the concept, principles or tasks that it is

most related to.

• P4: Group tasks, concepts and principles together with supporting content into learn-

ing episodes.

• P5: Give learners some choice as to what to “elaborate” first/next.

156

Once the instructional design has been formulated into instructional principles we can

define each as an instructional constraint that must be true for the elaboration theory to be

applied correctly. We do this as follows. Constraints are numbered C1-5. The instructional

design principle on which a given constraint is based is stated at the end ofthe constraint:

• C1: Courses must start with the simplest topics and progressively allow formore

complex or specialised topics to be delivered (P1).

• C2: When sequencing course topics pre-requisite relationships that exist between

knowledge elements must be respected (P2).

• C3: If a LO in a topic specifies a dependency on another LO(s), the otherLO(s) is

supporting content and must be available in that topic (P3).

• C4: All LOs in a given course topic (learning episode) must be focused on teaching a

common knowledge element (P4). This constraint also addresses the course criteria

that states “LOs used in each topic must address the concerns of the topic”.

• C5: The learner must be able to choose which high-level courseware topic to learn

about and when (P5).

We also add constraints for the non-elaboration theory constraints defined in the course

criteria section, section 7.2:

• C6: There must be a “lecture” LO for each part of the course.

• C7: The total duration of “lecture” LOs must not exceed 1440.

• C8: The total duration of “tutorial” and “lab” LOs must not exceed 1440.

Each constraint is then defined in terms of the CAVIAr metamodels:

• C1: Topicsmust start with the broadest topic-concept according to the CAVIAr Do-

main Model, and progressively allow the learner to learn more complex or specialised

topic-concepts. The topic-concept is defined by thegetTopicConcept()OCL opera-

tion in section 6.2.1.

157

• C2: If a topic-concept is the source of aPREREQUISITE ConceptRelationshipthere

must be aSEQUENCEDAFTER TopicRelationshipthat reflects the conceptual se-

quencing constraint.

• C3: Should a LO in a task topic be based on another LO(s), “based on” is defined

when a LO has aRelationwhereRelationKindis BASEDON, both LOs must be in

the sameTopic. TheBASEDON relationship between LOs indicates that the target

LO in the relationship is “supporting content needed” as defined in the elaboration

theory.

• C4: All LOs in a coursewareTopicmust be classified with only the topic-concept(s),

where topic-concept is defined by thegetTopicConcept()OCL operation.

• C5: In theCoursewareconstruct, there must be less than half the number of contained

SEQUENCEDAFTER TopicRelationshipsto Topics.

We also add the following constraints for non-elaboration theory constraints defined in

section 7.2, as follows:

• C6: There must be a LO with alearningResourceTypeof LECTUREin each CAVIAr

courseware topic.

• C7: The sum of the duration of allLECTURELOs in a CAVIAr Learning Resource

Model must not exceed 1440.

• C8: The sum of the duration of allEXPERIMENT, SIMULATION, EXERCISEand

SELFASSESSMENTLOs (“tutorial” and “lab” LOs) must not exceed 1440 (min-

utes).

The course creator has now specified the courseware constraints in terms of the CAVIAr

metamodels. These constraints are then converted to OCL. In listing 7.1 and 7.2, we have

taken the constraints for the databases courseware (C1-8) and defined the corresponding

OCL. The mapping from the constraint definition above to each OCL constraint is made

explicit through OCL comments.

158

Listing 7.1: Case study Validation Model - part 1

Contex t Topic

−−C1 − P r i n c i p l e s , t a s k s and c o n c e p t s must be sequenced from s imp le t o complex

inv c o u r s e w a r es e q u e n c e df r o m s i m p l e t o c o m p l e x :

s e l f . s e q u e n c e d A f t e r T o p i c s ()

−> i t e r a t e (y : Topic ; a : Se t (Concept)= Se t{}| a−>un ion (y . ge tTop i cConcep t s ()))

− ge tTop i cConcep t s()−> i t e r a t e (x : Concept ; a : Se t (Concept)= Se t{}| a

−>un ion (x . na r rower ())−>un ion (x . s i b l i n g s ())

= Se t{}

−−C2−−Concep tua l pre−r e q u i s i t e s a r e r e s p e c t e d i n t o p i c sequenc ing

inv c o n c e p t u a l p r e r e q u i s i t e sa r e r e s p e c t e d :

s e l f . g e t A l l T o p i c C o n c e p t s ()

−> i t e r a t e (x : Concept ; a : Se t (Concept)= Se t{}| a−>un ion (x . p r e r e q u i s i t e (0 . 5 ,t rue)))

− s e l f . s e q u e n c e d A f t e r T o p i c s ()

−> i t e r a t e (y : Topic ; b : Se t (Concept)= Se t{}| b−>un ion (y . c o n c e p t s))

= Se t{}

−−C3 − S u p p o r t i n g l e a r n i n g r e s o u r c e s must be a v a i l a b l e i n t h e samet o p i c

inv s u p p o r t i n g c o n t e n t a v a i l a b l e i n t o p i c :

r e s o u r c e s−>s e l e c t (oc l I sTypeOf (LO))

−> i t e r a t e (r : Resource ; l o s : Se t (LO)= Se t{}| l os−>un ion (r . oclAsType (LO)))

−> i t e r a t e (y :LO; a : Se t (Resource)= Se t{}| a

−>un ion (y . me tada ta . r e l a t i o n s−>s e l e c t (k ind = R e l a t i o n K i n d : : BASEDON))))

− s e l f . r e s o u r e s = Se t{}

−−C4 − LOs must be focused on t h e t o p i c concep t

i nv LO concep t focus :

s e l f . g e t A l l T o p i c C o n c e p t s ()− s e l f . ge tTop i cConcep t s () = Se t{}

−−C6 − Al l t a s k s must have a l e c t u r e LO

inv t a s k h a s l e c t u r e L O :

ge tA l lTop icLOs()−>

e x i s t s (e d u c a t i o n a l . l e a r n i n g R e s o u r c e T y p e = ResourceType : : LECTURE)

c o n t e x t Courseware

de f : getLOType (t ype : S t r i n g) : Se t (LO) =

s e l f . ge tCou rsewareResou rces()−> s e l e c t (oc l I sTypeOf (LO))

−> i t e r a t e (i : Resource ; r e s : Se t (LO)= Se t{}| res−>i n c l u d i n g (i−>oclAsType (LO)))

−>s e l e c t (t ype)

−−C5 − There i s on ly l i m i t e d number o f sequenc ing c o n s t r a i n t sf o r high−l e v e l t o p i c s i n cou rseware

inv l i m i t e d s e q u e n c i n gc o n s t r a i n t s i n c o u r s e w a r et o p i c s :

t o p i c s−>i t e r a t e (i ; r e s : I n t e g e r =0| r e s = r e s + i . s e q u e n c e d A f t e r T o p i c s()−>s i z e ())

< (t o p i c s−>s i z e () / 2)

−−C7 − The sum of a l l l e c t u r e s i n t h e courseware must no t exceed 24 hours

inv l e c t u r e t i m e e x c e e d e d :

s e l f . getLOType (’ L e c t u r e ’)

−> i t e r a t e (i :LO; du rs : Se t (I n t e g e r)= Se t{}|durs−>i n c l u d i n g (i . t e c h n i c a l . d u r a t i o n)

−>sum () < 1440

159

Listing 7.2: Case study Validation Model - part 2

c o n t e x t Courseware

−−C8 − The sum of t h e t u t o r i a l LOs i n t h e courseware must no t exceed 24 hours , t u t o r i a l LOs a r e d e f i n e d

as LO of t ype exper iment , e x e r c i s e , s i m u l a t i o n or s e l f a s s e ss m e n t

inv l a b o r t u t o r i a l t i m e e x c e e d e d :

l e t l o s : Se t (LO)=

s e l f . getLOType (’ expe r imen t ’)−>un ion (s e l f . getLOType (’ e x e r c i s e ’))

−>un ion (s e l f . getLOType (’ s i m u l a t i o n ’))−>un ion (s e l f . getLOType (’ s e l fa s s e s s m e n t ’))

−> i t e r a t e (i :LO; du rs : Se t (I n t e g e r)= Se t{}|durs−>i n c l u d i n g (i . t e c h n i c a l . d u r a t i o n)

−>sum () < 1440

7.7 Rendering the Courseware Definition into CAVIAr

In order for courseware to be validated in CAVIAr it must be converted into a CAVIAr

Courseware Model. In TEL courseware is described using a courseware specification such

as SCORM [ADL, 2004] or IMS LD [IMS, 2003b]. In order to integrate CAVIAr validation

with the state of the art, it is necessary to be able to translate the courseware specification

into a CAVIAr Courseware Model. In figure 7.6, we outline the steps involved in rendering

a courseware specification ready for validation. That is converting the XML representation

of a courseware definition, where a courseware is defined using a courseware specification

and a set of LO metadata descriptions, from its native representation and transforming it

into CAVIAr models.

Much of this process is automated and transparent to the course creator.Implementation

level details on how the courseware specification is transformed into CAVIAr can be found

in section 8.8. For the course creator to render a courseware specification into a CAVIAr

Courseware Model, all he or she must do is choose the correct transformation that will

transform the XML courseware specifications used into a CAVIAr Courseware Model.

7.7.1 Case-study

In our case-study, the databases courseware has been defined using the ADL SCORM 2004

specification. SCORM is described, in detail, in section 2.2.6. LOs used in the courseware

are annotated using the IEEE LOM metadata standard (described in section 2.2.3).

160

T r a n s f o r m c o u r s e w a r e s p e c i f i c a t i o n X M L s y n t a x t o a n X M L m o d e l

T r a n s f o r m X M L m o d e l t o c o u r s e w a r e
s p e c i f i c a t i o n m o d e l

T r a n s f o r m X M L m o d e l t o L O m e t a d a t a
spec i f i ca t i on

T r a n s f o r m a n d i n t e g r a t e a l l g e n e r a t e d m o d e l s i n t o
a C A V I A r m o d e l

Figure 7.6: UML Activity Diagram outlining the steps involved in loading a Courseware
Model into the validation framework

A transformation process is defined to transform the SCORM specification and LOM

standard, used for LOs in the courseware, into CAVIAr. This processis a co-ordinated

series of transformations and managed using a transformation orchestration script. The pro-

cess transforms the SCORM specification into a CAVIAr Courseware Model and the LOM

definitions into a Learning Resource Model. These CAVIAr models are then integrated

together. This process is transparent to the course creator.

7.8 Validation of Courseware

Validation of courseware takes place when the courseware and the courseware’s learning

context are modelled using CAVIAr and the courseware Validation Model has been speci-

fied. In order to validate the courseware a validation engine, in the form ofan OCL checker,

is used to check each of the Validation Model constraint rules is valid for theconstructed

courseware.

In this section, we will look at how to use OCL checker tools to allow for the validation

161

of a CAVIAr Courseware Model.

7.8.1 Validation Engine Initialisation

The validation engine must be made CAVIAr-aware, this is done by loading theCAVIAr

metamodels into the OCL checker. Constraints are then specified in terms of the CAVIAr

metamodels and loaded into the OCL checker. The CAVIAr models are then loaded into the

OCL checker, which checks that the OCL constraints defined are satisfied in the Courseware

Model if any part of the Courseware Model violates an OCL invariant, theconstraint and

courseware modelling construct is flagged and the course creator is notified.

7.8.2 Validation Outcome

Typically an OCL checker will run through each of the invariants stated in theValidation

Model and test each one against the CAVIAr model. Should an invariant be deemed invalid,

the invariant is flagged. The course creator is made aware of the failed invariants once

validation is complete and all invariants have been checked against the Courseware Model.

It is not possible to make recommendations to the course creator on corrective measures

for invalid courseware using an OCL checker. An OCL checker can only give a boolean

value, stating whether or not an invariant passed or failed. We mentioned insection 2.4 that

OCL can be used as a model query language. The model element(s) that caused a constraint

to fail can be retrieved by redefining the OCL invariant definition into a modelquery.

The burden of analysing the problems identified through validation rests with the course

creator, he or she must assess the problems in the CAVIAr model, identify theroot cause

of the problems and address them. In the majority of cases this will involve editingthe

courseware to correct the problem found. We do, however, believe itto be possible to

classify the types of courseware problems that will be found and from thisinfer possible

solutions. We investigate this in the future work section, section 10.4.

162

7.8.3 Case-study

In our case-study the course creator can now validate the databases courseware. The databases

Courseware Model is validated against the constraints defined in section 7.6.4, and also the

learning context constraints, checking that learning goals and conceptual sequencing con-

straints are satisfied.

The OCL checker used for the purposes of our case-study is the USE tool (see section

2.4.2 for details). USE provides support for defining the CAVIAr metamodels and then

defining runtime snapshots as CAVIAr metamodels instances, CAVIAr models.OCL can

be defined on the CAVIAr metamodels and then checked against the CAVIArmodels with

USE. Figure 7.7 shows a screen-shot of the USE tool, with the CAVIAr metamodels are

defined as a UML model. A CAVIAr model is then defined by specifying a system snap-

shot in USE.

Figure 7.7: CAVIAr metamodels in the USE tool

163

In our case-study a violation is identified. The course creator is notified ofthe con-

straint violation by the constraint name. In this case the course creator is notified that the

“task haslectureLO” has been violated, the OCL checker also indicates theTopic that

caused the violation.

7.9 Correcting Invalid Courseware

To correct the majority of problems found in courseware the course creator will be required

to edit the Courseware Model. Fixes will typically involve:

• The addition or removal of LOs, with certain characteristics.

• Altering the sequencing of courseware topics.

• Altering the structure of the courseware, by adding, removing, splitting or merging

topics.

• Editing the Validation Model - false positives are being given by validation engine.

7.9.1 Case-study

The CAVIAr validation violation that was identified in section 7.8.3 was caused by a Topic

that does not have a LO of type “lecture”. TheTopic in question is highlighted by the

OCL checker. To solve this problem the course creator must locate or create a LO of type

“lecture” that satisfies the learning need at the highlightedTopic and integrate it into the

topic. Alternatively, the Validation Model can be edited to allow fortopicsthat do not have

a LO of type “lecture”. Once the course creator has integrated such a LOinto the courseware

it can be revalidated.

7.10 Chapter Conclusion

In this chapter we have outlined the activities involved in validating courseware using

CAVIAr. These activities make up the CAVIAr courseware validation process. This process

164

empowers the course creator to model constructed courseware and the courseware con-

struction concerns. There are six activities in this process - determining a Domain Model,

defining the Learning Context Model, determining a Validation Model, rendering course-

ware as a CAVIAr model, validating the courseware and then fixing the problems found in

the courseware through validation.

We have illustrated the validation process using an example case-study. In our case-

study we outlined a typical course module requirements found for a university course. These

requirements were used to define CAVIAr models, which were in turn used tovalidate an

example case-study courseware. This example case-study was based on the courseware

requirements for DCU course CA218 - “Introduction to Databases”. Validation ensures that

courseware satisfies the courseware requirements outlined in the module descriptor.

We have evaluated the courseware validation activities in the validation process through

user trials that use the courseware validation activities as part of courseware construction.

We will present the details of these user trials in the evaluation chapter, chapter 9.

165

Chapter 8

CAVIAr Implementation

8.1 Introduction

In the previous three chapters we have described CAVIAr and demonstrated how it can be

used to validate courseware. In this chapter we will outline a courseware construction tool

based on the CAVIAr that allows for the construction of courseware andits subsequent val-

idation. This tool is known asManagementInfrastructure forKnowledge-basedAdaptive

E-Learning (MIKAEL). MIKAEL’s purpose is as follows:

• Proof of concept for CAVIAr validation.

• Tool-support for user trial evaluations of CAVIAr.

• Show-case how CAVIAr can be used in courseware construction.

The purpose of this chapter is to discuss a proof of concept application of CAVIAr,

which we have developed, known as MIKAEL. MIKAEL is a coursewareconstruction soft-

ware tool (and Learning Content Management System (LCMS), defined in[Pahl et al., 2007]).

The chapter looks at the implementation-specific elements involved in developingtool sup-

port based on the CAVIAr metamodels.

The chapter begins by defining a courseware construction process based on the incre-

mental definition of CAVIAr models. MIKAEL has been built to support this courseware

construction process. Section 8.3 gives an overview of the MIKAEL software architecture.

166

MIKAEL has a flexible component-based architecture. In the sections thatfollow section

8.3 we examine each MIKAEL component in detail by looking at how each component is

implemented.

8.2 CAVIAr and Courseware Construction

CAVIAr was designed as a set of models to capture courseware construction concerns,

which are then used to validate courseware against a constraints model. CAVIAr can also

be used to construct courseware where each of the CAVIAr models represents a courseware

construction concern used to derive a skeleton courseware definition.MIKAEL is designed

around the application of the CAVIAr models to create courseware. MIKAEL is based on

constructing CAVIAr models as part of a courseware construction process. The activities

in this courseware construction process can be mapped to the activities in thecourseware

validation process in chapter 7.

In figure 8.1, we have outlined the courseware construction process using a UML Ac-

tivity Diagram. In the first activity, the course creator determines a Domain Model that

represents the target domain for the courseware being developed. Once a Domain Model

is defined, the course creator can then define the learning context for the courseware using

the Domain Model. At this point the course creator can also locate and specify learning

resources to address the learning need associated with each concept inthe Domain Model.

A Courseware Model is then generated based on the requirements in the Learning Con-

text Model defined in the preceding activities. The course creator can edit the Courseware

Model, until he or she is satisfied with its design. Once courseware construction is complete

the course creator can validate the courseware to ensure it satisfies the courseware require-

ments defined in the learning context and also to ensure that the courseware applies a desired

instructional design theory correctly. When the Courseware Model is complete it can be ex-

ported into a Technology Enhanced Learning (TEL) specification, suchas SCORM or IMS

LD (outlined in section 2.2.6).

167

D e t e r m i n e d o m a i n m o d e l

D e f i n e l e a r n i n g c o n t e x t
m o d e l

L o c a t e s u i t a b l e l e a r n i n g
r e s o u r c e s f o r d o m a i n c o n c e p t s

a n d a s s o c i a t e w i t h c o n c e p t

G e n e r a t e c o u r s e w a r e m o d e l

E x p o r t t o c o u r s e w a r e s p e c i f i c a t i o n

E d i t c o u r s e w a r e m o d e l

V a l i d a t e c o u r s e w a r e

[va l id]

[i nva l id]

Figure 8.1: CAVIAr Courseware Authoring defined in terms of an UML Activity Diagram

8.3 MIKAEL Architecture

The goal of MIKAEL is to support the course creator in constructing courseware through

the courseware construction process outlined in figure 8.1. The MIKAELtool should also

support the course creator in the following ways:

• Locate and integrate learning resources.

• Import domain models.

• Export Courseware Model into a TEL specification.

• Validate the Courseware Model.

168

E c l i p s e P l a t f o r m

E c l i p s e M o d e l i n g F r a m e w o r k (E M F)

G r a p h i c a l M o d e l i n g F r a m e w o r k (G M F)

C o u r s e w a r e M o d e l
E d i t o r

D o m a i n M o d e l
 Ed i t o r

A T L

M o d e l
T r a n s f o r m a t i o n

 M a n a g e r

V a l i d a t i o n F r a m e w o r k

V a l i d a t i o n M a n a g e r

L O R
M a n a g e r

C A V I A r M o d e l M a n a g e r

L e a r n i n g C o n t e x t
E d i t o r

E M F D a t a b i n d i n g

O C L C h e c k e r

Figure 8.2: Layer view of the MIKAEL Architecture

Figure 8.3: Component-based view of the MIKAEL architecture

A high-level architecture of the MIKAEL tool is outlined in figure 8.2. The architecture

presented is a layered one, where each layer builds upon the layers below. As outlined in the

figure, MIKAEL has be developed using the Eclipse Platform [Arthorne and Laffra, 2004],

an open-source Java-based platform. We have highlighted the elements that we have de-

veloped in grey. We have also outlined the MIKAEL architecture as a component diagram,

using UML, in figure 8.3, to enhance understanding. The interaction between the com-

ponents we have developed is summarised in figure 8.4. TheValidation Manager/OCL

Checkeris half grey and half white as to develop theValidation Managerwe extended an

example Eclipse OCL Checker plug-in. We choose to base MIKAEL on Eclipse as it pro-

vides an infrastructure for rapid application development and also provides for various user

interface packages to develop an intuitive user interface for the coursecreator. Also, Eclipse

169

M o d e l
T r a n s f o r m a t i o n

M a n a g e r

D o m a i n
P e r s p e c t i v e

C o u r s e w a r e
P e r s p e c t i v e

L e a r n i n g
C o n t e x t

P e r s p e c t i v e

C A V I A r M o d e l
M a n a g e r

L O R
M a n a g e r

O C L P a r s e r

R e q u i r e m e n t s
E d i t o r

C o u r s e w a r e
E d i t o r

Figure 8.4: MIKAEL Components

has been proven in other courseware construction tool support, suchas the Reload LD edi-

tor [RELOAD Project, 2005]. TheCAVIAr Model Manager, which is based on the Eclipse

Modelling Framework (EMF) manages the CAVIAr models. MIKAEL providestwo intu-

itive model-based editorsfor constructing CAVIAr models, these are theDomain Model

Editor and theCourseware Model Editorwhich have been developed using the Graphical

Modeling Framework (GMF) [Gronback, 2009].

MIKAEL has been developed to support CAVIAr-based coursewareconstruction. Each

component in the MIKAEL architecture is defined to support one or more ofthe activities

outlined in the UML activity diagram in figure 8.1. In the following we list each courseware

construction activity and state the MIKAEL component(s) that supports it:

• Determine Domain Model -Domain Model EditorandTransformation Manager.

• Locate Suitable Learning Resources -LOR Manager.

• Define Learning Context Model -Learning Context Editor.

• Generate Courseware Model -Transformation Manager.

• Edit Courseware Model -Courseware Model Editor.

170

• Validate Courseware Model -Validation Manager.

• Export to Courseware Specification -Transformation Manager.

Further to this MIKAEL has three Eclipse “perspectives” defined, eachof which corre-

spond to a central activity in the courseware construction process in figure 8.1. A perspective

is defined as a set of user tools that are needed for some purpose in Eclipse. The defined

perspectives are:

• Domain Perspective - Allows for the definition of a subject Domain Model on which

the courseware is based, also allows course creator to specify LOs forconcepts in

Domain Model. Conceptual sequencing constraints can also be defined in the domain

perspective.

• Learning Context Perspective - Allows for the definition of learner stereotypes in

terms of learning goals and assumed knowledge.

• Courseware Perspective - Allows course creator to define, view and edit the Course-

ware Model.

Each perspective is defined in detail in section 8.7.

Interoperability in MIKAEL is provided through model transformations, theModel

Transformation Managercomponent is responsible for managing model transformations,

which leverages the Atlas Transformation Language (ATL) [Jouault andKurtev, 2005] and

associated tools. The MIKAELValidation Manageris based on the EMF Validation Frame-

work 1, which allows for the integration of the Eclipse OCL Checker. In order to locate

learning resources the MIKAEL tool must be interoperable with LORs. TheLOR Manager

is responsible for this.

In the following sections we will examine each of the MIKAEL components we have

developed in detail. Before this we will outline the Eclipse Framework and the Eclipse tools

we have used to develop MIKAEL.

1http://www.eclipse.org/modeling/emf/?project=validation

171

8.4 The Eclipse Platform

The Eclipse platform is an open source, highly extensible software platform. Its primary

purpose is as a Integrated Development Environment (IDE) for Java development, but other

projects have been built on the Eclipse platform which provide support tools to a wide

variety of technical and non-technical tasks. The Eclipse platform is builtusing a plug-in

architecture. The Eclipse platform is defined in terms of plug-ins and extensions to the

platform are also developed as plug-ins.

The Eclipseworkbenchis the user environment. It is the main window in Eclipse,

composed ofeditorsandviews.

The development of Eclipse components is divided into separate projects, for example

the Eclipse Tools projects define and integrate different tools into the Eclipseplatform, for

example in the C/C++ Development Tool (CDT) project IDE functionality for the Eclipse

platform is developed for C and C++ developers.

MIKAEL is built on plug-ins from the Eclipse Modelling project. In section 2.3.3we

introduced one such project, EMF. In this section we will outline the other elements of the

Eclipse Modeling project that MIKAEL uses.

8.4.1 Graphical Modeling Framework (GMF)

GMF is a generative component for Eclipse, which allows developers to create a graphical

modelling user interface for an ECore model. To generate a graphical modelling interface,

the GMF developer must define a domain model in ECore, a graphical definition, a tooling

definition and a map to integrate them together. GMF is then able to generate thediagram

code that defines a plug-in to provide the user with a model-based UI for defining instances

of the aforementioned ECore domain model.

8.4.2 Model to Model Transformation (M2M)

The M2M project has been set up to integrate a model transformation framework to trans-

form one model type to another model type. There are two main parts to the M2Mproject,

172

ATL and QVT.

8.4.2.1 Atlas Transformation Language (ATL)

ATL is a model transformation language that allows for model transformation definitions

to be defined declaratively and imperatively [Jouault and Kurtev, 2005]. ATL rules define a

mapping from source metamodel elements to target metamodel elements. The ATL transfor-

mation can then be executed on the source model generating a target model. There are three

types of rules in ATL, “matched”, “lazy” and “called” rules. Matched rules are invoked

when a modelling element which corresponds to the rule’sfrom clause is matched in the

source model. Lazy rules are called from other rules, but are never executed directly. Lazy

rules are normally called with a parameter consisting of a source model artefact. Called

rules are similar to lazy rules except a called rule can have any number of parameters.

Called rules may also explicitly define a return type or else nothing will be returned.

8.4.2.2 Query/View/Transformation (QVT)

QVT is an OMG specification that allows for model transformations to be defined declar-

atively and imperatively [OMG, 2005]. Declarative model transformationsare defined on

two levels - “relations” and “core”. Relations are at the specification leveldefining rela-

tionships between MOF model elements. The relations’ language supports object pattern

matching during transformation execution. Relations can be mapped to a core model, which

is defined using a more limited language than that at the relations level. The relations and

core express the same semantics but at different levels of abstraction.

There are two Eclipse M2M projects based on QVT, Operational QVT and Declarative

QVT [Eclipse Foundation, 2008]. Operational QVT allows the developer todefine a QVT

transformation relation in the form of a mapping operation. The Declarative QVT is still in

development. Its ultimate goal is to provide [Eclipse Foundation, 2008]:

• A dedicated perspective for the Eclipse IDE to define QVT transformations.

• An advanced editor with auto-completion and syntax colouring.

173

• An execution environment implementation.

• An integrated QVT debugger.

8.4.3 Model to Text Transformation (M2T)

The M2T project allows for the generation of text from models [Eclipse Foundation, 2009].

There are five components of the M2T project:

• Java Emitter Template (JET) - Provides a code generation facility using JSP liketem-

plate files, where developers write templates for the code to be generated [Popma, 2003].

JET not only allows the generation of Java, but also structured languages such as SQL

and XML.

• Acceleo - An implementation of the OMG Model Transformation Language (MTL)

language specification.

• Xpand - A statically-typed template language.

• M2T Core - Invocation framework allowing clients to invoke model-to-text solutions

independently of a model-to-text language.

• M2T shared - Consists of infrastructure elements that can be shared between model-

to-text languages.

8.4.4 Model Development Tools (MDT)

The aim of the MDT project is as follows [Eclipse MDT, 2008]:

• To provide an implementation of standardised metamodels.

• To provide exemplary tools for developing models based on those metamodels.

Within the MDT project is the OCL component. This is used in MIKAEL for defining

the CAVIAr Validation Model. The OCL component provides the following support for

OCL integration into the Eclipse platform [Eclipse MDT, 2008]:

174

• APIs for parsing and evaluating OCL constraints and queries on EMF models.

• An Ecore implementation of the OCL abstract syntax model.

• A visitor API for analysing and transforming the Abstract Syntax Tree (AST) of OCL

expressions.

• An extensibility API for clients to customise the parsing and evaluation environments

used by the parser.

8.5 CAVIAr Model Manager

The CAVIAr-based approach to courseware construction is a systematicapproach to the

development of CAVIAr models for courseware construction. The management of CAVIAr

models, in MIKAEL, is the responsibility of the CAVIAr Model Manager. TheCAVIAr

Model Manager is built on the Eclipse Modelling Framework (EMF). The CAVIAr Model

Manager manages the updating of CAVIAr models created through the EMF API. The

MIKAEL tool is based on the definition of CAVIAr in EMF. The CAVIAr metamodels

are defined in ECore in the CAVIAr Model Manager.

Figure 8.5 shows the manipulation of the CAVIAr ECore metamodel using the EMF

editor. An ECore model is defined in EMF using the default tree-based user interface.

8.6 Model-based Editors

The central components of the MIKAEL tool are the model editors developed using the

Eclipse Graphical Modeling Framework (GMF). The GMF editors provide the course cre-

ator with a model-based user interface for courseware construction.

MIKAEL has two GMF editors, theDomain Model Editorand theCourseware Model

Editor. TheDomain Model Editorallows the course creator to edit the CAVIAr Domain

Model and also allows for some elements of the learning context to be defined. TheCourse-

ware Model Editorallows the course creator to edit the Courseware Model.

175

Figure 8.5: Defining the CAVIAr metamodels in ECore using Eclipse

A GMF editor is not provided for the Learning Resource Model and the Learning Con-

text Model in MIKAEL. A model-based user interface would not be an optimal method

of displaying this data due to its verbose nature. Instead the information in these models

is portrayed to the course creator using table and list based views. We have outlined how

these views are used in Eclipse perspectives for the Learning ResourceModel in section

8.7.1 and for the Learning Context Model in section 8.7.2.

8.6.1 Domain Model Editor

TheDomain Model Editoris principally concerned with the CAVIAr Domain Model. The

Domain Model Editorallows the course creator to create a Domain Model through an intu-

itive user interface.

Figure 8.6 shows a screen-shot of theDomain Model Editor. As shown, the environment

176

that the course creator defines the Domain Model in is comparable to other cognitive tools

used in the educational domain such as mind-maps [Budd, 2004]. There are two types of

nodes that can be added and used in theDomain Model Editor, conceptnodes andsynonym

nodes. Three relationship types between concepts are available,NARROWER, RELATED

andPREREQUISITE. A relationship is also defined to relate a concept to its synonym.

Figure 8.6: Screen-shot of domain model view

8.6.2 Courseware Model Editor

The Courseware Model Editoris principally concerned with the Courseware Model in

CAVIAr. The Courseware Model Editorallows the course creator to create a Courseware

Model through an intuitive interface.

The editor has two node types,topic nodes andentryLearnernodes. There are two

relationship types betweentopicnodes,PARTOF andSEQUENCEDAFTER. There is also

a relationship to relate the graphical representation of an entry learner condition to a topic.

8.7 MIKAEL Perspectives

The Eclipse framework allows for the definition of perspectives. A perspective is a defined

set of editors and views. In this section we will examine the perspectives designed for

MIKAEL. Each perspective supports one or more activities in the courseware construction

177

process illustrated in figure 8.1 and can also be used to support the courseware validation

process activities illustrated in figure 7.1. In the following we outline each perspective and

the activities it supports in the courseware validation and courseware construction processes.

These are as follows:

• Domain Perspective - For defining and editing a domain model definition.

– Courseware Validation Process - Determine Domain Model.

– Courseware Construction Process - Determine Domain Model, locate learning

resources.

• Learning Context Perspective - For defining learning context information in the con-

text of the domain information.

– Courseware Validation Process - Determine Learning Context Model.

– Courseware Construction Process - Define Learning Context Model, generate

Courseware Model.

• Courseware Perspective - Allows for the development of a Courseware Model.

– Courseware Validation Process - Import courseware, determine Validation Model,

validate courseware, edit courseware.

– Courseware Construction Process - Edit Courseware Model, validate Course-

ware Model, export to courseware specification.

8.7.1 Domain Perspective

The domain perspective is made up of theDomain Model Editor, a Domain Model Out-

line, Concept List View and the Learning Object Repository (LOR) View. The domain

perspective allows the course creator to manipulate and create a Domain Model to be used

in courseware construction. TheDomain Model Editorgives the course creator a graphical

model-based environment in which to define a Domain Model, as outlined in section 8.6.1.

As Domain Models used in courseware construction can be quite extensiveand difficult to

178

view, MIKAEL provides the course creator with two ways to manage the DomainModel at

the macro level - a Domain Model outline and concept list view. The Domain Model outline

provides a graphical overview of the Domain Model view. The concept list view simply lists

all the concepts in the Domain Model, in alphabetical order, providing the course creator

with a simple sorted list to find a concept. When the course creator clicks a concept in the

concept list it is highlighted in theDomain Model Editor.

Figure 8.7: Screen-shot of domain perspective

Each concept in the Domain Model represents a potential learning need. To overcome

this learning need, the course creator must assign LOs to that concept in the Domain Model,

where the LO provides for learning on the concept it is assigned to. To thisend the LOR

View is integrated into the domain perspective. This view allows for the automatedsearch

for LOs that satisfy the learning need represented by the selected concept in theDomain

Model Editor.

The screen-shot in figure 8.7 outlines the domain perspective. The figure is annotated

A to D, indicating the different parts of the perspective as follows:

179

• A - Concept List View.

• B - Domain Model Editor- graphical model on the left, tool palette on the right.

• C - LOR View - outlining the LOs associated with the selected concept. The metadata

of the LO is also outlined in the view.

• D - Domain Model Outline.

8.7.2 Learning Context Perspective

The learning context perspective is used for defining the CAVIAr learning context as out-

lined in section 5.4. The perspective is centred around the definition of learner stereotypes,

where a learner stereotype is defined in terms of conceptual presumed knowledge and con-

ceptual learning goals.

A

B C D

E

Figure 8.8: Screen-shot of learning context perspective

180

Figure 8.8 is a screen-shot of the learning context perspective. The main controlling

element of this perspective is the learner stereotype view annotated with “A”. Using this

view the course creator can add new learner stereotypes and delete existing ones. When

a learner stereotype is selected the views below it allow for the definition of theLearning

Context Model as follows:

• A - Learner Stereotype List View.

• B - Concept List View - lists the concepts in the Domain Model.

• C - Presumed Knowledge View - drag a concept fromconcept list view(B) to here

for that concept to be presumed knowledge for the selected stereotype.

• D - Goal View - drag a concept from theconcept list view(B) to here for that concept

to be a goal for the selected stereotype.

• E - Domain Model View - graphical view of the concepts in Domain Model, allows

the course creator to easily see the context of a given concept.

We have outlined the activities involved in creating a learner stereotype in MIKAEL in

a UML Activity Diagram, figure 8.9.

8.7.3 Courseware Perspective

The courseware perspective allows the course creator to edit and viewthe CAVIAr Course-

ware Model. This is done using theCourseware Model Editorand the entry learner view. As

outlined in section 8.6.2, the courseware model editor allows the course creator to edit and

view topics and topic relations in a Courseware Model. Using the courseware perspective

the course creator can define entry learner conditions on coursewaretopics, using a separate

Entry Learner View. When an entry learner condition is selected in the Courseware Model

editor, theEntry Learner Viewdisplays the details of the entry learner condition and allows

the course creator to edit the entry learner definition.

In figure 8.10 we have annotated a screen-shot of the courseware perspective, as follows:

181

C r e a t e n e w s t e r e o t y p e

D r a g p r e s u m e d k n o w l e d g e
t o s e l e c t e d s t e r e o t y p e
p r e s u m e d k n o w l e d g e

D r a g g o a l
c o n c e p t s t o s e l e c t e d

s t e r e o t y p e g o a l

N a m e s t e r e o t y p e

C r e a t e n e w s t e r e o t y p e

S e l e c t a n a l t e r n a t i v e
s t e r e o t y p e

[l e a r n i n g c o n t e x t m o d e l c o m p l e t e]

[l e a r n i n g c o n t e x t
m o d e l i n c o m p l e t e]

Figure 8.9: UML Activity Diagram outlining tasks involved in defining learning context

• A - Courseware Model Editor- On the left is a graphical model of the courseware,

while on the right is the tool palette for editing the Courseware Model.

• B - Entry Learner View- There are two main parts of theEntry Learner View. The top

of the view indicates the learner stereotype that the selected entry learner condition

affects. The lower part of the view lists the knowledge elements and comparators

associated with this entry learner condition. Buttons above this list allow the course

creator to add and remove knowledge elements to the entry learner condition through

the add and remove competency buttons.

• C - Learning Object Editor - This editor is activated when the course creator clicks

on a topic in the Courseware Model Editor. The view lists the LOs that are referenced

by the selected topic. The learning object editor can also be used to add LOsto topics

and edit the existing LOs associated with courseware topics.

182

A

CB

Figure 8.10: Screen-shot of the courseware perspective

8.8 Model Transformation Manager

Model transformation technology is an integral part of MIKAEL. Model transformation

technology is used at any point in the course construction process that requires the creation

of a new model. These are:

• Importing a Domain Model - Using model transformation technology for importing

data, allows MIKAEL to be flexible enough to be able to import domain models from

any source as long as a metamodel is defined for the source data and a transforma-

tion from the source metamodel to the CAVIAr Domain Model’s metamodel can be

defined.

• Importing Courseware Model for Validation - the MIKAEL tool can be usedto import

a courseware definition, which was developed using some other courseware construc-

tion tool, for CAVIAr-based validation.

183

• Courseware Model Generation - model transformations are used in MIKAEL to de-

fine how a Courseware Model is generated based on the courseware construction

concerns defined in the CAVIAr Learning Context Model, as outlined in figure 8.1.

• Exporting Courseware - MIKAEL can export courseware constructed into any course-

ware specification as long as a metamodel is defined for the target data type and

a transformation from CAVIAr Courseware Model’s metamodel to the target meta-

model can be defined.

When developing the Model Transformation Manager, we looked to base iton a trans-

formation framework that was:

• Stable.

• Well established.

• Well supported.

• Allowed for both declarative and imperative transformation definitions - someof the

CAVIAr transformation definitions could not be defined declaratively.

• Could be used with EMF models.

A range of transformation languages were evaluated based on the work of Czarnecki and

Helsen, who surveyed model transformation approaches based on theirfeatures

[Czarnecki and Helson, 2006].

We decided to build the Model Transformation Manager on the ATLAS Transforma-

tion Language (ATL) framework. ATL is a model transformation specification language

that uses declarative and imperative constructs. Declarative programming is the preferred

method of defining model transformations by expressing mappings from onemetamodel to

another as it is a direct mapping between model elements and it is intuitive. Imperative con-

structs allow for the definition of transformation specifications that are difficult to express

declaratively [ATLAS Group, 2006]. The language allows the user to define mappings from

source metamodel constructs to target metamodel constructs [Bézivin et al., 2005]. ATL is

184

a well-established and stable model transformation language, which can be used with EMF

models. It also well supported by an active user group.

The MIKAEL Model Transformation Manager can also allow for data sources that are

not defined in the modelling technical space. These data sources can be converted as long

as an XML binding is available for the data source. The Model Transformation Manager

uses the ATLAS MegaModel Management Tool (AM3) for this. The AM3 tool (AM3 XML

injector) can load in an XML source and create an XML model for the XML data source.

The XML model can then be transformed to a domain specific model.

8.8.1 Importing a Domain Model

The first task in the courseware construction process, illustrated in figure 8.1, is to load a

domain model. To do this, the course creator will generally source a domain model from

some third party.

An ontology provided by some trusted third party can be used to define a CAVIAr

Domain Model, or at least to provide a starting point. The Semantic Web makes useof

ontologies to provide a common reference point for syntax used in web applications. With

the growing importance of Semantic Web applications, there is an increasing number of

ontologies available [Hendler, 2008].

Semantic Web ontologies have an XML binding. In order for these ontologiesto be used

the ontology definition must be mapped from the XML technical space to the modelling

technical space resulting in the generation of a CAVIAr Domain Model. To convert XML

to an XML model, the AM3 XML injector is used in MIKAEL. When an XML model has

been generated, the XML model can be transformed into a CAVIAr Domain Model using

ATL. In figure 8.11, we outline the steps involved in generating a CAVIAr Domain Model

from an ontology with an XML binding.

Examples of ontology and modelling languages that can be transformed into a Domain

Model are as follows:

• Web Ontology Language (OWL) [W3C, 2004] defined ontologies - This is the main

185

ontology definition language used on the Semantic Web. OWL is based on description

logics and has XML syntax.

• XML Topic Maps (XTM) [Pepper and Moore, 2001] - An XML based approach to

create indexes, where topics are related to other topics.

• XML Schemata - An XML vocabulary definition.

• UML2 models - OMG defined software engineering modelling specification.

We exemplify the transformation in figure 8.11 by outlining how a SKOS ontology is

transformed to a CAVIAr Domain Model as follows:

1. Convert SKOS from an XML serialisation to XML ECore model that conforms to the

XML metamodel, using AM3.

2. Transform the XML model into a CAVIAr Domain Model using ATL.

X M L M e t a m o d e l

S C O R M M o d e l

C A V I A r D o m a i n M e t a m o d e l

O n t o l o g y M o d e l

E C o r e

D e f i n e d B y

T r a n s f o r m a t i o n D e f i n i t i o n

T r a n s f o r m a t i o n R e a l i s a t i o n

X M L P r o j e c t i o n

O n t o l o g y
F i l e

Figure 8.11: Transformation of ontology XML file to CAVIAr Domain Model

As outlined the SKOS XML is loaded into an XML model using the AM3 XML injector.

The XML model is then transformed to a CAVIAr Domain Model ECore representation

using ATL. The transformation definition can be found in appendix B. Here, we highlight

some of the key transformation rules as follows:

186

• XML elements, named “skos:concept” are transformed into a CAVIAr Domain Model

concept- concept2conceptrule.

• XML elements named “skos:broader” are transformed into CAVIArnarrower rela-

tionship between CAVIAr concepts -SKOSRelationshipBroader2conceptRelationship

rule.

• XML elements named “skos:related” are transformed into a CAVIArrelated rela-

tionship between CAVIAr concepts -SKOSRelationshipRelated2conceptRelationship

rule.

8.8.2 Importing a Courseware Model for Validation

The MIKAEL tool allows the course creator to validate courseware using CAVIAr valida-

tion, covered in section 8.9. The course creator can also use MIKAEL to validate course-

ware that has not been constructed using our tool. To allow for this, MIKAEL provides the

course creator with the facility to import courseware.

Specification compliant courseware, such as SCORM courseware, caneasily be im-

ported into MIKAEL by mapping the courseware specification metamodel to the CAVIAr

Courseware Model’s metamodel. We outline these mappings in more detail in section 8.8.4.

More challenging is the importation of non-standard courseware, such asAdaptive Educa-

tional Hypermedia (AEH). In this section, we describe how to import one typeof AEH,

LAOS-based AEH (see section 3.2.2.1 for details on LAOS), into MIKAEL for the pur-

poses of validation. More details on how we achieved interoperability between LAOS and

CAVIAr can be found in [Melia and Pahl, 2008].

To validate AEH defined by MOT (outlined in section 3.2.2.1), using CAVIAr, the

LAOS models must be transformed into CAVIAr models. To do this, a metamodel must

exist for LAOS and a transformation definition must be defined from the LAOS metamodel

to the CAVIAr metamodels. We define two metamodels for LAOS, one for LAOS’sstatic

elements, based on the Common Adaptation Framework (CAF), and one for theAEH adap-

tive rules in LAOS, based on LAG.

187

A CAF ECore metamodel can be defined based on the CAF XML definition, defined

as an XML Document Type Definition (DTD) [Cristea et al., 2007]. This DTDcan be con-

verted to an XML schema using an XML editing tool, such as XMLSpy [Altova, 2005].

This XML schema is then used to generate the CAF ECore metamodel [Steinburget al., 2008].

Due to ECore’s superior expressivity, additional semantics can be added to the ECore model

definition that are implicit in the DTD, as follows:

• An explicit link betweenLink andAttribute can be defined as only an implicit link

exists in the CAF XML DTD.

• A “value” attribute must be added to CAF elements that contain text as a means to

represent the text.

• Specify ordered relationships for elements that have an implicit ordering in the CAF

DTD.

The final CAF metamodel is illustrated in UML in figure 8.12.

C o n t e n t s

+ v a l u e : S t r i n g

A t t r i b u t e

C A F

C o n c e p t

D o m a i n M o d e l

G o a l M o d e l

L e s s o n

+ l a b e l

+ w e i g h t

L i n k

+ l a b e l : S t r i n g

+ w e i g h t : S t r i n g

+ v a l u e : S t r i n g

N a m e

+ v a l u e : S t r i n g

R e l a t i o n R e l a t i o n L i n k

+ l a b e l : S t r i n g

+ t y p e : S t r i n g

+ w e i g h t : S t r i n g

+ v a l u e : S t r i n g

11

0 . . 1

0 . . 1

10 . . *

0 . . *

+ 0 . . *

+ 1 . . *

1

+ 0 . . *

+ 0 . . *

10 . . *

1

{ o r d e r e d }

{ o r d e r e d }

Figure 8.12: CAF metamodel defined using ECore

Once the CAF ECore metamodel has been defined, a transformation mapping from the

CAF metamodel to the CAVIAr metamodels can be defined. These mapping definehow

each modelling construct in the CAF metamodel maps to a CAVIAr metamodel construct.

188

We provide details on the mappings we have used in our interoperability experiments in

[Melia and Pahl, 2008].

LAG rules are used to define adaptive behaviour in LAOS. In the CAVIArCourseware

Model adaptivity is defined by specifying restrictions on the sequencing of courseware top-

ics and/or restrictions on learner stereotypes that can access a given topic. Adaptivity in

the CAVIAr Courseware Model is defined using modelling constructs, such as defining a

sequencing constraint relationship between topics. To transform the adaptive rules defined

using LAG to CAVIAr Courseware Model constructs the LAG language must be defined

in the modelling technical space. We have defined a limited metamodel for the LAG ab-

stract syntax in figure 8.13. This metamodel allows for the representation ofLAG in the

modelling space. A LAG rule can then be parsed to create a LAG model. A transformation

is defined mapping the LAG metamodel to the CAVIAr Courseware Model’s metamodel

which is integrated with CAVIAr models generated from the previous CAF transformation.

S T A T E M E N T

I F S T A T W H I L E S T A T F O R S T A T B R E A K S T A TS P E C S T A TA C T I O N

C O N D I T I O N

+ i f

1

+ t h e n

1 . . *

P R E R E Q
A T T _ V A L U E

+ L A O S a t t r i b u t e : S t r i n g

+ v a l u e : S t r i n g

+ a t t r i b u t e C h a r a c t e r i s t i c : A T T R C H A R

1 . . *

1 . . *

< < E n u m e r a t i o n > >

A T T R C H A R

1 . . *

Figure 8.13: LAG defined as ECore metamodel

A LAG “sequencing” rule specifies that when a particular part of the LAOS Domain

Model is accessed, a different part of the AEH is to be made available to thelearner. An

example of a LAG sequencing rule is outlined in listing 8.1. This type of LAG rule is

made up of two different parts, a condition and an action. The condition checks if the

attribute “title” of concepts in the domain model has been accessed - “access” being the

LAG attribute. In turn, the action sets the LAOS “text” attribute to be shown - “show” being

189

the attribute being set.

Listing 8.1: LAG sequencing rule

IF (DM. Concept . t i t l e . a c c e s s == ’ t r u e ’) THEN

(DM. Concept . t e x t . show == ’ t r u e ’)

This rule is parsed by the Model Transformation Manager and creates aninstance of the

the LAG metamodel - a LAG model, illustrated in figure 8.14.

i f 1 : I F S T A Ta c t 1 : A C T I O N

c 1 : C O N D I T I O N

+ e n o u g h : b o o l e a n = f a l s e

+ v a l u e : i n t = 0

+ i f

+ t h e n

P R E R E Q

a v 1 : A T T _ V A L U E

+ L A O S a t t r i b u t e : S t r i n g = D M . C o n c e p t . t i t l e

+ v a l u e : S t r i n g = t r u e

+ a t t r i b u t e C h a r a c t e r i s t i c : A T T R C H A R = a c c e s s

1 . . *

a v 2 : A T T _ V A L U E

+ L A O S a t t r i b u t e : S t r i n g = D M . C o n c e p t . t e x t

+ v a l u e : S t r i n g = t r u e

+ a t t r i b u t e C h a r a c t e r i s t i c : A T T R C H A R = s h o w

t 1 : T o p i c

+ n a m e : S t r i n g = D M . C o n c e p t . t e x t

+ a g g r e g a t i o n L e v e l : i n t = 4

t r a n s f o r m a t i o n
rea l i sa t i on

c r 1 : C o u r s e w a r e R e l a t i o n s h i p

+ n a m e : S t r i n g = s e q A f t e r

+ t y p e : T o p i c R e l a t i o n s h i p T y p e = # S E Q U E N C E D _ A F T E R

t 2 : T o p i c

+ n a m e : S t r i n g = D M . C o n c e p t . t i t l e

+ a g g r e g a t i o n L e v e l : i n t = 4

+ s o u r c e

+ r e l a t i o n s + o u t g o i n g R e l a t i o n s

+ t a r g e t

L A G

C A V I A r

Figure 8.14: Transformation of LAG model to CAVIAr Courseware Model

When a LAG model has been constructed for the rule in listing 8.1, the LAG rulemodel

can be transformed into a CAVIAr Courseware Model. To do this a transformation mapping

from the LAG metamodel to the CAVIAr metamodels is defined. This LAG rule stateswhen

DM.Concept.titleattribute is accessed show theDM.Concept.text attribute. The transforma-

tion maps this type of LAG rule to a CAVIAr Courseware Model where each attribute in the

LAG condition and action, is a courseware topic. The topic mapped to the “title” attribute in

the LAG rule is the source topic of aSEQUENCEDAFTERcourseware relationship. The

target topic of theSEQUENCEDAFTERrule is the topic mapped to the “text” attribute. We

demonstrate how this transformation would take effect through the example transformation

in figure 8.14.

190

8.8.3 Courseware Model Generation

Once the Learning Context Model has been defined, MIKAEL can be used to generate the

Courseware Model. Again, here MIKAEL uses ATL to generate a Courseware Model from

the Learning Context Model. For this ATL transformation the Learning Context Model is

taken in as the input model to the transformation, and a CAVIAr CoursewareModel is the

output.

The transformation definition is in effect a definition of the instructional design to use

in the courseware, defining how the courseware construction concerns map to a course-

ware definition. Different transformation definitions result in differing Courseware Models.

For example one transformation could define a courseware that starts with topics covering

more specialised concepts in the Domain Model and works towards topics covering broader

concepts, another might do the opposite covering the topics that address broader concepts

first.

An example of a transformation that takes the Learning Context Model and generates

a Courseware Model can be found in Appendix B. This transformation maps concepts

that are goal concepts for any learner stereotypes in the Learning Context Model to top-

ics in the Courseware Model. EntryLearner conditions are placed on topics so that each

learner stereotype is delivered only topics associated with that stereotype’s goal. Concep-

tual sequencing constraints are mapped to topic sequencing relationships,specifying that

one topic must be delivered before another.

8.8.4 Exporting a Courseware Model

The MIKAEL tool supports the export of a CAVIAr Courseware Modelinto a TEL specifi-

cation, such as SCORM or IMS LD. This allows the courseware to be deployed using one

of the mainstream LMSs such as Moodle2 or Blackboard3.

In figure 8.15, we outline the transformations that creates a SCORM manifestfile from

a CAVIAr Courseware Model. As outlined the Courseware Model is transformed into a
2http://moodle.org
3http://www.blackboard.com

191

SCORM model, which is an instance of a predefined SCORM metamodel. The aim here

is to generate a SCORM manifest file, which is an XML file. The SCORM model must

therefore be converted to an XML file. To do this the SCORM model is transformed to an

XML model that conforms to the XML metamodel. AM3 XML injector is used to generate

an XML document from the XML model.

C o u r s e w a r e M e t a m o d e l

S C O R M M o d e l

S C O R M M e t a m o d e l

C o u r s e w a r e M o d e l

X M L M e t a m o d e l

X M L M o d e l

E C o r e

S C O R M
Fi le

D e f i n e d B y

T r a n s f o r m a t i o n D e f i n i t i o n

T r a n s f o r m a t i o n R e a l i s a t i o n

X M L P r o j e c t i o n

Figure 8.15: Transformation from Courseware Model to SCORM XML binding definition

The ATL to transform a CAVIAr Courseware Model into a SCORM XML manifest can

be found in appendix B.

8.9 Validation Manager

EMF has a model validation framework4 that allows for the definition of constraints on

EMF meta-models. These constraints are then checked on the corresponding EMF models

constructed. The EMF validation framework allows for constraints to be defined in Java

and the Object Constraint Language (OCL). We extended the validation service to check

that the Courseware Model adheres to OCL constraints defined in the CAVIAr Validation

Model.

As described in chapter 6, the CAVIAr Validation Model is defined using OCL. The

definition of constraints on the CAVIAr Courseware Model’s metamodel enables the defini-
4http://www.eclipse.org/modeling/emf/?project=validation

192

tion of what is structurally incorrect for a given CAVIAr Courseware Model. To validate a

CAVIAr Courseware Model the OCL constraints are checked against the CAVIAr Course-

ware Model defined by the course creator.

To provide for validation support of the OCL constraints defined in the Validation

Model, the EMF validation framework is extended to accept an OCL file, defined as the

CAVIAr Validation Model, to be checked against a CAVIAr model defined by the course

creator. An OCL constraint provider is defined and integrated into the EMFvalidation

service, using theconstraintProvidersextension point, where an extension point is a mech-

anism provided by the Eclipse Platform to extend its functionality.

The OCL constraint handling functionality is handled as a plug-in in Eclipse. In order

to make Eclipse aware of the functionality provided by the plug-in, it must be described in

a file calledplugin.xml. In listing 8.2 we have provided the extension point definition for

the OCLConstraintProvider, which defines theOCLConstraintProvideras the constraint

handler for packages with the URI ofwww.caviar.dcu.ie- this being the URI identifying a

CAVIAR metamodel.

Listing 8.2: Constraint provider extension point for OCLConstraintProvider

<e x t e n s i o n

p o i n t =” org . e c l i p s e . emf . v a l i d a t i o n . c o n s t r a i n t P r o v i d er s ”

i d =” o c l P r o v i d e r ”>

<!−− Custom c o n s t r a i n t p r o v i d e r us i ng OCL documents−−>

<c o n s t r a i n t P r o v i d e r

c l a s s=” org . e c l i p s e . emf . v a l i d a t i o n . examples . o c l . OCLCons t ra i n tP rov ide r ”

c a t e g o r y =” C o n s t r a i n t sfrom an OCL Document ”

cache=” f a l s e ”>

<package namespaceUr i=”www. c a v i a r . dcu . i e ”/>

<o c l pa th =” c o n s t r a i n t s / v a l i d a t i o n M o d e l 1 . o c l ”/>

</ c o n s t r a i n t P r o v i d e r>

</ e x t e n s i o n>

For full details on theplugin.xmldefining the plug-in to handle OCL constraints defini-

tions, please consult appendix B.

193

8.10 Learning Object Repository (LOR) Manager

To be useful, MIKAEL must provide the course creator with an easy search mechanism

for LOs. MIKAEL can interoperate with Learning Object Repositories (LORs) and auto-

matically search for LOs that could be used in a given courseware. TheLOR Manageris

responsible for managing connections to LORs, querying LORs, and interpreting the results

returned from LORs.

The LOR manager uses two main strategies for searching LORs:

• A screen-scraping approach [Hemenway and Calishain, 2003].

• A service-based query approach [Simon et al., 2005].

8.10.1 Screen-Scraping LOR Queries

The screen-scraping approach is carried out by defining a LO queryas a URL, and passing

the URL to the LOR of choice. Parameters such as the keywords to use in the search are

passed in the URL. The result is returned as HTML. This HTML is parsed by a custom

parser class that is aware of the structure of the HTML returned by the LOR. The parser

then generates a CAVIArmetadatamodel from the result.

: H t t p C l i e n t P a r s e r: L e a r n i n g S o u r c e L i n k V i e w : E d n a X m l P a r s e r

g e t D a t a (u r l , c o n c e p t)

g e t D a t a (r e s p o n s e B o d y A s S t r e a m , c o n c e p t)

: M e t a d a t a

: M e t a d a t a

Figure 8.16: UML Sequence Diagram depicting how the EDNA LOR is queriedusing the
screen-scraping approach

In figure 8.16, we have outlined the main classes involved in the screen-scraping ap-

194

proach used to query the EDNA LOR5. An instance of this class calls theHttpClientParser,

which is responsible for screen-scraping LOR queries. The result ofthis screen-scrape

is passed to theEdnaXmlParserto parse the result and buildMetadatamodels, from the

CAVIAr Learning Context Model, to be returned to theLearningSourceLinkView. The

LearningSourceLinkViewpopulates the metadata section of the LOR view, as outlined in

section 8.7.3, allowing the course creator to analyse the details of the LO. To allow for more

LORs to be integrated into MIKAEL the Abstract Factory pattern [Gamma et al., 1995]

is used. This pattern enables delegation to a different parser dependingon what LOR is

scraped.

8.10.2 Service-based LOR Queries

There is currently a concerted effort to standardise how LORs are queried using a LOR

interoperability specification such as the Simple Query Interface (SQI) [Simon et al., 2005].

Complementary to this approach is the development of a LOR query language,known as

the ProLearn Query Language (PLQL) which has been developed specifically for the query

needs of LORs [Ternier et al., 2008]. Here, we look at how these approaches can be used to

query LORs using MIKAEL.

: P L Q L M a n a g e r: L e a r n i n g S o u r c e L i n k V i e w : S Q I M a n a g e r

g e n e r a t e Q u e r y (c o n c e p t)

s e a r c h S Q I L O R s (q u e r y)

: R e s u l t

: q u e r y

: L O M P a r s e r

p a r s e L O M (l o m M e t a d a t a)

p a r s e R e s u l t (R e s u l t)

: M e t a d a t a
: M e t a d a t a

Figure 8.17: UML Sequence Diagram depicting how SQI-compliant LORs canbe queried
using PLQL

5http://www.edna.edu.au/

195

Figure 8.17 outlines an UML Sequence Diagram outlining the classes involvedin a SQI-

based query of a LOR using MIKAEL. The Sequence Diagram describes a process where

thePLQLManagergenerates a query. As PLQL has various levels of expressive power, the

PLQLManageris responsible for generating PLQL with the correct expressivity level for

the LOR(s) being used by the course creator. The query then uses the SQI manager, to wrap

the PLQL in SQI and send it to the LOR(s) of choice. The result of this query is LOM

definitions for LOs and is parsed by theLOMParser, generating CAVIArmetadatamodels.

We note that various standards have been used together here. The course creator may

wish to use a different combination of standards and specifications, for example the LOR

may return Dublin Core [DCMI, 2006] rather than LOM. To allow for this the Abstract

Factory pattern [Gamma et al., 1995] has been employed here also, allowing for the pars-

ing the different specifications and standards in MIKAEL to be delegated tospecialised

classes. This increases MIKAEL’s maintainability as the parsing concern isseparated into

specialised classes.

8.11 Chapter Conclusion

In this chapter, we have described the MIKAEL tool. MIKAEL provides tool support for the

CAVIAr-based courseware construction process, also outlined in this chapter. This course-

ware construction process allows for the definition of CAVIAr models for thepurpose of

courseware construction. As part of the courseware construction process the course creator

can validate constructed courseware using the CAVIAr models.

MIKAEL provides a proof of concept tool for validating courseware using CAVIAr. The

courseware construction process illustrates how the validation process activities in chapter

7 can be integrated into courseware construction, thereby relieving much of the burden of

creating CAVIAr models solely for validation.

We note the courseware construction process can be aligned with the OMG’s Model

Driven Architecture (MDA) approach to MDE [Frankel, 2003]. Courseware is created us-

ing three levels of abstractions that progressively get more implementation oriented. Re-

196

quirements defined in the Learning Context Model can be aligned to the Computation Inde-

pendent Model (CIM), the Courseware Model is aligned to the Platform Independent Model

(PIM), as the CAVIAr Courseware Model is standard/specification neutral. The Courseware

Model is then used to create courseware in terms of a courseware specification, a Platform

Specific Model (PSM), where the courseware specification is the “platform”.

MIKAEL was developed using the Eclipse framework, using EMF to manage the CAVIAr

models. User Interfaces were developed using GMF to help the author to define the Domain

and Courseware Models. Eclipse perspectives were designed around the major steps in the

courseware construction process, defined in figure 8.1. Model transformation technology

was used to define how courseware requirements in the Learning ContextModel could be

used to generate a Courseware Model. We also demonstrated how CAVIArinteroperabil-

ity is achieved through model transformation technology. The validation of courseware is

achieved by integrating an OCL Checker with the EMF validation framework. This allows

the course creator to validate courseware in MIKAEL using OCL. MIKAELcan be easily

integrated with LORs, using the LOR manager component.

The MIKAEL Model Transformation Manager component uses ATL to define model

transformations. One issue we had with ATL was that it is not possible to copysource

model constructs to the target model if those source model constructs wereused as the basis

for a transformation. This was a problem when generating a CoursewareModel as when

generating a Courseware Model the Learning Context Model must also be available for

validation. In generating the Courseware Model, the Learning Context Model constructs

were used in the transformation and therefore could not be copied to the newly generated

Courseware Model. To overcome this problem a second transformation was defined to

merge the Learning Context Model with the newly created Courseware Model. This ATL

transformation definition can also be found in appendix B.

In chapter 9 we will evaluate the use of MIKAEL for courseware construction in terms

of its user acceptance. MIKAEL was used extensively in user trials conducted as part of the

CAVIAr evaluation.

197

Chapter 9

Evaluation

9.1 Introduction

The evaluation of our research must be viewed in the context of our original research prob-

lem and how we have proposed to address this problem. In chapter 1 we identified the need

for automated courseware validation as part of the courseware construction process, where

validation ensures that constructed courseware satisfies pedagogicaland non-pedagogical

requirements defined by the course creator.

We identified the followingresearch challengesin order to achieve validation of course-

ware in section 1.2:

1. Identify the data available for courseware validation pre-delivery in terms of course-

ware requirements as defined by those involved in courseware construction.

2. Investigate how the courseware requirements can be represented explicitly.

3. Develop an approach to validate courseware using the courseware requirements. This

approach should be optimised towards personalised and personalisable courseware, as

it is a major trend in Technology Enhanced Learning (TEL) [Wade and Ashman, 2007].

4. Investigate how courseware validation can be integrated with existing courseware

construction tools.

198

5. Design and implement a proof of concept application that clearly validatesour re-

search in terms of its feasibility.

6. Evaluate the research by investigating user acceptance of courseware validation within

courseware construction in general and our approach to validation in particular. User

acceptance looks at the following:

• Usability - The validation approach and its tool support must be usable by the

course creator.

• Cost Effectiveness - The validation approach must be cost effectivein terms of

course creator effort.

• Effectiveness - The approach captures courseware problems and requirements

effectively. The validation approach must be able to validate problems in course-

ware that the course creator deems to be important.

• Modifiability - The course creator must be able to customise the validation con-

straints criteria according to his or her own requirements. Validation support

must be flexible enough to be integrated with the TEL specifications used by

the course creator in courseware construction.

• Performance - The performance of our validation approach must be acceptable

when compared with the state of the art.

In chapter 4 the courseware construction concerns were identified. The courseware con-

struction concerns represent the data available for courseware validation pre-delivery. This

addresses research challenge 1. Based on the courseware construction concerns we de-

fined the Courseware Authoring Validation Information Architecture (CAVIAr), in chapter

5 and 6, as a set of models and modelling constraints that allow for the explicit representa-

tion of courseware construction concerns and courseware requirements, addressing research

challenge 2. The activities involved in validating courseware using CAVIArwere defined in

chapter 7, satisfying research challenge 3. The design and implementation of a proof of con-

cept software application was described in chapter 8. This software, known as MIKAEL,

199

allowed for courseware construction and validation based on CAVIAr. MIKAEL demon-

strated the feasibility of CAVIAr courseware validation and satisfies research challenge 5.

In chapter 8 we also outlined how CAVIAr-based validation could be integrated with the

state of the art through model transformation technology. This addressesresearch challenge

4.

In this chapter we address our only outstanding research challenge, to evaluate the user

acceptance of our approach to courseware validation (challenge 6). User acceptance is as-

sessed by evaluating the effectiveness of our approach to capture courseware requirements,

the cost effectiveness of the approach, its usability, modifiability and performance, as de-

fined in the research challenges.

In the next section (section 9.2), we will outline the evaluation strategies that we have

used to evaluate user acceptance. After describing the evaluation strategies we will evaluate

each user acceptance characteristic using one or more of the evaluation strategies. The user

acceptance characteristics were addressed as follows:

• Effectiveness - Section 9.5.

• Cost Effectiveness - Section 9.4.

• Usability - Section 9.3.

• Modifiability - Section 9.6.

• Performance - Section 9.7.

We conclude the chapter by summarising our findings in section 9.8.

9.2 Evaluation Strategies

There were three principle strategies taken to evaluate the research documented in this the-

sis. These were:

• Empirical Study - An empirical study was carried out through the MIKAEL user tri-

als. The MIKAEL user trials looked at usability, course creator perceived cost and

200

effectiveness of CAVIAr validation and were then asked questions through question-

naires. Assessing user satisfaction did not include formal user testing.

• Analytical Study - We methodically analysed the suitability and effectiveness of each

CAVIAr data model defined in this thesis.

• Comparative Study - Modifiability and performance were evaluated througha com-

parative study with the state of the art.

9.2.1 Empirical Study

As part of the evaluation of the MIKAEL tool, described in section 8, we carried out user

trials with course creators from industry and academia. The aim of these user trials were as

follows:

• Evaluate the usability of the MIKAEL tool in terms of its user interface.

• Evaluate the usability of the CAVIAr models.

• Evaluate CAVIAr-based validation effectiveness as perceived by thecourse creator.

• Evaluate CAVIAr with respect to its effectiveness in capturing the courseware con-

struction concerns to allow for courseware construction.

• Evaluate CAVIAr with respect to its perceived efficiency when used in courseware

construction (such as that found in MIKAEL).

We will describe the MIKAEL user trials in detail in section 9.3. The user trial results

are then described in section 9.3, 9.5 and 9.4 as part of our evaluation of CAVIAr usability,

effectiveness and cost effectiveness respectively.

9.2.2 Analytical Study

In evaluating the effectiveness of the CAVIAr data models we analysed theCAVIAr models

in terms of two types of criteria, structural criteria and semantic criteria. Structural criteria

looks to evaluate thesoundnessandcompletenessof each CAVIAr metamodel. Semantic

201

criteria takes into consideration application-specific information in order to evaluate a given

CAVIAr data model. In section 9.5.1 we provide details of the approach usedto analytically

evaluate the CAVIAr data models, and provide results from our evaluation.

9.2.3 Comparison with the State of the Art

We have evaluated CAVIAr validation in terms of its modifiability (section 9.6) and perfor-

mance (section 9.7) by comparing it with the state of the art.

We evaluated modifiability in CAVIAr validation using a scenario-based approach known

as ALMA (Architecture Level Modifiability Analysis) [Bengtsson et al., 2004]. ALMA is

used to compare the modifiability of CAVIAr-based information architecture withthe state

of the art in courseware interoperability and courseware validation. We consider the modi-

fication of the following key validation concerns:

• A change to the native domain knowledge specification that is used for the CAVIAr

Domain Model definition.

• The courseware specification used is changed.

• The validation criteria must be changed.

In evaluating CAVIAr validation performance, we compare the simulation-based valida-

tion approach, the primary approach used in the state of the art, with CAVIAr’s constraint-

based approach in terms of its time complexity.

9.3 Usability

In this section we give details on the MIKAEL user trials that we have conducted and

present the results of the MIKAEL user trial related to usability. The following subsection,

section 9.3.1, outlines how the user trials were conducted. In subsection 9.3.2 we detail

the participant demographic that took part in the user trials. In section 9.3.3 we present the

usability results from the user trials. Other results from the MIKAEL user trials will be

presented in subsection 9.4 (cost effectiveness) and section 9.5 (CAVIAr effectiveness).

202

9.3.1 MIKAEL User Trials Overview

The MIKAEL user trials were conducted as a series of one-to-one tutorials on the MIKAEL

tool with course creators (details of the participants will be covered in the next subsection).

In these tutorials the participant was shown how to create new coursewarein accordance

with the courseware requirements for the case-study in chapter 7, using the MIKAEL tool.

We did not allow the course creator to manipulate the courseware construction directly, as

it was not feasible to teach the functionality of MIKAEL as well as demonstratecourse-

ware construction within the time constraints of the tutorial. The format of the tutorials

involved intermittently asking the participant questions while constructing courseware us-

ing MIKAEL. We followed this format so that the questions were about the courseware

construction activities that had just been witnessed. This limited the cognitive demand of

the survey allowing the course creator to concentrate on how MIKAEL is used for course-

ware construction. The survey questionnaire we used in our experimentcan be found in

appendix C. The evaluation survey was predominantly quantitative in naturebut had some

qualitative questions. The user trial structure is detailed below:

1. Background - We initially presented an introduction of the courseware construction

process, as defined in chapter 8.2, to participants. In this presentation weoutlined

how MIKAEL supports the courseware construction process by providing a user in-

terface (Eclipse perspective, defined in section 8.7) for each of the maincourseware

construction activities.

2. Survey Session - The participant answered questions related to the courseware con-

struction process to gauge their understanding - results in section 9.4.

3. Domain Model Editing - This part of the tutorial consisted of importing a SKOS

ontology into MIKAEL and editing it according to the databases coursewarerequire-

ments in section 7.2. The participant was also shown how to search for LOs using

MIKAEL and how to add a LO to a concept. At this stage we also showed to the

participant how to add conceptual sequencing constraints between concepts in the

Domain Model.

203

4. Survey Session - The participant answered questions related to the Domain Model -

results in section 9.3.3.1.

5. Learning Context Model Editing - This demonstrated how a learner stereotype is

defined in terms of the courseware learning goals and presumed knowledge.

6. Survey Session - The participant answered questions related to the Learning Context

Model - results in section 9.3.3.2.

7. Courseware Model Editing - Participants were shown how to generate aCourseware

Model from the requirements defined in the Learning Context Model. We then ex-

plained to the participant how the Courseware Model is generated througha mapping

from the Learning Context Model to the Courseware Model and that the courseware

generation definition is independent of MIKAEL’s programming code. We demon-

strated how to edit the generated Courseware Model, and how requirements defined

in the Learning Context Model are mapped to the Courseware Model. We explained

to the participant how personalisation is defined using entry learner conditions. Par-

ticipants were also shown how to add/edit/delete LOs to/from courseware topics.

8. Survey Session - The Participant answered questions related to Courseware Model

editing - results in section 9.3.3.3.

9. Courseware Validation - Participants were shown how courseware validation is achieved

by firstly showing them an editable CAVIAr Validation Model defined in OCL and

then validating courseware. We showed participants that the Validation Model is

editable to ensure that they understood that the Validation Model is not partof the

MIKAEL’s programming logic but is a separate and editable definition of whatis

correct for a given courseware definition. The CAVIAr Validation Model used a con-

straint from each of the type of validation rule defined in section 6. The courseware

created in the previous steps was then validated and the validation results were shown

to the participant for inspection.

204

10. Survey Session - The participant answered questions related to the effectiveness (re-

sults in section 9.5) and usability (usability results in section 9.3.3.4) of validation.

11. Concluding questions - After the courseware was created and validated, participants

were shown how to export the courseware created into a SCORM package. This

SCORM package was then imported into the Moodle LMS. This allowed the course

creator to see how courseware developed using MIKAEL is delivered.

12. Survey session - The participant answered general questions regarding the usability

(results in section 9.3.3.4) and effectiveness (results in section 9.5) of CAVIAr-based

courseware construction. We also asked the course creator about thepotential time

and cost saving (if any) that could be achieved by using MIKAEL for courseware

construction (results in section 9.4).

All questions were asked orally, allowing the participant to focus visually onthe trial

task. Each “survey session” consisted of a set of closed questions, where the participant

answered using a five point Likert scale [Likert, 1932] and then one open-ended question

that allowed the participant specify additional comments about the previous courseware

construction stage. At the end of the trial the participant could add comments about the

MIKAEL tool or CAVIAr-based courseware construction, in general.It was not compulsory

to answer any question.

9.3.2 MIKAEL User Trials Participant Details

Courseware construction is an expert activity, these experts are collectively known as course

creators, as defined in section 4.2. In our user trials we assembled a sampleset of course

creators (n=14). Participants in the sample had a wide variety of backgrounds:

• Academic.

– School of Computing in Dublin City University.

– School of Computing in the National College of Ireland.

• Industry.

205

Figure 9.1: Breakdown of participant knowledge

– The financial services sector.

– The IT sector.

– The telecoms sector.

In figure 9.1, we have illustrated the knowledge breakdown of the trial participants

as defined by the participants themselves. All considered themselves to be familiar or an

expert in e-learning, while 10 participants (71%) considered themselves familiar or expert

in e-learning authoring, 12 participants (85%) stated they were familiar with personalised

e-learning, but none considered themselves an expert in personalisede-learning.

Figure 9.2 outlines the participants experience in delivering courses and also in creating

or adapting courses. This shows that all of the participants in our trial have delivered or

adapted courses and that the majority of the participants are experts, doingit more than ten

times.

Through the survey we also assessed the types of courses the participants had created or

adapted and found that seven participants had created/adapted courses for academia, ten had

206

Figure 9.2: The number of courses participants have managed and delivered, and the num-
ber of courses participants have adapted or created

created/adapted courses for industry training, while three participants had created/adapted

professional training courses, such as a project management course.

9.3.3 MIKAEL User Trial Survey Results

In this section we will outline the MIKAEL user trial survey results related to usability.

9.3.3.1 Domain Model Editing

After demonstrating importing and editing a Domain Model in MIKAEL we asked the

participants a number of questions. Questions can be found in Appendix C,section 3. In

figure 9.3 we outline the results from this survey related to usability.

9.3.3.2 Learning Context Model Editing

After the Participants are shown how to define a Learning Context Model. The participant

was then asked questions on defining a Learning Context Model. Questions can be found in

Appendix C, part 4. Figure 9.4 outlines the result from this survey relatedto usability.

207

Figure 9.3: Domain Model editing survey results

9.3.3.3 Courseware Model Editing

After demonstrating to the participants how a Courseware Model is generated from the

Learning Context Model we demonstrated MIKAEL’s courseware modelediting function-

ality. The participants were then asked about their sentiment towards the Courseware Model

and how it is defined. Survey questions can be found in Appendix C, part 5. In figure 9.5

we outline the results of this survey related to usability.

9.3.3.4 Post-validation

After validating courseware, we asked the participant a variety of question on how they felt

about CAVIAr courseware validation. These questions can be found inAppendix C, part 6

and 7. The survey results related to usability are outlined in figure 9.6.

208

Figure 9.4: Learning Context Model editing survey results

9.3.4 Discussion

As outlined in the graph in figure 9.3, participants were positive about DomainModel edit-

ing. Most participants thought creating a MIKAEL project and importing external knowl-

edge was simple. Domain model editing usability is not a major concern as the majority

of participants found the domain model view intuitive and the perspective appeared easy to

use. Using the Domain Model to drive a search for LOs was something that made sense to

all participants, with 85% of participants indicating they thought it was easy to add a LO to

a concept. The majority of participants found the metadata displayed about a given LO gave

enough information to decide whether or not to add a LO to a concept. Threeparticipants

(23%) mentioned that it would be useful for MIKAEL to provide a way for the course cre-

ator to preview a learning resource. One participant, in particular, noted “It would be useful

to allow users to fully review a learning resource before adding it by allowing them to link

directly to the resource from within the tool”.

All participants thought creating a learner stereotype in MIKAEL was simple (section

209

Figure 9.5: Courseware model editing survey results

9.3.3.2), with one stating that it was a good way to represent the dynamics of today’s course-

ware requirements. Nearly all found the learning context perspective intuitive. Terminology

used was found to be intuitive and consistent, by the majority of the participants. An exam-

ple of this kind of terminology consistency is being able to relate concepts in the Learning

Context Model with concepts in the Domain Model. We believe that these resultsto be a

vote of confidence in the underlying CAVIAr Learning Context Model asa tool to define

courseware requirements.

We surveyed the participants on their opinion on how MIKAEL allows for the course

210

Figure 9.6: Usability survey results after validating courseware

creator to edit a given courseware definition by editing the CAVIAr Courseware Model, the

results of this can be found in section 9.3.3.3. We found that most participantsunderstood

how the Courseware Model was generated at a high level (93%). Mostparticipants also

thought MIKAEL’s approach to creating a Courseware Model was flexible and recognised

that the instructional design being used in the transformation definition could be changed.

Participants felt they understood how to edit the learning resources usedin a given topic.

Two participants gave a negative result regarding the intuitiveness of themodelling notation

used for the Courseware Model, with the remainder giving a neutral (6 participants) or pos-

itive answer (6 participants). The majority of participants gave positive answers regarding

their understanding on how courseware adapts to a learner and how to define sequencing re-

strictions on the Courseware Model, although one person gave a negative answer for each.

We believe that this was due to a misunderstanding with regard to the CAVIAr modelling

notation used in MIKAEL. One participant noted “the stereotype name onentrylearners

would be useful”, and another said the “arrow [is] pointing the wrong wayfor the seqafter

[topic] relationship” indicating that there was some confusion with defining Courseware

211

Model constructs.

Nearly all participants (except for one who gave a neutral response)understood how

validation worked. No participant felt that validation took an unreasonableamount of time

to complete (seven to ten seconds). Although this result would be influencedon the com-

plexity of constraints defined and the size of the CAVIAr models. This is probably because

validation is an irregular (in many cases once-off) courseware construction activity.

From these results we can conclude that the course creator found editingthe CAVIAr

models intuitive during courseware construction in terms of:

• The CAVIAr courseware construction process.

• Using the CAVIAr models for courseware construction.

• The implementation of the CAVIAr models in MIKAEL.

• The validation of constructed courseware using CAVIAr through MIKAEL.

9.4 Cost Effectiveness

In this section we evaluate if there are cost implications associated with using a CAVIAr-

based courseware construction process. To do this we surveyed course creator’s sentiment

towards using MIKAEL for courseware creation with regard to cost implications. Cost was

judged in terms of the time and capital investment required for courseware creation. The

survey questions looked at the following:

• Is there a significant learning curve associated with initially using CAVIAr-based

courseware construction?

• Did the course creator find MIKAEL useful?

• Does the course creator think MIKAEL is time and cost effective?

• Does the course creator think that it will be easier for him or her to reuse existing

learning material with MIKAEL?

212

9.4.1 MIKAEL User Trial Survey Results

Figure 9.7: Participant understanding of the main aspects to CAVIAr and CAVIAr-based
courseware construction through MIKAEL

After an initial presentation on how MIKAEL constructed courseware by building up

CAVIAr models we asked the participants questions to ensure they understood how CAVIAr-

based courseware construction worked and to investigate if the participant could see poten-

tial for cost savings in using MIKAEL. The results of this are presented infigure 9.7.

Figure 9.8 outlines the results of the MIKAEL survey associated with the costand time

of using MIKAEL as perceived by the course creator. These surveyquestions were asked

at the end of the MIKAEL user trial.

213

Figure 9.8: MIKAEL survey results relating to the cost effectiveness ofMIKAEL

9.4.2 Discussion

The questions after doing the MIKAEL user trial show that all participants found MIKAEL

useful. Most participants (71%) thought MIKAEL would produce courseware construction

cost savings, with the remainder of the participants giving a neutral answer. This is a marked

improvement on the 43% who thought MIKAEL would produce cost savingsprior to seeing

the MIKAEL demo (figure 9.7). Participants see MIKAEL as an enabler forthe reuse of

existing learning resources. From this we can conclude that the course creator does see cost

benefits associated with reuse in MIKAEL. Figure 9.8 also indicates that course creators

see MIKAEL as a useful tool and they think it is easy to reuse learning resources with

MIKAEL.

We also believe MIKAEL could offer significant cost savings indirectly due to its rela-

tively low training requirements. This is based on the fact that after just a brief introduction

on how the tool works the majority of course creators indicated that they understood each

element of CAVIAr-based courseware construction, as indicated in the graph in figure 9.7.

214

9.5 Effectiveness

We evaluate the effectiveness of CAVIAr in terms of an:

• Analytical evaluation of CAVIAr for defining the course construction concerns and

represent constructed courseware.

• Empirical evaluation of course creator’s perceived effectiveness of the CAVIAr meta-

models for courseware validation, evaluated through the MIKAEL user trials outlined

in section 9.3.

9.5.1 Analytical Evaluation of the CAVIAr Data Models

In evaluating the effectiveness of the CAVIAr data models we define two types of criteria,

structural criteria and semantic criteria. Structural criteria looks to evaluatethesoundness

andcompletenessof the CAVIAr metamodels. Semantic criteria takes into consideration

application-specific information in order to evaluate a data model. Although inconsistencies

with certain structural criteria definitions may be disregarded, the CAVIAr metamodel must

satisfy its semantic criteria.

Guizzardi et al. outline how to determine if a Domain-Specific Modelling Language

(DSML) is sound and complete by comparing the metamodel with a well-establisheddo-

main conceptualisation, such as an ontology [Guizzardi et al., 2005]. They define a mod-

elling language assoundwhen every modelling primitive can be represented in the domain

conceptualisation and they define a language ascompletewhen every concept in the domain

conceptualisation is represented in the modelling language. To establish the soundness and

completeness of the CAVIAr metamodels, we mapped each metamodel to a well-defined

conceptualisation that represents that metamodel’s course construction concern. We define

a metamodel assoundwhen all elements, or groups of elements, in the metamodel can be

mapped to an element, or group of elements, in the domain conceptualisation. We define a

metamodel ascompletewhen all elements, or groups of elements, in the domain conceptu-

alisation can be mapped to an element, or group of elements, in the metamodel.

215

To establish if anincompletemetamodel issufficientto satisfy the information needs

of validation we define a minimal level of completeness that the metamodel must achieve.

Should a metamodel be found to beunsound, we establish if there is adequate rationale for

the inclusion of extra modelling constructs in the metamodel not in the domain conceptual-

isation using the literature.

9.5.1.1 Domain Model

The CAVIAr Domain Model can be mapped to the Simple Knowledge OrganisationStruc-

ture (SKOS). We use SKOS as it is a “light weight, intuitive language for developing and

sharing new knowledge organization systems” [Miles and Bechhofer, 2009]. SKOS aims

to provide a simple knowledge structure similar to that which was needed for theCAVIAr

Domain Model, which as stated is “a knowledge structure, describing concepts and rela-

tionships between concepts” (section 5.3). SKOS is an established conceptualisation for

representing conceptual structures that is currently undergoing WorldWide Web Consor-

tium (W3C) standardisation.

Section 5.3.3 illustrated how each of the CAVIAr Domain Model constructs canbe

mapped to a SKOS modelling construct, meaning the CAVIAr Domain Model’s metamodel

is sound. Although it is sound, the Domain Model is incomplete as the following SKOS

modelling constructs have no representation in the CAVIAr Domain Model:

• skos:hiddenLabel- A concept label hidden from the user.

• skos:scopeNote- Intended meaning of a concept.

• skos:definition- Provides complete explanation for a concept.

• skos:example- Supplies an example for a concept.

• skos:historyNote- Outlines changes to the concept meaning or form.

• skos:editorialNote- Ontology of administration notes.

• skos:changeNote- Fine-grained changes to concepts.

216

• skos:Collection- Collection of concepts, where membership is defined byskos:member.

• skos:orderedCollection- Ordered collection of concepts.

• skos:broaderTransitive- Transitive relationship for skos:broader.

• skos:narrowerTransitive- Transitive relationship for skos:narrower.

In section 5.3, we have stated that the Domain Model need only be a simple knowl-

edge structure describing concepts and the relationships between concepts. Therefore the

CAVIAr Domain Model’s metamodel issufficientfor courseware validation if it can be

mapped to the following SKOS modelling constructs that allow for simple conceptual struc-

tures:skos:concept, skos:prefLabel, skos:altLabelandskos:semanticRelationship.

9.5.1.2 Learning Context Model

The Learning Context Model represents the requirements of courseware. It does this by

constraining the Domain Model in two ways, using conceptual instructional constraints and

by defining learner stereotypes. A well-established conceptualisation designed to constrain

a Domain Model for the purposes of defining e-learning requirements is the“goal and con-

straints model” in LAOS. LAOS is covered in detail in section 3.2.2.1.

LAOS is based on the AHAM architecture [DeBra et al., 1999]. AHAM allows for

concept links of typeprerequisiteto define conceptual sequencing constraints. A one-to-

one mapping can be made between the AHAM concept link (relationship) in AHAM to the

prerequisite relationship in the CAVIAr Learning Context Model definition.

In LAOS domain model concepts can be assigned weights by the course creator. This

mirrors the assignment of aknowledgeLevelto aknowledgeElementin the CAVIAr Learn-

ing Context Model. The CAVIArknowledgeElementalso allows the course creator to define

a knowledgeType. The course creator cannot assign aknowledgeTypein LAOS. In LAOS a

goal is not explicitly defined as it is in CAVIAr, but is implicitly defined as all domainmodel

concepts are goal concepts through the goal “AND” link between domain model concepts.

If there are alternative goal concepts in the domain model theAND link can be changed to

217

anORlink. Both these LAOS goal and constraint concept links map directly to the CAVIAr

goal constructs in the Learning Context Model.

The LAOS goal and constraints model does not allow for the definition of separate

learner stereotypes, but this can be defined in the LAOS user model definition. LAOS user

models are defined in terms of a goal and constraint model. Learner stereotypes in the

CAVIAr Learning Context Model can be mapped to the LAOS user model.Presumed-

Knowledgecan also be expressed for each learner in the LAOS user model, by defining an

initial knowledge level for an individual or a group of learners.

We can therefore conclude that all the elements in LAOS can be expressedwith the

CAVIAr Learning Context Model. This means the Learning Context Modelis complete.

However, all elements in the CAVIAr Learning Context Model cannot be represented in the

LAOS goal and constraints model meaning that the CAVIAr Learning Context Model is un-

sound. This is due to the addition of aknowledgeTypeelement when defining knowledge in

the CAVIAr Learning Context Model. We argue that aknowledgeTypeis necessary in order

to represent the minimal attributes of knowledge such as a learning outcome, as defined by

Gagńe et al. in [Gagńe et al., 2005].

9.5.1.3 Learning Resource Model

As we have outlined in section 5.5.3, the IEEE LOM standard [IEEE LTSC, 2002] is used as

a domain conceptualisation for the representation of LOs in the CAVIAr Learning Resource

Model. We have used LOM as it is an IEEE standard for describing learning resources. The

LO definition in the CAVIAr Learning Resource Model is based on the IEEE LOM standard.

There is a one-to-one mapping of IEEE LOM elements to CAVIArmetadataconstructs in

the Learning Resource Model.

In section 5.5.3, we also outlined a one-to-one mapping between theLO andService

elements in the CAVIAr Learning Resource Model and the LO and service definition in the

IMS LD specification. We conclude that the CAVIAr Learning Resource Model represen-

tation of LOs is both sound and complete.

218

9.5.1.4 Courseware Model

The Courseware Model can be mapped to either of the main TEL courseware specifications

ADL SCORM 2004 [ADL, 2004] or IMS LD [IMS, 2003b]. To establish thesoundness

and completeness of the CAVIAr Courseware Model we compare it with the IMS LD spec-

ification. We have chosen to use the IMS LD specification as it is the more flexible and

progressive specification, for example, allowing for the definition of different actors in the

learning process and allowing for the modelling of parallel learning activities.

In section 5.6.3, we briefly looked, at a high level, how the CAVIAr Courseware Model

can be mapped to the IMS LD specification. The section described how eachof the CAVIAr

Courseware Model constructs can be mapped to an IMS LD modelling construct. We con-

clude from this that the CAVIAr Courseware Model appears to be sound. Here, we look

at the IMS LD modelling constructs to see if they can be mapped to a CAVIAr courseware

modelling construct or group of constructs. This will establish the completeness of the

CAVIAr Courseware Model.

The IMS LD specification uses a theatre script metaphor [Koper, 2005].Each of the

script components (play and act) can be defined as CAVIAr courseware topics at different

aggregation levels. Amethodin IMS LD co-ordinatesplays by defining them in terms

of a learning objectiveandprerequisite. These constructs cannot be mapped to CAVIAr

Courseware Model constructs but can be mapped to the learninggoalandpresumed knowl-

edgeconstructs in the CAVIAr Learning Context Model.Conditionscan be defined on a

methodin IMS LD, this can be mapped to CAVIArentry learnerconditions that are defined

based onknowledge elements. One of the core concepts in IMS LD is that everybody in

the learning process gets a role, either astaff nor learner role. In CAVIAr, topicscan be

defined as suitable for particular learner roles through andentry learnerconditions, which

are based on alearner stereotypebut there is no way to definestaff roles in the CAVIAr

Courseware Model.

In IMS LD there are two types of activities, learning activities and supportactivities.

The CAVIAr Courseware Model has no way to distinguish between these two activities.

219

Activities exist within an IMS LDactivity-structure. A role performs anactivity within an

IMS LD act. Learning activities can be mapped toresourcesin the CAVIAr Courseware

Model. There is no resource structure in CAVIAr to map theactivity-structureconstruct

in IMS LD to. An outcomecan be defined for anactivity in IMS LD. This can then be

used to trigger anotification. It is not possible to define an explicitoutcomefor a topic

in the CAVIAr Courseware Model or anotification. A learning environment is defined

usinglearning objectsandservicesin IMS LD. These can be mapped to a learning resource

definition in the CAVIAr Courseware Model.

From this analysis we can conclude that the CAVIAr Courseware Model isincomplete

as many of the IMS LD constructs cannot be represented in it.

The IMS LD specification is concerned with roles other than learner ones and also

defining parallel learning events. The CAVIAr Courseware Model is, at this stage of its

development, not concerned with these and other advanced features used in the IMS LD

specification. Also there are elements in the IMS LD, such aslearning objectiveandpre-

requisite, which are featured in other CAVIAr models (Learning Context Model) and as

such do not require representation in the CAVIAr Courseware Model. We define a mini-

mal set of IMS LD constructs necessary to deem the Courseware Modelassufficientfor

the purposes of courseware validation. These are as follows:play, act, condition, learner

(role), activity, environment, learning objectandservice. All these IMS LD model elements

can be represented in the CAVIAr Courseware Model as outlined above. We can therefore

conclude that the CAVIAr Courseware Model issufficientfor courseware validation.

9.5.2 Empirical Evaluation of Course Creator’s Perception ofValidation Ef-

fectiveness

To evaluate how effective the course creator perceives CAVIAr validation we asked partic-

ipants what they thought about courseware validation. This was done after the participant

had validated the Courseware Model created during the user trials. The MIKAEL user trials

were described in detail in section 9.3.

220

9.5.2.1 MIKAEL User Trial Survey Results

In figure 9.9, we outline the results related to how the course creator felt after validating the

courseware with regard to the effectiveness of courseware validation.

Figure 9.9: Course creator reflections on validation effectiveness

9.5.2.2 Discussion

The majority of participants thought that validation brings actual courseware problems to

their attention. All participants agree that they would feel more confident about the course-

ware they had created after validating it, with 57% agreeing strongly. We alsofound that

93% of participants believe MIKAEL will improve the quality of courses (the remaining

participants gave a neutral answer).

We found from the open-ended question after validation that many participants saw key

advantages to CAVIAr validation, as validation constraints could be used to ensure that a

given courseware meets some specified requirement, either for accreditation purposes or

for a legislative requirement. Several Participants mentioned that course creators cannot be

expected to define a Validation Model using OCL. In section 6.2.2 we outlined our initial

221

efforts in defining a model-based DSML that allows the course creator to generate validation

OCL using a more intuitive interface. We look at other approaches to tacklingthis issue in

section 10.4.

9.6 Modifiability

Modifiability assesses how easily a CAVIAr implementation can be adapted to fit with a

given course creator’s requirements. To evaluate the modifiability of CAVIAr-based tools,

we define a set of common maintenance scenarios that may be required in order to validate

courseware. Using these scenarios we compare CAVIAr with the state of the art in terms of

how easily they can be modified to cope with the given scenario. This approach is based on

the ALMA (Architecture Level Modifiability Analysis) method [Bengtsson et al., 2004], a

scenario-based method used to evaluate software architecture modifiability.ALMA is used

to establish maintenance cost, assess risk and compare competing software architectures.

In our research we use ALMA in a comparative setting, comparing the modifiability of the

MIKAEL information architecture with architectures from the state of the art incourseware

validation and when required courseware authoring.

We have elicited the following software maintenance scenarios, found in courseware

validation:

• The native domain knowledge specification that is used to create the CAVIArdomain

model changes.

• There is a change to the courseware specification being used in validation.

• The validation criteria must be changed.

We look at each of these scenarios, in the following subsections.

9.6.1 Native Domain Knowledge Specification Change

Here, we consider the scenario where the native domain model specification being used to

bootstrap the CAVIAr Domain Model definition is changed.

222

Much of the state of the art in courseware authoring limits the authoring effort required

for courseware construction through the integration of existing domain knowledge specifi-

cations. Section 3.2.3 describes courseware construction tools that allow the use of existing

domain knowledge structures, in the form of Semantic Web ontologies, to bootstrap course-

ware construction. These are as follows:

• VOAT allows for the use of an RDF(S) ontology (described in section 3.2.3.3).

• OntAWare allows for the use of an OWL ontology(described in section 3.2.3.2).

• TANGRAM allows for the use of a SKOS ontology (described in section 3.2.3.1).

MIKAEL demos the use of existing knowledge structures to bootstrap the CAVIAr Do-

main Model definition (see section 8.8.1) but unlike the tools mentioned above, MIKAEL

is not based on one ontology format, but built to import a wide range of knowledge struc-

ture definitions to be used in defining the CAVIAr Domain Model. A model transformation

mapping from the external knowledge structure specification to the CAVIArDomain Model

is defined for this purpose, as outlined in section 8.8.

Should users of the state of the art wish to use a different domain knowledge specifica-

tion than the one it is implemented on, it would require major changes to the tool’s design.

CAVIAr interoperability is based on the software engineering principle of “separation of

concerns”, where the native knowledge infrastructure concern in courseware construction

have been separated. The concern is represented in the model transformation mappings,

separate to the programming logic. Should the knowledge infrastructure change or a new

one be defined, a new mapping can easily be specified allowing for its integration with the

CAVIAr implementation.

9.6.2 Courseware Specification Change

Courseware specifications, such as SCORM and IMS LD discussed in section 2.2.6, allow

for interoperability between TEL tools. This interoperability also applies to courseware

validation. Specifications allow for validation integration with courseware construction.

223

Some courseware authoring tools are designed around courseware specifications, these

are outlined in section 3.2.1, while other courseware authoring tools just usethe courseware

specification for interoperability with delivery systems, such as the ACCT, outlined in sec-

tion 3.2.5.1, and OntAWare, outlined in section 3.2.3.2. Tools that are designedaround a

courseware specification require considerable effort to allow for export to another specifi-

cation. Also, if the specification on which a tool is based is updated a major rework would

be required for these tools to be compatible with the update.

In section 8.8.4, we have looked at how courseware construction tools, based on CAVIAr,

can export specification-compliant courseware through model transformation technology.

To do this a model transformation mapping is defined from the CAVIAr Courseware Model

specification to the desired specification. A transformation framework then executes the

mapping for the given Courseware Model generating the specification-compliant course-

ware. Integrating changes to courseware specifications requires onlyupdating the transfor-

mation mappings, while the introduction of new specifications requires the definition of a

new transformation mapping to that specification. This allows for minimal effortto add

or update a courseware specification that is used in MIKAEL courseware construction, or a

courseware specification needed for validation. This is achieved by isolating the courseware

specification concern through model transformation technology.

9.6.3 Validation Criteria Change

One of the key areas of modifiability in courseware validation tools is the ability to define

what is valid and invalid. The CAVIAr Validation Model defines the validation criteria

using an OCL-defined Validation Model, allowing validation concerns to be separated from

the other courseware construction concerns. The Validation Model is not embedded in the

programming logic of the tool and can be edited by the course creator. This makes the

validation criteria easily modifiable by the course creator, allowing the coursecreator to

define what is valid and invalid for a given courseware.

In section 3.3 we outlined the state of the art in courseware validation. We compare

each validation approach with CAVIAr in terms of validation criteria modifiability:

224

• CoCoA (section 3.3.1) - Validation criteria are defined in its programming logic and

cannot be changed. Using CoCoA the course creator cannot define for themselves

what is valid and invalid for a given courseware definition. This is one of the main

criticisms from course creators who used CoCoA [Brusilovsky and Vassileva, 2003].

• Logic-based Approach (section 3.3.2) - Validation criteria is not accessible to the

course creator. The course creator can only have a minimal influence onvalidation by

defining sequencing constraints at the conceptual level and at the course component

level.

• IMS Simple Sequencing Trap Detection (section 3.3.3) - It is not possible forthe

course creator to edit the trap detection validation algorithm defining what is valid

and invalid.

• IMS LD “Guidelines” (section 3.3.4) - Guidelines can be defined using the Semantic

Web Rule Language (SWRL) [Sicilia, 2007]. Guidelines are defined as a separate

concern. It is therefore possible for the the course creator to edit IMSLD guidelines.

The IMS LD guidelines is the only approach from the state of the art that hasthe capac-

ity of separating the validation concern, allowing the validation criteria to be modified by

the course creator. We distinguish our research from IMS LD guidelinesin two ways:

• Technical Space - CAVIAr uses the metamodelling technical space whereas IMS LD

guidelines are defined in the ontological technical space.

• Scope - Guidelines define good practice in defining IMS LD only. CAVIAr isspeci-

fication agnostic and a more generic approach to defining what is valid and invalid in

courseware.

9.7 Performance

In this section we compare our approach to courseware validation with thoseused in the

state of the art, described in section 3.3, in terms of performance. To do this we look to

225

compare the time complexity of simulation-based validation, as used in the state of theart,

with the constraint-based approach, used in CAVIAr. Our aim here is to establish if our ap-

proach outperforms the state of the art, particularly with regard to personalised courseware.

Logic-based validation (section 3.3.2) and CoCoA validation (section 3.3.1) are based

on simulating a learner’s progression through courseware. The processing time of these

approaches depend on the number of independent paths through the courseware. The num-

ber of independent paths in personalised courseware can be very large. For this reason the

CoCoA courseware validation tool only allows for the validation of linear courseware with

no branching points. Logic-based validation uses temporal projection to evaluate the poten-

tial learner paths through a given courseware. Temporal projection problems are generally

accepted to be NP-Complete, but can be solved in polynomial time in a small state space

and when the state space is structured [Lin and Dean, 1996], but our research focuses on is

courseware that is large and generally has little structure.

The IMS Simple Sequencing trap detection, defined by Lin & Shih (see section3.3.4),

checks for sequencing traps in an IMS Simple Sequencing specification through the traver-

sal of sequencing trees represented using petri nets. To evaluate performance, not only does

the traversal of the petri net have to be considered but also the generation of the petri net

representation from the IMS Simple Sequencing representation. We also note that problem

space for this approach is limited, as it only covers sequencing problems asdefined in an

IMS Simple Sequencing specification.

In section 3.3.3, we outlined an approach to defining “guidelines” for IMS LD defini-

tion. This approach is similar to our approach in that it is constraints driven.Milanović

et al. outline how SWRL, the rule language used to define IMS LD “guidelines”, can be

mapped to OCL. For this reason, we have not included it in our performance comparison

[Milanović et al., 2006].

Our OCL-based approach validates courseware in terms of its compositional structure

rather than the possible learning paths it represents. This means that increasing the per-

sonalisation in a given courseware will only have a limited affect on OCL validation while

it would be extremely costly in a logic-based or petri-net approach. The processing time

226

of each CAVIAr Validation Model constraint is dependent on the number of model ele-

ments in the CAVIAr models and the number of model elements used in defining each

constraint. In [Chimiak-Opoka et al., 2008] the authors report on a set of experiments to

compare the performance of Prolog and OCL. Their experiments are conducted on queries

that range in complexity and structure. The experiments use Eclipse OCL Validation as an

OCL checker. These experiments found that OCL queries can be evaluated in good time,

with most evaluated in linear time. Some OCL constructs have been shown to cause per-

formance problems in certain contexts, but good design practice can be used to limit these

problems [Cuadrado et al., 2008].

A problem with OCL is that it does not consider aspects such as consequential errors,

or the possibility of a single courseware problem causing multiple invariant failures. These

problems are discussed by Cabot and Teniente in [Cabot and Teniente, 2006], where they

survey popular constraint tools used in Model Driven Architecture (MDA). They note ineffi-

ciencies, where constraint checkers do not assess model constraintslogically but instead use

a brute-force checking method where all constraints are checked against all of the instance

model regardless of what invariants have failed already.

9.8 Chapter Conclusion

The aim in this chapter was to evaluate CAVIAr in terms of user acceptance, where user

acceptance looks at CAVIAr effectiveness, its cost effectiveness, CAVIAr and MIKAEL

usability, CAVIAr modifiability and CAVIAr validation performance. To do this we used

three evaluation strategies; an analytical study, an empirical study and a comparative study.

The analytical study evaluated each of the CAVIAr metamodel’s effectiveness, the empirical

study evaluated MIKAEL usability, validation cost effectiveness and its perceived effective-

ness. The comparative study compared CAVIAr in terms of its modifiability and validation

performance with the state of the art.

In terms of the CAVIAr metamodel’s effectiveness, although we found the Domain

Model and the Courseware Model not to be sound and the Learning Context Model to be

227

incomplete, there were only minor inconsistencies in the mappings from the CAVIAr def-

inition to the chosen domain conceptualisation. The Domain Model can be mappedto all

the main elements of SKOS and is sufficient for its purpose in CAVIAr. Thereare also

only minor differences in the Learning Context Model and the LAOS goal and constraint

model. There are a number of IMS LD constructs that cannot be represented in the CAVIAr

Courseware Model. IMS LD is quite an ambitious language, which embeds courseware

requirements into the courseware definition. The CAVIAr Courseware Model does not at-

tempt to represent the courseware requirements. This is the responsibility of the Learning

Context Model and, as already noted, some of the requirements data in this model could

be mapped to the IMS LD specification. A minimal level of IMS LD constructs canbe

mapped to the CAVIAr Courseware Model. We therefore determined the CAVIAr Course-

ware Model sufficient to allow for validation.

After validation, the course creator had confidence in the courseware produced. This

shows that the course creator perceives validation as an effective approach to finding prob-

lems in courseware.

The MIKAEL user trials demonstrated a clear positive reaction from course creators

in terms of CAVIAr usability. Participants were also positive with respect to CAVIAr tool

support provided by MIKAEL and very positive about courseware validation in terms of its

usability and the potential time and/or cost savings in course construction.

We compared the state of the art with our approach in two ways, modifiability andper-

formance. We established, our approach is better suited to personalised courseware, due

to the expected performance gain that compositional-based validation bringsover traversal-

based validation. We established that courseware construction and validation approaches

based on CAVIAr could be easily modified using model transformation technology to meet

the needs of the course creator. We found that modifiability concerns arelargely not sepa-

rated in the state of the art in CAVIAr meaning it requires considerable effort to modify the

state of the art validation tools to the needs of a course creator.

228

Chapter 10

Conclusions

10.1 Introduction

Over the course of this thesis we have presented our constraint-based approach to course-

ware validation. Our approach allows the course creator to model the courseware construc-

tion concerns and validate a given courseware in terms of these concerns using a courseware

composition-based model constraint language. We have validated our research by design-

ing and implementing MIKAEL, a courseware construction and validation toolkitbased on

CAVIAr, our courseware validation Domain Specific Modelling Language (DSML).

Our research investigated how courseware could be validated at the pre-delivery stage

of courseware construction. It centred on the explicit representation of courseware require-

ments, requirements that are generally implicitly held by the course creator. This represen-

tation was then used to validate courseware. As mentioned in chapter 1, validation is not

a replacement for formative evaluation, but an approach to check that courseware satisfies

explicit pre-delivery requirements, defined by the course creator. Asvalidation is a course-

ware construction activity, integration with the state of the art in coursewareconstruction,

was a key research challenge that we addressed. The feasibility of ourresearch was demon-

strated through the implementation of a courseware construction software tool that allowed

for the explicit representation of courseware requirements and allowed for the validation of

courseware based on these requirements.

229

In this chapter, we summarise our research in section 10.2, outlining how ourresearch

has addressed each of the research challenges in section 1.2. This is followed by a discussion

on the achievements and contribution of our research, in section 10.3. Finally, in section

10.4, we conclude this chapter by discussing possible future work to extend the research

documented in this thesis.

10.2 Research Summary

Courseware validation, in the context of our research, looks at what can be validated in

courseware at the pre-delivery/post-construction stage of the courseware life-cycle. Our re-

search is based on using the data available at this stage of the coursewarelife-cycle, known

as the courseware construction concerns, for validation. We used the courseware construc-

tion concerns to define a validation framework, outlining the scope of validation.

We have defined a Domain Specific Modelling Language (DSML), which is comprised

of a set of metamodels, known as the Courseware Authoring Validation Information Ar-

chitecture (CAVIAr), that can be used to capture courseware requirements, a courseware

definition and details of the learning content used in the courseware. Courseware require-

ments are principally defined in the Learning Context Model. The Learning Context Model

captures the course scope and conceptual instructional constraints in terms of a subject Do-

main Model. The Courseware Model captures the structure of courseware and includes

references to LOs used in the courseware. LOs in the Learning Resource Model have meta-

data that includes references to Domain Model concept(s). This establishes a relationship

between the Courseware Model and the Learning Context Model. Each of the metamodels

is defined in terms of its abstract syntax and mapped to a semantic domain. A candidate

concrete syntax has been defined for the Domain Model, Learning Context Model and the

Courseware Model. To promote interoperability high-level mappings are defined from the

CAVIAr metamodels to relevant specifications and standards. We have evaluated each meta-

model by comparing it with an established domain conceptualisation for the data the model

captures. We found that each of the metamodels fulfilled the requirements of courseware

230

validation.

Our novel composition-oriented approach to courseware validation has been documented

in this thesis. We have considered three major validation categories using CAVIAr, course-

ware validation pre-requisites, courseware model validation and learningcontext validation.

Courseware validation pre-requisites defines data in CAVIAr models required for validation

to take place, such as essential LO metadata categories. Courseware model validation de-

fines constraints on the Courseware Model in isolation of the learning context, while learn-

ing context validation validates courseware using the courseware construction concerns de-

fined in the Learning Context Model. We described each of these constraint categories in

detail and exemplified them using the Object Constraint Language (OCL). The OCL con-

straints were defined in the context of the CAVIAr metamodels and constrained the allow-

able Courseware Model definitions. We have compared our approach with the state of the

art, which validates courseware by primarily simulating learner progressionthrough course-

ware. We found that as courseware becomes more adaptive, the simulationapproach will

result in complexity problems, whereas our approach is more suited to validation of adap-

tive courseware. We have also found that defining the Validation Model ina separate OCL

file, which can be modified by the course creator, empowers the course creator to define

what is valid and is not valid in the courseware they have constructed.

We have also outlined a courseware validation process, outlining how a course creator

validates courseware using CAVIAr. This process essentially outlines how the course cre-

ator should define each CAVIAr model to allow for validation. We have exemplified each

of the activities described in the courseware validation process using a case-study appli-

cation of the validation process, the validation of DCU module CA218 - “Introduction to

Databases”.

The feasibility of our validation approach has been addressed through the develop-

ment of a proof of concept implementation known as the Management Infrastructure for

Knowledge-based Adaptive E-Learning (MIKAEL). MIKAEL is a courseware construc-

tion and validation software tool that is based on CAVIAr. MIKAEL allows thecourse

creator to intuitively create a CAVIAr Learning Context Model to represent the courseware

231

construction concerns. The courseware construction concerns defined using the CAVIAr

Learning Context Model are then used to generate a Courseware Model. Generation is per-

formed using a model transformation, which generates a Courseware Model based on the

courseware construction concerns defined in the Learning Context Model. The course cre-

ator can define various mappings to generate different types of Courseware Models. The

course creator can use the mappings to specify what instructional designhe or she wishes to

use in courseware. We have also outlined how model transformation technology can be used

to provide for CAVIAr interoperability with TEL and related specifications in the MIKAEL

tool. This allows the course creator to generate many of the CAVIAr models, limiting the

effort involved in courseware construction and validation. Model transformation technology

also allows for the course creator to export a Courseware Model to a TEL specification.

MIKAEL was used in a series of user trials that examined CAVIAr-based courseware

construction in terms of its usability and benefits to the course creator. We recieved positive

results from the users of the system. Of particular note were the positive results regard-

ing courseware validation, where course creators stated they would be more confident in a

constructed courseware post-validation.

10.3 Discussion

Our approach to courseware validation is novel, in that it does not simulate learner interac-

tion with the courseware, but instead looks to validate the courseware based on its structure

and composition. Validation is achieved by allowing the explicit representation of course-

ware and the courseware construction concerns using a DSML known as CAVIAr. Valida-

tion criteria are expressed as a set of constraints that constrain what is allowable courseware

structure. The adaptivity found in personalised courseware greatly adds to the complexity

of the state of the art courseware validation approaches that are basedon learner simula-

tion, we have established that our constraint-based approach is better suited to validation of

adaptive courseware when compared with the state of the art.

One of the principle problems found in the state of the art courseware validation tool

232

support is that the definition of what is valid and invalid in courseware is hidden from

the course creator in the tool’s programming logic [Brusilovsky and Vassileva, 2003]. Our

approach exposes the validation definition to the course creator, empowering the course cre-

ator to define what he or she deems as valid or invalid. This flexibility is a key contribution

of our work.

Using the metamodelling technical space allows us to utilise model transformation tech-

nology for converting to, from and between CAVIAr models. We utilise modeltransforma-

tion in three key areas:

• Importing a Domain Model - Importing a Domain Model from a knowledge structure

specification.

• Importing a Courseware Specification - Importing a Courseware Model from a TEL

or AEH specification.

• Exporting a Courseware Model - Exporting courseware defined as a CAVIAr Course-

ware Model into a TEL specification.

The import and export of models illustrates our interoperability approach withTEL tool

support, allowing for courseware validation to be integrated with courseware construction.

Model transformation technology allows us to bootstrap a Domain Model definition using

a knowledge structure from any source as long as an abstract syntax isexplicitly defined for

the data source and it can be mapped to the CAVIAr Domain Model definition. Courseware

specifications can also be used to define CAVIAr models using model transformation tech-

nology. We can also use model transformation technology to export a Courseware Model to

any specification where an abstract syntax is explicitly defined for the specification, and a

mapping is defined from the CAVIAr Courseware Model to the specification. This provides

for maintainable interoperability, where if an import or export specification changes all that

is required to remain interoperable is an altering of the mapping. Further still, if thecourse

creator wishes to interoperate with a specification which was unforeseen when CAVIAr tool

support was developed it can be easily integrated by just defining a new mapping. This al-

233

lows CAVIAr validation to be easily integrated into existing courseware construction tools

and methodologies.

As courseware gets more complex, through personalisation, and as the course creator

becomes more abstracted from the construction of courseware, throughreuse and collab-

orative authoring, it will become a necessity that the course creation tool can assist the

course creator in verifying that the courseware created satisfies the course creator’s require-

ments. Although it is not possible to validate issues such as learner motivation and the

effects of instructional material until a formative evaluation has taken place, we have found

that validation can test the courseware for a wide range of pedagogicaland non-pedagogical

problems that can be defined in terms of the courseware structure and the courseware con-

struction concerns. We have also found that these types of problems will get more difficult to

check for, as courseware becomes increasingly adaptive. Validation will also make forma-

tive evaluation more powerful, as the more mundane courseware problems can be checked

automatically and will not get in the way of evaluating more complex pedagogicalaspects

of courseware such as those evaluated in a courseware’s formative evaluation.

Another point of interest raised during the user trials, is that courses are a necessity in

the corporate world, indeed the delivery of courses with specific learning outcomes are part

of compliance regulations where organisations are legally obligated to train their staff on

certain issues. Courseware validation allows for the verification that a given courseware is

compliant with defined legislative requirements that it has been designed to address.

10.4 Future Work

A number of enhancements to our validation approach have been identified as future work

through our own insight and through feedback from course creatorsduring the MIKAEL

user trials. These enhancements are as follows:

• Intuitive Validation Model definition.

• Enhancements to the Courseware Model.

234

• Categorisation of courseware problems.

• Correction integration.

10.4.1 Intuitive Validation Model Definition

The Validation Model is defined using OCL. OCL is a language designed forsoftware engi-

neers to define constraints on UML models to remove ambiguity (as outlined in section 2.4).

The principle user of CAVIAr is the course creator. We cannot expectthe course creator

to be able to define the CAVIAr Validation Model in OCL. In section 6.2.2, we described

one approach that we have investigated to allow for a more intuitive interfacefor defining

the CAVIAr Validation Model, the application of a DSML to abstract the complexityin

defining OCL constraints. OCL is generated from a DSML definition. Using this approach

a Validation Model is defined using the DSML and OCL is then generated fromthe DSML

definition. This provides a powerful interface for the course creator todefine a Validation

Model. We have presented an experimental proof of concept to this effect, in section 6.2.2.

Once integrated it will provide course creators with an intuitive way to definea CAVIAr

Validation Model.

Another proposal to allow for a more intuitive approach to defining a ValidationModel

is to apply the reuse and componentisation paradigm, used for LOs [Wiley, 2001], to vali-

dation rules. In this approach, Learning Object Repositories (LORs) store validation rules.

These validation rules are formalised in OCL and also annotated using metadatathat the

course creator understands. The course creator can search for validation rules in the LOR

based on the validation needs of the course creator. The course creator can make a decision

on whether or not to use a validation rule based on the constraint’s annotation. Valida-

tion rules, found in the LOR, can also be aggregated together. Various validation rules

aggregated together can be used to ensure an instructional design theory has been applied

correctly to courseware. This aggregation of courseware validation constraints can also be

annotated and stored in a LOR, therefore allowing for the reuse of a Validation Model that

ensures the correct application of an instructional design theory.

235

10.4.2 Enhancement of the Courseware Model

In section 9.5.1.4, we evaluated the CAVIAr Courseware Model by comparing it with the

IMS LD specification. We found that some elements of the IMS LD specificationcould

not be represented in the CAVIAr Courseware Model. This is due to the ambitious na-

ture of the IMS LD specification that seeks to fully describe the whole teaching process

[Koper and Olivier, 2004]:

• Defining staff roles as well as learner roles.

• Defining support activities as well as the main learning activities.

• Defining both single and multiple user models.

• Allowing for blended and online only learning

A future enhancement to the CAVIAr Courseware Model would be to incorporate these

aspects of the IMS LD specification that are currently lacking.

Another enhancement to the CAVIAr Courseware Model would be the definition of an

intuitive flow-based concrete syntax. In section 3.2.5, we outlined approaches from the

state of the art that model a “unit of learning” using a flow-oriented notation. One of our

criticisms of flow-oriented approaches to courseware representation is that flow-oriented no-

tation can get very verbose when modelling highly adaptive courseware,and in courseware

where the learner has a lot of free choice. It would be interesting to investigate approaches

to representing the courseware using flow-oriented notation, such as:

• Investigating new business flow notations, such as the Business ProcessModelling

Notation (BPMN) [White, 2004], rather than software engineering oriented notation,

as a more intuitive way of representing courseware flow.

• Generating a flow-notation for each individual learner stereotype to limit variability

in one diagram.

236

10.4.3 Categorisation of Courseware Problems

One of the problems with OCL is that constraints have no semantics associated with them.

Some attempts to overcome this can be found in the EMF validation project, which allows

for the mapping of various severity levels to different OCL constraints [Steinburg et al., 2008].

We found during the course of the MIKAEL user trials that course creators desire categori-

sation of the validation errors found in courseware to help them decide whether a validation

error is something that can be ignored or something that must be addressed.

To do this a metadata layer could be defined on OCL constraints where each constraint

is annotated to indicate the severity of the problem and other such data that is useful to the

course creator. As the OCL parser used in MIKAEL is open source, wecould extend this

OCL parser to parse this metadata, allowing for the severity levels to be incorporated into

validation.

10.4.4 Correction integration

Integrating correction support into the CAVIAr validation framework is a natural progres-

sion. Validation data could be used to recommend possible correction strategies to the

course creator. The category of a courseware problem identified as outlined in section

10.4.3 could also be used as a basis for recommending a correction strategy.Indeed for

each category of validation error defined in the CAVIAr Validation Model, there could be

a corresponding correction strategy, which is initialised by the particulars of the constraint

that fails during validation.

237

Bibliography

[ACM, 1998] ACM (1998). The ACM computing classification system. Technical report,

Association of Computer Machinery.

[ADL, 2004] ADL, A. (2004). SCORM 2004 Overview. Available from:

http://www.adlnet.gov/scorm/index.cfm.

[Albert and Stefanutti, 2003] Albert, D. and Stefanutti, L. (2003). Knowledge structures

and didactic model selection in learning object navigation. InProccedings of the Joint

Workshop in Cognition and Leanring through Media-Communicaiton for Advanced E-

Leanring (JWCL), pages 1–10, Berlin, Germany.

[Altova, 2005] Altova (2005).Altova Xmlspy 2005 User & Reference Manual. Vervante.

[Aroya et al., 2002] Aroya, L., Cristea, A. I., and Dicheva, D. (2002). A Layered Approach

towards Domain Authoring. InProceedings of The International Conference on Artificial

Intelligence (ICAI02), pages 615–621. CSREA.

[Arthorne and Laffra, 2004] Arthorne, J. and Laffra, C. (2004). Official Eclipse 3.0. Num-

ber 0321268385 in Eclipse Series. Addison Wesley.

[ATLAS Group, 2006] ATLAS Group (2006). Atl: Atlas transformation language - atl user

manual. Technical report, LINA & INRIA.

[Bajnai and Stienberger, 2003] Bajnai, J. and Stienberger, C. (2003). Eduweaver the web-

based courseware design tool. InProceedings of IADIS International Conference Inter-

net/WWW 2003, Algarve, Portugal. IADIS.

238

[Baldoni et al., 2006] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Torasso, L.

(2006). Verifying the compliance of personalized curricula to curricula models in the

semantic web. InProceeding of the Semantic Web Personalization Workshop at the

Third European Semantic Web Conference (ESWC2006). Springer-Verlag LNCS Series.

[Baldoni et al., 2004a] Baldoni, M., Baroglio, C., and Patti, V. (2004a). Web-Based Adap-

tive Tutoring: An Approach Based on Logic Agents and Reasoning about Actions. Arti-

ficial Intelligence Review, 22(1):3–39.

[Baldoni et al., 2004b] Baldoni, M., Baroglio, C., Patti, V., and Torasso, L. (2004b). Rea-

soning about learning object metadata for adapting SCORM courseware.In Proceeding

of the International Workshop on Engineering the Adaptive Web: Methodsand Tech-

nologies for personalization adn adaptation in the Semantic Web (EAW204), pages 4–13.

Springer-Verlag LNCS Series.

[Baldoni et al., 2004c] Baldoni, M., Giordano, L., Martelli, A., and Patti, V. (2004c). Pro-

gramming Rational Agents in a Modal Action Logic.Annals of Mathematics and Artifi-

cial Intelligence, Special issue on Logic-Based Agent Implementation, 41(2-4):207–257.

[Beckert et al., 2002] Beckert, B., Keller, U., and Schmitt, P. (2002). Translating the object

constraint language into first-order predicate logic. InIn Proceedings, VERIFY, Work-

shop at Federated Logic Conferences (FLoC).

[Bengtsson et al., 2004] Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H. (2004).

Architecture-level modifiability analysis (alma).The Journal of Systems and Software,

69:129–147.

[Bézivin et al., 2005] B́ezivin, J., Jouault, F., Rosenthal, P., and Valduriez, P. (2005).Model

Driven Architecture, chapter Modeling in the Large and Modeling in the Small, pages

33–46. Springer.

239

[Blackerby et al., 2002] Blackerby, C., Shelton, C., and Gillis, L. B. (2002). A report to the

78th texas legislature on investigating quality of online courses. Technical report, Texas

Education Agency.

[Briggs et al., 1991] Briggs, L., Gustafson, K. L., and Tillman, M. H., editors (1991). In-

structional Design: Principles and Applications. Educational Technology Publications,

New Jersey, USA.

[Brusilovsky, 1996] Brusilovsky, P. (1996). Methods and techniques of adaptive hyperme-

dia. Methods and Techniques of Adaptive Hypermedia, 6(2-3):87–129.

[Brusilovsky, 2000] Brusilovsky, P. (2000). Concept-based courseware engineering for

large scale web-based education. In Davies, G. and Owen, C., editors,Proceedings

of WebNet2000, World Conference of the WWW and Internet, pages 69–74, San Antonio,

TX. AACE.

[Brusilovsky et al., 1998] Brusilovsky, P., Eklund, J., and Schwarz, E. (1998). Web-based

education for all: a tool for development adaptive courseware.Computer Networks and

ISDN Systems, 30(1–7):291–300.

[Brusilovsky and Vassileva, 2003] Brusilovsky, P. and Vassileva, J.(2003). Course se-

quencing techniques for large-scale web-based education.International Journal Con-

tinuing Engineering Education and Lifelong Learning, 13(1/2):75–94.

[Budd, 2004] Budd, J. W. (2004). Mind maps as classroom exercises. Journal of Economic

Education, 35(1):35–46.

[Cabot and Teniente, 2006] Cabot, J. and Teniente, E. (2006). Constraint support in mda

tools: A survey. InModel Driven Architecture ? Foundations and Applications, number

4066 in LNCS, pages 256–267. Springer-Verlag.

[Carey and Dick, 1991] Carey, L. M. and Dick, W. (1991).Instructional Design: Prin-

ciples and Applications, chapter Summative Evaluation, pages 269–311. Educational

Technology Publications, 2nd edition.

240

[Chimiak-Opoka et al., 2008] Chimiak-Opoka, J., Felderer, M., Lenz, C., and Lange, C.

(2008). Querying uml models using ocl and prolog: A performance study. In Proceeding

of the Software Testing Verification and Validation Workshop, 2008. ICSTW’08, pages

81–88. IEEE.

[Cristea and Aroya, 2002] Cristea, A. and Aroya, L. (2002). Adaptive authoring of adap-

tive educational hypermedia. In DeBra, P., Brusilovsky, P., and Conejo, R., editors,

Proceedings of the 2nd International Conference on Adaptive Hypermedia (AH2002),

pages 122–132, Malaga, Spain. Springer-Verlag.

[Cristea et al., 2007] Cristea, A., Smits, D., and deBra, P. (2007). Towards a generic adap-

tive hypermedia platform: a conversion case study.Journal of Digital Information, 8(3).

[Cristea and de Mooij, 2003] Cristea, A. I. and de Mooij, A. (2003). LAOS: Layered

WWW AHS Authoring Model and their corresponding Algebraic Operators. In Pro-

ceedings of The Twelfth International World Wide Web Conference (WWW03), Alternate

Track on Education. ACM.

[Cristea et al., 2003a] Cristea, A. I., Smits, D., and de Bra, P. (2003a). Writing MOT, Read-

ing AHA! - converting between an authoring and a delivery system for adaptive educa-

tional hypermedia. InProceedings of The Third International Workshop on Authoring of

Adaptive and Adaptable Educational Hypermedia at AIED05.

[Cristea et al., 2003b] Cristea, A. I., Stewart, C., Brailsford, T., and Cristea, P. (2003b).

Evaluation of Interoperability of Adaptive Hypermedia Systems: testing the MOT to

WHURLE conversion in a classroom setting. InProceedings of The Third International

Workshop on Authoring of Adaptive and Adaptable Educational Hypermedia at AIED05.

[Cuadrado et al., 2008] Cuadrado, J. S., Jouault, F., Molina, J. G., andBézivin, J. (2008).

Optimization patterns for OCL-based model transformation. InProceedings of the 8th

OCL Workshop at the UML/MoDELS Conferences, Toulouse, France.

241

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. (2000). Generative

Programming: Methods, Tools and Applications. Addison-Wesley Professional.

[Czarnecki and Helson, 2006] Czarnecki, K. and Helson, S. (2006). Feature-based survey

of model transformation approaches.IBM Systems Journal, 45(3):621–645.

[Daconta et al., 2003] Daconta, M. C., Obrst, L. J., and Smith, K. T. (2003). The Semantic

Web: A Guide to the Future of XML, Web Services and Knowledge Management. Wiley

Publications, Indianapolis, Indiana.

[Dagger, 2006a] Dagger, D. (2006a). Authoring standards basedpersonalised elearn-

ing. In Reeves, T. and Yamashita, S., editors,Proceedings of World Conference on

E-Learning in Corporate, Government, Healthcare, and Higher Education, pages 2680–

2685, Chesapeake, VA. AACE.

[Dagger, 2006b] Dagger, D. (2006b).Personalised eLearning Development Environments.

PhD thesis, University of Dublin.

[Dagger et al., 2003] Dagger, D., Conlan, O., and Wade, V. P. (2003). An architecture for

candidacy in adaptive elearning systems to faciltate the reuse of learning resources. In

Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare,

and Higher Education, page 49, Chesapeake, VA. AACE.

[Dawson and Howes, 1998] Dawson, F. and Howes, T. (1998). vCard MIME Directory

Profile. RFC Editor.

[DCMI, 2006] DCMI (2006). Dublin core metadata. http://dublincore.org.

[DeBra and Calvi, 1998] DeBra, P. and Calvi, L. (1998). AHA!: a Generic Adaptive Hy-

permedia System. InProceedings of the 2nd Workshop on Adaptive Hypertext and

Hypermedia, http://wwwis.win.tue.nl/ah98/Proceedings.html. Eindhoven University of

Technology.

242

[DeBra et al., 1999] DeBra, P., Houben, G.-J., and Wu, H. (1999). AHAM: A Dexter-based

Reference Model for Adaptive Hypermedia. InProceedings of the 10th ACM Conference

on Hypertext and Hypermedia, pages 147–156. ACM.

[Dick and Carey, 1991] Dick, W. and Carey, L. M. (1991).Instructional Design: Prin-

ciples and Applications, chapter Formative Evaluation, pages 227–267. Educational

Technology Publications, 2nd edition.

[Djuri ć et al., 2006] Djuríc, D., Găsevic, D., and Deved̆zic, V. (2006). The Tao of Modeling

Spaces.Journal of Object Technology, 6(x). forthcoming.

[Doniger et al., 2003] Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K.,

Lawlor, S. C., and Conklin, B. R. (2003). MAPP:Finder: using Gene Ontology and

GenMAPP to create a global gene-expression profile from micro arraydata. Genome

Biology, 4(R7).

[DresdenOCL, 2007] DresdenOCL, T. (2007). Dresden OCL Toolkit. http://dresden-

ocl.sourceforge.net/.

[Dwolatzky et al., 2002] Dwolatzky, B., Kennedy, I., and Owens, J. (3-4 Jan. 2002). Mod-

ern software engineering methods for developing courseware.Engineering Education

2002: Professional Engineering Scenarios (Ref. No. 2002/056), IEE, 2:–32/6.

[Eclipse Foundation, 2008] Eclipse Foundation (2008). Eclipse M2M Project .

http://www.eclipse.org/m2m.

[Eclipse Foundation, 2009] Eclipse Foundation (2009). Eclipse M2T Project.

http://www.eclipse.org/modeling/m2t/.

[Eclipse MDT, 2008] Eclipse MDT (2008). Model development tools (mdt).

[Eifel, 2007] Eifel (2007). XML SCORM Studio. http://www.eife-

l.org/publications/softwarecenter/xmlscormstudio.

243

[Eklund and Brusilovsky, 1999] Eklund, J. and Brusilovsky, P. (1999). InterBook: An

Adaptive Tutoring System.UniServe Science News, 12:8–13.

[Eriksson et al., 2003] Eriksson, H.-E., Penker, M., Lyons, B., and Fado, D. (2003).UML

2.0 Toolkit. Wiley Publications, Indianapolis, Indiana.

[EU Bologna Agreement, 2000] EU Bologna Agreement (2000). The Bologna Declaration

on the European space for Higher Education: an explanation. Technical report, Confed-

eration of EU Rectors’ Conferences and the Association of European Universities.

[FOKUS, Fraunhofer Institute, 2006] FOKUS, Fraunhofer Institute (2006). Open Source

Library for OCL (OSLO). http://oslo-project.berlios.de/.

[Frankel, 2003] Frankel, D. S. (2003).Model Driven Architecture. Wiley Publications,

Indianapolis, Indiana.

[Gagńe et al., 2005] Gagńe, R., Wager, W., Golas, K., and Keller, J. (2005).Principles of

Instructional Design. Wadsworth, California, USA, 5th edition.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Patterns: elements of reusable object-oriented software. Addison Wesley, New Jersey,

USA.

[Găsevíc et al., 2006] Găsevíc, D., Djurić, D., and Deved̆zić, V. (2006). Model-Driven

Architecture and Ontology Development, chapter The Ontology Definition Metamodel

(ODM), pages 181–199. Springer-Verlag.

[Gomez-Perez et al., 2004] Gomez-Perez, A., Corcho, O., and Fernandez-Lopez, M.

(2004). Ontological Engineering: with examples from the areas of Knowledge Man-

agement, e-Commerce and the Semantic Web. Springer.

[Griffiths et al., 2009] Griffiths, D., Beauvoir, P., Liber, O., and Barrett-Baxendale, M.

(2009). From reload to recourse: learning from ims learning design implementations.

Distance Education, 30(2):201 – 222.

244

[Gronback, 2009] Gronback, R. C. (2009).Eclipse Modeling Project: A Domain-Specific

Language Toolkit. Addison Wesley Professional, pre-print edition.

[Grützner et al., 2004] Grützner, I., Weibelzahl, S., and Waterson, P. (2004). Improving

courseware quality through lifecycle encompassing quality assurance. In Proceeding of

the Symposium on Applied Computing (SAC ’04), Nicosia, Cyprus. ACM Press.

[Guizzardi et al., 2005] Guizzardi, G., Pires, L. F., and van Sinderen,M. (2005). Ontology-

based evaluation and design of domain-specific visual modeling languages. In Proceed-

ings of the 14th International Conference on Information Systems Development, number

3713 in LNCS, pages 691–705.

[Harel and Rumpe, 2004] Harel, D. and Rumpe, B. (2004). Meaningful modeling: What’s

the semantics of “semantics”.Computer, 37(10):64–72.

[Hemenway and Calishain, 2003] Hemenway, K. and Calishain, T. (2003). Spidering

Hacks. Number 0596005776. O’Reilly Publications, Sepastopol, CA, USA.

[Hendler, 2008] Hendler, J. (2008). Web 3.0: Chicken farms on the semantic web. IEEE

Computer, 41(1):106–108.

[Holohan, 2003] Holohan, E. (2003). Automating the Generation of Courseware. Master’s

thesis, Dublin City University.

[Holohan et al., 2005] Holohan, E., McMullen, D., Melia, M., and Pahl, C. (2005). Adap-

tive Courseware Generation based on Semantic Web Technologies. InProceeding of the

International Workshop on Applications of Semantic Web Technologies forE-Learning

(SW-EL2005) at the Twelveth International Conference on Artificial Intelligence in Edu-

cation (AIED2005). IOS Press.

[Holohan et al., 2006] Holohan, E., McMullen, D., Melia, M., and Pahl, C. (2006). Adap-

tive Courseware Generation based on Semantic Web Technologies. InProceeding of the

Sixth International Conference on Advanced Learning Technologies (ICALT2005), pages

967–969. IEEE Computer Society.

245

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F., Boley,H., Tabet, S., Grosof, B.,

and Dean, M. (2004). SWRL: A Semantic Web Rule Language Combining OWLand

RuleML. Technical report.

[Hummel et al., 2004] Hummel, H., Manderveld, J., Tattersall, C., and Koper, R. (2004).

Educational modelling language and learning design: new opportunities forinstructional

reusability and personalised learning.International Journal of Learning Technology,

1(1):110–126.

[Hussmann et al., 2000] Hussmann, H., Demuth, B., and Finger, F. (2000). Modular archi-

tecture for a toolset supporting ocl. Number 1939 in LNCS, pages 278–293. Springer.

[IEEE LTSC, 2002] IEEE LTSC (2002). LTSC WG12:Learning Object Metadata. IEEE

Learning Technology Standards Committee.

[IMS, 2002] IMS (2002). IMS Reusable Definition of Competency or Educational Objec-

tive . Technical Report 1.0, IMS Global Learning Consortium.

[IMS, 2003a] IMS (2003a). IMS Content Packaging (Version 1.3.1) Overview.

Technical Report 03/19, IMS, Global Learning Consortium. Available from:

www.imsglobal.org/content/packaging/.

[IMS, 2003b] IMS (2003b). IMS Learning Design. Technical report, IMS, Global Learning

Consortium.

[IMS, 2003c] IMS (2003c). IMS Simple Sequencing Specification. Tech-

nical Report 03/19, IMS, Global Learning Consortium. Available from

http://www.imsglobal.org/simplesequencing/.

[IMS, 2005] IMS (2005). IMS Learner Information Package. Technical Report Version

1.0.1, IMS Global Learning Consortium.

[Ismail, 2001] Ismail, J. (2001). The design of an e-learning system: Beyond the hype.The

Internet and Higher Education, 4(3-4):329 – 336.

246

[Janjua, 2008] Janjua, U. T. (2008). Model Based OCL Generation.MSE, Dublin City

University.

[Jouault and Kurtev, 2005] Jouault, F. and Kurtev, I. (2005). Transforming Models with

ATL. In Proceedings of the Model Transformations in Practice Workshop at MoDELS

2005.

[Jovanovíc et al., 2006a] Jovanović, J., Găsevíc, D., and Devedzic, V. (2006a). Dynamic

Assembly of Personalized Learning Content on the Semantic Web. InProceeding of the

3rd European Semantic Web Conference 2006 (ESWC2006). Springer Verlag.

[Jovanovíc et al., 2006b] Jovanović, J., Găsevíc, D., and Devedzic, V. (2006b). Ontology-

based Automatic Annotation of Learning Content.International Journal on Semantic

Web and Information Systems, 2(2):91–119.

[Jovanovíc et al., 2005] Jovanović, J., Găsevíc, D., Verbert, K., and Erik, D. (2005). Ontol-

ogy of learning object content structure. InProceeding of the 12th International Confer-

ence on Artifical Intelligence in Education, pages 322–329. IOS Press.

[Karampiperis and Sampson, 2004] Karampiperis, P. and Sampson, D. (2004). Adaptive

hypermedia authoring: From adaptive navigation to adaptive learning support. In Pro-

ceedings of the 2nd International Workshop on Authoring of Adaptive and Adaptable

Hypermedia at AH2004, Eindhoven, Netherlands.

[Kay, 2000] Kay, J. (2000). Stereotypes, student models and scrutability. In Gauthier, G.,

Frasson, C., and VanLehn, K., editors,Proceedings of Intelligent Tutoring Systems 2000

(ITS 2000), number 1839 in LNCS, pages 19–30. Springer-Verlag.

[Kenny, 2006] Kenny, C. (2006). Automated tutoring for a databases skills training envi-

ronment. Master’s thesis, Dublin City University.

[Koper, 2005] Koper, R. (2005).Learning Design: A Handbook on Modelling and Deliv-

ering Networked Education and Training, chapter An Introduction to Learning Design,

pages 3–19. Springer.

247

[Koper and Olivier, 2004] Koper, R. and Olivier, B. (2004). Representing the learning de-

sign of units of learning.Educational Technology & Society, 7(3):97–111.

[Kurtev et al., 2006] Kurtev, I., B́ezivin, J., Jouault, F., and Valduriez, P. (2006). Model-

based DSL Frameworks. InSSPSLA’06: Companion of the 21st ACM SIGPLAN con-

ference on Object-oriented programming systems, languages, and applications, pages

602–616, New York, USA. ACM Press.

[Laforcade and Choquet, 2006] Laforcade, P. and Choquet, C. (2006). Next Step for Edu-

cational Modeling Languages: The Model Deiven Endineering and Reengineering Ap-

proach. InProceeding of the Sixth IEEE International Conference on Advanced Learning

Technologies (ICALT2006), pages 747–746. IEEE Computer Society.

[Lenat, 1996] Lenat, D. (1996). Cyc: a large-scale investement in knowledge infrastruc-

ture. Communications of the ACM, 38(11):33–38.

[Likert, 1932] Likert, R. (1932). A technique for the measurement of attitudes.Archives of

Psychology, (140):1–155.

[Lin and Shih, 2009] Lin, F. H. and Shih, T. K. (2009). Automatic Trap Detection: A

Debugging Mechanism for Abnormal Specification in the IMS Sequencing Controls.

IEEE Transactions on Learning Technology, 1(3):176–189.

[Lin and Dean, 1996] Lin, S. and Dean, T. (1996). Localized temporalreasoning using

subgoals and abstract events.Computational Intelligence, 12:423–449.

[Martin et al., 2007] Martin, B., Mitrovic, A., and Suraweera, P. (2007).Domain Mod-

elling with Ontology: A Case Study. InProceedings of the 5th International Workshop

on Authoring for Adaptive and Adaptable Hypermedia (A3H), Corfu, Greece.

[Martı́nez-Ortiz et al., 2007] Martı́nez-Ortiz, I., Moreno-Ger, P., Sierra, J. L., and

Ferńandez-Manj́on, B. (2007). Computers and Education: E-learning – from theory

to practice, chapter Educational Modeling Languages: A Conceptual Introduction and a

High-Level Classification, pages 27–40. Springer.

248

[Martı́nez-Ortiz et al., 2009] Martı́nez-Ortiz, I., Sierra, J. L., and Fernández-Manj́on, B.

(2009). Translating e-leanring flow-oriented activity sequencing descriptions into rule-

based designs. InProceedings of the 6th International Conference on Information Tech-

nology: New Generations, Las Vegas, Nevada, USA.

[McMullen, 2007] McMullen, D. (2007). Using ontology technology to support content

generation and run time adaptivity in e-learning environments. Master’s thesis, Dublin

City University.

[McMullen et al., 2005] McMullen, D., Holohan, E., Melia, M., and Pahl, C. (2005).

Knowledge-Driven Learning Technology Systems. InProceeding of the Sixth Annual

Irish Educational Technology User’s Conference (EdTech05). ILTA.

[Melia et al., 2006] Melia, M., Barrett, R., and Pahl, C. (2006). A Model-Based Approach

to SCORM Sequencing. InProceeding of the Sixth Annual Irish Educational Technology

User’s Conference (EdTech06) - Research Track. ILTA.

[Melia et al., 2005] Melia, M., Holohan, E., McMullen, D., and Pahl, C. (2005). Ontology-

based Adaptive Content Navigation. InProceeding of the First International Conference

on Methods and Technologies for Learning (ICMTL2005), pages 435–440. WIT Press.

[Melia and Pahl, 2006a] Melia, M. and Pahl, C. (2006a). Automatic Validationof Learning

Object Compositions. InProceedings of the Information Technology and Telecommuni-

cations Conference IT&T2006, number 1649-1246, Carlow, Ireland. TecNet.

[Melia and Pahl, 2006b] Melia, M. and Pahl, C. (2006b). Semantically-enabled Model

Driven Course Development. InProceeding of the First European Conference on Tech-

nology Enhanced Learning (EC-TEL06) - Doctoral Consortium Session. EC-TEL06

Workshop Proceedings.

[Melia and Pahl, 2007a] Melia, M. and Pahl, C. (2007a). An information architecture for

courseware validation. InProceedings of the 8th Annual Irish Educational Technology

User’s Conference (EdTech2007). ILTA.

249

[Melia and Pahl, 2007b] Melia, M. and Pahl, C. (2007b). An information architecture for

validating courseware. In Massart, D. and Colin, J.-N., editors,Proceeding of the First

International Workshop on Learning Object Discovery and Exchange(LODE2007) at

EC-TEL2007, Crete, Greece. CEUR Workshop Proceedings.

[Melia and Pahl, 2007c] Melia, M. and Pahl, C. (2007c). Pedagogical validation of course-

ware. In Duval, E., Klamma, R., and Wolpers, M., editors,Proceedings of the Sec-

ond European Conference on Technology Enhanced Learning, number 4753 in LNCS.

Springer.

[Melia and Pahl, 2008] Melia, M. and Pahl, C. (2008). Towards the validation of adaptive

educational hypermedia using CAVIAr. InProceeding of the 6th International Workshop

on Authoring Adaptive and Adaptable Hypermedia (A3H2008), AH2008 Workshop Pro-

ceedings, Hannover, Germany.

[Melia and Pahl, 2009] Melia, M. and Pahl, C. (2009). Constraint-basedvalidation of adap-

tive e-learning courseware.IEEE Transactions on Learning Technology, 2(1):37–49.

[Mendling et al., 2007] Mendling, J., Neumann, G., and van der Aalst, W. (2007). On the

correlation between process model metrics and errors. InER ’07: Tutorials, posters,

panels and industrial contributions at the 26th international conference onConceptual

modeling, number 978-1-920682-64-4, pages 173–178, Darlinghurst, Australia. Aus-

tralian Computer Society, Inc.

[Mernik et al., 2005] Mernik, M., Anthony, J. H., and Sloane, A. M. (2005). When and

how to develop domain-specific languages.ACM Computer Survey, 37(4):316–344.

[Milanović et al., 2006] Milanovíc, M., Găsevíc, D., Giurca, A., Wagner, G., and Devedz̆ić,

V. (2006). Sharing owl/swrl and uml/ocl rules. InIn proceedings of OCLApps 2006: OCL

for (Meta-)Models in Multiple Application Domains, Genova, Italy.

250

[Miles and Bechhofer, 2009] Miles, A. and Bechhofer, S. (2009). Skos simple

knowledge organization system reference. Candidate recommendation, W3C,

http://www.w3.org/TR/2009/CR-skos-reference-20090317/.

[Miles and Brickley, 2005] Miles, A. and Brickley, D. (2005). SKOS Core Guide. Techni-

cal report.

[Mississippi State University, 2007] Mississippi State University (2007). InSite Studio.

http:thorax.erc.msstate.eduinsitedefault.aspx.

[Mitrovic et al., 2007] Mitrovic, A., Martin, B., and Suraweera, P. (2007). Intelligent Tu-

tors for All: The Constraint-Based Approach.IEEE Inteligent Systems, 22(4):38–45.

[Mitrovic et al., 2006] Mitrovic, A., Suraweera, P., Martin, B., Zakharov,K., Milik, N., and

Holland, J. (2006). Authoring constraint-based tutors in aspire. InProceedings of the

8th International Conference on Intelligent Tutoring Systems (ITS2006), pages 41–50.

Springer-Valag.

[Motelet et al., 2007] Motelet, O., Baloian, N., and Pino, J. A. (2007).Learning Object:

Standards, Metadata, Repositories and LCMS, chapter Learning Object Metadata and

Automatic Processes: Issues and Perspectives, pages 185–220. Informing Science.

[Murray, 2003] Murray, T. (2003).Authoring tools for Advanced Technology Learning

Environments, chapter An Overview of Intelligent Tutoring System Authoring Tool: Up-

dated Analysis of the State of the Art, pages 491–538. Kluwer Academic Publishers.

[Nesbit et al., 2003] Nesbit, J., Belfer, K., and Leacock, T. (2003). Learning object review

instrument (lori) - user manual. User Manual 1.5, eLera.

[Niles and Pease, 2001] Niles, I. and Pease, A. (2001). Origins of thestandard upper

merged ontology: A proposal for the ieee standard upper ontology. InIn Working Notes

of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology, Seattle Washington.

251

[NQAI, 2003] NQAI (2003). National quailifications authority of ireland -national frame-

work of quailifications. http://www.nfq.ie/nfq/en/publicresources/documents/TheNFQ-

AnOverview.pdf.

[Olivier and Tattersall, 2005] Olivier, B. and Tattersall, C. (2005).Learning Design: A

Handbook on Modelling and Delivering Networked Education and Training, chapter

The Learning Design Specification, pages 21–40. Springer, Berlin, Germany.

[OMG, 2003a] OMG (2003a). Meta Object Facility (MOF) 2.0. OMG Final Adopted

Specification.

[OMG, 2003b] OMG (2003b). OCL 2.0. OMG Final Adopted Specification.

[OMG, 2005] OMG (2005). Meta Object Facility (MOF) 2.0 Query View Transformation

(QVT). OMG Final Adopted Specification.

[OMG, 2007] OMG (2007). Unified modeling language 2.1.2. OMG Final Adopted Spec-

ification.

[Padŕon et al., 2006] Padrón, C. L., D́ıaz, P., and Aedo, I. (2006). MD2 Method: The Di-

dactic Materials Creation from a Model Based Perspective. InProceeding of the First Eu-

ropean Conference on Technology Enhanced Learning (EC-TEL 2006). Springer-Verlag

LNCS.

[Padŕon et al., 2007] Padrón, C. L., D́ıaz, P., and Aedo, I. (2007). The role of evaluation

in an effective development of didactic material: The MD2 approach. InProceeding of

the Seventh International Conference on Advanced Learning Technologies (ICALT2007),

Niigata, Japan. IEEE Computer Society.

[Padŕon et al., 2008] Padrón, C. L., Zarraonandı́a, T., D́ıaz, P., and Aedo, I. (2008). The

evaluation within the development and deployment of IMS LD-based didactic materi-

als: THe MD2 + runtime adaptation approach. InProccedings of the First Workshop

on Crafting didactic materials based on IMS LD: from Requirements to Evaluation at

ICALT08, Cantanbria, Spain.

252

[Pahl et al., 2007] Pahl, C., Holohan, E., McMullen, D., and Melia, M. (2007). Learning

objects: theory, praxis, issues, and trends, chapter Ontology-based Learning Objects in

Learning Content Management Systems. Informing Science.

[Pahl and Melia, 2006] Pahl, C. and Melia, M. (2006). Semantic Modelling of Learning

Objects and Instruction. InProceeding of the First European Conference on Technology

Enhanced Learning (EC-TEL 2006). Springer-Verlag LNCS.

[Paquette et al., 2006] Paquette, G., Leonard, M., Lundren-Cayrol, K.,Mihaila, S., and

Gareau, D. (2006). Learning design based on graphical knowledge-modelling. Journal

of Educational Technology and Society, 9(1):97–112.

[Pepper and Moore, 2001] Pepper, S. and Moore, G. (2001). Xml topic maps 1.0. Specifi-

cation, TopicMaps.org.

[Persico, 1996] Persico, D. (1996). Courseware validation: a casestudy. Journal of Com-

puter Assisted Learning, 12(4):232–244.

[Popma, 2003] Popma, R. (2003). Jet tutorial part 1 (introduction to jet).

http://www.eclipse.org/articles/Article-JET/jettutorial1.html.

[Reigeluth, 1983a] Reigeluth, C. M., editor (1983a).Instructional-Design: Theories and

Models. Lawrence Erlbaum Associates, Publishers, New Jersey, USA.

[Reigeluth, 1983b] Reigeluth, C. M. (1983b).Instructional-Design: Theories and Models,

chapter Instructional Design: What is it and why is it?, pages 3–54. Lawrence Erlbaum

Associates, Publishers.

[Reigeluth, 1999a] Reigeluth, C. M. (1999a).Instructional Design: Theories and Models,

volume 2. Lawrence Erlbaum Associates, Publishers.

[Reigeluth, 1999b] Reigeluth, C. M., editor (1999b).Instructional Design: Theories and

Models, volume 2, chapter The Elaboration Theory: Guidance for Scope and Sequencing

Decisions, pages 425–453. Lawrence Erlbaum Associates, Publishers.

253

[RELOAD Project, 2005] RELOAD Project (2005). The RELOAD Metadata and Content

Packaging Editor. Available from: http://www.reload.ac.uk/editor.html.

[Richters, 2001] Richters, M. (2001).A precise Approach to Validating UML Models and

OCL Constraints. PhD thesis, Universität Bremen, Fachbereich Mathematik und Infor-

matik.

[Rosmalen et al., 2006] Rosmalen, P. V., Vogten, H., Es, R. V., Passier, H.,Poelmans, P.,

and Koper, R. (2006). Authoring a full life cycle model in standards-based, adaptive

e-learning.Journal of Educational Technology and Society, 9(1):72–83.

[Samples, 2002] Samples, J. W. (2002). The pedagogy of technology - our next frontier?

Connexions, 14(2):4–5.

[Schmidt, 2006] Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engi-

neering.IEEE Computer, 39(2):25–31.

[Sicilia, 2005] Sicilia, M.-A. (2005). Intelligent Learning Infrastructure for Knowledge

Intensive Organizations: A Semantic Web Perspective, chapter Ontology-Based Compe-

tency Management: Infrastructures for the Knowledge Intensive Learning Organization,

pages 302–324. Idea Group.

[Sicilia, 2006] Sicilia, M.-A. (2006). Semantic learning designs: recordingassumptions

and guidelines.British Journal of Educational Technology, 37(3):331–350.

[Sicilia, 2007] Sicilia, M.-A. (2007). On the general structure of ontologies in instructional

models. InIn proceedings of the fourth Simposio Pluridisciplinar sobre Diseño, Evalu-

ación y Desarrollo de Contenidos Educativos Reutilizables (SPDECE), Bilbao, Spain.

[Simon et al., 2005] Simon, B., Massart, D., van Assche, F., Ternier, S., Duval, E., Brant-

ner, S., Olmedilla, D., and Miklos, Z. (2005). A simple query interface for interoperable

learning repositories. InProceedings of the 14th International World Wide Web Confer-

ence, Chiba, Japan. ACM.

254

[Sommerville, 2004] Sommerville, I. (2004).Software Engineering. Addison Wesley, 7

edition.

[Sosteric and Hesemeier, 2002] Sosteric, M. and Hesemeier, S. (2002). When a learning

object is not an object: A first step towards a theory of learning object.International

Review of Research in Open and Distance Learning Journal, 3(2).

[Stash et al., 2004] Stash, N., Cristea, A., and DeBra, P. (2004). Authoring of learning

styles in adaptive hypermedia: Problems and solutions. InWWW Alt. ’04: Proceedings of

the 13th international World Wide Web conference on Alternate track papers& posters,

pages 114–123, New York, NY, USA. ACM.

[Steele, 1990] Steele, G. (1990).Common LISP. Digital Press.

[Steinburg et al., 2008] Steinburg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008).

Eclipse Modeling Framework. Pearson Education, 2nd edition.

[Stollberg et al., 2006] Stollberg, M., Moran, M., Cabral, L., Norton, B., and Domingue, J.

(2006). Experiences from semantic web services tutorials. InSemantic Web Education

and Training Workshop at ASWC2006.

[Su et al., 2005] Su, J.-M., Tseng, S.-S., Weng, J.-F., Chen, K.-T., Liu, Y.-L., and Tsai, Y.-

T. (2005). An Object Based Authoring Tool for Creating SCORM Compliant Course. In

19th International Conference on Advanced Information Networking andApplications,

volume 1, pages 209–214. IEEE.

[Szyperski, 2002] Szyperski, C. (2002).Component Software: Beyond Object-Oriented

Programming. Addison-Wesley, second edition.

[Ternier et al., 2008] Ternier, S., Massart, D., Campi, A., Guinea, S., Ceri, S., and Duval,

E. (2008). Interoperability for searching learning object repositories. D-Lib Magazin,

14(1/2).

255

[Ullrich, 2005] Ullrich, C. (2005). Course generation based on HTN planning. In Pro-

ceeding of the Thirteenth Annual Workshop of the SIG Adaptivity and UserModeling in

Interactive Systems, pages 74–79.

[USE, 2008] USE, U. (2008). Use: A uml-based specification environment.

http://www.db.informatik.uni-bremen.de/projects/USE/.

[Van der Vegt and Koper, 2005] Van der Vegt, W. and Koper, R. (2005). Copperauthor.

http:hdl.handle.net1820492.

[VanAssche, 2007] VanAssche, F. (2007). Linking learning resources to curricula by using

competencies. InIn Proceedings of the First International Workshop on Learning Object

Discovery and Exchange. CEUR Workshop Proceedings.

[Vassileva and Deters, 1998] Vassileva, J. and Deters, R. (1998). Dynamic courseware gen-

eration on the WWW.British Journal of Educational Technology, 29(1):5–14.

[W3C, 2004] W3C (2004). Owl web ontology language guide.

[Wade and Ashman, 2007] Wade, V. P. and Ashman, H. (2007). Evolving the infrastructure

for technology-enhanced distance learning.Internet Computing, 11(3):16–18.

[Wahler et al., 2006] Wahler, M., Koehler, J., and Brucker, A. D. (2006). Model-driven

constraint engineering. In Chiorean, D., Demuth, B., Giese, M., and Warmer, J. B.,

editors,Proceedings of the Sixth OCL Workshop OCL for (Meta-)Models in Multiple

Application Domains (OCLApps 2006), number 1863-2122. ECEASST.

[Warmer and Kleppe, 2006] Warmer, J. and Kleppe, A. (2006). Octopus.

http://www.klasse.nl/octopus/index.html.

[Warmer and Kleppe, 2003] Warmer, J. B. and Kleppe, A. (2003).The Object Constraint

Language. Addison Wesley, 2 edition.

[Weber and Brusilovsky, 2001] Weber, G. and Brusilovsky, P. (2001). Elm-art: An adaptive

versatile system for web based instruction.International Journal of Artificial Intelligence

in Education, 12:351–384.

256

[White, 2004] White, S. A. (2004). Introduction to BPMN. Technical report.

[Wiley, 2001] Wiley, D. A. (2001). The Instructional use of Learning Objects, chapter

Connecting Learning Objects to Instructional Design Theory: A definition,a methaphor

and a taxonomy. Association for Educational Communications and Technology.

[Yang et al., 2005] Yang, J.-T. D., Chen, W.-C., Tsai, C.-Y., and Chao, M.-S. (2005). An

Ontological Model for SCORM-Compliant Authoring Tools.Journal of Information

Science and Engineering, 21(5):891–909.

[Yang and Tsai, 2003] Yang, J.-T. D. and Tsai, C.-Y. (2003). An Implementation of compli-

ant Learning Content Management System - Content Repository Management System.

In Proceedings of the IEEE International Conference on Advanced Learning Technolo-

gies (ICALT03). IEEE Computer Society.

257

Appendix A

Case-Study Documents

258

<?xml v e r s i o n =”1.0”?>
<r d f :RDF

xmlns : r d f =” h t t p : / / www. w3 . org /1999/02/22− rd f−syn tax−ns #”
xmlns : skos =” h t t p : / / www. w3 . org / 2 0 0 4 / 0 2 / skos / co re . r d f#”
xmlns : owl=” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl #”
xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#”
xmlns =” h t t p : / / www. comput ing . dcu . i e / ˜ mmelia / o n t o l o g ie s / d a t a b a s e s−skos . owl #”
xmlns : r d f s =” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema #”

xml : base =” h t t p : / / www. comput ing . dcu . i e / ˜ mmelia / o n t o lo g i e s / d a t a b a s e s−skos . owl”>
<owl : Onto logy r d f : abou t=””>

<owl : i m p o r t s r d f : r e s o u r c e =””/>
</owl : Ontology>
<skos : Concept r d f : ID=” F i r s tNo rma l Fo rm”>

<skos : b roader>
<skos : Concept r d f : ID=” N o r m a l i s a t i o n”>

<skos : nar rower>
<skos : Concept r d f : ID=” Four thNormal Form”>

<skos : b r o a d e r r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

</skos : Concept>
</skos : nar rower>
<skos : na r rower r d f : r e s o u r c e =”# F i r s tNo rma l Fo rm ”/>
<skos : s u b j e c t>

<skos : Concept r d f : ID=” Mu l t i va luedDependency”>
<skos : i s S u b j e c t O f r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

<skos : r e l a t e d>
<skos : Concept r d f : ID=”BCNF”>

<skos : b r o a d e r r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

<skos : r e l a t e d r d f : r e s o u r c e =”# Mu l t i va luedDependency ”/>
</skos : Concept>

</skos : r e l a t e d>
</skos : Concept>

</skos : s u b j e c t>
<skos : na r rower r d f : r e s o u r c e =”#BCNF”/>

<skos : nar rower>
<skos : Concept r d f : ID=” Thi rdNormal Form”>

<skos : b r o a d e r r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

<skos : r e l a t e d>
<skos : Concept r d f : ID=” Func t i ona lDependency”>

<skos : r e l a t e d>
<skos : Concept r d f : ID=” SecondNormal Form”>

<skos : r e l a t e d r d f : r e s o u r c e =”# Func t i ona lDependency ”/>
<skos : b r o a d e r r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

</skos : Concept>
</skos : r e l a t e d>
<skos : r e l a t e d r d f : r e s o u r c e =”# Thi rdNormal Form”/>
<skos : i s S u b j e c t O f r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

</skos : Concept>
</skos : r e l a t e d>

</skos : Concept>
</skos : nar rower>
<skos : s u b j e c t r d f : r e s o u r c e =”# Func t i ona lDependency ”/>
<skos : b roader>

<skos : Concept r d f : ID=” Da tabaseSys tems”>
<skos : b roader>

<skos : Concept r d f : ID=” I n f o r m a t i o nS y s t e m s”>
<skos : na r rower r d f : r e s o u r c e =”# Da tabaseSys tems ”/>
<r d f s : comment r d f : d a t a t y p e =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”
></ r d f s : comment>

</skos : Concept>
</skos : b roader>
<skos : nar rower>

<skos : Concept r d f : ID=” D a t a b a s eA r c h i t e c t u r e”>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>
<skos : nar rower>

<skos : Concept r d f : ID=” ThreeLayer Mode l”>
<skos : b r o a d e r r d f : r e s o u r c e =”# D a t a b a s eA r c h i t e c t u r e ”/>

</skos : Concept>
</skos : nar rower>

</skos : Concept>
</skos : nar rower>
<skos : nar rower>

<skos : Concept r d f : ID=” Sys temCata log”>
<skos : r e l a t e d>

<skos : Concept r d f : ID=”DML”>
<skos : r e l a t e d r d f : r e s o u r c e =”# Sys temCata log ”/>
<skos : b roader>

<skos : Concept r d f : ID=”SQL”>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>
<skos : na r rower r d f : r e s o u r c e =”#DML”/>

<skos : nar rower>
<skos : Concept r d f : ID=”DDL”>

<skos : b r o a d e r r d f : r e s o u r c e =”#SQL”/>

</skos : Concept>
</skos : nar rower>

</skos : Concept>
</skos : b roader>
<skos : nar rower>

Figure A.1: Databases domain model defined using SKOS (part 1)
259

<skos : Concept r d f : ID=” SQLSelec t”>
<skos : r e l a t e d>

<skos : Concept r d f : ID=” R e l a t i o n a lM o d e l l i n g”>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>
<skos : nar rower>

<skos : Concept r d f : ID=” R e l a t i o n a lC a l c u l u s”>
<skos : b r o a d e r r d f : r e s o u r c e =”# R e l a t i o n a lM o d e l l i n g ”/>

</skos : Concept>
</skos : nar rower>
<skos : nar rower>

<skos : Concept r d f : ID=” R e l a t i o n a lA l g e b r a”>
<skos : b r o a d e r r d f : r e s o u r c e =”# R e l a t i o n a lM o d e l l i n g ”/>

</skos : Concept>
</skos : nar rower>
<skos : r e l a t e d r d f : r e s o u r c e =”# SQLSelec t ”/>

</skos : Concept>
</skos : r e l a t e d>
<skos : b r o a d e r r d f : r e s o u r c e =”#DML”/>

</skos : Concept>
</skos : nar rower>
<skos : nar rower>

<skos : Concept r d f : ID=”SQLViews”>
<skos : b r o a d e r r d f : r e s o u r c e =”#DML”/>

</skos : Concept>
</skos : nar rower>

</skos : Concept>
</skos : r e l a t e d>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>

</skos : Concept>
</skos : nar rower>
<skos : na r rower r d f : r e s o u r c e =”#SQL”/>

<skos : nar rower>
<skos : Concept r d f : ID=” S t o r a g eS t r u c t u r e s”>

<skos : nar rower>
<skos : Concept r d f : ID=” I ndex i ng”>

<skos : b r o a d e r r d f : r e s o u r c e =”# S t o r a g eS t r u c t u r e s ”/>
</skos : Concept>

</skos : nar rower>
<skos : nar rower>

<skos : Concept r d f : ID=” Hashing”>

<skos : b r o a d e r r d f : r e s o u r c e =”# S t o r a g eS t r u c t u r e s ”/>
</skos : Concept>

</skos : nar rower>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>

</skos : Concept>
</skos : nar rower>
<skos : na r rower r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

<skos : nar rower>
<skos : Concept r d f : ID=”JDBC”>

<skos : b roader>
<skos : Concept r d f : ID=” JavaProgramming”>

<skos : na r rower r d f : r e s o u r c e =”#JDBC”/>

</skos : Concept>
</skos : b roader>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>

</skos : Concept>
</skos : nar rower>
<skos : nar rower>

<skos : Concept r d f : ID=” ERModel l ing”>
<skos : b roader>

<skos : Concept r d f : ID=” Mode l l i ng”>
<skos : na r rower r d f : r e s o u r c e =”# ERModel l ing ”/>

</skos : Concept>
</skos : b roader>
<skos : b r o a d e r r d f : r e s o u r c e =”# Da tabaseSys tems ”/>

</skos : Concept>
</skos : nar rower>
<skos : na r rower r d f : r e s o u r c e =”# R e l a t i o n a lM o d e l l i n g ”/>

</skos : Concept>
</skos : b roader>
<skos : nar rower>

<skos : Concept r d f : ID=” F i f thNorma l Form”>
<skos : b r o a d e r r d f : r e s o u r c e =”# N o r m a l i s a t i o n ”/>

</skos : Concept>
</skos : nar rower>
<skos : na r rower r d f : r e s o u r c e =”# SecondNormal Form”/>

</skos : Concept>
</skos : b roader>

</skos : Concept>
</ r d f :RDF>

<!−− Crea ted wi th P r o t e g e (w i th OWL P l u g i n 3 . 3 , Bu i l d 418) h t t p : // p r o t e g e . s t a n f o r d . edu−−>

Figure A.2: Databases domain model defined using SKOS

260

Appendix B

Implementation Documents

261

r u l e c o n c e p t 2 c o n c e p t{
from

p t : XML! Element (
p t . name = ’ skos : Concept ’

)
t o

i n f : MIKAEL! Concept (
name<− p t . c h i l d r e n−>s e l e c t (e| e . name= ’ r d f : ID’)−> f i r s t () . va l ue

)
}

r u l e S K O S R e l a t i o n s h i p B r o a d e r 2 c o n c e p t R e l a t i o n s h i p{
from

p tRe l1 : XML! Element (
p tRe l1 . name = ’ skos : b roader ’

)
us i ng{

−−merge a l l t h e i n p u t models
b : Se t (XML! Element) = XML! Element . a l l I n s t a n c e s F r o m (’ IN’) ;

}
t o

i n f R e l B r o : MIKAEL! C o n c e p t R e l a t i o n s h i p (
l a b e l<−’narrowerThan ’ ,
t ype <− #NARROWER,
t a r g e t<−t h i sModu le . reso lveTemp (p tRe l1 . pa ren t , ’ i n f ’) ,
source<− i f p tRe l1 . c h i l d r e n−>s e l e c t (e| e . name= ’ skos : Concept ’) . notEmpty () t hen

th i sModu le . reso lveTemp (p tRe l1 . c h i l d r e n−>s e l e c t (e| e . name= ’ skos : Concept ’)−> f i r s t () , ’ i n f ’)
e l s e

th i sModu le . reso lveTemp (
b−>s e l e c t (e| e . name = ’ skos : Concept ’)

−>s e l e c t (e| e . c h i l d r e n−>s e l e c t (e2| e2 . va l ue =
p tRe l1 . ge tPrevCreatedConceptName ()) . notEmpty())−> f i r s t () , ’ i n f ’)

e n d i f
)

}

r u l e S K O S R e l a t i o n s h i p R e l a t e d 2 c o n c e p t R e l a t i o n s h i p{
from

p t Re l Re l : XML! Element (
p t Re l Re l . name = ’ skos : r e l a t e d ’

)
us i ng{

−−merge a l l t h e i n p u t models
b : Se t (XML! Element) = XML! Element . a l l I n s t a n c e s F r o m (’ IN’) ;

}
t o

i n f R e l R e l : MIKAEL! C o n c e p t R e l a t i o n s h i p (
l a b e l<−’Re la tedTo ’ ,
t ype <− #RELATED,
source<−t h i sModu le . reso lveTemp (p t Re l Re l . pa ren t , ’ i n f ’) ,
t a r g e t<− i f p t Re l Re l . c h i l d r e n−>s e l e c t (e| e . name= ’ skos : Concept ’) . notEmpty () t hen

th i sModu le . reso lveTemp (p t Re l Re l . c h i l d r e n−>s e l e c t (e| e . name= ’ skos : Concept ’)−> f i r s t () , ’ i n f ’)
e l s e

th i sModu le . reso lveTemp (
b−>s e l e c t (e| e . name = ’ skos : Concept ’)
−>s e l e c t (e| e . c h i l d r e n−>s e l e c t (e2| e2 . va l ue =

p t Re l Re l . ge tPrevCreatedConceptName ()) . notEmpty())−> f i r s t () , ’ i n f ’)
e n d i f

)
}

Figure B.1: Excerpt from SKOS to CAVIAr domain model transformation defined in ATL

262

module CG2SC ;−− Module Template
c r e a t e OUT : SCORM from IN : COURSE;

h e l p e r de f : getCourseWare () : COURSE! CoursewareModel =
COURSE! CoursewareModel . a l l I n s t a n c e s ()−> f i r s t () ;

−− ===
−− RULES
−− ===

r u l e xx{
from

courseWare : COURSE! CoursewareModel

us i ng{
t o p i c s : Se t (COURSE! Topic)= courseWare . t o p i c s ;

}

t o

m a n i f e s t : SCORM! Man i f es t (
o r g a n i z a t i o n s<− o r g a n i z a t i o n s ,
r e s o u r c e s<− courseWare . t o p i c s−>c o l l e c t (e| e . r e s o u r c e s) ,
me tada ta<− metada ta

) ,

me tada ta : SCORM! Metadata (
schema<− ’ADL SCORM’ ,
schemavers ion<− ’ 1 . 1 ’

) ,

o r g a n i z a t i o n s :SCORM! O r g a n i z a t i o n s (
t i t l e <− ’ new mikae l O r g a n i z a t i o n s ’ ,
o r g a n i z a t i o n s<− Set{o r g a n i z a t i o n}

) ,

o r g a n i z a t i o n : SCORM! O r g a n i z a t i o n (
t i t l e <− ’ new mikae l O r g a n i z a t i o n ’ ,
i t ems <− t o p i c s −> c o l l e c t (e| t h i sModu le . reso lveTemp (e , ’ i tem ’))

)

}

r u l e Top ic2 I tem{
from

t o p i c :COURSE! Topic

us i ng{
t o p i c R e l a t i o n s : Se t (COURSE! T o p i c R e l a t i o n s h i p)=

COURSE! CoursewareModel . a l l I n s t a n c e s ()
−> f i r s t () . t o p i c R e l a t i o n s
−>s e l e c t (e| e . t ype = #CONTAINS) ;

}

t o
i tem : SCORM! I tem (

t i t l e <−t o p i c . name ,
i t ems <−

t o p i c R e l a t i o n s
−> s e l e c t (e | e . s o u r c e = t o p i c)
−>c o l l e c t (e| e . t a r g e t) ,

r e s o u r c e s<−t o p i c . r e s o u r c e s
)

}

r u l e L e a r n i n g O b j e c t 2 R e s o u r c e s{
from

l o :COURSE! L e a r n i n g O b j e c t
t o

r e s o u r c e :SCORM! Resource (
f i l e s<−f i l e ,
i d e n t i f i e r<−l o . me tada ta . c l a s s i f i c a t i o n s−>f i r s t () . concep t . name

) ,

f i l e :SCORM! F i l e (
l o c a t i o n<−l o . me tada ta . t e c h n i c a l . l o c a t i o n

)
}

Figure B.2: Excerpt from CAVIAr courseware model to SCORM model defined in ATL

263

module SC2XML;−− Module Template
c r e a t e OUT : XML from IN : SCORM;

r u l e r e s o u r c e{
from

r :SCORM! Resource
t o

e lemen t :XML! Element (
name <−’r e s o u r c e ’ ,
c h i l d r e n<−id ,
c h i l d r e n <−r . f i l e s ,
c h i l d r e n <− h r e f
) ,

i d : XML! A t t r i b u t e (
name<− ’ i d e n t i f i e r ’ ,
va l ue <− r . i d e n t i f i e r

) ,

h r e f : XML! A t t r i b u t e (
name<− ’ h re f ’ ,
va l ue <− r . f i l e s−>f i r s t () . l o c a t i o n

)

}

r u l e f i l e{
from

f :SCORM! F i l e
t o

xmlf :XML! Element (
name<−’ f i l e ’ ,
c h i l d r e n<−l o c a t i o n) ,

l o c a t i o n : XML! A t t r i b u t e (
name<− ’ h re f ’ ,
va l ue <− f . l o c a t i o n

)
}

r u l e s s s{
from

m a n i f e s t : SCORM! Man i f es t
t o

r o o t : XML! Root (
name<− ’ man i f es t ’ ,

c h i l d r e n <− xmlns ,
c h i l d r e n <− v e r s i o n ,
c h i l d r e n <− i d e n t i f i e r ,
c h i l d r e n <− r e s o u r c e s ,
c h i l d r e n <− m a n i f e s t . metadata ,
c h i l d r e n <− m a n i f e s t . o r g a n i z a t i o n s

) ,

r e s o u r c e s : XML! Element (
name<−’r e s o u r c e s ’ ,
c h i l d r e n<−m a n i f e s t . r e s o u r c e s

) ,

xmlns : XML! A t t r i b u t e (
name<− ’ xmlns ’ ,
va l ue <− ’ h t t p : / / www. i m s g l o b a l . o rg / xsd / imscpv1p1 ’

) ,

v e r s i o n : XML! A t t r i b u t e (
name<− ’ v e r s i o n ’ ,
va l ue <− ’ 1 . 1 ’

) ,

i d e n t i f i e r : XML! A t t r i b u t e (
name<− ’ i d e n t i f i e r ’ ,
va l ue <− ’ m ikae l scorm man i f es t ’

)
}

Figure B.3: SCORM model to SCORM manifest XML transformation definition in ATL
(part 1)

264

r u l e o r g a n i z a t i o n s{
from

o r g a n i z a t i o n s : SCORM! O r g a n i z a t i o n s
t o

e lemen t :XML! Element (
name<− ’ o r g a n i z a t i o n s ’ ,
c h i l d r e n <− t i t l e ,
c h i l d r e n <− o r g a n i z a t i o n s . o r g a n i z a t i o n s

) ,
t i t l e : XML! Element (

name <−’ t i t l e ’ ,
c h i l d r e n <− t h i sModu le . Text (o r g a n i z a t i o n s . t i t l e)

)
}

r u l e o r g a n i z a t i o n{
from

o r g a n i z a t i o n :SCORM! O r g a n i z a t i o n
t o

e lemen t :XML! Element (
name<− ’ o r g a n i z a t i o n ’ ,

c h i l d r e n <− t i t l e ,

c h i l d r e n<− o r g a n i z a t i o n . i t ems
) ,
t i t l e : XML! Element (

name <−’ t i t l e ’ ,
c h i l d r e n <− t h i sModu le . Text (o r g a n i z a t i o n . t i t l e)

)
}

r u l e i tem{
from

i tem :SCORM! I tem
t o

e lemen t :XML! Element (
name<− ’ i tem ’ ,
c h i l d r e n <− i d e n t i f i e r r e f ,
c h i l d r e n <− i d e n t i f i e r ,
c h i l d r e n <− t i t l e ,
c h i l d r e n <− i t em . i t ems

) ,
i d e n t i f i e r r e f : XML! A t t r i b u t e (

name<− ’ i d e n t i f i e r r e f ’ ,
va l ue <− i t em . t i t l e

) ,
i d e n t i f i e r : XML! A t t r i b u t e (

name<− ’ i d e n t i f i e r ’ ,
va l ue <− i t em . t i t l e

) ,
t i t l e : XML! Element (

name <−’ t i t l e ’ ,
c h i l d r e n <− t h i sModu le . Text (i tem . t i t l e)

)
}

Figure B.4: SCORM model to SCORM manifest XML transformation definition in ATL
(part 2)

265

r u l e me tada ta{
from

metada ta :SCORM! Metadata
t o

e lemen t :XML! Element (
name<− ’ metadata ’ ,
c h i l d r e n <− schema ,
c h i l d r e n <− schemavers ion

) ,
schema : XML! Element (

name<− ’ schema ’ ,
c h i l d r e n <− t h i sModu le . Text (me tada ta . schema)

) ,
schemavers ion : XML! Element (

name<− ’ schemavers ion ’ ,
c h i l d r e n <− t h i sModu le . Text (me tada ta . schemavers ion)

)
}

r u l e Text (t x t V a l u e : S t r i n g){
t o

t x t : XML! Text (
va lue<−t x t V a l u e

)
do{

t x t ;
}

}

r u l e A t t r i b u t e (a t t rName : S t r i n g , a t t r V a l u e : S t r i n g){
t o

a t t r : XML! A t t r i b u t e (
name<− at t rName ,
va l ue <− a t t r V a l u e

)
do {

a t t r ;
}

}

Figure B.5: SCORM model to SCORM manifest XML transformation definition in ATL
(part 3)

266

module low2high ;−− Module Template
c r e a t e OUT : COURSE from IN : DOMAIN;

−−−−−−−−−−−−−−−− h e l p e r−−−−−−−−−−−−−−−−−

−− f i n d a l l goa l c o n c e p t s
h e l p e r de f : ge tGoa lConcep ts () : Sequence (DOMAIN! Concept) =

−−l e t Competency !DOMAIN−>

DOMAIN! Competency . a l l I n s t a n c e s ()
−> s e l e c t (e| e . re f Immed ia teCompos i te () . oc l I sTypeOf (DOMAIN! Goal))
−> c o l l e c t (e| e . concep t)
−> a s S e t () ;

h e l p e r de f : g e t G o a l L e a r n i n g O b j e c t s (c : Domain ! Concept) :Se t (DOMAIN! Resource) =
DOMAIN! L e a r n i n g O b j e c t . a l l I n s t a n c e s () ;

−−> s e l e c t (e| c = e . me tada ta . c l a s s i f i c a t i o n s−>f i r s t () . concep t) ;

−− f i n d a l l i n e r s e c t i o n goa l concep ts , which a r e a g g r e g a t i o n le v e l 1
h e l p e r de f : g e t I n t e r s e c t i o n C o n c e p t s () : Sequence (DOMAIN! Concept) =

DOMAIN! Goal . a l l I n s t a n c e s ()
−> i t e r a t e (e ; r e s : Sequence (DOMAIN! Concept)= Sequence{} |

i f r e s . notEmpty () t hen
r e s −> a s S e t () . i n t e r s e c t i o n (e . hasKnowledge

−> c o l l e c t (e competency | e competency . concep t)−>a s S e t ())
e l s e

r e s . un ion (e . hasKnowledge−> c o l l e c t (e competency | e competency . concep t))
e n d i f

) ;

−− f i n d a l l un ion goa l concep ts , which a r e a g g r e g a t i o n l e v e l 1
h e l p e r de f : ge tUn ionConcep ts () : Sequence (DOMAIN! Concept) =

DOMAIN! Goal . a l l I n s t a n c e s ()
−> i t e r a t e (e ; r e s : Sequence (DOMAIN! Concept)= Sequence{} |

i f r e s . notEmpty () t hen
r e s −> a s S e t () . un ion (e . hasKnowledge−> c o l l e c t (e competency | e competency . concep t)−>a s S e t ())

e l s e
r e s . un ion (e . hasKnowledge−> c o l l e c t (e competency | e competency . concep t))

e n d i f
) ;

−− f i n d a l l c o n c e p t s w i th a r e l a t i o n t o t h e i n t e r s e c t i o n c o n c e pt s
h e l p e r de f : getSubConceptsOfGoalUnion () : Sequence (DOMAIN! Concept) =

th i sModu le . ge tUn ionConcep ts ()
−> i t e r a t e (e ; r e s : Sequence (DOMAIN! Concept)= Sequence{} |

i f r e s . notEmpty () t hen
r e s −> a s S e t () . un ion (e . r e l a t i o n s−>s e l e c t (k| k . type<>#RELATED or k . type<>#PREREQUISITE)

−> c o l l e c t (r e l a t i o n| r e l a t i o n . t a r g e t)−>a s S e t ())
e l s e

r e s . un ion (e . r e l a t i o n s−>s e l e c t (k| k . type<>#RELATED or k . type<>#PREREQUISITE)
−> c o l l e c t (r e l a t i o n | r e l a t i o n . t a r g e t))

e n d i f
) ;

−− f i n d a l l sub c o n c e p t s o f a g g r e g a t i o n l e v e l 1 c o n c e p t s . whicha r e a g g r e g a t i o n l e v e l 2
h e l p e r de f : g e t A g g r e g a t i o n L e v e l 2 C o n c e p t s () : Sequence (DOMAIN! Concept) =

th i sModu le . g e t I n t e r s e c t i o n C o n c e p t s ()
−> i t e r a t e (e ; r e s : Sequence (DOMAIN! C o n c e p t R e l a t i o n s h i p)=Sequence{} |

r e s . un ion (e . r e l a t i o n s)
)

−> s e l e c t (e c o n c e p t R e l a t i o n s h i p| e c o n c e p t R e l a t i o n s h i p . t ype =#NARROWER or
e c o n c e p t R e l a t i o n s h i p . t ype =#PREREQUISITE)

−> c o l l e c t (e| e . t a r g e t)−> a s S e t () ;

−−−− g e t t h e concep t by name
h e l p e r de f : getNewConceptByName (p : S t r i n g) : COURSE! Concept =

COURSE! Concept . a l l I n s t a n c e s ()−> s e l e c t (e| e . name = p) . f i r s t () ;

h e l p e r de f : g e t A l l S u b t o p i c s () : Sequence (DOMAIN! Concept) =
th i sModu le . ge tGoa lConcep ts ()

−> i t e r a t e (e ; r e s : Sequence (DOMAIN! C o n c e p t R e l a t i o n s h i p)=Sequence{} |
r e s . un ion (e . r e l a t i o n s)

)
−> s e l e c t (e c o n c e p t R e l a t i o n s h i p| e c o n c e p t R e l a t i o n s h i p . t ype =#PREREQUISITE)
−> c o l l e c t (e c o n c e p t R e l a t i o n s h i p 1| e c o n c e p t R e l a t i o n s h i p 1 . t a r g e t) ;

−−−−−−−−−−−−−−−−−− r u l e −−−−−−−−−−−−−−−−−−−−

Figure B.6: ATL transformation definition, transforming the learning contextmodel into a
courseware model (part 1)

267

r u l e c a v i a r C r e a t e{
from

c a v i a r :DOMAIN! Cav ia r
t o

newCaviar :COURSE! Cav ia r (
coursewareModel<− c a v i a r . l e a r n i n g C o n t e x t ,
l ea rn ingResou rceMode l<− c a v i a r . l ea rn ingResou rceMode l

)

}

r u l e c o u r s e w a r e C r e a t e{
from

l c :DOMAIN! Lea rn i ngCon t ex t
t o

c :COURSE! CoursewareModel (
t o p i c s<−l c . domainModel . concep ts ,
t o p i c R e l a t i o n s<−l c . domainModel . c o n c e p t R e l a t i o n s

)
}

r u l e I n t e r s e c t i o n G o a l C o n c e p t 2 t o p i c{
from

concep t :DOMAIN! Concept (
th i sModu le . ge tUn ionConcep ts () . i n c l u d e s (concep t)

)
t o

newTopic :COURSE! Topic (
name<− concep t . name ,
a g g r e g a t i o n L e v e l<−1,
r e s o u r c e s<−t h i sModu le . g e t G o a l L e a r n i n g O b j e c t s (concep t)

)

}

r u l e I n t e r s e c t i o n G o a l C o n c e p t 2 s u b t o p i c{
from

subConcept :DOMAIN! Concept (
th i sModu le . getSubConceptsOfGoalUnion () . i n c l u d e s (subConcept)
)

t o

newSubTopic :COURSE! Topic (
name<− subConcept . name ,
a g g r e g a t i o n L e v e l<−2,
r e s o u r c e s<−t h i sModu le . g e t G o a l L e a r n i n g O b j e c t s (subConcept)

) ,

s u b T o p i c R e l a t i o n :COURSE! T o p i c R e l a t i o n s h i p (
l a b e l<−subConcept . i n c o m i n g R e l a t i o n s−>s e l e c t (e| e . type<>#RELATED or

e . type<>#PREREQUISITE)−> f i r s t () . l a b e l
−−l a b e l<−’con ta i nedTop i c ’

)

}
r u l e c o n c e p t R e l a t i o n s h i p s 2 T o p i c R e l a t i o n s h i p s{

from
s u b C o n c e p t R e l a t i o n :DOMAIN! C o n c e p t R e l a t i o n s h i p (

th i sModu le . getSubConceptsOfGoalUnion ()
−> i t e r a t e (e ; r e s : Sequence (DOMAIN! C o n c e p t R e l a t i o n s h i p)=Sequence{} |
r e s . un ion (e . i ncom i ngRe l a t i ons−>s e l e c t (

k | −−(e . type<>#RELATED or e . type<>#PREREQUISITE) and
DOES NOT WORK BUT MIGHT CAUSE PROBLEMS WITHOUT

th i sModu le . ge tUn ionConcep ts()−> i n c l u d e s (k . s o u r c e)
))) −>i n c l u d e s (s u b C o n c e p t R e l a t i o n)

)
t o

s u b T o p i c R e l a t i o n :COURSE! T o p i c R e l a t i o n s h i p (
l a b e l<−’con ta i nedTop i c ’ ,
type<−#CONTAINS,
t a r g e t<−s u b C o n c e p t R e l a t i o n . t a r g e t ,
source<−s u b C o n c e p t R e l a t i o n . s o u r c e

)
}

Figure B.7: ATL transformation definition, transforming the learning contextmodel into a
courseware model (part 2)

268

r u l e lea rn ingResourceMode l2Learn ingResourceMode l{
from

lrm :DOMAIN! Learn ingResourceMode l
t o

nlrm :COURSE! Learn ingResourceMode l (
r e s o u r c e s<− l rm . r e s o u r c e s

)
}

r u l e LO2LO{
from

l o :DOMAIN! L e a r n i n g O b j e c t
t o

n lo :COURSE! L e a r n i n g O b j e c t (
me tada ta<− l o . me tada ta

)
}

r u l e meta2meta{
from

m:DOMAIN! Metadata
t o

nm:COURSE! Metadata (
g e n e r a l<−m. g e n e r a l ,
e d u c a t i o n a l<−m. e d u c a t i o n a l ,
t e c h n i c a l<−m. t e c h n i c a l ,
c l a s s i f i c a t i o n s<−m. c l a s s i f i c a t i o n s

)
}

r u l e gen2gen{
from

gen :DOMAIN! Genera l
t o

ngen :COURSE! Genera l (
t i t l e <− gen . t i t l e ,
cove rage<− gen . coverage ,
s t r u c t u r e<− gen . s t r u c t u r e ,
d e s c r i p t i o n<− gen . d e s c r i p t i o n ,
a g g r e g a t i o n L e v e l<− gen . a g g r e g a t i o n L e v e l

)
}

r u l e edu2edu{
from

edu :DOMAIN! E d u c a t i o n a l
t o

nedu :COURSE! E d u c a t i o n a l (
i n t e r a c t i o n T y p e<− edu . i n t e r a c t i o n T y p e ,
i n t e r a c t i v i t y L e v e l <− edu . i n t e r a c t i v i t y L e v e l ,
s e m a n t i c D e n s i t y<− edu . s e m a n t i c D e n s i t y

)
}

r u l e t e c h 2 t e c h{
from

t e c h :DOMAIN! T e c h n i c a l
t o

n t ech :COURSE! T e c h n i c a l (
d u r c a t i o n<− t e c h . d u r c a t i o n ,
l o c a t i o n <− t e c h . l o c a t i o n ,
f o rma t <− t e c h . f o rma t

)
}

Figure B.8: ATL transformation definition, transforming the learning contextmodel into a
courseware model (part 3)

269

module l o w h i g h 2 c a v i a r ;−− Module Template
c r e a t e OUT : CAVIAR from IN : CAVIAR, IN2 : CAVIAR;

−−−−−−−−−−−−−−−− h e l p e r−−−−−−−−−−−−−−−−−

−− f i n d a l l goa l c o n c e p t s
h e l p e r de f : ge tGoa lConcep ts () : Sequence (DOMAIN! Concept) =

−−l e t Competency !DOMAIN−>

CAVIAR! Competency . a l l I n s t a n c e s ()
−> s e l e c t (e| e . re f Immed ia teCompos i te () . oc l I sTypeOf (DOMAIN! Goal))
−> c o l l e c t (e| e . concep t)
−> a s S e t () ;

−− f i n d a l l i n e r s e c t i o n goa l concep ts , which a r e a g g r e g a t i o n le v e l 1
h e l p e r de f : g e t I n t e r s e c t i o n C o n c e p t s () : Sequence (DOMAIN! Concept) =

CAVIAR! Goal . a l l I n s t a n c e s ()
−> i t e r a t e (e ; r e s : Sequence (CAVIAR! Concept)= Sequence{} |

i f r e s . notEmpty () t hen
r e s −> a s S e t () . i n t e r s e c t i o n (e . hasKnowledge

−> c o l l e c t (e competency | e competency . concep t)−>a s S e t ())
e l s e

r e s . un ion (e . hasKnowledge−> c o l l e c t (e competency | e competency . concep t))
e n d i f

) ;

−− f i n d a l l sub c o n c e p t s o f a g g r e g a t i o n l e v e l 1 c o n c e p t s . whicha r e a g g r e g a t i o n l e v e l 2
h e l p e r de f : g e t A g g r e g a t i o n L e v e l 2 C o n c e p t s () : Sequence (CAVIAR! Concept) =

th i sModu le . g e t I n t e r s e c t i o n C o n c e p t s ()
−> i t e r a t e (e ; r e s : Sequence (CAVIAR! C o n c e p t R e l a t i o n s h i p)=Sequence{} |

r e s . un ion (e . r e l a t i o n s)
)

−> s e l e c t (e c o n c e p t R e l a t i o n s h i p| e c o n c e p t R e l a t i o n s h i p . t ype =#NARROWER or
e c o n c e p t R e l a t i o n s h i p . t ype =#PREREQUISITE)

−> c o l l e c t (e| e . t a r g e t)
−> a s S e t () ;

−−−− g e t t h e concep t by name
h e l p e r de f : getNewConceptByName (p : S t r i n g) : COURSE! Concept =

COURSE! Concept . a l l I n s t a n c e s ()−> s e l e c t (e| e . name = p) . f i r s t () ;

h e l p e r de f : g e t A l l S u b t o p i c s () : Sequence (CAVIAR! Concept) =
th i sModu le . ge tGoa lConcep ts ()

−> i t e r a t e (e ; r e s : Sequence (CAVIAR! C o n c e p t R e l a t i o n s h i p)=Sequence{} |
r e s . un ion (e . r e l a t i o n s)

)
−> s e l e c t (e c o n c e p t R e l a t i o n s h i p| e c o n c e p t R e l a t i o n s h i p . t ype =#PREREQUISITE)
−> c o l l e c t (e c o n c e p t R e l a t i o n s h i p 1| e c o n c e p t R e l a t i o n s h i p 1 . t a r g e t) ;

−−−−−−−−−−−−−−−−−−−−−−CAVIAR T r a n s f o r m a t i o n−−

r u l e c a v i a r 2 c a v i a r{
from

cav ia rMode l : CAVIAR! Cav ia r (
cav ia rMode l . l e a r n i n g C o n t e x t . o c l I s U n d e f i n e d ()

)
us i ng{

a : Se t (CAVIAR! Cav ia r) = CAVIAR! CoursewareModel . a l l I n s ta n c e s F r o m (’ IN2 ’)
−>un ion (CAVIAR! Lea rn i ngCon t ex t . a l l I n s t a n c e s F r o m (’ IN ’))
−>un ion (CAVIAR! Learn ingResourceMode l . a l l I n s t a n c e s F r o m(’ IN ’)) ;

}
t o

n c a v i a r : CAVIAR! Cav ia r (
l e a r n i n g C o n t e x t<− a−>s e l e c t (e| e . oc l I sTypeOf (CAVIAR! Lea rn i ngCon t ex t))−> f i r s t () ,
coursewareModel<− a−>s e l e c t (k| k . oc l I sTypeOf (CAVIAR! CoursewareModel))−> f i r s t () ,
l ea rn ingResou rceMode l<− a−>s e l e c t (j| j . oc l I sTypeOf (CAVIAR! Learn ingResourceMode l))−> f i r s t ()

)
}

−−−−−−−−−−−−−−−−−−LEARNING CONTEXT TRANSFORMATION−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r u l e l c 2 l c{
from

l c : CAVIAR! Lea rn i ngCon t ex t
t o

n l c : CAVIAR! Lea rn i ngCon t ex t (
domainModel<− l c . domainModel ,
l e a r n e r S t e r e o t y p e s<− l c . l e a r n e r S t e r e o t y p e s

)
}

Figure B.9: ATL transformation definition, merging the learning context modelwith course-
ware model (part 1)

270

r u l e dm2dm{
from

dm: CAVIAR! DomainModel
t o

ndm : CAVIAR! DomainModel (
concep ts<−dm . concep ts ,
c o n c e p t R e l a t i o n s<− dm . c o n c e p t R e l a t i o n s

)
}

r u l e l e a r n e r S t e r e o t y p e 2 l e a r n e r S t e r e o t y p e{
from

l e a r n e r S t e r e o t y p e : CAVIAR! L e a r n e r S t e r e o t y p e
t o

n e w L e a r n e r S t e r e o t y p e : CAVIAR! L e a r n e r S t e r e o t y p e (
k n o w l e d g e C o n s t r a i n t s<− l e a r n e r S t e r e o t y p e . know l edgeCons t ra i n t s ,
g o a l R e l a t i o n s<− l e a r n e r S t e r e o t y p e . g o a l R e l a t i o n s

)
}

r u l e g o a l 2 g o a l{
from

goa l :CAVIAR! Goal
t o

newGoal :CAVIAR! Goal (
hasKnowledge<− goa l . hasKnowledge
)

}

r u l e g o a l R e l a t i o n 2 g o a l R e l a t i o n{
from

goalR :CAVIAR! G o a l R e l a t i o n s h i p
t o

nGoalR :CAVIAR! G o a l R e l a t i o n s h i p (
l a b e l <− goalR . l a b e l ,
t ype <− goalR . type ,
s o u r c e<− goalR . source ,
t a r g e t <− goalR . t a r g e t

)
}

r u l e presumedKnowledge2presumedKnowledge{
from

pk :CAVIAR! PresumedKnowledge
t o

npk :CAVIAR! PresumedKnowledge (
hasKnowledge<− pk . hasKnowledge

)
}

r u l e competency2competency{
from

compet :CAVIAR! Competency
t o

nCompet :CAVIAR! Competency (
l e v e l <− compet . l e v e l ,
concep t<− compet . concep t

)
}

r u l e c o n c e p t 2 c o n c e p t{
from

c :CAVIAR! Concept
t o

nc :CAVIAR! Concept (
name<− c . name ,
synonyms<− c . synonyms

)
}

Figure B.10: ATL transformation definition, merging the learning context model with
courseware model (part 2)

271

r u l e C o n c e p t R e l a t i o n s h i p 2 C o n c e p t R e l a t i o n s h i p{
from

c r :CAVIAR! C o n c e p t R e l a t i o n s h i p
t o

nc r :CAVIAR! C o n c e p t R e l a t i o n s h i p (
l a b e l <− c r . l a b e l ,
type<− c r . type ,
s o u r c e<− c r . source ,
t a r g e t <− c r . t a r g e t

)
}

r u l e Synonym2Synonym{
from

sy :CAVIAR! Synonym
t o

nsy :CAVIAR! Synonym (
va l ue <− sy . va l ue

)
}
−−−−−−−−−−−−−−−−−−COURSEWARE MODEL TRANSFORMATION−−−−−−−−−−−−−−−−−−−−
r u l e coursewaremode l2coursewaremode l{

from
cwm:CAVIAR! CoursewareModel

t o
ncwm :CAVIAR! CoursewareModel (

name<− cwm. name ,
t o p i c s <− cwm. t o p i c s ,
t o p i c R e l a t i o n s<− cwm. t o p i c R e l a t i o n s−>a s S e t ()

)

}
r u l e t o p i c 2 t o p i c{

from
t :CAVIAR! Topic

t o
n t :CAVIAR! Topic (

name<− t . name ,
comp le te<− t . complete ,
a g g r e g a t i o n L e v e l<− t . a g g r e g a t i o n L e v e l ,
e n t r y L e a r n e r s<− t . e n t r y L e a r n e r s ,
r e s o u r c e s<− t . r e s o u r c e s

)
}

r u l e t o p i c R e l a t i o n s h i p 2 t o p i c R e l a t i o n s h i p{
from

t r :CAVIAR! T o p i c R e l a t i o n s h i p
t o

n t r :CAVIAR! T o p i c R e l a t i o n s h i p (
l a b e l <− t r . l a b e l ,
t ype <− t r . type ,
s o u r c e<− t r . source ,
t a r g e t <− t r . t a r g e t

)
}
r u l e e n t r y L e a r n e r 2 e n t r y L e a r n e r{

from
e l :CAVIAR! E n t r y L e a r n e r

t o
n e l :CAVIAR! E n t r y L e a r n e r (

l e a r n e r S t e r e o t y p e<− e l . l e a r n e r S t e r e o T y p e ,
g r e a t e r T h a n<− e l . g rea te rThan ,
l essThan<− e l . l e ssThan

)
}
−−−−−−−−−−−−−−−−−−−−−−−−−−LEARNING RESOURCE MODEL TRANSFORMATION−−−−−−−−−−−−−−−−−−−−−−−−−
r u l e lea rn ingResourceMode l2Learn ingResourceMode l{

from
lrm :CAVIAR! Learn ingResourceMode l

t o
nlrm :CAVIAR! Learn ingResourceMode l (r e s o u r c e s<− l rm . r e s o u r c e s)

}
r u l e L e a r n i n g S e r v i c e 2 L e a r n i n g S e r v i c e{

from
s :CAVIAR! L e a r n i n g S e r v i c e

t o
ns :CAVIAR! L e a r n i n g S e r v i c e (
)

}

Figure B.11: ATL transformation definition, merging the learning context model with
courseware model (part 3)

272

r u l e LO2LO{
from

l o :CAVIAR! L e a r n i n g O b j e c t
t o

n lo :CAVIAR! L e a r n i n g O b j e c t (
me tada ta<− l o . me tada ta

)
}
r u l e meta2meta{

from
m:CAVIAR! Metadata

t o
nm:CAVIAR! Metadata (

g e n e r a l<−m. g e n e r a l ,
e d u c a t i o n a l<−m. e d u c a t i o n a l ,
t e c h n i c a l<−m. t e c h n i c a l ,
c l a s s i f i c a t i o n s<−m. c l a s s i f i c a t i o n s

)
}

r u l e r e l a t i o n 2 r e l a t i o n{
from

r e l :CAVIAR! R e s o u r c e R e l a t i o n s h i p
t o

n r e l :CAVIAR! R e s o u r c e R e l a t i o n s h i p (
k ind <− r e l . k ind ,
l a b e l <− r e l . l a b e l ,
s o u r c e<− r e l . source ,
t a r g e t <− r e l . t a r g e t

)
}

r u l e c l a s s i f 2 c l a s s i f{
from

c l a s s :CAVIAR! C l a s s i f i c a t i o n
t o

n c l a s s :CAVIAR! C l a s s i f i c a t i o n (
l a b e l <− c l a s s . l a b e l ,
pu rpose<− c l a s s . purpose ,
concep t<− c l a s s . concept ,
con ten tType<− c l a s s . con ten tType

)
}

r u l e gen2gen{
from

gen :CAVIAR! Genera l
t o

ngen :CAVIAR! Genera l (
t i t l e <− gen . t i t l e ,
cove rage<− gen . coverage ,
s t r u c t u r e<− gen . s t r u c t u r e ,
d e s c r i p t i o n<− gen . d e s c r i p t i o n ,
a g g r e g a t i o n L e v e l<− gen . a g g r e g a t i o n L e v e l

)
}

r u l e edu2edu{
from

edu :CAVIAR! E d u c a t i o n a l
t o

nedu :CAVIAR! E d u c a t i o n a l (
i n t e r a c t i o n T y p e<− edu . i n t e r a c t i o n T y p e ,
i n t e r a c t i v i t y L e v e l <− edu . i n t e r a c t i v i t y L e v e l ,
s e m a n t i c D e n s i t y<− edu . s e m a n t i c D e n s i t y

)
}

r u l e t e c h 2 t e c h{
from

t e c h :CAVIAR! T e c h n i c a l
t o

n t ech :CAVIAR! T e c h n i c a l (
d u r c a t i o n<− t e c h . d u r c a t i o n ,
l o c a t i o n <− t e c h . l o c a t i o n ,
f o rma t <− t e c h . f o rma t

)
}

Figure B.12: ATL transformation definition, merging the learning context model with
courseware model (part 4)

273

<?xml v e r s i o n =”1 .0 ” encod ing =”UTF−8”?>
<?e c l i p s e v e r s i o n =”3.0”?>

<p lug in>

<e x t e n s i o n p o i n t =” org . e c l i p s e . u i . e d i t o r A c t i o n s”>

<e d i t o r C o n t r i b u t i o n
i d =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l . e d it o r C o n t r i b u t i o n ”
t a r g e t I D =” Mikael2High . d iagram . p a r t . MIKAEL2DiagramEditorID”>

<menu
l a b e l =”CAVIAr V a l i d a t i o n ”
pa th =” a d d i t i o n s ”
i d =” Course . V a l i d a t i o n”>

<s e p a r a t o r name=” a d d i t i o n s ”/>

</menu>

<a c t i o n
l a b e l =”%V a l i d a t e E l e m e n t s A c t i o n . l a b e l ”
i con =” $n l$ / i c o n s / e l c l 1 6 / v a l i d a t ec o . g i f ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . B a t c h V a l i d a t i o n D e l e g a t e ”
menubarPath =” Course . V a l i d a t i o n / a d d i t i o n s ”
i d =” MIKAEL2hClientContext . u i . v a l i d a t e A c t i o n ”/>

<a c t i o n
l a b e l =”% E n a b l e L i v e V a l i d a t i o n A c t i o n . l a b e l ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . E n a b l e L i v e V a l i d a t i o n D e l e g a t e ”
menubarPath =” Course . V a l i d a t i o n / a d d i t i o n s ”
i d =” MIKAEL2hClientContext . u i . e n a b l e L i v e V a l i d a t i o n A ct i o n ”/>

<a c t i o n
l a b e l =”%ShowVa l i da t i onEven tsAc t i on . l a b e l ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . Show V a l i da t i onEven t sD e l ega t e ”
s t y l e =” t o g g l e ”
s t a t e =” f a l s e ”
menubarPath =” Course . V a l i d a t i o n / a d d i t i o n s ”
i d =” MIKAEL2hClientContext . u i . s h o w V a l i d a t i o n E v e n t s A ct i o n ”/>

</ e d i t o r C o n t r i b u t i o n>
</ e x t e n s i o n>

<e x t e n s i o n
p o i n t =” org . e c l i p s e . u i . popupMenus”>

<v i e w e r C o n t r i b u t i o n
t a r g e t I D =” Mikael2High . d iagram . p a r t . MIKAEL2hDiagramEditorID ”
i d =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l . v i ew e r C o n t r i b u t i o n”>

<menu
l a b e l =”% U I V a l i d a t i o n M e n u l a b e l ”
pa th =” a d d i t i o n s ”
i d =” org . e c l i p s e . emf . va l i da t i onMenu ID”>

<s e p a r a t o r name=” a d d i t i o n s ”/>

</menu>
<a c t i o n

l a b e l =”%V a l i d a t e E l e m e n t s A c t i o n . l a b e l ”
i con =” $n l$ / i c o n s / e l c l 1 6 / v a l i d a t ec o . g i f ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . B a t c h V a l i d a t i o n D e l e g a t e ”
menubarPath =” org . e c l i p s e . emf . va l i da t i onMenu ID / a d d i ti o n s ”
i d =” MIKAEL2ClientContext . u i . v a l i d a t e A c t i o n ”/>

<a c t i o n
l a b e l =”% E n a b l e L i v e V a l i d a t i o n A c t i o n . l a b e l ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . E n a b l e L i v e V a l i d a t i o n D e l e g a t e ”
menubarPath =” org . e c l i p s e . emf . va l i da t i onMenu ID / a d d i ti o n s ”
i d =” MIKAEL2ClientContext . u i . e n a b l e L i v e V a l i d a t i o n A c ti o n ”/>

<a c t i o n
l a b e l =”%ShowVa l i da t i onEven tsAc t i on . l a b e l ”
c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l .a c t i o n s . Show V a l i da t i onEven t sD e l ega t e ”
s t y l e =” t o g g l e ”
s t a t e =” f a l s e ”
menubarPath =” org . e c l i p s e . emf . va l i da t i onMenu ID / a d d i ti o n s ”
i d =” MIKAEL2ClientContext . u i . s h o w V a l i d a t i o n E v e n t s A c ti o n ”/>

</ v i e w e r C o n t r i b u t i o n>
</ e x t e n s i o n>

<e x t e n s i o n
p o i n t =” org . e c l i p s e . emf . v a l i d a t i o n . c o n s t r a i n t P r o v i d er s ”
i d =” o c l P r o v i d e r”>

<!−− Custom c o n s t r a i n t p r o v i d e r us i ng OCL documents−−>
<c o n s t r a i n t P r o v i d e r

c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples . o c l . OCLCons t r i an tP rov ide r2 ”
c a t e g o r y =” mikae l . v a l i d a t i o n ”
cache =” f a l s e ”>

<package namespaceUr i =” h t t p : / / m ikae l . comput ing . dcu . i e/#2 0 ”/>

<o c l pa th =” c o n s t r a i n t s / i n s t r u c t i o n a l D e s i g n 1 . o c l ”/>

</ c o n s t r a i n t P r o v i d e r>
</ e x t e n s i o n>

Figure B.13: Plugin.xml file defining plugin to provide functionality for and handle OCL
validation model (part 1) 274

<e x t e n s i o n
p o i n t =” org . e c l i p s e . emf . v a l i d a t i o n . c o n s t r a i n t B i n d i n gs”>

<c l i e n t C o n t e x t
d e f a u l t =” f a l s e ”
i d =” MIKAEL2ClientContext”>

<s e l e c t o r c l a s s =
” org . e c l i p s e . emf . v a l i d a t i o n . examples . g e n e r a l . c o n s t ra i n t s . V a l i d a t i o n D e l e g a t e C l i e n t S e l e c t o r ”/>

</ c l i e n t C o n t e x t>
<b i n d i n g

c o n t e x t =” MIKAEL2ClientContext ”
c a t e g o r y =” mikae l . v a l i d a t i o n ”/>

</ e x t e n s i o n>
<e x t e n s i o n

p o i n t =” org . e c l i p s e . emf . v a l i d a t i o n . v a l i d a t i o n L i s t e n er s ”>
< l i s t e n e r c l a s s =” org . e c l i p s e . emf . v a l i d a t i o n . examples .g e n e r a l . l i s t e n e r s . V a l i d a t i o n L i s t e n e r ”>

<c l i e n t C o n t e x t i d =” MIKAEL2ClientContext ”/>
</ l i s t e n e r>

</ e x t e n s i o n>
<e x t e n s i o n

p o i n t =” org . e c l i p s e . emf . v a l i d a t i o n . u i . U I R e g i s t e r e d C li e n t C o n t e x t”>
<c l i e n t C o n t e x t i d =” MIKAEL2ClientContext ”/>

</ e x t e n s i o n>
</p l ug in>

Figure B.14: Plugin.xml file defining plugin to provide functionality for and handle OCL
validation model (part 2)

275

Appendix C

User Trial Survey

1. Participant Information

1. How many courses have you managed or delivered? - 0/1-3/4-10/10+

2. How many courses have you developed or adapted? - 0/1-3/4-10/10+

3. Please rate your knowledge on the following:

• e-learning - no knowledge/familar/expert

• e-learning authoring - no knowledge/familar/expert

• personalised e-learning - no knowledge/familiar/expert

2. Courseware Construction Authoring Methodology

1. I understood the main CAVIAr courseware construction steps- Strongly disagree/dis-

agree/neutral/agree/strongly agree

2. I understood the purpose of the domain model - Strongly disagree/disagree/neutral/a-

gree/strongly agree

3. I understood the purpose of the learning context model - Strongly disagree/disagree/neu-

tral/agree/strongly agree

276

4. I understood the purpose of the courseware model - Strongly disagree/disagree/neu-

tral/agree/strongly agree

5. CAVIAr based courseware construction will offer cost and time savings - Strongly

disagree/disagree/neutral/agree/strongly agree

3. Domain Model Editing

1. Creating a new MIKAEL project appeared simple - Strongly disagree/disagree/neu-

tral/agree/strongly agree

2. Importing an external knowledge source appeared simple - Strongly disagree/dis-

agree/neutral/agree/strongly agree

3. The domain model view was intuitive - Strongly disagree/disagree/neutral/agree/strongly

agree

4. It appeared easy to use the domain model perspective - Strongly disagree/disagree/neu-

tral/agree/strongly agree

5. Modelling notation used made sense - Strongly disagree/disagree/neutral/agree/strongly

agree

6. It made sense to associate learning resources with domain concepts - Strongly dis-

agree/disagree/neutral/agree/strongly agree

7. It appeared easy to add learning resources to domain concepts - Strongly disagree/dis-

agree/neutral/agree/strongly agree

8. The metadata on LOs was sufficient to make a decision to add the LO or not -Strongly

disagree/disagree/neutral/agree/strongly agree

9. Adding conceptual sequencing constraints appeared simple - Stronglydisagree/dis-

agree/neutral/agree/strongly agree

4. Learning Context Model Editing

277

1. Defining learner stereotypes for my course seemed simple - Strongly disagree/dis-

agree/neutral/agree/strongly agree

2. It appeared easy to use the learning context perspective - Strongly disagree/disagree/neu-

tral/agree/strongly agree

3. Terminology used was intuitive - Strongly disagree/disagree/neutral/agree/strongly

agree

4. Terminology used was consistent - Strongly disagree/disagree/neutral/agree/strongly

agree

5. Courseware Model Editing

1. I understand how the courseware model is created - Strongly disagree/disagree/neu-

tral/agree/strongly agree

2. Creation of the courseware model is flexible - Strongly disagree/disagree/neutral/a-

gree/strongly agree

3. A range of instructional designs can be used to create courses in MIKAEL - Strongly

disagree/disagree/neutral/agree/strongly agree

4. The instructional design used in courseware can easily be changed -Strongly dis-

agree/disagree/neutral/agree/strongly agree

5. I understand how to add learning resources to courseware topics - Strongly dis-

agree/disagree/neutral/agree/strongly agree

6. Modelling notation made sense - Strongly disagree/disagree/neutral/agree/strongly

agree

7. I understand how the courseware model adapts to learners - Stronglydisagree/dis-

agree/neutral/agree/strongly agree

8. I understand how to define sequencing restrictions on topics in my courseware -

Strongly disagree/disagree/neutral/agree/strongly agree

278

9. I would be useful to be able to automatically check the coursware for problems -

Strongly disagree/disagree/neutral/agree/strongly agree

10. It would be useful to check that instructional design has been applied correctly my

courseware - Strongly disagree/disagree/neutral/agree/strongly agree

11. I could edit the courseware model in a way that would be inconsistent with the original

course requirements - Strongly disagree/disagree/neutral/agree/strongly agree

6. Courseware Validation

1. The problems brought to my attention were actual problems - Strongly disagree/dis-

agree/neutral/agree/strongly agree

2. I understand how validation works - Strongly disagree/disagree/neutral/agree/strongly

agree

3. I understand how to define a validation model - Strongly disagree/disagree/neutral/a-

gree/strongly agree

4. I would be more confident in the courseware I created after validating it- Strongly

disagree/disagree/neutral/agree/strongly agree

5. I was waiting a long time to get my results - Strongly disagree/disagree/neutral/a-

gree/strongly agree

7. Concluding Questions

1. I think the MIKAEL tool is useful - Strongly disagree/disagree/neutral/agree/strongly

agree

2. I found creating a course confusing - Strongly disagree/disagree/neutral/agree/strongly

agree

3. I think MIKAEL offers cost savings - Strongly disagree/disagree/neutral/agree/strongly

agree

279

4. I think it will be easier to reuse learning resources with MIKAEL - Strongly dis-

agree/disagree/neutral/agree/strongly agree

5. I think MIKAEL will increase the quaility of courses - Strongly disagree/disagree/neu-

tral/agree/strongly agree

280

Appendix D

Acronyms

281

Term Explanation

ACCT Adaptive Courseware Construction Toolkit
ADL Advanced Distributed Learning
AEH Adaptive Educational Hypermedia

ALMA Architecture Level Modiability Analysis
AM3 ATLAS MegaModel Management
AST Abstract Syntax Tree
ATL ATLAS Transformation Language

BPMN Business Process Management Notation
CAIS (DCU Course - Computer Applications Information Systems)

SCORM CAM SCORM Content Aggregation Model
CASE (DCU Course - Computer Applications Software Engineering)

CAVIAr Courseware Authoring Validation Information Architecture
CBSD Component Based Software Development

CDT (Eclipse environment for C/C++ development)
CIM Computationally Independent Model

CoCoA Concept-based Course Analysis
IMS CP IMS Content Packaging specification

DSL Domain Specific Language
DSML Domain Specific Modelling Language

DTD Document Type Definition
ECore (an EMF compatible language)
EMF Eclipse Modelling Language
EML Educational Modelling Language
GMF Graphical Modelling Language
HTN Hierarchical Task Analysis
IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers
IMS Instructional Management Systems

IMS LD IMS Learning Design Specification
ITS Intelligent Tutoring System
JET Java Emitter Template

LCMS Learning Content Management System
LMS Learning Management System

LO Learning Object
IEEE LOM IEEE Learning Object Metadata standard

M2M (Eclipse model to model project)
M2T (Eclipse model to text project)

MDA Model Driven Architecture
MD(S)D Model Driven (Software) Development

282

Term Explanation

MDE Model Driven Engineering
MIKAEL Management Infrastructure for Knowledge-based Adaptive E-Learning

MOF Meta-Object Facility
MOT My Online Teacher
MTL Model Transformation Language
NFQ National Framework for Qualifications
OCL Object Constraint Language

ODM Ontology Definition Metamodel
OMG Object Modelling Group
OWL Web Ontology Language
PIM Platform Independent Model
PSM Platform Specific Model
QVT Query/View/Transformation
RDF Resource Description Framework

SCORM Shareable Content Organisation Resource Model
SKOS Simple Knowledge Organisational Structure

SCORM SN SCORM Sequencing and Navigation
SQL Structured Query Language

IMS SS IMS Simple Sequencing specification
SWRL Semantic Web Rule Language

TEL Technology Enhanced Learning
UML Unified Modelling Language
VLE Virtual Learning Environment
W3C World Wide Web Consortium
XML Extensible Modelling Language

283

