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Abstract 

 

High power neutral beams currently play an important role in heating, fuelling and 

diagnosing magnetically confined thermonuclear fusion plasmas. At the Joint European 

Torus (JET) in Oxfordshire, England, the formation of such a beam involves passing a 

positive ion beam through a neutral gas target wherein beam electron-capture collisions 

result in a neutral beam component. The subsequent beam injection into the fusion 

plasma requires the sole use of this neutral component, since the charged component 

cannot penetrate through the large magnetic confinement fields of the tokamak. The 

observed failure to achieve near maximum theoretical neutralisation efficiency, has 

given motivation to those concerned to endeavour to understand the reason thereof. This 

neutralisation efficiency deficit is almost certainly due to gas target depletion, while the 

general consensus is that indirect heating of the neutraliser gas by the beam is its main 

cause [19, 30]. Paméla [31, 34] proposed a simplified analytical model of beam indirect 

gas heating over twenty years ago. The aim of this endeavour was to gain a more 

thorough understanding of the interaction between the beam and the neutraliser gas 

(beam plasma), via electrostatic Particle-in-Cell (PIC) computer simulations 

incorporating Monte Carlo collisions (MCC). Results under varying beam & gas 

parameters include the calculation of plasma parameters and the resultant gas heating. 

The simulation results are qualitatively consistent with the experimental results from the 

Langmuir probe investigation of Crowley et al. [36] (which includes spectroscopic 

measurements to estimate the gas temperature [30], and invokes the gas heating model 

developed by Paméla), while they predict the existence of four significant gas heating 

pathways not accounted for in the Paméla model i.e. direct kinetic energy transfer by 

H3
+ ions, H2

+ ions, H atoms (formed via H3
+ formation) and electrons. However, the gas 

heating results do not account for the extent of the observed neutralisation inefficiency. 

In agreement with Surrey [40], results from a similar simulation investigation of future 

(ITER) negative ion neutralisers predict insignificant gas heating effects. Beam 

composition simulations predict the existence of a specific gas line density pertaining to 

maximum neutralisation efficiency, as opposed to the generally assumed increasing 

asymptotic behaviour, while an experiment is proposed to verify this prediction.
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1.1 Thermonuclear Fusion Research 

 

1.1.1 Background Perspective 

 

The work presented herein relates to the field of Controlled Thermonuclear Fusion 

Research. More specifically, it concerns the area of Neutral Beam Injection, which 

serves heating and fuelling functions in magnetically confined thermonuclear fusion 

experiments. Academically, this project may reside in the area of beam-generated 

plasma physics or alternatively under the umbrella of computational plasma physics. 

The physics of the neutralisation process, i.e. anything that occurs inside the volume of 

the neutraliser and at the neutraliser walls, provides the scope for this investigation.  

 

The field of magnetically confined thermonuclear fusion began in the 1930s, from 

attempts to confine a hot plasma using magnetic fields. The prospect of harnessing 

nuclear energy, proceeded the achievements of, inter alios, Einstein’s [1] mass-energy 

equivalence relation (deduced from his theory of Special Relativity [2]), Aston’s [3] 

mass deficit measurements, and Bethe’s [4] explanation of how gravity enables fusion 

reactions to occur in the centre of stars (thereby supplying their sustaining energy). 

 

It wasn’t until the 1950s that Soviet physicists [5] demonstrated the now favoured 

tokamak-type of fusion machine, with a magnetic configuration similar to that currently 

used at the Joint European Torus (JET) in Oxfordshire, England [6]. A basically 

equivalent (plasma confining) magnetic configuration is due to be employed at the 

International Thermonuclear Experimental Reactor (ITER, Latin for “the way”), under 

construction in Cadarache, France [7]. ITER is designed to replace JET as the world’s 

leading fusion reactor, and will bring the thermonuclear fusion community ever closer 

in their endeavour to make commercial fusion energy production a reality. 

 

The official goal of ITER is “to demonstrate the scientific and technological feasibility 

of fusion power for peaceful purposes” [7], while the efficient, cost-effective generation 

of electricity is intended as its most immediate application. Realisation of this would 

certainly be welcomed internationally, given the present day dependence on diminishing 

supplies of fossil fuels, coupled with the desire for reducing carbon emissions as part of 

a global strategy in response to the apparently significant/detrimental effects of climate 

change, supposedly (“very likely” [8]) caused by such anthropogenic effects cf. [9]. 
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1.1.2 Fusion Reaction Basics 

 

Nuclear fusion entails the coming together of two or more nuclei/atoms to form a single 

more massive nucleus/atom. The new elemental species has less mass than the sum of 

the individual nuclei/atoms. This mass deficit is determined from their respective 

nuclear binding energies and is thus converted into energy, satisfying Einstein’s famous 

E = mc2 equation [1, 2]. For a fusion reaction to occur between two nuclei/atoms, 

sufficient energy (the phenomenon of quantum tunnelling can lessen this required 

energy) is needed to overcome the Coulomb barrier i.e. the mutually repulsive 

electromagnetic force due to the positive charge of a nucleus’ constituent protons. This 

energy enables the particles to come close enough together for the short-range attractive 

strong nuclear force to become dominant, which causes the particles to fuse. 

 

 
 

Figure 1: (a) Schematic of the D-T fusion reaction [7]. (b) Comparison of the D-T 

fusion reaction with various other less favourable options [6]. 

 

Among perspective candidates for anthropogenic fusion, hydrogen isotopes, each with 

only one positive ‘elementary’ charge, provide the least repulsive electrical force to 

overcome, and thus require the least fusion activation energy. The main function of a 

tokamak is to create a high temperature environment conducive to such fusion reactions, 

hence the prospect of generating more energy than that required to cause and sustain 

such thermonuclear fusion plasmas (Section 1.2.1). Due partly to these high temperature 

constraints (Section 1.2.2), deuterium-tritium (D-T) is presently the favoured fusion fuel 

choice, given its relatively favourable cross section (Figure 1 (b)), and its desirable, 

highly energetic products {3.5MeV alpha particle (helium nucleus), and 14.1MeV 

neutron, Figure 1 (a)}. The magnetic bottle type confinement (Section 1.2.1) of such a 

high-density, high-temperature plasma, for an adequate period of time, (cf. Lawson 

criteria [10]) continues to be one of the greatest challenges in tokamak design.  
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1.1.3 Electrical Power via Fusion 

 

In a possible D-T fusion reactor operating scenario (Figure 2), the alpha particles stay 

magnetically confined in the plasma and therefore also contribute to the plasma heating, 

while the fast neutrons escape to the lithium blanket at the walls and cause the breeding 

(via fission) of the tritium fuel (deuterium can be extracted from sea water, and lithium, 

a relatively abundant metal in the earth’s crust, can be mined) [7]. Basically, the fast 

neutrons carry the majority of the energy (Section 1.1.2), and a fusion power plant could 

utilise such fast particles to boil water and drive an electricity generator i.e. a 

conventional steam turbine with a different fuel and furnace. For example, 1kg of D + T 

could produce (via a fusion power station) the same electrical energy as ~ 10,000 tonnes 

of coal (the daily consumption in a 1GW coal power station) [11], while it has the 

potential to be financially competitive with other carbon free electricity sources. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of a possible electricity producing fusion power plant [6]. 

 

 

1.1.4 Fusion versus Fission 

 

The production of electricity via nuclear fission is a reality and has been since the 

1950s. Fission power stations exist in most ‘developed countries’ (Ireland being an 

example of a ‘nuclear-free, advanced economy country’) and produce ~ 14% of the 

world’s electricity [12]. Per total kilowatt-hours of electricity consumption; France is 

the leading producer/consumer (~ 80%), while other countries such as Japan (~ 30%), 

the US (~ 20%) and the UK (~ 20%) also use substantial amounts of fission energy.  
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Regarding possible future nuclear fusion power production, JET has demonstrated that 

this will certainly be within our scientific/technological capabilities. The construction of 

ITER commenced in 2008, with a new target of 2018 for its debut operation [7]. While 

ITER promises to be a major step forward in the path to fusion power, the actualisation 

of reliable, economically viable power production is still many decades away. The next 

step after ITER is envisaged to be the construction of a prototype power plant 

(‘DEMO’). Figure 3 compares a probable commercial reactor with ITER (‘Next Step’) 

and two European reactors, JET and Tore Supra (located in Cadarache, France). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A comparison of present day reactors (drawn to scale), JET and Tore Supra 

with the ITER (‘Next Step’) design and a likely commercial reactor, in terms of their 

maximum attainable power output and pulse duration [6]. 

 

D-T Fusion has an effectively limitless fuel supply, second to none in its net energy 

gain capabilities, while common fission fuels (uranium/plutonium isotopes) are less 

abundant, more difficult to extract, and have lower energy densities. In such fusion 

reactions, the percentage of matter transformed into energy is a few times greater than 

in such fission reactions, due to bigger differences in binding energies [10]. 

 

In common with prospective fusion power plants, fission power plants effectively 

produce no carbon dioxide or other greenhouse gases nor indeed any other 

environmentally harmful gases. However, a lot of controversy and strong disagreement 

still persists over issues related to the relatively long-lived dangerous (direct) high-level 

radioactive waste (HLW) products from fission power plants. In contrast, fusion power 
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plants would produce no direct nuclear waste, the main cause of concern being that 

some fusion reactor components become radioactive via high-energy neutron impact. 

The resulting (indirect) HLW from such neutron activation will require burial (deep 

geological disposal) for ~ 50 years before it becomes low-level nuclear waste (LLW), 

which will then necessitate another ~ 100 years containment (shallow land disposal) 

[13]. Thus, in comparison with fission waste products, which remain radioactive for 

thousands of years, the nuclear fusion waste has relatively short half-lives and therefore 

creates a more short-term waste containment responsibility [13], conducive to 

sustainable energy/development and nearly in keeping with the ‘user pays’ principle. 

Fusion materials research is still ongoing in its endeavour to determine the best 

materials that would minimise any such adverse effects caused by neutron impact and 

be able to withstand the high temperatures resulting from the substantial heat flux 

emanating from the plasma - especially pertinent to plasma facing components (PFCs).  

 

At present, many evolving types/classifications of fission reactors are being used, not 

only for electricity generation, but also for various other morally questionable purposes 

e.g. providing certain fissile materials for nuclear weapons. All such man-made fission 

reactors stemmed from the discovery of fission chain reactions [10], though it has been 

hypothesised [14] that natural fission reactors existed in the earth ~ 2 billion years ago, 

supported by supposable evidence from uranium ore deposits at Oklo in Gabon [15]; 

consisting of measurements - conducted by the French Atomic Energy Commission 

(CEA) - that suggest uranium isotope (235U) concentration deficits (i.e. compared to 

other mines) similar to that resulting from man-made fission reactors. In contrast to 

such disputable, circumstantial evidence, more substantial (albeit indirect) evidence 

exists for natural fusion reactions in stars [3, 4, 16] cf. [17], while fusion reactors would 

entail no potentially troublesome chain reactions. D-T fusion power plants would, by 

themselves, offer no danger of nuclear proliferation i.e. while they would use tritium, a 

radioactive gas, which can be produced in situ (yet the ITER plan is to initially use 

tritium produced from fission reactors before testing tritium breeder technology [18]), 

this can only be used for nuclear weapons in conjunction with enriched fissile materials.  

 

Thus, even though it is more technologically challenging to sustain sufficient fusion 

power i.e. enough for a viable power plant; all the preceding comparisons suggest that 

fusion is the better alternative harness-able source of nuclear energy to fission. 
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1.2 Neutral Beam Injection at JET 

 

1.2.1 Overview of JET 

 

The Joint European Torus (JET) is up and running since 1983 and remains to be a 

valuable test bed for fusion experiments, especially for specific ITER related tests. It 

currently holds the record for fusion power production (16.1MW peak fusion power, 

with over 10MW for more than 0.5s [6]), although it has only ever nearly reached 

breakeven with regard to energy production. Breakeven (energy gain factor; Q = 1) 

represents the scenario where the power produced equals the power used to maintain the 

plasma in steady-state (ITER is designed to achieve a Q of ~ 10, still short of what an 

economically viable electricity producing fusion power plant is anticipated to require). 

 

  
 

Figure 4: (a) A view of JET from the Torus hall, showing one of two neutral beam 

injection boxes (NIBs) [6]. (b) A photograph of an actual discharge [6]. 

 

Changing current in the tokamak’s central solenoid induces ~ 5MA of current drive in 

the D-T plasma i.e. via a transformer technique [6]. This induced current heats the 

plasma up via resistive (ohmic) heating, resulting in a few MW of heating power. 

Toroidal and poloidal magnetic fields, produced by electromagnetic coils (the plasma 

current also induces a poloidal magnetic field), serve a plasma confining function, while 

additional coils help to position and shape the plasma. Many different plasma 

diagnostics (including neutral beam diagnostics [6]) are positioned at multiple access 

points (Figure 4 (a)). The bulk fusion plasma (Figure 4 (b)) is colourless except at its 

boundaries, where a lower temperature plasma exists containing some atoms, molecules 

and ions with bound electrons capable of producing visible light emission 

(Bremsstrahlung, including synchrotron radiation is also emitted from the plasma). 
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1.2.2 Auxiliary Heating Methods 

 

Additional heating methods (Figure 5 (a)) are employed at JET, to heat the plasma up 

to temperatures high enough for it to yield a sufficient number of D-T fusion reactions 

{in excess of 1x108K ( ~ 8.6keV, ≅ ten times as hot as the centre of the sun) - neutral 

beam diagnostics are used to estimated the plasma temperature [6]}. Typically, Neutral 

Beam Heating (neutral particles can be injected straight into the plasma i.e. un-deviated 

by the confining magnetic fields) supplies up to ~ 23MW (via kinetic energy transfer 

collisions with the fusion plasma particles), along with a potential of up to ~ 32 MW 

from Radio Frequency Heating (Ion Cyclotron Heating) [6]. Lower Hybrid Current 

Drive is another technique which, albeit inefficient in directly heating the plasma, can 

be used to drive a further ~ 3MA of current by exploiting other resonant frequencies of 

the plasma (it entails generating 3.7GHz microwaves with a power capacity of ~ 12MW 

to accelerate the plasma electrons, thus supplying this extra plasma current) [6].  

 

  
 

Figure 5: (a) Schematic of the various plasma heating mechanisms used at JET [6]. (b) 

A photograph taken during the installation of the PINIs [6].  

 

 
 

Figure 6: (a) A plan view schematic of the JET neutral injection box (NIB) with 

attached PINIs [19]. (b) An interior elevation view schematic of a NIB, showing the 

eight merging neutral beams originating from their respective PINIs [6]. 
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1.2.3 Neutral Beam Injection 

 

JET neutral beam injectors (NBIs) consist of two types of separate vessels (Figure 6); 

positive ion neutral injectors (PINIs), and a neutral injection box (NIB). Up to eight 

PINIs can be attached to each NIB (Figures 5 (b) &  6). Each PINI contains; an ion 

source (dc arc discharge, producing positive ions), accelerating grids (including a grid to 

electrostatically prevent neutraliser electrons from flowing upstream) and the 1st stage 

of a (copper) neutraliser ( ~ 0.86m). The NIB houses the 2nd stage neutralisers ( ~ 1m), 

the deflection electromagnet (removes the un-neutralised beam ions) and the ion dump 

(receives the positively charged beam ions). Cryo-pumps are employed in the NIB to 

create a sufficient vacuum to minimize re-ionisation of the un-deflected, separated 

‘pure’ neutral beam, and gas particles entering the tokamak (Figure 6 (a)). 

 

 

 

 

 

 

 

 

 

 

Figure 7: An elevation view schematic of a JET neutral beam injector (NBI) [6]. 

 

The JET building also contains a separate Neutral Beam Test Bed facility adjacent to 

the Torus hall. Its function is to provide a test bed for scientific investigations aimed at; 

improving the NBI heating capacity, performing tests on problematic NBIs and pre-tests 

before new/upgraded NBIs become commissioned to operate on the tokamak. Most of 

the scientific investigations involve testing upgrades to the ion source and accelerating 

grid systems (to produce greater beam power [20]), although improved neutralisation 

motivated investigations have occasionally been embarked upon (Section 1.4.1). 

 

A magnetic cusp configuration is positioned around the ion source (containing either 

hydrogen, deuterium, tritium or helium [21] gas) to achieve the desired ion species 

ratios. Ion extraction/acceleration and subsequent beam dissociation &/or neutralisation 

produces a composite beam consisting of molecular and atomic ions/neutrals of four 
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different energies (1/3, 1/2, 2/3 and full energy, cf. Sections 2.2.1 & 4.1). The beam 

(initially consisting of 262 individual beamlets) emanates from the ion source through 

two grid plates (each containing 131 circular holes of 11mm aperture), positioned at a 

slight angle to one another (grid tilt), in order for the beamlets to merge correctly. For 

the duration of beam (neutraliser) transit, the beam envelope has a cross sectional area 

of ~ 0.064m2 (0.16m x 0.40m, horizontal and vertical width, respectively). Some beam 

interception occurs mainly at the end of the second stage neutraliser ( ~ 0.088m2; 0.20m 

x 0.44m), and results in beam power (transmission) losses of ~ 4% [22]. JET PINIs can 

produce beam currents of up to ~ 65A and beam energies of up to ~ 130keV [20].  
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1.3 Neutralisation Efficiency of JET NBIs 

 

1.3.1 Beam Neutralisation Theory 

 

The theoretical maximum neutral beam component can be estimated, given the initial 

multiple-ion beam densities and energies (assumed to remain constant, Section 4.2), and 

the relevant beam (energy dependent) charge-changing cross sections. Beam fractions 

are most succinctly expressed as functions of the neutraliser gas line density [24]: 

 

Fn = fraction of the beam with charge n 

Π = neutraliser gas line density (neutraliser gas density integrated over its length)  

σmn = cross section for a change of charge from m to n 

 

A multiple-ion beam reaches dynamic charge-equilibrium after travelling a certain 

distance through a gas corresponding to the charge-equilibrium gas line density: 

 

 

Consider the elementary case of an atomic hydrogen beam {assuming only beam 

species H+ & H exist (no H-) and that F1 = 1 & F0 = 0 at ∏ = 0, i.e. the pre-injected 

beam consists solely of protons} injected into a neutraliser containing any stable gas: 
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The characteristic equation {det(A-λI)=0, Appendix A} gives the two eigenvalues: 

 

 

Substitution into the eigenvector equation {Ax=λx, Appendix A} yields the two 

eigenvectors x1, x2 and hence expressions for the two beam charge fractions F1, F0: 

 

 

 

 
 
F1 & F0 can be further expressed in terms of their equilibrium fractions: 
 

 
 
The function of the close-coupled neutralisers used in JET NBIs [6] is to enable a 

positive multiple-ion beam attain a maximum neutral beam power (density, if and only 

if all beam components have the same energy). This is achieved by supplying a 

minimally sufficient gas line density (thus minimising gas pumping requirements and 

re-ionisation of the un-deflected ‘pure’ neutral beam). Since, in this simplified analysis, 

the beam charge-changing process is asymptotic (Figure 9), it is useful [25] to define 

the ‘optimum’ (Section 4.1) gas target as that which yields 3 beam attenuations, 

corresponding to the beam reaching ~ 95% of its maximum neutral density (power). 
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Figure 9: 80keV/27A H+/H densities as a function of the H2 neutraliser gas target. 

 

 

1.3.2 Expected Neutralisation Efficiency 

 

The neutraliser gas target is directly controlled by the neutraliser gas flow rate (gas from 

the ion source also reaches the neutraliser). A moving ion gauge has previously been 

used to estimate the longitudinal neutraliser gas pressure profile, in the absence of beam 

injection (beam on measurements are unfeasible) [26, 19]. The neutraliser pressure (and 

hence the density, assuming a constant temperature) has a near constant value along its 

1st stage and then drops off nearly linearly (in the 2nd stage neutraliser) to ~ 15% of this 

value (Figure 10). From the outset of neutral beam injection at JET, the gas target has 

consistently been overestimated [27, 28]. This stemmed from an underestimation of the 

neutraliser conductance, by assuming it operated in the molecular flow regime. In fact, 

typical neutraliser pressures correspond to the transitional flow regime, which predicts a 

higher conductance, via an additional term, directly proportional to the pressure [28]. 

 

 

Figure 10: The measured 

normalised pressure distribution 

along the neutraliser [19], cf. [26]. 
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For both molecular and transition gas flow regimes, the gas line density is inversely 

proportional to the conductance, while the conductance is proportional to the square 

root of the temperature [29]. It therefore implies that the gas line density is inversely 

proportional to the square root of the temperature. The exact scaling of the JET NBI 

neutraliser gas line density with temperature is in fact unknown, yet results from Surrey 

et al. [19] suggest a linear scaling. Either way, a substantial increase in temperature 

[30], during beam (neutraliser) transit, will cause a significant reduction in the gas 

target. However, the neutralisation efficiency is not as sensitive to changes in the gas 

target (Figure 9, Section 1.3.1 cf. Section 5.1.5), especially for excessive gas targets.  

 

Given a value for the effective (hot and therefore depleted cf. Chapter 5) gas target, the 

expected neutralisation efficiency can be calculated via a beam charge-changing 

analytical model (Section 1.3.1), or more accurately via beam composition simulations 

that can kinetically model all possible charge-changing collisions (Section 4.1). 

 

 

1.3.3 Actual Neutralisation Efficiency 

 

The actual neutraliser neutralisation efficiency can loosely be defined as the ratio of the 

neutral beam power (at the neutraliser exit) to the extracted beam power, and can be 

indirectly measured [19] by comparing beam impact calorimetric data (downstream) 

with/without the deflecting electromagnet turned on {taking into account re-ionisation 

of the separated neutral beam (due to the presence of residual gas - mainly coming from 

the neutraliser and arising from recombined beam ions) and beam transmission losses 

(dependant on beam & gas parameters in addition to the beamline setup, Section 3.1) 

[27]}. Another method reported in [19] uses measurements of the tokamak response to 

neutral beam injection to ascertain the neutralisation efficiency. This method is based on 

a comparative approach, whereby measurements of the power supplied by neutral beam 

injection of known neutralisation efficiency (reference beam) are used to calculate the 

power supplied by a NBI of unknown neutralisation efficiency. Yet another method 

involves the comparison of the “rate of highest energy protons resulting from D(d,p)T 

reactions with and without ion deflection by the magnet” [31] cf. [32]. 
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1.3.4 Neutralisation Efficiency Deficit 

 

Figure 11 (a) shows the discrepancy between the measured neutral beam power (from 

two different techniques; calorimetry and plasma response [19]), and that expected from 

either a cold or hot (Paméla model) neutraliser gas target {the decreasing slopes of both 

curves is due to the decrease in neutralisation efficiency with increasing beam energy, 

evidenced by the cross section data shown in Figure 11 (b)} - taking into account beam 

transmission & re-ionisation losses [19]. This so called neutralisation efficiency deficit 

is almost certainly due to a depletion of the neutraliser gas target in the presence of the 

beam, and is thought to be mostly caused by gas heating [19, 30] cf. Section 1.4.1. 

 

(a)      (b) 

    
 

Figure 11: (a) Neutral beam power (as a function of the extracted power) transmitted to 

the JET fusion plasma as measured by; calorimetry (diamond), plasma response (box), 

and calculated using; a cold gas target (gaped line) and a hot depleted gas target 

(continuous line) [19]. (b) Electron stripping (beam re-ionisation) & electron capture 

(beam neutralisation) cross sections as a function of particle (beam) energy per 

nucleon, for a Hydrogen beam in transit through a H2 gas cell (neutraliser) [25].  

 

Although the data displayed in Figure 11 (a) suggests that gas heating may account for 

all of the neutralisation deficit {e.g. at 7MW, a ~ 27% (±4%) shortfall in neutral beam 

power is inferred from the calorimetric measurements, while the Paméla model predicts 

a value of ~ 23%}, other factors such as gas implantation (wall pumping) & re-emission 

[33] could also have a significant bearing on the (beam on/off) gas target [27]. 

Investigating these factors is beyond the scope of this computational endeavour, which 

instead focuses on quantifying the neutraliser gas heating (Chapter 5).  
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1.4 Background and Goal of this Work 

 

1.4.1 Related Investigations 

 

In the mid 1980s Paméla [31, 34] proposed that the neutralisation efficiency deficit was 

due to (neutraliser gas density depleting) beam indirect gas heating via the formation of 

a low temperature plasma inside the neutraliser. More than 15 years elapsed before an 

experimental investigation into the neutraliser beam plasma commenced at the JET 

Neutral Beam Test Bed facility. This initially entailed the insertion of a diagnostic 

collar in between the first and second stage of the neutraliser, and formed part of the 

Improved NB Neutraliser JET Enhancement Project [35], which was completed in 

November 2002, cumulating in a paper by Crowley et al. [36]. 

 

Two analytical neutraliser plasma models [22] were developed by Surrey prior to this 

investigation (one based on a static theory of a beam plasma [37] and the other based on 

a more elaborate model developed by Holmes [38]). These proved useful in determining 

the expected range of plasma parameters encountered in the neutraliser, and so helped 

with the design specifications of the Langmuir probe used by Crowley et al. [36]. 

 

The diagnostic collar (Figure 12 (b)) thus facilitated neutraliser plasma diagnostic 

investigations i.e. Langmuir probe measurements (used to determine the plasma 

parameters) and spectroscopic measurements (used to calculate the gas temperature), as 

well as various pressure sensor measurements (can also be used at additional positions 

along the neutraliser to estimate the axial pressure profile [26, 19]). The electron 

density, electron temperature and plasma potential as a function of; neutraliser gas 

pressure, beam power and time, were determined from the Langmuir probe traces [36]. 

These results were used as empirical inputs in Paméla’s gas heating model to estimate 

the gas temperature rise, and were found to be in good agreement with the 

measurements of Surrey & Crowley [30] {who used spectroscopic measurements of 

rotational vibrational emission bands in diatomic molecules (Fulcher α Spectrum) 

together with the de Graaf (corona) model [39] to estimate the translational gas 

temperature}. Resultant temperatures were inferred to be up to and in excess of 1000 K. 

 

More recent measurements of the depleted neutraliser gas target (Figure 11 (a), Section 

1.3.4) were published (online) in August 2005 [19], again supporting the gas heating 
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hypothesis. In May 2006, Surrey also published a paper attempting to predict gas 

heating effects in the neutralisers of ITER injectors [40]. Here she adapted her beam 

plasma model for positive beams into a model for the ITER heating (HNB) and 

diagnostic (DNB) negative ion neutral beam injectors. She concluded by saying that gas 

heating is unlikely to be severe in either of the injectors, and as a result, the 

neutralisation target is expected to remain close enough to the design value (Chapter 6).  

 

 

 

 

 

 

 

 

 

 

Figure 12: (a) Photograph of a Hydrogen beam [6]. (b) Photograph of the diagnostic 

collar positioned in between the first and second stage of the neutraliser [35]. 

 

 

1.4.2 Motivation and Aim 

 

Surrey’s two beam plasma models [22] are deficient due to their inaccurate assumptions 

e.g. assuming an ion temperature of one-tenth the electron temperature [37], and 

assuming the beam to be isolated from the neutraliser walls [38]. Paméla’s gas heating 

model is also deficient for similar reasons e.g. it involves a “naïve” [34] zero-

dimensional plasma model and omits important gas heating pathways (Section 5.2). 

 

A further Improved Neutralisation JET Enhancement Project was started in 2003 [41], 

acknowledging the need to further develop Surrey’s neutraliser plasma models and 

Pamela’s gas heating model. It was also foreseen that these models could be “combined 

to give a complete description of the neutraliser physics system” [41], hence the 

motivation of this work, which to this end, employs electrostatic beam plasma Particle-

in-Cell (PIC) computer simulations incorporating Monte Carlo collisions (MCC). 



 18 

The simulation directly calculates various plasma parameters (resolved in either the 

transverse or longitudinal beam spatial dimensions), with such results providing data for 

the calculation of the power transferred indirectly by the beam to the neutraliser gas. 

The PIC MCC technique (Chapter 2) incorporates a kinetic model, which assumes little 

in comparison with Surrey’s and Paméla’s aforementioned beam plasma models, and is 

capable of simulating many of the vast array of possible collision events in a reasonable 

time on a modern PC. The overall merit of this approach is therefore due to its more 

thorough treatment of the relevant physics while invoking fewer assumptions. 

 

In common with Paméla’s beam indirect gas heating model [31, 34], a neutraliser gas 

steady-state scenario is assumed in order to calculate the gas temperature rise i.e. where 

the gas power gained indirectly from the beam equals the gas power lost at the walls 

(Section 5.1). However, in contrast to Paméla’s zero-dimensional model [31, 34] 

(requires some empirically determined quantities cf. [36]), the gas power gained 

indirectly from the beam is obtained via neutraliser beam plasma one-dimensional 

simulations. The 1D3v PIC MCC Transverse (Section 2.2.1, 2.2.4) simulation approach 

assumes the neutraliser beam plasma as being vertically and axially uniform. Hence, 

strictly speaking (cf. Figure 10, Section 1.3.2), this simulation approach only yields a 

valid model of the 1st stage neutraliser beam plasma system cf. Section 2.2.3. 

 

The effective neutraliser gas target, resulting from gas density depletion, is directly 

dependent on the gas temperature rise, while the exact correlation between these 

parameters is again still unknown. Effective neutraliser gas line density results are thus 

presented for; a standard hot gas density-temperature relationship i.e. assuming that the 

gas target is inversely proportional to the square root of the gas temperature (from 

molecular/transitional gas flow theory [29]), and an ideal gas law density-temperature 

relationship i.e. the gas target being inversely proportional to the gas temperature [19].  

 

Overall, the goal of this work is to elucidate the physics of neutraliser gas cell 

positive/negative ion beam neutralisation, and thus acquire knowledge that would help 

to improve the neutralisation efficiency (and therefore the overall energy efficiency) of 

present JET neutralisers, and future negative ion neutralisers such as those designed for 

ITER’s heating (HNB) and diagnostic (DNB) neutral beams. 
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1.5 Elementary Plasma Physics 

 

1.5.1 The Prevalence of Plasmas 

 

The plasma state is often categorised as the fourth state of matter, coming after solid, 

liquid and gas in order of increasing constituent particle (thermal) energy, and is 

presently thought to prevail in ~ 99.99% of the universe. Common examples include the 

sun and other stars, the interstellar medium (ISM) being a lesser-known example. 

Closer to earth, we find plasmas such as the magnetosphere and the ionosphere, along 

with visible and more spectacular examples like an aurora {partly caused by proton-gas 

(solar wind–earth’s atmosphere) ‘positive ion neutraliser occurring’ radiative collisions} 

and lightning (Figure 13). From our earthly perspective, these natural plasmas are 

relatively remote, which helps explain why this complex state of matter remains elusive 

to common knowledge. Despite this lack of public awareness, the occurrence of 

application driven man-made plasmas has increased greatly over the last few decades. 

 

      
 

Figure 13: (a) An image of the galaxy NGC 1512 taken by the Hubble Space Telescope, 

which includes light from the infrared, visible, and ultraviolet regions of the spectrum 

[42]. (b) An aurora pictured over houses in Ramfjordmoen, Norway, on March 4th 

2002, during the suns active (sunspot) phase (the bright red colour indicates the 

presence of atomic oxygen) [42]. (c) Lightning striking a tree. Note the positive 

streamer rising from a pole near a house in the front left of the photograph [42]. 

 

Familiar man-made plasmas include lighting sources such as; the widespread sodium 

street lamp, neon signs, florescent lights, and even candle flames. More elaborate 

plasmas are used for many other applications including; thermonuclear fusion (arguably 

the most favourable potential new energy source available to mankind, and the field 

most relevant to this work), etching and deposition (extremely important processes in 
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the multi-billion dollar microelectronics industry), surface modifications (causing 

material changes in hardness, wettability etc.), gas lasers, welding arcs, waste treatments 

and such medical applications as sterilisation. These useful applications obviously 

provide motivation for the study of plasma physics, although it could be argued that 

even without such applications, an investigation into the fundamentals of plasma 

physics is still a worthwhile endeavour in its own right, as part of the ongoing pursuit in 

trying to understand nature more comprehensively, in all its forms. 

 

 

1.5.2 Qualitative Plasma Characterisation 

 

Basically speaking, a plasma consists of a gas containing significant numbers of 

charged particles with an overall (macroscopic) near neutral (quasineutral) charge. It 

may contain many different species of particles e.g. neutral atoms/molecules, electrons, 

positive ions, negative ions, radicals, dust particles. Hence, due to the presence of more 

‘free’ charges, one of the main differences between the physics of plasmas and that of 

normal gases (both gaseous fluids) is in their responsiveness to electromagnetic fields. 

 

The charged particles in a plasma interact with each other via electromagnetic forces. 

As a result of the relatively long-ranged Coulomb force, the various electric fields 

produced by the charged particles, have an effect on other constituent charged particles 

and not just on their nearest neighbours. This phenomenon is known as collective 

behaviour and is partly what makes plasma physics more complex than normal gaseous 

physics where nearest neighbour interactions (e.g. collisions) are of most importance. In 

addition to these self-generated electromagnetic fields, external electromagnetic fields 

are frequently applied in man-made plasma tools, and therefore also partly determine 

the motion of the constituent particles. Like all plasma particles, charged particles also 

move due to diffusive behaviour and particle-particle/particle-wall collisions. The 

plasma state of matter is also a superb medium for producing many types of 

electrostatic and electromagnetic wave phenomena (hence its use as a radiation source). 

 

Some collisions in a plasma (e.g. inelastic collisions i.e. where the kinetic energy is not 

conserved) are more complicated than the billiard-ball-like (elastic) collisions 

predominant in relatively cold, ordinary gases. Moreover, charged particles can undergo 

other elastic scattering processes such as Coulomb collisions and polarization scattering 
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collisions. Coulomb collisions arise when charged particles closely approach each other, 

electromagnetic forces causing their trajectories to become curved (the energy 

exchanged depends on the mass of both particles and the deflection angle). Since the 

majority of neutraliser beam plasma electrons are of relatively high energy, neutral 

particles have relatively little time to polarize in their vicinity. Hence, polarization 

scattering is not deemed significant enough to warrant inclusion in the limited set of 

allowable collision pathways modelled in this simulation investigation. 

 

In all plasmas, the crucial collisions are the ones that cause and sustain its existence. 

These inelastic collisions occur between sufficiently energetic particles and the source 

gas. In the majority of man-made plasma devices, electrons have the fastest particle 

velocities, due to the ‘preferential’ nature of the heating mechanisms employed, and the 

relatively small momentum transfer between light electrons and heavier particles. 

Electron impact ionisation therefore tends to be the dominant source of ionisation, and 

requires electrons of energy equal to, or exceeding, that of the relevant gas ionisation 

threshold energy {as the particle species in a plasma usually have a relatively large 

spread of velocities, these electrons reside in the high-energy tail of the electron energy 

distribution function (eedf). Moreover, large numbers of electrons together with high 

electron-electron momentum transfer collision rates often yield a thermal distribution of 

speeds well described by the Maxwell-Boltzmann speed distribution}. 

 

For example, during the etching of silicon wafers in the microelectronics industry (one 

of the many material processing applications involving non-thermal plasmas), electrons 

respond best to externally applied radio frequency fields (their relatively small mass 

inertia causes their relatively high mobility), and consequently attain much higher 

velocities than the heavier particles. Plasmas can thus provide relatively high 

temperature (particular species) chemistry at relatively low physical temperatures, 

which is generally why they are so prevalent in many industrial applications. Even in 

the case of thermal plasmas i.e. where electrons are in thermal equilibrium with the 

heavy particles (e.g. ions), the electron velocities are higher due to their lower mass. 

Electrons therefore become the main workhorses in nearly all man-made plasmas.  

 

Other important plasma collisions include; dissociation collisions (an especially 

important step leading to gas heating in neutraliser beam plasmas), association 

collisions, excitations (electronic excitations leading to radiative emissions, and 



 22 

vibrational and/or rotational excitations in molecular species), charge transfer collisions 

and recombinations. For material processing plasmas, such plasma chemistry is of vital 

importance, whereas in noble gas plasmas, much less chemistry occurs. 

 

 

1.5.3 Plasma Defining Criteria 

 

For an ionised gas to be classified as a plasma, three criteria need to be satisfied: 

 

Although most stable plasmas are quasineutral, a local break from charge neutrality 

pertains over small distances, quantified by the Debye length (λD) cf. [43]. This 

phenomenon of Debye shielding (charge screening), where for example a positive ion 

attracts a sphere of electrons around it, causes the self-generated electric fields to be 

damped out over distances greater than λD. To remain quasineutral, a plasma must 

satisfy the conditions that its dimensions (L) are much greater than its Debye length: 

 

In order for this phenomenon to prevail, there must also be a sufficiently large number 

of electrons (ND) within a sphere of radius equal to the Debye length (Debye sphere). 

This quantity is often referred to as the plasma parameter: 

 

A third defining criteria for plasmas involves the so-called plasma frequency (ωp) cf. 

[43], which quantifies the plasmas’ collective response time to ‘quiver motion’ caused 

by externally applied forces (e.g. electromagnetic fields) and/or internally originating 

electromagnetic fields (involving fleeting spatial perturbations of charge). The plasma 

frequency is required to be greater than the collision frequency (fc). This criterion 

implies that electromagnetic interactions play a major part in the overall motion of the 

plasma, and that nearest-neighbour, ordinary gas interactions (e.g. collisions) don’t 

dominate. Typically the electron plasma frequency lies in the gigahertz range, while the 

corresponding ion plasma frequency is usually only in the low megahertz range: 

 

1>>DN

DL λ>>

cp fπω 2>

(1.4) 

(1.5) 

(1.6) 
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A plasma is usually broadly characterised by two parameters; the plasma (number) 

density {number of like charged particles per unit volume} and the electron temperature 

{a measure of the mean thermal energy of an equivalent electron population in 

thermodynamic equilibrium, represented by a Maxwellian distribution}. Other distinct 

plasma parameters (not mentioned thus far) include; the plasma potential and skin 

depth, as well as the thermal velocity and mean free paths of each particle species. 

 

 

1.5.4 The Plasma Sheath 

 

A plasma sheath (also known as a Debye or electrostatic sheath) forms at any plasma-

material interface. The physics of the plasma sheath plays a crucial role in the overall 

behaviour of the plasma system. A net charge (a break from the bulk plasma 

quasineutrality) develops in a plasma sheath due to the inequality of escaping negative 

and positive species. As explained in Section 1.5.2, in a typical plasma, electrons are 

faster than any positive species and are therefore quickest to escape. This causes a net 

positive charge to reside in the sheath, and leads to the formation of an electric field, 

which confines electrons within the plasma and accelerates positive ions out of the 

plasma; thus preserving bulk plasma quasineutrality by maintaining an equality between 

positively and negatively charged outward fluxes. 

 

As a result of Debye shielding, most of the spatial variation in electric potential occurs 

only locally in the sheath region. Even in the case of a plasma in the presence of an 

external electric field e.g. a capacitive discharge [43], the voltage is dropped mainly 

over the sheaths, leaving the quasineutral bulk plasma at a ‘constant’ plasma potential 

(the steady-state plasma potential may oscillate depending on the nature of the dynamic 

equilibrium between plasma particle formation & loss, and the presence of plasma 

waves).  Consequently, most plasmas have sheath widths of the order of their Debye 

length. Negative sheath potentials can also exist e.g. when positive ions are faster than 

negative ions and/or electrons. More commonly they occur when excess negative charge 

is produced e.g. in negative ion neutralisers cf. Chapter 6, cf. Section 2.2.4.  

 

For a more thorough introduction to Plasma Physics see Bibliography [43, 44, 45]. 
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Neutraliser Beam Plasma Model 
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2.1 Particle-in-Cell Simulations with Monte Carlo Collisions 

 

2.1.1 Electrostatic PIC Technique 

 

PIC simulations are a popular tool for modelling low temperature plasma behaviour, as 

they invoke relatively few assumptions, and incorporate a thorough kinetic model of 

plasma dynamics. Unlike fluid models, which assume certain particle energy 

distributions e.g. Maxwellian distributions, PIC models are capable of computing the 

energy distribution functions of each particle species. Even though one simulated 

particle (super-particle) can represent ~ 1010 real particles (3D simulation), PIC MCC 

simulations have proven to be physically accurate [46], and thus continue to provide an 

important test bed for computer experiments in plasma science and technology. 

 

The standard (non-relativistic) plasma kinetic description involves the Boltzmann 

equation for each particle species, coupled with Maxwell’s equations, including charge 

density and current density relationships, along with the continuity equation. cf. [43]: 

 

 

 

Obtaining the exact analytic solution to these equations is not practically feasible, 

although PIC MCC simulations can yield reasonably accurate approximations. Here the 

continuous distribution functions (fi) are replaced by discrete particles, and the integrals 

with summations over all particles [45]. The PIC model divides the spatial dimension 

up into a number of discrete cells, which are populated by the super-particles. Partial 

differential equations (PDEs) for fi reduce to ordinary differential equations (ODEs) for 

the particles’ position and velocity. These ODEs are used in their discretised form, thus 

allowing the computer to solve them by a finite difference technique (the explicit 

c

i
iv

i

i
ir

i

t

f
fBvE

m

q
fv

t

f








∂
∂=∇⋅×++∇⋅+

∂
∂

)(

0ε
ρ=⋅∇ E

t

B
E

∂
∂−=×∇

0=⋅∇ B i
t

E
B 000 µµε +

∂
∂=×∇

0=⋅∇+
∂
∂

J
t

ρ

∫∑= i
i

i vfdq 3ρ ∫∑= vvfdqJ i
i

i
3

: Boltzmann equation 

: Maxwell’s equations 

: charge & current density relationships 

: continuity equation 



 26 

Leapfrog scheme [47] is used in this work) at each particle position and discrete time-

step (index, n). However, the motion causing electrostatic fields (magnetic effects are 

assumed to be negligible) are solved only at the cell-nodes (also called grid or mesh 

points), rather than at each particle position. An interpolation technique (Gather) is used 

(via a shape function, S) to ascribe the charge density (ρ) to each cell-node (index, i), 

i.e. from the charged particle positions (index, j) within the cells. The electrostatic 

interactions of the charged particles are then modelled using Poisson’s equation to find 

the electric potential (ϕ) and its spatial gradient i.e. the electric field (E), at every cell-

node. The electric field at each cell-node is then interpolated back (Scatter) to the actual 

particle positions, where the equations of motion are numerically integrated to find their 

new velocities and positions. In contrast to kinetic simulations involving fixed-field 

equations, the electrostatic field equations are thus solved self-consistently i.e. the cell-

node charge distributions and resulting electric fields are continuously updated in 

accordance with the charged particles’ ever changing positions. The full cell-node 

particle weighting procedure is then repeated at each successive time-step. cf. [47]: 

 

 
2.1.2 Basic MCC Model 

 

When a super-particle is moved (after the integration of the equations of motion and 

before the particle’s charge is distributed to the nearby cell-nodes, cf. Figure 14, Section 

2.1.3) it has a certain probability of making a binary collision with another super-

particle. This collision probability is determined from the cross sections of the possible 
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place. The cross sections (as functions of energy) are initially inputted into the code as a 

data table, which is interpolated to find cross sections at energies in between those 

quoted. The so-called null-collision method is used so that the super-particle collision 

frequency (ν, calculated from the cross section data) is independent of energy, hence 

causing the probability of a collision to be also independent of energy: 

 

 
If  null collision  => no collision 

Else if  real collision  => solve (momentum & energy conservation) collision equations 

 

In the collision algorithm, the scattering formula is taken from Takizuka & Abe [48]. 

 

 

2.1.3 PIC MCC Computational Cycle 

 

The PIC MCC computational cycle (Figure 14) can be summarised by five distinct 

steps; (I) The MCC technique determines which particles undergo collisions. The 

collision algorithm then solves the collision kinematic equations while implementing 

the results thereof. (II) Each individual particle charge is ascribed to the nearby cell-

nodes (Gather). (III) The electric field is computed at each cell-node (via the solution of 

Poisson’s equation). (IV) The electric field at each cell-node is used to assign a specific 

field value to each charged particle (Scatter). (V) These field values are then used to 

determine the motion of the charged particles (by solving the equations of motion). This 

cycle continues for all time-steps. Generally, the super-particle electrons are the only 

species moved every time-step, since it is sufficient to move (subcycle) the heavier 
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particles (e.g. ions) every ~ 5 time-steps (depending on their velocities) because of their 

slower motion. This has the highly desired effect of reducing the computational time. 

 
Figure 14: Flowchart of the PIC MCC computational cycle.  
 
 
For a more detailed introduction to PIC MCC simulations see Bibliography [45, 47, 49].  

 

 

2.1.4 Simulation Accuracy Constraints 
 
One of the three basic computational constraints to ensure physical relevance and 

accuracy involves an upper limit on the cell size, in proportion to the Debye length (λD). 

λD is inversely proportional to the square root of the electron density, since charge 

screening occurs over a smaller distance when the plasma is denser i.e. when there are 

more charges in closer vicinity to screen each other. Higher plasma densities therefore 

imply shorter Debye lengths and hence require smaller cell sizes, which entails using 

more computational cells to divide up the resolved length. This provides the spatial 

resolution whereby the electrostatic field equations are solved over distances less than 

the Debye length, rather than over longer distances where charge screening pertains. 

The electron temperature also has a significant bearing on the required cell size. λD is 

proportional to the square root of the electron temperature, due to the fact that lower 

electron temperatures are more conducive to charge screening. Lower electron 

temperatures therefore produce smaller Debye lengths and thus require more cells per 

unit length. Quantitatively, all this can be summed up by one inequality, which states 

that the cell size (∆x) needs to be less than ~ half the Debye length: 

 

2
~ Dx

λ<∆           (2.1) 

 

Time-steps of the order of picoseconds are needed to simulate the fastest physical 

phenomena occurring in typical plasmas e.g. (electron) plasma oscillations. The second 
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constraint provides such sufficient temporal resolution, and requires the time-step (∆t) 

to be less than ~ a fifth of the reciprocal of the plasma frequency (ωp): 

 

2.0~<∆ ptω           (2.2) 

 

One representative weight is chosen in each simulation to define the ‘super-particle 

assumption’ e.g. a weight of 1x1010 suggests that one simulated super-particle (3D 

simulation) adequately represents the physics of this number of real particles. The third 

computational constraint relates to the number of these super-particles per cell. This 

constraint ensures a realistic simulation of a plasma, which must have a sufficient 

number of particles within a Debye sphere (Section 1.5.3) i.e. a sufficient number of 

super-particles per cell (N) to adequately model charge screening phenomena:  

 

10>>N           (2.3) 

 

While the three aforementioned simulation accuracy constraints are not rigid numerical 

stability requirements, in the event of a cell size, time-step, or super-particle number 

constraint being violated, non-physical effects may arise in the simulations e.g. non-

physical heating of electrons when the cell size is too large [47]. Ideally, when ∆x & ∆t 

and N are decreased and increased respectively, beyond the above simulation accuracy 

constraints, no significant change should result in the simulation results. Although in 

practice, obtaining such strictly converged simulation results is sometimes unfeasible 

due to time constraints imposed by limited computational speed and number of 

computers (these restrictions certainly compromised the quality of this investigation). 

Furthermore, the inclusion of Monte Carlo collisions has been found to tighten these 

constraints [50]. Hence a compromise is usually made between physical fidelity and 

computational expense i.e. achieving an adequate solution within a reasonable time. 

 

A further constraint (usually covered by the time-step accuracy constraint specified 

above) is required for numerical stability. It demands that even the fastest particle 

(velocity, νmax) must not travel a distance greater than the cell size in one time step. This 

is called the Courant-Fredrichs-Lewy (CFL) condition [45]: 

 
xtv ∆≤∆max           (2.4) 
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2.2 Beam Plasma 1D3v PIC MCC Simulations 

 

2.2.1 Description of the Beam Plasma Model 

 

The simulation code (containing strictly conforming C and trivial C++ computer 

programming languages, cf. attached CD) is an adapted version of the “en” electrostatic 

plasma 1D3v PIC MCC simulation code composed by Miles Turner. A comparison of 

this code with other similar plasma simulation codes has been published [51]. Herein 

PIC and MCC computational techniques are used in unison to simulate the continuous 

propagation of a hydrogen beam through a H2 gas neutraliser. The beam is assumed to 

have a top-hat density & velocity spatial profile with a rectangular beam head area of 

0.064m2 (0.16m x 0.40m), centred in a neutraliser cell of dimensions: 0.20m, 0.44m, 

1.86m (0.86m 1st stage neutraliser, 1m 2nd stage), horizontal/transverse (x), vertical (y), 

axial/longitudinal (z), neutraliser/beam dimensions, respectively. The neutraliser gas is 

assumed to have a uniform temperature (300K) & (horizontal) pressure/density profile, 

and an axial pressure/density profile similar to Figure 10, Section 1.3.2. 

 

 

 

 

 

  

 

Figure 15: A plan view schematic of the first stage neutraliser (to scale), showing the 

Longitudinal and Transverse simulation model approaches (the grey arrows indicate 

the beam direction within the dark red space showing the respective 1D beam regions). 

 

The 3D physics of the neutraliser can be reduced to a 2D problem (Figure 15), since the 

vertical dimension (y) is effectively ‘redundant’ due to symmetry. While the 

development of a full 2D simulation is beyond the scope of this investigation, 

Longitudinal and Transverse electrostatic 1D3v PIC MCC simulations are employed to 

provide a quasi-2D beam (& beam plasma) characterisation i.e. along (z) and 

perpendicular (x) to the beam direction, respectively. Both 1D3v simulations namely 

entail only one spatial degree of freedom for each super-particle, although their full 3D 

velocity vectors are consistently calculated at each time step, cf. Section 2.1.  

x 

  z  
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In Longitudinal simulations (Figure 15), the beam is constantly injected at one end of 

the 1D resolved length (neutraliser axial dimension) towards the other (grounded wall). 

The only sink for beam plasma particles is at either end, which means that unless a 

sufficiently accurate particle loss mechanism is implemented to mimic the (transverse) 

loss of particles at the neutraliser walls, this method is not capable of accurately 

quantifying the beam plasma behaviour. However, it can be used to characterise any 

beam plasma changes in the beam direction, along the centre of the 1st stage neutraliser 

(full neutraliser length simulations are not performed due to their excessive 

computational expense and the difficulty in modelling the varying 2nd stage neutraliser 

gas pressure). Section 2.2.3 shows how this Longitudinal simulation approach can 

provide a beam (& beam plasma) characterisation as a function of the 1st stage 

neutraliser axial position. Unlike Longitudinal simulations, Transverse simulations 

(Section 2.2.4) are capable of resolving the beam plasma sheath, and are henceforth 

employed to quantitatively model the neutraliser beam plasma system. 

 

In Transverse simulations an adaptation to the “en” code is necessary in order to 

simulate a spatially-fixed beam travelling in a direction perpendicular to the resolved 

length (Figure 15). This beam-neutraliser simulation model thus consists of a constant 

density (while allowing for beam compositional changes via beam collisions with the 

neutraliser gas) & velocity top-hat beam spatial profile (beam width of 0.16m) centred 

in the 1D resolved length (neutraliser horizontal width of 0.2m), with grounded 

boundaries at each end (representing the neutraliser walls). Section 2.2.4 describes how 

this Transverse simulation approach can be used to investigate the beam (& beam 

plasma) behaviour as a function of time and 2D space (x, z). 

 

In both simulation approaches, the 1D resolved length is divided into thousands of cells 

(depending on the expected beam plasma Debye length), while the other key defining 

simulation parameters i.e. the time-step and the super-particle number/weight are also 

chosen to satisfy the accuracy constraints (Section 2.1.4). The neutraliser gas (density of 

the order of thousands times that of the plasma) is modelled as a fixed, uniform density 

& temperature background gas, while its empirical axial pressure profile (Figure 10, 

Section 1.3.2) is taken into account in all volume-averaged calculations (Section 5.1.3).  

 

Simulation diagnostics (e.g. particle densities) are calculated at interval time-steps (e.g. 

every 10000 time-steps) with cellular resolution (no. spatial data points = no. cells + 1), 
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and saved to the relevant data file . The MATLAB mathematical software package is 

used to plot and analyse these results e.g. the electron temperature is calculated from the 

electron thermal-energy-density diagnostic [49] assuming the equipartition of energy. 

 

To separately track certain particles of the same species, they are labelled differently 

e.g. beam hydrogen atoms (bH) and plasma hydrogen atoms (fH, f5H, aH). In order to 

simulate the fast H/H+ particles formed by dissociation collisions with kinetic energies: 

2.2, 5, 10 eV [43, 34], a two-step model is used e.g. first step: e + H2 -> e + H2*d with 

a certain positive threshold energy, second step: H2*d -> fH + fH with a negative 

threshold energy, each fH receiving half this energy (Section 2.2.2). A similar two-step 

technique is employed to simulate any beam collision that produces more than two 

collision products (since the existing Inelastic Forward collision algorithm is limited to 

collisions comprising of two reactants and two products, Section 2.2.2). 

 

The gas heating caused by the fast particles is calculated from power density transfer 

calculations, using additional computational procedures (composed in MATLAB) to 

integrate the kinetic energy transferred (from fast particle elastic collisions with the 

neutraliser gas) and the corresponding rate coefficients {σ(E)v(E)} over the particle 

energy distributions (Section 5.1). The gas heating contribution of all tracked particles 

can thus be determined. For example, the (direct) electron contribution (overlooked by 

Pamela) is found to be significant, as a result of their relatively high density and kinetic 

energy, despite their relatively low percentage energy transfer (due to their mass being 

much less than that of the neutraliser gas molecules). 

 

The Hydrogen beams in the JET NBIs initially consist of H+, H2
+, and H3

+ full energy 

(E) ions. H3
+ (E) beam ions can dissociate into H2

+ (2E/3), H2 (2E/3), H+ (E/3), and H 

(E/3) beam particles, while H2
+ (E) {2E/3} beam ions can dissociate into H+ (E/2) {E/3} 

and H (E/2) {E/3} beam particles. Complete cross section data for high energy (of the 

order of hundreds of keV) H2
+ and H3

+ collisions with the neutraliser gas (e.g. important 

plasma forming collisions) is not presently available (to the best of our knowledge). 

Hence, the beam plasma simulations do not account for the plasma forming collisions 

of the full ensemble of beam component species. Instead, beam plasma simulations are 

run with a beam initially consisting of 100% protons, with charge-changing collisions 

only allowing one other possible beam species to exist, namely that of neutral hydrogen 

atoms (as in the two-component beam model, Section 1.3.1). Although, results from 
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beam composition simulations involving 11 distinct beam components, encompassing 5 

different beam species (H3
+, H2

+, H2, H
+, H) are also presented (Section 4.1), wherein 

only beam composition-changing collisions are simulated.  

 

 

2.2.2 List of particles and their collisions 

 

label  description                mass (kg x 10-27) 

 

H2  background gas H2 molecule        3.34706 

 

bH+  beam proton         1.67262 

 

bH  beam hydrogen atom        1.67353 

bH*es  intermediate bH prior to electron stripping     1.67353 

 

e  electron          0.00091 

 

f5H+  H+ ion formed with  kinetic energy of 5eV     1.67262 

f10H+  H+ ion formed with  kinetic energy of 10eV     1.67262 

 

H2+  H2
+ ion          3.34615 

H2+*d  intermediate H2
+ prior to dissociation      3.34615 

 

H3+  H3
+ ion          5.01968 

 

aH  hydrogen atom formed via H3
+ formation     1.67353 

fH  hydrogen atom formed with  kinetic energy of 2.2eV    1.67353 

f5H  hydrogen atom formed with  kinetic energy of 5eV    1.67353 

 

xH2  H2 molecule formed from H2
+ charge exchange      3.34706 

rxH2  H2 molecule formed by xH2 reflection at either wall    3.34706 

rnH2  H2 molecule formed by H2
+ recombination & reflection     3.34706 

 

H2*d  intermediate H2 prior to dissociation      3.34706 

H2* i  intermediate H2 prior to ionisation      3.34706 

H2*di  intermediate H2 prior to dissociative ionisation     3.34706 

H2*ddi  intermediate H2 prior to dissociative double ionisation    3.34706 
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Collision threshold energies are in brackets (eV), cross sections are on attached CD: 

 
(I) Beam Collisions 
 
proton beam collisions (IF) *  
 
bH+   elastic    bH+ + H2 -> bH+ + H2          [52, 53] 
 
bH+   dissociation     bH+ + H2 -> bH+ + H2*d          [34] 
(8.900) 
 
bH+   ionisation   bH+ + H2 -> bH+ + H2* i          [52, 54] 
(23.100) 
 
bH+   dissociative ionisation  bH+ + H2 -> bH+ + H2*di          [52, 53] 
(52.500)  
  
bH+  dissociative double  bH+ + H2 -> bH+ + H2*ddi          [54] 
(75.600) ionisation    
 
bH+   electron capture   bH+ + H2 -> bH + H2+          [52, 53] 
(2.745) 
 
bH+   dissociative electron  bH+ + H2 -> bH + H2+*d          [34] 
(11.645) capture     
 
 
neutral hydrogen beam collisions (IF) * 
 
bH   elastic    bH + H2 -> bH + H2             [52, 53] 
 
bH   dissociation   bH + H2 -> bH + H2*d          [34] 
(8.900) 
 
bH   ionisation   bH + H2 -> bH + H2* i          [52, 54] 
(23.100) 
 
bH   dissociative ionisation  bH + H2 -> bH + H2*di          [54] 
(52.500) 
 
bH   dissociative double  bH + H2 -> bH + H2*ddi          [54] 
(75.600) ionisation    
 
bH   electron stripping  bH + H2 -> bH*es + H2          [54] 
(13.600) 
 
bH   electron stripping with bH + H2 -> bH*es + H2*di          [54] 
(66.100) dissociative ionisation   
 
bH   electron stripping with bH + H2 -> bH*es + H2*ddi           [54] 
(89.200) dissociative double 

ionisation   
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(II) Plasma Collisions 
 
electron collisions (I) * 
 
e   elastic (E) *   e + H2 -> e + H2                      [52] 
 
e   dissociation     e + H2 -> e + H2*d                          [53] 
(8.900) 
 
e   ionisation   e + H2 -> e + H2+ + e           [52] 
(15.400) 
 
e   dissociative ionisation  e + H2 -> e + H2*di                         [53] 
(18.000) 
 
 
H2

+ collisions (I) * 
 
H2+   elastic (E) *   H2+ + H2 -> H2+ + H2               [53]
  
H2+   charge exchange  H2+ + H2 -> xH2 + H2+          [52] 
(0.000) 
 
H2+   association   H2+ + H2 -> H3+ + aH          [53, 52] 
(-3.420) 
 
 
H3

+ collisions (E) * 
 
H3+   elastic    H3+ + H2 -> H3+ + H2          [52] 

 

H+ collisions (E) * 
 
f5H+   elastic    f5H+ + H2 -> f5H+ + H2          [52] 

f10H+   elastic    f10H+ + H2 -> f10H+ + H2            [52] 

 

H collisions (E) *  
 
aH   elastic    aH + H2 -> aH + H2           [52] 

fH   elastic    fH + H2 -> fH + H2           [52] 

f5H   elastic    f5H + H2 -> f5H + H2          [52] 

 

H2 collisions (E) *  
 
rnH2   elastic    rnH2 + H2 -> rnH2 + H2          [53] 

xH2   elastic    xH2 + H2 -> xH2 + H2          [53] 

rxH2   elastic    rxH2 + H2 -> rxH2 + H2          [53] 
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(III) Second Step ‘Collisions’ (D) *  
 
"bH*es -> bH+ + e"    (0.000) 

"H2+*d -> f5H + f5H+"   (-10.000) 

"H2*d -> fH + fH"    (-4.400) 

"H2* i -> H2+ + e"    (0.000) 

"H2*di -> f5H + f5H+ + e"   (-10.000) 

"H2*ddi -> f10H+ + f10H+ + e + e"  (-20.000) 

 
*: The simulation uses the following four set types of ‘collision’ handlers: 
Elastic (E), Inelastic (I), Inelastic Forward (IF), and Decay (D). 

 

The conservation of energy and momentum apply to all collisions, while in elastic 

collisions the kinetic energy is also conserved. 

 

Elastic and Inelastic collision handlers entail isotropic scattering distributions, and are 

the choice collision handler for all electron and other plasma particle collisions.  

 

The Inelastic Forward collision handler is chosen for all beam collisions, and entails no 

beam scattering i.e. all beam particles continue in the same direction after the collision. 

This collision treatment is deemed to be of sufficient physical fidelity to real beam 

collisions; where beam particles undergo only slight scattering of the order of milli-

radians [55], with other product particles exhibiting various anisotropic scattering 

distributions cf. experimentally determined electron scattering distributions [56, 57]. 

 

Decay ‘collisions’ differ from all the other collision types in that they are defined by a 

fixed decay frequency, rather than by (energy dependent) cross sections. This ‘collision’ 

type is adopted as the second step in all two-step collisions, i.e. by choosing a maximum 

allowable decay frequency (determined by the simulation time-step), the second step 

occurs virtually simultaneously with the first step, thereby adequately mimicing what 

any ideal one-step collision treatment would produce. 

 

The adapted “en” code is also capable of simulating Coulomb collisions among charged 

particles of same/different species. In addition to simulating the collision phenomena 

occurring in the neutraliser volume, the process whereby H2
+ ions (H2+) are both 

neutralised and reflected as H2 molecules (rnH2) at the neutraliser walls are also 
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simulated, and similarly whereby charge-exchanged H2
+ ions (xH2) get reflected as 

rxH2 particles (both subsequently contribute to gas heating). The Implementation of 

these processes entails assuming a fixed neutralisation &/or reflection coefficient of 0.6, 

along with a common energy loss coefficient of 0.5. Both coefficients are assumed to be 

independent of the energy of the impacting H2+/xH2 particle. The values of 0.6 and 0.5 

are in agreement with the composite coefficient of 0.3 (0.6 x 0.5) assumed by Paméla 

[31, 34] to account for neutralisation, reflection, and energy loss [58, 59]. 

 

The main beam plasma characterisation Transverse simulations (Chapter 4) investigate 

3 different neutraliser H2 gas densities (3x1019m-3, 6x1019m-3, 9x1019m-3) and 3 different 

proton beam energies/currents (80keV/27A, 120keV/50A, 134keV/60A, corresponding 

to specific current-voltage optimum beam perveances cf. Section 3.1), and thus 3 

different beam powers (2.16MW, 6.00MW, 8.04MW, respectively). The simulation 

input file (sample on attached CD) requires that beam energies/currents are translated 

into beam velocities and densities. For example, the 80keV/27A proton beam has a 

velocity of 3.915x106ms-1 {mpvp
2/2 = 80keV}, a flux of 2.633x1021m-2s-1 

{|e|fp(0.16m)(0.4m) = 27A}, and thus a beam density of 6.725x1014m-3 { fp = npvp}, 

where mp is the proton mass ( ~ 1.67262x10-27kg), |e| is the absolute value of the 

‘elementary’ charge ( ~ 1.6022x10-19C) , fp is the proton beam flux, and vp is the proton 

beam velocity (the latter two parameters being vector quantities in the beam direction). 

 

 

2.2.3 Longitudinal Simulation Approach 

 

As derived in the two-component hydrogen beam model {Equation (1.3), Section 1.3.1} 

 

It can also be expressed as a function of the neutraliser axial position (z), for a constant 

neutraliser H2 gas density (nH2 represents the average density i.e. the integral of the real 

neutraliser density versus position profile over the first 1.86m divided by 1.86m): 

)1(
])[(

00
21001 znHeFF

σσ +−∞ −=⇒=Π znH2

)1( )(
00

1001 Π+−∞ −= σσeFF ; the neutral beam fraction is usually expressed as: 

3.0)95.0()1(
1001

103
00 ≈≈−= +

−∞
σσ

σeFF

314314 10026.2)10725.6(3.0 −− ≈= mxmxnbH resulting in a neutral beam density of: 

 3 beam (80keV/27A) attenuations:   

(2.5) 



 38 

 
 

Figure 16: 80keV/27A H+/H densities as a function of the H2 neutraliser axial position. 

 

The beam species fractions from a 1D3v Longitudinal simulation {at ‘optimum’ H2 gas 

density, 9x1019m-3 cf. Equation (2.7), Section 2.2.4} over a distance of 0.86m (length of 

the first stage neutraliser) are shown in Figure 17. Despite the noisy results (unphysical 

noise caused by having relatively few super-particles per cell), the simulated beam 

density as a function of position, closely follows the analytical solution. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Simulation & analytic results comprising 80keV/27A Hydrogen beam 

component densities as a function of the H2 (1
st stage) neutraliser axial position. 

 

The same Longitudinal simulation (Figure 17) can also characterise the beam plasma 

behaviour. The charged particle density (longitudinal) spatial results shown in Figure 

18 {the (blue) total positive charge density overlaps the (red) electron density, due to 

plasma quasineutrality} imply that the character of the beam plasma, along the 1st stage 

neutraliser, does not change significantly enough to warrant a full 2D characterisation. 
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The grounded wall boundary conditions seem reasonable electrostatically {neutral grid 

at start of 1st stage neutraliser (Figure 7, Section 1.2.3) and quasineutral plasma at end}. 

The slightly increasing electron and H2
+ density profiles are due to the fact that the 

plasma particles formed via beam collisions are not formed isotropically in space, but 

rather with a forward scattering bias. The neutralisation of the beam along this axial 

length has a negligible bearing on such profiles, as can be seen from Figure 19. 

Recalling the full neutraliser pressure profile (Figure 10, Section 1.3.2); the linear 

decreasing pressure profile in the 2nd stage is kept relatively constant by the vacuum 

pumping, and is not thought to lead to any significant axial plasma flow.  

 

 

Figure 18: Longitudinal profile of the charged particle densities. 

 

 

Figure 19: Longitudinal profile of the charged particle densities {no beam charge-

changing collisions}. 
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2.2.4 Transverse Simulation Approach 

 

Similarly to Section 2.2.3, the neutral beam fraction can furthermore be expressed as a 

function of time, assuming a constant neutraliser H2 gas density (nH2): 

 

 
 

 
 

Figure 20: 80keV/27A H+/H densities as a function of time. 

 

As in Section 2.2.3, the constant (average) neutraliser H2 gas density represents the 

integral of the real neutraliser density versus position profile over the first 1.86m 

divided by 1.86m, and its ‘optimum’ value {i.e. that which causes 3 beam attenuations ( 

~ 95% maximum neutralisation) within the 475ns it takes for a 80keV proton to traverse 

the full neutraliser length of 1.86m} is chosen as the (fixed) neutraliser H2 gas density in 

the following 1D3v Transverse simulations: 

 {σ01 ≅ 0.56x10-20m-2 and σ10 ≅ 1.20x10-20m-2 for a 80keV Hydrogen beam [60]} 
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Figure 21: Simulation & analytic results comprising 80keV/27A H+/H densities as a 

function of time {initial H+ injection into a H2 neutraliser gas of density 9x1019m-3}. 

 

 

Figure 22: Simulation & analytic results comprising 80keV/27A H+/H densities as a 

function of time (neutraliser axial position, gas target) {H+ re-injection into a steady-

state Hydrogen neutraliser beam plasma, initial gas density of 9x1019m-3}. 

 

Note that in Figure 21, the beam plasma is in the early stages of formation, yet since the 

beam species fractions depend only on the beam & gas parameters, the situation remains 

the same at steady-state (Figure 22). The beam species fractions as a function of time 

(Figure 21), exhibit the same behaviour as a function of neutraliser axial position in 

similar Longitudinal simulations (Figure 17, Section 2.2.3), consistent with the 

accuracy of their common analytic solutions (Section 1.3.1). Hence, in regards to the 

beam behaviour, this shows that the time dimension in Transverse simulations can 

represent the neutraliser axial position and the neutraliser gas target. Here for example 
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(Figure 21); 475ns corresponds to 1.86m and 1.674x1020m-2 (the ‘optimum’ gas target 

i.e. 9x1019m-3 x 1.86m). This interchangeable variables technique is employed in 

Sections 4.1, 4.2, 5.1.5, 6.1.2 & 6.1.3. 

 

Furthermore, the same Transverse simulation (Figure 21) can somewhat help to 

elucidate the beam ‘plasma’ behaviour as a function of time (Appendix B contains more 

early evolution beam ‘plasma’ parameter plots) and the neutraliser axial position: 

 
(a) 

 
(b) 

 
 
Figure 23: (a) Spatially averaged charged particle density evolution, (b) charged 

particle flux evolution at the neutraliser walls, and the (scaled up) plasma potential. 

 

Initially, proton beam (positive ion) injection into the (neutral gas) neutraliser obviously 

provides a net positive charge density therein. The beam (bH+) neutralisation (electron 

capture) process produces a further (localised) net positive charge density in the 
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neutraliser, in the form of H2
+ ions, since the captured electrons move off with the beam 

velocity. This is evident in Figure 23 (a), where the net+ density is greater than the bH+ 

density for the first ~ 70ns, while a relatively quick plasma response leads to the 

ejection of the excess H2
+ (/H3

+/H+) ions (Figure 23 (b)), eventually resulting in ~ zero 

net+ density (and flux) after ~ 475ns. This localised excess positive charge decreases 

also via the ‘simultaneous’ production of a localised net negative charge from beam 

(bH) re-ionisation (electron stripping) collisions, albeit a relatively small effect due to 

the greater bH+ density (Figure 21), despite the more favourable cross sections for bH 

re-ionisation at this (80keV) energy (Figure 11 (b), Section 1.3.4). 

 

Along with an ejection of excess positive charge (initially consisting of H2
+ ions 

originating either from beam neutralisation collisions or from beam/electron impact 

ionisations i.e. prior to significant H3
+/H+ plasma particle formation), the large plasma 

potential (mainly provided by the beam space-charge) also causes an initial confinement 

of electrons (Figure 23 (b)). After ~ 125ns, some electrons (in the tail of the electron 

energy distribution function) have enough kinetic energy to overcome the (decreasing) 

plasma potential, and can thus escape to the neutraliser walls. Soon afterwards, at ~ 

475ns (1.86m), the beam reaches dynamic charge-equilibrium (cf. Figure 21) i.e. when 

electron capture by bH+’s balances electron stripping of bH’s, resulting in an orthodox 

quasineutral plasma situation (no localised excess charge), where the negative flux at 

either wall equals the positive flux (Figure 23 (b)). 

 

Figure 23 (b) can also shed some light on the net+ flux behaviour (net current profile) at 

either wall as a function of the neutraliser axial position. Although Figure 23 (b) 

certainly wouldn't accurately resemble the steady-state charged particle fluxes versus 

neutraliser axial position {e.g. the initial zero electron flux at both walls (always 

nonzero at steady-state), and the continuing positive flux compositional changes 

(constant at steady-state)}, the net+ flux versus time profile from the ~ 125–(600) ns, is 

indicative of the real net+ flux versus neutraliser axial position profile during dynamic 

steady-state. This is because the amount of net excess charge (from electron 

capture/stripping collisions - Surrey’s beam plasma models didn’t include the latter 

collisions [22]) dumped to the neutraliser walls, depends only on the beam & gas 

parameters (i.e. not on the plasma parameters, even though the plasma potential and 

other plasma parameters change with time up to a dynamic steady-state). Moreover, in 

the presence of no significant axial electric fields (significant axial plasma flow has 
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already been ruled out by the simulation results outlined in Section 2.2.3), it is 

reasonable to assume that the net+ (plasma) charge responds only to transverse electric 

fields, hence resulting in plasma fluxes entirely perpendicular to the beam. 

 

Transverse simulations can more accurately quantify the neutraliser beam plasma 

behaviour as a function of the neutraliser horizontal position e.g. Figures 24 &  25 show 

some plasma particle densities versus time and position, for 80keV/27A proton beam 

injection into a H2 gas of density 9x1019m-3. The top-hat beam profile (Sections 2.2.1) 

obviously results in no beam collisions in the 2cm regions either side of the beam, 

hence the substantial decrease in plasma densities therein (Figures 24 & 25 (b)), despite 

electron impact ionisation (Tables 1 & 3, Section 4.4), plasma diffusion and drift. 

 

 

Figure 24: Early spatial evolution of the electron density. 

 

(a)      (b) 

 
 

Figure 25: (a) Early evolution of the spatially averaged charged particle densities, and 

(b) their respective spatial profiles @ t = 8.0 µs. 
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3.1 Chapter Overview 

 

JET NBIs operate at specific I-V values pertaining to minimum beam (transverse) 

divergence (optimum beam perveance) at a given background gas pressure, which limits 

the total (longitudinal) beam current extraction from the ion source, at any given 

accelerating voltage. The Child-Langmuir law for non-relativistic charged particles [43, 

61] quantifies such space-charge limited beam extraction, while these matters reside in 

the field of ion beam optics, involving important considerations such as beam steering, 

which can include the use of electrostatic fields to provide a divergent lenses effect [25]. 

 

Accurate beam neutralisation efficiency measurements rely upon accurate knowledge of 

beam transmission losses (due to nonzero beam temperature, beam aberrations & 

alignment/steering issues and beam space-charge effects) [27]. In this chapter, beam 

longitudinal and transverse space-charge effects are investigated via Longitudinal and 

Transverse (with unconstrained beam particle densities & velocities) proton beam 

propagation in vacuum simulations, respectively cf. Chapter 2. The Longitudinal and 

Transverse results consist of plots of the beam density & velocity as a function of 

position i.e. along and perpendicular to the beam axis, respectively. 

 

In the Longitudinal simulations (Section 3.2), space-charge limited beam propagation 

effects are observed along this spatial dimension i.e. the beam protons slow down from 

their initial injection velocity and accumulate in-between the grounded boundaries, due 

to their mutual electric repulsion, resulting in a build-up of beam particles (positive 

charge) and a subsequent repelling of oncoming beam particles. This phenomenon is 

known as virtual anode behaviour, in a similar analogous fashion to the more commonly 

known virtual cathode (space-charge limiting beam propagation) effects associated with 

electron beam generation/propagation. In the Transverse simulations (Section 3.3), 

beam space-charge expansion (divergence) is observed. As in Section 3.2, the pure 

vacuum simulation conditions don’t prevail in any real ion beam injectors since space-

charge compensation {via primary (beam-gas) ionisation and secondary (e.g. electron-

gas) ionisation} is a prerequisite for achieving reasonably good (relatively low 

emittance [61]) beam propagation. Moreover, the simulated beams have zero 

temperature. Hence the limitations in any experimental comparisons.  

 

A similar overall analysis would equally apply to negatively charged beams [62].  
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3.2 Longitudinal Space-Charge Limiting Beam Propagation 

 

3.2.1 Results under varying beam density   

 

The effect of beam density on the beam (longitudinal) propagation is investigated, by 

performing simulations at three different (initial) beam densities (currents), at constant 

(initial) beam velocity. Where the beam density is high (in regions of space-charge 

accumulation), the corresponding velocity is low and visa-versa (Figure 26). The space-

charge effects increase as the beam density increases, due to the greater Coulombic 

(mutual) repulsion between closer charges {In Figures 26 – 28, the beam propagation 

has reached a (dynamic) steady-state, whereby an ideal non self-interacting (space-

charge neutral) beam would have a constant value density & velocity spatial profile}. 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 26: Beam density & velocity spatial profiles at beam densities; (a) 6.722x1013m-3 

(80keV/2.7A), (b) 6.722x1014m-3 (80keV/27A), (c) 6.722x1015m-3 (80keV/270A). 
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3.2.2 Results under varying beam velocity 

 

For constant (initial) beam density, the (initial) beam velocity is varied (therefore also 

varying the initial beam current). The resulting beam propagation is more ideal at higher 

currents (Figure 27), which is opposite to the trend in Section 3.2.1. This is due to the 

fact that the beam space-charge effects are less at higher beam velocities, e.g. in the 

800keV/270A case (Figure 27 (c)), the beam propagation is virtually unhindered. 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 27: Beam density & velocity spatial profiles at beam velocities; (a) 3.918x105 

ms-1 (8keV/2.7A), (b) 3.918x106ms-1 (80keV/27A), (c) 3.918x107ms-1 (800keV/270A). 
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3.2.3 Results for a constant beam current   

 

At constant (initial) beam current, the space-charge effects decrease as the (initial) beam 

density decreases (Figure 28) due to the coupled behaviour of this decrease in (initial) 

beam density and the simultaneous increase in (initial) beam velocity (both effects are 

independently investigated in Sections 3.2.1 & 3.2.2, respectively). In the 800keV case 

(Figure 28 (c)), beam space-charge limiting effects are effectively non-existent. 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 28: Beam density & velocity spatial profiles at beam densities; (a) 6.722x1015m-3 

(8keV/27A), (b) 6.722x1014m-3 (80keV/27A), (c) 6.722x1013m-3 (800keV/27A). 
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3.2.4 Conclusions and General Remarks  

 

Knowledge of beam current alone is insufficient to predict the scale of (longitudinal) 

space-charge limited beam propagation effects (Sections 3.2.1 - 3.2.3). Typical particle 

beam textbooks [61] state that the beam current is the defining parameter that 

determines the degree of space-charge limited beam propagation, mentioning two 

crucial current limits. The first limit (in order of increasing beam current) concerns 

electrostatic effects, where, above this value, space-charge neutralisation is required. 

This occurs when the electrostatic potential energy exceeds the beam kinetic energy (i.e. 

at relatively high beam densities and/or relatively low beam velocities, as evidenced in 

Sections 3.2.1 - 3.2.3) and the beam propagation thus becomes space-charge limited. 

The magnitude of this effect is reduced in the presence of oppositely charged particles, 

which provide the space-charge neutralisation. The second limit is due to self-magnetic 

effects, where, above this limit, the self-magnetic field energy exceeds the beam kinetic 

energy. Current neutralisation is then also required for maximum beam flow, while it 

would be necessary to know both the beam density and velocity (i.e. not just the current 

density), in order to predict the extent of any self-magnetic limiting beam propagation.  

 

The self-magnetic field (B) due to a 27A (I) proton beam, at transverse positions equal 

to the beam radius of 8cm (r), is ~ 0.68G {B(2πr) = µ0I (Ampere’s law cf. [61]), where 

µ0 is the permeability of free space}, which is sufficiently small to have a negligible 

effect on the beam (and plasma). Hence, the beam currents encountered in JET NBIs are 

small enough to rule out significant self-magnetic effects {the phenomenon of beam 

pinching (convergence) is often seen in many electron beam sources i.e. a given 

accelerating voltage produces a relatively high velocity, due to their relatively low mass, 

which is also the reason for their relatively better response to the resulting (self-

focusing) self-magnetic fields - in such cases, both space-charge neutralisation and 

current neutralisation are required for unhindered electron beam propagation [61]}.  

 

Space-charge limited beam propagation effects can cause undesirable beam optics 

(again, the magnitude of which depends on both the beam density and velocity), and are 

very sensitive to the background gas pressure (source of space-charge neutralising 

electrons). Thankfully these effects are minimal in the JET NBIs due to the high 

accelerating electric fields set up by the large voltage biases on the accelerating grids, 

and the sufficiently high gas pressures in these regions.  
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3.3 Beam Transverse Space-Charge Expansion 

 
This section investigates beam space-charge effects in the beam transverse dimension. 

The following Transverse simulation results quantify the resultant beam divergence: 

 

3.3.1 Results under varying beam density 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 29: Beam density & velocity spatial profiles at beam densities; (a) 6.722x1013m-3 

(80keV/2.7A), (b) 6.722x1014m-3 (80keV/27A), (c) 6.722x1015m-3 (80keV/270A). 
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For a constant (initial) beam (longitudinal) velocity, the beam (transverse) expansion 

depends on the (initial) beam density (Figure 29). As the (initial) beam density is 

increased by a factor of 10; the beam (transverse) drift velocity increases by a factor of 

~ 10 initially, and by a factor of ~ 3 for the first beam particle to reach the wall, hence 

the time it takes for the beam envelope to touch the wall decreases by a factor of ~ 3. 

 

 

3.3.2 Results under varying beam velocity 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 30: Beam density & velocity spatial profiles at beam velocities; (a) 3.918x105 

ms-1 (8keV/2.7A), (b) 3.918x106ms-1 (80keV/27A), (c) 3.918x107ms-1 (800keV/270A). 
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The results shown in Figure 30 suggest that the (transverse) beam space-charge 

expansion is independent of the beam (longitudinal) velocity. Even though the (initial) 

beam current increases by a factor of ten from one simulation to the next, the beam 

divergence remains the same and is solely determined by the (initial) beam density. 

 

 

3.3.3 Results for a constant beam current 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 31: Beam density & velocity spatial profiles at beam densities; (a) 6.722x1015m-3 

(8keV/27A), (b) 6.722x1014m-3 (80keV/27A), (c) 6.722x1013m-3 (800keV/27A). 
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The results in Figure 31 show that (same species) charged particle beams of equal 

(initial) current can produce different degrees of space-charge expansion. Again the 

(initial) beam charge density is shown to be the sole determinant of such effects. In 

reverse order to similar results shown in Figure 29, as the (initial) beam density is 

decreased by a factor of 10, the time it takes for the beam envelope to touch the wall 

increases by a factor of ~ 3, i.e. the beam divergence is slower for less dense beams due 

to less (mutual) Columbic repulsion between charges further away from one another. 

 

 

3.3.4 Conclusions and General Remarks  

 

The observed beam divergence (Sections 3.3.1 - 3.3.3) is solely caused by beam space-

charge repulsion (like in Section 3.2, turning off Coulomb collisions between the beam 

particles made no significant difference to the results). The beam density determines the 

amount of space-charge repulsion {this (transverse) expansion is not a function of the 

beam (longitudinal) velocity (Section 3.3.2)}; causing a change in the beam transverse 

drift velocity (in proportion to the resulting transverse electric field) leading to the 

actual divergence of the beam {Holmes [38] concluded from his 

theoretical/experimental beam space-charge investigation that the beam divergence & 

plasma potential is less for larger diameter beams, although in these beam propagation 

in vacuum simulations the divergence is directly proportional to the beam width}. 

 

Beam scraping (interception) at the neutraliser walls has been observed in the Neutral 

Beam Test Bed, resulting in beam power losses [22]. Notwithstanding the fact that these 

beams propagate in non-vacuum conditions, these (beam propagation in vacuum) 

simulation results suggest that; the real (beam propagation in gas) beam transmission 

losses due to beam space-charge blow-up will be more severe for higher beam densities. 

A beam propagation in gas simulation investigation (i.e. accounting for space-charge 

compensation) would better elucidate such issues, including those occurring in the 

extraction/acceleration regions of NBIs (ideally involving accurate beamlet profiles). 

The positive ion beam analytical models of Holmes [38] and Gabovich et al. [63] {and 

the negative ion numerical model of Gorshkov et al. [62]} imply that beam-electron 

Coulomb collisions have a significant effect on the neutralisation of the beam’s space-

charge (Chapter 7), and hence also on its divergence {the space-charge of negative 

beams can become overcompensated leading to beam convergence (gas focusing) [62]}. 
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4.1 Hydrogen Beam Composition Results 

 

Two sets of hydrogen beam composition simulation results are presented; 80keV & 

120keV, both consisting of an initial beam composition ratio of 8:1:1 for H+, H2
+, H3

+ 

beam species, respectively (see empirical values for deuterium shown in Figure 32). 

The charge-changing cross sections (12 collisions) are taken from Kim & Haselton [60].  

 

 

 

In these Transverse simulations (Section 2.2.1), the interchangeable variables technique 

(time ≡ neutraliser gas target, Section 2.2.4), is used to calculate the optimum neutraliser 

H2 gas target, and the resulting theoretical maximum neutralisation efficiency: 

 

80keV (27A) hydrogen beam composition results 

 

 

Figure 33: Evolution of beam species mean velocities (2 values overlap at 3 velocities). 

Figure 32: Ion species ratios in the 

PINI source as a function of beam 

current; D+ (continuous line), D2
+ 

(dotted line), D3
+ (gaped line), 

measured by Doppler shift 

spectroscopy [19, 64].  
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All the beam species velocities remain fixed, in accordance with the Transverse 

simulation approach (Section 2.2.1), thereby neglecting all beam energy-sapping 

collision effects (relatively negligible with respect to the beam energy cf. Section 4.2), 

although the spatially averaged velocities (over the beam width of 16cm) for the beam 

particles; bH2+(E), bH2+(2E/3), bH3+(E), bH2(E), and bH2(2E/3) decay to zero 

(Figure 33), as these non-monatomic particles eventually breakdown into monatomic 

beam species (Figure 34) - beam negative ion formation is assumed negligible [60]. 

 

 

Figure 34: Evolution of beam species densities. 

 

The total beam number density is ~ 6.725x1014m-3, which initially consists of ~ 

5.38x1014m-3 for H+ and ~ 6.725x1013m-3 each for H2
+ and H3

+ beam species (8:1:1). 

Since all the H2
+ and H3

+ beam species eventually get broken down into H+ or H beam 

species, the bH+(E/2) plus bH(E/2) beam species densities amount to a density of ~ 

1.345x1014m-3 i.e. 6.725x1013m-3 multiplied by two, while the bH+(E/3) plus bH(E/3) 

beam species densities total ~ 2.0175x1014m-3 i.e. 6.725x1013m-3 multiplied by three, all 

of which are consistent with the simulation results plotted in Figure 34. 

 

At first glace the fixed simulated neutraliser average H2 gas density of 9x1019m-3 {the 

two-component hydrogen 80keV beam model ‘optimum’ neutraliser (average) H2 gas 
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density, Equation (2.7), Section 2.2.4} seems too low, since the 80keV beam takes ~ 

1.5µs to reach charge-equilibrium (Figure 34) i.e. the optimum neutraliser gas target 

should be achieved within the neutraliser length of 1.86m, corresponding to 475ns 

(1.86m/3.915x106ms-1). Although, Figure 35 implies that a definite maximum neutral 

beam fraction can be achieved within 375ns {The minimum positive beam fraction 

occurs at a slightly earlier time because, unlike the beam mean energy densities 

(Figures 36 &  38), their sum is not conserved e.g. a density of 1 H2 particle can change, 

via a dissociation collision, into a density of 2 H particles}. This contrasts to the basic 

increasing asymptotic behaviour predicted by Kim & Haselton’s analytic calculations 

[60]*, and suggests that the simulated H2 gas density (9x1019m-3) is excessive. 

 

 

Figure 35: Evolution of beam (total) positive/neutral component densities. 

 

 

Figure 36: Evolution of beam (total) positive/neutral component mean energy densities. 
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However, the maximum neutral beam power (mean energy density, Figure 36), 

pertaining to maximum neutralisation efficiency, occurs at the later time of 570ns, due 

to the still increasing bH(E) density (Figure 34) via bH+(E) electron capture collisions. 

The neutral beam power then decreases asymptotically, due to opposing electron 

capture and stripping collisions (80keV stripping cross sections are ~ twice that for 

capture [60]) of the 6 remaining hydrogen monatomic beam components (Figure 34). 

Thus, the optimum gas target can be defined as that which is required for the beam to 

reach a maximum neutral component mean energy density, within the neutraliser length. 

 
A corollary to this is that, too high a neutraliser gas line density produces a less than 

maximum neutralisation efficiency (gradual decrease as the beam approaches charge-

equilibrium, Figure 36). This previously unpublished possible source of neutralisation 

inefficiency should be a significant issue in cases where gas heating density depletion 

does not rectify an excessive gas target (Chapter 5) i.e. the effective gas target remains 

higher than that required for maximum neutralisation. It is therefore not desirable for 

such positive ion beams to reach charge-equilibrium. 
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Figure 37: Neutralisation Efficiency (blue, left axis) and estimated gas target (red, right 

axis) as a function of neutraliser gas flow [65].  

 
Possible evidence of this prediction is shown in Figure 37 [65] i.e. an apparent 

maximum in neutralisation efficiency versus gas flow. The estimated gas target (last 

data point) was deduced from the neutralisation efficiency measurement, although the 

gas target should be proportional to the gas flow (assuming gas heating - ‘saturates’ 

with gas flow cf. Figure 58, Section 4.4.3 [36] - and cryo-pumping effects don’t change 

drastically between the last two data points). Moreover, Figure 36 shows that two 
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possible (pre beam ion deflection) gas target values can provide the same neutralisation 

efficiency. The reduced neutralisation efficiency value (Figure 37) was thought to be 

due to beam re-ionisation [65] i.e. due to the post neutraliser (magnet path [19]) gas 

target (the separated ‘pure’ neutral beam is sure to acquire an ionic component unless a 

perfect vacuum is established for the remainder of its path). The simulation results 

(Figure 36) predict that another factor might be due to a reduction in the pre-separated 

beam neutralisation efficiency as a result of an excessive neutraliser (cf. Section 1.3.3) 

gas target. Accurate knowledge of how the post neutraliser gas target varies with gas 

flow (dependant upon the cryo-pumping) would be required to resolve the matter. 

However, a change from a decreasing to an increasing trend in positive ion beam power 

versus gas flow (i.e. a minimum, opposite to that of Figure 37) at the ion dump would 

verify the existence of a maximum in neutralisation efficiency versus gas target.     

 

*: Kim & Haselton [60] used an analytical approach similar to Section 1.3.1, accounting 

for all 12 beam component changing collisions common with this simulation approach 

plus 4 more involving the H-(E) beam component. As previously mentioned, this 

cumbersome mathematical procedure predicted a basic increasing asymptotic 

neutralisation efficiency (cf. Figure 44 [66]), contrary to the simulation results, which 

predict a distinct neutralisation efficiency maximum (Figure 36), followed by an 

asymptotically decreasing approach to charge-equilibrium cf. Figure 35. 

 

The theoretical maximum neutralisation efficiency can be obtained from Figure 36 i.e. 

3.028Jm-3/8.612x1014Jm-3 ~ 35% {the two-component beam model (initial beam 

composition of 100% protons) yields a value of  ~ 32%}. This maximum neutral beam 

mean energy density is reached at a time of ~ 570ns (Figure 36), which implies that the 

optimum neutraliser H2 gas (average) density is ~ 1.08x1020m-3 (570ns/475ns x 

9x1019m-3), giving an optimum neutraliser gas target of ~ 2.01x1020m-2 (Section 5.1.5). 

The accuracy of these results is determined by the accuracy of the beam charge-

changing cross sections [60] and the simulation collision models (Section 2.1.2). This 

simulation procedure can therefore calculate the optimum neutraliser gas target, which 

ideally should be achieved during any NBI operation. In practice this is certainly not 

straightforward, as beam on gas pressure measurements are not yet possible on the 

present Neutral Beam Test Bed facility. Instead beam off gas pressure measurements 

and quantitative knowledge of gas target depletion (e.g. due to gas heating) would need 

to be combined in order to estimate the effective beam on neutraliser gas target.  
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More results from this 80keV beam composition simulation are presented below, 

namely; beam species mean energy densities (Figure 38), and beam species fluxes with 

a separate total positive/neutral component breakdown (Figures 39 & 40). Note that the 

maximum neutral beam flux (Figure 40) does not occur at the same time (gas target) as 

the maximum neutral beam density (Figure 35) or mean energy density (Figure 36). 

 

 

Figure 38: Evolution of beam species mean energy densities. 

 

 

Figure 39: Evolution of beam species mean fluxes. 
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Figure 40: Evolution of beam (total) positive and neutral component fluxes. 

 

 

120keV (50A) hydrogen beam composition results 

 
Similarly, Equation (2.7) yields an ‘optimum’ (average) neutraliser fixed H2 gas density 

of ~ 1.4x1020m-3 for a 120keV hydrogen beam (Section 2.2.4). The maximum neutral 

beam component should ideally be achieved within ~ 387ns i.e. the beam (neutraliser) 

transit time for a 120keV proton beam particle (1.86m/4.794x106ms-1). 

 

 

Figure 41: Evolution of beam species densities. 
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Unlike the 80keV hydrogen beam case, the bH(E/3) particles are the highest neutral 

component (Figure 41), due to the more favourable electron capture cross sections at 

lower beam velocities (Figure 11 (b), Section 1.3.4). 

 

 

Figure 42: Evolution of beam (total) positive/neutral component densities. 

 

 

Figure 43: Evolution of beam (total) positive/neutral component mean energy densities. 

 

Maximum neutralisation efficiency occurs at a time of ~ 388ns (Figure 43), which 

implies that the optimum H2 gas density is ~ 1.4x1020m-3 (388ns/387ns x 1.4x1020m-3), a 

gas target of ~ 2.61x1020m-2 (~ 2.01x1020m-2 at 80keV) cf. Section 5.1.5. The two-

component hydrogen beam model suggests that the optimum neutraliser gas target 

should be inversely proportional to the sum of the charge-changing cross sections 

(Section 1.3.1). These cross sections decrease with increasing energy (80 – 120 keV), 
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thus correctly predicting that the optimum gas target should increase for the 120keV 

case. This is consistent with the analytical calculations (similar to [60]) shown in Figure 

44 [66]. The optimum neutraliser H2 gas target thus depends on the beam energy. 

 

 
Figure 44: Neutralisation efficiency versus gas target (deuterium model) [66]. 

 

The theoretical maximum neutralisation efficiency; 3.796Jm-3/19.553Jm-3 (Figure 43) is 

~ 19% {compared to ~ 14% for the two-component beam model (initial beam 

composition of 100% protons)}. In the 80keV case, the theoretical maximum 

neutralisation efficiency was much higher (~ 35%), which is to be expected given the 

more favourable electron capture cross sections at lower beam energies (Figure 11 (b), 

Section 1.3.4) cf. Figure 44 [66]. The fact that the positive ion beam neutralisation 

efficiency is inversely proportional to the beam energy, has led to the development of 

negative ion beams, in order to achieve adequate beam neutralisation at the high beam 

energies required for heating tokamaks significantly larger than JET. Despite the shift in 

focus towards negative ion beam neutral injector research (Section 6.1.1), positive ion 

neutral injectors are still operational on tokamaks other than JET e.g. at the 

superconducting KSTAR (Korea Superconducting Tokamak Advanced Resesearch) 

facility {where a recent paper [67] on positive multiple-ion hydrogen beam 

neutralisation implicitly assumes that beam charge-equilibrium is desirable i.e. it speaks 

of attaining “95% equilibrium neutralisation” (citing [60]) rather than of a distinct 

maximum (this multiple ion-gas collision physics issue may already be resolved)}. 

 

All of the above results could have alternatively been obtained from Longitudinal 

simulations, although this would be considerably more computationally expensive. 
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4.2 Beam Power Loss during Neutraliser Transit 

 

The following beam mean energy density (& beam energy) results as a function of time 

(gas target) are from Transverse simulations of a charge-equilibrated hydrogen beam in 

transit through a (neutraliser) H2 gas. By allowing the beam (longitudinal) velocity to 

change (unlike the normal Transverse simulation approach, Section 2.2.1) i.e. decrease 

via inelastic collisions with the H2 gas, the beam energy loss can be determined.  

 

4.2.1 Results as a function of neutraliser gas density 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 45: Beam mean energy densities (& beam energies, initial increase due to 

computational inaccuracies) as a function of time for 80keV/27A hydrogen beam transit 

through three neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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From inspection of the beam energy versus time plots (Figure 45, right hand column), 

we see that for the ~ 475ns it takes the initial 80keV proton beam to travel the full 

neutraliser length ( ~ 1.86m); ~ 28eV, ~ 56eV and ~ 84eV of energy (corresponding to  

~ 0.035%, ~ 0.07% and ~ 0.105% of the total beam energy) is lost on average by each 

beam particle during neutraliser transit in (a), (b) and (c), respectively. 

 

Alternatively, these values can be calculated from the beam mean energy density versus 

time plots (Figure 45, left hand column), by multiplying the best-fit slope (beam power 

density loss to the neutraliser gas) by the total constant density equivalent neutraliser 

volume (gives the total beam power loss) and by the beam (neutraliser) transit time 

(gives the total beam energy loss) and finally dividing the result by the number of beam 

particles that reside in the constant density equivalent neutraliser volume at any given 

instant. The total volume of the neutraliser is 0.16368m3 (0.2m x 0.44m x 1.86m). Since 

the neutraliser gas density has a non-constant axial profile (Figure 10, Section 1.3.2), its 

total volume is multiplied by 0.772 to get the constant density equivalent neutraliser 

volume, 0.126m3. The number of beam particles that reside in the constant density 

equivalent neutraliser volume at any given instant is equal to the spatially averaged 

beam density (6.725x1014m-3 x 0.16m/0.20m) multiplied by the constant density 

equivalent neutraliser volume, which gives a value of 6.779x1013 beam particles. 

 

Hence, the total beam energy lost in the neutraliser of density 3x1019m-3 (Figure 45 (a)) 

is 5021Wm-3 x 0.126m3 x 475ns, which yields 3.005x10-4J (1.876x1015eV). In terms of 

energy loss per beam particle, 1.876x1015eV corresponds to ~ 28eV 

(1.876x1015eV/6.779x1013) of energy lost on average by each beam particle i.e. the 

same value as mentioned above from simple inspection of the beam energy versus time 

plot. Similarly, for the case of the neutraliser of density 6x1019m-3 (Figure 45 (b)), the 

beam energy lost is 6.005x10-4J (3.748x1015eV), an average energy loss per beam 

particle of ~ 56eV. For the 9x1019m-3 case (Figure 45 (c)), the beam energy lost is 

9.001x10-4J (5.619x1015eV), an average energy lost by each beam particle of ~ 84eV. 

The accuracy of these results depends upon the accuracy of the beam inelastic collision 

simulation models and the cross sections and threshold energies used therein (Section 

2.2.2). These average % beam energy losses are consistent with the stopping power 

measurements (which entail the use of a Cockcroft-Walton ion accelerator [68], gas 

cells, magnets, and a electrostatic deflector energy analyser) of Allison et al. [69]; 

energy loss of less than 0.1% for one beam attenuation cf. [70], [56]. 
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The plots shown in Figure 45 imply that the beam energy density (and hence the beam 

energy, since the total beam density remains constant) decreases linearly with time for 

any neutraliser gas density. The slopes of the beam mean energy density versus time 

plots (Figure 45, left hand column) give the respective values for the beam power 

density loss, which is thus constant for a given beam transit through a gas. These beam 

power density loss values are plotted as a function of the neutraliser gas density in 

Figure 46. The resulting straight line graph shows that the beam power (power density) 

loss is directly proportional to the neutraliser gas density. This conclusion is consistent 

with basic physical sense i.e. more energy-sapping collisions at higher gas densities. 

 

 

Figure 46: beam power density loss as a function of the neutraliser gas density. 
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4.2.2 Results as a function of beam energy 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 47: Beam mean energy densities (& beam energies) as a function of time for 27A 

hydrogen beam transit through a neutraliser H2 gas (density, 3x1019m-3), for three beam 

energies; (a) 80keV, (b) 120keV, (c) 134keV.  

 

The best-fit slopes shown in Figure 47 indicate that the beam power loss increases only 

relatively slightly with beam energy. The beam energy loss in inelastic collisions (beam 

elastic collisions are negligible, Section 5.1.1) is proportional to its kinetic energy i.e. at 

higher beam energies there is more beam energy loss per collision. Although this effect 

is counterbalanced by the fact that the cross sections decrease for increasing beam 

energy (over this range of beam energies) i.e. less collisions at higher beam energies. 
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4.2.3 Results as a function of beam current 

 

The (initial) beam density is varied, while the (initial) beam velocity remains constant:  

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 48: Beam mean energy densities (& beam energies) as a function of time for 

80keV hydrogen beam transit through a neutraliser H2 gas (density, 3x1019m-3), for 

three beam currents; (a) 27A, (b) 50A, (c) 60A.  
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Like in the case of Section 4.2.1 (results for varying neutraliser gas density), the beam 

power (density) loss is directly proportional to the beam current (Figure 49). Again this 

is consistent with basic physical sense i.e. more beam current in this case means more 

beam particles, which leads to more energy-sapping beam inelastic collisions with the 

neutraliser gas {while the average energy loss by each beam particle remains constant 

for the three cases, ~ 28eV (Figure 48, right hand column) cf. Section 4.2.1}, and 

therefore results in proportionately greater beam power loss.  

 

 

Figure 49: beam power density loss as a function of the beam current.  
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4.2.4 Results as a function of beam power 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 50: Beam mean energy densities (& beam energies) as a function of time for 

hydrogen beam transit through a neutraliser H2 gas (density, 9x1019m-3), for three beam 

powers; (a) 2.16MW (80keV/27A), (b) 6MW (120keV/50A), (c) 8.04MW (134keV/60A) 

i.e. at  optimum (JET PINI) beam perveance.   
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The results of Figures 50 & 51 follow on from the independent results of Sections 4.2.2 

& 4.2.3. A similar plot to Figure 51 would be linear if the beam velocity was constant. 

The degree to which it deviates from linearity depends on the deviance of beam energy 

among the 3 data points (each corresponding to the results of a particular simulation). 

 

 

Figure 51: beam power density loss as a function of the beam power. 
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4.3 Beam Plasma Evolution towards Steady-State 

 

The initial (0-415 ns) beam ‘plasma’ evolution, resulting from 80keV/27A proton beam 

injection into a neutraliser H2 gas of density 3x1019m-3, is shown in Appendix B, while 

its evolution towards steady-state (0–51.5 µs) is shown in Figure 52: 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 52: Early evolution of the spatially averaged (a) charged particle densities, (b) 

neutral particle densities and (c) plasma potential {3x1019m-3, 2.16MW}. 

 

As described in Section 2.2.2, five beam plasma Transverse simulations* are conducted, 

investigating three neutraliser H2 gas densities {3x1019m-3, 6x1019m-3, 9x1019m-3} at 
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constant H+ beam power {2.16MW (80keV/27A)}, and three H+ beam powers 

{2.16MW (80keV/27A), 6.00MW (120keV/50A), 8.04MW (134keV/60A)} at constant 

neutraliser H2 gas density {9x1019m-3}. *: The five simulations commenced (Figure 53, 

values at time zero are continuations from restored simulations) from initial guesses 

(overestimated densities; Figure 53 (a)) of the steady-state plasma parameters (inputted 

with constant top-hat/flat-top spatial profiles cf. attached CD). The simulation running 

times (~ 15 months) were found to be even longer than if the simulations had been 

started from scratch. Of the five simulations, only the 3x1019m-3 and 6x1019m-3 

simulations (Figure 53 (b)) reached a definite steady-state. Spatially resolved plasma 

parameters at the next diagnostic time steps (data points shown in Figure 53 (a)) are 

presented in Appendix C, while Section 4.4 presents some of these (spatially averaged) 

plasma parameters as a function of neutraliser H2 gas density and H+ beam power, and 

includes a comparison with the experimental results of Crowley et al. [36].  

 
(a) 

 
(b) 

 
 

Figure 53: Spatially averaged (a) electron density (‘3e19’  and ‘6e19’  were unable to be 

plotted due to insufficient computer memory) and (b) plasma potential evolution. 
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4.4 Steady-State Plasma Parameter Results  

 

Approximate steady-state beam plasma simulation results are presented cf. Section 4.3: 

 

4.4.1 Results versus neutraliser gas density 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 54: Steady-state plasma (a) densities, (b) potentials and (c) temperatures, as a 

function of the neutraliser H2 gas density (hydrogen beam power, 2.16MW).  
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The (slightly less than) linear increase in electron density with increasing neutraliser gas 

density (Figure 54 (a)) is due to the greater number of beam & electron impact 

ionisations at higher gas densities. Table 1 shows the percentage direct (impact) 

ionisation contributions from the three ionisation source particles (Section 2.2.2). 

 

         bH+          bH          e 
(a) 70.4% 17.0% 12.6% 
(b) 69.2% 17.6% 13.2% 
(c) 68.5% 18.1% 13.4% 
 

Table 1: Steady-state bH+, bH and electron percentage ionisation contributions, at the 

three neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 

 

The results displayed in Table 1 show that primary ionisation (from the two beam 

species) is dominant, although secondary ionisation (from electrons) does play a 

significant role in the overall plasma formation & maintenance, becoming slightly more 

important at higher neutraliser gas densities (‘electron avalanche’ [43]) cf. Figure 55.  

 

The plasma potential is determined mainly by (proportional to the square root of [43]) 

the electron temperature, from which the initial loss rate of electrons to the neutraliser 

walls depends (the plasma potential is also proportional to the natural logarithm of the 

square root of the; positive ion mass divided by the electron mass [43]). 

 

The electron temperature decreases slightly with increasing neutraliser gas density. The 

results in Figure 54 (c) actually show a decrease followed by an increase, although the 

third data point is not a definite steady-state value (Figure 53, Section 4.3) i.e. the 

electron temperature - third data point, Figure 54 (c) - would be expected to decrease, as 

the plasma potential continues to decrease (Figure 53 (b), Section 4.3). 

 

Despite the slight increase in electron temperature between the last two data points, the 

plasma potentials show a strictly decreasing trend (Figure 54 (b)). Moreover, despite 

such indefinite trends in electron temperature (Figure 54 (c)) with neutraliser gas 

density (conclusive trends cannot be drawn from such slight variations), the electron 

impact ionisation (process whereby electrons lose most energy) reaction rates (Figure 

55) are directly proportional to the neutraliser gas density cf. Table 1.  
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Figure 55: Steady-state electron impact ionisation reaction rates as a function of the 

neutraliser H2 gas density. 

 

The H3
+ ion becomes the main positive ion in all neutraliser beam plasma simulations. 

The H3
+:H2

+ ratio increases with neutraliser H2 gas density (Figure 54 (a)) - the H2
+ 

density only increasing slightly. This is partly due to the greater number of H2 gas 

molecules available for H2
+ association (H3

+ forming) collisions, cf. Section 2.2.2. 

 

The H3
+ & H2

+ ion temperatures (calculated assuming their energy is confined to three 

translational degrees of freedom i.e. no rotational or vibrational degrees of freedom) 

increase with neutraliser gas density (Figure 54 (c)), while they are considerably lower 

than the electron temperatures (due mainly to their greater mass cf. Section 1.5.2). 

 

 

% ionisation:  (a) 0.098%,  (b) 0.077%, (c) 0.067%. 

% dissociation:  (a) 0.120%, (b) 0.155%, (c) 0.169%. 

 
Table 2: Neutraliser H2 gas percentage ionisation & dissociation for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 

 

The ionisation fractions (Table 2) decrease with neutraliser gas density (cf. Figure 54 

(a)), and are all less than 0.1%, which limits the number of plasma-gas collisions and 

hence the potential plasma particle contribution to gas heating (Sections 5.1 &  5.2). The 

dissociation fractions (Table 2) increase with neutraliser gas density, and are likewise 

relatively small, thus also limiting the potential gas heating contribution from fast 

dissociated H+/H plasma particles - which account for two out of the three gas heating 

pathways in the Paméla gas heating model (Appendix D) [31, 34] cf. Sections 5.1 &  5.2. 
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4.4.2 Results versus beam power 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 56: Steady-state (a) plasma densities, (b) potentials and (c) temperatures, as a 

function of the proton beam power (neutraliser H2 gas density, 9x1019m-3). 

 

In contrast to the positive ion trend with neutraliser H2 gas density (Figure 54 (a), 

Section 4.4.1), the H3
+ ion becomes less dominant at higher beam powers (Figure 56 

(a)). As mentioned in Section 4.4.1 such conclusions could be misleading due to the 
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lack of exact like-with-like comparison criteria e.g. differing evolution time and 

simulation parameters. The 2.16MW simulation - first data points, Figure 56 - used less 

computational cells (8000) than the other two (10000), while all three have differing 

particle weights (one beam particle per cell in each). Moreover, due to computational 

resource limitations, the number of particles per cell in each simulation was less than 

ideal, leaving unanswered questions regarding convergence (cf. Section 2.1.4) e.g. how 

much would the results vary with more particles per cell ? 

  

Displayed below (Table 3) are the percentage direct neutraliser gas ionisation 

contributions from the three ionisation source particles.  

 

        bH+         bH         e 
2.16 MW 68.5% 18.1% 13.4% 
6.00 MW 79.9%        9.8% 10.3% 
8.04 MW 80.5% 9.2% 10.3% 
 

Table 3: Steady-state bH+, bH and electron percentage ionisation contributions, at the 

three hydrogen beam powers: (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 

 

The (less than linear) increase in electron density with beam power (Figure 56 (a)) is 

due to the greater number of beam particles at the higher beam powers (cf. Table 4) and 

hence the greater number of beam (and electron) impact ionisations i.e. due to the 

increase in the beam density rather than the increase in beam energy.  

 

Increasing the beam energy above 60keV actually lessens the beam impact ionisation 

(cf. Section 4.2.2), since the beam H+ impact ionisation cross sections (cf. attached CD) 

peak at ~ 60keV (that for beam H peak at ~ 28keV, and decrease more sharply over the 

80-134 keV energy range, causing their % ionisation contribution to decrease with beam 

power, Table 3). This effect is further compensated by electron impact ionisation (cross 

sections increase up to ~ 70eV), since the electron temperature increases with beam 

power (Figure 56 (c); the second and third data points together provide a more reliable 

trend - better like-with-like comparison criteria - than any trend encompassing the first 

data point, which may be relatively overestimated as explained in Section 4.4.1).  

 

Simulations at constant beam energy and density would be required to obtain separate 

plasma parameter correlations with beam density and energy, respectively. 
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The trend in plasma potential versus beam power (Figure 56 (b)) follows the trend in 

electron temperature versus beam power (Figure 56 (c)), as would be expected. The H3
+ 

& H2
+ ion temperatures are considerably lower than the electron temperatures, and are 

shown to increase with beam power (Figure 56 (c)).  

 

The (greater than linear) rise in electron impact ionisation (process whereby electrons 

lose most energy) reaction rates with beam power (Figure 57) - bearing in mind the less 

than linear relationship between electron density and beam power (Figure 56 (a)) – 

‘implies’ more electron energy loss (per electron) at higher beam powers. However, the 

increasing trend in electron temperatures with beam power can be explained by the fact 

that the electrons receive more energy (in electron ‘forming’ beam-H2 collisions) at 

higher beam energies [56] cf. [69, 70], which is consistent with Figure 57.  

 

 

Figure 57: Steady-state electron impact ionisation reaction rates as a function of the 

proton beam power. 

 

The dissociation fractions (Table 4) increase significantly at higher beam powers. 

Coupled with the higher plasma particle temperatures at higher beam powers (Figure 56 

(c)), these results predict a larger plasma particle gas heating contribution at higher 

beam powers, which is consistent with the gas heating calculations (Section 5.3). 

 

% ionisation:  (a) 0.067%, (b) 0.082%, (c) 0.087%. 

% dissociation:  (a) 0.169%, (b) 0.232%, (c) 0.270%. 

 

Table 4: Neutraliser H2 gas percentage ionisation & dissociation for hydrogen beam 

powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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4.4.3 Comparison with Experimental Data 

 

For varying neutraliser gas density  

 

 
 

Figure 58: Plasma parameters (electron density, electron temperature, plasma 

potential), neutraliser H2 gas temperature and percentage contributions from the three 

gas heating mechanisms considered in the Pamela model, as a function of (beam off) 

neutraliser H2 gas pressure (80keV/32A multiple ion hydrogen beam injection) [36]. 

 

The neutraliser H2 gas densities investigated in the simulations; 3x1019m-3, 6x1019m-3, 

9x1019m-3 (effectively beam on gas densities as opposed to the beam off gas pressures in 

Figure 58) equate to ~ 0.125Pa, 0.248Pa, 0.372Pa, respectively, assuming the validity 

of the ideal gas equation, and a H2 gas temperature of 300K. Although in reality the 

neutraliser gas temperature increases [30] (cf. Section 5.2) causing a depletion in gas 

density. Since the simulated neutraliser gas density is kept fixed (undepleted), the 

simulations thus overestimate the plasma densities (Figure 54 (a), Section 4.4.1). 

 

An overestimation of plasma densities results in an underestimation of electron 

temperatures and plasma potentials (Figure 54, Section 4.4.1). Moreover, since the 

simulated beam has reached charge-equilibrium, the plasma potentials, which decrease 

along the neutraliser as less excess positive charge is produced cf. Section 2.2.4, 

effectively represent values at the end of a correspondingly thick neutraliser.  
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Another reason for the discrepancy between the simulation and experimental results is 

due to the fact that the simulations are run with a 80keV/27A two-component (H+, H) 

beam, as opposed to the 80keV/32A multiple ion hydrogen beam (consisting of H+, H2
+, 

H3
+ beam species in proportions similar to those shown in Figure 32, Section 4.1) used 

in the experimental diagnostic investigation (Figure 58). 

 

Notwithstanding the aforementioned quantitative comparison limitations, the trends in 

electron density, plasma potential and electron temperature with neutraliser gas density 

(Figure 58) seem consistent with the simulation results (Figure 54, Section 4.4.1). 

 

The Deuterium results shown in Figure 59 (beam power, 1.15MW) correspond to an 

electron density of 2.9x1015m-3 and an electron temperature of 6.31eV [36]. Such beam 

& plasma parameter magnitudes differ significantly to those of the beam plasma 

simulations, although a comparison is a still worthwhile. 

 

 

Figure 59: Electron energy distribution function and Langmuir probe I/V trace [36]. 

 

The logarithmic electron energy distribution function was obtained by interpreting the 

Langmuir Probe Trace - I/V characteristic - (Figure 59) [36]. A slight trough (15-60 eV) 

could be interpreted from the curve (Figure 59). This may be caused by a depopulation 

of electrons over this energy range due to electron inelastic collisions. At ~ 50eV the 

slope of the eedf curve increases significantly. In the simulations, the electron energies 

are significantly less, although a similar change in slope is evident in the tail of the eedf 

(Figure 90, Appendix C), signalling the presence of more high energy electrons than 

what would be the case with a Maxwellian-like distribution. The simulation results 

confirm that beam electron-stripping collisions are the supply source of these high-

energy electrons. A similar larger than expected presence of high-energy H2
+ ions, 
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evident from their energy distribution functions (Figure 92, Appendix C), might also be 

due to the relatively high-energy H2
+ forming beam collisions (i.e. ionisation and 

electron capture cf. Section 2.2.2). In contrast, the H3
+ particles are not directly formed 

in beam collisions, and subsequently their energy distribution functions (Figure 94, 

Appendix C) show no such high-energy tails. 

 

For varying beam power 

 

 
 

Figure 60: Plasma parameters (electron density, electron temperature, plasma 

potential), neutraliser H2 gas temperature and percentage contribution from the three 

gas heating mechanisms considered in the Pamela model, as a function of beam power 

(at constant initial neutraliser H2 gas pressure) [36]. 

 

The beam power range investigated in the simulations is 2.16-8.04 MW, while the 

experimental results from Crowley et al. [36] are at beam powers of ~ 0.7-3.8 MW 

(Figure 60). As in the trends with neutraliser gas density; the trends in electron density, 

plasma potential and electron temperature as a function of beam power (Figure 60) are 

similar to the simulation results (Figure 56, Section 4.4.2), although their respective 

magnitudes are different partly due to the comparison limitations previously mentioned. 
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For varying time 

 

 
 

Figure 61: Plasma parameters (electron density, electron temperature, plasma 

potential), neutraliser H2 gas temperature and percentage contribution from the three 

gas heating mechanisms considered in the Pamela model, as a function of time [36]. 

 

The experimental results (Figure 61) are for a 5 second 80keV/32A composite 

hydrogen beam pulse, in contrast to the 80keV/27A two-component (H+, H) beam 

injection modelled in the simulations, over a much shorter time (Figure 53, Section 4.3). 

 

The slight variations in time (Figure 61) were concluded to be due to fluctuations in the 

neutraliser gas flow [36]. In the simulation results (Figure 53, Section 4.3), slight 

variations in the steady-state plasma potentials (which cannot be due to variations in gas 

density since the simulation background gas has a constant density) maybe due to the 

prevalence of beam plasma waves. However, simulation inaccuracies (e.g. caused by 

using too few particles per cell) cannot be ruled out as their main cause. 

 

See Concluding Remarks - Chapter 7 - regarding general simulation limitations.   
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5.1 Gas Heating Calculations 

 

5.1.1 Introduction & Calculation Approach 

 

Paméla assumed that beam energy losses from elastic collisions with the neutraliser gas 

are negligible [31, 34]. This claim might not seem intuitively obvious, although the 

cross section [53] for H2 ionisation by a 100keV proton is ~ 100,000 times greater than 

the cross section [54] for a 100keV proton-H2 elastic collision cf. [69]. The results of 

this work further support Paméla’s assumption, since only a few beam elastic collisions 

occurred in the simulations. Hence, the neutraliser gas can only get significantly heated 

indirectly by the beam i.e. the beam breaks down the neutraliser gas to form fast 

particles, which (themselves or by forming other particles through further breakdown of 

the gas via their impact e.g. electrons) are either formed with or subsequently acquire 

sufficient energy (e.g. via acceleration across sheath regions or via Coulomb collisions 

with the beam), and are sufficiently numerous and massive enough, to transfer 

significant kinetic energy to the neutraliser gas molecules (via elastic collisions). 

 

In addition to the gas heating mechanisms accounted for by Paméla (Appendix D), the 

(Transverse) simulation results enable other possible gas heating mechanisms to be 

quantified, thereby providing a more complete picture of the gas heating process. A 

steady-state situation is assumed in the calculations, whereby the gas power gained 

indirectly from the beam equals the gas power lost at the neutraliser walls (assuming the 

gas has reached a constant increased temperature). Like Paméla, we assume a composite 

coefficient of 0.3 (Section 2.2.2) to account for reflected H2 molecules (recombination 

and/or reflection probability multiplied by the reflected energy fraction), and a 

(neutraliser wall) thermal accommodation coefficient of 0.5 for the H2 molecules [31]. 

 

The calculation procedure to find the resultant decrease in neutralisation efficiency due 

to gas heating consists of four interconnected calculation steps. Step 1 (Section 5.1.2) 

entails computing the beam indirect power density transfer to the neutraliser gas and is 

obtained from Transverse simulation results, using (MATLAB) computational 

procedures to integrate the kinetic energy transferred (from fast particle elastic 

collisions with the neutraliser gas) and the corresponding rate coefficients {σ(E)vf(E)} 

over the particle energy distributions. Step 2 (Section 5.1.3) calculates the neutraliser 

gas temperature rise via inputting the results from the first step into the steady-state 
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neutraliser gas power balance equation, Equation (5.6). Step 3 (Section 5.1.4) uses the 

neutraliser gas temperature rise results of the previous step to estimate the neutraliser 

gas line density depletion. Two probable density-temperature models are investigated; 

one based on a standard density-temperature relationship (from molecular/transitional 

gas flow theory [29]) i.e. assuming that the neutraliser gas line density is inversely 

proportional to the square root of the gas temperature, and the other based on the ideal 

gas law density-temperature relationship [19] i.e. the gas target being inversely 

proportional to the gas temperature. Finally, Step 4 (Section 5.1.5) translates the gas 

target depletion results of the previous step into resultant neutralisation efficiencies.  

 

 

5.1.2 Power Transfer to the Neutraliser Gas 

 

This calculation technique is based on computing the beam indirect power density 

transfer to the H2 gas, in elastic collisions of fast particles (xf) with the H2 gas: 

 

The contribution from all simulated particles is obtained (whether they be deemed 

relatively fast or not) via the following power density transfer (pden) formula: 

 

 

 

 

  

 

 

{*: cos2θ is approximated as 0.5 (its integral from 0 to 2π) in all calculations}  
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nf = fast particle density 

nH2 = H2 density 

σ = fast particle-H2 elastic 
       cross section 

vf = fast particle velocity 

Ef = fast particle K.E. 

Emax = fast particle max K.E.    

f = energy distribution function 

ξ = K.E. transfer fraction 

mf = fast particle mass  

mH2 = H2 mass 

θ = elastic (post) collision angle 

(5.1) 

(5.2) 

(5.3) 
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An algorithm composed in the programming language available in MATLAB is used to 

perform the above integration (using Simpson’s Rule [71]). The required data for this 

calculation is obtained from the 1D3v PIC MCC Transverse simulation results (along 

with simulation input data i.e. cross sections and particle masses).    

 

 

5.1.3 Neutraliser Gas Temperature Rise 

 

Considering the neutraliser as a closed system, the first law of thermodynamics implies: 

 

Increase in energy stored within = heat generated within - net heat conducted out 

 

{where Eden (Jm-3) is the internal energy density of the neutraliser gas, pden (Wm-3) is the 

power density transferred to the neutraliser gas, and  q (Wm-2) is the heat flux} 

 

The neutraliser system is assumed to evolve into a steady-state situation when the gas 

reaches a constant (increased) temperature i.e. when: 

 

power density loss in gas-wall collisions = power density transferred to neutraliser gas 

 

{assuming no other significant energy sinks for the (volume-averaged) neutraliser} 

 

{assuming 5 degrees of freedom for the H2 molecule i.e. 3 translational and 2 rotational, 

where k is Boltzmann’s constant, T the (increased) neutraliser gas temperature, Tr the 

‘temperature’ of the reflected particle, and Tw the neutraliser wall temperature} 
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Equation (5.5) can also be expressed as a power balance equation:   

 

(gas thermal flux to neutraliser walls)(total sidewall area)(energy loss from gas-wall 

collisions) = (neutraliser volume)(total power density transferred to neutraliser gas) 

 

Being the only unknown in the steady-state neutraliser gas power balance equation, 

Equation (5.5), the increased neutraliser H2 gas temperature (T) can thus be computed.  

 

The following neutraliser parameters are assumed to be sufficiently accurate: Volume of 

the neutraliser, V = 0.2m x 0.44m x 1.86m = 0.16368m3. Constant density equivalent 

neutraliser volume, Vcde = 0.772(V) = 0.126 m3 (accounts for the linear decrease in 

neutraliser gas density in the second stage of the neutraliser, Figure 10, Section 1.3.2). 

Total neutraliser sidewall area, Sw = 2(0.44m x 1.86m) + 2(0.2m x 1.86m) = 2.3808m2. 

Accommodation coefficient, α = 0.5 [31, 34]. Neutraliser wall temperature, Tw = 375K 

(averaged over both neutraliser stages [30]). Neutraliser gas thermal velocity, v = 

(8kT/πm)1/2 [43] (k, Boltzmann constant. m, mass of the H2 molecule). 

 

 

5.1.4 Neutraliser Gas Target Depletion 

 

Standard density-temperature relationship: 

 

Here the neutraliser gas target is assumed to be inversely proportional to the square root 

of the gas temperature as follows from molecular/transitional gas flow theory [29]: 

 

Ideal Gas Law density-temperature relationship: 

 

Alternatively the neutraliser gas target may be assumed to be inversely proportional to 

the gas temperature [19]: 

 

∑=− dencdeww
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5
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{cf. Paméla formula (D.1), Appendix D} (5.6) 

(5.7) 

(5.8) 
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5.1.5 Resultant Decrease in Neutralisation Efficiency 

 

The neutraliser H2 gas line density can be substituted (cf. the interchangeable variables 

technique, Section 2.2.4) for the time parameter along the x-axis of Figure 36, Section 

4.1 (80keV beam), as shown in Figure 62. Given the reduced gas line density (Section 

5.1.4), the reduced beam total neutral component mean energy density (and hence the 

reduced neutralisation efficiency) can thus be read/interpolated from Figure 62. Due to 

the exponential nature of the beam mean energy density components as a function of the 

gas target (Figure 62), a 50% reduction in optimum gas target, for example, only results 

in a reduction in neutralisation efficiency of < 10% {the two-component 80keV 

hydrogen beam model (initial beam composition of 100% protons) predicts a slightly 

higher reduction in neutralisation efficiency (Figure 9, Section 1.3.1)}, even less for 

higher beam energies (Figure 63) cf. Figure 43, Section 4.1 (120keV beam). 

 

 

Figure 62: positive/neutral beam component mean energy densities versus gas target. 

 

 

Figure 63: positive/neutral beam component mean energy densities versus gas target. 
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5.2 Results for varying Neutraliser Gas Density 

 
 

 

 

 
 

Table 5: Percentage power density transfer contribution from each simulated particle 

for neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 

 

total pden      total beam        % of total       increased       % decrease 

transfer      pden loss        pden loss       temperature     in gas target 

(a)  138.2Wm-3         5021Wm-3           2.8%          402K       14%, 25% 

(b)  570.5Wm-3     10033Wm-3           5.7%          429K       16%, 30% 

(c) 1424.3Wm-3     15039Wm-3           9.5%          463K       20%, 35% 

 

Table 6: Total power density transfer, total beam power density loss (Section 4.2.1), 

percentage of total beam power density loss, increased temperature, and percentage 

decrease in neutraliser gas target (two models, Section 5.1.4) for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3 (2.16MW hydrogen beam). 

 

 

Figure 64: Increased neutraliser temperature as a function of neutraliser gas density. 

 

Results of Crowley et al. [36] show a ‘saturation’ of the neutraliser gas temperature (~ 

1100K, Figure 58, Section 4.4.3) for an equivalent neutraliser H2 gas density of ~ 

9x1019m-3. The neutraliser gas temperature results (Figure 64) show a linear rise in 

temperature with density, while ‘saturation’ is not evident. Further simulations at higher 

gas densities would be required to establish whether temperature ‘saturation’ occurs. 

    e  H2+  H3+  f5H+  f10H+   aH   fH   f5H   xH2  rxH2  rnH2 
(a)   8.7  11.2  27.5   0.9    0.5  32.3    8.4   0.5   0.1    0.1   9.8 
(b)   7.0    8.0  37.4   0.8    0.5  31.9    8.1   0.4   0.1    0.2   5.6 
(c)   5.7    6.9  46.8   0.6    0.5  28.1    7.4   0.4   0.2    0.2   3.2 
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The relative contributions from Paméla’s three gas heating mechanisms (Figure 58, 

Section 4.4.3) differ to that of the simulation results (Table 5), which indicate that H3
+ 

ions, H atoms (formed via H3
+ formation i.e. H2

+ association collisions with the 

neutraliser gas cf. Section 2.2.2), H atoms (formed by dissociation of the neutraliser 

gas), H2
+ ions, electrons and reflected neutralised H2

+ ions are the six main sources of 

gas heating. Paméla’s gas heating model (Appendix D) [31, 34] doesn’t account for four 

of these gas heating pathways. Moreover, contrary to the Paméla model (and the results 

of Crowley et al. [36]; Figure 58, Section 4.4.3), the simulation results (Table 5) predict 

that particles; f5H+, f10H+, fH, f5H and rnH2 have a relatively small gas heating effect 

{regarding the rnH2 contribution; H3
+ ions are the majority positive ion in the 

simulations (Section 4.4), although reflected neutralised H3
+ ions were not simulated. 

Paméla inferred from his “naïve [plasma] model” [34] that the D2
+ ion should be the 

dominant plasma ion for neutraliser (D2) gas densities less than ~ 1e20m-3}. 

 

The electron direct (via electron-H2 elastic collisions) and indirect (via H2 ionisation and 

dissociation) contribution to gas heating is significant (Table 5). If electrons were 

somehow slowed-down/removed from the neutraliser gas (e.g. by the use of weak 

magnets, which would not significantly affect the beam propagation), the plasma 

density (positive ions being electrostatically coupled to the electrons) and/or the 

electron temperature, could be reduced, subsequently reducing the gas heating (thus also 

reducing gas flow requirements), resulting in an increased neutralisation efficiency. 

Magnets are already employed to reduce the electron density & temperature in negative 

ion sources [25] in order to increase the negative ion formation, while other magnets are 

used downstream in the extraction grids [25] to deflect electrons so as to prevent them 

from being accelerated along with the negative ion beam (positive ion, arc discharge 

sources [6] use magnets to confine electrons in order to maximise the number of 

electron impact ionisations – the opposite effect to that desired in the neutraliser).  

 

These gas heating calculations yield substantially lower neutraliser gas temperatures 

than those calculated by Surrey & Crowley [30] cf. Figure 58, Section 4.4.3 [36]. As 

explained in Section 5.1.5, the biggest gas density depletion of 35% (Table 6, assuming 

an inversely proportional relationship between the gas target and the gas temperature) 

only gives a < 5% reduction in neutralisation efficiency. This is considerably less than 

would be inferred from the neutral beam power measurements [19] and that predicted 

by the Paméla gas heating model [31, 34] (Figure 11 (a), Section 1.3.4). 
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5.3 Results for varying Beam Power 

 

     e  H2+  H3+  f5H+  f10H+   aH   fH   f5H  xH2  rxH2  rnH2 
(a)    5.7    6.9  46.8   0.6    0.5  28.1   7.4   0.4  0.2   0.2   3.2 
(b)    3.4  10.3  51.7   0.4    0.3  24.3   4.9   0.2  0.3   0.5   3.7 
(c)    3.4  11.3  51.4   0.3    0.2  23.6   4.8   0.2  0.4   0.6   3.8 
 
Table 7: Percentage gas heating contribution from each simulated particle for 

Hydrogen beam powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 

 

total pden      total beam         % of total       increased        % decrease 

transfer      pden loss         pden loss       temperature      in gas target 

(a) 1424.3Wm-3      15039Wm-3           9.5%          463K         20%, 35% 

(b)        2451.0Wm-3      22780Wm-3         10.8%          518K         24%, 42% 

(c)        2896.8Wm-3      26112Wm-3         11.1%          540K         25%, 44% 

 

Table 8: Total power density transfer, total beam power density loss (Section 4.2.4), 

percentage of total beam power density loss, increased temperature, and percentage 

decrease in neutraliser gas target (two models, Section 5.1.4) for Hydrogen beam 

powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW (H2 density of 9x1019m-3). 

 

 

Figure 65: Increased neutraliser temperature as a function of beam power. 

 

Similarly to Section 5.2, H3
+ ions are the dominant contributors to gas heating (Table 7), 

and the increased gas temperatures (Figure 65) are significantly lower than those 

calculated by Surrey & Crowley [30] cf. Figure 60, Section 4.4.3 [36]. The biggest gas 

density depletion of 44% (Table 8) – “70%” [19] - only gives a < 2% reduction in 

neutralisation efficiency (Figure 63, Section 5.1.5), and therefore doesn’t account for 

the neutral beam power discrepancies shown in Figure 11 (a), Section 1.3.4. 
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6.1 Neutralisation of Negative Ion Beams 

 

6.1.1 ITER Neutral Beam Injectors 

 

Neutral beam heating for the ITER tokamak requires neutral beams of energy ~ 1MeV 

(partly due to deposition location constraints [72]). As can be seen from Figure 66, 

positive beams would yield virtually no neutral component at such energies, although 

negative beams yield a relatively high ( ~ 60%) neutralisation fraction, due to the fact 

that at high energy there is more likelihood of an electron getting stripped (e.g. low 

electron binding energy of 0.75eV for H-) from the beam, rather than one being captured 

from the neutraliser gas, evidenced by their respective cross sections [60].  

 

 

 

 

 

 

 

 

  

Unlike positive beam neutralisation (Section 4.1), the optimum neutraliser gas line 

density (i.e. pertaining to maximum neutralisation efficiency) is considerably less than 

that required to produce beam charge-equilibrium (the positive beam component begins 

to dominate with denser gas targets, in agreement with Figures 67 & 68 in Sections 

6.1.2 &  6.1.3, respectively). Research in negative ion neutral beam injection (e.g. in ion 

sources, 1MeV accelerators, electrostatic beam ion deflection etc.) is still ongoing in the 

lead up to ITER [72]. Such smaller scale injection is operational at; the JT-60U tokamak 

in Naka, Japan [73, 74, 75], the DIII-D tokamak in San Diego, USA [76], and the Large 

Helical Device (LHD) in Toki, Japan (world’s largest superconducting stellarator) [77].   

 

Surrey [40] has adapted her beam plasma model for positive beams [22] into a model 

for the ITER heating (HNB) and diagnostic (DNB) negative ion neutral beam injectors. 

She suggests that the stripped electrons (~ 55eV, 100keV H- beam energy multiplied by 

the ratio of the electron mass to the beam particle mass) produced in the DNB 

neutraliser (beam plasma), might become significantly thermalized, while the ~ 270eV 

Figure 66: Plot of neutralisation 

efficiency versus beam energy for 

Hydrogen and Deuterium positive 

and negative ion beams (assuming 

their passage through their respective 

molecular gas neutraliser cells of 

optimum line density) [7]. 
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stripped electrons from the HNB 1MeV D- beam are unlikely to be sufficiently 

thermalized (cf. Figures 74 (c) & 78 (c)). She concludes by saying that gas heating is 

unlikely to be severe in either of the injectors, and that the gas target is therefore 

expected to remain close enough to the design value. Again, as in the case of her similar 

positive beam analytical model for the JET neutraliser plasma, she states that a “much 

more sophisticated code” would be needed for “any detailed analysis”. To this end, the 

PIC MCC simulation method, presented already for positive ion beams (Chapters 1 - 5), 

is thus applied in a similar way to model the ITER (DNB & HNB) neutralisers. 

 

To the best of our knowledge, the only readily available cross section data for such 

(relatively high energy) negative ion beams, is for their charge-changing collisions. 

Surrey gets around this obstacle by setting the cross sections for negative beams as 

equal to that for positive beams [40]. She backs this claim up by making reference to 

Fogel et al. [78, 79], who apparently observed that they are similar in the case of (10-50 

keV) beam impact ionisation. Conflicting data from Buckman & Phelps [52] show 

(10keV) H+ impact ionisation cross sections of nearly 3 times larger magnitude than that 

for H-. Despite this lack of authoritative data, DNB & HNB beam plasma simulations – 

the results of which are reported in the remainder of this chapter - adopt this approach of 

assuming an equality between positive and negative beam collision cross sections. 

 

The DNB beam consists of a 100keV/60A (300A/m2, 15A per channel) H- beam [72]. 

As in the positive case, the DNB beam is assumed to have a top-hat density & velocity 

spatial profile with a narrow rectangular beam head area of 0.0966m2 (0.07m x 1.38m), 

centred in a neutraliser channel of dimensions 0.10m, 1.60m, 3.00m [40, 72] 

(horizontal/transverse (x), vertical (y), axial/longitudinal (z), neutraliser/beam 

dimensions, respectively). The DNB neutraliser (decoupled from the accelerator to 

allow intervening gas pumping so as to minimise stripping losses in the accelerator 

[72]) is divided into four equal (vertical) channels (to reduce gas conductance [80]), 

separated by 5 panels, each with three 1.00m length (axial) sections (relatively short 

compared to the 10m neutralisers on JT-60U - to minimise space and construction cost 

[80]) of height 1.60m [40, 72]. It is therefore sufficient to model only one neutraliser 

channel, which entails simulating a 100keV/15A H- beam. Similarly to the calculations 

described in Section 2.2.2, this translates into a beam velocity of 4.380x106ms-1, a beam 

flux of 9.693x1020m-2s-1, and thus a beam density of 2.213x1014m-3. 
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Likewise, the 1MeV/40A (200A/m2, 10A per channel) D- HNB neutraliser [72] has an 

almost identical design (0.10m x 1.70m x 3.00m), with a beam head area of 0.0952m2 

(0.07m x 1.36m) [40]. The simulation involves a 1MeV/10A D- beam with velocity 

9.795x106 ms-1, flux 6.556x1020m-2s-1, and density 6.693x1013m-3.  

 

In the following beam composition results (Sections 6.1.2 & 6.1.3) four charge-

changing collisions are simulated; H-/D- electron stripping (detachment), H/D electron 

stripping, H-/D- double electron stripping and H+/D+ electron capture (cross sections are 

taken from the ALADDIN website [53]). Similarly to Section 4.1, the optimum gas 

targets are calculated via the interchangeable variables technique cf. Section 2.2.4. 

 

 

6.1.2 DNB Beam Composition Results 

 

The length of the DNB neutraliser is 3m, so the 100keV H- beam (neutraliser) transit 

time is 684ns (3m/4.380x106ms-1). An initial overestimated guess of 2x1019m-3 (cf. [40, 

72]) is used for the fixed H2 gas density in this DNB beam composition simulation. 

 

 

Figure 67: Evolution of the DNB beam species densities. 

 

The theoretical maximum neutralisation efficiency is ~ 60% (1.317x1014m-3 

/2.213x1014m-3, Figure 67). This maximum neutral beam density (mean energy density, 
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power) is reached at a time of ~ 517.5ns (Figure 67), which implies that the optimum 

neutraliser H2 gas density is ~ 1.51x1019m-3 {(517.5ns/684ns) x 2x1019m-3}, giving an 

optimum gas target of ~ 4.53x1019m-2 (1.51x1019m-3 x 3m). This value of 1.51x1019m-3 

for the DNB neutraliser optimum H2 gas density is thus used in the DNB beam plasma 

simulations - the results of which are reported in Sections 6.2.1, 6.3.1 & 6.4.1. 

 
 

6.1.3 HNB Beam Composition Results 

 

The 1MeV D- beam transit time is 306ns (3m/9.795x106ms-1). An initial overestimated 

guess of 8x1019m-3 (cf. [40], [72]) is used for the fixed neutraliser D2 gas density in this 

HNB beam composition simulation in order to find the optimum D2 gas density (half 

energy Hydrogen cross sections are used as estimates for Deuterium cross sections). 

 

 

Figure 68: Evolution of the HNB beam species densities. 

 

The theoretical maximum neutralisation efficiency is ~ 55% (3.707x1013m-3 

/6.693x1013m-3, Figure 68). This maximum neutral beam power occurs at ~ 182ns 

(Figure 68), implying an optimum neutraliser D2 gas density of ~ 4.76x1019m-3 

(182ns/306ns x 8x1019m-3) i.e. an optimum gas target of ~ 1.43x1020m-2 (4.76x1019m-3 x 

3m) {≈1.4x1020m-2 [72]}. This value of 4.76x1019m-3 for the HNB neutraliser optimum 

D2 gas density is thus used in the HNB beam plasma simulations - the results thereof are 

reported in Sections 6.2.2, 6.3.2 & 6.4.2. 
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6.2 Beam Power Loss during Neutraliser Transit 
 
6.2.1 DNB Beam Power Loss Results 
 

 
 
Figure 69: DNB beam mean energy density as a function of time.  

 

Similarly to Section 4.2, the beam power density loss to the neutraliser gas is equal to 

the slope of the beam mean energy density versus time plot (Figure 69). Multiplying 

this value by the total constant density equivalent neutraliser channel volume (gives the 

total beam power loss) and then by the beam (neutraliser) transit time (Section 6.1.2), 

yields one quarter (4 channels) of the total beam energy lost in the neutraliser. 

 

To calculate the average energy loss per beam particle during neutraliser transit, the 

total beam energy lost in each neutraliser channel is divided by the number of beam 

particles that reside in the constant density equivalent neutraliser channel volume at any 

given instant. The volume of one DNB neutraliser channel is 0.48m3 (0.10m x 1.60m x 

3.00m), which can be taken as the constant density equivalent neutraliser channel 

volume, since the DNB (& HNB) neutraliser axial density profiles increase and 

decrease in ~ equal measures [81]. The number of beam particles that reside in the 

constant density equivalent neutraliser volume at any given instant is equal to the 

spatially averaged beam density (2.213x1014m-3 x 0.07m/0.10m, Section 6.1.1) 

multiplied by the neutraliser channel volume (0.48m3); 7.436x1013 beam particles. 
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The total beam energy lost in each DNB neutraliser channel is therefore 2677.4Wm-3 x 

0.48m3 x 684ns, which works out at 8.790x10-4J (5.487x1015eV). This equates to ~ 

0.074% {5.487x1015eV/(100000eV x 7.436x1013) x 100} of the total beam energy. In 

terms of energy loss per beam particle, 5.487x1015eV corresponds to ~ 74eV 

(5.487x1015eV/7.436x1013) of energy lost on average by each beam particle. 

 

Comparison of these DNB (& HNB) results with experimental stopping power 

measurements cannot be made at present, due to the lack of availability of relevant data. 

 

 

6.2.2 HNB Beam Power Loss Results 

 

 
 
Figure 70: HNB beam mean energy density as a function of time. 
 

The (constant) number of beam particles that reside in each HNB neutraliser channel is 

equal to the spatially averaged beam density (6.693x1013m-3 x 0.07m/0.10m, Section 

6.1.1) multiplied by the neutraliser channel volume (0.51m3, Section 6.1.1), which gives 

a value of 2.389x1013 beam particles.  

 

Similarly to Section 6.2.1, the total beam energy lost in each HNB neutraliser channel is 

9755.9Wm-3 (Figure 70) x 0.51m3 x 306ns (Section 6.1.3), which yields 1.523x10-3J 

(9.504x1015eV), and equates to ~ 0.040% {9.504x1015eV/(1000000eV x 2.389x1013) x 

100} of the total beam energy and ~ 398eV (9.504x1015eV/2.389x1013) of energy lost 

on average by each beam particle. 
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6.3 Neutraliser Beam Plasma Characterisation 

 

The ITER DNB & HNB initial beam ‘plasma’ evolution is shown in Appendix E, for the 

duration of their beam (neutraliser) transit times i.e. 684ns & 306ns, respectively. The 

DNB beam plasma simulation reached a definite steady-state (Figure 66), while the 

HNB simulation results are prior to steady-state (Figure 70). 

 

6.3.1 DNB Beam Plasma Results 

 
DNB beam plasma evolution to steady-state 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 71: Evolution of the spatially averaged (a) charged & (b) neutral particle 
densities and (c) plasma potential. 
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Steady-State DNB Beam Plasma Parameters 
 
(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 
 

Figure 72: Spatial profiles @ steady-state; (a) charged species densities, (b) neutral 

species densities, (c) electron temperature, (d) H2
+ temperature,  (e) electric potential, 

(f) net charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 
 

Figure 73: Electron (a) transverse, (b) vertical and (c) longitudinal velocity distribution 

functions. H2
+ (d) transverse, (e) vertical and (f) longitudinal velocity distribution 

functions {title misprint: f(E) is not normalised}. 
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(a)      (b) 

 
(c)      (d) 

 
(e) 

       
 

Figure 74: (a) Debye length. (b) Electron & H2
+ mean/thermal energies. (c) Electron 

normalised homogenous energy distribution functions. Spatial variation of the (d) 

electron & (e) H2
+ energy distribution functions {title misprint: f(E) is not normalised}. 

 

The peak @ ~ 55eV (Figure 74 (c)) is due to stripped electrons cf. Figure 111 (c), 

Appendix E, i.e. implying that they do not thermalise with other beam plasma electrons. 
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6.3.2 HNB Beam Plasma Results 

 
HNB beam plasma evolution towards steady-state 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 75: Evolution of the spatially averaged (a) charged & (b) neutral species 
densities and (c) plasma potential. 
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‘Steady-State’ HNB Beam Plasma Parameters 

 

(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 76: Spatial profiles @ steady-state; (a) charged species densities, (b) neutral 

species densities, (c) electron temperature, (d) D2
+ temperature,  (e) electric potential, 

(f) net charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 77: Electron (a) transverse, (b) vertical and (c) longitudinal velocity distribution 

functions. D2
+ (d) transverse, (e) vertical and (f) longitudinal velocity distribution 

functions {title misprint: f(E) is not normalised}. 
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(a)      (b) 

 
(c)      (d) 

 
(e) 

 
 

Figure 78: (a) Debye length. (b) Electron & D2
+ mean/thermal energies. (c) Electron 

normalised homogenous energy distribution functions. Spatial variation of the (d) 

electron & (e) D2
+ energy distribution functions {title misprint: f(E) is not normalised}. 

 

Similarly to the DNB case, a peak in electron energy (@ ~ 270eV cf. Figure 117 (c), 

Appendix E) is expected due to stripped electrons, although Figure 78 (c) shows no 

electrons of energy greater than 20eV. This is due to the fact that beam stripping ceases 

altogether in this Transverse simulation, as the initial 1MeV D- beam reaches a 100% 

D+ composition - this would not occur in real injectors cf. Section 6.1.1 & Figure 68, 

Section 6.1.3 - (1MeV D+ electron capture collisions were assumed to be negligible). 
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6.4 Gas Heating Results 
 
6.4.1 DNB Gas Heating Results 
 

 
 
 

Table 9: % power density transfer contribution from each simulated particle 
 

total pden    total beam        % of total       increased       % decrease 

transfer    pden loss        pden loss       temperature     in gas target 

4.5Wm-3     2677.4Wm-3          0.17%          376K        11%, 20% 
 

Table 10: Total power density transfer, total beam power density loss (Section 6.2.1), 

percentage of total beam power density loss, increased temperature, and percentage 

decrease in neutraliser gas target (two target–temperature models).  

 
The gas heating calculations (cf. Section 5.1) yield a DNB neutraliser (increased) gas 

temperature of 376K (Table 10). The resulting neutraliser gas density depletion (Table 

10) would be relatively insignificant, since it would only yield a reduction in 

neutralisation efficiency of < 5% cf. Figure 67, Section 6.1.2.   

 

6.4.2 HNB Gas Heating Results 
 

 

 

Table 11: % power density transfer contribution from each simulated particle 

 
total pden    total beam        % of total       increased       % decrease 

transfer    pden loss        pden loss       temperature     in gas target 

19.6Wm-3     9755.9Wm-3          0.2%          377K        11%, 20% 
 

Table 12: Total power density transfer, total beam power density loss (Section 6.2.2), 

percentage of total beam power density loss, increased temperature, and percentage 

decrease in neutraliser gas target (two target–temperature models). 

 
The resulting HNB neutraliser gas temperature is 377K (Table 12). As in the DNB case, 

these results predict insignificant gas heating, in agreement with Surrey [40]. However, 

as in Sections 5.2 & 5.3, these results could be underestimating the real extent of gas 

heating - bearing in mind the more sensitive relationship between neutralisation 

efficiency and gas target for negative ion beam neutralisation (Figure 68, Section 6.1.3).   

e H2+ H3+ f5H+ f10H+ aH fH f5H xH2 rxH2 rnH2 
13.1 8.9 28.4 0.1 0.1 30.0 3.6 0.1 0.1 0.1 15.5 

e D2+ D3+ f5D+ f10D+ aD fD f5D xD2 rxD2 rnD2 
5.62 2.71 50.45 0.06 0.03 40.78 0.02 0.01 0.01 0.01 0.29 
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Chapter 7 
 

Concluding Remarks 

 

The JET NBI neutraliser beam plasma characterisation (Chapter 4) and gas heating 

(Chapter 5) simulation results are qualitatively consistent with the experimental results 

of Crowley et al. [36]. However, the simulation gas heating calculations yield very 

different gas heating source contributions, and predict the existence of four significant 

gas heating pathways not accounted for in the Paméla model [31, 34] i.e. direct kinetic 

energy transfer to the neutraliser gas from H3
+ ions, H2

+ ions, H atoms (formed via H3
+ 

formation) and electrons. Moreover, as previously suggested by Falter et al. [27, 33], 

the simulation results (Sections 5.2 & 5.3) indirectly suggest that gas implantation may 

be a significant neutraliser gas density depletion process i.e. since the simulation gas 

heating results do not account for the apparent extent of the neutralisation inefficiencies 

(Figure 11 (a), Section 1.3.4). Although, given the comparison limitations between 

simulation and experimental results (Section 4.4.3), the merit of the 1D3v PIC MCC 

Transverse simulation approach, in providing a reasonably accurate model of the beam-

neutraliser system, remains unestablished (in addition to the inherent limitations due to 

the simplified nature of the 1D3v PIC MCC model, its accuracy depends upon the 

accuracy of the inputted collision cross section and threshold energy data).   

 

There is obviously scope for more improvements in the 1D3v PIC MCC simulations 

e.g. including volume & surface recombination, Coulomb collisions between positive 

beam ions and plasma electrons (purported to be the main source of electron energy [38, 

63], [62]) and the formation of various H2 (electronically, rotationally and vibrationally) 

excited states (providing a significant drain in electron energy). A knock-on effect of the 

existence of a significant population of H2 excited states would be in their greater 

subsequent ionisation and dissociation (threshold energy of both processes is lower than 

that for the ground state H2 molecule). Accounting for beam charge-changing events 

whereby the beam particles and/or the H2 gas target molecules are in excited states 

could also turn out to be significant e.g. in determining the beam composition & energy 

and hence the neutralisation efficiency. All these omitted effects could have significant 

consequences especially for the electron temperature, which is a very influential plasma 

parameter. If the electron temperature changes then nearly everything else changes e.g. 
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changes in the electron energy distribution function (eedf) cause changes in the electron 

reaction rates, which in turn cause changes in the beam plasma composition and energy 

etc. Moreover, the simulation model does not account for some clearly observed effects 

like that of; beam interception resulting in beam density/power (transmission) losses, 

gas implantation (wall pumping) & re-emission [33] and the emission of various 

radiation from the beam plasma. Failing to simulate significant physical processes 

would partly explain the discrepancies between simulation and experimental results. 

 

A 2D or 3D neutraliser beam plasma simulation, incorporating more beam-neutraliser 

physics, would obviously provide a greater predictive ability than the present 1D 

approach. Coupled with a Direct Simulation Monte Carlo (DSMC) method [82] cf. [83], 

the resulting hybrid neutraliser model would directly yield the neutraliser gas density 

depletion (by implicitly modelling gas flow changes caused by the beam plasma), thus 

predicting the necessary conditions pertaining to maximum beam neutralisation. 

 

The simulation approach to modelling the neutraliser could be used to test possible 

design improvements i.e. proof-of-principle simulations e.g. whether a reduction in wall 

temperature, longer neutraliser, use of heavier neutraliser gases etc. can significantly 

increase the neutralisation efficiency. The idea (Section 5.2) of using magnetic fields to 

manipulate the beam plasma electrons, so as to reduce their contribution to gas heating, 

could also be investigated. The resulting predictions of such simulations could 

determine whether real proof-of-principle experiments are to be conducted. Another 

proof-of-principle experiment could be to run the simulations for different neutraliser 

widths and see how the plasma parameters vary. Paméla [31] concluded that gas heating 

is most significant in wider neutralisers, which makes sense from a gas-wall cooling 

perspective {hence the expected success of the relatively narrow channel designs for 

ITER DNB & HNB neutralisers (Section 6.1.1) i.e. in terms of limiting any significant 

gas heating effects cf. Section 6.4, [40]}, although increasing the neutraliser width 

might have the favourable result of reducing the electron temperature, which would then 

reduce the neutraliser gas heating and thus any deficits in neutralisation efficiency. 

 

The conclusion (from the beam composition simulation results, Section 4.1) that the 

neutralisation efficiency has a distinct maximum with gas target (as opposed to the 

generally assumed increasing asymptotic behaviour [60, 66]) could be tested 

experimentally via calorimetric measurements at the ion dump, cf. Section 4.1. 
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Appendix A  Beam charge-changing calculations 

 

 
 
The eigenvalues of A are calculated via the characteristic equation {det(A-λI)=0}:   
 

 

 

 

 

 

 
 
The eigenvectors of A are calculated via the eigenvector equation of A {Ax=λx}: 
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Beam Fraction Solution: 
 

 

 

 
 
Initial conditions; F1 = 1 & F0 = 0 at ∏ = 0 =>  
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Appendix B  Initial beam ‘plasma’ evolution 

 

80keV/27A proton beam injection into a H2 gas of density 3x1019m-3: 

 

(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 79: (a) electron density, (b) H2
+ density, (c) charged particles densities, (d) 

charged particle fluxes at neutraliser wall, (e) electron temperature, (f) H2
+ 

temperature, (g) net charge density ... and (h) electric potential. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f)     

 
(g)      (h) 

 
 

Figure 80: Spatial profiles @ t = 5ns; (a) charged particle densities (b) electron & H2
+ 

density, (c) electron temperature, (d) H2
+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes.  
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 
Figure 81: Spatial profiles @ t = 415ns; (a) charged particle densities (b) electron & 

H2
+ density, (c) electron temperature, (d) H2

+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 

 

Evidence of (fleeting) double layer formation at each side of the beam (Figure 81 (f)). 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 82: Electron (a) transverse, (b) vertical and (c) longitudinal velocity distribution 

functions. H2
+ (d) transverse, (e) vertical and (f) longitudinal velocity distribution 

functions. All plots @ t = 415ns {title misprint: f(E) is not normalised}. 

 

The (electron& H2
+) velocity distribution functions are very similar in the vertical and 

longitudinal planes (Figure 82 (b) & (c), (e) & (f)) {beam stripped electrons only have a 

velocity (same as the 80keV beam) component in the longitudinal beam direction, 

Figure 82 (c)}. The differences in the electron & H2
+ velocity distribution functions at 

the neutraliser walls (Figure 82 (a) &  (d)) are due to the plasma sheath, where for 

example the H2
+ ions have a preferential direction towards the walls (opposite direction 

for electrons), hence the difference in their mean and thermal energies (Figure 83 (b)).  
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 83: (a) Debye length. (b) Electron & H2
+ mean/thermal energies. (c) Electron & 

(e) H2
+ energy distribution functions. Spatial variation of the (d) electron & (f) H2

+ 

edfs. All plots @ t = 415ns {title misprint: f(E) is not normalised}. 

 

The prominent peak in the normalised homogenous electron edf @ ~ 44eV (Figure 83 

(c)), evidences the presence of beam stripped electrons, since their initial velocity of 

3.916x106ms-1 (Figure 83 (c)) corresponds to an energy of ~ 44eV. The less prominent 

peak @ ~ 10eV doesn’t feature at steady-state (Figure 90 (a), Appendix C). 
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Appendix C  Steady-state plasma parameters 

 

Spatially resolved plasma parameters versus neutraliser gas density 
 
80keV/27A H+ beam, H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3: 

 
(a) 

 
(b) 

 
(c) 

 
 

Figure 84: Spatial profiles of the charged particle densities for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 85: Spatial profiles of the neutral particle densities for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 86: Spatial profiles of the plasma potentials for neutraliser H2 gas densities; (a) 

3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 87: Spatial profiles of the electric fields for neutraliser H2 gas densities; (a) 

3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b)

 
(c)

 
 

Figure 88: Spatial profiles of the charged particle fluxes for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 



 6 

(a) 

 
(b) 

 
(c) 

 
 

Figure 89: Spatial profiles of the charged particle drift velocities for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 90: Normalised electron energy distribution functions for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 

 

The peaks @ ~ 44eV are due to stripped electrons cf. Figure 83 (c), Appendix B. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 91: Spatial variation of the normalised electron energy distribution functions for 

neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 92: Normalised H2
+ energy distribution functions for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 93: Spatial variation of the normalised H2
+ energy distribution functions for 

neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 94: Normalised H3
+ energy distribution functions for neutraliser H2 gas 

densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 95: Spatial variation of the normalised H3
+ energy distribution functions for 

neutraliser H2 gas densities; (a) 3x1019m-3, (b) 6x1019m-3, (c) 9x1019m-3. 
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Spatially resolved plasma parameters versus beam power 

 

H2 gas density, 9x1019m-3. H+ beam powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW: 

 

(a) 

 
(b) 

 
(c) 

 
 

Figure 96: Spatial profiles of the charged particle densities for hydrogen beam powers; 

(a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 97: Spatial profiles of the neutral particle densities for hydrogen beam powers; 

(a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 98: Spatial profiles of the plasma potentials for hydrogen beam powers; (a) 2.16 

MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a)

 
(b) 

 
(c) 

 
 

Figure 99: Spatial profiles of the electric fields for hydrogen beam powers; (a) 2.16 

MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a)

 
(b)

 
(c)

 
 

Figure 100: Spatial profiles of the charged particle fluxes for hydrogen beam powers; 

(a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a)  

 
(b) 

 
(c) 

 
 

Figure 101: Spatial profiles of the charged particle velocities for hydrogen beam 

powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c)

 
 

Figure 102: Normalised electron energy distribution functions for hydrogen beam 

powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 

 

As in Figure 90, the peaks @ ~ 44/65/73 eV are due to stripped electrons. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 103: Spatial variation of the normalised electron energy distribution functions 

for hydrogen beam powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 



 21 

(a) 

 
(b) 

 
(c) 

 
 

Figure 104: Normalised H2
+ energy distribution functions for hydrogen beam powers; 

(a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 105: Spatial variation of the normalised H2
+ energy distribution functions for 

hydrogen beam powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 106: Normalised H3
+ energy distribution functions for hydrogen beam powers; 

(a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 107: Spatial variation of the normalised H3
+ energy distribution functions for 

hydrogen beam powers; (a) 2.16 MW, (b) 6.00 MW, (c) 8.04 MW. 
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Appendix D  Paméla’s gas heating model  

 

Paméla’s analytic gas heating model [31, 34] (cf. [36]) accounts for three categories of 

gas heating sources, namely (1) molecular dissociation by beam ions, (2) molecular 

dissociation by plasma electrons (both forming fast H/H+ particles capable of heating 

the neutraliser gas) and (3) reflected neutralised H2
+ ions (directly capable of heating the 

neutraliser gas). This model was based on a steady-state neutraliser gas assumption i.e. 

power losses at the walls = power gained indirectly from the beam: 

  

 

 

 

 

 
 

j   Reaction   Process    Edj
 (eV)     σ(EB) (10-21m2) 

1   H++H2->H+H+H+    Dissociative Charge Exchange 5               exp{2.6(1-EB)/100} 
2   H++H2->H++H+H++e    Dissociative Ionisation  5    0.7+(EB-40)/100 
3   H++H2->H+(H)+H++H++e+(e)  Double Ionisation   10             exp{0.79(1-EB/121)} 
                  9.7exp{-3.4(1-64.4/EB)2}  
4   H++H2->H++H+H  Simple Dissociation  2             1+105(EB/39)6 
 
Table 13: List of beam dissociation collisions leading to the formation of fast particles 

(initial energy in eV) and formulae for computing the cross sections [36]. 

 

To compute the gas density distribution along the neutraliser, the power balance 

equation (D.1) is used together with an equation describing the density gradient (D.2):  
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n(z - ∆z) & T(z - ∆z) being known; the power balance equation (F.1) is used to calculate 

T(z) from n(z - ∆z), and T(z) is then used to calculate n(z) =  n(z - ∆z) + ∆zdn(z)/dz 

(Taylor expansion). This method applies to a thin neutraliser transverse gas slice (z, z + 

∆z). Since the energy exchange (∆E) between neighbouring gas slices of the same width 

is a 2nd order expression, this approach is only strictly valid for 1st order in ∆z: 

 

 

 
L = neutraliser length (z dimension) 
x = neutraliser width 
y = neutraliser height 
V = neutraliser volume 
n = neutraliser gas density 
v = neutraliser gas mean thermal velocity 
Sw = neutraliser wall surface area  
Tw = neutraliser wall temperature 
T = neutraliser gas temperature 
γ = specific heat of the neutraliser gas (dimensionless variable)   
α = accommodation coefficient of the neutraliser wall (assumed to be 0.5 for H2) 
IB = beam current         
EB = beam energy (keV) 
ve = electron mean velocity      
ne = electron density   *   
Te = electron temperature (eV ) *  
Vp = plasma potential   * 
M+ = mass of plasma ion  
R = reflection coefficient    
k = Boltzmann constant    
σdj = beam ion dissociation cross section (j=1-4) 
σde = electron dissociation cross section 
σ0 = energy loss cross section for elastic collisions between reflected neutralised plasma 
ions and neutraliser gas molecules  
Edj = energy transferred to dissociation products from beam ions 
Ede = energy transferred to dissociation products from electrons  
P(E) = probability for energy loss of the dissociation products in elastic collisions with 
neutraliser gas molecules 
C = neutraliser conductance 
TC = Temperature of gas when taking conductance measurement 
F = injected gas flow (molecules per second) = Q/kTi 
Q = gas flow (Torr litres per second) 
Ti = gas injection temperature 
K(x/λ(z)) = factor by which the conductance is increased (pressure dependent) [34]  
 

*: The three empirical parameters (cf. [36]) can be reduced to just one, namely Te [31]. 
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Appendix E  DNB & HNB initial beam ‘plasma’  evolution 

 

DNB initial beam ‘plasma’  evolution 

 

100keV/15A Hydrogen beam injection into a H2 gas of density 1.45x1019m-3: 

 
(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 108: (a) electron density, (b) H2
+ density, (c) charged particles densities, (d) 

charged particle fluxes at neutraliser wall, (e) electron temperature, (f) H2
+ 

temperature, (g) net charge density ..., (h) electric potential. {beam transit time, 684ns} 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 109: Spatial profiles @ t = 6ns; (a) charged species densities (b) electron & H2
+ 

density, (c) electron temperature, (d) H2
+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 110: Spatial profiles @ t = 136ns; (a) charged species densities (b) electron & 

H2
+ density, (c) electron temperature, (d) H2

+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 111: Electron (a) transverse, (b) vertical and (c) longitudinal velocity 

distribution functions. H2
+ (d) transverse, (e) vertical and (f) longitudinal velocity 

distribution functions. All plots @ t = 136ns {title misprint: f(E) is not normalised}. 

 

Note the presence of beam stripped electrons i.e. with velocity equal to the beam 

velocity, in the longitudinal beam direction (Figure 111 (c)). The differences in the 

electron & H2
+ velocity distribution functions at the neutraliser walls (Figure 111 (a) & 

(d)) are due to the plasma sheath, where for example the H2
+ ions have a preferential 

direction towards the walls (opposite direction for electrons), hence the difference in 

their mean and thermal energies (Figure 112 (b)). 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 112: (a) Debye length. (b) Electron & H2
+ mean/thermal energies. (c) Electron 

& (e) H2
+ energy distribution functions. Spatial variation of the (d) electron & (f) H2

+ 

edfs. All plots @ t = 136ns {title misprint: f(E) is not normalised}. 

 

The prominent peak (almost identical @ 6ns) in the electron edf @ ~ 55eV (Figure 112 

(c)), evidences the presence of beam stripped electrons, since their initial velocity of 

4.503x106 ms-1 (Figure 111 (c)) corresponds to an energy of ~ 55eV. 
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HNB initial beam ‘plasma’  evolution 

 

1MeV/10A Deuterium beam injection into a D2 gas of density 4.67x1019m-3: 

 

(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 113: (a) electron density, (b) D2
+ density, (c) charged particles densities, (d) 

charged particle fluxes at neutraliser wall, (e) electron temperature, (f) D2
+ 

temperature, (g) net charge density ..., (h) electric potential. {beam transit time, 306ns} 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 114: Spatial profiles @ t = 3.06ns; (a) charged species densities (b) electron & 

D2
+ density, (c) electron temperature, (d) D2

+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

 
 

Figure 115: Spatial profiles @ t = 153ns; (a) charged species densities (b) electron & 

D2
+ density, (c) electron temperature, (d) D2

+ temperature,  (e) electric potential, (f) net 

charge density & electric field, charged particle (g) drift velocities and (h) fluxes. 

 

Clear evidence of (fleeting) double layers at each side of the beam (Figure 115 (f)). 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 116: Electron (a) transverse, (b) vertical and (c) longitudinal velocity 

distribution functions. D2
+ (d) transverse, (e) vertical and (f) longitudinal velocity 

distribution functions. All plots @ t = 153ns {title misprint: f(E) is not normalised}. 

 

Again, note the presence of beam stripped electrons (with velocity equal to the beam 

velocity) in the longitudinal beam direction (Figure 116 (c)). The differences in the 

electron & D2
+ velocity distribution functions at the neutraliser walls (Figure 116 (a) & 

(d)) are due to the plasma sheath, where for example the D2
+ ions have a preferential 

direction towards the walls (opposite direction for electrons), hence the difference in 

their mean and thermal energies (Figure 117 (b)). 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
 

Figure 117: (a) Debye length. (b) Electron & D2
+ mean/thermal energies. (c) Electron 

& (e) H2
+ energy distribution functions. Spatial variation of the (d) electron & (f) H2

+ 

edfs. All plots @ t = 153ns {title misprint: f(E) is not normalised}.  

 

The prominent peak (almost identical @ 6ns) in the electron edf @ ~ 270eV (Figure 

117 (c)), evidences the presence of beam stripped electrons, since their initial velocity 

of 9.757x106 ms-1 (Figure 116 (c)) corresponds to an energy of ~ 270eV. 
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